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Abstract—With the rise of energy-constrained smart edge ap-
plications, there is a pressing need for energy-efficient computing
engines that process generated data locally, at least for small
and medium-sized applications. To address this issue, this paper
proposes DREAM-CIM, a digital SRAM-based computation-
in-memory (CIM) accelerator. It targets an energy- and area-
efficient implementation of the multiply-and-accumulate (MAC)
operation, which is the core operation of neural networks. The
accelerator is based on a multi-sub-array macro to increase par-
allelism, integrates multiplication operations within the memory
cells such that they are executed while reading the cells, makes
use of pipelining to further optimize the throughput of the MAC
operations, and gets rid of the expensive adder-tree structures
commonly used in State-of-The-Art (SOTA) digital CIM solutions
by replacing them with a custom accumulation circuit to reduce
power and area. The SPICE simulation results of the DREAM-
CIM accelerator show an energy efficiency of 5097 TOPS/W
(normalized to a 1-bit × 1-bit MAC operation) and an area
efficiency of 3854 TOPS/mm2 using 22 nm technology node. The
obtained circuit-level results were fed into a python-based system-
level simulator to benchmark the system architecture using two
applications, i.e., image classification (using MNIST and CIFAR-
10 dataset on LeNet5 and Resnet-20 models) and object detection
(using COCO dataset on the YoloV6 model). The system-level
results show that DREAM-CIM can achieve an energy efficiency
of 0.1mJ, 0.2mJ, and 11.02mJ per inference for the MNIST,
YOLOv6, and CIFAR-10 datasets, respectively, while maintaining
SOTA accuracy.

Index Terms—Computation-in-memory, SRAM, digital, MAC.
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I. INTRODUCTION

ARTIFICIAL Intelligence (AI) technology has been
adopted by a wide range of applications with accelerated

economic and societal impacts. Today’s AI solutions
mainly target cloud and data centers; they are expensive,
power-hungry, consume lots of silicon area, and off-chip
memory burns power and taxes memory bandwidth [1], [2].
This makes them unsuitable for energy-constrained edge
applications. Recently, AI computing on the edge for Internet-
of-Things (IoT) started to gain popularity. It is expected to
revolutionize data computing [3]. The total IoT market is
forecasted to be over 600 billion US$ , while edge computing
will reach a market share of 28.8 billion US$ by 2025 [4]. The
fundamental operation of edge AI models, in particular neural
networks (NN), is a vector-matrix multiplication consisting
of multiply-and-accumulate (MAC) operations. To efficiently
perform MAC operations on edge devices, new computing
paradigms like Computation-in-memory (CIM) have been
proposed. CIM aims at addressing most of today’s computing
challenges by integrating computation and storage in the same
physical location [5], [6], [7], [8], [9], [10]. This integration
overcomes the data transfer and bandwidth challenges of
conventional architectures, offering significant parallelism to
enable energy-efficient implementation of MAC operations [5],
[11]. CIM can be implemented using both conventional SRAM
or (emerging) embedded non-volatile memory devices such as
resistive random access memory (RRAM) [12], [13], magnetic
(STT-MRAM) [14], phase change (PCM) [15], or even
ferroelectric field transistor (FeFET) [16]. Such non-volatile
devices are competitive technologies for edge computing as
they can be turned on and off without losing the stored weight.
Hence, their usage eliminates the need to reload data when the
system is turned on. In addition, they offer a high chip density
due to their small device sizes, and several of these technologies
offer multi-bit storage per cell, further increasing the integration
density [13], [15]. However, their low endurance, high write
energy, variability, and other non-idealities (such as RRAM
conductance drift) limit the CIM computing accuracy [17].
Moreover, these technologies often rely on bulky Analog-to-
Digital Converters (ADCs), which further reduce the overall
power efficiency of the designs [18]. In contrast, SRAM offers
a lower write energy per bit and has unlimited endurance [19].
Moreover, SRAM is a mature technology that is already in use
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as on-chip memory in microprocessors and is commercially
available in advanced technology nodes. These properties
make SRAM-based CIM suitable for a wide range of edge
applications [19], [20], [21]. However, SRAM-based CIMs
typically rely heavily on power-hungry components such as
adder-trees and ADCs [9], [19]. Therefore, developing energy-
efficient SRAM-based CIM implementing MAC operations
for edge AI is of great importance.

The State-of-the-Art (SOTA) SRAM-based CIM can be clas-
sified into two classes depending on the nature of MAC op-
eration: analog CIM (A-CIM), which implements the MAC
operation in an analog manner, and digital CIM (D-CIM) which
implements the MAC operation in a purely digital manner.
A-CIM exploits Kirchhoff’s current law or the charge sharing to
perform MAC operations, where the amplitude of the resulting
current or voltage represents the computed output [18], [22],
[23], [24], [25]. However, these outputs require current-based
or voltage-based ADCs, which limits the exploitation of the
high parallelism nature of CIM due to the high energy and
area penalties associated with the conversion process. D-CIM
addresses some of these challenges as it avoids the costly ADCs
by performing the operation in the digital domain. Depend-
ing on how the accumulation is implemented at the periphery,
D-CIM can be classified into two sub-classes: (a) sequential
accumulation and (b) adder-tree based parallel accumulation.
In sequential accumulation, the MAC operation is realized se-
quentially by selecting only one memory row at a time and
performing the multiplication in the cell or using dedicated
multiplication units in the periphery; the accumulation is then
performed using a dedicated adder that accumulates the outputs
of the multiplications in a sequential manner [26]. Although this
approach has a low power and area consumption, it is energy-
inefficient due to its high latency and low throughput. On the
other hand, the adder-tree-based parallel approach makes use of
some parallelism by selecting multiple memory rows simulta-
neously; the partial product/multiplications are then summed
through multiple stages of adders, which feed the results to
shift and accumulation blocks [27], [28], [29], [30], [31]. How-
ever, the additional circuitry to perform multiplication and the
bulky adder-trees dominate the energy and area consumption.
For instance, for the design reported in [27], the adder-tree
consumes ≈73% and ≈61% of the CIM macro power and area
consumption, respectively (see Section II-B). Hence, optimiz-
ing the energy and area overhead, e.g., the adder tree, for digital
SRAM-based CIM computing is crucial not only for energy-
efficient computing but also for higher computing density.

This paper advances the state-of-the-art by proposing an
adder-tree free digital SRAM-based CIM accelerator for (edge)
AI applications; it is referred to as DREAM-CIM. The archi-
tecture is based on a multi-sub-array to realize parallelism and
integrates multiplication within the memory cells such that it is
executed while reading the cells. In addition, it makes use of
pipelining to further optimize the execution time of the MAC
operations and gets rid of the expensive adder-tree structures by
replacing them with adders. In brief, the architecture integrates
the following concepts:

• Area and energy optimization: An efficient hierarchical
design for the accumulation is designed not only to min-
imize the complexity of the design but also to facili-
tate the pipelining of the macro design. The proposed
accumulation periphery uses minimal hardware resources,
resulting in high energy and area efficiency.

• Embedded bitwise multiplication: As opposed to standard
6-transistor SRAM cells, 8-transistor cells are used to al-
low “free” bitwise multiplication by leveraging the mem-
ory read operation as a NAND operation.

• Throughput improvement: Eight SRAM sub-arrays with
flying Read Bit-Lines (RBLs) are used to enhance paral-
lelism. Each array comprises 16 × 128 cells. The weight
matrix is stored in the sub-arrays, and the input vector
(in total, eight inputs at a time, each 4-bit wide) is split
into four single-bit input slices (where one slice contains
8 1-bit inputs). The eight input bits of a slice are applied
simultaneously to the eight sub-array (one bit per sub-
array) to perform eight embedded bitwise multiplications
in parallel.

• Execution time reduction: A pipeline stage between the
memory and the accumulation logic is used to reduce
latency. By isolating the memory read operation as the crit-
ical path, the design optimizes its timing constraints. This
adjustment allows for a higher operational frequency, as
the critical path no longer involves complex accumulation
logic.

A thorough evaluation of the DREAM-CIM was performed,
both at the circuit level as well as system level. At the circuit
level, the design was synthesized using the 22 nm technology
node and simulated in SPICE to derive the key performance
indicators. The results show that the proposed DREAM-CIM
achieves an energy efficiency of 318 TOPS/W and an area
efficiency of 241 TOPS/mm2 for a 4-bit × 4-bit MAC oper-
ation. When normalized to a 1-bit × 1-bit MAC operation, the
results change into 5.1 POPS/W and 3.9 POPS/mm2 energy
and area efficiency, respectively. Hence, DREAM-CIM realizes,
on average, 2× and ≈1.6× energy and area savings over the
conventional adder-tree-based digital CIM approaches. At the
system level, the obtained circuit-level results were fed into a
Python-based high-level system simulation to benchmark the
system architecture using two applications. The first applica-
tion is image classification using the MNIST [32] dataset on
LeNet-5 [33] and CIFAR-10 [34] on Resnet-20 [35], achieving
0.16 mJ/inference at 99.4% accuracy and 11 mJ/inference at
89% accuracy, respectively. The second application is object
detection using the COCO dataset [36] on the YoloV6 model
[37]. It achieves 0.2 mJ/inference with a 42.6 mean Average
Precision (mAP), which is the SOTA accuracy level for quan-
tized object detection models. mAP measures the accuracy of
object detector models based on several metrics, such as preci-
sion and recall. Overall, the results show that DREAM-CIM
achieves, on average, 2× energy savings per inference over
the adder-tree-based digital CIM approaches while maintaining
SOTA accuracy for image classification and object detection
applications.
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TABLE I
SOTA OPTIMIZATION TECHNIQUES ACROSS DIFFERENT LEVELS OF ABSTRACTION

Levels of
Abstraction

Optimization
Techniques CICC’11 [38] SSCL’21 [26] ISSCC’21 [28] JSSC’21 [30] ISSCC’22 [27] ISSCC’23 [39]

Micro-
architecture

In-cell Computation Yes Yes No
Yes (MAC
operation) No Yes (Multiplication)

In-periphery
Computation Accumulation Accumulation

MAC
operation N/A

MAC
operation Accumulation

Parallelism No No Adder-tree Systolic array
Multi-bank

memory + Adder-tree
Multi-bank

memory +Adder-tree
Reconfigurable

Operands Precision N/A N/A
4-8-12-16

bits 1-16 bits N/A 4-8-12 bits

Circuit

Custom Bit-cell
Design

Transposable
8-T SRAM 10-T SRAM Standard

6-T SRAM +
XNOR+ FA 12-T SRAM 8-T SRAM

Low-power
Design N/A N/A

Low-power
adders (14T) N/A

Low-power
adders (24T)

Mixed Vt
design

Device Technology Node 65nm 45nm 22nm 65nm 5nm 4nm

The remainder of the paper is organized as follows. Sec-
tion II highlights the prior work and its shortcomings. Sec-
tion III discusses the proposed architecture. Section IV presents
the macro-level simulation results and State-of-the-Art (SOTA)
comparison. Section V reports the system simulation results.
Section VI discusses the proposed architecture results and dis-
cussion. Finally, Section VII concludes the paper.

II. PRIOR WORKS AND THEIR SHORTCOMINGS

As already mentioned in the previous section, prior works on
SRAM-based CIM can be classified into A-CIM and D-CIM.
Next, we will elaborate on each class separately, including the
concept, the SOTA, and the shortcomings.

A. Analog SRAM-Based CIM (A-CIM)

In analog SRAM-based CIM (A-CIM), the first operands
(e.g., weight values) are stored in the memory array, while the
second operands (e.g., activation inputs) are provided through
the word lines (WLs). Each column performs the MAC opera-
tion by multiplying the input operands and the weights stored
in the memory array. The output currents of all the cells in the
column are accumulated through the column Bit Lines (BLs)
and form the analog MAC result based on Kirchhoff’s law
[40], [41]. The accumulated output current through the BL
is subsequently fed to an ADC to be converted to its digi-
tal value. Despite their advantages, such as high parallelism,
A-CIM architectures suffer from numerous challenges, such as
process variation, significant ADC area and energy overhead,
computing non-linearity, limited resolution/accuracy, and lim-
ited parallelism [30].

B. Digital SRAM-Based CIM (D-CIM)

Digital SRAM-based CIM (D-CIM) addresses the challenges
of A-CIM by eliminating the need for energy and area-hungry
ADCs [42] as the computation is performed in the digital do-
main. Depending on the accumulation operation, D-CIM imple-
mentations can be classified into two main categories, namely
(a) sequential accumulation (sequential D-CIM), and (b) adder-
tree based parallel accumulation (parallel D-CIM) [26], [27],
[39], [42], [43].

1) Sequential D-CIM: The MAC operation is realized in
sequential D-CIM by storing the first operand (e.g., weight) in
the memory array (e.g., SRAM array), and the second operand
is provided as an input sequentially. The two operands are then
fed to multipliers to perform multiplication, and the result is
then accumulated sequentially [26], [38], [43].

The SOTA solutions have explored different optimization
techniques across different levels of abstraction. For example,
the work in [26] has explored input sparsity to ensure an event-
driven system with minimal power dissipation; a custom 11-
bit adder is used to perform sequential accumulation of the
multiplication results of the weights and inputs. The accumula-
tion result is then stored back in the SRAM array, minimizing
area at the cost of additional write energy and time overhead.
Sequential D-CIM is area-efficient and consumes low power.
However, due to the sequential memory accesses, these ap-
proaches need more cycles per single MAC operation and suffer
from low throughput, which results in high energy consumption
[26], [43].

2) Parallel D-CIM: In the parallel D-CIM approach, mul-
tiple rows in the memory array are accessed in parallel and
they are provided to multipliers to perform multiplication. The
multiplication outputs are then fed to adder trees, which consist
of multiple stages of adders to perform the accumulation in a
single clock cycle [27], [39].

The parallel D-CIM SOTA solutions, summarized in Table I,
have explored various techniques to improve energy efficiency
across different levels of hardware abstraction, including mi-
croarchitecture, circuit, and device levels.

At the microarchitecture level, several works have explored
in-cell and in-periphery computation [27], [30]. These archi-
tectural decisions have a huge impact on the overall energy and
area consumption. The first adder-tree-based D-CIM was pro-
posed in [28] and reported at that time the highest throughput.
However, these solutions come at the cost of increased area and
energy consumption.

At the circuit level, SOTA solutions have proposed energy
optimization techniques by introducing custom bit cell designs
to enable computation within the cell or to enhance the sta-
bility of the SRAM cell design [30], [39]. Moreover, different
types of adders such as Carry Look-ahead Adders (CLA) and
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Fig. 1. An illustration of a) digital CIM architecture and b) energy and area
breakdown for 32×32 SRAM-based array for 4-bit weights in 28 nm CMOS
technology for different input sparsity [27].

reversed polarity adders are used to reduce latency and area
consumption. However, these have minimal impact on energy
and area improvements as the adder-tree still dominates the area
and energy consumption of the D-CIM.

To illustrate the dominance of the adder-tree, we imple-
mented the design proposed in [27]. We synthesized and per-
formed post-layout simulations. The estimated results are illus-
trated in Fig. 1. The results in the figure show that the adder-
tree consumes 73% power and ≈61% area of the CIM macro,
while the combination of multipliers, memory array, and accu-
mulators consumes only 24% power and 19% area. Therefore,
area and power-efficient alternatives are crucial to address the
overhead of adder-tree on SRAM-based digital CIM.

III. DREAM-CIM ARCHITECTURE

This section introduces the DREAM-CIM architecture. First,
it explains the DREAM-CIM concept using a simplified exam-
ple. Thereafter, it presents an overview of the DREAM-CIM
architecture followed by the implementation details.

A. DREAM-CIM Concept

To illustrate the concept, we use the NN shown in Fig. 2(a) as
an example. It consists of two input neurons, IN0 and IN1, two
neurons, O1 and O2, in the hidden layer, and an output neuron.

Fig. 2. An illustration of a) an example of an NN and b) a simplified
example of the MAC operation steps for one output neuron.

Each neuron is represented by a two-bit number. The right side
of the figure shows for O1, which has weights W00 and W10, the
MAC operations that needed to be performed. In the proposed
DREAM-CIM accelerator, a MAC operation is implemented in
four distinct steps, as shown in Fig. 2(a) for neuron O1.
Step 1: Bit-wise Multiplication - In this step, a bit-wise multi-
plication between the first bit of each input (IN0[0] and IN1[0])
and the weights (W00[1:0] and W10[1:0]) are performed; this
results in two partial products (pp), namely pp00[1:0] and
pp10[1:0].
Step 2: Column Accumulator - In this step, bits belonging to
the same position within each pp are accumulated together (i.e.,
column accumulation). In the example, pp00[0] is accumulated
with pp10[0], and pp00[1] with pp10[1]. This results in a two-
bit intermediate result for each column accumulation, namely
C00[1:0] and C01[1:0].
Step 3: Word Accumulator - In this step, the results of the
Column Accumulator are added. It is required that the partial
sums of the Column Accumulator are properly aligned here,
e.g., a 1-bit left shift operation is performed on C01. The result
is the partial sum W0.
Step 4: Bit-Serial and Row Accumulator - Finally, in the
last step, we add the partial results of the inputs that are applied
serially. For example, Fig. 2 shows the same steps for the second
bit of the inputs IN0[1] and IN1[1]. However, in step four, the
resulting W1 is shifted with one bit to the left to compensate
for the input weight and then accumulated with the previous
MAC cycle result B0. Note that as we access only one row at a
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Fig. 3. An illustration of a) the different steps to perform the MAC operation using the DREAM-CIM accelerator, b) conceptual DREAM-CIM accelerator,
c) the accumulation logic.

time per sub-array, we need a Row Accumulator to sum up the
results when activating the next rows. This case is not shown
in the figure.

The MAC operation steps of DREAM-CIM architecture for
one output neuron can be generalized as follows:

Ox =

M−1∑

k=0

M−1∑

j=0

N−1∑

i=0

((INi[k]Wix[j])� j)� k) (1)

Where Ox is the output neuron index, M is the bit width
of the inputs and the weights, and N is the number of sub-
arrays. The innermost summation iterates over the sub-arrays i,
where each term performs a bit-wise multiplication between the
k-th bit of the input Ii and the j-th bit of the weight Wix. The
resulting partial product is then left-shifted by j and k bits to
correctly align it in the final accumulation, accounting for its bit
significance. The nested summations over j and k effectively
reconstruct the full-precision MAC operation.

Fig. 3 illustrates a simplified example of the mapping of
the MAC operation on the DREAM-CIM architecture. The
performed operation is illustrated in Fig. 3(a). the bit-wise
multiplication is performed between the first operand stored
in the memory cell (i.e., a weight) and the second operand
provided as input through the Read World-line (RWL). The
weights are stored in a row-wise fashion using multiple columns
(two for a 2-bit number) of the memory, while the input bits are
provided sequentially to the memory as illustrated in Fig. 3(b).
For simplification, the memory array is composed of two sub-
arrays, one above and one below the accumulation logic. At
any time step, only one row is selected/activated per sub-array.
This means for a memory array with 8 sub-arrays, 8 rows are
activated at a time. Inside the cells of each sub-array bitwise
multiplication is performed. Their results are read through the
Read Bit-lines (RBLs). Each bit line of each sub-array will
contain the result of one bit-wise multiplication (i.e., one partial
product). Bitlines with the same column index will store the

result in the same 2-bit register on different indices as shown
in Fig. 3(c); note that these indices have the same weight bit-
value; e.g., RBL0[0] and RBL1[0] feed the same 2-bit regis-
ter. The register receives parallel inputs and provides a serial
output to the Column Accumulator. The Column Accumulator
accumulates the bit-wise multiplication results of each RBL,
which provides an intermediate result C00[1:0] and C01[1:0]
(see also Fig. 2(b)). C00 and C01 are aligned depending on the
column’s bit position of the word and then accumulated using
the Word Accumulator to get the partial sum W0 as shown in
Fig. 3(c). Finally, the Bit-Serial and Row Accumulator have
dual functionality: (a) shift and accumulate the partial sum
results W of different input bit-position, and (b) accumulate
the partial sum results of different rows of each sub-array as
only one row is activated at a time in each sub-array.

B. DREAM-CIM Implementation

In our case study, we target an architecture based on a single
16kb SRAM array. Note that the overall capacity can easily
be scaled by replicating the individual macro. The memory
array of DREAM-CIM is partitioned into multiple sub-arrays
to increase the level of parallelism by activating multiple rows
simultaneously, as shown in Fig. 4. To optimize the design, we
have chosen a configuration based on 8 sub-arrays, which are
further divided into two arrays of 4 sub-arrays (i.e., 0 to 3 and
4 to 7).

This division is strategically selected as we can efficiently
fit four flying RBLs over the SRAM with minimal area over-
head, as shown in Fig. 5. The flying RBLs contain partial
products belonging to the same neuron. These four RBLs align
seamlessly on top of the SRAM cell, ensuring a minimal area
penalty while enabling parallel data access. This configuration
balances the performance and area efficiency of the DREAM-
CIM accelerator. By mirroring two sets of 4 sub-arrays with the
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Fig. 4. DREAM-CIM Hardware architecture a) multi Sub-array memory
array, b) the SRAM-cell design, and c) periphery for accumulation.

Fig. 5. The four flying RBLs in one column of the proposed SRAM macro.

accumulation logic in between, we can effectively access eight
sub-arrays in parallel.

Fig. 4(a) shows the macro architecture of DREAM-CIM for
eight inputs (each 4-bit wide and belonging to a different sub-
array), 4-bit weights, and eight memory sub-arrays of 2kb each.
Each sub-array consists of 16 rows and 128 columns; each row
stores 32 weights, each 4-bit wide. The sub-arrays consist of
two-port 8T-SRAM cells as shown in Fig. 4(b): one Read/Write
(R/W) port and one Read-Only (RO) port. Cells in the same
column of all sub-arrays share the same R/W bit-lines (i.e.,
BL and BLB for the R/W port). The Read Bitlines (RBLs) are
connected to all cells in a column in a single sub-array and fly
over the other sub-arrays to connect to their dedicated pipelining
register at the border between the SRAM and accumulation
circuitry. Each of the four RBLs connects to a different sub-
array. Cells in the same row share the same word line (i.e., Write
World-Line (WWL) for the R/W port and Read World-Line
(RWL) for the RO port). As such, one RWL can be activated
in each sub-array without creating read conflicts, allowing for
eight parallel reads.

Fig. 4(c) illustrates the periphery of the whole accumulation
process. The accumulation process starts by latching the partial
products (step 1 in Fig. 3) via the column bit line values using

TABLE II
SIMULATION PARAMETERS

Technology 22 nm
Supply voltage (V) 0.8 V

Simulations SPICE-level (Cadence Spectre)
Parasitic extraction Calibre, PEX

Synthesis Cadence Genus
Temperature 27 ◦C
SRAM cell 8-T

Unit macro size 16 kb (128x128b)

8-bit registers containing partial products of the eight differ-
ent sub-arrays. In total, there are 128 8-bit registers, referred
to as Bit-Wise Multiplication (BWM) -Registers in Fig. 4(c).
Although the BWM-Registers are strictly not needed, the ac-
celerator frequency can be doubled, improving the throughput
twice. The outputs of the BWM-Registers are connected to
the Column Accumulator for column-wise accumulation (step
2 in Fig. 3). The Column Accumulators add the eight 1-bit
partial products to a single 4-bit number (step 2 in Fig. 3).
Thereafter, the Word Accumulators (step 3 in Fig. 3) add the
4 bits of partial results together; as the inputs are applied se-
quentially, there are four partial results that are added. During
their addition, proper shifts are in place to adjust the input
weights. The result is a 7-bit number. Finally, the Bit-serial
and Row accumulator adds the output of the Word accumulator
to the running accumulation and store it in the accumulation
register (step 4). As the input activations are provided row-by-
row and bit-by-bit to the SRAM, this accumulator needs to keep
track of the total accumulation over all the cycles needed to
perform the full MAC. Additionally, it performs shifting of the
running accumulation to account for the bit significance of the
input activations. Note that the Word Accumulator, Bit-Serial,
and Row Accumulator are shared between 4 columns of the
SRAM.

IV. CIRCUIT LEVEL SIMULATIONS

A. Experiment Setup

The proposed DREAM-CIM architecture is simulated in
SPICE using GlobalFoundries 22 nm CMOS technology. The
simulation parameters are presented in Table II. The energy
and latency results are extracted using post-layout SPICE-level
simulations. The area of the SRAM array has been derived from
the custom layout design, and for its surrounding periphery
logic using Cadence Genus synthesis results. It is worth noting
that the results were reported for the worst-case scenario where
we used a bit-sparsity of 50%, i.e., 50% of the weight bits were
initialized to ‘0’ and the other 50% to ‘1’.

B. Energy and Area Results

To evaluate the energy of the macro, an SRAM array made
up of 4 sub-arrays, each 16×128 cells, was simulated at SPICE
level using the GF 22 nm technology. Parasitics were added
to the word lines and bit lines of the array, derived from PEX
extraction results based on foundry-provided 8T SRAM cells.
Additionally, the accumulation circuitry, decoding, and control
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Fig. 6. Energy consumption/operation for different input sparsity.

logic were all synthesized to a gate-level netlist using Cadence
Genus and simulated at the SPICE level. Fig. 6 shows the
energy per MAC operation for different input sparsity levels.
As the input sparsity increases (i.e., more zeros in the input),
the energy per operation decreases significantly, highlighting
the efficiency gains from sparsity. As a result, the recorded
energy efficiency and peak throughput are 318 TOPS/W and
1024 GOPS, respectively.

Fig. 7(a) shows the energy breakdown of the DREAM-CIM
components, which are the SRAM array, BWM-Register, Ac-
cumulation logic (Acc Logic), and Acc-register. As shown in
the figure, the energy consumption of the accumulation cir-
cuitry (Acc Logic and Acc Registers) comprises 46% of the
total energy consumption, a comparable amount to the energy
consumption of the SRAM array at 40%. The remaining 14%
of the energy is consumed by the Mem Registers.

Fig. 7(b) illustrates the layout of the macro, which has an
area of 0.017 mm2. Fig. 7(c) shows the breakdown of this
area between the SRAM array and Accumulation logic and
I/O. The 16 kb SRAM array occupies 46.6% of the total area,
while the accumulation logic occupies the remaining 53.4% of
the total area. Fig. 7(d) shows the area breakdown of all the
accumulation logic and the registers. The accumulation logic
consumes 71% of the total accumulation area, while the BWM-
Registers consume 19%, and the remaining registers consume
9% of the total area.

C. State-of-the-Art Comparison

Table III shows a comparison of the proposed DREAM-CIM
accelerator and state-of-the-art SRAM-based digital CIM ac-
celerators. The SOTA solutions can be classified as Sequential
D-CIM [26] or Parallel D-CIM [27], [28], [29], [30], [31]. The
work in [26] presented a Sequential D-CIM SRAM-based CIM.
In this approach, memory rows are accessed sequentially, and
a dedicated accumulator is assigned to each column to perform
MAC operations, resulting in a low area and power consump-
tion. However, the sequential accumulation significantly in-
creases the overall execution time of the MAC operation, which
results in high energy consumption, as shown in Table III. The
first parallel D-CIM-based solution was proposed in [28], where
an adder-tree structure was used to increase the parallelism.

Since then, several solutions have explored different adder-
tree structures. For instance, [31] proposed a compressor-based
adder-tree. In [29], the authors used look-up tables to replace
a single stage of the adder-tree. Instead of the traditional 28-
T full adders, the authors in [27] used 24-T full adders with
reversed inputs. Despite these improvements, the adder-tree
still dominates the power and area consumption of the D-CIM
macro.

In Table III, we summarized some key metrics to evaluate
DREAM-CIM compared to SOTA solutions. The estimated
results show an impressive energy efficiency of 318 TOPS/W
and area efficiency of 78.7 TOPS/mm2. For many SOTA ac-
celerators, two sets of measurements are reported. One at a
higher supply voltage and frequency, focusing on throughput
and area efficiency by enabling faster operations, and one at
a lower voltage and frequency, focusing on energy efficiency
for more energy-constrained applications. In Table III, both
results are shown, and a similar dual measurement is reported
for DREAM-CIM; one for the nominal supply voltage of 0.8V
with the frequency of 2 GHz and one at 0.6V with the fre-
quency of 1 GHz. For DREAM-CIM, the lower supply voltage
results in 1.68× higher energy efficiency at the cost of halving
the throughput. Finally, DREAM-CIM achieves a high energy
efficiency while occupying a relatively low area with an area
efficiency of 78.7 TOPS/mm2. Overall, the proposed solution
effectively balances performance, area, and energy efficiency,
offering a highly optimized solution.

In Table III we have added in the final column a projection of
the performance of DREAM-CIM when implemented in 7nm
technology node. The macro size is scaled down 4 times based
on the SRAM scaling factor from 22nm to 7nm provided in
[45]. The power and delay are projected using the following
scaling factors: 2.28 and 1.17, respectively [46]. The estimated
results show an impressive energy efficiency of 860.3 TOPS/W
and area efficiency of 330.6 TOPS/mm2, which heavily outper-
forms the SOTA.

D. Technology Normalized SOTA Comparison

The most recent studies, such as [39] and [44], have pri-
oritized reconfigurability and enhanced bit-density. However,
these improvements come with significant area overheads and
relatively lower energy efficiency. To the best of our knowl-
edge, the design in [27] achieves the highest energy and area
efficiency in the state-of-the-art.

For a fair comparison, we simulated both our design and
the design in [27] using post-layout extraction in the 22 nm
technology. This comparison focuses specifically on the MAC
operation periphery, which for DREAM-CIM comprises the
Acc Logic and Acc Registers, and for [27] includes the bit-wise
multipliers, adder-tree, and accumulator periphery in the design
proposed in [27]. The two designs are tested using similar
array sizes, input vectors, and weight matrices to ensure similar
operand sparsity and accumulation results. Fig. 8 compares
the two designs in terms of area consumption, execution time,
energy consumption, and a combined metric, i.e., the product
of the aforementioned metrics. The comparison includes results
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Fig. 7. An illustration of a) the energy breakdown of the different Sub-Components of the DREAM-CIM macro, b) SRAM macro layout, c) the area
consumption macro breakdown, and d) accumulator breakdown.

TABLE III
STATE-OF-THE-ART COMPARISON OF THE SRAM-BASED DIGITAL CIM MACROS

SSCL’21 [26] ISSCC’21 [28] ISSCC’22 [27] ISSCC’23 [39] ISSCC’24 [44] DREAM-CIM DREAM-CIM Projection
Technology (nm) 65 22 5 4 3 22 7

Supply Voltage (V) 0.85 0.92 0.9 0.5 0.9 0.32 0.9 0.4 0.8 0.6 0.6
Input/Weight Precision (bit) 1/6 (1-8)/4 4/4 8/8 12/12 4/4 4/4
Peak Throughput (GOPS) 0.2 (6b) 5900 (4b) 2950 (4b) 740 (4b) 858 (8b) 235 (8b) 7771 (4b) 1438 (4b) 1024 (4b) 512 (4b) 600.9 (4b)

Energy efficiency (TOPS/W) 0.99 (6b) 42.4 (4b) 69.9 254 (4b) 24.9 (8b) 87.4 (8b) N/A 484 (4b) 189.7 (4b) 318.6 (4b) 860.3 (4b)
Energy efficiency (TOPS/W/bit) 5.94 672.4 1118 4064 398.4 6163.2 N/A 7744 3035 5097.6 13760.1

Array size (Kb) 11 64 64 54 60.75 16 16
Bitcell area (µm2) N/A 0.379 0.075 0.161 0.026 0.18 0.053
Macro area (mm2) 0.089 0.202 0.0133 0.0172 0.0157 0.013 0.004

Area efficiency (TOPS/mm2) 0.0022 (6b) 29.21 221.2 (4b) 55.3 (4b) 49.9 (8b) 13.7 (8b) 495 (4b) 94.5 (4b) 78.7 (4b) 39.3 (4b) 228.6 (4b)
Area efficiency (TOPS/mm2/bit) 0.012 (6b) 407.3 3539.2 884.8 3193 876.8 7920 1512 314.96 628.8 4297.6

Fig. 8. a) Area consumption, b) execution time, c) energy consumption, and d) combine metric product across quantization levels comparison of our proposed
architecture and an adder-tree based approach [27].

Authorized licensed use limited to: TU Delft Library. Downloaded on October 14,2025 at 12:28:16 UTC from IEEE Xplore.  Restrictions apply. 



ARRASSI et al.: DREAM-CIM: A DIGITAL SRAM-BASED CIMS ACCELERATOR 219

TABLE IV
SYSTEM LEVEL SIMULATION SETUP

Application Image Classification Object Detection
Topology LeNet5 Resnet-20 Yolov6-S
Datasets MNIST CIFAR-10 COCO

Complexity Low High High
Number of parameters 60K 268K 41K

for both designs for various input and weight precisions. Note
that the proposed DREAM-CIM architecture supports a fixed-
bit configuration only. We have made custom designs for each
case. The reported measurements are taken for MAC operations
using always 128 rows and either 2, 4, 8, or 16 columns, corre-
sponding to 2-bit, 4-bit, 8-bit, and 16-bit weight configurations,
respectively. The figure demonstrates that our proposed solution
outperforms the adder-tree-based approach [27] in both energy
and area efficiency (see Fig. 8(a), 8(c)). On average, DREAM-
CIM achieves 1.83× and 1.67× improvements in area and en-
ergy efficiency, respectively. It is important to note that the area
improvement reported here is only based on the accumulation
logic, and the SRAM area is assumed to be equal between the
designs. In reality, the SRAM area for the adder-tree design
will be even larger as the SRAM is split into many smaller
banks. Each of these banks needs to be surrounded by its own
set of edge cells. As such, splitting the SRAM into many banks
results in an even lower area efficiency. Fig. 8(b) shows that
DREAM-CIM has a higher execution time compared to the
adder-tree approach. However, this penalty is acceptable, as the
energy efficiency (Fig. 8(c)) and combined metrics (Fig. 8(d))
demonstrate significant benefits over the adder-tree approach.

V. SYSTEM LEVEL SIMULATIONS

A. Simulation Setup

To evaluate the performance of DREAM-CIM at the system
level, we analyze the accuracy and energy of inference across
the selected datasets. This includes examining the input and
weight sparsity of each layer and calculating the number of
operations performed per inference. SPICE simulations are set
up using data derived from software simulations, and these
results are subsequently fed into a system-level simulator to
extract system-level evaluation metrics [47].

We analyze two types of applications: image classification
and object detection. Table IV shows the characteristics of the
selected neural networks and their associated data sets. For im-
age classification, we implement the LeNet5 [33] and ResNet-
20 [35] models trained on the MNIST [32] and CIFAR-10 [34]
datasets, respectively. For object detection, we implement the
Yolov6-S model [37] trained on the COCO dataset [36]. To be
able to map the floating-point weights and activation function
results of these neural networks to the integer-based macro,
they need to be quantized. Quantization is performed using the
QNN method [48] due to its high accuracy, and the network is
trained off-line on the RedBit framework [47]. The training is
performed using back-propagation [49] with stochastic gradient
descent [50]. Subsequently, the trained networks are mapped on
the DREAM-CIM architecture.

TABLE V
ACCURACY RESULTS

Application Image Classification Object Detection
Topology LeNet5 Resnet-20 YoloV6-S
Datasets MNIST CIFAR-10 COCO

Input/weight Precision 4/4 8/8 8/8
Baseline Accuracy 99.6% 91.7% 45.0 mAP

DREAM-CIM Accuracy 99.4% 89.0% 42.6 mAP

B. Accuracy and Energy Results

Fig. 9 shows the energy consumption per inference and
accuracy when running the three neural networks on DREAM-
CIM and the adder-tree-based architecture proposed in [27].
The results focus on the MAC operation periphery and the bank
size of both designs. For each neural network, the input and
weight precision have been varied from 2 to 16 bits. As the
state-of-the-art solutions (see Table III) did not provide system-
level simulations, we have re-implemented the design proposed
in [27] at the same 22nm technology node.

Generally, for lower input and weight precisions, the energy
requirement per inference is lower at the cost of lower accuracy.
To achieve sufficient accuracy, we need at least a 4-bit precision
for the LeNet5 and Resnet-20, and an 8-bit precision for Yolov6.
These results are summarized in Table V. In the table, the base-
line accuracy represents the case where floating point numbers
have been used. The row with DREAM-CIM Accuracy shows
the accuracy derived for the selected input and weight precision.
With the selected precisions, the accuracy loss compared to the
baseline is acceptable.

Fig. 9 shows that DREAM-CIM has significantly lower en-
ergy consumption for a given weight precision. For example,
for Resnet-20, for 8-bit precision, the energy requirement per
inference equals 17.5 mJ/inference for the Adder-tree SRAM-
Based CIM design, while 3.3 mJ/inference for DREAM-CIM.
On average considering all cases, DREAM-CIM needs 4.46x
less energy as compared to the Adder-tree SRAM-Based CIM
design on the different benchmarks for image classification and
object detection.

VI. DISCUSSION

Based on our case studies and results, we would like to
discuss the following topics and aspects.
• Comparison with SOTA: The different SOTA solutions

consisting of parallel D-CIM suffer from the adder-trees
as they come with high energy and area overheads. On
the other hand, the sequential D-CIM SOTA solutions
have a high execution time and energy consumption. Our
solution tries to overcome the existing limitations by intro-
ducing a design that achieves a high energy and area effi-
ciency while minimizing the performance tradeoff. This
is achieved by replacing the adder tree with a sequen-
tial adder circuit. To minimize the performance penalties,
parallelism is increased using multiple sub-arrays, and a
pipeline stage is introduced to allow for a higher operating
frequency.
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Fig. 9. The energy consumption and accuracy of the DREAM-CIM accelerator and the adder-tree based approach [27] for two applications benchmarks:
Image classification (LeNet5, ResNet-20) and object detection (Yolov6). the networks are evaluated using 2,4,8,16-Bits weight precision.

• Scalability: The presented methodology to perform MAC
operations in the crossbar can be extended to larger cross-
bar sizes. However, for very large applications, multiple
crossbars are needed, and the communication between
these crossbars has to be carefully designed to prevent a
high latency and energy consumption when moving data
between them. Therefore, more research and analysis are
needed to support larger applications that need multiple
crossbars.

• Reconfigurability: Currently, the accumulation circuitry
has been designed and optimized for a fixed bit-width
(i.e., 4-bit). However, to support diverse applications with
different requirements, the accumulation circuitry should
be reconfigurable to efficiently support variable widths
(e.g., 4-bit, 8-bit, 16-bit, etc.).

VII. CONCLUSION

In this work we presented DREAM-CIM, an adder-tree-free
digital SRAM-based CIM accelerator. The proposed architec-
ture demonstrates gains in energy and area efficiency com-
pared to SOTA. DREAM-CIM is evaluated using circuit-level
simulations on GF 22nm technology and system-level simula-
tions using two different use cases (image classification and
object detection applications) on different datasets complexi-
ties (MNIST, CIFAR-10, and Coco) and topologies (LeNet5,
Resnet-20, and YoloV6). The simulations demonstrated more
than 2× power and ≈1.6× area savings compared to con-
ventional CIM architectures based on adder-tree approaches.
DREAM-CIM opens a new research direction for SRAM-based
CIM architectures and shows that there is potential to optimize
such architectures further.
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