
Online Adaptive Graph
Neural Networks
Msc Thesis Computer Science & Engineering

Alex Jeleniewski

Online Adaptive Graph
Neural Networks

Msc Thesis Computer Science & Engineering

Thesis report

by

Alex Jeleniewski

to obtain the degree of Master of Science
at the Delft University of Technology

to be defended publicly on 04-07-2024

Thesis committee:
Chair: Elvin Isufi
Core Member 2: Stjepan Picek
Core Member 3: Seyran Khademi
Supervisor: Elvin Isufi
Daily Co-Supervisor: Mohammad Sabbaqi
Place: Faculty of Electrical Engineering, Mathematics, Computer Science, Delft
Project Duration: June 2023 - July 2024
Student number: 4701925

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of EEMCS · Delft University of Technology

http://repository.tudelft.nl/

Copyright © Frank Bredius, 2022
All rights reserved.

Abstract

Analyzing and forecasting multivariate time series using networks is interesting in traffic, energy consump-
tion, or financial forecasting applications. The main challenge is to capture both spatial and temporal de-
pendencies in the data alongside the dynamics of the network itself. Graph Neural Networks (GNNs) have
shown reliable performance in network-based data by modeling the connections as a graph. GNNs, using
temporal and recurrent structures, are further developed as a prominent tool for processing multivariate
time series. However, the dynamics of the network, the evolution of the network over time, and its effect
on the data should be studied more. Recent works augment temporal GNNs with graph learning modules
to account for the changes in the network; however, often, these methods do not consider the dynamics
directly, and all of them stop the graph changing after the training phase. This thesis focuses on an online
graph adapting approach to deal with the dynamic data over networks. The proposed method is a hybrid
model consisting of a temporal GNN inspired by the physics of dynamic networks, trains its parameters
during the training phase, and adapts the graph with the stream of temporal data online. The experiments
study the graph adaptation module’s role on various benchmark datasets in forecasting tasks, such as
traffic, windmill energy, and financial forecasting.

ii

Preface

iii

Contents

List of Figures vi

List of Tables vii

I Preliminaries 1
1 Introduction 2

2 Preliminaries 4
2.1 Graphs . 4
2.2 Neural Networks . 6
2.3 Training a Neural Network . 7
2.4 Neural Networks for Graphs . 7
2.5 Neural Network on Dynamic graphs . 9
2.6 Multivariate Time Series Forecasting . 9
2.7 Graph learning for multivariate timeseries forecasting . 9
2.8 Discussion . 10

3 Related work 11
3.1 Learning from Dynamic graphs . 11
3.2 Learning/Adapting dynamic graphs . 12
3.3 Online learning on graphs . 13
3.4 Position of this thesis . 13

II Implementation 15
4 Proposed method 16

4.1 Evolving Attention Weights. 17
4.2 Graph Adaptation. 17
4.3 Predicting with the adapted graph . 17
4.4 Implementation . 18
4.5 Discussion . 19

5 Experiments and Results 20
5.1 Baselines . 20
5.2 Models . 20
5.3 Datasets . 21
5.4 Hyperparameters . 21
5.5 Learning and Evaluation metrics. 21
5.6 Results . 22
5.7 Ablation studies. 27

III Closure 29
6 Conclusion 30

References 33

A Hyperparameter search 34

iv

Contents v

B Baseline experiments 37
B.1 GCRN . 37
B.2 EvolveGCN . 37
B.3 MTGNN . 38
B.4 DGCRN . 38
B.5 ADLNN . 39
B.6 ASTGAT . 40

C Changing the graph structure 41
C.1 Results . 42

D Ablation study on adaptiveness 43

List of Figures

2.1 A graph G = {V, E}, where node 1 (green) is the target node, nodes 2 and 3 (blue) are the
1-hop-neighbours of node 1, and node 4 and 5 (red) are the 2-hop-neighbours of node 1. . 4

2.2 Illustration of how a dynamic graph can differ in topology. Left is Gt and right is Gt+1. 5
2.3 An example of the graph adaptation process using node features over time. G0 is an initial

given graph. 6

4.1 High-level overview of the OAGNN model. The EvolvingGA and Adaptation of Wt define
the adaptation process. 16

4.2 Overview of the prediction module. It consists of L stacked message passing module that
uses the adapted graph and a single skip connection MLP. 18

5.1 METR-LA. The average speed of the window at each timestep plotted (top), and the nor-
malized norm of difference of the adjacency matrix at each timestep (bottom). Adapt rate
γ = 0.01. 23

5.2 PEMS-BAY. The average power of the window at each timestep plotted (top) and the nor-
malized norm of the difference of the adjacency matrix at each timestep (bottom). Adapt
rate γ = 0.01. 23

5.3 SDWPF. The average power of the window at each timestep plotted (top) against the norm
difference of the adjacency matrix at each timestep (middle) and the normalized norm of
difference at each timestep (bottom). Adapt rate γ = 0.1. 25

5.4 FINANCE. The average close price of the window at each timestep plotted (top) against
the norm difference of the adjacency matrix at each timestep (middle) and the normalized
norm of difference at each timestep (bottom). Adapt rate γ = 0.001. 26

5.5 Convergence of the OAGNN model. Log-scale. 27

C.1 Overview of the adaptationmodule with graph construct (GC). The previous prediction,Bt−1

and At−1 are stored from the previous iteration. 42

vi

List of Tables

3.1 Table showing the structure of works in the field related to adaptive dynamic networks. . . . 14

5.1 Prediction performance with standard deviation on METR-LA dataset for horizons 3 and 12.
Averages of 5 runs. Lower is better. 22

5.2 Prediction performance with standard deviation on PEMS-BAY dataset for horizons 3 and
12. Averages of 5 runs. Lower is better. 23

5.3 Prediction performance and standard deviations for horizons 3 and 12 on the SDWPF
dataset. Averages of 5 runs. All results are our own, and the MAE+RMSE loss refers
to the loss function introduced in [21] and defined in MW. We define the MAE and sdMAE
losses in kW. Lower is better. *The model did not always converge. 24

5.4 Class prediction performance with the standard deviation for horizon 1 on the FINANCE
dataset. Averages of 5 runs. Higher is better. *Results from [22]. 24

5.5 Results of ablation studies on FINANCE, METR-LA, and SDWPF. METR-LA and SDWPF
use h = 12. Average over five runs, with the standard deviation denoted. Lower is better. . 28

A.1 Chosen hyperparameters for all datasets. Selected hyperparameters are based on aver-
ages of 3 runs and the stability of the constructed graph. 35

A.2 Table illustrating the relation between the number of evolving attention heads and the evolv-
ing attention hidden dimension with the number of learnable parameters in the model. . . . 35

A.3 Runtime in seconds per epoch of the model per datasets. Averages over five runs with the
standard deviation denoted. 36

B.1 Parameters for MTGNN, and how they were derived. Note that several parameters are left
out, as these are dataset-dependent. 38

B.2 Parameters for DGCRN, and how they were derived. Note that several parameters are left
out, as these are dataset-dependent. 39

B.3 Parameters for ADLNN, and how they were derived. Note that several parameters are left
out, as these are dataset-dependent. 40

B.4 Parameters for ASTGAT, and how they were derived. Note that several parameters are left
out, as these are dataset-dependent. 40

C.1 Result of runs using GC and the normal OAGNN model. The METR-LA, PEMS-BAY, and
SDWPF datasets use h = 12. Averages over five runs with the standard deviation denoted.
Lower is better for METR-LA, PEMS-BAY, and SDWPF; for FINANCE, higher is better. . . . 42

D.1 Result of additional ablation study using 50, 40, and 10 train-test-validation split. TheMETR-
LA, PEMS-BAY, and SDWPF datasets use h = 12. Averages over five runs with the stan-
dard deviation denoted. Lower is better. 43

vii

Part I
Preliminaries

1

1
Introduction

In multivariate timeseries environments such as financial, traffic, and weather, the data and their inter-
actions depend on dynamic factors such as macroeconomics for finance, news, and the time of day [1,
2]. We define such time series as dynamic. Solutions model the spatial dependencies between the time
series using a graph structure. A graph can be constructed from physical distances or metrics, such as
cosine similarity, which is then efficiently processed using a Graph Neural Network (GNN) [3]. A GNN
also has the benefits of capturing arbitrary inductive biases and allowing for new tasks.

However, due to the dynamic behavior of the timeseries, a static graph cannot represent the chang-
ing interactions of the data. For example, a financial graph based on correlations displays different
behavior depending on the macroeconomic environment, which a single static graph cannot represent.
To capture the changes in the dynamic data, a dynamic graph models the spatial dependencies between
time series at each timestep [4, 5, 6]. By leveraging a GNN to that of a dynamic GNN, the model learns
the spatial and temporal dependencies, improving on the static graph solutions [7, 8, 9, 10, 11].

A dynamic graph represents the network at a timestep; it does not represent the evolution of the net-
work. A network depends on the current timestep and all previous timesteps and is a snapshot of the
evolution of the network. To improve on the dynamic graph, we see a graph learning module used [12, 13,
14, 15], with several works incorporating metrics over the data itself [16, 17, 18]. In [19], the authors argue
from a physical point of view about a two-way relationship in which the dynamics (i.e., node features)
influence the structure and how the structure influences dynamics. To use this, the authors introduce an
adaptive dynamical network that captures this physical property.

However, a dynamic environment is never static, and the models mentioned above do not capture
changing dynamics and network structure outside of a training environment. This results in eventual net-
work mismatch with the actual network and performance degradation. Online graph learning approaches
exist to capture the network changes continuously, but these do not capture the two-way relationship
between the structure and the dynamics. In addition, such methods require assumptions over the data.

Therefore, in this thesis, we follow the physical point of view, and we investigate how to construct
an adaptive graph neural network that can model the two-way relationship and continuously capture
changes in the dynamic environment:

”How to construct an online adaptive graph model for multivariate time series analysis?”

Research Objective

We first build upon the theoretical framework proposed in [19] to a machine learning model. The model
contains an adaptation operator to adapt the graph, for which we first ask:

2

3

”How to capture the network dynamics in the adaptation operator?”

Research Question 1

We propose a similarity-based score that can capture the network dynamics with a scalable and data-
model-independent approach. We construct the adaptation operator by modifying the graph attention [20]
operator to have a temporal component and introduce a temporal connection in the graph adaptation
process. Finally, we ask:

”How does the online adaptive graph model perform on real-world applications?”

Research Question 2

We compare the performance and effect of the adaptation operator on datasets that display different
dynamic behaviors: the often-used traffic datasets METR-LA and PEMS-BAY and introduce more appli-
cable and more dynamic networks by using SDWPF [21] and a FINANCE dataset [22].

Together, these research questions yielded the contribution of the Online Adaptive Graph Neural Net-
work (OAGNN). The hybrid model contains learnable weights and an online graph adaptation mechanism.
By building upon the adaptive dynamic network in [19] we construct an adaptive graph neural network
using a simple message passing structure. To capture the continuously changing network, we use an
online mechanism in the graph adaptation process to always capture the evolution of the network. We
use Graph Attention to compute the graph attention coefficients and evolve the weights in graph attention
to create a temporal dependency.

This work is structured as follows: we first provide the necessary background knowledge to under-
stand this work in Chapter 2; then, we discuss prior works in Chapter 3; in Chapter 4 we introduce the
OAGNN model; Chapter 5 covers the experiments and the performance of the model; in Section 5.7 we
discuss several ablation studies and in Chapter 6 we conclude this work and discuss future directions.

2
Preliminaries

This section provides background knowledge to facilitate understanding of this work. We introduce graphs,
including dynamic and adaptive graphs. Next, we discuss neural networks and learning them, neural
networks for graphs, and dynamic graphs. Then, we introduce multivariate timeseries forecasting on
static graphs and with graph learning approaches. Finally, we present adaptive dynamic graph neural
networks for multivariate timeseries forecasting.

2.1. Graphs
A (static) graph G = {V, E} defines a network using the set of N nodes/vertices as V, and the set of M
edges as E ∈ RN×N . If a connection exists between nodes i and j, an entry (i, j) ∈ E exists. A connection
(i, i) ∈ E indicates a self-loop, i.e. the node is connected with itself. Graphs can either be directed or
undirected. In an undirected graph, there is no distinction between an edge’s direction, meaning that
for each (i, j) ∈ E , there exists a (j, i) ∈ E . In a directed graph, the edges have a direction, such that
(i, j) ∈ E does not imply the existence of (j, i). For each node, we can define the k-hop-neighbourhood
N k(i) that defines the nodes connected with node i within k edges. The 1-hop-neighbourhood or the
direct neighborhood of a node i is the set of nodes N 1(i), or N (i) for short, that have a direct edge with
node i. We illustrate this in Figure 2.1.

The adjacency matrix A ∈ RN×N , is defined such that Aij = 1 if there exists an edge between node i and
node j, i.e. (i, j) ∈ E exists. If there exists no edge between node i and node j, Aij = 0. A graph with 0
or 1 edges is an unweighted graph. To construct a weighted graph, we define the graph G = {V, E ,W},
whereW is the set of edge weights. We can apply this definition to the adjacency matrix A as Aij > 0 if
there exists an edge (i, j), with the value indicating the edge weight, and Aij = 0 if there exists no edge
from i to j. The adjacency matrix of an undirected graph is symmetric.

When A is symmetric, we can define the degree matrix D ∈ RN×N . The degree of a node i defines
the sum of all edge weights of the direct neighborhood of i. The matrix D is a diagonal matrix, i.e., all
values except the main diagonal entries are 0. We can define this as

Dij =

{
Dij = deg(i) =

∑N
j=1 Aij if i = j,

0 otherwise,

1

3

5

2

4

Figure 2.1: A graph G = {V, E}, where node 1 (green) is the target node, nodes 2 and 3 (blue) are the
1-hop-neighbours of node 1, and node 4 and 5 (red) are the 2-hop-neighbours of node 1.

4

2.1. Graphs 5

1 2

3

4 5

0.3

0.7

0.1

0.50.6

1 2

3

4 5

6

0.2

0.4

0.3

0.4

0.1
0.9

Figure 2.2: Illustration of how a dynamic graph can differ in topology. Left is Gt and right is Gt+1.

where deg(·) indicates the degree function. In many cases, we prefer a normalized version of the adja-
cency matrix. We can normalize the matrix using row-wise normalization such as

ARW = D−1A.

The result of this normalization method is also called the random-walk adjacency matrix. However, it does
not preserve symmetry. The symmetric normalization is

Â = D− 1
2AD− 1

2 .

Another representation of the graph is the Laplacian matrix

L = D− A.

The Laplacian’s main diagonal is each node’s degree, and negative real numbers elsewhere depending on
A. The Laplacian is useful for many graph properties, such as spanning trees or spectral decomposition.
Again, we can define a normalized version of the Laplacian as

L = I− Â = I− D− 1
2AD− 1

2 ,

where I is the identity matrix, containing ones on its main diagonal and zeros elsewhere.

2.1.1. Dynamic Graph
A dynamic graph describes a network that changes in topology over time. We now have a time-indexed
graph Gt. The changes in topology can consist of differences in the node set V, the edge set E , or the edge
weightsW. We can use a discrete or continuous representation to represent such a network. In a discrete
setting, we define a set of graph snapshots G, where each snapshot Gt contains a full representation of
the graph at timestep t

G = {G1, ...,GT }

Gt = {Vt, Et,Wt}.

where T is the max timestep. Figure 2.2 shows two graphs at consecutive timesteps. Similar to graphs
in 2.1, we can define the adjacency matrix At, the degree matrix Dt, and the Laplacian Lt. We use the
discrete setting when the entire graph is captured at periodic intervals, such as minutes, hours, or days.
An important distinction with a static graph is that At is not necessarily fixed in size, as the number of
nodes can differ between timesteps.

In a continuous setting, only some of the network is available. Instead, we use an event-based tem-
poral graph [4], in which Gt is defined by edge insertions ϵ+E , deletions ϵ−E , node insertions ϵ+V , and
deletions ϵ−V . Formally we define

Gt = {ϵ : ϵ ∈ {ϵ+E , ϵ
−
E , ϵ

+
V , ϵ

−
V }}.

Using the original graph, the node and edge insertions, and deletions, it is possible to construct a graph
at timestep t.

2.2. Neural Networks 6

G0

G1

H1

X1

Gt

Ht

Xt

GT

HT

XT

Figure 2.3: An example of the graph adaptation process using node features over time. G0 is an initial
given graph.

2.1.2. Features on graphs
Each node can contain information about itself; we call these the node features. For a static graph, node i
has its feature vector represented by xi ∈ RF , where F indicates the number of features. We also define
the feature matrix for all nodes as X ∈ RN×F . In a dynamic setting, node i has its own feature vector at
timestep t defined by xti ∈ RF , or Xt ∈ RN×F for all nodes.

Each edge can contain information as edge features. We previously introduced the edge weight set
W or Wt, where each edge has a value. We can view this as each edge having a feature vector with a
single dimension. In this work, we do not focus on multidimensional edge features and only use a single
feature for each edge.

2.1.3. Adaptive Dynamic Graph
In an adaptive dynamic graph, we adapt the graph at the current timestep using the network dynamics,
i.e., the node features. Authors in [19] construct an adaptive operator for each node pair (i, j) as

aij(t) = Ht
ij [x(·), A(·), t], (2.1)

where Ht
ij indicates a general adaptation operator, x(·) the states and history of the nodes, and A(·) the

states and history of the adjacency matrices. The adaptation operator depends on the node features and
the previous adjacency matrices. A graph can be adapted from a static or given graph at timestep t. This
work focuses on the case where only the initial graph is given. With this, we descritize (2.1) with the
adaptation operator

Atij = Ht
ij(xti, xtj ,At−1), (2.2)

where the time dependent adaptation operator is defined by Ht
ij , that depends on the node embeddings

xti and xtj at timestep t, and the previous adjacency matrix At−1. We illustrate the process in Figure 2.3.

2.2. Neural Networks
Neural networks are part of deep learning and comprise an input layer, hidden layers, and an output layer.
For any layer, we have some input x ∈ RF , and the output x′ ∈ RF ′ . Input features are transformed to
output features using parameters; for example, for a layer l, a learnable linear transformation transforms
input features xl−1 to xl using the weight matrix Wl and bias bl

xl = σ(Wlxl−1 + bl).

By optimizing the weights and bias, the features are transformed into the correct output. Layers of a neural
network can define multidimensional input, but there is always a dimension F for the features.

2.2.1. Recurrent Neural Network
A recurrent neural network (RNN) is a type of network that contains memory and can process data se-
quences. Gated recurrent units (GRU) or long short-term memory (LSTM) networks exist for memory.
We highlight the structure of a GRU as it is most relevant to this work. However, an LSTM would be a
possible substitute anywhere we use GRU in this work. The inputs of an RNN are different from that of a
CNN, as the input data is now in a sequence. We use the input as x ∈ Rs×F , with s defining the sequence

2.3. Training a Neural Network 7

length, as input to our GRU as
rt = σ(Wrxt +Wrhht−1 + br),

zt = σ(Wzxt +Wzhht−1 + bz),

ĥt = tanh(Whzt +Wrh(rt ⊙ ht−1) + bh),

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt,

where xt is a value within the sequence at index t, W and b indicate a learnable weight matrix and bias
respectively, σ a non-linear function, tanh(·) the tanh function,⊙ the Hadamard product, and ht the hidden
state, used as memory for the unit.

2.3. Training a Neural Network
Optimizing parameters happens by splitting the given dataset into three sets: the training set, the validation
set, and the test set. With the training set, we train the model, and after each execution, we update the
models’ parameters to generate a better output. To determine how to adjust the parameters, we use a
loss function.

2.3.1. Loss functions
For a model to update its weights, it must have some method of computing how wrong or correct the
output is. Loss functions define the objective the neural network has to minimize. A neural network will
adjust its weights during the training phase according to the output of the loss function. A loss function is
selected based on the task and the network. We use the Mean Absolute Error (MAE) loss and the root
mean squared error (RMSE) for the forecasting task, defined as

LMAE =
1

N

N∑
i=1

|ŷi − yi|, (2.3)

LRMSE =

√
1

N

∑
i=1

(ŷi − yi)2, (2.4)

where in all loss functions, the prediction ŷ is compared against the correct value y, and N indicating the
number of predicted values. For classification, we use the cross entropy loss for binary classification (two
classes), defined as

LCE =
1

N

N∑
i=1

yilog (ŷ) + (1− yi)log (1− ŷ). (2.5)

2.3.2. Evaluation
We train for multiple epochs; that is, training the model on the training dataset is performed multiple times,
as a single run using the training dataset does not allow the model to become descriptive enough. At
the end of each epoch, we get a reference for the models’ performance using the validation set, but the
parameters are not updated. Lastly, after the training epochs finish, we test the models’ performance on
new data with the test set. The test loss is the primary score with which to compare models.

2.3.3. Online learning
After training, the model parameters are never adjusted. For models deployed in a dynamic setting, where
changes in the network can even cause concept drift, it might not be desired to train the model using
(traditional) batch learning. The training data might not represent the input correctly, the training data
cannot capture the dynamics of the input correctly, prior data might not be (widely) available, or there
needs to be more training data to train on. To this end, we use online learning. The model does not
use training, validation, and test sets but learns on every input. After each input, the model adjusts its
parameters, which allows it to change over time. The main difference with batch learning is that the
samples are processed once in an online setting.

2.4. Neural Networks for Graphs
In this section, we discuss graph neural networks in general and introduce attention on graphs.

2.4. Neural Networks for Graphs 8

2.4.1. Graph Neural Networks
A graph neural network (GNN) [3] is a type of neural network aimed at processing data based on graphs.
We define a GNN layer in its highest-level form as

X′ = fGNN (X,A), (2.6)

where A the adjacency matrix, and X ∈ RN×F indicates a feature matrix, and X′ ∈ RN×F ′ the output node
embeddings. A GNN can take any form, but at its core lies message passing to update representations
with neighboring information. In GNNs, we aggregate information from the neighbors of a node to the
target node. We define a message passing function for a single node i as

x′i = g(xi,AGGj∈N (i)(f(xi, xj)) (2.7)

where xi ∈ RF is the feature vector for i, x′i ∈ RF ′ the output feature vector of the message passing
function with f(.) and g(.) some MLPs, and an aggregation scheme AGG over the neighborhood N of i.
Aggregation schemes often are addition or multiplication. The work in [23] introduced a GNN as a graph
convolutional (GC) layer defined as

x′i =
∑

j∈N(i)∪{i}

1

deg(i) · deg(j)
· (Wxj) + b, (2.8)

where the aggregation scheme is defined using additions through
∑

, the deg(·) function as the degree of
the node, and a learnable weight matrixW, and bias b. GNN layers can generally be represented for the
entire graph instead of by a message passing function. We can rewrite the previous layer to the general
GNN

X′ = σ(D̂− 1
2 ÂD̂− 1

2XW), (2.9)

where, D̂ is the degree matrix for Â, σ a non-linear function, and Â = A+ I with I as the identity matrix.

2.4.2. Attention on graphs
In attention on graphs, the input vectors are first transformed using a learnable weight matrixW ∈ RF ′×F .
A self-attention formula is then defined as

eij = a(Wxi,Wxj), (2.10)

where a is any attention mechanism performing self-attention between two nodes,W is a learnable weight
matrix, and xi is the feature vector for node i [20]. To compute the attention coefficients, a softmax function
is used

αij = softmaxj(eij). (2.11)
We can formulate a function to update a single node’s features using message passing. To this end, we
sum over the neighborhood of node i using self-attention

x′i = σ(
∑

j∈N (i)

αijWxj), (2.12)

where σ is a non-linear function.

To improve the expressiveness and the stability of self-attention, we can extend attention to multi-head
attention. For this we use K attention mechanism and K weight matrices W

x′i = σ(

K∑
k=1

∑
j∈N (i)

αk
ijWkxj). (2.13)

We sum the heads to get one output vector for the K heads. In [20], the authors propose the full graph
attention operator for a single node (one head) as

αij =
exp

(
LeakyReLU(aT [Wxi ∥Wxj])

)∑
k∈Ni

exp(LeakyReLU(aT [Wxi ∥Wxj]))
, (2.14)

where ·T represents the transpose, ∥ the concatenation operation and a ∈ R2F ′ a learnable vector.

2.5. Neural Network on Dynamic graphs 9

2.5. Neural Network on Dynamic graphs
A neural network on dynamic graphs is an extension of a GNN, in which a temporal component is intro-
duced to handle a dynamic graph as input. A neural network on dynamic graphs derives temporal and
spatial dependencies of the current graph and input and their history. We define such a network in its
highest form as

X′
t = fDNN (Xt,At). (2.15)

where At is the adjacency matrix and Xt the node features at timestep t, and X′
t the new node fea-

tures. Such a network has a structure similar to that of graph neural networks, with the difference in
input with (2.6) being the time-indexed input and including some temporal component to connect with the
previous timestep. We do not discuss such a network’s implementation as it is irrelevant to this work.

2.6. Multivariate Time Series Forecasting
This work focuses on timeseries forecasting, consisting of value-based prediction and classification. For
both, the goal is to predict based on some input timeseries, e.g., an asset’s price. However, timeseries
often do not exist in a vacuum. For example, in weather forecasting, many weather stations report the
temperature. Instead of a single input timeseries, we have N timeseries that we are predicting simulta-
neously. By processing multiple timeseries, we can use structural information of other timeseries, such
as physical distances, to improve prediction performance. We call this problem multivariate time series
forecasting. In (multivariate) timeseries forecasting, we forecast for some horizon h using a window w of
input. If we have N timeseries with F features to predict, the sliding window is defined as

Xt−w:t = [Xt−w, ...,Xt−1,Xt],

where Xt ∈ RN×F , and Xt−w:t ∈ RN×w×F defining the entire sequence. We predict the next sequence
(the horizon) of h timesteps

Ŷt+1:t+h = [Ŷt+1, ..., Ŷt+h−1, Ŷt+h],

where Ŷt+1 ∈ RN×d0 is the prediction for the timestep t + 1, Ŷt+1:t+h ∈ Rh×N×d0 indicating the full
sequence of predictions, where d0 is the output dimension. If d0 = 1, without the loss of generality we
define Ŷt+1:t+h ∈ Rn×N .

2.6.1. Fixed-Graph Multivariate Time Series Forecasting
A graph-based approach is very suitable since a multivariate time series forecasting problem consists of
predicting N variables simultaneously. In many such methods, the input graph is generated beforehand
and is not adapted/learned. The input graph could be generated based on the distances between sensors
in the physical network or correlations of the timeseries.

2.7. Graph learning for multivariate timeseries forecasting
Several works have added a graph learning component to improve the fixed graph in multivariate time
series forecasting. In this section, we discuss approaches that we use in this paper and are relevant to
capturing the dynamics of a network and the limitations of current methods.

Node embeddings
In traffic forecasting, several works use node embeddings with a difference layer [24, 12, 17], where
two embedding matrices E1,E2 are used in a learnable layer. The embedding matrices are defined as
E ∈ RN×dE with dE the embedding dimensions. In [24], the authors define the layer as

A = ReLU(tanh(α(M1MT
2 −M2MT

1))), (2.16)

where α is a hyperparameter, ·T the transpose, ReLU and tanh activation functions andM1 andM2 defined
as

M1 = tanh(α(E1Θ1)), (2.17)
M2 = tanh(α(E2Θ2)), (2.18)

with again α the hyperparameter andΘ1, Θ2 learnable parameters. To prevent too much complexity, top-k
values from A are used by the model. The layer is thus the result of the difference between the two node

2.8. Discussion 10

embeddings and does not take a physical approach to adapting the graph. Instead, the approach is more
from a functional/deep learning perspective.

Using metrics
Multiple works have used metrics to compute a graph at a given timestep. Metrics give a similarity score
between nodes and can describe the network’s structure. For example, the cosine similarity defines the
similarity between two vectors using the cosine operator. As nodes have a feature vector, computing the
cosine similarity between two nodes is as straightforward as

sij = cos(xi, xj) =
xTi xj
∥xi∥∥xj∥

=

∑F
n=1 xTinxjn√∑F

n=1 xTi xi
√∑F

n=1 xTj xj
, (2.19)

where sij defines the cosine similarity between nodes i and j, and F the number of features. We can
define any metric that applies to two vectors to compute the similarity.

Learning with metrics
However, no learning is applied when using metrics to construct the graph. We must adjust the metric
functions to contain learnable parameters to learn with metrics. For cosine similarity, this is possible using
a learnable weight matrix W

sij = cos(Wxi,Wxj). (2.20)

The structure of a learnable cosine similarity function is similar to that of Graph Attention, which we defined
in 2.4.2. Specifically, we can define the resulting graph attention coefficients as a metric of similarity
between nodes i and j as

αij = softmaxj(a(Wxi,Wxj)), (2.21)

where a(·) is some self attention mechanism, and W is a learnable weight matrix.

2.8. Discussion
This chapter introduced three different graphs: static, dynamic, and adaptive. Dynamic graphs introduce
a temporal component to improve the non-dynamic setting of static graphs. By leveraging temporal
dependencies, a dynamic GNN is better at handling time-indexed data. However, a dynamic graph is a
snapshot of the network at a timestep and does not encode the network’s evolution. We use an adaptive
dynamic graph to leverage the information of the network’s prior states. In addition, we introduced neural
networks on dynamic graphs. These networks can efficiently process the spatial and temporal depen-
dencies to induce new information. We mention several approaches to improve dynamic GNNs through
graph learning. However, these methods do not capture the two-way relationship between the network
structure and its dynamics. Lastly, we highlighted how a neural network is usually trained offline, where
the models’ parameters no longer change after the training phase. Due to the highly dynamic data of
problems, an online method can be preferred.

We use an adaptive dynamic graph to capture the network’s evolution. We expand on dynamic GNNs
to use adaptive dynamic graphs and capture the two-way relationship between the structure and the
dynamics. To ensure constant graph adaptation, we use an online mechanism.

3
Related work

This chapter discusses the relevant literature on online adaptive dynamic graphs and learning from the
data residing over them. We divide this section into dynamic graph approaches, dynamic graph learn-
ing/adapting approaches, and online learning on graphs. We illustrate the classification of the works in
Table 3.1.

3.1. Learning from Dynamic graphs
A dynamic graph is a model for a network with time-varying topology, i.e., edges and nodes can exist at
time t but not at time t+1. We can represent a dynamic graph in two ways, either discrete or continuous.
In a discrete setting, we know the entire graph at discrete intervals, so-called graph ”snapshots” [5, 6]
or snapshot-based temporal graphs (STG) [4]. In a continuous setting, a common representation is an
event-based model that encapsulates changes in a sequence of events, each accounting for a minimal
change, i.e., the addition or deletion of an edge or a node.

Several surveys have collected dynamic graph tasks, which include link prediction, edge classification,
node clustering and classification, anomaly detection, event time prediction, and graph classification [25,
6, 4]. We distinguish between classification tasks and regression tasks. Classification tasks involve
classifying the graph, such as classifying the entire graph, just one node or edge, or a group of nodes
and edges. Regression tasks like link or event-time predictions aim to predict the graph structure. In addi-
tion, tasks combining these two categories include node clustering, anomaly detection, or recommender
systems.

3.1.1. Methods
We group work on dynamic graphs into two categories: statistical andmachine learningmodels. Statistical
models use mathematical assumptions to perform the desired tasks. Authors in [26, 27, 28] extend matrix
factorization models for static graphs into a dynamic setting. The works in [29] and [30] apply random
walks on dynamic graphs while [31] introduces random causal walks to account for temporal causality
of the data. These models achieve an acceptable performance even with a small training set; however,
these methods usually rely on assumptions, do not scale well, and are not adaptable to the task. An often-
explored strategy is to use machine learning methods. Such methods allow for task-specific networks that
perform well on larger scales.

Recurrence
Since dynamic graphs contain a temporal component, in many machine learning-based approach ap-
proaches, it is most common to use a recurrent component. A Graph Convolutional Network (GCN) is
often used at a timestep to compute the spatial dependencies due to their proven usefulness on graphs.
Gated recurrent units (GRU) and long-term-short-term (LSTM) networks are used to compute the tem-
poral dependencies between timesteps [11, 7, 32]. In [9], the authors propose a new Dice metric to
measure the similarity between a node and its neighbors and use these to improve the computation of
the spatial dependencies in the GCN layer. In [8], the authors use a recurrent component to ”evolve” the
GCN weights, not to learn actual node embeddings from the GCN. Work in [33] uses message passing
for spatial dependencies instead of convolutions, where an update and propagation component makes

11

3.2. Learning/Adapting dynamic graphs 12

the model suitable for an event-based setting.

Due to the limited capabilities of GCNs to learn a structure, several works have proposed to use graph
attention [20]. Such approaches are common in recommender systems [34, 35].

Temporal attention
RNNs suffer from fixed temporal connections and a sequential nature preventing parallel computations.
Temporal attention models can address both of these issues. By using attention to learn the temporal
dependencies, an RNN is no longer required [36, 37]. The works in [10, 38, 39] use self-attention in
so-called Temporal Graph Attention (TGAT) to aggregate temporal and spatial dependencies into a single
graph.

Autoencoder
The advantage of autoencoders lies in their ability to use unlabeled data and their applicability to various
downstream tasks. Work [40] uses a supra-adjacency matrix, combining graphs in a time window into
one large graph and using an autoencoder to learn a representation for downstream tasks. The work
in [41] uses a Variational Graph Recurrent Neural Network (VGRNN) to learn representations, improving
previous work by adding latent random variables.

However, several factors limit dynamic graphs. For example, a dynamic graph based on correlations
represents the network correlations at the specific timestep. It does not represent the network’s evolution
over time. In addition, in many real-life scenarios, the graph might be unavailable, be constructed from
static prior data, or incorrectly represent the current state of the network.

3.2. Learning/Adapting dynamic graphs
The literature surrounding dynamic graph learning and adapting dynamic graphs are closely related, often
interchanging definitions between these fields. However, these two fields are different; in graph learning,
the goal is to learn some network representation to improve the task performance, but not necessarily
based on any physical property. When adapting a dynamic graph, we adjust the graph from a physical
perspective, modifying the network topology based on the data evolution. An adaptive dynamic graph is
thus more constrained and similar to a physical network. This section discusses approaches based on
graph learning or a mix of adaptive and graph learning.

3.2.1. Methods
Graph learning/adapting comes from works in traffic flow prediction. They argue against pre-defined
graphs, as they cannot capture the relations between nodes well enough over time [42, 17, 13]. Several
works use graph learning from a deep learning perspective, using learnable hidden node embedding
matrices in combination with a learnable difference layer. The layer subtracts the two node embedding
matrices to construct a graph at a timestep [24, 12]. The work in [43] improves the difference layer
by incorporating attention scores. In addition, they construct the initial adjacency matrix using several
different metrics to improve initial graph construction. In [17], the authors extend the difference layer
above by using the results of a graph convolution layer. The graph convolutions are computed on the
node features, thus incorporating the network dynamics in the graph learning.

Link predictor
A link predictor is used to compute the edge probabilities to construct a distribution for the network. The
predictor is a pre-trained model, not necessarily for the applied domain. Works using these, sample a
graph using the edge probabilities and use it for downstream tasks [16, 44].

Learning the distribution
The core of the link predictor strategy lies in having a well-working predictor, which is task-specific and
does not necessarily translate between domains. For this, works improve the predictor by learning a
distribution for the graph and sample from it, allowing the network to learn a task-specific distribution [16,
18, 13]. The work in [45] uses a denoising module that denoises the input graph by creating a subgraph
filter to remove task-irrelevant edges. In [14], the authors propose an iterative model. By using layers
of GCNs, during which the node embeddings are saved as observation graphs, the model trains for the

task. The observation graphs, the initial adjacency matrix, and the labels are combined to create a graph
estimator.

Approaches using a link predictor or learning the distributions are focused on learning the graph but
do not capture the data evolution.

Applying metrics
The limitation of learning a distribution is that we focus on the graph’s structure without considering the
data. Similarity-based metrics or attention are similar to dynamic graphs in that they compute a score
based on the current state of the data. The difference is that these compute the graph at each in these
methods, whereas a dynamic graph is an input [46, 42].

Learning based on metrics
By applying metrics, methods can capture the dynamics of a network at the timestep. However, they do
not capture the evolution of the network. In [19], the authors argue theoretically that a two-way relationship
exists between a network’s structure and its dynamics. The structure of a network influences its dynamics
and vice versa. They define an adaption function for an adjacency matrix that depends on the states, the
history of nodes, and the previous states of the adjacency matrices. [47] argues similarly that a better
graph means better node embeddings and vice versa. Using an iterative approach, they optimize the
node embeddings and the graph simultaneously for the downstream task. In [15], the authors construct
an adaptive graph at each timestep by computing a self-defined metric between nodes to define the
Laplacian.

Methods involving graph learning/adapting approaches aim to construct a graph best suited for the
downstream task. Depending on the method used, the network dynamics are either directly or indirectly
taken into account. However, all the solutions have the problem of the graph becoming static when such
a model has finished training, while the underlying network is always dynamic and constantly evolving
during testing. The network in the real world could differ significantly from the training environment.

3.3. Online learning on graphs
In online graph learning, approaches focus on learning the graph regardless of whether the model is
training or testing. For this, a differentiable function must be constructed and optimized. Works in online
graph learning make assumptions about the data and the network, so-called data models. Authors in [48,
49] assume a smooth signal and compute prior smoothness over the data. They learn the graph by
leveraging the priors and using smoothness properties such as sparsity and connectivity [50, 51]. In other
works [52, 53], instead of a smooth signal, a heat diffusion process is assumed. However, requiring priors
about the data restricts the possibilities of the algorithm and does not allow for real-time decision-making.
Therefore, several works use model-independent or prior-free approaches. Authors in [54] assume a
static data model in which neighboring nodes behave similarly to the data. Work in [55] proposes graph-
learning approaches for different signal assumptions, including a corrective mechanism for forecasting
tasks.

3.4. Position of this thesis
We position this thesis as a blend of an adaptive dynamic graph approach using metric learning and online
graph learning. We build upon the model proposed in [19] into that of a GNN, resulting in an adaptive
GNN. To prevent the need for data assumptions, we learn how to adapt the graph for the downstream task
in the training phase, but the actual adaptation of the graph is an online operation. An online operation
ensures that the model is always adapted.

13

3.4. Position of this thesis 14

Type Category Works
Dynamic graph Statistical [28, 30, 31, 27, 29]

Recurrence [8, 32, 34, 9, 7, 35, 33, 11]
Temporal attention [37, 10, 36, 39]

Autoencoder [40, 26, 41, 38]
Graph learning Node embeddings [43, 24, 12, 17]

Link predictor [44, 16]
Learning distribution [13, 18, 14, 45]

Apply metrics [42, 46]
Learn based on metrics [47, 15]

Online graph learning Smoothness [51, 48, 49, 55, 50]
Diffusion [52, 53]

Table 3.1: Table showing the structure of works in the field related to adaptive dynamic networks.

Part II
Implementation

15

4
Proposed method

In this chapter, we propose the Online Adaptive Graph Neural Network (OAGNN) model that adapts the
graph using the graph attention coefficients in an evolving manner. As shown in Figure 4.1, the model
consists of three modules: the EvolvingGA and Adaptation of Wt modules define the adaptation process,
and the prediction module generates the output. The EvolvingGA module is the first step in the adap-
tation process, in which we compute node similarity scores. Then, we update the edge weights using
an online step, resulting in the adapted adjacency matrix At. The prediction module uses the adapted
adjacency matrix to predict the labels. Due to its online nature, we continuously adapt the graph, even
when deployed in the real world. In addition, no weights or embeddings exist that rely on the number
of nodes, allowing for domain changes when deployed in the real world. In a non-evolving or traditional
approach, introducing a temporal component to graph attention scales its complexity linearly with the num-
ber of timesteps processed. However, an evolving approach to induce temporal dependencies between
timesteps avoids linear growth in time. In addition, in [8], the authors argue that this has the advantage
of better handling dynamic data as a node does not always have to be present.

We construct the full OAGNN model by combining the characteristics of the adaptation operator with
that of a GNN for dynamic graphs. We define a message passing function

x′ti = f(xti) +
N∑
j=1

Atij · g(xti, xtj), (4.1)

where xti and xtj are node features at timestep t for nodes i and j respectively, x′ti the new node features
for node i, the MLPs g(·) and f(·) to transform the features, and Atij the result from the graph adapting
operator (2.2).

Time series Prediction

EvolvingGA Adaptation ofWt

Prediction

At−1

αt

At

Figure 4.1: High-level overview of the OAGNN model. The EvolvingGA and Adaptation of Wt define the
adaptation process.

16

4.1. Evolving Attention Weights 17

4.1. Evolving Attention Weights
To construct the first module, the evolving graph attention module (EvolveGA), we translate the general
self-attention function (2.10), with the learnable weight matrix W, to a time-dependent variant as

αtij = softmax(a(Wtxti,Wtxtj)), (4.2)

where xti and xtj are node features, a(·) any self-attention mechanism, t indicates the timestep and
Wt ∈ RF ′×F . However, due to the complexity of learning Wt for each timestep, we instead evolve it. We
construct the recurrence function fRW (·) that models the transition of the weight matrix as

Wt = fRW (Wt−1). (4.3)

Attention mechanisms might use additional weights next to Wt, requiring a separate recurrence function
such as fRW (·) for each weight. In the graph adaption, we use the resulting graph attention coefficients
αtij to express the similarity between two nodes. Because of this, we repurpose the weight matrix Wt

to transform the initial feature dimension F to a hidden dimension F ′, such that F ′ > F , to increase the
expressiveness of the self-attention module a(·).

4.2. Graph Adaptation
Adapting a network to its dynamics allows the graph to evolve as the network changes. In many networks,
such as traffic or financial networks, where new conditions can influence the entire network structure,
more than a (pre-trained) static graph might be needed. We use an online mechanism to adapt the graph,
keeping the model coherent with the network dynamics even in the real world. We update the edge
weights using the output of the evolving graph attention module αtij (4.2).

To adapt the edge weights for the adjacency matrix At, we define an update step with the previous
adjacency matrix as

Atij = γαtij + (1− γ)A(t−1)ij , (4.4)
where αtij (4.2) is the graph attention score, and A(t−1)ij the edge weight between node pair (i, j) at
the previous timestep. The hyperparameter γ indicates the rate of graph adaptation. In the adaptation
process, due to the complexity of graph adaptation, we compute the graph attention scores over the
neighborhoods defined in A0 and solely adapt these edges.

4.3. Predicting with the adapted graph
We illustrate the prediction module in Figure 4.2. To utilize the adapted adjacency matrix Atij (4.4), we
construct a multi-layer message passing neural network, where a single layer l is defined as

x(l+1)
ti = MPl(x(l)ti ,At) = WT

l2(

N∑
j=1

Atij · gl(x(l)ti , x
(l)
tj) + bl1), (4.5)

with message passing function,

gl(x(l)ti , x
(l)
tj) = gl(x(l)tj) = σ(WT

l1x
(l)
tj), (4.6)

where Atij is the adapted edge and the MLP g(·) which is solely dependent on the value of xtj . The
learnable inner weight Wl1, with l indicating the layer, is used to scale the input features to a hidden
dimension with shape Rdl , and a bias bl1 ∈ Rdl . We use the outer learnable weight Wl2 to scale the
hidden dimension to the desired output dimension Rdout . The message passing layer repeats for several
layers to include the k-hop neighbors, such as

MPL(xti) =
L∑

l=1

MPl(x(l)ti), (4.7)

where L indicates the number of layers. We define an additional skip connection consisting of a single
linear transformation that does not take into account the graph structure

f(xti) = WT
3 xti + b3. (4.8)

4.4. Implementation 18

Time series MP1 MPL

At

Skip MLP

+ Prediction
L-stack

Figure 4.2: Overview of the prediction module. It consists of L stacked message passing module that
uses the adapted graph and a single skip connection MLP.

We define the full prediction module as

ŷt+1,i = f(xti) +MPL(xti,At), (4.9)

where ŷt+1,i ∈ Rdout , and dout is the output dimension.

4.4. Implementation
In implementing multivariate timeseries analysis, we define a window of inputs instead of a single timestep.
The input consists of Xt−w:t ∈ RN×w×F and the previous adjacency matrix At−1 to predict the label as

Ŷt+1,At = f(Xt−w:t,At−1), (4.10)

where Ŷt+1 ∈ RN×do is the predicted label with output dimension do. For a single node i, we define

ŷt+1,i = f(Xt−w:t,i) +

N∑
j=1

Atij · g(Xt−w:t,i,Xt−w:t,j), (4.11)

where Atij is the output of the adaptation operator Ht
ij (2.2), the window of features for node i as

Xt−w:t,i ∈ Rw×F , similarly defined for node j, and g(·) and f(·) some MLP. For the implementation we
flatten all inputs such that Xt−w:t ∈ RN×wF and for a single node xt−w:t,i ∈ RwF .

We implement the model: we define a GRU layer for the recurrence function of evolving the atten-
tion weights. We use the attention mechanism introduced by Graph Attention [20], defined as (2.14).
Graph Attention has the additional weight vector at ∈ RF ′ to evolve, for which we define another GRU
layer. As a GRU layer defines two inputs, the input features and the optional hidden state, we set both
inputs to the weight of the previous timestep. We define the evolving attention operator as

αtij =
exp

(
LeakyReLU(aTt [Wtxt−w:t,i ∥Wtxt−w:t,j])

)∑
k∈Ni

exp
(
LeakyReLU(aTt [Wtxt−w:t,i ∥Wtxt−w:t,j])

) , (4.12)

where xt−w:t,i ∈ RwF is the flattened input and Wt ∈ RwF×F ′ to account for the windowed input. The
pseudo-code for evolving attention is visible in Algorithm 1. The pseudo-code for the full Online Adaptive
Graph Neural Network model can be seen in Algorithm 2. Note that in the experiments we focus on
multivariate timeseries forecasting for which we predict the next sequence of timesteps as Ŷt+1:t+h ∈
RN×h×d0 , where h is the forecasting horizon as

Ŷt+1:t+h,At = f(Xt−w:t,At−1).

4.5. Discussion 19

Algorithm 1: Evolving Graph Attention
W0 ← (F, F ′)
a0 ← (2F ′)
Function EvolvingGA(Xt, At):

Wt = GRU(Wt−1,Wt−1)
at = GRU(at−1, at−1)
for (i, j) ∈ {At|Atij > 0} do

αtij ← result from equation (4.12)
end
return

Algorithm 2: Online Adapting Graph Neural Network
Function OAGNN(Xt):

Xt ← flatten(Xt)
At ← using αtij from Evolving Graph Attention algorithm (1)
Ŷt+1 ← result from equation (4.9)
return Ŷt+1,At

4.5. Discussion
The OAGNN model has the advantage of adapting the graph from a physical point of view, modeling
the two-way relations of the structure and dynamics in the network. It is always adaptive, even when
deployed in the real world, and the model does not rely on data assumptions or hidden node embeddings.
However, we acknowledge its limitations; first, the model does not allow for edges to be changed. Only
the edges defined in the initial adjacency matrix are adapted. This limits the model’s ”freedom” in adapting
the graph and the possibility of changes in the node set. We mitigate most of this limitation by integrating
the k-hop neighbors through the prediction module. However, the limitation still exists. The model uses a
fixed hyperparameter γ for the adapt rate. The adapt rate would change in an ideal scenario depending
on the network dynamics. Lastly, we use the implementation of graph attention for the similarity scores.
We have not evaluated this against other methods.

The OAGNN model’s complexity comes from the three modules. The EvolvingGA module uses the
graph attention operator without the feature transformation. With K indicating the number of heads, we
have O(KNFF ′

2). We omit the complexity of evolving the weights as this is not dependent on the N or
M . The adaptation throughWt solely sums over the edges with complexity O(M). Lastly, the prediction
module uses message passing over all nodes for L layers. One message has complexityO(MF ′

1), where
we omit the input feature dimension andM is the number of edges. We define the model’s full complexity
as

O(KNFF ′
2 +M + LMF ′

1).

where L ≥ 1. This results in linear scaling with the number of nodes and edges.

The work in [17] comes most similar in task and approach by incorporating the network dynamics. How-
ever, it uses hidden node embeddings, does not capture the two-way relationship between the network
structure and its dynamics, and is not online. In [47], the authors use a similar approach to the two-way
relationship but do not design the model for the tasks we focus on in this work. The focus is on optimizing
the graph for time-independent data. Additionally, the work does not capture graph changes online.

5
Experiments and Results

In this section, we discuss the experiments and their results. First, we describe all the experiments per-
formed and the datasets used. Then, we discuss the performance using several metrics and the graph
adaptation process. We conduct experiments on several prediction horizons and tasks depending on the
dataset.

5.1. Baselines
We perform several baseline experiments to compare the performance of the proposed model. The base-
line approaches include methods that rely on static graphs, graph learning based on node embeddings,
and graph distribution learning methods. We do not compare with fully online approaches as they cannot
keep up with the performance. We train the baselines as closely as possible for the performance compar-
isons following the hyperparameters defined in the respective works (if available). Additional information
on each baseline and their configurations is in Appendix B.

• GCRN [56]: baseline model which uses a single layer of the Chebysev Graph Convolutional Gated
Recurrent Unit Cell. Then, we use a readout layer. The graph is not adapted.

• EvolveGCN [8]: baseline evolving model that implements an evolving GCN. The model is designed
for link prediction, edge classification, or node classification, but we translate it to timeseries fore-
casting. The graph is not adapted.

• MTGNN [24]: baseline graph learning model. The graph is learned through a difference layer using
node embeddings.

• DGCRN [17]: baseline graph learning model. Improves on MTGNN [24] by incorporating GCN
outputs that use the node features in their graph learning layer. The graph is learned through a
difference layer using node embeddings.

• ADLNN [43]: baseline graph learning model. It incorporates results from self-attention in a simi-
lar difference layer as MTGNN [24]. The graph is learned through a difference layer using node
embeddings.

• ASTGAT [13]: baseline graph learning model. The graph is learned by learning the distribution of
its structure.

• MGDPR [22]: baseline financial prediction model. Only compared with the FINANCE dataset. The
model generates graphs using precomputed graphs based on entropy and signal energy. We do
not rerun this model.

5.2. Models
We propose a single strategy for the OAGNN model. We perform a hyperparameter search for the most
impactful hyperparameter for the OAGNN model in Appendix A.

• OAGNN: the full Online Adaptive Graph Neural Network as proposed in section 4.

20

5.3. Datasets 21

5.3. Datasets
We test the performance of our models on four datasets, including two traffic datasets, a windmill energy
forecasting dataset, and a financial dataset. Both traffic datasets have been used prior in works using
graph learning for forecasting problems, giving us a direct performance comparison. We use windmill
energy forecasting and finance to introduce a more applicable setting for adaptive networks.

• PEMS-BAY: a traffic speed dataset consisting of 325 sensors and measurements from January
2017 to May 2017 in 5-minute intervals. The dataset contains two features at each timestep: the
measured speed and the relative time. We construct the initial adjacency matrix using a metadata
file containing the longitude and latitude of each sensor. We apply kNN with k = 20 and create an
undirected graph.

• METR-LA: a traffic speed dataset of 207 loop detectors and measurements between March 2012
and June 2012 in 5-minute intervals. The initial adjacency matrix is a static pre-defined adjacency
matrix. The dataset comprises two features at each timestep: the measured speed and the relative
time. This dataset is regarded as more complex than the PEMS-BAY dataset.

• SDWPF: a wind power forecasting dataset introduced in [21] consisting of 134 wind turbines with
measurements over half a year in 10-minute intervals. We apply kNN with k = 20 using the locations
of the windmills. We use the SDWPF dataset to introduce a more applicable setting for adaptive
timeseries forecasting. The SDWPF dataset uses ten input features: the wind speed in m/s, the wind
direction in degrees, the temperature of the surrounding environment and the internal temperature
of the turbine nacelle, the nacelle direction in degrees, the direction of all three blades in degrees
(as three separate features), and the reactive and active power in kilowatt (kW).

• FINANCE: dataset from [22] containing financial timeseries from NASDAQ, from 2013-01-01 to
2017-12-31 in daily intervals. We use the same 1026 timeseries as in [22]. The features include
the open and close price, the high and low for the day, the volume, and a trend class (binary, 0 or
1) indicating if today’s close is less than the previous. We z-score normalize the full dataset and
construct the initial adjacency matrix by computing the correlation matrix and taking the top k = 20
neighbors for each node. We fill in missing data with zeros.

5.4. Hyperparameters
We train the OAGNN model using the Adam Optimizer; 100 epochs, average the results over five runs,
and use early stopping with patience 20. For the traffic and SDWPF datasets, we use batch size 64 and a
train, validation, and test split of 75, 10, and 15, respectively. For the FINANCE dataset, we use batch size
six and a split of 40, 8, and 52 to reproduce [22] as closely as possible. We define all hyperparameters
and results from the hyperparameter search for METR-LA, SDWPF, and FINANCE in Appendix A.

We use the DelftBlue [57] supercomputer to train and evaluate our models. We have a single Intel
XEON E5-6248R 24C 3.0GHz, with 128G of RAM. As our GPU, we used an NVIDIA Tesla V100s 32GB.
We implement all models using PyTorch, PyG, and PyTorch Geometric Temporal [58].

5.5. Learning and Evaluation metrics
We forecast future measured speed for the traffic datasets, and for the SDWPF dataset, the goal is to
forecast future active power usage. We forecast a single value such that d0 = 1. We use an input window
w = 12, predicting h = 3 and h = 12. To train the traffic models, we use the MAE loss as defined in (2.3),
and we evaluate using the MAE loss and the RMSE loss (2.4). Since we predict a horizon for all nodes,
we redefine the MAE at timestep t as follows

MAEt =
1

NH

N∑
i=1

H∑
h=1

|ŷhi − yhi|, (5.1)

where N is the number of nodes and H is the horizon. We define the RMSE loss similarly. For both
losses, we average the loss over all time steps. Models on the SDWPF dataset are trained and evaluated
based on a combination of the MAE and the RMSE loss as defined in [21]. The SDWPF dataset contains
several special rules in pre-processing and evaluation, which we all apply to the dataset, and we include

5.6. Results 22

the MAE loss and the sdMAE as evaluation metrics. The sdMAE loss is the scaled disjoint MAE, which
only evaluates non-overlapping horizons and is scaled by the average value of the target, defined as

LsdMAE =
LdMAE

1
N

∑N
i=1 yi

, (5.2)

with,

LdMAE =
1

K

K∑
t=1

MAEHt, (5.3)

K is the number of sliding windows fitting into the test set, andH is the horizon. On the FINANCE dataset,
the goal is to correctly classify the trend class of the next timestep (h = 1). We use an input window w = 21
and train and evaluate the model using the cross-entropy loss (2.5). Additionally, we assess performance
using accuracy and the F1 score.

5.6. Results
For each dataset, we display the performance results and the adaptation process on the test set. We plot
the average values for selected features for each timestep to highlight the dynamics of the dataset and,
from a single run, the Frobenius norm of the difference of the adjacency matrix at the current timestep
normalized by the average value of the edge weights to highlight the amount of adaptation. Note that for
all plots, we omit the first timestep for clarity because the model has adapted to the training and validation
data, and when moving to the test set, the data is new, and much adaptation happens.

In Table 5.1, we present the performance results for METR-LA, and we see that the model cannot
outperform some of the graph-learning-based approaches. We attribute this to the data in the METR-LA
dataset and its effect on the graph adaptation. Figure 5.1 provides a visual representation of this, display-
ing the adaptation process and the frequent sudden zeroes in the data (top) to which the OAGNN model
adapts (bottom). With drastic changes in the data, the network dynamics are significantly different from the
previous instances. This difference in dynamics negatively impacts the model’s performance in this case.

Table 5.1: Prediction performance with standard deviation on METR-LA dataset for horizons 3 and 12.
Averages of 5 runs. Lower is better.

Model h = 3 h = 12

MAE RMSE MAE RMSE
GCRN 3.40±0.14 5.90±0.07 5.05±0.04 9.04±0.04
EvolveGCN 9.45±0.61 12.65±0.44 10.26±0.23 14.09±0.32
MTGNN 4.81±0.54 9.00±1.07 6.53±0.10 12.15±0.14
DGCRN 2.89±0.06 5.12±0.02 2.93±0.23 5.62±0.32
ASTGAT 5.09±1.33 7.97±1.47 6.18±0.46 10.21±0.34
ADLNN 2.94±0.02 5.58±0.03 4.51±0.03 8.55±0.08
OAGNN 3.22±0.01 5.84±0.01 4.96±0.02 9.09±0.02

Table 5.2 displays the performance results on the PEMS-BAY dataset, showing that the model out-
performs the baselines. Looking at the adaptation process (Fig. 5.2), we see the dataset contains a
single zero instance drastic change, thus not negatively impacting the performance as in METR-LA. The
PEMS-BAY dataset displays more harmonic and consistent data than the METR-LA dataset; however, in
the adaptation, we see that the model does not care for patterns in the data. The difference in average
speed between each timestep is more significant for PEMS-BAY than METR-LA, resulting in more adap-
tation.

On the SDWPF dataset, we see the OAGNN model significantly outperform all baselines (Table 5.3),
with the adaptation process in Figure 5.3. Compared to the traffic datasets, the plotted features (top), the

5.6. Results 23

Figure 5.1: METR-LA. The average speed of the window at each timestep plotted (top), and the
normalized norm of difference of the adjacency matrix at each timestep (bottom). Adapt rate γ = 0.01.

Table 5.2: Prediction performance with standard deviation on PEMS-BAY dataset for horizons 3 and 12.
Averages of 5 runs. Lower is better.

Model h = 3 h = 12

MAE RMSE MAE RMSE
GCRN 2.52±0.13 3.56±0.17 3.55±0.24 5.34±0.29
EvolveGCN 6.34±0.38 8.40±0.35 6.27±0.31 8.34±0.31
MTGNN 2.38±0.17 4.14±0.32 2.82±0.04 4.81±0.04
DGCRN 2.38±1.58 3.78±2.33 2.42±0.19 4.19±0.28
ADLNN 2.47±0.04 4.46±0.05 2.54±0.03 4.57±0.02
OAGNN 1.35±0.03 2.50±0.03 2.20±0.01 4.21±0.02

Figure 5.2: PEMS-BAY. The average power of the window at each timestep plotted (top) and the
normalized norm of the difference of the adjacency matrix at each timestep (bottom). Adapt rate

γ = 0.01.

5.6. Results 24

Table 5.3: Prediction performance and standard deviations for horizons 3 and 12 on the SDWPF
dataset. Averages of 5 runs. All results are our own, and the MAE+RMSE loss refers to the loss function
introduced in [21] and defined in MW. We define the MAE and sdMAE losses in kW. Lower is better.

*The model did not always converge.

h = 3 h = 12

Model MAE+RMSE MAE sdMAE MAE+RMSE MAE sdMAE
GCRN* 126.08±1.42 94.09±1.06 0.36±0.00 180.72±26.2 134.87±19.6 0.47±0.08
EvolveGCN* 116.02±13.9 86.58±10.4 0.29±0.01 167.20±6.21 124.78±4.63 0.42±0.03
MTGNN 81.88±3.10 61.11±2.98 0.24±0.01 119.23±5.12 88.98±3.82 0.32±0.01
ADLNN 80.26±1.45 59.90±1.08 0.23±0.01 126.31±4.68 94.26±3.49 0.33±0.01
OAGNN 61.93±0.86 46.22±0.64 0.18±0.00 107.17±0.34 79.98±0.00 0.29±0.05

Table 5.4: Class prediction performance with the standard deviation for horizon 1 on the FINANCE
dataset. Averages of 5 runs. Higher is better. *Results from [22].

Model Acc(%) F1
GCRN 66.09±0.01 0.66±0.00
EvolveGCN 65.43±0.04 0.65±0.00
MTGNN 50.01±0.04 0.50±0.00
ADLNN 50.08±0.03 0.51±0.01
MGDPR* 62.77±0.65 0.62±0.01
OAGNN 66.35±0.25 0.67±0.00

reactive and active power, are not harmonic and seem more sporadic, and the dynamics of the features
change over time. For example, seasons influence the dynamics of many features over a more extended
period, and the weather is much more impactful in wind power forecasting. We see that the static graph
approaches cannot always converge on the SDWPF dataset, and the graph learning approaches cannot
capture the complex network dynamics in the graph, highlighting the difficulty of the dataset, whereas the
OAGNN model performs better. We see the difficulty in capturing the network dynamics by inspecting
the adaptation process (bottom), in which the model requires significant change between timesteps to
adapt the graph to the dynamics. We hypothesize that this results from the highly dynamic environment
of SDWPF. However, it can result from the model’s inability to capture the complex dynamics.

The model outperforms the baselines in Table 5.4 for FINANCE, but the static graph approaches per-
form similarly well. We can conclude from this that the graph matters less in the FINANCE dataset than
in the other datasets. We plot the average close and volume for the FINANCE dataset (Fig. 5.4), and we
see the evolving network dynamics through the close prices, where the value starts at ±0.02 and ends
at ±0.2 without frequent sporadic movements. The difference graph plot shows us that the model can
consistently capture these changes in the dynamics through minimal changes compared to the SDWPF
dataset, where the model requires more adaptation. We conclude from this that the model can accurately
capture the dynamics of an evolving network. However, the standard deviation of most baselines per-
forms in a lower order compared to the OAGNN model. We argue that due to the larger test set on the
FINANCE dataset and the online nature of the model, we see better but less stable behavior over a more
extended period. We conclude that the OAGNNmodel is generally more consistent over the datasets due
to its adaptive nature and better at capturing the evolution of a dynamic network; however, with smaller
training and larger test sets comes more difficulty in ”correctly” capturing the dynamics of an evolving
network.

5.6.1. Convergence analysis
We analyze the convergence of the graph adaptation during the training phase of the model by studying
the Frobenius norm of the difference between the current adapted adjacency matrix and the previous
one. The adaptation module must converge during training to adapt the graph ”correctly” in the real world.

5.6. Results 25

Figure 5.3: SDWPF. The average power of the window at each timestep plotted (top) against the norm
difference of the adjacency matrix at each timestep (middle) and the normalized norm of difference at

each timestep (bottom). Adapt rate γ = 0.1.

5.6. Results 26

Figure 5.4: FINANCE. The average close price of the window at each timestep plotted (top) against the
norm difference of the adjacency matrix at each timestep (middle) and the normalized norm of difference

at each timestep (bottom). Adapt rate γ = 0.001.

Figure 5.5: Convergence of the OAGNN model. Log-scale.

Looking at Figure 5.5, we see the adaptation converge clearly on the traffic and FINANCE datasets. As
theorized, the SDWPF dataset shows us how the model cannot fully converge to a single consistent graph.
We hypothesize this is because of the highly dynamic nature of SDWPF, resulting in no single ”correct”
graph structure for the dataset.

5.7. Ablation studies
In this section, we discuss ablations studies to test the effect of several components of OAGNN. We study
the following ablations:

• No graph-adapt: the OAGNN model without any graph adapting, such that At = A0. Denoted as
OAGNN-NO-GA. We use this ablation to study the effectiveness of the graph adaptation.

• Only attention: the OAGNN model without the online edge weight update connection or graph
construction, using the resulting attention coefficients directly, such that Atij = αtij . Denoted as
OAGNN-O-Att. We use this ablation to study the need for the previous states of the adjacency
matrix.

• No evolving-attention: the OAGNN model without evolving attention. The graph attention module
weights are learned without time-dependence, such thatWt = W. Denoted as OAGNN-NO-EA. We
use this ablation to study the need to evolve the attention weights.

• No online adapt: the OAGNN model without graph adapting when the model is no longer in the
training phase. Denoted as OAGNN-NO-OA. We use this ablation to study the need for an online
adapting process when adapting the graph.

From the results of the ablations studies in Table 5.5, we conclude that each of the tested components
of the OAGNN models is required, but for some, it depends on the dataset. Using the OAGNN-NO-GA
ablation, we conclude that the graph adapting module is a crucial component. Each dataset shows a
drop-off in performance when the graph adapting module is absent. Although the zeroes in the METR-
LA dataset negatively impact the performance, adapting is still a key component. The results for the
OAGNN-O-Att show us the need for the adaptation operator and why capturing the evolution of a network
is required for the models’ performance. We further see the OAGNN-O-Att diverge much earlier. The
OAGNN-NO-EA ablation shows us that the evolving attention mechanism is not required for performance,
whereas on the PEMS-BAY dataset, we see a performance improvement. We hypothesize that the model
encodes most of the temporal dependencies through the adaptation operator and that evolving the graph
attention weight does not impact performance much. However, the evolving module does introduce more
stability in the trained model, and similar to the OAGNN-O-Att ablation, the model diverges earlier more
often. With theOAGNN-NO-OA ablation, we see minimal to no impact on the traffic and SDWPF datasets.
We conclude that the datasets do not contain enough testing data in which the network dynamics evolve
to highlight the impact of online adapting. However, on the FINANCE dataset, we do see a difference in
accuracy due to the larger test set. We study this effect additionally in Appendix D by experimenting with
a different train-test-validation split.

27

5.7. Ablation studies 28

Table 5.5: Results of ablation studies on FINANCE, METR-LA, and SDWPF. METR-LA and SDWPF
use h = 12. Average over five runs, with the standard deviation denoted. Lower is better.

METR-LA PEMS-BAY SDWPF FINANCE
Model MAE MAE sdMAE Acc(%)
OAGNN-NO-GA 5.03±0.02 2.21±0.00 0.30±0.00 65.912±0.90
OAGNN-O-Att 4.98±0.01 2.22±0.02 0.30±0.00 64.255±0.08
OAGNN-NO-EA 4.97±0.01 2.19±0.02 0.29±0.00 66.300±0.34
OAGNN-NO-OA 4.97±0.01 2.20±0.01 0.29±0.00 66.13±0.19
OAGNN 4.96±0.02 2.20±0.01 0.29±0.00 66.35±0.25

Part III
Closure

29

6
Conclusion

In this thesis, we answered the main research objective ”How to construct an online adaptive graph
model for multivariate time series analysis?”. We introduced the Online Adaptive Graph Neural Network
(OAGNN). Using a physical point of view when viewing a graph network, we model the relationship be-
tween the network dynamics and structure using a two-way relationship. With this, we capture the evo-
lution of the network over time. As the evolution of a network is never static, we construct an online
adaptation mechanism to prevent performance degradation and network mismatch. We have shown by
using four datasets with different dynamic behaviors that the model can perform competitively in different
environments due to its adaptive nature. We highlight the differences in the dynamic nature of the datasets
and hypothesize on the model’s ability to adapt to a dynamic environment and its limitations regarding bad
data. We conclude the models’ ability to capture a dynamic network’s evolution and handle complex dy-
namic environments where other methods cannot. We show the need for the most critical components in
OAGNN by studying several ablation studies. We highlight the impact of the graph adaptation regardless
of bad data and the significance of adapting online when there is enough test data. With this work, we
have shown a direction for approaches on dynamic multivariate timeseries, in which the model’s ability to
adapt to the data is no longer limited to any degree. We allow the model complete freedom to adjust itself
accordingly. We acknowledge the limitations of OAGNN, primarily that we do not change what edges are
adapted. We solely adapt the edges defined in the initial adjacency matrix. In future works, the impact of
changing the edges must be studied, and for this, the adaptation module should be expanded to adjust
what edges are adapted. To improve the freedom of the model to adapt to the data, the adapt rate itself
should be a dynamic component of this process. We focused on using graph attention for the similarity
score. Other methods for similarity scores should be studied.

30

References

[1] Thanh Trung Huynh et al. “Efficient integration of multi-order dynamics and internal dynamics in
stock movement prediction”. In: Proceedings of the Sixteenth ACM International Conference on
Web Search and Data Mining. 2023, pp. 850–858.

[2] Junbo Zhang et al. “Predicting citywide crowd flows using deep spatio-temporal residual networks”.
In: Artificial Intelligence 259 (2018), pp. 147–166.

[3] Franco Scarselli et al. “The graph neural network model”. In: IEEE transactions on neural networks
20.1 (2008), pp. 61–80.

[4] Antonio Longa et al. “Graph Neural Networks for temporal graphs: State of the art, open challenges,
and opportunities”. In: arXiv preprint arXiv:2302.01018 (2023).

[5] Joakim Skarding et al. “Foundations and modeling of dynamic networks using dynamic graph neural
networks: A survey”. In: IEEE Access 9 (2021), pp. 79143–79168.

[6] Shubham Gupta et al. “A Survey on Temporal Graph Representation Learning and Generative Mod-
eling”. In: arXiv preprint arXiv:2208.12126 (2022).

[7] Jinyin Chen et al. “GC-LSTM: Graph convolution embedded LSTM for dynamic network link predic-
tion”. In: Applied Intelligence (2022), pp. 1–16.

[8] Aldo Pareja et al. “Evolvegcn: Evolving graph convolutional networks for dynamic graphs”. In: Pro-
ceedings of the AAAI conference on artificial intelligence. Vol. 34. 04. 2020, pp. 5363–5370.

[9] Chao Gao et al. “A novel representation learning for dynamic graphs based on graph convolutional
networks”. In: IEEE Transactions on Cybernetics (2022).

[10] Da Xu et al. “Inductive representation learning on temporal graphs”. In: arXiv preprint arXiv:2002.07962
(2020).

[11] Ling Zhao et al. “T-gcn: A temporal graph convolutional network for traffic prediction”. In: IEEE
transactions on intelligent transportation systems 21.9 (2019), pp. 3848–3858.

[12] Ming Jin et al. “Multivariate time series forecasting with dynamic graph neural ODEs”. In: IEEE
Transactions on Knowledge and Data Engineering (2022).

[13] Xiangyuan Kong et al. “Adaptive spatial-temporal graph attention networks for traffic flow forecast-
ing”. In: Applied Intelligence (2022), pp. 1–17.

[14] Ruijia Wang et al. “Graph structure estimation neural networks”. In: Proceedings of the Web Con-
ference 2021. 2021, pp. 342–353.

[15] Lei Bai et al. “Adaptive graph convolutional recurrent network for traffic forecasting”. In: Advances
in neural information processing systems 33 (2020), pp. 17804–17815.

[16] Tong Zhao et al. “Data augmentation for graph neural networks”. In: Proceedings of the aaai con-
ference on artificial intelligence. Vol. 35. 12. 2021, pp. 11015–11023.

[17] Fuxian Li et al. “Dynamic graph convolutional recurrent network for traffic prediction: Benchmark
and solution”. In: ACM Transactions on Knowledge Discovery from Data 17.1 (2023), pp. 1–21.

[18] Luca Franceschi et al. “Learning discrete structures for graph neural networks”. In: International
conference on machine learning. PMLR. 2019, pp. 1972–1982.

[19] Rico Berner et al. “Adaptive Dynamical Networks”. In: arXiv preprint arXiv:2304.05652 (2023).

[20] Petar Veličković et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903 (2017).

31

References 32

[21] Jingbo Zhou et al. “Sdwpf: A dataset for spatial dynamic wind power forecasting challenge at kdd
cup 2022”. In: arXiv preprint arXiv:2208.04360 (2022).

[22] Zinuo You et al. “Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock
Trends Classification”. In: arXiv preprint arXiv:2401.05430 (2024).

[23] Thomas N Kipf et al. “Semi-supervised classification with graph convolutional networks”. In: arXiv
preprint arXiv:1609.02907 (2016).

[24] Zonghan Wu et al. “Connecting the dots: Multivariate time series forecasting with graph neural net-
works”. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining. 2020, pp. 753–763.

[25] Claudio DT Barros et al. “A survey on embedding dynamic graphs”. In: ACM Computing Surveys
(CSUR) 55.1 (2021), pp. 1–37.

[26] NahlaMohamed Ahmed et al. “DeepEye: link prediction in dynamic networks based on non-negative
matrix factorization”. In: Big Data Mining and Analytics 1.1 (2018), pp. 19–33.

[27] Jundong Li et al. “Attributed network embedding for learning in a dynamic environment”. In: Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge Management. 2017, pp. 387–
396.

[28] Yu-Ru Lin et al. “Facetnet: a framework for analyzing communities and their evolutions in dynamic
networks”. In: Proceedings of the 17th international conference on World Wide Web. 2008, pp. 685–
694.

[29] Aditya Grover et al. “node2vec: Scalable feature learning for networks”. In: Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining. 2016, pp. 855–
864.

[30] YanbangWang et al. “Inductive representation learning in temporal networks via causal anonymous
walks”. In: arXiv preprint arXiv:2101.05974 (2021).

[31] Yaguang Li et al. “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting”.
In: arXiv preprint arXiv:1707.01926 (2017).

[32] Franco Manessi et al. “Dynamic graph convolutional networks”. In: Pattern Recognition 97 (2020),
p. 107000.

[33] Yao Ma et al. “Streaming graph neural networks”. In: Proceedings of the 43rd international ACM
SIGIR conference on research and development in information retrieval. 2020, pp. 719–728.

[34] Weiping Song et al. “Session-based social recommendation via dynamic graph attention networks”.
In: Proceedings of the Twelfth ACM international conference on web search and data mining. 2019,
pp. 555–563.

[35] Srijan Kumar et al. “Predicting dynamic embedding trajectory in temporal interaction networks”. In:
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining. 2019, pp. 1269–1278.

[36] Rakshit Trivedi et al. “Dyrep: Learning representations over dynamic graphs”. In: International con-
ference on learning representations. 2019.

[37] Aravind Sankar et al. “Dysat: Deep neural representation learning on dynamic graphs via self-
attention networks”. In: Proceedings of the 13th international conference on web search and data
mining. 2020, pp. 519–527.

[38] Chenguang Song et al. “Temporally evolving graph neural network for fake news detection”. In:
Information Processing & Management 58.6 (2021), p. 102712.

[39] Emanuele Rossi et al. “Temporal graph networks for deep learning on dynamic graphs”. In: arXiv
preprint arXiv:2006.10637 (2020).

References 33

[40] Mounir Haddad et al. “Temporalizing static graph autoencoders to handle temporal networks”. In:
Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining. 2021, pp. 201–208.

[41] Ehsan Hajiramezanali et al. “Variational graph recurrent neural networks”. In: Advances in neural
information processing systems 32 (2019).

[42] Hao Peng et al. “Spatial temporal incidence dynamic graph neural networks for traffic flow forecast-
ing”. In: Information Sciences 521 (2020), pp. 277–290.

[43] Abishek Sriramulu et al. “Adaptive Dependency Learning Graph Neural Networks”. In: Information
Sciences (2023).

[44] Chao Shang et al. “Discrete graph structure learning for forecasting multiple time series”. In: arXiv
preprint arXiv:2101.06861 (2021).

[45] Dongsheng Luo et al. “Learning to drop: Robust graph neural network via topological denoising”.
In: Proceedings of the 14th ACM international conference on web search and data mining. 2021,
pp. 779–787.

[46] Min Shi et al. “GAEN: graph attention evolving networks”. In: Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). 2021.

[47] Yu Chen et al. “Iterative deep graph learning for graph neural networks: Better and robust node
embeddings”. In: Advances in neural information processing systems 33 (2020), pp. 19314–19326.

[48] Seyed Saman Saboksayr et al. “Online graph learning under smoothness priors”. In: 2021 29th
European Signal Processing Conference (EUSIPCO). IEEE. 2021, pp. 1820–1824.

[49] Seyed Saman Saboksayr et al. “Online discriminative graph learning from multi-class smooth sig-
nals”. In: Signal Processing 186 (2021), p. 108101.

[50] Vassilis Kalofolias. “How to learn a graph from smooth signals”. In:Artificial intelligence and statistics.
PMLR. 2016, pp. 920–929.

[51] Xiang Zhang et al. “Online Graph Learning In Dynamic Environments”. In: 2022 30th European
Signal Processing Conference (EUSIPCO). IEEE. 2022, pp. 2151–2155.

[52] Stefan Vlaski et al. “Online graph learning from sequential data”. In: 2018 IEEE Data Science Work-
shop (DSW). IEEE. 2018, pp. 190–194.

[53] Dorina Thanou et al. “Learning heat diffusion graphs”. In: IEEE Transactions on Signal and Informa-
tion Processing over Networks 3.3 (2017), pp. 484–499.

[54] Rasoul Shafipour et al. “Online topology inference from streaming stationary graph signals with
partial connectivity information”. In: Algorithms 13.9 (2020), p. 228.

[55] Alberto Natali et al. “Learning time-varying graphs from online data”. In: IEEEOpen Journal of Signal
Processing 3 (2022), pp. 212–228.

[56] Youngjoo Seo et al. “Structured sequence modeling with graph convolutional recurrent networks”.
In: Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cam-
bodia, December 13-16, 2018, Proceedings, Part I 25. Springer. 2018, pp. 362–373.

[57] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 1). https:
//www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1. 2022.

[58] Benedek Rozemberczki et al. “Pytorch geometric temporal: Spatiotemporal signal processing with
neural machine learning models”. In: Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 2021, pp. 4564–4573.

[59] Xingjian Shi et al. “Convolutional LSTM network: A machine learning approach for precipitation
nowcasting”. In: Advances in neural information processing systems 28 (2015).

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

A
Hyperparameter search

In this section, we discuss the selected hyperparameters using the results of hyperparameter tuning. For
all hyperparameters searches, we use the full specified dataset, 100 epochs with early stopping, three
runs, and to select the hyperparameters; for the traffic datasets, we use the METR-LA dataset with the
L1 loss; for the SDWPF dataset, the MAE+RMSE loss; and for the FINANCE dataset, we use the F1
loss. We optimize the traffic datasets and SDWPF for h = 12. We display all results and the selected
hyperparameters in Table A.1. We do not run a hyperparameter search for the PEMS-BAY dataset and
not for the graph attention dropout and leaky ReLU, which we set to 0.5 and 0.2, respectively. The number
of evolving attention heads and the hidden dimension of evolving attention have the most impact on the
number of parameters in the model, which we display in A.2. We see a near-exponential growth in the
number of parameters with an increase in the hidden dimension and the number of heads. However, the
computation time is not affected by this. Compared to the baselines, we see consistent timing performance
on all datasets, recorded per epoch basis in A.3. We see a longer runtime than the baselines on FINANCE,
possibly because we have a more expensive operator due to the online component.

34

35

Dataset Hyperparameter Searches Selected
Traffic Learning rate {0.001,0.0005,0.00005} 0.0005
METR-LA/ Weight decay {1e−5,1e−9} 1e−5

PEMS-BAY Number of layers {1,...,4} 2
Adapt rate {0.1, 0.05, 0.01, 0.005, 0.001} 0.01
MP hidden dimension {32, 64, 128} 32
Perm prob train {0, 0.005, 0.001} 0.001
Perm prob test {0, 0.0005, 0.0001} 0.0001
GC rate {0.005, 0.004, 0.003, 0.002, 0.001, 0.0005} 0.003
Evolving att heads {2, 4, 8} 8
Evolving at hidden dim {8, 16} 8

SDWPF Learning rate {0.001,0.0005,0.00005} 0.00005
Weight decay {1e−2, 1e−3, 1e−5,1e−9} 1e−5

Number of layers {1,...,4} 2
Adapt rate {0.1, 0.05, 0.01, 0.005, 0.001} 0.1
MP hidden dimension {32, 64, 128} 32
Perm prob train {0, 0.005, 0.001} 0
Perm prob test {0, 0.0005, 0.0001} 0
GC rate {0.005, 0.004, 0.003, 0.002, 0.001, 0.0005} 0.004
Evolving att heads {2, 4, 8} 8
Evolving att hidden dim {8, 16} 8

FINANCE Learning rate {0.001,0.0005,0.00005} 0.001
Weight decay {1e−3, 1e−4, 1e−5,1e−7} 1e−7

Number of layers {1,...,4} 4
Adapt rate {0.1, 0.05, 0.01, 0.005, 0.001} 0.001
MP hidden dimension {32, 64, 128} 128
Perm prob train {0, 0.005, 0.001} 0
Perm prob test {0, 0.0005, 0.0001} 0
GC rate {0.005, 0.004, 0.003, 0.002, 0.001, 0.0005} 0.5
Evolving att heads {2, 4, 8} 4
Evolving att hidden dim {8, 16} 16

Table A.1: Chosen hyperparameters for all datasets. Selected hyperparameters are based on averages
of 3 runs and the stability of the constructed graph.

Heads
Dim

8 16 32 64

2 6248 16088 57292 207244
4 16088 54200 207244 802060
8 54200 204152 802060 3171340

Table A.2: Table illustrating the relation between the number of evolving attention heads and the
evolving attention hidden dimension with the number of learnable parameters in the model.

36

Table A.3: Runtime in seconds per epoch of the model per datasets. Averages over five runs with the
standard deviation denoted.

Model METR-LA PEMS-BAY SDWPF FINANCE
MTGNN 15.51±0.06 35.86±0.17 11.87±0.03 2.92±0.02
ADLNN 15.88±0.14 36.61±0.98 12.98±0.04 3.23±0.04
GCRN 15.00±0.07 47.98±0.13 97.69±0.24 10.49±0.01
EvolveGCN 113.58±3.45 165.25±3.25 131.40±0.151 3.76±0.06
DGCRN 99.83±0.54 184.97±0.48 - -
ASTGAT 177.81±0.45 - - -
OAGNN 10.20±0.22 25.04±2.25 9.85±0.05 3.46±0.20

B
Baseline experiments

In this appendix, we go more in-depth into the baseline experiments. Namely, we explain the selected
hyperparameters for each baseline model and why. We do this to create complete transparency between
the comparisons and to motivate other works to reproduce them.

For several baselines, we only use a single feature from the METR-LA and PEMS-BAY datasets as
the input instead of the two input features for the datasets. This change has minimal impact as the
second feature of these datasets is not crucial, representing the time delta, but is needed as either the
model did not support multidimensional input or performed significantly worse with it.

We do not perform any baseline experiments using fully online graph learning methods, as these do
not translate well to multivariate timeseries forecasting. We theorize that this is because the prediction is
separate from graph learning.

B.1. GCRN
GCRN [56] is a static-graph approach for forecasting and was initially trained and tested on the moving-
MNIST dataset [59] and the Penn Treebank dataset [56]. However, since the network combines recur-
rence and graph convolutions, the network can also be applied to multivariate timeseries forecasting. The
implementation in PyTorch Geometric Temporal [58] has no implementation for a sequence length, so we
flatten the input Xt ∈ RN×w×F to a two-dimensional input sequence Xt ∈ RN×wF . The complete baseline
network first uses the GCRN model to transform Xt into the output dimension RN×16wF , then a readout
layer is used to reduce the output to the horizon h sequence length. We set the learning rate to 0.001
and weight decay to 1e−4 for the traffic datasets; for SDWPF, we set the learning rate to 0.0005 and the
weight decay to 1e−9; for the FINANCE dataset we set the learning rate to 0.00005 and the learning rate
to 1e−4, and for all we set the hyperparameter K = 2.

B.2. EvolveGCN
EvolveGCN [8] is a static graph approach that introduces an evolving GCN. The GCN weight is evolved
using a GRU in the same manner as this work. The authors test EvolveGCN on multiple datasets for link
prediction, edge classification, and node classification. However, due to its approach of using evolving
weights, we use this work as a baseline model. We use the implementation of the -H version from PyTorch
Geometric Temporal [58]. As EvolveGCN does not allow for windowed input, therefor, we flatten the input
Xt ∈ RN×w×F to a two-dimensional input sequence Xt ∈ RN×wF . The complete baseline network uses
the EvolveGCN model to transform Xt into new features with the same dimensions as the input and then
a readout layer to reduce the output to the horizon h sequence length. We set the learning rate to 0.001
and weight decay to 1e−4 for METR-LA and PEMS-BAY. For SDWPF, we set the learning rate to 0.0005
and the weight decay to 1e−9. We set the learning rate for FINANCE to 0.00005 and the weight decay to
1e−4.

37

B.3. MTGNN 38

Hyperparameter Value Reason
gcn_true True derived from the paper
build_adj True derived from the paper
gcn_depth 2 derived from the mix-hop propagation depth
kernel_set [6,7] derived from the paper
kernel_size 7 derived from kernel_set
dropout 0.3 derived from the paper

subgraph_size - derived from the paper
node_dim 40 derived from the paper

dilation_exponential 1 derived from the paper
conv_channels 32 derived from the paper

residual_channels 32 derived from conv_channels
skip_channels 64 derived from the paper
end_channels 128 derived from output channels of the first layer
seq_length 12 derived from w

out_dim 12 derived from h

layers 3 derived from the number of temporal convolution modules
propalpha 0.05 derived from the paper
tanhalpha 3 derived from the paper

layer_norm_affline True derived from the paper

Table B.1: Parameters for MTGNN, and how they were derived. Note that several parameters are left
out, as these are dataset-dependent.

B.3. MTGNN
MTGNN [24] uses node embeddings in a so-called difference layer to learn the graph. The layer is defined
as follows

M1 = tanh(α(MLP1(E1))),

M2 = tanh(α(MLP2(E2))),

A = ReLU(tanh(α(M1MT
2 −M2MT

1)),

where E1 and E2 ∈ RN×de are learnable embedding matrices, with de the embedding dimension, MLP1(·)
and MLP2(·) learnable MLPs, ·T the transpose, α a hyperparameter and tanh(·) and ReLU(·) non-linear
functions. Finally, the top values for each row in A are selected to use in the prediction module. This
difference layer does not use the node features and uses the learned node embeddings.

We mostly derive the hyperparameters from the paper and several from the provided code to learn
the model. We set the learning rate to 0.001 and the weight decay to 1e−4 for METR-LA and PEMS-BAY;
for SDWPF, we set the learning rate to 0.0005 and the weight decay to 1e−9. We set the learning rate for
FINANCE to 0.00005 and the weight decay to 1e−4. We use the implementation of the model in PyTorch
Geometric Temporal [58], and for each hyperparameter, we define how they are derived with their name
in code in Table B.1.

B.4. DGCRN
DGCRN [17] is a follow-up of MTGNN [24], improving the graph learning by incorporating the results of
two GCN layers that process the node features. The authors define the matrix It as

It = Vt||Tt||Ht−1,

B.5. ADLNN 39

Param Value Reason
gcn_depth 1 reduced for complexity
dropout 0.3 derived from the code

subgraph_size 20 derived from the code
node_dim 40 derived from the paper
middle_dim 1 derived from the paper
rnn_size 64 derived from the paper

hyperGNN_dim 16 derived from the code
list_weight [0.05, 0.95, 0.95] derived from the paper

cl_decay_steps 4000 derived from the paper
layers 3 derived from the paper

tanhalpha 3 derived from the paper

Table B.2: Parameters for DGCRN, and how they were derived. Note that several parameters are left
out, as these are dataset-dependent.

where Vt is the speed, Tt the time of day, which are both part of the features, and Ht−1, a previous hidden
state. Then, the adjacency matrix is defined with

DE1 = tanh(α(CONV1(It)⊙ E1)),

DE2 = tanh(α(CONV2(It)⊙ E2)),

A = ReLU(tanh(α(DE1DET
2 − DE2DET

1)),

whereE1 andE2 ∈ RN×de are learnable embeddingmatrices, with de the embedding dimension, CONV1(·)
and CONV2(·) learnable convolution operators, ·T the transpose, ⊙ the Hadammard product, α a hyper-
parameter and tanh(·) and ReLU(·) non-linear functions. Finally, the top values for each row in A are
selected to use in the prediction module. The difference layer does include the node features. However,
there is no graph adaptation from a physical point of view, and the node embeddings are still used.

We use code from github1 and derive most of the hyperparameters from the paper or the code directly.
The code for DGCRN does not support multidimensional input, so we are restricted to only using a single
feature. Because of this, we cannot run this model on SDWPF or FINANCE, as it requires all the features
used. We modify the code to support different horizons other than h = 12. We set the learning rate to
0.0005 and the weight decay to 1e−9 for METR-LA and PEMS-BAY. For each hyperparameter, we define
how they are derived with their name in code in Table B.2.

B.5. ADLNN
In ADLNN [43], the authors propose a similar structure for graph learning asMTGNN [17] and use attention
scores in the difference layer. They define the full layer as follows

Z1 = tanh(α(MHA(E1,E1,E1))),

M1 = tanh(α(MLP1(Z1))),

M2 = tanh(α(MLP2(E2))),

A = ReLU(tanh(α(M1MT
2 −M2MT

1)),

where E1 and E2 ∈ RN×de are learnable embedding matrices, with de the embedding dimension, MLP1(·)
and MLP2(·), MHA(Q,K,V) a multi head attention layer with Q the queries, K the keys, and V the values,
·T the transpose, α a hyperparameter and tanh(·) and ReLU(·) non-linear functions. As a final step, the
top values for each row in A are selected to use in the prediction module. This difference layer does not

1https://github.com/tsinghua-fib-lab/Traffic-Benchmark

B.6. ASTGAT 40

Param Value Reason
gcn_depth 2 -
dropout 0.3 derived from the code

subgraph_size 20 derived from the code
node_dim 40 derived from the code

skip_channels 64 derived from the code
residual_channels 32 derived from the code
end_channels 128 derived from the code
conv_channels 32 derived from the code

dilation_exponential 1 derived from the code
proalpha 0.05 derived from the code
layers 3 derived from the code

tanhalpha 3 derived from the code

Table B.3: Parameters for ADLNN, and how they were derived. Note that several parameters are left
out, as these are dataset-dependent.

Param Value Reason
hidden_dim 48 -
dropout 0.6 derived from the code
alpha 0.2 derived from the code
layers 2 reduced for complexity

num_heads 4 derived from the code

Table B.4: Parameters for ASTGAT, and how they were derived. Note that several parameters are left
out, as these are dataset-dependent.

use the node features and uses the learned node embeddings.

For the training of ADLNN, we use the code from github2. We set the learning rate to 0.0005 and
weight decay to 1e−9 for METR-LA, PEMS-BAY and SDWPF. We set the learning rate for FINANCE
to 0.00005 and the weight decay to 1e−5, and we adjust the code to support multidimensional input. In
METR-LA, we chose only the measured speed as the input feature, as the performance with both features
was significantly worse(+40%). We do not use their initial graph construction method and solely rely on
the difference layer. For each hyperparameter, we define how they are derived with their name in code
in Table B.3.

B.6. ASTGAT
ASTGAT [13] uses a sequential model to learn the graph distribution. From the learned distribution, a
graph is sampled at each timestep and used in a subsequent spatiotemporal model. A graph regularizer
based on smoothness and sparsity learns the distribution. The distribution is not learned using the node
features and requires spatial embeddings for the dataset. We only have spatial embeddings from METR-
LA, so we solely use that dataset.

We train ASTGAT using the code from github3, and for METR-LA, we use the L1 loss function defined in
the paper to train the model. We set the learning rate to 0.0005 and weight decay to 1e−9 for METR-LA.
For each hyperparameter, we define how they are derived with their name in code in Table B.4.

2https://github.com/AbishekSriramulu/ADLGNN
3https://github.com/xyk0058/ASTGAT

C
Changing the graph structure

In this section, we discuss an approach to changing the graph structure. The most significant limitation
of the current method is that only existing edges are adapted. To change the graph structure in step
1, we consider a different adaptation module as illustrated in Figure C.1. For this, we consider several
requirements. The method must be online to keep the entire adaptation process online; it cannot depend
on the edge weights, as the weight of an edge does not indicate the preference for the edge itself, and
it must be a data-model-independent approach. In a forecasting problem where we sequentially process
the data, when we predict for a timestep, we have the real value for our predicted value at the next
timestep. We can compute the node-wise loss for the previous timestep and change the graph structure
through Bt. The node-wise loss does not give us a performance metric for each edge. However, due
to the requirements above and the need for the method to solely compute what edges to adapt, not the
actual values, we interpret the loss as the loss of the node using the neighborhood.

Namely, before we adapt the edge weights at each timestep, we compute the prediction performance of
the model using a (normalized) loss metric L̄pred,t(ŷt, yt) ∈ RN×1. Then, we translate this loss to a matrix
L̄t ∈ RN×N by repeating it column-wise, such that

L̄t = L̄pred,t · 1T , (C.1)

where 1T is a 1×N vector of ones with ·T indicating the transpose. To create a sparse matrix of only the
edges used for the previous prediction, we compute Lt

Lt = L̄t ⊙ Bt−1, (C.2)

Since the loss can fluctuate significantly between timesteps, we use a similar connecting step to (C.6)

Ht = ωLt + (1− ω)Ht−1 ⊙ Bt−1 + Ht−1 ⊙ (1− Bt−1), (C.3)

where ω is the graph construct rate, ⊙ the Hadamard product. Finally, we select the row-wise lowest-k
node pairs (i, j) from Ht for each node and save this selection through the binary matrix Bt and adapt
these edges solely.

Btij =

{
1, if (i, j) ∈ lowest-k(Hti),

0, otherwise.
(C.4)

For the initial adjacency matrix, the graph structure B0 is defined as the support of A0, supp(A0), such
that

B0 =

{
1, if A0ij ̸= 0,

0, otherwise.
(C.5)

The matrix Bt provides more control over the graph adaptation process using the GC module, which we
introduce later in this section. To adapt the edge weights for the sparse matrix At, we define a connecting
step with the previous adjacency matrix

Ātij = γαtij + (1− γ)Ā(t−1)ijBtij + βĀ(t−1)ij(1− Btij), (C.6)

41

C.1. Results 42

Time series Evolving GA

Graph Construct (GC)

Adaptation ofWt At

Bt−1 and Prev prediction Āt−1

Bt

αt

Figure C.1: Overview of the adaptation module with graph construct (GC). The previous prediction,
Bt−1 and At−1 are stored from the previous iteration.

Table C.1: Result of runs using GC and the normal OAGNN model. The METR-LA, PEMS-BAY, and
SDWPF datasets use h = 12. Averages over five runs with the standard deviation denoted. Lower is

better for METR-LA, PEMS-BAY, and SDWPF; for FINANCE, higher is better.

METR-LA PEMS-BAY SDWPF FINANCE
Model MAE MAE MAE+RMSE sdMAE Acc(%) F1
OAGNN-GC 4.99±0.01 2.21±0.02 107.83±0.97 0.30±0.00 66.46±0.00 0.66±0.01
OAGNN 4.96±0.01 2.20±0.01 107.17±0.45 0.29±0.00 66.35±0.00 0.67±0.00

C.1. Results
We run the same test setup as in Chapter 5 and test the model’s performance with GC, displayed in
Table C.1. We see from the results that the impact of the GC module is often negative. We conjugate
several possible reasons for this behavior; the GC module is not efficient enough. It does converge during
the training phase, but when deployed in the real world, the model can not adjust the graph correctly.
Secondly, what edges the model adapts does not matter. When we adapt the edge weights, we adapt
them to their optimal value, and by integrating the k-hop neighbors with the prediction module, the exact
edges that exist do not matter.

D
Ablation study on adaptiveness

This section discusses an additional study of the OAGNN-NO-OA ablation using a different train-test-
validation split. The experiment setup is the same as the ablation study from section 5.7. We study the
effect of the online adaptation mechanism by using a split of 50, 40, and 10 for training, testing, and
validating, respectively. We see from the results in Table D.1 how the traffic datasets do not benefit from
the online adapting due to their non-dynamic nature. However, the SDWPF shows a clear advantage
when more test data is present.

Table D.1: Result of additional ablation study using 50, 40, and 10 train-test-validation split. The
METR-LA, PEMS-BAY, and SDWPF datasets use h = 12. Averages over five runs with the standard

deviation denoted. Lower is better.

METR-LA PEMS-BAY SDWPF
Model MAE RMSE MAE RMSE MAE+RMSE sdMAE
OAGNN-NO-OA 4.90±0.01 8.95±0.01 2.24±0.02 4.27±0.04 141.15±0.85 0.31±0.00
OAGNN 4.90±0.01 8.95±0.02 2.23±0.01 4.27±0.05 137.67±0.57 0.30±0.00

43

	List of Figures
	List of Tables
	I Preliminaries
	Introduction
	Preliminaries
	Graphs
	Neural Networks
	Training a Neural Network
	Neural Networks for Graphs
	Neural Network on Dynamic graphs
	Multivariate Time Series Forecasting
	Graph learning for multivariate timeseries forecasting
	Discussion

	Related work
	Learning from Dynamic graphs
	Learning/Adapting dynamic graphs
	Online learning on graphs
	Position of this thesis

	II Implementation
	Proposed method
	Evolving Attention Weights
	Graph Adaptation
	Predicting with the adapted graph
	Implementation
	Discussion

	Experiments and Results
	Baselines
	Models
	Datasets
	Hyperparameters
	Learning and Evaluation metrics
	Results
	Ablation studies

	III Closure
	Conclusion
	References
	Hyperparameter search
	Baseline experiments
	GCRN
	EvolveGCN
	MTGNN
	DGCRN
	ADLNN
	ASTGAT

	Changing the graph structure
	Results

	Ablation study on adaptiveness

