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ABSTRACT

In many countries the number of wind turbines is growing rapidly as a response to the increasing demand
for renewable energy.Modern wind turbines are large structures, many reach more than 150 meters above the
ground. Clusters of densely spaced wind turbines, so called wind farms, are being built both on- and offshore.
Wind farm installations relatively near to radar systems generate clutter returns that usually affect the normal
operation of these radars.Interference caused by wind turbines is more severe for many radar systems than
interference caused by stationary objects such as masts or towers. This is due to the rotating blades of the
wind turbines. Many Doppler radars use a filter that removes echoes originating from objects with no or little
radial velocity. However, these filters do not work for rotating objects such as the rotating blades of wind
turbines. Wind turbines located around the line of sight of Doppler radars can cause clutter, blockage, and
erroneous velocity measurements, affecting the performance of both military and civilian radar systems. As
a result, the unwanted radar return from wind farms, known as Wind Turbine Clutter (WTC), is considered to
be dynamic clutter due to the nonzero Doppler return created by rotating wind turbine blades.

Nowadays numerous radar systems are developed in order to exploit the diverse information obtained
through transmission of waves with different polarizations. This technique is widely known as polarimetry.
Many targets of interest exhibit Radar Cross Sections which vary with different transmitted and received po-
larizations. Wind Turbines also experiences this variability.

In this thesis we propose a method to optimal detect the presence of WTC with the use of radar polarime-
try. Since the crucial part of this interference comes from the blades rotation, we initially propose an idea
to estimate the angular velocity of these blades. The estimation of this parameter is derived with the use of
proper combination of maximum likelihood estimation theory and radar polarimetry. As there is absence
of Micro-Doppler when the radar beam axis and rotation coincide, a separate estimator for this case is pro-
posed. In the final part of this thesis, we present a detection approach based on the same signal model used
for angular velocity estimation. Again we define a detection rule for the case when radar beam axis and rota-
tion axis coincide and one when they do not. Although at some extent the used model for the second case is
valid for low frequencies (f<1 GHz), both estimator and detector derivations can be further applied to a model
for higher frequencies. All these mathematical derivations are accompanied with proper simulations.
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NOMENCLATURE

CPI Coherent processing interval

FMCW Frequency Modulated Continuous waveform

EM Electromagnetic

GLRT General likelihood ratio test

LFM Linear frequency modulation

LOS Line of sight

LRT Likelihood ratio test

MLE Maximum Likelihood estimation

NP Neyman-Pearson

PD Probability of detection

PDF Probability density function

PF A Probability of false alarm

PRF Pulse repetition frequency

PRI Pulse repetition interval

PSM Polarization Scattering Matrix

RADAR Radio detection and ranging

RCS Radar cross section

RF Radio-Frequency

ROC Receiver operating charactertic

SNR Signal-to-noise ratio

STFT Short time fourier transform

WT Wind Turbine

WTB Wind turbine blades

vii





CONTENTS

Nomenclature vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Radar Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Radar System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Monostatic and Bistatic Radar Configuration . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Pulsed Radars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Continuous wave (CW) radars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Micro-Doppler effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Effect of Wind Turbines in Radars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Previous research regarding Wind Turbine Clutter (WTC) mitigation . . . . . . . . . . . . . . . 11
1.4 Use of radar polarimetry for wind turbine clutter characterization . . . . . . . . . . . . . . . . 12
1.5 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Previous Research in Polarimetric Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.10 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Concepts of Radar Polarimetry 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Polarization of Monochromatic Electromagnetic Plane Waves . . . . . . . . . . . . . . . . . . 18

2.2.1 Equation of propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Polarization States of Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Jones Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Orthogonal Polarization States and Orthogonal Polarization Basis . . . . . . . . . . . . . 23
2.3.2 Polarimetric Basis Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Stokes Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Radar Equation in terms of polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Polarization Scattering Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Bistatic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.2 Monostatic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.3 Polarization Basis Change in the Polarization Scattering Matrix . . . . . . . . . . . . . . 28

2.7 Covariance Polarimetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.1 Bistatic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.2 Monostatic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Polarimetric Estimation of angular velocity 31
3.1 Radar-Wind Turbine Configuration Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Assumptions for the polarimetric signal model . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Angular velocity estimation for perpendicular observation . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Received Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Maximum Likelihood Estimation of the Angular Velocity . . . . . . . . . . . . . . . . . 36
3.3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



x CONTENTS

3.4 Angular velocity estimation for non-perpendicular observation . . . . . . . . . . . . . . . . . 40
3.4.1 Polarimetric model of Wind Turbine Blades for low frequencies . . . . . . . . . . . . . . 40
3.4.2 Received data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Non-linear least squares estimation for wind turbine angular velocity . . . . . . . . . . . 43
3.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Wind Turbine Clutter Polarimetric Detection 49
4.1 Review of detection theory fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Polarimetric Detection for perpendicular observation . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Test statistic derivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Polarimetric Detection for non-perpendicular observation . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Test statistic derivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusions 61
5.1 Angular Velocity Estimation Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Wind Turbine Clutter Detection Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Model for the Wind Turbine blades in higher frequencies . . . . . . . . . . . . . . . . . 62
5.3.2 Classification based on the rotating movement . . . . . . . . . . . . . . . . . . . . . . 62



LIST OF FIGURES

1.1 Fundamental Functional Elements of a Pulsed Radar System [1] . . . . . . . . . . . . . . . . . . . 1
1.2 Monostatic (a) and Bistatic (b) radar system [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Pulsed Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Data Matrix [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Imaginary (a) and Real (b) part of the LFM waveform . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Doppler effect[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 FMCW waveform and frequency sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 FMCW beat frequency extraction [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Short Time Fourier Transform [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10 Spectrogram of Enercon E82-2.3 MW wind turbine using PARSAX radar . . . . . . . . . . . . . . . 11
1.11 Micro-Doppler Patterns ( in dB ) for wind turbines for an increasing rotation period during the

same observation time [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.12 Signal Decomposition to mitigate WTC (a) Spectrogram of received echoes after signal process-

ing, (b)Spectrogram of Wind Turbine only [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.13 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Polarization Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Parameters of Polarization Ellipse [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Bistatic Coordinate System [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Monostatic Coordinate System [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Relevant position of Radar and Wind Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 SV V response of a Wind Turbine illuminated from zero Yaw(aspect) angle . . . . . . . . . . . . . 33
3.3 Wind Turbine viewed from zero aspect angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Cost function vs rotation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Cost function vs rotation angle estimation for different number of measurements . . . . . . . . . 39
3.6 Estimation error vs Number of Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Geometrical representation of the fields and the configuration of the radar-wind turbine system

[44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Time-varying polarimetric backscattering coefficients of a Wind Turbine for low frequencies . . 42
3.9 3D cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Cost function of the angular velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.11 Cost function of the initial position of the blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.12 Squared error of the angular velocity estimation vs number of measurements . . . . . . . . . . . 46
3.13 Squared Error of the initial position of the blades vs number of measurements . . . . . . . . . . 47

4.1 Test Statistic distribution for H0 hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 ROC curve for different SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 PD v s SN R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 PD v s Number o f measur ement s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Test Statistic distribution for H0 hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 ROC curve for different SNR levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.9 PD v s SN R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xi





LIST OF TABLES

3.1 Values of simulated parameters for rotation angle estimation . . . . . . . . . . . . . . . . . . . . . 38
3.2 Values of parameters for simulation of the response of Wind Turbine polarimetric coefficients . 42
3.3 Values of simulated parameters for estimation of the angular velocity and position of the blades 44

4.1 Value of parameters for ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Values of parameters for simulation of the ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiii





1
INTRODUCTION

1.1. RADAR THEORETICAL BACKGROUND
The widely- known term Radar is an abbreviation that was coined in 1940 by the United States Navy and
stands for RAdio Detection And Ranging. The invention is often credited to Christian Hülsmeyer, whose
wireless apparatus ’Telemobiloscope’, was the first patented device which was using radio waves for detect-
ing the presence of distant objects. However the generation and actual application of radars dates back to
World War II, when they are exclusively developed and used for military purposes. Nowadays, their rapid
adaptivity into a wide area of practical interests such as car driving and weather forecasting, has triggered the
scientific research regarding its operational characteristics. Consequently, modern radar systems are much
more complex and include measurements and processing techniques that go far beyond the classical detec-
tion and ranging applications.

1.1.1. RADAR SYSTEM OVERVIEW
A radar in principle is considered to be an electrical system that illuminates an area of interest using Radio-
frequency (RF) Electromagnetic (EM) waves. Its primary mission is to receive and detect these EM waves
when scattered from objects in that area. The next figure reveals the fundamental system elements that take
part in the whole radar process starting from the transmitting signal, its propagation through the medium and
finally the reception of the scattered signal coming from the object of interest. Depending of the type of radar
system configuration used as well as the transmitting waveform, the complexity of the system potentially
increases. However some of the typical radar functions, which are represented by these ’blocks’ in the figure,
one often encounters internally in a (pulsed) radar. The term pulsed radar will be explained later.

Figure 1.1: Fundamental Functional Elements of a Pulsed Radar System [1]

1



2 1. INTRODUCTION

brief explanation of the depicted elements follows, which manifests the purpose of their existence.

• Transmitter: This is the subsystem that is responsible for the production of the EM waves. It is a high-
power device that can transmit EM waves with power levels in the range of hundreds of kilowatts.

• Antenna: The mean for the generated EM waves to travel through the propagation medium towards the
direction of interest.

• T/R device: Usually is referred to as circulator and serves as a connection, in order for the receiving
and transmitting system to be established in the same platform and attached to the same antenna
(employed in the monostatic radars). This feature is exclusively applied in a pulse radar system.

• Receiver Protector Switch: Provides the necessary isolation between the receiving and transmitting
components ensuring that the high-powered transmitted signals will not damage the sensitive receiver
elements ( necessary only for pulsed radars ).

• Low Noise Amplifier: The strength of the target backscattered signal usually suffers from significant
fading caused by the travelled distance and the propagation medium. The purpose of the LNA is to
improve the signal level without simultaneously increasing the noise.

• Mixer/ Local Oscillator : The combination of these two circuits converts the received RF signal to an
intermediate frequency (IF), suitable for the system hardware.

• Detector: Removes the carrier from the modulated target return signal.

• A/D (Analog to Digital Converter): Digitizes the analog information in order to be processed by the
signal processor.

• Signal Processor: The actual detection and estimation process takes place in this part of the system.

Every radar system is commonly featured by its own configuration and the waveform that uses to illuminate
the area of interest. We will briefly address and explain this discrimination in this chapter. For further details
regarding the advantages and disadvantages of each type of radar, the reader is referred to [2] and [3].

1.1.2. MONOSTATIC AND BISTATIC RADAR CONFIGURATION

In principle there are two types of radar configurations named as monostatic and bistatic and the discrimi-
nation is mainly based on the location of the transmitter and receiver, as the following figure exhibits.

(a) Monostatic radar system (b) Bistatic radar system

Figure 1.2: Monostatic (a) and Bistatic (b) radar system [1]

As we notice, in the monostatic configuration the antenna (or antennas) is installed in the same platform
and serves both as a transmitter and receiver. On the other hand, in the bistatic configuration there are two
separate antennas usually placed in a considerable distance and each one operates as either transmitter or
receiver. When more receiving systems, with the same spatial coverage are employed and the data obtained
from each system, are combined at a central location, then a multistatic radar is present. Consequently, the
distance between the transmitting and receiving subsystems foreshadows the existence of either type of these
configurations and not the number of used antennas .



1.1. RADAR THEORETICAL BACKGROUND 3

RANGE EQUATION

The principle and the most fundamental equation for all radar systems is the well-known radar equation.
It provides a basic relationship between the transmitted power, received power, target range, radar frequency
as well as the antenna gains. Although in its basic form gives optimistic results, it can be easily mathematically
modified to improve its accuracy for several measurement scenarios. We will shortly derive this formula
starting from [4].

If we consider that the peak power Pt , generated by the radar transmitter, is applied to an antenna system
characterized by gain Gt . Then the incident power density Qi , measured in Watts per square meter, at a
distance R, is simply the emitted power divided by the surface area of a sphere, as the EM wave propagates as
a spherical wave:

Qi = Pt Gt

4πR2 [W /m2] (1.1)

As the power density impinges on the target, induces currents in the target surface which are responsi-
ble for reradiation in several directions. The power reflected by the target and is directed toward the radar
Pr e f l , is formulated as the product of the incident power density and a target parameter called radar cross
section (RCS) σ, measured in square meters. Analytical description regarding target RCS follows in Chapter
2. Mathematically the reflected power is expressed as:

Pr e f l =Qiσ= Pt Gtσ

4πR2 (1.2)

This amount of power travels a distance R through the propagation medium ( in the simplest case free
space) and arrives in the radar with a power density Qr :

Qr =
Pr e f l

4πR2 (1.3)

or from (1.2) :

Qr = Qiσ

4πR2 = Pt Gtσ(
4πR2

)2 = Pt Gtσ

(4π)2 R4
(1.4)

The radar wave reflected from the target is intercepted by the radar receive antenna, which is character-
ized by an effective area Ae also measured in square meters [5]. As a result the received power can be easily
derived through the following formula:

Pr =Qr Ae = Pt GtσAe

(4π)2 R4
(1.5)

The effective area which does not represent the actual physical area of the antenna, is related with the receiv-
ing antenna gain Gr through the following expression[5]:

Gr = 4πAe

λ2 ⇔ Ae = λ2Gr

4π
(1.6)

where λ is the radar wavelength. As a result by combining (1.5) and (1.6), the received power will then be:

Pr = Pt Gt Grσλ
2

(4π)3 R4
(1.7)

which is the typical and the simplest form of the radar range equation. Radar equation (1.7) is only ap-
plicable for monostatic system configurations. In case of bistatic radar system, this equation needs to be
slightly modified in order to incorporate the distance Rt between the transmitting radar and the target and
Rr between the receiving radar and the target as well as the bistatic RCS for the target:

Pr = Pt Gt Grσbi st ati cλ
2

(4π)3 R2
t R2

r
(1.8)

1.1.3. PULSED RADARS
A pulsed radar, as its own name reveals, transmits one or sequence of pulses (train or burst) each of very short
time duration, named as pulse width τ. Because of the very small duration, each transmitted pulse needs to
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be of high energy in order to arrive on a remote target effectively. During this transmission time, the receiver
is disconnected from the antenna ( blanked period ),in order for the sensitive receiving components to be
protected from the emitted high-power EM waves. After the pulse has been fully propagated and before the
transmission of the next pulse, the receiver is attached to the antenna, enabling the reception of the scattered
signals stemming from the target. This time (known as listening time) plus the pulse width compose one
pulsed radar cycle time, formally called as pulse repetition interval (PRI). Figure 1.3 depicts the aforemen-
tioned process with a pulse train consisting of four pulses. In this plot the PRI = 1ms and τ= 0.2ms.

Figure 1.3: Pulsed Radar

From the above definitions some other common radar terms yield as well. The most common one is the
Pulse Repetition Frequency (PRF) which is a parameter that declares the number of transmit/receive cycles
the radar completes per second and is measured in Hz. Mathematically is typically the inverse of the PRI:

PRF = 1

PRI
(1.9)

As we mentioned in the previous section the A/D samples the received data in a predefined rate in order
to be suitable for further processing by the signal processor. Since the desired target signal arrives at the
radar receiver at any moment of time, with infinitesimal time resolution, the discretization of time needs
to be performed with a time sampling no more than one pulse length. A detection improvement can be
further achieved by applying oversampling. Each time sample represents one sample in range, which in
radar terminology is referred as range bin.

RANGE MEASUREMENT

As we mentioned, a pulsed radar after transmitting a pulse, starts to receive scattered signals from the illu-
minated area. The calculation of the target range is a straightforward process and is proportional to the time
delay between the end of transmission and the arrival time of the reflected signal ∆t . Since the intercepted
electromagnetic wave has traveled double the distance of the target R, this distance is then calculated as:

R = c ·∆t

2
(1.10)

where c denotes the speed of light in free space.
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MAXIMUM UNAMBIGUOUS RANGE

As the pulses are emitted sequentially, during the reception time the radar receiver might experiences the
next scenario for each received pulse. Either this has been created by a close-in target and corresponds to
a just transmitted EM wave or corresponds to a backscattered signal resulting from a previously transmitted
pulse and, thus, a scattering from a remote target. This phenomenon is called ambiguity and in order to
avoid its existence the reception time needs to be increased. Figure (1.3) points out that in order to increase
the ’listening’ time, which in fact means that more echoes will be received and processed, the PRI of our
system needs to be also increased. Therefore the maximum range that can be correctly estimated will, in
accordance with equation (1.10), be equal to:

Rmax = c ·PRI

2
= c

2 ·PRF
(1.11)

RANGE RESOLUTION

The sense of radar range resolution determines the radar capability to distinguish two or more targets
which are closely located in range. If we consider two targets which are placed at a radial distance∆R between
each other, then the detector will resolve them in range as long as ∆R will be at least equal to:

∆R = c ·τ
2

= c

2B
(1.12)

where τ is the pulse length and B is the bandwidth of the pulse. The second equation is valid only for
simple monochromatic pulses. In (1.12) ∆R is called range resolution of the radar and for this particular case
is purely determined by the pulse length.

It then becomes clear that if a finer range resolution is required,then either the pulse length has to be
shrinked or the bandwidth to be expanded. However reducing the pulse length will decrease the pulse en-
ergy (E = Pt ·τ) which in turn degrades the detection capability of the radar system. In order to overcome this
situation, the bandwidth of our signal needs to be increased by maintaining the pulse length. This is easily
performed by applying phase or frequency modulation in our pulse, a technique known as pulse compres-
sion, leading to a bandwidth B ≫ 1/τ.

DATA MATRIX

The distance between the range samples is no greater than the range resolution of the radar pulse. For a
monochromatic pulse, this is simply the pulse length, t. For a modulated pulse this is determined by the
Bandwidth. Therefore, the received signal is sampled every τor 1/B seconds. Usually for low resolution
radars, a target echo stemming from a single scatter, will have a duration equal to the pulse length and thus it
will be present in only one time sample. The total number of time samples obtained within the listening time
are typically stored as one-dimensional vector and create the so-called fast time time samples or range gate.

As the radar transmits multiple pulses , a set of fast time samples will be extracted for each pulse. As a
result a two-dimensional data matrix is formed, consisting of several complex voltage samples, as the next
figure presents.

Figure 1.4: Data Matrix [1]

The sampling rate on each row of the data matrix is equal to PRF. Because the PRF is much lower than the
sampling rate in range, the total number of samples obtained from pulse to pulse create the second dimen-
sion in the data matrix called as slow time. The product of the total number of pulses coherently processed
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with the PRI defines the total observation time and is called coherent processing interval (C PI ). As a re-
sult,the value of the C PI determines the resolution in Doppler processing.

LINEAR FREQUENCY MODULATED WAVEFORM

A very common waveform that is used in order to improve the range resolution is the Linear Frequency
Modulated (LFM) waveform (also known as chirp pulse). In this modulation, the frequency of our pulse varies
linearly with time within the pulse duration. With this technique a larger bandwidth is provided without
affecting the length of the pulse. Mathematically, this waveform is expressed as:

x (t ) = A exp

(
jπ

B

τ
t 2

)
− τ

2
≤ t ≤ τ

2
(1.13)

The time-dependent phase of this signal is then derived as follows:

φ (t ) =πB

τ
t 2 − τ

2
≤ t ≤ τ

2
(1.14)

The instantaneous frequency of the pulse is the derivative of the phase and thus equal to:

f (t ) = dφ (t )

d t
= 2π

B

τ
t − τ

2
≤ t ≤ τ

2
(1.15)

which as its name declares, the frequency of the pulse is a linear function of time. The bandwidth B is
alternatively called as sweep bandwidth and the ratio B/τ is termed as sweep rate.

The next figure presents two LFM waveforms, each with a pulse width τ= 50 µs and sweep bandwidth of
B = 400 M H z. This plot depicts both the real and imaginary part of its complex representation.

(a) Imaginary part (b) Real part

Figure 1.5: Imaginary (a) and Real (b) part of the LFM waveform

DOPPLER MEASUREMENT

Another very important operational characteristic of the modern radar systems, is their ability to measure
the potential velocity of targets which are either approaching or receding from the radar. This measurement
is achievable by exploiting the Doppler phenomenon. The Doppler phenomenon (or Doppler effect) states
that if a relative motion between the radar and the target exists, then the frequency of the received pulse will
be different from the frequency of the pulse transmitted from the radar. This difference is called Doppler
frequency or Doppler shift in radar terminology, as Doppler effect exclusively influences the phase of the
scattered signal. The next figure provides a simple explanation of the Doppler effect and how the frequency
of the scattered EM wave is modified with respect to the transmitted one.
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Figure 1.6: Doppler effect[6]

Consider a scatterer in the radar field of view that is moving with a radial velocity v either toward or away
from the radar with frequency f ( or wavelength λ). Then the Doppler shift caused by this movement is then
formulated as:

fd =±2υ

f
c =±2υ

λ
(1.16)

where the positive Doppler shift describes an approaching target while the negative denotes a receding
one. This assumption also agrees with the previous figure as higher received frequency is observed when the
illuminated target is moving towards to the radar.

It becomes evident that when a moving target is present in the illuminated area, then a special processing
task needs to be performed. This task is well-known as Doppler processing. Doppler processing is only at-
tainable when coherent radars are used, namely the type of radars that measure both amplitude and phase of
the scattered signal. With non-coherent radars, velocity and Doppler shift cannot be extracted. With Doppler
processing, the Doppler shift information is exploited in order to detect the presence of moving objects and
simultaneously suppress environmental interference that is out of interest, known as clutter. This process in
the radar literature is called Moving Target Indication (MTI). When we are not only interested in the moving
target detection but also to estimate the actual velocity of every target in the radar area, then Pulse-Doppler
processing is performed.

In order for the Doppler processing to be applied in our system at least two pulses are required, so as
the phase shift from pulse to pulse of the scattered signal caused by the target movement to be extracted.
Therefore Doppler analysis is nothing more than the spectral analysis of our signal. This is simply performed
by applying Fast Fourier Transform (FFT) along each row in the data matrix (see 1.4), namely across slow
time.

In mathematical terms the maximum (positive or negative) unambiguous velocity is related with PRF
through the following expression:

υmax =±λ ·PRF

4
= c ·PRF

4 · f
(1.17)

For a fixed and predetermined observation time it becomes evident that the PRF also imposes the interval
of which the velocity (positive and negative) can be estimated unambiguously. However, this generates the
so-called Doppler dilemma: Since the maximum unambiguous range is inversely related to the PRF while the
maximum unambiguous Doppler velocity is proportional related to the PRF, there is no single PRF that can
minimize both these ambiguities at the same time. Nonetheless, a potential technique to avoid the Doppler
dilemma is to vary the PRI between pulses within the C PI [3]. With this method the different PRI s can
be used to increase the maximum unambiguous Doppler velocity while keeping the range ambiguity at the
desired level or vice versa.

DOPPLER RESOLUTION

As we mentioned before the Doppler resolution depends on the coherent observation time or C PI . In
other words, for pulsed radars is inversely proportional to this quantity and thus will be:

∆ fd = 1

C PI
(1.18)
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As a result by using the mathematical definition of C PI and assuming M transmitted pulses we obtain:

∆ fd = 1

M ·PRI
= PRF

M
(1.19)

It becomes clear then that for a finer Doppler resolution either larger PRI is required, leading to shorter
pulses, or more pulses to be included in our process which in fact imposes a larger observation interval.

1.1.4. CONTINUOUS WAVE (CW ) RADARS
The basic principle behind CW radars is that the transmitter is ceaselessly transmitting a signal during the
operation time of the radar transmitter. In contrast to pulsed radars, the receiver also continuously operates.
A typical unmodulated CW radar generates a signal with constant frequency, namely a single sinusoid. How-
ever, due to this continuity in transmission, the range calculation of the target becomes an impossible task.
As a result, and due to the lack of modulation of the source, CW radar only allows for determination of the
relative target velocity via the Doppler shift. Consequently, the estimation of the reflected signal time delay
and thus the target range, becomes achievable by changing the characteristics of the wave. The most widely
implemented modulation method that is very often employed in CW radars, is called frequency modulation
(FM). With this technique the frequency of the wave varies during the transmission time.

FREQUENCY MODULATED CONTINUOUS WAVE (FMCW ) RADARS

FMCW waveforms share the same modulation principle as LFM pulsed radars in a sense that the instan-
taneous transmitted frequency varies linearly with time. As the frequency cannot increase indefinitely, the
time-frequency characteristic of the waveform is repeated periodically in a sawtooth or triangular mode to
create a CW signal.Mathematically a band pass FMCW signal is formulated as follows [7]:

s (t ) = A cos
(
2π fT (t )

)= A cos

(
2π fc t +π B

Tchi r p
t 2

)
(1.20)

where B is the system bandwidth and Tchi r p is the chirp or sweep time. The next Figure illustrates this wave-
form for B = 100 M H z and Tchi r p = 100µs.

Figure 1.7: FMCW waveform and frequency sweep

A reflected continuous wave signal from a static target of interest, is ideally a replica of the transmitted sig-
nal but slightly shifted in time according to the time-delay. This shift causes a constant frequency difference
between the received and transmitted signal during the sweep time. This difference is proportional to the
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target range and is named as beat frequency fb . In the next figure this process is depicted for a non-moving
target.

Figure 1.8: FMCW beat frequency extraction [8]

It therefore yields that for multiple targets, multiple beat frequencies will appear in the receiver output
spectrum. As a result, in case of FMCW an extra FFT has to be applied along each column in the data matrix
in order to extract the range of each target which is called range profile. The beat frequency is mathematically
related to the target time delay through the next equation:

fb

τ
= B

Tchi r p
(1.21)

and from equation (1.12) we have:

R = cT

2 ·B
fb (1.22)

1.1.5. MICRO-DOPPLER EFFECT

When the target of interest is subject not only to pure radial translation but also experiences vibration, rota-
tion or any kind of secondary motion, is said to have an oscillatory behavior or alternatively micro-motion.
This micro-motion causes an extra Doppler shift called Micro-Doppler, which in fact modulates the trans-
mitted carrier frequency [9]. As we will see next, when the micro movements represent a periodic rotation or
vibration, periodic flashes in the Doppler Spectrum around the Doppler frequency of the target appear. The
intensity of these flashes and the modulation that micro motion imposes on the radar frequency, depend on
the angle of observation , the radar frequency itself as well as the rotation rate.

Very known targets such as helicopters and wind turbines include vibrating or rotating structures because
of their mechanical construction. In this thesis we will exclusively deal with Wind Turbines where the domi-
nant source of micro Doppler is rotation which stems from the periodic rotation of the blades.

The continuous rotation of the wind turbine blades (WTB) yields to a phenomenon where the frequency
of the reflected signal will change over time. However for this particular case, the traditional method to ana-
lyze the spectral contents of this signal by applying FFT, is not valid since these components vary with time
and thus their amplitudes also vary with time. In order to overcome this deficiency of the FFT for this type of
objects, a technique called Short Time Fourier Transform (STFT) is used [10]. Next figure presents the STFT
procedure, where as we notice the signal is equally segmented and FFT is applied on each of these segments
separately. The length of each segment is chosen so as the amplitude of the reflected signal to be almost
constant.
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Figure 1.9: Short Time Fourier Transform [10]

1.2. EFFECT OF WIND TURBINES IN RADARS

Despite the admittedly beneficial and catalytic impact on energy production, the adverse of wind turbines
and their extended installation has raised the issue of possible effects on the performance of any type of
modern radars, such as Air Traffic Control (ATC), weather, surveillance and military radars. This introduction
of potential interference starts to become more significant as long as wind turbines are located within the
radar’s line of sight. The dominant way of interference that stems from wind turbines is primarily related to
the periodic rotation of the turbine blades. Moreover, the tower of the contemporary wind turbines ( usually
named as mast ), generates a significant ground clutter and reduces the probability of detection, especially in
ATC radars [11]. In principle the turbine blades are responsible for relative large values of Radar Cross Section
( RCS ) , when they are found to be orthogonal to the radar main beam.

A study which was developed in 2003 from a UK Department of Trade & Industry [12] has summarized the
two main characteristics of wind turbine interference that impose substantial nuisance regarding the mission
of radar systems:

1. The first important characteristic of wind turbine ( or in general of an expanded wind farm ) , is the
backscattered power that is caused by both the tower and the blades. As we mentioned the magni-
tude of the RCS for of these components is relatively large comparing to common targets that a radar
attempts to detect. Since the electronics composing a radar receiver are very sensitive and made to
detect low values of reflected power, the wind turbine backscattered power might lead them to non-
linear behavior or even to saturation. Therefore a potential appearance of disability of the radar might
happen regarding target detection, that lie within the area of wind farms. Moreover, the turbine blades
most of the times tend to deteriorate the image of a targeted object by efficiently mask its reflected
return and thus leading to an increasing number of false alarms.

2. The function of wind turbines also highly affects another crucial operation of coherent radars which is
the Doppler processing. Due to the Micro-Doppler shift caused by the rotating blades, the detection of
a moving target with Doppler velocity that is close to that shift, might not be feasible.

These two factors of interference might cause either the reduction of probability of detection or the miscon-
ception of the wind turbine returns as target reflected power which in turn results in great number of false
alarm situations. Especially the negative effects of wind turbines to weather radars, as clearly have already
been clarified in [13], [14] are much more crucial. That is because, in contrast to ATC radars, the target of
primary concern is any kind of precipitation ( e.g. rain ,snow, hail etc.) which is often spatially indistinguish-
able from wind turbines.The next figure presents a measured Micro-Doppler pattern ( Spectrogram ) of the
Enercon E82-2.3 MW wind turbine near Etten Leur in Netherlands [15]. These data has been measured with
the high resolution Doppler polarimetric Frequency Modulated Continuous Wave PARSAX radar [16] which
is located in Technological University of Delft.
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Figure 1.10: Spectrogram of Enercon E82-2.3 MW wind turbine using PARSAX radar

The previous plot, apart from the occupied Doppler spectrum and the amount of reflected power received
by the wind turbine, also elucidates intuitively the relation between the radar observation time and the rota-
tion period. In other words interesting phenomena take place when the rotation period of the blades starts
to be comparable with the radar observation interval. According to the analysis performed in [17], a thin
wire model for the blades was used in order to simulate the Doppler temporal pattern. In one of the simula-
tions, the dwell time of the radar was high enough so as a number of rotations will appear in the meanwhile
and thus a great number of harmonics of the fundamental frequency of rotation will also take place in the
Doppler spectrum. This results in a complete destruction of the Doppler pattern and eventually in a com-
plete disability to distinguish the presence of a target. The next figure present these results and demonstrates
the evolution and the transformation of the spectrogram as the rotation speed increases. The two upper fig-
ures ( from left to right ) correspond to a situation where the blades are rotating with a frequency of 0.1 and
1 Hz respectively. In the down-left plot the rotation period is 10 Hz and is comparable with the observation
time. A profound destruction of the Doppler spectrum clearly results.

Figure 1.11: Micro-Doppler Patterns ( in dB ) for wind turbines for an increasing rotation period during the same observation time [15]

1.3. PREVIOUS RESEARCH REGARDING WIND TURBINE CLUTTER ( WTC) MIT-
IGATION

Wind turbines behave similar to other ground clutter since they do not move from one place to another. How-
ever, they are not only characterized by a strong zero-Doppler backscattered response but also with a time
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varying factor due to the blades rotation. Therefore the conventional clutter reduction filters and algorithms
developed in various reports are not applicable for this type of clutter.

In the past and modern bibliography one can discover a various number of reports in which some tech-
niques have implemented in order to mitigate the impact of wind turbine clutter in radar performance. In
report [11] Sensis Corporation has summarized and presented in a table form several mitigation techniques
as well as the improvement in radar performance that accompanies their implementation. Since we have a
constant blade rotation during the radar illumination time, it became clear from our previous explanation
that the Doppler Spectrum of a typical wind turbine varies from scan to scan in case of a very small radar
observation interval. This time-varying pattern prevents from the utilization of typical ground clutter filter
algorithms and methods. In [18] an Adaptive Spectrum Processing ( ASP ) algorithm is proposed for weather
radars. This algorithm creates adaptively appropriate band pass filters based on the statistics of the radial ve-
locity estimation. Furthermore, regarding the structure of wind turbines, in [19] a simulated stealth solution
is demonstrated which results in a significant reduction of the RCS. However this has not been confirmed yet
experimentally.

As we mentioned previously, due to the time varying character of the wind turbine, clutter range mitiga-
tion is difficult. In the report in [20] a clutter depletion technique is presented with the use of a measured
spectrogram for weather radars. With the introduction of an a priori range information, the assumption of
step-like discontinuity in range, due to the presence of the wind turbine, as well as a wide spread in frequency
of the wind turbine clutter, a remarkable recovery of the useful signal is achieved. Its main drawback is that
this algorithm performs with high efficiency only with strong contamination, where the range variation of
the total measured signal, due to the wind turbine contribution, follows the step-like transition sufficiently.
In [21] an automatic detector of wind turbine clutter for weather radars is analyzed. In this approach the
temporal and spectral features, which stem from raw data, are combined and incorporated in a fuzzy-logic
based algorithm in order to determine the presence of potential contamination.

Finally in [22] a method to mitigate the clutter using signal decomposition is proposed. In this method
the radar returns are assumed to be composed of an oscillatory component and a structured transient com-
ponent and thus a special decomposition is properly applied. The resulting spectrogram before and after the
mitigation method is shown in Figure 1.12.

[a] [b]

Figure 1.12: Signal Decomposition to mitigate WTC (a) Spectrogram of received echoes after signal processing, (b)Spectrogram of Wind
Turbine only [22]

1.4. USE OF RADAR POLARIMETRY FOR WIND TURBINE CLUTTER CHARACTER-
IZATION

An extended and multi-structured object, such as wind turbine, in case of high resolution radars, is usu-
ally interpreted as an assembly of numerous scatterers and each one of them contributes a specific complex
reflected signal in the total received RCS. These individual returns are related with the relative distance be-
tween the scatterers which in turn is determined by the radar frequency. Consequently, frequency together
with amplitude and phase are usually used to sufficiently describe the illuminated target.

In order to extract the maximum possible information of the RCS variation of the target and thus to im-
prove radar detection performance, radar engineering has started focusing more on the method needed to
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illuminate the object under test. This research lies in the investigation of the waveform itself and specif-
ically, in terms of electromagnetic waves, in the polarization. The exploitation of the diverse information
obtained through transmission of waves with different polarizations has become recently a subject of intense
and more systematic research. Various measurements witness that the use of polarization diversity leads to
different echo returns, which in turn can be combined with an appropriate method to improve our decision
capabilities. Although this approach has been extensively investigated over the past few years, the analysis of
wave polarization is dated back to 1950. Various researchers such as Kennaugh, Deschamps, Sinclair, Stokes
[23],[24],[25],[26],[27] had already attempted to explain the polarization properties of radar targets as well as
formulating wave polarization in compact mathematical models. Huynen had also a substantial contribu-
tion in radar polarimetry and its exploitation for target detection which is primarily revealed in the reports
[28],[29].

As we see in [30], WTC is characterized by different response for every transmitted and received polariza-
tion. These plots depict the measured spectrogram of a wind turbine for different transmitted and received
polarizations . This variance in the backscattering response can be exploited in order to gather sufficient in-
formation for the characterization of this clutter. In other words, due to this polarization diversity in the RCS
of the WTC, the identification and detection of of wind turbines in the neighborhood of potential targets of
interest become more achievable.

1.5. PROBLEM DESCRIPTION
The measured WTC in Figure 1.10 reveals the primary methods with which WTC interferes with any kind of
signal of interest (weather, radial moving target etc.). In the time-Doppler spectrogram, the wind turbine
blades occupy parts of the Doppler spectrum by generating continuous ’straight’ lines of frequency shift.
This amount of occupied spectrum usually lies in the Doppler region that most of the radars are optimized
to operate. As a consequence detection capability of radars is substantially downgraded. This is primarily
because all the potential targets of interest are possible moving with a radial velocity that generates a Doppler
shift similar or equal to those produced by the wind turbine. As a result its backscattered response might be
masked by the WTC and its detection becomes, most of the times, an infelicitous task. Thereby it is crucial
to design and apply an appropriate detector in order to distinguish the presence of this type of clutter and
potentially mitigate it from the received data.

As we also notice from the Figure 1.10, is that the generation of these Doppler ’flashes’ in the spectrogram
follows a periodic fashion. This periodicity is strictly related with the angular velocity of the wind turbines
as well as the radar observation angle. Therefore an optimal estimation of this unique feature will strongly
facilitate the reconstruction of this clutter, in combination with an appropriate signal model. Since we also
experience varying backscattered responses for every polarization, the problem focuses in the way we can
exploit all these informations in order to design an appropriate polarimetric detection process.

1.6. PREVIOUS RESEARCH IN POLARIMETRIC DETECTORS
In the modern and past academic bibliography there are numerous polarimetric detectors in homogeneous
and inhomogeneous which either follow Gaussian or nonGaussian distribution. In the article [31], a precise
and a well-analyzed derivation of a completely adaptive polarimetric coherent detector is presented, against a
Gaussian background. An extended version of the fundamental Generalized Likelihood Ratio Test (GLRT) po-
larimetric detector is provided for an arbitrary number of polarimetric channels. In [32] shows a polarimetric
coherent adaptive technique to detect a radar target against a non-Gaussian background. This paper comple-
ments the effort that had been done in the previous article in a more general and random scenario. Moreover
in [33],two distinct methods of target detection are described that both make use of the full complex polariza-
tion scattering matrix and are named as optimal polarimetric detector (OPD) and the best linear polarimetric
detector, the polarimetric matched filter (PMF). Comparison between these detectors and a simpler one that
exploits only the amplitude informations is also performed and the enhancement in the detection perfor-
mance is evaluated. The reader is referred to [34] for a complete summary and evaluation of these as well
as numerous pre-developed algorithms regarding target polarimetric detectors A very interesting approach
towards performance improvement of target detection is addressed in [35] where a new algorithm which
combines both adaptive polarization processing and space-time processing is developed. A similar solution
where again a GLRT adaptive polarimetric detector is implemented in Gaussian noise with unknown covari-
ance matrix is presented in [36]. In[37], is not derived directly a target detector but the maximum likelihood
estimates for the scattering matrix and the clutter distribution parameters based on a parameter-expanded
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expectation-maximization algorithm are presented. Then an optimal selection for the polarization state to
be transmitted in the next pulse is performed based on the minimization of the computed Cramer Rao Bound
for the scattering matrix. An adaptive detector that exploits information from multiple scans per radar dwell
has been submitted in [38]. Despite the uncountable number of academic efforts and the unceasing research
activity regarding polarimetric detection, all these prementioned references share a common characteristic.
They estimate the clutter statistical parameters ( covariance matrix ) based on recorded data extracted from
cells adjacent to the range cell under test. This means that the clutter statistical characteristics has to be con-
stant on each detection process. As it becomes obvious this case is not applied to our wind turbine clutter
mitigation problem.

1.7. SCOPE OF THE THESIS

It has become evident that the main characteristic that discriminates wind turbines from conventional mov-
ing or non-moving targets is the rotation of the blades. In other words is the angular velocity that uniquely
marks the existence of wind turbines in the illuminated area assuming that no other rotating objects are
present. As a result the detection of WTC with respect to other targets and ground clutter, is primarily based
on this feature. The scope of this thesis is therefore summarized in the following figure.

Figure 1.13: Scope of the thesis

As we notice, there are several assumptions that needs to be followed in order to perform an effective
estimation and detection. Regarding the received data burst, we assume that, apart from noise and inde-
pendently estimated surrounding environmental clutter, only the wind turbine is present in our illumination
area. With the data obtained from the polarimetric channels, we attempt to estimate and detect this clutter.
Due to the lack of knowledge of several parameters, such as initial blade position of the blades and angular
velocity, which are both included in the polarimetric signal model, an at least two-dimensional estimation
task needs to be performed.

Consequently, in this thesis we will exclusively focus on the polarimetric estimation and detection of the
wind turbine clutter. With the use of a polarimetric signal model, our main goal is to achieve an appropriate
and optimal detector which will also provide the required parameters of a wind turbine such as angular ve-
locity. As the previous figure reveals, the detection process directly enables the effective mitigation. However
mitigation is out of the scope of this thesis.
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1.8. SOLUTION APPROACH
As we mentioned before, the primary goal of this thesis is to develop an optimal polarimetric estimator of the
angular velocity of the wind turbines as well as an optimal polarimetric detector for its response. The first
part of our solution is about the estimation process where we study two different measurement scenarios.
One when the radar beam axis and the rotation axis coincide and one when they do not. Although that both
of these cases lead to similar approaches, they differ on the applied polarimetric signal model. The reason is
that, when the radar beam axis and the rotation axis coincide, the micro-Doppler effect cease to be present
and thus a different mathematical formulation needs to be applied. For the second case, because of the model
used to simulate the blades movement, the initial position of the blades has also to be estimated. Although
applicability of the last signal model is restricted on low frequencies, the estimation approach itself can be
also applied to an upgraded model for higher frequencies. In both scenarios the general idea is to combine
radar polarimetry and maximum likelihood estimation in order to extract the angular velocity as well as the
backscattered power of the wind turbines.

The second part focuses on the polarimetric detection. Since the micro-Doppler phenomenon takes place
when the radar beam axis and the rotation axis do not coincide, we develop a maximum likelihood detector
for that specific measurement scenario. We will investigate the behavior of this detector for different thresh-
olds, according to the required probability of false alarm, as well as different signal-to-noise ratio (SNR) levels.

1.9. OUTLINE
In summary, this thesis is organized as follows:

• In Chapter 2, the reader is introduced into the fundamental concepts of radar polarimetry. Specifically,
an analytical derivation and explanation of the polarization scattering matrix is provided, which is the
most important information extracted from a polarimetric radar. Furthermore the technique of the
rotation of this matrix is also derived, which will be extensively used in our estimation process.

• In Chapter 3, a maximum likelihood estimator of the angular velocity is presented with the use of the
radar polarimetry information. Initially we examine the case where the radar beam axis and the rota-
tion axis coincide. The property of rotation of the polarization scattering matrix enables the formu-
lation of an appropriate signal model. Next, we also apply a maximum likelihood estimation for the
angular velocity when the radar beam axis and rotation axis form an arbitrary angle.

• In Chapter 4, a maximum likelihood polarimetric detector is derived, for both measurements scenarios
analyze in Chapter 3, with the use of the corresponding polarimetric signal models

• In Chapter 5, the conclusions related to the obtained results are presented as well as suggestions and
guidance for further research.

1.10. CONCLUSIONS
In this introductory chapter we started by describing the most fundamental concepts regarding radar tech-
nology. We highlighted that several types of radar can be designed according to the desired used waveform
as well as the distance between the transmitter and receiver. Continuing, we mentioned the significant ef-
fects of the wind turbine rotation in radar operation. Analytically, due to the periodic blade rotation and the
resulting Micro-Doppler effect, weak moving targets with specific Doppler shift might be masked by the RCS
on these Doppler frequencies. Therefore numerous false alarms might arise. However the wind turbine, es-
pecially in low frequencies, provide different RCS values for each transmitted and received polarization. This
phenomenon can be exploited in order to detect the presence of this type of clutter. The scope of this thesis
then is to provide a first-step approach on how radar polarimetry and estimation and detection theory can
be combined in order firstly to estimate its angular velocity and secondly to detect this feature-based type of
clutter.





2
CONCEPTS OF RADAR POLARIMETRY

2.1. INTRODUCTION
In this chapter the fundamental principles of radar polarimetry are provided in a theoretical and mathemati-
cal framework. As we have briefly explained and demonstrated in the previous chapter, backscattered power
from the wind turbines varies for different transmitting and receiving polarization pairs. This phenomenon
unquestionably imposes the comprehension of the theoretical background that fully describes polarimetry
and in turn the mathematical way this information can be exploited and further processed. It is widely known
that with the use of polarization diversity the detection performance of radar system can be significantly en-
hanced especially when Doppler ambiguity is substantially high. Wind turbine clutter creates similar and
severe results in Range-Doppler pattern and this indicates another reason for resorting to polarimetry in our
solution approach.

From electromagnetic theory we know that electromagnetic waves feature a constant oscillatory motion
of the electric and magnetic field vectors in a plane perpendicular to the direction of wave propagation. Un-
like acoustic waves, which the direction of vibration coincides always with this of propagation, the instanta-
neous vector of the electric field is oriented over a plane transverse to the propagation vector. This property
renders an electromagnetic wave as a polarized wave. As we shall see next in this chapter, the extremity of
the electric field vector has a time-dependent behavior, describing in general an ellipse in the perpendicular
plane as the wave propagates in any medium. This behavior acts decisively in the interaction of electromag-
netic waves, emitted from the radar ,with potential and targeted objects. Each target may respond differently
on each transmitted polarization and this phenomenon can be characterized as the quintessence of radar
polarimetry. It is evident that contemporary polarimetric radars are concerned with control of the coherent
polarization properties of radar signals and the elicitation of target properties from its reflected signal within
the spectral band of operation. This is the primary reason that radar polarimetry tends to be converted from
a useful to an indispensable tool in radar systems.

Polarimetric information have been extensively used in various ways like target identification, classifica-
tion, remote sensing in weather radars as well as in clutter mitigation. However due to the fact that medium it-
self can transform the polarization of the incident wave, owing to the varying index of refraction, the backscat-
tered electromagnetic wave is commonly referred as depolarized and thus transfer erroneous information
regarding the state of the target.

As the transmitted radar wave impinges on a potential targeted object, important attributes regarding its
material composition, shape, and orientation can be easily extracted. This information is included in the
measured polarization scattering matrix ( PSM ) in the form of complex backscattering coefficients. The PSM
accommodates all information in included in the target return in terms of polarization for a predetermined
microwave spectral band, observation angle and environmental condense. Regarding the measurement of
the scattering matrix, dual polarized antennas are required for transmission and reception in order to fully
characterize the co-polar and cross-polar received states by sequentially emitting orthogonal polarized wave-
forms. However , owing to the pricey installation cost as the well as complexity, most modern radar systems
measure only a part of the scattering matrix. As a result of that, this lack of target information is compensated
with a less expensive and quicker radar system. Nevertheless, the wasted information is rarely useful making
our system as efficient and balanced as possible.

17



18 2. CONCEPTS OF RADAR POLARIMETRY

Radar polarimetry is therefore concerned with the control of the coherent polarization properties of ra-
dio waves that mainly stem from electromagnetic interaction with a remote target. It is evident that radar
polarimetry deals exclusively with the vector nature of partial or fully polarized electromagnetic waves. This
chapter emphasizes in the polarization properties of monochromatic waves, describing their mathemati-
cal formulation and an analytical description of the fundamental concepts of polarization theory which are
commonly used in radar polarimetric imaging and processing.

2.2. POLARIZATION OF MONOCHROMATIC ELECTROMAGNETIC PLANE WAVES
We will start our analysis by considering monochromatic EM plane waves and we will follow this assumption
throughout this thesis. The validity of this assumption can be verified by the fact that our system occupies a
very small spectral band as well as we are referring to highly remote targets whose returned signals are very
close to plane waves.

2.2.1. EQUATION OF PROPAGATION
The time–space behavior of electromagnetic waves is governed by the four fundamental Maxwell equations:

~∇× ~H
(
~r , t

)= ~JT
(
~r , t

)+ ϑ~D
(
~r , t

)
ϑt

(2.1)

~∇×~E (
~r , t

)=−ϑ
~B

(
~r , t

)
ϑt

(2.2)

∇·~D (
~r , t

)= ρ (
~r , t

)
(2.3)

∇· ~B (
~r , t

)= 0 (2.4)

where ~E
(
~r , t

)
,~H

(
~r , t

)
, ~D

(
~r , t

)
, and ~B

(
~r , t

)
are the electric field, magnetic field, electric induction, and

magnetic induction time-space dependent functions respectively. Moreover the vector ~r = x x̂ + y ŷ + z ẑ is
called position vector and is usually expressed in cartesian coordinates but it can be easily formulated in any
basis ( e.g. cylindrical, spherical). In equation (2.1) the total current density ~JT

(
~r , t

)
is generally constituted

by two special currents as follows:

~JT
(
~r , t

)= ~Ja
(
~r , t

)+~Jc
(
~r , t

)
(2.5)

The first term ~Ja
(
~r , t

)
on the above equation represents what we called as source current while the second

term ~Jc
(
~r , t

)=σ~E (
~r , t

)
is widely known as conductivity current and strongly depends on the the conductivity

of the propagation medium. Finally the quantity ρ
(
~r , t

)
implies the volume density of free charges.

For every unique solution for an electromagnetic problem we have to resort, apart from the Maxwell equa-
tion, to the two well-known constitutional equations :

~D
(
~r , t

) = ε~E
(
~r , t

)+ ~P (
~r , t

)
(2.6)

~B
(
~r , t

)=µ[
~H

(
~r , t

)+ ~M
(
~r , t

)]
(2.7)

The vectors ~M
(
~r , t

)
and ~P

(
~r , t

)
stand for magnetization and polarization vector respectively, whereas ε

and µ declare the permittivity and permeability of the propagation medium.
For the upcoming analysis we will investigate the scenario where an electromagnetic wave travels in a

linear and source-free medium where the conditions ~P
(
~r , t

) = ~M
(
~r , t

) = ~Ja
(
~r , t

) = ρ
(
~r , t

) = 0 are satisfied.
When the electric and magnetic field exhibit a sinusoidal time variation, the whole analysis is greatly facili-
tated (as in the case of AC electric circuits) by using complex representations.
Let us consider an instantaneous value of the electric field ~E

(
~r , t

)
at the random observation point P

(
x, y, z

)
,which is defined by the position vector ~r . The same procedure can be followed for any of the above field
quantities but we shall focus here on the electric field. If we assume further that its cartesian components
Ex

(
~r , t

)
,Ey

(
~r , t

)
,Ez

(
~r , t

)
follow a sinusoidal time variation with angular frequency ω, then these are mathe-

matically expressed as:
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Ex
(
~r , t

)= Ex0
(
~r

)
cos

(
ωt +ϕx

)
(2.8)

Ey
(
~r , t

)= Ey0
(
~r

)
cos

(
ωt +ϕy

)
(2.9)

Ez
(
~r , t

)= Ez0
(
~r

)
cos

(
ωt +ϕz

)
(2.10)

where Ex0 , Ey0 and Ez0 are the magnitudes of the electric field components Ex
(
~r , t

)
, Ey

(
~r , t

)
, Ez

(
~r , t

)
re-

spectively while ϕx , ϕy ,ϕz are their corresponding initial phases. The above expressions can be alternatively
written as:

Ex
(
~r , t

)= Re
{

Ėx
(
~r

)
e jωt

}
(2.11)

Ey
(
~r , t

)= Re
{

Ėy
(
~r

)
e jωt

}
(2.12)

Ez
(
~r , t

)= Re
{

Ėz
(
~r

)
e jωt

}
(2.13)

where the symbol Re denotes the real part of the complex representation that lies within the brackets,
while Ėx

(
~r

)
, Ėy

(
~r

)
, Ėz

(
~r

)
are the so called phasors of the corresponding components.

Ėx
(
~r

)= Ex0
(
~r

)
e jϕx (2.14)

Ėy
(
~r

)= Ey0
(
~r

)
e jϕy (2.15)

Ėz
(
~r

)= Ez0
(
~r

)
e jϕz (2.16)

From the above phasors, the complex representation of the total electric field will be:

Ė
(
~r

)= Ėx
(
~r

)
x̂ + Ėy

(
~r

)
ŷ + Ėz

(
~r

)
ẑ (2.17)

Ans as a result the instantaneous expression of the electric fieldresults:

~E
(
~r , t

)= Re
{

Ė
(
~r

)
e jωt

}
(2.18)

By introducing the complex symbolism into the Maxwell equation,we can rewrite them for a linear and
source-free medium as:

~∇× Ḣ
(
~r

)= J̇T
(
~r

)+ jωḊ
(
~r

)
(2.19)

~∇× Ė
(
~r

)=− jωḂ
(
~r

)
(2.20)

∇· Ḋ
(
~r

)= 0 (2.21)

∇· Ḃ
(
~r

)= 0 (2.22)

From equation (2.2) we obtain :

~∇×~∇×~E (
~r , t

)=−~∇×
(
ϑ~B

(
~r , t

)
ϑt

)
(2.23)

And taking into account the general vectorial equation~∇×~∇×~G =∇·
(
∇· ~G

)
−∇2~G as well the constitutional

equation (2.8) we have:

∇· (∇·~E (
~r , t

))−∇2~E
(
~r , t

)=−µ ϑ

ϑt

(∇× ~H
(
~r , t

))
(2.24)
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By simply incorporating equations (2.1), (2.3), (2.6) and assuming absence of any volume density of free
charges

(
ρ

(
~r , t

)= 0
)

the previous equation can now be transformed:

∇2~E
(
~r , t

)−µεϑ2~E
(
~r , t

)
ϑt 2 −µσϑ

~E
(
~r , t

)
ϑt

= 0 (2.25)

Its corresponding complex representation will therefore be:

∇2Ė
(
~r

)+µεω2Ė
(
~r

)− jµσωĖ
(
~r

)= 0 (2.26)

This is the general form of the electric field wave equation. This wave equation can be more compactly
expressed as follows:

∇2Ė
(
~r

)= γ2Ė
(
~r

)
(2.27)

where:

γ2 = jωµ
(
σ+ jωε

)
(2.28)

The parameter γ is called complex propagation constant and it is commonly described asγ=α+ jβwhere
the constants aand β are given by:

α=ω
√√√√µε

2

[√
1+

( σ
ωε

)2
−1

]
(2.29)

β=ω
√√√√µε

2

[√
1+

( σ
ωε

)2
+1

]
(2.30)

The constants α and β are widely known as attenuation constant and phase constant respectively.
If we now consider a uniform plane wave that propagating towards z direction

(
Ez

(
~r , t

)= 0
)

in a linear ,
isotropic and lossless (σ= 0) medium, then γ= jω

p
µε and the previously mentioned wave equations turns

out to have the following solutions:

Ėx = E+
x e− jβz +E−

x e jβz (2.31)

Ėy = E+
y e− jβz +E−

y e jβz (2.32)

The plus and minus signs above imply that the wave travels in both the positive and negative z direction.
If, for simplicity reasons, further consider an electromagnetic which propagates exclusively only towards

the positive z direction
(
E−

x = E−
y = 0

)
, the phasor of the electric field will finally be:

Ė
(
~r

)= E+
x e− jβz x̂ +E+

y e− jβz ŷ (2.33)

or in space-time domain:

~E (z, t ) = Ex0 cos
(
ωt −βz +ϕx

)
x̂ +Ey0 cos

(
ωt −βz +ϕy

)
ŷ (2.34)

where E+
x = Ex0e jϕx , E+

y = Ey0e jϕy

2.2.2. POLARIZATION STATES OF PLANE WAVES
As we have extracted the simple expression of a plane wave in an isotropic and loss-less medium , we can now
analyze the different polarization states that characterize an electromagnetic wave. Due to the sinusoidal
variation of the electric field components with respect to z direction, a common and convenient considera-
tion for the electric field is to assume a snapshot in the position z = 0. Therefore without loss of generality, if
we choose ϕx = 0 and replace ϕy = ϕ, equation (2.33) is now converted into the next formula which typifies
the time-dependent evolution of the electric field:

~E (t ) = Ex0 cos(ωt ) x̂ +Ey0 cos
(
ωt +ϕ)

ŷ (2.35)
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Polarization refers to the locus of the instantaneous electric field vector tip at a fixed point in the x y plane.
The shape of this locus reflects the corresponding polarization state.

The instantaneous values of the two electric field components Ex (t ) and Ey (t ) are given then by:

Ex (t ) = Ex0 cos(ωt ) (2.36)

Ey (t ) = Ey0 cos
(
ωt +ϕ)

(2.37)

Depending on the possible relationship between the magnitudes Ex0 and Ey0 as well as the phase difference
between them ϕ, we can discriminate three possible polarization states:

a) Linearly Polarized Wave
(
ϕ= 0,ϕ=±π)

When ϕ= 0 , from (2.36) and (2.37) it yields that:

tanθ = Ey (t )

Ex (t )
= Ey0

Ex0
= const (2.38)

where θ is the angle between the vector ~E (t ) and xaxis. It becomes profound then that this angle remains
constant as the wave travels through the medium and thus ~E (t ) varies on a constant straight line . Similar
results take place for the case of ϕ=±π.

b) Circular polarized wave
(
ϕ=±π/2, Ey0 = Ex0

)
In the special case where Ey0 = Ex0 = E0 and ϕ=±π/2 we have the following:

Ex (t ) = E0 cos(ωt ) (2.39)

Ey (t ) = E0 sin(ωt ) (2.40)

Therefore it yields that:

tanθ = Ey (t )

Ex (t )
= ∓E0 sin(ωt )

E0 cos(ωt )
=∓ tan(ωt ) (2.41)

Therefore the angle θ will change over time and it is equal to:

θ =∓ωt (2.42)

From the last result the term circular polarized wave is justified. In other words, the electric field vector
has a fixed amplitude and simultaneously rotates with a constant angular frequency ω clock-wisely when
ϕ=π/2 and anti-clock-wisely when ϕ=−π/2.

c) Elliptical Polarized Wave
(
Ey0 6= Ex0

)
In the most general case where Ey0 6= Ex0 the equation of the

polarization ellipse can be easily extracted with the use of (2.34) and (2.35):

E 2
x

E 2
x0

− 2Ex Ey cosϕ

Ex0Ey0
+

E 2
y

E 2
y0

= sin2ϕ (2.43)

Moreover, the angle θ (t ) is now given by the following expression:

tanθ (t ) = Ey0 cos
(
ωt +ϕ)

Ex0 cosωt
(2.44)

As we notice both the linear and circular polarized wave constitute a special case of the elliptical po-
larization. As time evolves, the wave propagates “through” equiphase planes and describes a characteristic
elliptical locus as shown in the next figure:
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Figure 2.1: Polarization Ellipse

It is more common to characterize the polarization ellipse using three parameters which are presented in
(2.2):

Figure 2.2: Parameters of Polarization Ellipse [39]

From the last figure we have:

• A is the so-called ellipse amplitude and is designated as:

A =
√

E 2
0x +E 2

0y (2.45)
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• The angle φ denotes the ellipse orientation and lies within
[−π

2 , π2
]
. This angle is defined as the angle

between the ellipse major axis and axis x̂. Mathematically can be easily evaluated through the following
formula [39]:

tan2φ= 2
E0x E0y

E 2
0x −E 2

0y

cosδ where δ=ϕ=ϕy −ϕx (2.46)

• |τ| is termed as ellipticity, or alternatively called as the ellipse aperture and is determined through the
following expression [39]:

|sin2τ| = 2
E0x E0y

E 2
0x +E 2

0y

|sinδ| (2.47)

2.3. JONES VECTOR
The representation of a plane monochromatic electric field in the form of a Jones vector aims to describe
the wave polarization using the minimum amount of information. In other words, the time-space vector
representation of the electric field ~E (z, t ) in equation (2.33) can be formulated as :

~E (z, t ) =
[

Ex0 cos
(
ωt −βz +ϕx

)
Ey0 cos

(
ωt −βz +ϕy

) ]
= Re

{[
Ex0e jϕx

Ey0e jϕy

]
e− jβz e jωt

}
= Re

{
~E (z)e jωt

}
Consequently, the Jones Vector is determined by assuming z = 0 in the above complex description of the

electric field [40]:

~E = ~E (z)
∣∣

z=0 = ~E (0) =
[

Ex0e jϕx

Ey0e jϕy

]
(2.48)

Jones vectors can be also alternatively written in a more descriptive form, by using the polarization ellipse
parameters:

~E = Ae j a
[

cosφ −sinφ
sinφ cosφ

][
cosτ
j sinτ

]
(2.49)

where αis an absolute phase term and in most of the cases is omitted. for simplicity.
If we now assume an electric field has only one non-zero component and that is oriented towards x̂ = ûH

direction ,namely in the horizontal polarization state, then the previous formula becomes:

~E x = Ae j a
[

cosφ −sinφ
sinφ cosφ

][
cosτ
j sinτ

][
1
0

]
~E x = A

[
cosφ −sinφ
sinφ cosφ

][
cosτ j sinτ
j sinτ cosτ

][
e j a 0

0 e− j a

][
1
0

]
(2.50)

~E x = AU 2
(
φ

)
U 2 (τ)U 2 (a) x̂ (2.51)

where U 2
(
φ

)
, U 2 (τ) and U 2 (a) are called complex rotation matrices .

2.3.1. ORTHOGONAL POLARIZATION STATES AND ORTHOGONAL POLARIZATION BASIS

Two Jones vectors ~E1 and ~E2are named as orthogonal when their Hermitian scalar product is equal to zero.
This mathematically is expressed as [39]: 〈

~E1,~E2
〉= ~E T

1
~E∗

2 = 0

Through the alternative representation of a Jones vector that is expressed in equations (2.50) and (2.51), its
associated orthogonal vector ~E y occupies the vertical polarization state ŷ = ûV and can be similarly derived
as follows:

~E y = A

[
cosφ −sinφ
sinφ cosφ

][
cosτ j sinτ
j sinτ cosτ

][
e j a 0

0 e− j a

][
0
1

]
~E y = AU 2

(
φ

)
U 2 (τ)U 2 (a) ŷ
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If we now attempt to express the orthogonal Jones vector ~E y with respect to the horizontal unit Jones vector
x̂ = ûH , then we easily obtain:

~E y = A

[
cos

(
φ+ π

2

) −sin
(
φ+ π

2

)
sin

(
φ+ π

2

)
cos

(
φ+ π

2

) ][
cosτ − j sinτ

− j sinτ cosτ

][
e− j a 0

0 e j a

]
x̂

~E y = A

[
cos

(
φ+ π

2

) −sin
(
φ+ π

2

)
sin

(
φ+ π

2

)
cos

(
φ+ π

2

) ][
cosτ − j sinτ

− j sinτ cosτ

][
e− j a 0

0 e j a

][
1
0

]
~E y = A

[
cosφ⊥ −sinφ⊥
sinφ⊥ cosφ⊥

][
cosτ⊥ j sinτ⊥
j sinτ⊥ cosτ⊥

][
e j a⊥ 0

0 e− j a⊥

][
1
0

]
Therefore the orthogonality principle states that two orthogonal Jones vector can be mutual evaluated through
as their ellipse parameters satisfy the following :

φ⊥ =φ+ π

2
, τ⊥ =−τ, a⊥ =−a (2.52)

As a result it should be highlighted that a polarization basis can be uniquely determined by one of the unit
Jones vector while the other is derived with the use of equation (2.50). This principle enables the arbitrary
position and construction of any polarization basis for our purposes as well as provides an effective way to
transform the existing polarization basis as we will realize in the next subsection.

2.3.2. POLARIMETRIC BASIS TRANSFORMATION
The usefulness of radar polarimetry is culminated with the property of the facile change of the polarization
basis. In other words, once the target response is extracted in a specific basis, the same response can be also
acquired in any arbitrary chosen basis from easy mathematical transformations without additional measure-
ments.

If we assume a Jones vector expressed in cartesian coordinates as ~E (x̂,ŷ) = Ex x̂ +Ey ŷ . This vector can be
transformed into another Jones vector in a different orthonormal polarimetric basis (û, û⊥) ,with components
Eû and Eû⊥ , through the use of unique mathematical transformation as follows [41]:

~E (x̂,ŷ) = EûU 2
(
φ

)
U 2 (τ)U 2 (a) x̂ +Eû⊥U 2

(
φ

)
U 2 (τ)U 2 (a) ŷ

or alternatively in matrix form:[
Eû

Eû⊥

]
= [

U 2
(
φ

)
U 2 (τ)U 2 (a)

]−1
[

Ex

Ey

]
As a result the polarimetric basis transformation into any orthonormal basis is provided by the following

equation:

~E (û,û⊥) =U 2(x̂,ŷ)→(û,û⊥)
~E (x̂,ŷ) (2.53)

where:

U 2(x̂,ŷ)→(û,û⊥) =
[
U 2

(
φ

)
U 2 (τ)U 2 (a)

]−1 =U 2 (−a)U 2 (−τ)U 2
(−φ)

2.4. STOKES VECTOR
In the previous section we derived Jones vector representation in order to fully describe the polarization state
of a monochromatic plane wave. It becomes evident from equation (2.46) that Jones vectors are a function
of both amplitude and phase which inevitably leads to the necessity of existence of modern coherent radar
systems in order to measure both of these parameters. The absence of coherent radars in the past whose
operational capabilities were restricted to power measurements exclusively, made unfeasible to exploit Jones
representation. Consequently, it was indispensable to characterize the polarization state of an electromag-
netic wave by means of real quantities ( e.g. received power ). This attempt can be accomplished with the use
of so-called Stokes vectors.

Considering a Monochromatic Plane Wave ~E with two orthogonal complex-valued components in carte-
sian coordinates Ex and Ey . The outer product of this Jones vector with its conjugate transpose, leads to the
following matrix:
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~E ·~E H =
[

Ex E∗
x Ex E∗

y

Ey E∗
x Ey E∗

y

]
This matrix can be further decomposed as [39] :

~E ·~E H =
[

Ex E∗
x Ex E∗

y

Ey E∗
x Ey E∗

y

]
= 1

2

[
g0 + g1 g2 − j g3

g2 + j g3 g0 − g1

]
(2.54)

The parameters shown in (2.54) g0, g1, g2 and g3 are known as Stokes parameters. As a result a Stokes
vector g~E that reflects the polarization of a plane wave is in general 4×1 vector formed as follows:

g~E =


g0

g1

g2

g3

=


Ex E∗

x +Ex E∗
y

Ex E∗
x −Ex E∗

y

Ex E∗
y +Ey E∗

x

j
(
Ex E∗

y −Ey E∗
x

)
=


|Ex |2 +

∣∣Ey
∣∣2

|Ex |2 −
∣∣Ey

∣∣2

2Re
(
ExE∗

y

)
−2Im

(
ExE∗

y

)
 (2.55)

From this vector we easily notice that Stokes parameters should satisfy the following equation:

g 2
0 = g 2

1 + g 2
2 + g 2

3

The equation (2.52) actually substantiates the theoretical description of the Stokes parameters which
turns out to be [39]:

• g0: Reflects the total power acquired from the plane wave.

• g1: Denotes the total power that stems from either horizontal or vertical polarized components.

• g2: Denotes the total power in the linear polarized components tilted at angles ξ= 35o or ξ= 135o .

• g3: Represents the total power that is possibly contained in the left and right-handed circular polarized
components.

As a result, Stokes parameters in case of non-coherent radars are plentiful in terms of characterizing the
polarization property of a monochromatic plane wave. As these parameters are derived exclusively from
received power, the complexity of our radar system can be further decreased.

2.5. RADAR EQUATION IN TERMS OF POLARIMETRY
The antennas which are embedded in a radar system, emit electromagnetic waves which are propagating in
time and space and interact with the targeted object. As a result of this phenomenon, part of the incident
energy is absorbed by the target and another portion is scattered back with a naturally determined way. The
directions that these reradiated waves are traveling are solely determined by target characteristics such as its
size, shape, construction material as well as radar frequency and observation ( incident ) angle. Because of
this interaction with the target, the properties of the backscattered electromagnetic wave differ substantially
from those of the transmitted wave, a phenomenon which in most situations facilities the identification and
characterization of the target itself.

All the types of target that interact with a radar system are classified as either point targets or extended
targets. This discrimination is primarily based on the operational characteristics of the radar and its distance
from the targeted object. A point target is one for which the radar footprint is small compared to the target
dimensions at the target range. This means that the maximum transverse separation of its scattering elements
is small with respect to the length of the arc illuminated by the antenna beam at the target range as well as its
radial extension is much less than the width of the transmitted pulse or the so-called range resolution.

The most widely used and fundamental way to determine the backscattered power captured by a radar
system is the so-called radar equation. This equation might obtain different forms depending on different
measurements perspectives and configurations and provides an (optimistic) estimation of the received power
in terms of the incident and scattered electromagnetic waves. All of these different forms originate from the
following equation:

PR = PT GT
(
θ,φ

)
R2

T

σ
λ2GR

(
θ,φ

)
(4πRR )2 (2.56)
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where PR refers to the power detected by the system, GT
(
θ,φ

)
denotes the transmitting antenna gain

at the target location which in turn is specified by the azimuth angle φ and elevation angle θ in spherical
coordinates. RT is the radial distance between the transmitting antenna element and the target ,while RR

corresponds to the distance between the target and the receiving radar. GR refers to the receiving antenna
gain, λ is the radar wavelength and σ is the radar cross section.

The Radar Cross Section ( RCS ) of a target represents technically its ability to reflect incident radar sig-
nals in the direction of the radar receiver. Alternatively it expresses the ratio of the backscattered power per
steradian towards to the direction of the receiving system to the power density that is actually received by the
radar. The formal IEEE definition states alternatively that the radar cross section of an object is defined as the
cross section of an equivalent idealized isotropic scatterer that generates the same scattered power density as
the object in the observed direction. Consequently, RCS is mathematically formulated as follows:

σ= 4πR2

∣∣~ES
∣∣2∣∣~EI
∣∣2 (2.57)

where ~ES reflects the backscattered wave propagating towards radar direction, ~EI is the incident field that
impinges on the target and R is the radial distance between radar and target. Unless the targeted object is
modeled as a sphere, the radar cross section usually depends on radar frequency, transmitting and receiving
polarizations, observation aspect angle, target shape as well as its dielectric properties. Equation (2.56) and by
extension equation (2.57) are only valid when object is considered to be a point-like scatterer. In case of a large
extended target, alternative expressions should be used which take into account the coherent contribution
of the multiple scatterers that compose this object. In this specific case equation (2.54) becomes:

PR =
∫
A0

PT GT
(
θ,φ

)
R2

T

σ0
λ2GR

(
θ,φ

)
(4πRR )2 ds (2.58)

where A0 manifests the area of the target that is illuminated by the radar whileσ0 is a dimensionless factor
and is the so-called averaged cross section or scattering coefficient. This quantity measures the statistically
averaged power that is intercepted by the radar and is equal to:

σ0 =
〈σ〉
A0

= 4πR2

A0

〈∣∣~ES
∣∣2

〉
∣∣~EI

∣∣2 (2.59)

2.6. POLARIZATION SCATTERING MATRIX
In the previous section we noticed that a target response on a radar transmitting signal can be characterized
with the use of its radar cross section or its scattering coefficient. Equations (2.57)and (2.59) reveal that these
two quantities depend on the power that is conveyed by the scattered and incident wave , each characterized
with different polarizations. In other words these coefficients do not taker into account directly the vector
nature of the electromagnetic waves. As a result, the scattering process needs to be reformulated in order to
to be explicitly a function of the wave polarizations.

Previously in equation (2.48) we defined the Jones vector representation of a plane monochromatic elec-
tric field. Consequently, the scattering process that takes place in the illuminated target, can be described by
applying the Jones vector representation in both the scattering and incident wave as follows:

~ES = e− j kR

R
S~EI = e− j kR

R

[
S11 S12

S21 S22

]
~EI (2.60)

where the matrix S is known as the polarization scattering matrix (PSM) while the elements Si j are the
so-called complex scattering coefficients. The indexes i and j indicate the receiving and transmitting polar-
izations respectively.

The PSM can be expressed in any polarization basis depending on the application of interest and thus
the above expression is considered to be fundamental for every polarimetric measurements. In this matrix,
the diagonal terms are named as co-polar terms referring to the same polarization state in the incident and
scattered wave. On the other hand, the off diagonal terms are called as cross-polar terms and provide the

correlation between orthogonal polarization states in the incident and backscattered waves. The term e− j kR

R
imply the propagation effects in both amplitude and phase on the receiving wave and also indicates that
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equation 2. 57 is valid only when our target is located in the far field zone and thus only plane waves are
considered to arrive in our system. Combining now equations (2.57) and (2.60) , the scattering coefficient for
any arbitrary polarization is expressed as:

σi j = 4πR2 ∣∣Si j
∣∣2 (2.61)

Although the format of the equation (2.57) is independent of the choice in coordinate system and polarization
basis, the value scattering coefficients Si j and by extension the matrix S are highly related to the chosen
coordinate system. If we consider cartesian coordinate system to describe the relative position of the radar
and the target then for bistatic and monostatic radar configuration , the S matrix obtains the following forms:

2.6.1. BISTATIC CASE

When Bistatic radar configuration is applied then an appropriate coordinate system is depicted in the Figure
2.3. The set of parameters

(
x̂T , ŷT , ẑT

)
,
(
x̂R , ŷR , ẑR

)
and

(
x̂S , ŷS , ẑS

)
symbolize the local cartesian reference

system of the transmitting radar, receiving radar and the target respectively.

Figure 2.3: Bistatic Coordinate System [39]

Without loss of generality but also in order to remain consistent with our previous notation, we consider
that the unit vectors (x̂T , x̂R ) refer to the horizontal polarization (H) while the unit vectors

(
ŷT , ŷR

)
refer to the

vertical polarization (V). Consequently the scattering matrix can now formulated and by extension factorized
as follows :

Sbi st ati c =
[ |SH H |e jφH H |SHV |e jφHV

|SV H |e jφV H |SV V |e jφV V

]
(2.62)

= e jφH H︸ ︷︷ ︸
Absolute phase term

[
|SH H | |SHV |e j(φHV −φH H )

|SV H |e j(φV H−φH H ) |SV V |e j(φV V −φH H )

]
︸ ︷︷ ︸

Relative Scattering Matrix

The absolute phase term in the above equation usually is an arbitrary value and primarily depends on the
range of the target. As a result is often used to determine the Doppler shift of a moving object.

It then becomes evident that the target is characterized with seven parameters, namely four amplitudes
and three phases. For the bistatic case the total scattered power which alternatively is called span (Frobenius
norm) , is equivalent to the following:

Pscat ter ed = Span = tr ace
(
Sbi st ati c S H

bi st ati c

)= |SH H |2 +|SHV |2 +|SV H |2 +|SV V |2 (2.63)

2.6.2. MONOSTATIC CASE

Similar definitions can be followed to analyze the monostatic radar configurations, where the receiving and
transmitting systems are co-located regarding the local cartesian coordinate systems as the next confirms:
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Figure 2.4: Monostatic Coordinate System [39]

For the monostatic case, we experience the same scattering matrix as previously. However when addi-
tional a reciprocal propagation medium exists, then the scattering matrix is considered to be symmetric.
Consequently, we obtain the following expression:

Smonost ati c =
[ |SH H |e jφH H |SHV |e jφHV

|SHV |e jφHV |SV V |e jφV V

]
(2.64)

= e jφH H︸ ︷︷ ︸
Absolute phase term

[
|SH H | |SHV |e j(φHV −φH H )

|SHV |e j(φHV −φH H ) |SV V |e j(φV V −φH H )

]
︸ ︷︷ ︸

Relative Scattering Matrix

As a result the target properties are estimated with the extraction of only five polarimetric parameters ,
namely three scattering amplitudes and two relative phases. For the monostatic case the total power scattered
from the target will be :

Pscat ter ed = Span = tr ace
(
Smonost ati c S H

monost ati c

)= |SH H |2 +2 |SHV |2 +|SV V |2 (2.65)

2.6.3. POLARIZATION BASIS CHANGE IN THE POLARIZATION SCATTERING MATRIX
We consider a monostatic polarization scattering matrix referred to the coordinate system as in the figure
2.4and expressed in the cartesian basis

(
x̂, ŷ

)
. As we saw before the scattered electric field is determined by

the following expression (ommiting the range-depedent term):

~E
S
(x̂,ŷ) = S(x̂,ŷ)~E

I
(x̂,ŷ) (2.66)

where the electric field functions follow the Jones vector representation.

We also mentioned before that the incident Jones vector ~E
I
(x̂,ŷ) can be transformed to another Jones vector

~E
I
(û,v̂) in the orthonormal (û, v̂) polarimetric basis, by means of a special unitary transformation:

~E
I
(û,v̂) =U (x̂,ŷ)→(û,v̂)

~E
I
(x̂,ŷ) (2.67)

with:

U (x̂,ŷ)→(û,v̂) =
[
U 2

(
φ

)
U 2 (τ)U 2 (a)

]−1 =U 2 (−a)U 2 (−τ)U 2
(−φ)

With a closer look in the (2.4), the incident Jones vector propagates in a specific direction , say k̂ I , wheres
the scattered Jones vector travels in the opposite direction , namely k̂S = −k̂ I . It is crucial to apply both
Jones vectors in the same reference framework so as the two polarization states will be expressed in the same
coordinate system. From the Jones vector definition, it is obvious that if a wave propagates in the direction k̂
, then when then same wave travels in the opposite direction −k̂ , the following relationship exists:

~E (−k̂
) = (

~E k̂

)∗
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Consequently, for the scattered Jones vector we obtain:

~E
S
(û,v̂) =U∗

(x̂,ŷ)→(û,v̂)
~E

S
(x̂,ŷ) (2.68)

By introducing equations (2.64) and (2.65) into equation (2.63) , we have:(
U∗

(x̂,ŷ)→(û,v̂)

)−1
~E

S
(û,v̂) = S(x̂,ŷ)

(
U (x̂,ŷ)→(û,v̂)

)−1
~E

I
(û,v̂)

~E
S
(û,v̂) =

(
U∗

(x̂,ŷ)→(û,v̂)

)
S(x̂,ŷ)

(
U (x̂,ŷ)→(û,v̂)

)−1
~E

I
(û,v̂)

As a result the change of the polarization basis with respect to the scattering matrix is defined as:

S(û,v̂)=
(
U∗

(x̂,ŷ)→(û,v̂)

)
S(x̂,ŷ)

(
U (x̂,ŷ)→(û,v̂)

)−1

or:

S(û,v̂)=
[
U 2

(
φ

)
U 2 (τ)U 2 (a)

]T S(x̂,ŷ)
[
U 2

(
φ

)
U 2 (τ)U 2 (a)

]
(2.69)

When the the objects is located in the radar line of sight , then τ= 0 and its movement is translated as rotation
in the vertical plane. Similar scenario will be followed in order to model the Wind Turbine Clutter received
data.

2.7. COVARIANCE POLARIMETRIC MATRIX
The construction and the exploitation of the covariance polarimetric matrix is a principal step when the tar-
get detection and estimation problem arises. The form and the intrinsic values in the covariance matrix stems
from proper combination of special sets which in literature are widely known as Pauli and Lexicographic fea-
ture vectors. The generation of these vectors is mathematically feasible after the assemblage of the scattering
matrix. Monostatic and bistatic configurations are associated with different size of the covariance matrix, as
the size of the PSM imposes . Therefore we will examine each case separately.

2.7.1. BISTATIC CASE
We start by assuming a PSM with an arbitrarily applied polarization basis, expressed in a vector-like form, for
convenience, as Sbi st ati c =

[
SPP SPQ SQP SQQ

]
. The 4-D Lexicographic feature vector denoted as F 4,

is equivalent to the vectorized form of the PSM presented before[39]:

F 4 =
[

SPP SPQ SQP SQQ
]T

(2.70)

It yields then mathematically that the bistatic polarization scattering matrix is directly related with the
elements of these vectors:

Sbi st ati c =
[

SPP SPQ

SQP SQQ

]
=

[
F1 F2

F3 F4

]
(2.71)

The corresponding 4×4 covariance matrix C 4 is a Hermitian positive semidefinite matrix and is generated
from the outer product of the associated target feature vector with its conjugate transpose:

C 4 =
〈

F 4 ·F H
4

〉
(2.72)

where the symbol 〈...〉 indicates spatial or time averaging. Since we will mostly deal with covariance matrix
in our estimation and detection approaches, we provide its analytical expression for the bistatic case:

C 4 =
〈

F 4 ·F H
4

〉=〈
|F1|2 F1F∗

2 F1F∗
3 F1F∗

3
F2F∗

1 |F2|2 F2F∗
3 F2F∗

4
F3F∗

1 F3F∗
2 |F3|2 F3F∗

4
F4F∗

1 F4F∗
2 F4F∗

3 |F4|2


〉

(2.73)

or directly as a function of the scattering coefficients:
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C 4 =



〈|SPP |2
〉 〈

SPP S∗
PQ

〉 〈
SPP S∗

QP

〉 〈
SPP S∗

QQ

〉
〈

SPQ S∗
PP

〉 〈∣∣SPQ
∣∣2

〉 〈
SPQ S∗

QP

〉 〈
SPQ S∗

QQ

〉
〈

SQP S∗
PP

〉 〈
SQP S∗

PQ

〉 〈∣∣SQP
∣∣2

〉 〈
SQP S∗

QQ

〉
〈

SQQ S∗
PP

〉 〈
SQQ S∗

PQ

〉 〈
SQQ S∗

QP

〉 〈∣∣SQQ
∣∣2

〉

 (2.74)

2.7.2. MONOSTATIC CASE

Since the reciprocity of the medium constraints the PSM to be symmetrical
(
SPQ = SQP

)
, the previously de-

rived 4-D Lexicographic feature vector reduce to a 3-D vector which is defined as follows:

F 3 =
[

SPP
p

2SPQ SQQ
]T

(2.75)

The covariance is consequently of size of 3×3 :

C 3 =
〈

F 3 ·F H
3

〉
(2.76)

where the covariance matrix is explicitly written as:

C 3 = 〈
F 3 ·F H

3

〉
=


〈|SPP |2

〉 p
2
〈

SPP S∗
PQ

〉 〈
SPP S∗

QQ

〉
p

2
〈

SPQ S∗
PP

〉 〈∣∣SPQ
∣∣2

〉 p
2
〈

SPQ S∗
QQ

〉
〈

SQQ S∗
PP

〉 p
2
〈

SQQ S∗
PQ

〉 〈∣∣SQQ
∣∣2

〉
 (2.77)

Finally, another common form of the polarimetric covariance matrix in the monostatic case which is
widely used, is a function of the so-called intercorrelation parameters σ,ρ,β,δ,γ,ε and is expressed as fol-
lows [39] [41]:

C 3 =σ

 1 β
p
δ ρ

p
γ

β∗pδ δ ε
√
γδ

ρ∗pγ ε∗
√
γδ γ


with the parameters being equal to:

σ= |SPP |2 δ=
〈∣∣SPQ

∣∣2
〉

〈|SPP |2
〉 γ=

〈∣∣SQQ
∣∣2

〉
〈|SPP |2

〉
ρ =

〈
SPP S∗

QQ

〉
√〈|SPP |2

〉〈∣∣SQQ
∣∣2

〉 β=
〈

SPP S∗
PQ

〉
√〈|SPP |2

〉〈∣∣SPQ
∣∣2

〉 ε=
〈

SPQ S∗
QQ

〉
√〈∣∣SPQ

∣∣2
〉〈∣∣SQQ

∣∣2
〉

There are numerous measured and validated polarimetric covariance matrices for several types of ground
clutter. available in the literature. In the literature the covariance matrix of grass, trees, shadow as well as for a
mixed environment is recorded for the monostatic case. We will exploit these matrices and incorporate them
in our data model in order to establish a more realistic approach in our solution. Nonetheless, the clutter
covariance matrix needs to be estimated when we are dealing with measured data. Usually this estimation is
achievable with the use of the adjacent range cells of the target.

2.8. CONCLUSION
In this chapter the fundamental concepts of radar polarimetry are presented. We went through analytic
derivations in order to extract the polarization scattering matrix, which is the most underlying metric in radar
polarimetry. This two-dimensional matrix provides the behaviour and the response of a target on any trans-
mitted and received polarization wave. We also studied another important property of PSM which is the
property of rotation. Therefore the PSM together with this property will be extensively used throughout this
thesis in order to properly model the backscattered signal of the wind turbine blades.



3
POLARIMETRIC ESTIMATION OF ANGULAR

VELOCITY

As it was clearly described in Chapter 1, the first step towards to the wind turbine clutter detection is the
estimation of the blades angular velocity. The estimation of this parameter is based on the principles of radar
polarimetry, as they were described in the previous chapter, combined with maximum likelihood estimation
theory. The main purpose for the estimation of this feature is that it can be directly applied in a potential
detection rule which is based on this unique feature in order to identify and detect the presence of a rotating
object ( in our case Wind Turbine ). A derivation of a polaimetric detector follows successively in Chapter 4.
In this chapter we attempt to estimate the angular velocity for two different measurement scenarios and each
of the proposed estimation approaches correspond to each of these scenarios. The first one is referred to the
scenario where the radar beam axis and the wind turbine rotation axis coincide and the second one when
these form an arbitrary angle. As we will see next, the second scenario imposes the use of a more detailed
electromagnetic model that describes the blades movement in terms of different transmitted and received
polarizations. Although this model is of limited applicability, since is valid for low frequencies ( lower than
1 G H z ), this estimation method for this scenario can be further applied also to potential upgraded models for
higher frequencies. Consequently, in this chapter will be separately examined the estimation of the angular
velocity for the previously mentioned configurations with the use of fundamental principles of estimation
theory.

3.1. RADAR-WIND TURBINE CONFIGURATION SCHEME

Before we start analyzing the estimation approach, we have to define the way radar and wind turbine are
placed with respect to each other which in turn determines the mathematical and simulation formulation
of the problem. As we mentioned, we distinguish two discrete configuration schemes each related to the
existence of an angle between the radar beam axis and the wind turbine rotation axis. The following figure
provides a clear and general description of the simulated scenario.

31
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Figure 3.1: Relevant position of Radar and Wind Turbine

As we notice from the above figure, the radar is placed in the same elevation level as this of the wind
turbine axis. Moreover, we assume a non-vibrating construction for both the radar and wind turbine which
might cause additional Micro-Doppler effects and thus affect our mathematical signal models. As a matter
of fact, wind turbine is considered as a non-moving object and is only characterized by the rotation of the
blades, which is the part that creates the main interference in realistic measurements.

3.2. ASSUMPTIONS FOR THE POLARIMETRIC SIGNAL MODEL
In this section, the assumptions which are used in order to model the received polarimetric signals as well
as to perform the necessary simulations, are presented. These considerations initially stem from 3.1 and are
simplified comparing with what one will encounter in actual radar measurements.

• As we mentioned, the radar is placed at the same height as the axis of rotation.

• We neglect any effect that comes from multi-path propagation as well as additional attenuations from
the propagation medium ( free space). In other words, the the received signal power is exclusively
attenuated due to the distance between the radar and the wind turbine.

• We also neglect the mast ( Wind Turbine Tower ) contribution in our received data. This is quite rea-
sonable since we actually interested in the blades movement and the Micro-Doppler effect that ac-
companies this movement. Hence, a zero-Doppler clutter, as the mast is considered to be, does not
substantially affect the effectiveness of our estimation and detection approach since it can be filtered
out independently.

• As Figure 3.1 reveals, the radar observation angle changes by moving it around the wind turbine while
keeping the same height and the same range. In the figure, this angle is named as Yaw Angle and pro-
vides a visual inspection of this simulated locomotion. As a result, when we assume zero yaw angle, the
radar beam axis and the rotation axis coincide which makes impossible to observe any Doppler effect
in the extracted spectrogram.

• During the radar illumination and reception time, the angular velocity of the wind turbine is considered
constant. This means that there is absence of acceleration during the measurement period.

• There is absence of any kind of micro-motions for both radar and the wind turbine.

• The radar itself is characterized by small range resolution. This alternatively means that from radar
point of view the wind turbine behaves as a small scatterer and thus is located in only one range cell.
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• Our further analysis will be exclusively based on monostatic radar configuration.

Finally, we need to define one more term which will be helpful for the simplicity of our following analysis.
When, according to the last figure, we have zero yaw angle, we will refer to it as perpendicular observation
since the beam that is emitted by the radar impinges in the wind turbine in a direction perpendicular to the
rotation plane. The next section presents a mathematical model based on radar polarimetry, which in turn is
exploited in order to estimate the angular velocity for this specific relative position of the radar.

3.3. ANGULAR VELOCITY ESTIMATION FOR PERPENDICULAR OBSERVATION

As we mentioned before, a fundamental approach to detect the presence of this type of clutter is to auto-
matically evaluate its rotation speed by estimating the blades displacement angle from at least two sequen-
tial measurements. In case of a yaw (aspect) angle different than zero, this rotation speed can be identified
through the use of wind turbine spectrogram. However, when the radar beam axis and the rotation axis co-
incide, the estimation task becomes an extremely tough and complicated process. This phenomenon can be
easily confirmed by observing the next figure. This plot depicts the SV V polarization scattering coefficient for
one complete rotation of a wind turbine observed from zero aspect angle.

Figure 3.2: SV V response of a Wind Turbine illuminated from zero Yaw(aspect) angle

From the previous figure it becomes evident that the rotation speed cannot be estimated by simple visual
inspection of the spectrogram, as in this case the response of the wind turbine is a zero-Doppler clutter. Con-
sequently we will attempt to form a simple estimation rule for the angular velocity by exploiting fundamental
principles of radar polarimetry which enable the extraction of this parameter for this special case. This rule
is based on multiple sequential polarimetric time measurements while estimation theory is used in order to
extract properly the rotational angle. As a result, the angular velocity can be easily further calculated by mul-
tiplying the extracted angle with the time period between two successive radar coherent processing intervals
(CPI)

A three-blade wind turbine ,when it is observed perpendicularly or from zero aspect angle, seems as in
the following figure:
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Figure 3.3: Wind Turbine viewed from zero aspect angle

As we notice from the last figure there is a symmetricity in the way that this object has been made. As
a result we can aptly consider that due to the symmetrical construction of the wind turbine, its total polari-
metric response remains approximately constant between measurements on each polarimetric channel. In
the next section we will define the polarimetric mathematical model that describes the received data when a
monostatic radar configuration is used.

3.3.1. RECEIVED DATA MODEL
According to Chapter 2, when a monostatic measurement scheme is used, then the polarization scattering
matrix is characterized by three (unknown )complex scattering coefficients (2.64). Let us assume that for
an instant moment of time, say t1, the polarization scattering matrix obtained from Wind Turbine will be
(noiseless case):

SW T (t1) =
 SW T

H H (t1) SW T
HV (t1)

SW T
HV (t1) SW T

V V (t1)

 (3.1)

where each of the element in the above matrix are implied to be complex quantities.
We now perform a new measurement , say at the instant moment t2. Within the time passed, we assume that
the Wind Turbine has been rotated with a rotation angle aalong the radar line of sight. The new polarization
scattering matrix SW T (t2) after rotation is related with the initial PSM SW T (t1), according to Chapter 2, as
follows:

SW T (t2) =U (α)T SW T (t1)U (α) (3.2)

where

U (α) =
[

cosα −sinα
sinα cosα

]
In a full analytic form, the last equation can be written as:

SW T (t2) =
 cosα sinα

−sinα cosα

 SW T
H H (t1) SW T

HV (t1)

SW T
HV (t1) SW T

V V (t1)

 cosα −sinα

sinα cosα


 SW T

H H (t2) SW T
HV (t2)

SW T
HV (t2) SW T

V V (t2)

=
 cosα sinα

−sinα cosα

 SW T
H H (t1)cosα+SW T

HV (t1)sinα −SW T
H H (t1)sinα+SW T

HV (t1)cosα

SW T
HV (t1)cosα+SW T

V V (t1)sinα −SW T
HV (t1)sinα+SW T

V V (t1)cosα


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Performing the remaining matrix calculations, we obtain the following relationships:

SW T
H H (t2) = SW T

H H (t1)cos2α+SW T
HV (t1)sinαcosα+SW T

HV (t1)sinαcosα+SW T
V V (t1)sin2α

SW T
HV (t2) = −SW T

H H (t1)sinαcosα−SW T
HV (t1)sin2α+SW T

HV (t1)cos2α+SW T
V V (t1)sinαcosα

SW T
HV (t2) = −SW T

H H (t1)sinαcosα−SW T
HV (t1)sin2α+SW T

HV (t1)cos2α+SW T
V V (t1)sinαcosα

SW T
V V (t2) = SW T

H H (t1)sin2α−SW T
HV (t1)sinαcosα−SW T

HV (t1)sinαcos a +SW T
V V (t1)cos2α

Therefore we obtain the following vectorized form of the original transformation:



SW T
H H (t2)

SW T
HV (t2)

SW T
HV (t2)

SW T
V V (t2)


=


cos2α sinαcosα sinαcosα sin2α

−sinαcosα cos2α −sin2α sinαcosα
−sinαcosα cos2α −sin2α sinαcosα

sin2α −sinαcosα −sinαcosα cos2α





SW T
H H (t1)

SW T
HV (t1)

SW T
HV (t1)

SW T
V V (t1)


(3.3)

Since we have three measured and unknown complex polarimetric coefficients, these 4×1 vectors ,that
include these elements can be reformulated as 3×1 vectors through the following expression:



SW T
H H (t2)

SW T
HV (t2)

SW T
V V (t2)


=

1

2


1+cos(2α)

p
2sin(2α) 1−cos(2α)

−p2sin(2α) 2cos(2α)
p

2sin(2α)

1−cos(2α) −p2sin(2α) 1+cos(2α)


︸ ︷︷ ︸



SW T
H H (t1)

SW T
HV (t1)

SW T
V V (t1)


W (α)

or in a compact vector formulation:

x (t2) =W (α) x (t1) (3.4)

The matrix W (a) is a unitary matrix
(
W (a)W (a)T = I

)
and denotes the transformation matrix for the

monostatic case when a vectorized form of the PSM is used. We will now form the received data model for
multiple sequential measurements obtained by a monostatic radar. For simplicity reasons and for reading
purposes we will hereafter omit the notation ’W T ’ from our previous derivations.

The polarimetric received signal at the beginning of our total reception time ( initial time (t0) ) will be
characterized by the following data model (3×1 complex vector ):

z0 = x0 +c 0 +n0 (3.5)

where:

• x0 = [SH H , SHV , SV V ]T is the vector of the complex polarimetric coefficients

• c 0: 3×1 vector denoting polarimetric response from surrounding clutter

• n0: 3×1 vector denoting complex zero mean Gaussian noise.

As a result, for multiple successive measurements (N ) and taking into account that the vector x remains
constant for the reasons explained previously, the following system of equations are obtained:
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t0 : z0 = x0 +c 0 +n0

t1 : z1 = W (α) x0 +c 1 +n1

t2 : z2 = W (2α) x0 +c 2 +n2

.

.

.

tN−1 : z N−1 = W ((N −1)α) x0 +c N−1 +nN−1

where it has been used the equality W (a) ·W (a) =W (2a).
Again z i , i = 0,1, ...N −1 denotes the received data on each measurement (3×1 vector) , ni , i = 0,1, ...N −

1 is a complex zero mean gaussian noise with covariance C n = σ2
n I , c i , i = 0,1, ...N − 1 is environmental

clutter noise with known polarimetric covariance matrix Σc ( see Chapter 2 ) and x = [SH H ,SHV ,SV V ]T is
the actual complex polarimetric backscattered signal of wind turbine. The time interval between sequential
measurements ∆t = t2 − t1 in this study, is assumed to be constant and depends on the polarimetric radar
architecture. It can be equal to the coherent processing interval (CPI) for a radar that estimates the PSM after
Doppler processing, or to pulse repetition interval (PRI) for a radar that directly estimates the PSM from every
received pulse.

The rotation angle α is directly related with the angular velocity Ω through the equation:

α=Ω ·C PI

Gathering all of these measurements , we can easily reformulate the above system of equations in a more
systematic matrix form as follows:

z0

z1

z2

.

.

.
z N−1


=



I
W (α)

W (2α)
.
.
.

W ((N −1)α)


x0 +



c 0

c 1

c 2

.

.

.
c N−1


+



n0

n1

n2

.

.

.
nN−1


(3.6)

or alternatively:

z = F (a) x0 +c +n (3.7)

where now z , c and n are 3N ×1 complex vectors while F (α) is a 3N ×3 real matrix.

3.3.2. MAXIMUM LIKELIHOOD ESTIMATION OF THE ANGULAR VELOCITY
As we experience a complex white Gaussian noise with zero mean and covariance C n the data will also follow
a complex Gaussian distribution with mean F (α) x and total covariance matrix Q =Σc +C n or alternatively
z ∼ C N (F (α) x , Q). The probability density function (PDF) of the data can then be explicitly formulated as
[42]:

p (z ;α, x0) = 1

π3N det(Q)
exp

[− (z −F (α) x0)H Q−1 (z −F (α) x0)
]

(3.8)

where H denotes complex conjugate transpose or Hermitian.
We initially speculate that the rotation angle is known and so will be the matrix F (α). This means that the

previous PDF is converted into a likelihood function p (z ; x) over the unknown vector x . Taking the natural
logarithm of this likelihood function we have:

ln p (z ; x0) =− (z −F (α) x0)H Q−1 (z −F (α) x0)− ln
(
π3N det(Q)

)
The main principle of the maximum likelihood estimation is the maximization of the PDF over the un-

known parameter. Alternatively we have to minimize the expression inside the exponential function. Conse-
quently by taking now the derivative with respect to x H of the above expression we obtain:
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∂ ln p (z ; x0)

∂x H
0

=
∂x H

0

(− (z −F (α) x0)H Q−1 (z −F (α) x0)− ln
(
π3N det(Q)

))
=

∂x H
0

[− (z −F (α) x0)H Q−1 (z −F (α) x0)
]

(3.9)

By writing the last expression more analytically and equating it to zero we obtain the following (removing
the minus sign):

∂x H
0

[
(z −F (α) x0)H Q−1 (z −F (α) x0)

]= 0

∂x H
0

[
z H Q−1z − z H Q−1F (α) x0 −x H

0 F (α)T Q−1z +x H
0 F (α)T Q−1F (α) x0

]= 0

−F (α)T Q−1z +F (α)T Q−1F (α) x0 = 0

Therefore the Maximum Likelihood Estimation (MLE) of the Polarimetric complex vector will be:

x̂0 =
(
F (α)T Q−1F (α)

)−1
F (α)T Q−1z (3.10)

If we replace this estimated vector of parameters, in the PDF in equation (3.8) we obtain the following
likelihood function with respect to the rotation angle α:

p (z ;α) = 1

π3N det(Q)
exp

[− (z −F (α) x̂)H Q−1 (z −F (α) x̂)
]

(3.11)

Our goal now is to find the angle α that maximizes the above likelihood function or alternatively that
minimizes the cost function G (α) :

α̂MLE = min
α

[
(z −F (α) x̂)H Q−1 (z −F (α) x̂)

]
(3.12)

α̂MLE = min
α

G (α) (3.13)

where

G (α) = (z −F (α) x̂)H Q−1 (z −F (α) x̂) (3.14)

More analytically, this expression can be written as:

G (α) = z H Q−1z − z H Q−1F (α) x̂ − x̂ H F T (α)Q−1z + x̂ H F T (α)Q−1F (α) x̂

or alternatively

G (α) = A −B (α)−C (α)+D (α)

where A, B (α), C (α), D (α) ,with the use of equation (3.10), are equal to:

A = z H Q−1z

B (α) = z H Q−1F (α) x̂ = z H Q−1F (α)
[
F T (α)Q−1F (α)

]−1
F T (α)Q−1z

C (α) = x̂ H F T (α)Q−1z = z H Q−1F (α)
[
F T (α)Q−1F (α)

]−1
F T (α)Q−1z

D (α) = x̂ H F T (α)Q−1F (α) x̂

= z H Q−1F (α)
[
F T (α)Q−1F (α)

]−1
F T (α)Q−1F (α)

[
F T (α)Q−1F (α)

]−1
F T (α)Q−1z

= z H Q−1F (α)
[
F T (α)Q−1F (α)

]−1
F T (α)Q−1z
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As a result by summing up all these terms, it yields that the cost function G(α) becomes:

G (α) = z H Q−1z − z H Q−1F (α)
[
F T (α)Q−1F (α)

]−1
F T (α)Q−1z (3.15)

Since it is almost impossible to find an analytical expression for the estimated parameter α̂MLE , we solve
this problem numerically. This process includes the choice of an interval of many possible rotation angles
and search for the unique one that minimizes the cost function. This method is widely known as Brute Force.
Although other search methods could be applied (iterative algorithms such as Newton Raphson ), it would
be less effective for this type of function. That is because our cost function experiences considerably local
minima, meaning that the rightness of our estimation will strongly depends on the initial conditions of this
algorithm. In contrast with the Brutal Force method, we can obtain, in a reasonable time, an optimal esti-
mation of the unknown parameter and also to extract the total variation of the cost function within a large
interval of possible parameter values. Consequently, the accuracy of the estimation will be strongly related to
the accuracy chosen for this interval. Finally, according to (3.3.1), an accurate estimation of this angle directly
leads to an accurate estimation of the angular velocity.

3.3.3. SIMULATIONS

We will now provide the results of the simulations of the estimation process analyzed previously. We will
present how this cost function behaves for different number of measurements as well as for numerous SNRs.

ROTATION ANGLE ESTIMATION

For the upcoming simulations we initially assume that the surrounding clutter that is included in our re-
ceived data (3.3) is grass with either known or pre-estimated polarimetric covariance matrix. In Chapter 2,
an alternative form of the polarimetric covariance matrix was presented, namely as a function of the inter-
correlation parametersσ,ρ,β,δ,γ,ε. In [43], one can find the values of these parameters for different types of
common faced environmental clutter noise. For our simulation we will assume grass as our principal clutter
interference. We also consider that the statistics of the clutter do not vary from measurement to measurement
as well as within reception time.

In summary, all the parameters for our simulation are provided in Table 3.1. We assume that the highest
SNR stems from the vertical oriented blade, which explains the chosen values for the received power on each
channel.

Parameters Values of Parameters

a
[
5.43 deg r ees

]
n0,1,...,N−1 ∼C N (0,100I )
|SH H | (dB) 20 dB
|SHV | (dB) 13 dB
|SV V | (dB) 23 dB

N 100 measurements
angle range [−90o : 0.1o : 90o]

Table 3.1: Values of simulated parameters for rotation angle estimation

The next plot presents the behavior of the cost function G (a) for this chosen angle range. We notice that
the minimum of this function lies very close to the expected rotation angle which is 5.43 degrees.
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Figure 3.4: Cost function vs rotation angle

ESTIMATION ERROR VS NUMBER OF MEASUREMENTS

Figure 3.5: Cost function vs rotation angle estimation for different number of measurements

In principle one should expect an improvement on our estimation accuracy as long as more measure-
ments are processed. This consideration is strongly confirmed by the Figure ??. In this plot, the behavior and
the variation of the cost function is shown for different number of coherently processed measurements. The
estimation of this parameter, as it was expected, approaches very well the actual value after several processed
measurements while the SNR remains the same. This example therefore reveals the importance of the num-
ber of measurements for our estimator in order for the received SNR level to remain as low as possible. As
we notice, the sharpness of the cost function around the actual value of the rotation angle increases as more
measurements are added. Consequently for a very high number of measurements, this cost function tends
to be a delta function positioned on the actual value of this parameter.

The next plot presents the variation of the angle estimation error with respect to different number of
coherently processed measurements, for the same expected rotation angle. The same simulation parameters
are used as before. We visually recognize that at least 30 measurements are required in order to achieve small
errors in our estimation.
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Figure 3.6: Estimation error vs Number of Measurements

3.4. ANGULAR VELOCITY ESTIMATION FOR NON-PERPENDICULAR OBSERVA-
TION

In this section we will deal with the estimation of the angular velocity ( rotation angle) in case of the observa-
tion (yaw) angle is different than zero. As we mentioned for the analysis and the estimation of this parameter
an electromagnetic model that describes the blades movement for different transmitted and received po-
larizations is needed. In [44] and [45],has been an extensive mathematical derivation of this model for low
frequencies and we will exploit the results of this analysis in order to derive our estimator. Although the sim-
ulations and the accompanied results are extracted for a low applicable signal model, the approach and the
mathematical procedure itself can be easily and directly applied to a potential upgraded model. In the next
subsection we will provide a time-varying polarimetric model for the wind turbine blades or in other words
the time varying complex polarimetric coefficients.

3.4.1. POLARIMETRIC MODEL OF WIND TURBINE BLADES FOR LOW FREQUENCIES

The proposed model was first created in [45] and it was explicitly implemented for monostatic configuration.
The impact of the mast was separately introduced and thus we will neglect and exclude it from our approach.
In the research performed in [46], the blades of the wind turbines are modeled as finite-length linear wires, as
for low frequencies the thin-wire approximation is valid [5]. Specifically, in this approximation the radius of
the wire is considered much smaller than the length of the blades and thus the current in the wire is restricted
to the direction of the wire and uniform along its cross-section.

Assume a cartesian coordinate system
(
O = x, y, z

)
and a dipole that follows the thin-wire approximation.

The center of rotation of the wind turbine is located at the origin of this coordinate system. The wind tur-
bine is observed by the radar from an angle θ while the blades describe an angle φ from measurement to
measurement ( or between CPIs). The finite length dipole is then sub-divided into a number of equal and
infinitesimal dipoles of length d z

′
. Consider one of this infinitesimal dipoles placed at O = x

′
, y

′
, z

′
and at a

distance z
′

from the center O. Finally, the radar is characterized by the coordinates
(
x
′′

, y
′′

, z
′′)

and the x
′′− y

′′

plane forms an aspect angle( or the observation angle as defined before ) θwith the plane of rotation. All these
details regarding the geometrical representation of the radar-wind turbine configuration are summarized in
the following figure:
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Figure 3.7: Geometrical representation of the fields and the configuration of the radar-wind turbine system [44]

According to the mathematical analysis performed in [44] and with the use of Figure 3.7, the complex
time-varying polarimetric coefficients SH H , SHV and SV V are then defined as follows:

SH H (t ) = jηkL
e− j kr

4πr

3∑
n=1

sin
(
φ0 +∆φn +Ωt

)
sin2θ sinc

[
L

π
k sin

(
φ0 +∆φn +Ωt

)
cosθ

]
e j kL sin(φ0+∆φn+Ωt)cosθ

(3.16)

SHV (t ) = jηkL
e− j kr

4πr

3∑
n=1

sin
(
φ0 +∆φn +Ωt

)
cos

(
φ0 +∆φn +Ωt

)
sinθ sinc

[
L

π
k sin

(
φ0 +∆φn +Ωt

)
cosθ

]
×

e j kL sin(φ0+∆φn+Ωt)cosθ

(3.17)

SV V (t ) = jηkL
e− j kr

4πr

3∑
n=1

cos2 (
φ0 +∆φn +Ωt

)
sinc

[
L

π
k sin

(
φ0 +∆φn +Ωt

)
cosθ

]
e j kL sin(φ0+∆φn+Ωt)cosθ

(3.18)

• L: length of the blades

• k: wavenumber

• φ0 : initial position of the blades

• ∆φn = [0o ,120o ,−120o] : angular distance of the blades

• Ω : angular velocity

• θ : observation angle

Although these expressions are only valid for low frequencies ( f < 1G H z) and hence are considered as
an oversimplified approximation of the reality, are formulated in a treatable closed form which enable us to
apply an estimation rule on some of their parameters. Moreover, it is worth-noticed that for θ = 90, the above
expressions fall into the case we examined in the previous section. The next figure provides a simulation of
the response of these polarimetric coefficients with the use of the following parameters provided in Table 3.2
:
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Parameters Values of Parameters

Ω 10 rpm
f 900 MHz
L 40 m
φ0 0o

θ 60o

PRF 1 kHz

Table 3.2: Values of parameters for simulation of the response of Wind Turbine polarimetric coefficients

SV V response SHV response

SH H response

Figure 3.8: Time-varying polarimetric backscattering coefficients of a Wind Turbine for low frequencies

3.4.2. RECEIVED DATA MODEL
We consider that noise is the only source of interference in our signal model which is different for each chan-
nel but follows the same statistics. Furthermore we assume that for each polarimetric coefficient M number
of time samples are obtained within one CPI or in PRF. Furthermore, each polarimetric channel is character-
ized by a complex amplitude that is also to be estimated.

Consequently the polarimetric received, for each moment of time, will have the following data model
(3×1 complex vector ): zH H (m)

zHV (m)
zV V (m)

=
 SH H (m)

SHV (m)
SV V (m)

a +
 nH H (m)

nHV (m)
nV V (m)

 m = 0,1, ..., M −1

where M is the number of measurements and a denotes the RCS (complex amplitude) of the wind turbine.
Therefore the polarimetric coefficients modulate this RCS value seperetaly on each channel.
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Gathering again all the measurements, we have the following matrix form:

z = Sa +n (3.19)

where:

• z ,n area both 3M ×1 complex vectors.

• S is a 3M ×3 matrix

• a is a scalar complex number

• n ∼C N
(
0,σ2I 3×3

)
: complex zero-mean white Gaussian noise with uncorrelated samples

3.4.3. NON-LINEAR LEAST SQUARES ESTIMATION FOR WIND TURBINE ANGULAR VELOCITY
As equations 3.11, 3.12 and 3.13 reveal, the polarimetric backscattering coefficients are highly non-linear
functions with respect to angular velocity. Consequently we have to resort to the non-linear least squares
estimation method [42]for the estimation of this feature. However as we did in the previous section, we start
by defining the PDF of the received data model. Since we are dealing with a complex white Gaussian noise
with zero mean, the received data will also follow a complex Gaussian distribution but with mean Sa and the
same covariance matrix, namely z ∼C N

(
Sa, σ2I 3×3

)
. Mathematically this is formulated as:

p
(
z ; a,L,θ,φ0,Ω

)= 1

(πσ)3M
exp

[
− 1

σ2

∥∥z −S
(
t ;L,θ,φ0,Ω

)
a
∥∥2

]
(3.20)

or alternatively

p
(
z ; a,L,θ,φ0,Ω

)= 1

(πσ)3M
exp

[
− 1

σ2

(
z −S

(
t ;L,θ,φ0,Ω

)
a
)H (

z −S
(
t ;L,θ,φ0,Ω

)
a
)]

(3.21)

where H denotes again complex conjugate transpose or Hermitian.
As the above PDF confirms and according to the polarimetric signal models derived before, in a more

realistic environment we have five parameters that need to be estimated in principle. Specifically these are
the amplitude vector a, the length of the blades L, the observation angle θ, the initial position of the blades
φ0 and the angular velocity Ω. However at some extent is feasible that the length of the blades and the radar
observation angle are known. Therefore he amplitude a, the initial position φ0 and the angular velocity Ω
have to be estimated from the received data.

Following a similar procedure to this presented in the previous section, we initially assume that both the
initial position of the blades and the angular velocity are known. Therefore so will be the matrix S. As a result
the previous PDF is converted now into a likelihood function p (z ; a) over the unknown complex amplitude
a. The natural logarithm of this likelihood function will then be:

ln p (z ; a) =−
(
z −S

(
t ;L,θ,φ0,Ω

)
a
)H (

z −S
(
t ;L,θ,φ0,Ω

)
a
)

σ2 − ln
(
(πσ)3M )

By taking now the derivative with respect to aH of the previous formula and equating to zero, we obtain the
maximum likelihood estimation of this complex vector:

â =
(
S

(
t ;L,θ,φ0,Ω

)H S
(
t ;L,θ,φ0,Ω

))−1
S

(
t ;L,θ,φ0,Ω

)H z (3.22)

This is a similar expression to this extracted from the analysis in the last section. The difference is that the
polarization scattering signal model S

(
t ;L,θ,φ0,Ω

)
that modulates the complex amplitude, changes because

of the different observation angle.
Replacing now this estimated vector in the previous PDF and considering that the length of the blades

Land the observation angle θ can be a priori known, we obtain the following likelihood function with respect
to the rotation angle the initial position of the blades φ0 and the angular velocity Ω:

p
(
z ;φ0,Ω

)= 1

(πσ)3M
exp

[
− 1

σ2

(
z −S

(
t ;L,θ,φ0,Ω

)
â
)H (

z −S
(
t ;L,θ,φ0,Ω

)
â
)]

It turns out then for the estimation of these parameters, we need to maximize this likelihood function:
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Ω̂, φ̂0 = argmax
{

p
(
z ;φ0,Ω

)}= argmax

{
1

(πσ)3M
exp

[
− 1

σ2

(
z −S

(
t ;φ0,Ω

)
â
)H (

z −S
(
t ;φ0,Ω

)
â
)]}

or differently minimize the two dimensional cost function G
(
φ0,Ω

)
:

Ω̂, φ̂0 = argmin
{(

z −S
(
t ;φ0,Ω

)
â
)H (

z −S
(
t ;φ0,Ω

)
â
)}

Ω̂, φ̂0 = argmin
{
G

(
φ0,Ω

)}
(3.23)

where in accordance with the analysis in the previous section the two two dimensional cost function
G

(
φ0,Ω

)
can be analytically written as:

G
(
φ0,Ω

)= z H z − z H S
(
t ;φ0,Ω

)[
S H (

t ;φ0,Ω
)

S
(
t ;φ0,Ω

)]−1
S H (

t ;φ0,Ω
)

z (3.24)

As we notice, in contrast with the previous case, we experience a two dimensional search problem mean-
ing we need to estimate these two parameters simultaneously. In other words we have to define a search grid
and we have to extract the pair of parameters that minimize the distance between the simulated polarimetric
signal model S

(
t ;φ0,Ω

)
â and the received data z . As a result we end up into two separate cost functions, each

corresponding to one parameter. However these cost functions are not independent since we are performing
a simultaneous estimation. This means that the quality and the accuracy of the estimation of one parameter
directly influences the estimation of the other parameter.

3.4.4. SIMULATIONS

ESTIMATION OF THE ANGULAR VELOCITY AND INITIAL POSITION OF THE BLADES

As the received data model witnesses we will assume that the only interference source that affects the actual
wind turbine response is a zero mean complex white Gaussian noise. The next two figures depict the variation
of the two cost functions described before for a predetermined range of the parameters to be estimated. In
Table 3.3 are summarized the values of all the parameters used to create and simulate the received data.

Parameters Values of Parameters

Ω 9.2 rpm
φ0 11.5o

f 600 MHz
L 30 m
θ 80o

M 100 samples
|a| (dB) 20 dB
σ2 100

Table 3.3: Values of simulated parameters for estimation of the angular velocity and position of the blades

The results of these simulated data are shown in the next figures. The next plot depicts the cost function
in a 3D plot. For visualization purposes we have flipped the cost function and thereby we experience a global
maximum.
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Figure 3.9: 3D cost function

Figure 3.10: Cost function of the angular velocity
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Figure 3.11: Cost function of the initial position of the blades

ESTIMATION ERROR VS NUMBER OF MEASUREMENTS

The next plots provide the relationship between the estimation error for both the parameters for different
number of coherently processed measurements. For this simulation the SNR In the VV channel is 7 dB.

Figure 3.12: Squared error of the angular velocity estimation vs number of measurements
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Figure 3.13: Squared Error of the initial position of the blades vs number of measurements

As it was expected, the higher the numbers processed, the smaller is the estimation error for both these
parameters. As we notice, after approximately 25 measurements the error becomes almost zero for both
parameters.

3.5. CONCLUSIONS
In this chapter we performed a polarimetric estimation in order to evaluate the angular velocity of the wind
turbine. Since there is absence of Micro-Doppler shift, when the wind turbine is observed from zero aspect
angle, the wind turbine behaves as a zero-Doppler clutter from the radar perspective. However, with the ex-
ploitation of the rotation principle of the polarization scattering matrix together with maximum likelihood
estimation lead to a proper model-based estimation approach. This approach enables the coherent process-
ing of multiple measurements for improvement of the estimation with a fixed SNR level.On the other hand,
when the observation angle is different than zero, the Micro-Doppler phenomenon arises. In this case, the
wind turbine tower is clearly visible at the zero Doppler velocity while the blades are visible as periodic flashes
spread across the spectrum. Therefore for the angular velocity estimation we resort in already defined models
for the polarimetric coefficients for low frequencies. Since this model includes also another unknown factor,
the initial position of the blades, we have to perform a two-dimensional Brute-Force estimation method. As
we search for optimal estimators for two parameters, higher SNR is required than before or more measure-
ments with the same SNR level need to be processed.





4
WIND TURBINE CLUTTER POLARIMETRIC

DETECTION

In this chapter we attempt to apply a polarimetric detector in order to identify the presence of a constantly
rotating target among other potential interferences such as noise and clutter. As we mentioned earlier in this
thesis, polarization diversity has been proved a useful tool for radar detection, especially when discrimina-
tion by Doppler effect is not possible. When a wind turbine is present in the illumination area of a monostatic
radar, its backscattered response tends to mask the power received by the target of interest, leading to a rea-
sonable high false alarm rate. With the use of a typical pulsed or FMCW radar, the detection and mitigation
of this type of clutter becomes a very challenging and tough process. However the exploitation of the full
polarization information can facilitate effectively the detection itself provided that the target of interest be-
haves differently for each polarization. As we have mentioned, the wind turbine is a constantly rotating object
which also responds differently on each transmitted polarization. Consequently our main goal is to define a
detector that will make use of this variable responses.

For our detector we will explicitly use a signal model where the expressions for the complex time-varying
polarimetric coefficients SH H , SHV and SV V are valid for low frequencies. As a result, the proposed detector
will be directly applicable for low frequencies. However, as it was the case with the estimation process dis-
cussed in the Chapter 3, the detection approach itself can be also applied to polarimetric coefficients properly
formulated for higher frequencies

(
f > 1 G H z

)
.

The polarimetric signal models that will be used in our detection analysis are these proposed for both
measurement scenarios. As the vector equations (3.7) and (3.18) manifest, both the received signal models
introduced in our estimation approach belong to the family of classical general linear models. Therefore, the
detection rule presented in this Chapter will be also defined for the case of a linear signal model.

Following the analysis provided in Chapter 3, we will develop two separate detection approaches. We start
with the case of perpendicular observation, where the rotation axis and the radar beam axis coincide and we
will continue with the non-perpendicular observation. Through analytical derivations we attempt to formu-
late the Likelihood Ratio Test (LRT) for each measurement scenario and therefore to obtain the test statistic.
These derivations stem directly from Neyman-Pearson criterion when a simple hypothesis rule takes place.
According to Neyman-Pearson theorem, the LRT turns out to be the optimal detector with a test statistic
which is simply the replica correlator of the received data or the matched filter.

4.1. REVIEW OF DETECTION THEORY FUNDAMENTALS
In this section we provide a brief review of the main concept in detection theory. For a more detailed descrip-
tion the reader is referred to [47] and [48]. In principle, the simplest detection problem is to decide whether
a target is present on each cell, which is embedded in noise, or if noise is the only signal source. A similar
problem will be also attempted to be solved in this Chapter. As a result we have only two possible decisions,
named as hypotheses, namely we need to decide between signal and noise present versus noise only present.
This type of problem is usually called as binary hypothesis testing problem.

The primary operation of a radar system and a radar engineer by extension, is to exploit the received
data as efficiently as possibly and make the correct decisions most of the operational time. Technically, there

49
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are also problems where the detector needs to decide between multiple hypotheses namely among multiple
signals embedded in noise. Such a problem is referred as multiple hypothesis testing problem but is out of the
scope of this thesis.

NEYMAN-PEARSON THEOREM
We will now explain Neyman-Pearson detection since is the most common detection approach in radar sys-
tems. Let us start by defining a binary hypothesis testing problem as follows:

H0 : x [n] = w [n]

H1 : x [n] = s [n]+w [n]

where n = 0,1, ..., N time samples and w [n] are the noise samples (complex or real). This is a common form
of a signal detection problem. The primary goal of the detector is to decide either H0 or H1 based on these
received data sets x [n]. Therefore the detection process itself can be interpreted as a mapping from the
received data into a decision. As we saw in the previous Chapter, the received data when a signal is present,
follows the Gaussian distribution ( when the noise is Gaussian distributed). In general on each hypothesis is
assigned a PDF denoted as p (x ; H0) for H0 hypothesis and p (x ; H1) for H1 hypothesis.

The most important detection parameters in order to evaluate the performance of the applied detector is
the probability of detection PD and the probability of false alarm PF A . The probability of false alarm, denoted
as p (H1; H0) , declares the probability of deciding H1 when actually H0 is true or in other words deciding that
a signal is present when there is not. Usually this probability has a small value, say 10−4, since a large value
might ensue disastrous effects. The probability of detection represents the expected radar operation where
we actually detect the an existence target in the received data. This probability is denoted as p (H1; H1) and it
has to be as large as possible.

The criterion to decide between these hypothesis is a threshold value, say γ, which is predetermined
based on the desired PF A . If the amplitude or the power of the received signal exceeds this threshold we
decide H1 otherwise H0. Therefore the higher would be threshold the lower will be the PF A . However the
more power or higher SNR would be required to exceed the threshold when a target is present. This means
that the PD will be also low.

In summary the Neyman Pearson theorem says that in order to maximize PD for a given value of PF A = c,
we decide H1 if:

L (x) = p (x ; H1)

p (x ; H0)
> γ (4.1)

where γ is the threshold value and is found from the PF A . The ratio L (x) is called likelihood ratio since indi-
cates for each value of x , the likelihood of H1 versus the likelihood of H0. This test is called likelihood ratio test
(LRT). In this Chapter, we attempt to form these type of LRTs with the use of the previously derived likelihood
functions.

4.2. POLARIMETRIC DETECTION FOR PERPENDICULAR OBSERVATION

4.2.1. TEST STATISTIC DERIVATION
We will first study the case for perpendicular observation of the wind turbine. The following analysis, stems
from the polarimetric signal model defined in the previous Chapter and also its assigned PDF. According to
Chapter 3 and the described mathematical formulations , for N successive polarimetric measurements we
obtain the following vector form:

z0

z1

z2

.

.

.
z N−1


=



I
W (α)

W (2α)
.
.
.

W ((N −1)α)


x +



c 0

c 1

c 2

.

.

.
c N−1


+



n0

n1

n2

.

.

.
nN−1


(4.2)

or alternatively:
z = F (a) x +c +n (4.3)



4.2. POLARIMETRIC DETECTION FOR PERPENDICULAR OBSERVATION 51

where again z i , i = 0,1, ...N − 1 denotes the received data on each measurement (3×1 vector) , ni , i =
0,1, ...N − 1 is a complex zero mean gaussian noise with covariance C n = σ2

n I , c i , i = 0,1, ...N − 1 denotes
environmental clutter noise with known polarimetric covariance matrix Σc , x = [SH H ,SHV ,SV V ]T is the
actual complex polarimetric backscattered signal of wind turbine and W (a) is the rotation matrix. As a re-
sult, we can form a binary hypothesis test as follows:

H0 : z = c +n

H1 : z = F (a) x +c +n

with the assigned PDF for each hypothesis to be:

p (z ; H0) = 1

π3N det(Q)
exp

[−z H Q−1z
]

(4.4)

p (z ; H1) = 1

π3N det(Q)
exp

[− (z −F (α) x)H Q−1 (z −F (α) x)
]

(4.5)

However, the PDF under hypothesis H1, p (z ; H1) is not completely known. That is because, in contrast
to p (z ; H1), this PDF accommodates four unknown parameters. These are the 3× 1 complex polarimetric
vector x as well as the rotation angle α. In detection theory when the one or both the assigned PDFs are not
completely specified, the formulated hypothesis test is named as Composite Hypothesis Testing.

Consequently we need to estimate the unknown parameters initially and then replace their maximum
likelihood estimation in the PDF p (z ; H1). The new likelihood ratio test, similar to this in equation (4.1), which
includes the MLE of all the unknown parameters is known as General Likelihood Ratio Test (GLRT). Since this
detector includes the estimation of unknown parameters Initially we derive the MLE of the unknown vector
x , x̂ MLE , from p (z ; H1). According to Chapter 3, x̂ will be then equal to:

x̂ = (
F (α)T Q−1F (α)

)−1
F (α)T Q−1z (4.6)

As we cannot derive a close-form expression for the MLE of the rotation angle, we will estimate this feature
through the GLRT. In other words, we have to find the rotation angle that maximizes the GLRT LG (z) and
compare this maximum value with the threshold γ. If this value exceeds the threshold then we have a wind
turbine clutter detection which is characterized by this rotation angle ( or angular velocity). The GLRT will
then be:

max
α

{LG (z)} = max
α

{
p (z ; H1)

p (z ; H0)

}
= max

α

{
p (z ; x̂ ,α)

p (z ; x̂ = 0)

}
> γ (4.7)

Replacing equations (4.4) and (4.5) in the previous expression we obtain the following:

max
α

{LG (z)} = max
α

{ 1
π3N det(Q)

exp
[− (z −F (α) x̂)H Q−1 (z −F (α) x̂)

]
1

π3N det(Q)
exp

[−z H Q−1z
] }

> γ

or:

max
α

{LG (z)} = max
α

{
exp

[− (z −F (α) x̂)H Q−1 (z −F (α) x̂)
]

exp
[−z H Q−1z

] }
> γ

Taking now the logarithm in both parts of this inequality we have:

max
α

{lnLG (z)} = max
α

{
ln

[
exp

[− (z −F (α) x̂)H Q−1 (z −F (α) x̂)
]

exp
[−z H Q−1z

] ]}
> lnγ

The nominator on the above expression is nothing more than the likelihood function with respect to the
rotation angle, presented in Chapter 3. Therefore from the derived equation (3.24) in Chapter 3 and after
calculation of this ratio we obtain the following decision rule:

max
α

{[
z H Q−1F (α)

(
F (α)T Q−1F (α)

)−1
F (α)T Q−1z

]}
> γ′

(4.8)

where γ
′ = lnγ Alternatively equation (4.8) will be equal to:

max
α

{[
x̂ H F T (α)Q−1F (α) x̂

]}> γ′
(4.9)
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Figure 4.1: Test Statistic distribution for H0 hypothesis

Therefore denoting the above expression as T (z ;α), we have:

max
α

{T (z ;α)} > γ′

As a result the position of the maximum of this test statistic, if it exceeds the threshold value, will also provide
the assigned rotation angle. In order to formulate close-form expressions for both PF A and PD , we have to
determine the statistical distribution of the test statistic for both hypothesis. For H0 hypothesis, where only
noise is present in our received data, this distribution can be obtained through the following procedure:

1. Generate 1000 realizations of complex uncorrelated gaussian noise.

2. For each realization we run (4.8) with a fixed rotation angle α.

3. From this process we obtain 1000 samples.

4. Create the histogram of these samples.

5. Find the PDF that fits in this histogram.

The result of this five-step process is depicted in the next figure:
From the appropriate PDF distribution fitting, results that the test statistic follows a gamma distribution

with a shape parameter k = 3 and a scale parameter θ = 2. In general a gamma distribution that is character-
ized by these parameters is usually noted as Γ (k,θ). The Chi-Squared distribution with r degrees of freedom,
is related to Gamma distribution through the following equation:

χ2
r = Γ (r /2,2)

Consequently the test statistic in H0, follows a chi-squared distribution with r = 2k = 6 degrees of freedom. As
a result and according to [47], this test statistic follows the chi-square distribution in both hypothesis, namely:

max
α

{T (z ;α)} ∼


χ2

2p under H0

χ2
2p (λ) under H1

where p is the number of unknown parameters. The decision regarding the existence of this clutter is made
for the actual value of the rotation angle. Therefore there are three unknown parameters namely 3 complex
amplitudes. As a result p = 3 and thus the degrees of freedom are equal to 6. This confirms the distribution of
the simulated data. The parameter λ is equal to:

λ= [
x H F T (α)Q−1F (α) x

]
In the next section we present the performance of this detector with some proper simulations.
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4.2.2. SIMULATIONS

In this subsection we present the performance of this detector. This is evaluated with the calculation of the
PF A and PD for various SNR levels. We will also see how the probability of detection is affected by the SNR level
as well as the number of measurements coherently processed. For these last two cases, the PF A will be held in
a desired level. The most common way of summarizing the detection performance of any developed detector
is to plot PD versus PF A . This type of performance summary is called receiver operating characteristic (ROC).
Therefore we initially present the ROC curve for the previous detector.

ROC CURVE

For the simulation of this plot the following model parameters are used.

Parameters Values of Parameters

a 8.2 deg r ees
n0,1,...,N−1 ∼C N (0,300I )
|SH H | (dB) 10 dB
|SHV | (dB) 3 dB
|SV V | (dB) 13 dB

N 30 measurements
angle range [−90o : 0.1o : 90o]

Table 4.1: Value of parameters for ROC curve

Figure 4.2: ROC curve

The next plot depicts the variation of the ROC curve when different SNR values are used.
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Figure 4.3: ROC curve for different SNR

It becomes evident that, the higher the SNR is the better is the performance of the detector, since for the
same PF A the PD is increased as the SNR level gets higher. However, we also observe that this detector does
not require reasonably high values of SNR. This is initially stems from the form of the cost function or the test
statistic in equation (4.8).

PROBABILITY OF DETECTION VERSUS SNR

In the next plot the variation of the probability of detection PD is depicted, when different SNR level is
applied in our simulations. For this simulations, we experience the same values for the model parameters
as before but with a fixed PF A = 10−3. As we notice in order to achieve a PD = 0.9, the SNR level should be
approximately −3 dB.

Figure 4.4: PD v s SN R

As we notice in order to achieve a PD = 0.9, the SNR level should be approximately −3 dB.

PROBABILITY OF DETECTION VERSUS NUMBER OF MEASUREMENTS

The next plot depicts the variation of the PD as the number of measurements coherently processed are
increased. For this simulation the PF A = 10−3 and multiple interference power levels are applied for compar-
ison
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Figure 4.5: PD v s Number o f measur ement s

From this figure it is obvious that we need at at least 200 measured time samples in order to obtain a
reasonable PD for even a very low value of SNR.

4.3. POLARIMETRIC DETECTION FOR NON-PERPENDICULAR OBSERVATION
In this Section we will study the detection performance for the case of non perpendicular observation. For
the upcoming analysis we will follow the signal model proposed in Chapter 3.

4.3.1. TEST STATISTIC DERIVATION
As we did for the previous case we will first derive the test statistic. The polarimetric received, data model for
each moment of time, will be (3×1 complex vector ): zH H (m)

zHV (m)
zV V (m)

=
 SH H (m)

SHV (m)
SV V (m)

a +
 nH H (m)

nHV (m)
nV V (m)

 m = 0,1, ..., M −1

where M is the number of measurements and ais the RCS of the wind turbine (complex amplitude) Alterna-
tively, it can be written in a more treatable form as:

z = Sa +n (4.10)

where:

• z ,n area both 3M ×1 complex vectors.

• S is a 3M ×3 matrix

• a is a complex value

• n ∼C N
(
0,σ2I 3×3

)
:complex zero-mean white Gaussian noise with uncorrelated samples.

From this data model, we have the following simple binary hypothesis test:

H0 : z = n (4.11)

H1 : z = S
(
φ0,Ω

)
a +n

where the polarimetric matrix S
(
Ω,φ0

)
denotes explicitly the unknown parameters together with the complex

amplitude vector x with the assigned PDF for each hypothesis:

p (z ; H0) = 1

(πσ)3M
exp

[
− 1

σ2 z H z
]

(4.12)

p (z ; H1) = 1

(πσ)3M
exp

[
− 1

σ2

(
z −S

(
φ0,Ω

)
a
)H (

z −S
(
φ0,Ω

)
a
)]

(4.13)
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As we performed previously, we initially derive the MLE of the unknown vector a, â, from the assigned
likelihood function p (z ; H1). According to Chapter 3 again , â will be equal to:

â =
(
S

(
φ0,Ω

)H S
(
φ0,Ω

))−1
S

(
φ0,Ω

)H z (4.14)

According to the previous analysis, the GLRT is formulated for this problem:

max
φ0,Ω

{LG (z)} = max
φ0,Ω

{
p (z ; H1)

p (z ; H0)

}
= max

φ0,Ω

{
p

(
z ; â,φ0,Ω

)
p (z ; â = 0)

}
> γ (4.15)

And replacing the assigned PDFs for each hypothesis we obtain:

max
φ0,Ω

{LG (z)} = max
φ0,Ω


1

(πσ)3M exp
[
− 1
σ2

(
z −S

(
φ0,Ω

)
â
)H (

z −S
(
φ0,Ω

)
â
)]

1
(πσ)3M exp

[
− 1
σ2 z H z

]
> γ

or:

max
φ0,Ω

{LG (z)} = max
φ0,Ω

exp
[
− 1
σ2

(
z −S

(
φ0,Ω

)
â
)H (

z −S
(
φ0,Ω

)
â
)]

exp
[
− 1
σ2 z H z

]
> γ

Taking now the natural logarithm of the above expression and after some mathematical calculations, we
end up to a similar test statistic as in the previous section:

max
φ0,Ω

{
1

σ2

[
z H S

(
φ0,Ω

)(
S

(
φ0,Ω

)H S
(
φ0,Ω

))−1
S

(
φ0,Ω

)H z
]}

> γ′
(4.16)

where γ
′ = lnγ. Alternatively it can be written as :

max
φ0,Ω

{
1

σ2

[
âH S

(
φ0,Ω

)H S
(
φ0,Ω

)H â
]}

> γ′
(4.17)

Therefore nominating this expression as T
(
z ;φ0,Ω

)
, we have:

max
φ0,Ω

{
T

(
z ;φ0,Ω

)}> γ′

As we have clarified previously this type of test statistic follow chi-square distribution in both hypothesis. For
H0 hypothesis, this is shown in the next figure:

Figure 4.6: Test Statistic distribution for H0 hypothesis
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From this figure the test statistic T
(
z ;φ0,Ω

)
follows a gamma distribution with a shape parameter k = 1

and a scale parameter θ = 2. Therefore, from the previous theorem it follows a chi-squared distribution with
2k = 2 degrees of freedom or χ2

2k = χ2
2 . The decision regarding the existence of this clutter is made for the

actual values of the angular velocity and the position of the blades. Therefore there is one unknown parameter
namely the complex value of the RCS of the wind turbine. As a result and according to [47], the test statistic
in both hypothesis will follow:

max
φ0,Ω

{
T

(
z ;φ0,Ω

)}∼

χ2

2 under H0

χ2
2 (λ) under H1

where the parameter λ will be:

λ= 1

σ2

[
âH S

(
φ0,Ω

)H S
(
φ0,Ω

)H â
]

4.3.2. SIMULATIONS

As we did before we will present the performance of this detector through simulations. The values of the
parameters that will be used for our simulations are shown in the next table.

Parameters Values of Parameters

Ω 9.2 rpm
φ0 11.5o

f 600 MHz
L 30 m
θ 80o

M 100 samples
|a| (dB) 20 dB
σ2 200

Table 4.2: Values of parameters for simulation of the ROC curve

ROC CURVE

Figure 4.7: ROC curve
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Figure 4.8: ROC curve for different SNR levels

Comparing now the ROC curves depicted in Figure ?? with those presented in Figure 4.8, we notice that
in order to achieve a specific pair of PF A and PD a higher SNR is required for the case of non-perpendicular
observation. This comes from the fact that for the second case we need a simultaneous estimation of two
parameters in order to decide a detection, in contrast to the perpendicular where only rotation angle has to
be extracted.
PROBABILITY OF DETECTION VERSUS SNR

In the next figure we observe the variation of the PD for several SNR values. The PF A is fixed and equal to
PF A = 10−3 while the number of measurements obtained are equal to 100.

Figure 4.9: PD v s SN R

From this figure is obvious that at least an SNR value of 10dB are required in order to have a PD equal to
0.9. This SNR level is higher than we experienced in the previous case for the reasons we explained previously.

4.4. CONCLUSIONS
In this chapter we investigated a polarimetric detection approach for the wind turbine clutter. This approach
is based on the proper derivation of a General Likelihood Ratio Test for both measurement scenarios. Specifi-
cally for either perpendicular or non-perpendicular observation the derived Test statistic of the GLRT follows
a Chi-Squared distribution with degrees of freedom equal to two times the number of unknown amplitudes.
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Therefore, closed form expressions for both PD and PF A can be used. We also noticed that ,for a fixed number
of measurements, higher SNR level is required for the same PD when the aspect angle is different than zero,
comparing to the required SNR level for zero observation angle. This is explained from the fact that two pa-
rameters needs to be fitted accurately to the received data in order to decide detection, meaning higher SNR
value. Finally, increasing the number of processed measurements allows also to minimize the SNR for both
measurement scenarios.





5
CONCLUSIONS

In this thesis we investigated and analyzed, mostly in a theoretical framework, the combination of radar po-
larimetry with estimation and detection theory in order to detect the presence of wind turbine problem.
Although this problem requires a lot of research in order to be able in the future to obtain an effective de-
tection approach, in this thesis a new idea has been generated. This idea implies that the exploitation of
radar polarimetry turns out to be an important and substantial tool for this detection task. This reason for
splitting this thesis into two main parts namely angular velocity estimation and WTC detection, serves two
fundamental causes. First and foremost to familiarize the reader with the mathematical formulation when
radar polarimetry is used for estimation and detection. However, the most important reason is that the ac-
curate estimation of angular velocity provides an opportunity for development of various effective detection
algorithms based on this special feature.

It becomes evident that since we treated estimation and detection process separately, important observa-
tions yield separately for each one. With the understanding of these important conclusions, one might obtain
a better insight on the purpose of this thesis.

5.1. ANGULAR VELOCITY ESTIMATION CONCLUSIONS
As we mentioned, the purpose for an accurate estimation of this parameter stems from the possibility to de-
velop a detection hypothesis test based on this feature only. Initially in this thesis we have investigated the
novel idea to estimate the angular velocity from the estimation of the instant rotation angle of wind turbine
from polarimetric radar data. This approach is mainly dedicated to the case when the radar beam axis and
rotation axis coincide. Specifically, we proposed a model-based maximum likelihood estimation approach
which allows the incorporation of multiple received measurements. As it was expected the accuracy of the
estimation is improved as more measurements are coherently processed by the radar. With this model-based
estimation approach, we are capable of creating higher SNR level even when the signal power is low. There-
fore the accuracy of the estimation, it can be said, that is ’controlled’ by the radar itself. However, with a more
careful notice in the resulted figures, the increase of the measurements generates multiple sub-optimum es-
timated values, which might make difficult or at least very challenging the application of an iterative estima-
tion algorithm. Consequently, this so called Brute Force method, is highly effective for our case. However, the
ambiguity with respect to the true optimum value decreases as more measurements are incorporated in the
estimation process. Therefore as the number of measurements processed goes to infinity, the cost function
tends to a delta function, placed on the exact value of this parameter. Although we treated a simplified model
for the received data, thanks to the proposed model-based solution, becomes straightforward to extend the
model formulation by introducing the wind turbine mast contribution or other parts of this construction that
might interfere.

As we mentioned, the main purpose for the estimation of the angular velocity is that it can be directly
applied in a detection rule which would be based on this unique feature.The detection of the presence of
a rotating object (a wind turbine in our case) will facilitate the mitigation of WTC from the received data.
As the micro-Doppler shift, which is highly related with the angular velocity, affects negatively the detection
performance of a typical radar system, is important to estimate this parameter also when rotation axis and
radar beam axis do not coincide. In order to deal with this task we applied a radar polarimetric signal model
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which is valid only for low frequencies
(

f < 1G H z
)
. However, since this model includes more parameters than

simply a rotation speed, we applied a two-dimensional estimation approach. The Brute Force method for this
scenario aids in the accurate and relatively fast estimation of the angular velocity and initial position of the
blades. As we noticed, the derived cost functions for each parameter differ significantly and this is explained
by the polarimetric signal model equations themselves. These parameters are found in different functions in
these signal models and thus different cost functions will be obtained. In other words, the estimation of one
parameter affects the estimation of the other since this is a simultaneous search. The cost function for the
position of the blades has a wider main lobe comparing to the cost function of the angular velocity. Although
this means less accuracy for the estimation of the initial angular position, it does provide higher tolerance on
the search grid.

5.2. WIND TURBINE CLUTTER DETECTION CONCLUSIONS
In the last chapter we attempted to develop a maximum likelihood detector that will be based on the po-
larimetric signal models derived already. Since we have separate models for each measurement scenario, we
examined separately the detection process for each case. We showed that the test statistic in both cases fol-
lows a Chi-Squared distribution which enabled us to use already existed close-form expressions for the PD

and PF A . For the case or perpendicular observation it became evident that, not a high level of SNR is required
in order to achieve a significantly high value of PD . This initially stems from the behavior of the cost function
or the test statistic in equation (4.8) which experiences a large drop around the target of interest. Also this
model-based method enables us to perform credible detections by simply process more measurements.

For the case of non-perpendicular observation also is not necessary to have a large value of SNR in order
to achieve an effective detection. However the most important conclusion is that in order to achieve a specific
value of PD for a desired PF A , higher SNR level is required for the case of non-perpendicular observation than
this for perpendicular observation. This is possibly because the detector for non perpendicular observation,
identifies the existence of a target when two parameters maximize the Test statistic simultaneously.

5.3. FUTURE WORK
In this thesis we developed a model-based maximum likelihood polarimetric detector for WTC. However, this
task remains an open scientific challenge. Detection of WTC involves research and knowledge from different
scientific fields such as Electromagnetics, radar signal processing, extended target mitigation, which needs to
be combined for effective solution. Regarding the approach proposed in this thesis, there are two important
subjects that have been left for future research.

5.3.1. MODEL FOR THE WIND TURBINE BLADES IN HIGHER FREQUENCIES
An important part of this thesis is dealing with the estimation and detection of WTC for low frequencies. Ac-
cording to this model, each of the rotating blades is modeled as a simple thin-wire(dipole) with a priori known
electromagnetic behaviour. Although it does provide treatable and close-form expressions, is characterized
by a limited or even absence applicability. An upgraded polarimetric signal model needs to be developed for
higher frequencies which will not only simulate the wind turbine blades but also its mast.

In our simulations we assumed that the Wind Turbine occupies only one range cell and thus behaves as a
single scatterer. However, there will be cases where the range resolution of the radar or the distance from the
wind turbine requires to treat the wind turbine as an extended target. Therefore a suitable model, subject to
the applicability of high frequencies as well as for extended Wind Turbine blades, needs to be investigated.

5.3.2. CLASSIFICATION BASED ON THE ROTATING MOVEMENT
In the detection approach we defined in Chapter 4, the binary test decides between a backscattered signal
,with a specific angular velocity, and noise. This means that this approach is considered as a first step for
classifying different rotating objects based on the estimated angular velocity. However, an important task
would be to develop a detector in such a way that also radial moving objects might be identified. In other
words, the formulation of the detector is now extended into multiple hypothesis testing, as the following
equations show:

H0 : z = c +n

H1 : z =G (Ω) a +c +n
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H2 : z =G (0) a +c +n

where c and n are environmental clutter and noise respectively ais the complex RCS of the target and
G (Ω) is a polarimetric vector that modulates the RCS and is a function of the angular velocity Ω. The third
hypothesis denotes a special case where a signal with zero angular velocity is present in our data. This signal
might come from either a radial moving target or another stationary object. Therefore this approach implies
that two test statistics are required. One between H0 and H1 and one between H0 and H2. The test statistic
with the highest value is compared with a threshold according to a desired PF A . Depending on the result
(exceed the threshold or not), we will not only be able to detect the presence of a target but also recognize the
type of target. This means that we can distinguish a radial moving object, such as a car, from a rotating object
such as wind turbines.
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