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1.1 VEGETATION AND THE WATER CYCLE

Vegetation takes many shapes around the world, ranging from needleleaf forests and
temperate deciduous forests, to savannas and tropical rainforests. Across the seasons,
vegetation plays a key role in the water cycle, which involves the natural movement of
water between the Earth’s atmosphere, surface, and subsurface. Vegetation influences
the water cycle by regulating the partitioning of precipitation into runoff and evapora-
tion (Seneviratne et al., 2010). Simultaneously, vegetation also influences the energy cy-
cle through the associated latent heat fluxes. Evaporation from land can be subdivided
into interception evaporation from surfaces such as vegetation leaves, soil evaporation,
and transpiration. From these three fluxes, transpiration, the process by which vegeta-
tion transports water from the subsurface through root water uptake to the atmosphere
through evaporation from leaves’ stomata, is on average the largest (Miralles et al., 2011;
Schlesinger and Jasechko, 2014; Wei et al., 2017; Nelson et al., 2020). The amount of
evaporation from an ecosystem is influenced by climatic factors such as precipitation,
radiation and humidity, and by the physical characteristics (both aboveground and be-
lowground) of the vegetation (e.g., Teuling et al., 2009; Zhang et al., 2017). Given vegeta-
tion’s adaptability to prevailing climate and landscape characteristics (Fan et al., 2017),
its appearance is dynamic across spatial (local, regional, and global) and temporal (sea-
sonal, interannual, and decadal) scales (e.g., Kleidon, 2004; Méndez-Barroso et al., 2009;
Pan et al., 2018; Holsinger et al., 2019).

1.2 VEGETATION IN LARGE SCALE MODELS

Considering its essential role in the Earth’s water cycle, vegetation is a key component of
large scale (i.e., regional to global) hydrological models and land surface models (LSMs),
which represent the land component in models used for climate reanalyses and climate
projections. In these models, the representations of both the aboveground and below-
ground vegetation characteristics determine the quantity and timing of modeled water
and energy fluxes over land.

Information on aboveground vegetation characteristics, such as the type of vegeta-
tion, the amount of leaves in the canopy, or the greenness of the vegetation, is needed for
modelling evaporation. However, direct in-situ observations of such properties are not
straightforward and, if available, not representative for large scales. Therefore, satellite
remote sensing data have been widely used in LSMs to represent the spatial and tem-
poral variability of vegetation characteristics (Balsamo et al., 2018). For example, global
satellite-derived maps of land cover and albedo have been directly used as boundary
conditions in LSMs (Faroux et al., 2013; Alessandri et al., 2017; Boussetta et al., 2021).
In addition, the spatial and temporal dynamics of leaf area index (LAI), which is a mea-
sure for the amount of leaf area of vegetation relative to the covered ground area, derived
from satellite remote sensing have been assimilated in several LSMs for different spatial
scales, generally leading to improved water, energy, and carbon fluxes (Albergel et al.,
2017, 2018; Kumar et al., 2019; Ling et al., 2019; Rahman et al., 2020, 2022). Although re-
mote sensing based vegetation characteristics have been extensively used in large scale
models, the effects of the model representation of interannual variability of aboveground
vegetation characteristics on the water cycle has remained understudied.
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Besides the aboveground appearance of vegetation, belowground roots also regulate
evaporation by facilitating transpiration through subsurface water uptake. The vegeta-
tion root zone is defined as the part of the subsurface where vegetation has developed
roots and is characterized by parameters such as root depth and root density. Root zone
characteristics vary across different regions and change over time, because vegetation
shapes its roots in a way to provide both anchoring in the subsurface (Read and Stokes,
2006), as well as access to sufficient nutrients and water (Zhang et al., 2019; Oldroyd and
Leyser, 2020; Maan et al., 2023). The importance of the root zone in hydrological and
land surface modeling is widely acknowledged, with multiple studies highlighting the
sensitivity of these models to the representation of the vegetation’s root zone (Mahfouf
et al., 1996; Desborough, 1997; de Rosnay and Polcher, 1998; Norby and Jackson, 2000;
Feddes et al., 2001; Teuling et al., 2006a,b). However, direct observations of root zone
characteristics at large scales (i.e., beyond lab-scale or individual plants) do not exist.

LSMs generally describe root zone characteristics (e.g., root depth, root density and
root distribution) for different vegetation classes combined with soil type information
and a model-dependent fixed soil depth. The generally shallow (< 2 m) (Pan et al., 2020)
fixed soil depth limits the size of the model root zone representation and, as a conse-
quence, also the moisture extraction by roots from deep soil layers (Kleidon and Heimann,
1998; Sakschewski et al., 2020). LSMs use lookup tables that prescribe the same root zone
parameters worldwide for each combination of vegetation and soil class as obtained
from a very limited number of point-scale observations of rooting structure (Canadell
et al., 1996; Jackson et al., 1996; Zeng et al., 1998; Schenk and Jackson, 2002a,b). The
spatial distribution of the root zone parameterization in LSMs is obtained by combining
these lookup table values with maps of vegetation cover and soil texture. The limitations
of this approach are as follows: the root observations (1) are uncertain due to the fact
that they mostly vertically extrapolate root measurements while excavating only the first
meter or less (Schenk and Jackson, 2002a,b); (2) do not adequately represent global dis-
tributions of root structures because observations are extremely scarce – e.g., the global
Schenk and Jackson (2002b) dataset includes only 475 root profiles in 209 geographical
locations; (3) are observations of individual plants that do not represent spatial varia-
tions in ecosystem composition at larger scales than the plot scale; and (4) are snapshots
in time and, therefore, do not represent their evolution over time due to continuous
adaptation of ecosystems to changing environmental conditions.

Alternative approaches for describing the vegetation’s root zone on a large scale adopt
a holistic perspective on ecosystems instead of the lookup tables based on point-scale
root observations. These approaches address the challenge posed by the absence of di-
rect observations of root characteristics at scales larger than plot scale. Instead, they
focus on indirectly estimating root characteristics from observable ecosystem proper-
ties that are available at the scale of interest using optimality principles (Kleidon, 2004;
Gao et al., 2014; Speich et al., 2018; Dralle et al., 2020a). These approaches are based on
the evidence that the extent of vegetation root systems is primarily controlled by climate
conditions, as vegetation tends to optimize its aboveground and belowground carbon
investment in order to optimally function by avoiding water shortages and maintain-
ing transpiration and productivity (Kleidon and Heimann, 1998; Collins and Bras, 2007;
Guswa, 2008; Sivandran and Bras, 2013; Gao et al., 2014; De Boer-Euser et al., 2016; Kup-
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pel et al., 2017; Singh et al., 2020).
Overall, the identified research gap is that the spatial and temporal variability of

aboveground and belowground vegetation are not adequately captured in large scale
(i.e., regional to global) hydrological models and land surface models. This limitation
results in deficiencies in accurately modeling the variability of surface water and en-
ergy states and fluxes (e.g., Pitman, 2003; Seneviratne et al., 2006; Alessandri et al., 2007;
Ukkola et al., 2016; Wartenburger et al., 2018; Gharari et al., 2019; Fisher and Koven, 2020;
Hersbach et al., 2020). Consequently, it introduces uncertainties in predicting the global
water budget and hydrological extremes such as droughts and floods (Brunner et al.,
2021). Hence, it is essential to improve vegetation representation in large scale models,
especially considering ongoing climate change and land-use changes.

1.3 THIS THESIS
This thesis addresses the limited spatial and temporal variability of both aboveground
and belowground vegetation in large scale (i.e., regional to global) hydrological models
and land surface models. The objective of this doctoral research is to develop more re-
alistic model representations of spatial and temporal vegetation variability, and explore
their potential for improving modeled water fluxes in these models. To achieve this ob-
jective, we use readily available data suitable to use at large scales (∼5 to 100 km) to rep-
resent both aboveground and belowground vegetation variability. Specifically, we ap-
ply remote sensing data for representing aboveground vegetation, and we adopt a holis-
tic, climate-controlled, approach for representing belowground vegetation. The effects
of these developments are then evaluated through model simulations and comparison
with observations and other modeling approaches.

This thesis is structured as follows: in Chapter 2, we integrate interannual variability
of aboveground vegetation characteristics derived from remote sensing data in the Hy-
drology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land surface
model, and evaluate the effects on modeled hydrology. Chapters 3-5 focus on below-
ground vegetation characteristics. In these chapters we use the concept of root zone
storage capacity (Sr), which represents the hydrologically relevant magnitude of the veg-
etation’s root zone. Sr (mm) is defined as the maximum subsurface moisture volume per
unit area of subsurface moisture that is accessible to roots of vegetation for uptake (Gao
et al., 2014). It is important to note that Sr is not necessarily proportional to the depth of
roots. While root depth only describes the vertical root profile, Sr also accounts for lateral
root extent and root density. For example, an ecosystem covered by deep-rooting vege-
tation with roots with low density likely has a smaller Sr than one covered by vegetation
with shallow, high-density roots (Singh et al., 2020). Chapter 3 represents an explorative
study on integrating a climate-controlled representation of Sr in the HTESSEL model at
regional scale, and evaluating its effects on modeled water fluxes. In Chapter 4 we quan-
tify the influence of irrigation on the estimation of root zone storage capacity in a global
context. In Chapter 5 we explore the spatial variability of the influence of climatic, vege-
tation, and landscape characteristics on the magnitude of Sr globally, and based on these
findings, we create a global estimate of Sr. Finally, Chapter 6 presents a synthesis of the
main findings of this research on vegetation variability in large-scale models, including
insights and implications, and an outlook for future research.
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INTERANNUAL ABOVEGROUND

VEGETATION VARIABILITY IN THE

HTESSEL LAND SURFACE MODEL

Land surface models require information on aboveground characteristics of vegetation
such as land cover type and leaf area index. Here we integrated interannual variability of
vegetation characteristics based on remote sensing data into a land surface model, and we
evaluated the effects on simulated water dynamics.

This chapter is based on:

van Oorschot, F., van der Ent, R. J., Hrachowitz, M., Di Carlo, E., Catalano, F., Boussetta, S., Balsamo, G.,
and Alessandri, A.: Interannual land cover and vegetation variability based on remote sensing data in the
HTESSEL land surface model: implementation and effects on simulated water dynamics, Earth Syst. Dynam.,
14, 1239–1259, 2023.
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2. INTERANNUAL ABOVEGROUND VEGETATION VARIABILITY IN THE HTESSEL LAND

SURFACE MODEL

SUMMARY

Vegetation largely controls land surface–atmosphere interactions. Although vegetation
is highly dynamic across spatial and temporal scales, most land surface models cur-
rently used for reanalyses and near-term climate predictions do not adequately repre-
sent these dynamics. This causes deficiencies in the variability of modeled water and
energy states and fluxes from the land surface. In this study we evaluated the effects
of integrating spatially and temporally varying land cover and vegetation characteris-
tics derived from satellite observations on modeled evaporation and soil moisture in the
Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land sur-
face model. Specifically, we integrated interannually varying land cover from the Euro-
pean Space Agency Climate Change Initiative and interannually varying leaf area index
(LAI) from the Copernicus Global Land Services (CGLS). Additionally, satellite data on
the fraction of green vegetation cover (FCover) from CGLS were used to formulate and
integrate a spatially and temporally varying effective vegetation cover parameterization.
The effects of these three implementations on model evaporation fluxes and soil mois-
ture were analyzed using historical offline (land-only) model experiments at the global
scale, and model performances were quantified with global observational products of
evaporation (E) and near-surface soil moisture (SMs). The interannually varying land
cover consistently altered the evaporation and soil moisture in regions with major land
cover changes. The interannually varying LAI considerably improved the correlation of
SMs and E with respect to the reference data, with the largest improvements in semiarid
regions with predominantly low vegetation during the dry season. These improvements
are related to the activation of soil moisture–evaporation feedbacks during vegetation-
water-stressed periods with interannually varying LAI in combination with interannu-
ally varying effective vegetation cover, defined as an exponential function of LAI. The
further improved effective vegetation cover parameterization consistently reduced the
errors of model effective vegetation cover, and it regionally improved SMs and E . Overall,
our study demonstrated that the enhanced vegetation variability consistently improved
the near-surface soil moisture and evaporation variability, but the availability of reliable
global observational data remains a limitation for complete understanding of the model
response. To further explain the improvements found, we developed an interpretation
framework for how the model development activates feedbacks between soil moisture,
vegetation, and evaporation during vegetation water stress periods.
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2.1 INTRODUCTION
Interactions between the land surface and the atmosphere in terms of water and en-
ergy are largely dependent on vegetation. To improve model representations of vegeta-
tion variability, and as a consequence, the modeled water dynamics, datasets represent-
ing aboveground vegetation characteristics based on satellite remote sensing data have
been widely used in land surface models (LSMs) (Chapter 1). Recent studies have ex-
ploited the latest satellite campaigns to update land cover (LC) and leaf area index (LAI)
representation into the land surface model Carbon-Hydrology ECMWF Tiled Scheme
for Surface Exchanges over Land (CHTESSEL) (Johannsen et al., 2019; Nogueira et al.,
2020, 2021; Boussetta et al., 2021) as part of the Integrated Forecasting System (IFS) of
the European Centre for Medium-Range Weather Forecasts (ECMWF). These studies re-
placed the original fixed map of land cover from the Global Land Cover Characteristics
(GLCC) dataset representing the early 1990s (Loveland et al., 2000) with an updated map
obtained from the latest-generation estimates of land cover from the European Space
Agency Climate Change Initiative (ESA-CCI) (Poulter et al., 2015). Similarly, the LAI cli-
matology from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Bous-
setta et al., 2013) was replaced with updated climatology from the recent Copernicus
Global Land Service (CGLS) LAI dataset (Verger et al., 2014). The integration of these
satellite-derived variables considerably reduced the bias of model land surface temper-
atures (Johannsen et al., 2019; Nogueira et al., 2020, 2021). In addition, Boussetta et al.
(2021) showed an overall reduction of model annual mean evaporation bias when using
the updated LC and LAI in CHTESSEL.

LAI in LSMs can be coupled to the effective vegetation cover (Ceff), which character-
izes the density of the vegetated surface from a top view that effectively contributes to
the water and energy balances. The organization structure of leaves inside the canopy
is reported as vegetation clumping. In previous modeling studies, the seasonal varia-
tions in Ceff have been described as an exponential function of LAI considering vege-
tation clumping in (C)HTESSEL (Alessandri et al., 2017; Nogueira et al., 2020; Boussetta
et al., 2021) and in other land modeling efforts (Anderson et al., 2005; Krinner et al., 2005;
Le Moigne, 2012). The shape of the exponential relation between Ceff and LAI in state-of-
the-art land surface models has, to our knowledge, been assumed to be constant in time
and space so far (Krinner et al., 2005; Alessandri et al., 2017; Nogueira et al., 2020; Bous-
setta et al., 2021). However, studies have shown that the degree of vegetation clump-
ing, and therefore the shape of this relation, actually varies for different vegetation types
(Chen et al., 2005; Ryu et al., 2010; Zhang et al., 2014).

The research gap that we identified is that most previous LSM studies using HTES-
SEL aimed at improving the temporally fixed boundary condition of land cover and the
monthly seasonal cycle of LAI, while not exploring the effects of interannual variations
of LC and LAI. Moreover, these studies have generally used one spatially fixed relation-
ship between effective vegetation cover and LAI, while there is considerable evidence
that this relationship is vegetation-type-dependent (Chen et al., 2005; Ryu et al., 2010;
Zhang et al., 2014).

The objective of this research is to evaluate the effects of integrating temporal and
spatial variations of land cover and vegetation characteristics derived from satellite ob-
servations on modeled evaporation and soil moisture in the land surface model HTES-
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SEL. Specifically, we will integrate annually varying LC from ESA-CCI as well as season-
ally and interannually varying LAI from CGLS. Additionally, the CGLS fraction of green
vegetation cover (FCover; Verger et al., 2014) is used to formulate and implement a spa-
tially (i.e., vegetation-dependent) and temporally (i.e., interannually) variable effective
vegetation cover parameterization in HTESSEL.

2.2 METHODS
This section describes how we integrated temporal and spatial variations of land cover
and vegetation characteristics in HTESSEL. In Sect. 2.2.1 we describe the land cover and
vegetation data used, in Sect. 2.2.2 we describe the model characteristics with relevance
to water dynamics, and in Sect. 2.2.3 the model developments performed in this study
are reported. Finally, the model experiments and model evaluation are described in
Sect. 2.2.4 and Sect. 2.2.5, respectively.

2.2.1 LAND COVER AND VEGETATION DATA

Here we used yearly land cover maps at a 300 m spatial resolution from ESA-CCI for the
time period 1993–2019 (Defourny et al., 2017; Copernicus Climate Change Service, 2019).
In this dataset the land cover is classified into 22 classes based on the United Nations
Land Cover Classification System (LCCS) (Di Gregorio and Jansen, 2005).

LAI and FCover data were obtained from CGLS for 1999–2019 (Copernicus Global
Land Service, 2022). We used the 1 km version 2 collection in which both products were
derived at a 10-daily resolution from the top-of-canopy reflectance measurements by the
SPOT/VEGETATION (1999–2013) and PROBA-V (2014–2019) sensors (Verger et al., 2019).
These two time series were homogenized using a cumulative distribution function (CDF)
approach following Boussetta and Balsamo (2021). For model spin-up purposes, the
CGLS LAI (1999–2019) was further extended backwards with former-generation LAI data
from the Advanced Very-High-Resolution Radiometer (AVHRR) for 1993–1999 at a 0.05◦
resolution (Pacholczyk and Verger, 2020). The AVHRR LAI (1993–1999) was interpo-
lated using conservative interpolation (Schulzweida, 2022) to the CGLS 1 km resolution
and harmonized with CGLS (1999–2019) using CDF matching (Boussetta and Balsamo,
2021).

2.2.2 RELEVANT MODEL COMPONENTS FOR WATER CYCLE REPRESENTATION

Here we used the HTESSEL land surface model (Balsamo et al., 2009) as it was devel-
oped and implemented for climate predictions with the EC-Earth3 Earth system model
(Döscher et al., 2022). This version already implements a temporally, but not spatially,
varying effective vegetation cover, which is further developed in this work (Alessandri
et al., 2017). This section describes the relevant model representations of land cover
(Sect. 2.2.2), leaf area index (Sect. 2.2.2), and effective vegetation cover (Sect. 2.2.2) in
the current HTESSEL version as part of the EC-Earth3 Earth system model (ESM) and
the role of these representations in the modeled water cycle. Section 2.2.3 describes the
adaptations of these model components made in this study.
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Figure 2.1: Vegetation representation in a grid cell with example vegetation types and cover fractions. (a) Grid
cell vegetation type and cover fraction based on land cover dataset. (b) HTESSEL dominant low- and high-
vegetation type (TL and TH) and cover fraction (AL and AH). (c) HTESSEL effective vegetation cover with
Ceff,L and Ceff,H being the effective low- and high-vegetation cover fraction, CB the bare soil fraction, and
Ceff =Ceff,L +Ceff,H, with the arrows indicating the temporal variability of Ceff as discussed in Sect. 2.2.2.

LAND COVER REPRESENTATION

In HTESSEL the vegetated area of a grid cell is divided into high- and low-vegetation
tiles. In the case of snow there are separate model tiles for snow on bare ground with
low vegetation and snow beneath high vegetation (Balsamo et al., 2009). Figure 2.1a
represents an example of the vegetation types and cover fractions for a single grid cell
that were originally based on the GLCC land cover dataset (Loveland et al., 2000). The
low-vegetation (L) and high-vegetation (H) types with the largest cover fraction in each
grid cell (see example in Fig. 2.1a) are used in HTESSEL as dominant vegetation types TL

and TH (Fig. 2.1b). The corresponding HTESSEL vegetation cover fractions AL and AH

are based on the total low- and high-vegetation grid cell cover fractions.

TL and TH directly control surface water and energy fluxes because model param-
eters such as vegetation root distribution, minimum canopy resistance, and roughness
lengths for momentum and heat are obtained from lookup tables based on the vege-
tation type (ECMWF, 2016). Surface fluxes are calculated separately for low- and high-
vegetation tiles and combined based on the fractions AL and AH. Here we only focus
on the surface evaporation flux that we define as the sum of transpiration, soil evapo-
ration, interception evaporation, and, in the case of lakes, also open-water evaporation
(Savenije, 2004; Miralles et al., 2020). The subsurface in HTESSEL consists of four soil
layers with thicknesses of 7, 21, 72, and 189 cm, totaling a depth of 289 cm. In this study
we differentiate between near-surface soil moisture (SMs) in the top layer (0–7 cm) and
the subsurface soil moisture (SMsb) in the three deeper layers (7–289 cm).

LEAF AREA INDEX REPRESENTATION

LAI is defined separately for the high- and low-vegetation tiles (LAIL and LAIH). In the
original HTESSEL model, LAIL and LAIH are prescribed as a seasonal cycle that is derived
from a satellite-based climatology based on MODIS (Boussetta et al., 2013) and the veg-
etation cover fractions AL and AH. The LAI controls the canopy resistance rc of the high-
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and low-vegetation tiles through the following linear relation:

rc =
rs,min

LAI
f1(Rs) f2(Da) f3(SM), (2.1)

with rs,min being the prescribed vegetation-specific minimum canopy resistance that
does not change in time and f1(Rs), f2(Da), and f3(SM) being functions describing the
dependencies on shortwave radiation (Rs), atmospheric water vapor deficit (Da), and
weighted average soil moisture based on the root distribution over the four soil layers
(SM), respectively. The effects of CO2 changes on rc are not explicitly taken into account
in the present study. The root fractions are generally the largest in soil layers 2 and 3, and
therefore transpiration mostly originates from the SMsb. The transpiration is linearly re-
lated to rc and atmospheric variables. Furthermore, the LAI controls the capacity of the
model interception reservoir W1m by

W1m =W1max · (CB +CL ·LAIL +CH ·LAIH), (2.2)

with W1max = 0.0002 m and CB, CL, and CH being the fractions of bare soil, effective
low vegetation, and effective high vegetation, respectively (Sect. 2.2.2). The interception
evaporation per time step follows from the water content of the interception reservoir
(calculated from precipitation), W1m, and the potential evaporation.

EFFECTIVE VEGETATION COVER REPRESENTATION

The model effective low vegetation cover and high vegetation cover (Ceff,L and Ceff,H)
represent the part of the model vegetation cover fraction (AL and AH) that is actively
contributing to the water balance through transpiration and interception evaporation
(Fig. 2.1c). The fraction of the grid cell not covered by effective vegetation is treated as
bare soil (CB), where only soil evaporation takes place. Soil evaporation only occurs in
the top soil layer (0–7 cm) and therefore originates only from SMs. The model resistance
to soil evaporation (rsoil) is described by

rsoil = rsoil,min f3(SMs), (2.3)

with rsoil,min = 50 sm−1 and f3(SMs) representing the dependency on the first layer soil
moisture content. The effective vegetation cover fractions Ceff,L and Ceff,H as well as bare
soil fraction CB are described by

Ceff,L = cv,L · AL, (2.4)

Ceff,H = cv,H · AH, (2.5)

Ceff =Ceff,L +Ceff,H, (2.6)

CB = 1−Ceff, (2.7)

with cv,L and cv,H representing the low and high vegetation density. Originally, cv,L and
cv,H were described by a lookup table with vegetation-specific values, allowing for spatial
variation of the Ceff,L, Ceff,H, and CB fractions. However, this approach does not represent
temporal variations in vegetation density. To allow for temporal variability in Ceff (repre-
sented by the arrows in Fig. 2.1c), cv,L and cv,H were linked to the seasonal variability of
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LAI by the following exponential relation (Alessandri et al., 2017):

cv,L = 1−e−k LAIL , (2.8)

cv,H = 1−e−k LAIH , (2.9)

with k being the canopy light extinction coefficient that represents the degree of vegeta-
tion clumping (Anderson et al., 2005). Previously k was generally set to constant values
of 0.5 (Krinner et al., 2005; Alessandri et al., 2017) or 0.6 (Boussetta et al., 2021) for all veg-
etation types. As a consequence, the vegetation-dependent spatial variability in k was
not accounted for.

2.2.3 MODEL DEVELOPMENTS

THE IMPLEMENTED LAND COVER VARIABILITY

Here we implemented the annually varying ESA-CCI land cover (LC) data for the 1993–
2019 period (Sect. 2.2.1), as developed by Boussetta and Balsamo (2021), for the HT-
ESSEL vegetation types and spatial resolution. For consistency with the other model
adaptations and evaluations (Sect. 2.2.3, 2.2.3 and 2.2.5), our LC analyses were based on
1999–2018. The interannually varying LC from ESA-CCI introduced a change in TL in
5 % and TH in 4 % of the land grid cells between the first (1999) and the last (2018) year
of the considered study period (Fig. 2.2). Figure 2.2c shows the fraction of land grid cells
in which each vegetation type (dominant in 1999) is replaced by another type in 2018
(plain colors) and conversely how often each vegetation type replaces the 1999 domi-
nant one in 2018 (hatched colors). The figure shows that crops and short grass relatively
often replaced other low-vegetation types (relatively large hatched bars), while evergreen
needleleaf (EN) and deciduous broadleaf (DB) trees were relatively often replaced by
other high-vegetation types (relatively large plain bars). The low- and high-vegetation
cover fractions changed in many regions according to the ESA-CCI LC dataset (Fig. 2.3).
During the 1999–2018 period, low vegetation replaced high vegetation in the southern
Amazon and northeastern Siberia. Conversely, high vegetation replaced low vegetation
in the boreal regions of Lapland and northwestern Siberia. Moreover, arid regions such
as central Asia and Australia experienced an expansion of low vegetation over the 1999–
2018 period. In Fig. 2.3 we highlight the southern Amazon, Lapland, and central Asia
where the vegetation cover fraction changed considerably. These regions are further an-
alyzed in Sect. 2.3.1.

THE IMPLEMENTED LEAF AREA INDEX VARIABILITY

We used the monthly CGLS LAI data described in Sect. 2.2.1 to prescribe model LAI, rep-
resenting both the seasonal cycle and interannual variability of LAI. The 1 km LAI data
were interpolated using conservative interpolation to the HTESSEL grid (Schulzweida,
2022). Next, LAI was disaggregated into low and high LAI (LAIL and LAIH) based on the
low- and high-vegetation cover fractions (AL and AH) for use in the HTESSEL model
setup with separate low- and high-vegetation tiles (Boussetta et al., 2021; Boussetta and
Balsamo, 2021). Figure 2.4 shows the LAI interannual variability as integrated here in
HTESSEL, quantified with the standard deviation. The effects of this added variability
are presented in Sect. 2.3.2.
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Figure 2.2: (a) Model low (TL) and (b) high (TH) dominant vegetation types in 1999 based on ESA-CCI land
cover. (c) Changes in low- and high-vegetation type as a percent of the total land points, with plain colors indi-
cating that the vegetation type was replaced in 2018 compared to 1999 and hatched colors that the vegetation
replaced another type in 2018 compared to 1999. Note that low vegetation and high vegetation are treated
separately and do not replace each other. E stands for evergreen, D for deciduous, N for needleleaf, and B for
broadleaf.

Figure 2.3: (a) Model low- (AL) and (b) high-vegetation (AH) cover fraction in 1999 as well as the absolute
difference in (c) AL and (d) AH between 2018 and 1999 (2018–1999) based on ESA-CCI land cover. Blue (red)
indicates an increased (reduced) cover in 2018. The black boxes highlight the three regions of the southern
Amazon, Lapland, and central Asia that are further analyzed in Sect. 2.3.1.
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Figure 2.4: Standard deviation (SD) of monthly interannual anomaly CGLS LAI for 1999–2018 as implemented
in experiment IAK5 (Table 2.1).

THE IMPLEMENTED VEGETATION-SPECIFIC EFFECTIVE VEGETATION COVER PARAMETERI-
ZATION

The CGLS FCover and LAI data were used (Sect. 2.2.1) to further develop the model ef-
fective vegetation cover parameterization as described by Eqs. (2.4)–(2.9). The constant
k = 0.5 parameter was replaced with a vegetation-specific k to improve spatial and tem-
poral variability of the model Ceff. We assumed that the model Ceff is equivalent to the
CGLS FCover data. Following the model Ceff parameterization, FCover is then described
as follows:

FCover = 1−e−k LAI. (2.10)

We estimated k for different HTESSEL vegetation types by solving the minimization prob-
lem in Eq. (2.11) using a nonlinear least-squares optimization at a 1 km spatial resolu-
tion.

min∥1−e−k LAI −FCover∥2 (2.11)

To discriminate vegetation types, the grid cells where each vegetation type maximizes
its cover fraction based on the ESA-CCI LC developed in Boussetta and Balsamo (2021)
were selected for each year. For each set of grid cells corresponding to each vegetation
type, the FCover and LAI 10-daily 1 km data for 1999–2019 were extracted. Here we used
a 1×1 km resolution for LAI, FCover, and LC in order to obtain the most representative
discrimination of vegetation types and to minimize vegetation mixing within each re-
solved grid cell. For the optimization of k, a randomly selected subsample of 2000 grid
points of the LAI and FCover time steps (10-daily) for each vegetation type was used to
keep the analysis computationally feasible, while ensuring a representative sample with
robust significance of the fit. In this way, we obtained a sample of 2000 grid cells times 36
time steps per year times 20 years, which equals 1 440 000 data points to be used for the
optimization for each vegetation type. This optimization resulted in vegetation-specific
k values that were implemented in the HTESSEL code as in Eqs. (2.4)–(2.9). The ro-
bustness of the optimization was verified by repeating the random selection procedure
several times, which resulted in negligible changes in the k estimates.
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2.2.4 MODEL EXPERIMENTS
We performed experiments with an offline, uncoupled version of HTESSEL to evaluate
the effect of the implemented vegetation variability as described in Sect. 2.3. HTESSEL
was forced with atmospheric hourly forcing from ECMWF Reanalysis v5 (ERA5) and sim-
ulations were performed from 1993–2019, with 1993–1999 as the spin-up period (details
in Table S2.1 in the Supplementary material). The model spatial resolution is the n128

reduced Gaussian grid corresponding to grid cells of ∼ 75×75 km. In total, four differ-
ent model experiments were performed (Table 2.1). In the first experiment, as a bench-
mark and control experiment (CTR) the land cover of all years was set to the ESA-CCI
land cover of 1993, the LAI of all years was set to the 1993–2019 climatology, and the Ceff

parameterization with k = 0.5 was used. This reflects standard settings of the EC-Earth3
version of HTESSEL. In the second experiment (IALC) the interannually varying ESA-CCI
LC was included, while in the third experiment (IAK5) we further added interannually
varying CGLS LAI. Finally, the model sensitivity to the vegetation-specific Ceff param-
eterization (see Sect. 2.2.2) was evaluated in the fourth experiment (IAKV). The model
experiments were evaluated for 1999–2018, which is the longest period to consistently
assess all three model implementations with the available evaluation data described in
Sect. 2.2.5.

Table 2.1: Details of model experiments.

Experiment Land cover Leaf area index Effective vegetation cover
CTR ESA-CCI fixed CGLS climatology k = 0.5
IALC ESA-CCI interannual CGLS climatology k = 0.5
IAK5 ESA-CCI interannual CGLS interannual k = 0.5
IAKV ESA-CCI interannual CGLS interannual k vegetation-specific

2.2.5 MODEL EVALUATION

MODEL VARIABLES

The effects of the vegetation-specific Ceff parameterization on the model Ceff were as-
sessed in IAKV compared to IAK5. Furthermore, we analyzed the effects of the increas-
ingly detailed model land cover and vegetation variability in the three experiments (IALC,
IAK5, IAKV) on total evaporation (E) and the evaporation components, i.e., transpiration
(Et), soil evaporation (Es), and interception evaporation (Ei). In addition, the effects on
model near-surface soil moisture (SMs) and subsurface soil moisture (SMsb) were ana-
lyzed.

REFERENCE DATA

The modeled Ceff was compared to the CGLS FCover data (Sect. 2.2.1) at the model spa-
tial resolution. As a benchmark for total evaporation we used the Derived Optimal Linear
Combination Evapotranspiration version 3 (DOLCEv3), which is a linear combination of
estimates from ERA5-land, GLEAM v3.5a and v3.5b, and FLUXCOM-RSMETEO that was
regionally weighted based on the performance in reproducing FLUXNET tower evapora-
tion observations (Hobeichi et al., 2021). The associated uncertainty estimate is spatially
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and temporally varying based on the gridded evaporation and flux tower observations
(Hobeichi et al., 2018). This dataset was selected because it is intended to better capture
evaporation temporal variations compared to previous DOLCE versions (v1 and v2) and
was therefore found to be suitable for evaluating the effects of the modified temporal and
spatial variability of vegetation on evaporation (Hobeichi et al., 2021). Daily evaporation
and associated uncertainty at a 0.25◦ resolution were used for 1999–2018 and were inter-
polated here using conservative interpolation (Schulzweida, 2022) to the model spatial
resolution.

Model near-surface soil moisture (SMs) (0–7 cm) was compared to the combined
active–passive ESA-CCI soil moisture product (ESA-CCI SM v06.1), which is generated
from satellite-based active and passive microwave products that are combined using
the absolute values and dynamic range of the modeled soil moisture of the top 10 cm
soil layer from the Global Land Data Assimilation System (GLDAS)-Noah LSM (Liu et al.,
2012; Dorigo et al., 2017; Gruber et al., 2017). This dataset provides near-surface (∼ 0–
5 cm) soil moisture at a daily resolution on a 0.25◦ grid. Here we used the combined
active–passive product interpolated using conservative interpolation (Schulzweida, 2022)
to the model spatial resolution (∼ 75× 75 km) for 1999–2018 (European Space Agency,
2022). The uncertainty estimates for ESA-CCI SM were also considered as they were pro-
vided with the data product and based on error variance of the data used to generate
the product (Dorigo et al., 2017). ESA-CCI SM contains spatial and temporal gaps due
to densely vegetated areas (tropical forests) and snow coverage. Here only grid cells with
a temporal coverage larger than 60 % were used, and, as a consequence, model perfor-
mance metrics for SMs were only calculated for these grid cells.

EVALUATION METRICS

The hourly model output was first averaged to monthly values, based on which annual
means, monthly climatology, and interannual anomalies were then calculated. To dif-
ferentiate the seasons (June, July, and August: JJA; September, October and Novem-
ber: SON; December, January, and February: DJF; March, April, and May: MAM), the
monthly values were averaged to seasonal means, and interannual seasonal anomalies
were calculated. For the evaluation of E and SMs with respect to reference data, we used
the Pearson correlation coefficients r of the interannual monthly and seasonal anoma-
lies. To calculate r of the interannual monthly and seasonal anomalies, the anomalies
were detrended assuming a linear trend. Detrending was not applied for the effects of
the modified LC, as the interannually varying LC mostly influenced the trend. In addi-
tion, we quantified the effects of the improved vegetation variability with the root mean
squared error (RMSE). For Ceff and E RMSE we used monthly values, while for SMs we
used standardized interannual anomalies. Model SMs and reference ESA-CCI SM can-
not be compared directly in absolute terms due to the different representative soil layers
and the imposed dynamic range from the GLDAS-Noah model (Liu et al., 2012), poten-
tially resulting in different temporal variability (Sect. 2.2.5). To overcome this limitation,
we standardized the interannual anomalies for model and reference SMs by dividing the
monthly SMs by the climatological standard deviation.

To test the significance of the r and RMSE differences between the experiments we
used a bootstrap, in which 1000 data samples were randomly created by resampling the
data of model 1 and model 2 with replacement for each time step. We tested the null
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hypothesis that the r and RMSE of model 1 and model 2 with respect to the reference
data are not significantly different from each other at the 10 % significance level.

2.3 RESULTS

2.3.1 LAND COVER INTERANNUAL VARIABILITY EFFECTS
The interannually varying land cover from ESA-CCI in experiment IALC resulted in a
shift in mean evaporation components (i.e., Et, Es, and Ei) compared to the CTR exper-
iment (Fig. 2.5). The last 5 years of the simulations (2014–2019) are considered because
the effects of the interannually varying land cover mostly emerge in this period. In the
southern Amazon, where AH was reduced on average from 0.64 to 0.57 in IALC com-
pared to CTR (Fig. 2.3), the mean Et was reduced by 3 % from 633 to 615 mm yr−1 and
Ei was reduced by 6 % from 384 to 363 mm yr−1, while Es increased by 17 % from 156 to
183 mm yr−1. In this region, the total evaporation was reduced only by 1 % from 1174 to
1162 mm yr−1 in IALC compared to CTR because the reductions in Et and Ei were par-
tially compensated for by increased Es. The reduced E in IALC is closer to the DOLCEv3
E , which in this region is 1160 mm yr−1. We also found an evaporation compensation
effect in Lapland, where AH increased from 0.24 to 0.30, and central Asia, where AL in-
creased from 0.66 to 0.71 (Fig. 2.3). In Lapland and in central Asia E increased by 2 %
and 0.1 %, respectively, moving closer to the DOLCEv3 E (Fig. 2.5b; Supplementary ma-
terial Table S2.2). In contrast to the small changes in E , the individual E fluxes changed
considerably in these two cases (Fig. 2.5d, f, h).

The changes in Et and Es also induced changes in soil moisture because Es extracts
water exclusively from the near-surface soil layer (SMs), while Et originates mostly from
deeper soil layers (SMsb). However, we observed only marginal differences between
mean SMs and SMsb in IALC compared to CTR (Fig. 2.6), except for the southern Amazon
SMs. The increased Es in the southern Amazon reduced the SMs by 2 %, as more near-
surface soil moisture was extracted (Fig. 2.6b). Individual evaporation fluxes influence
the timing of total evaporation and soil moisture differently. However, the overall mi-
nor magnitude of changes in total E and SMs in IALC compared to CTR led to marginal
changes in RMSE and Pearson correlation coefficients with respect to the reference data
in the three highlighted cases (Supplementary material Table S2.3, Figs. S2.1–S2.3).
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Figure 2.5: Annual mean evaporation fluxes (2014–2018) in experiment CTR with (a) total evaporation (E),
(c) transpiration (Et), (e) soil evaporation (Es), and (g) interception evaporation (Ei), as well as the relative
difference (∆rel) between annual mean evaporation fluxes in experiments IALC and CTR ((IALC−CTR)/CTR)
for (b) E , (d) Et, (f ) Es, and (h) Ei. Blue (red) indicates an increased (reduced) flux. Grey land areas indicate
regions with annual mean E fluxes< 0.1 mm yr−1. The boxes highlight the three regions of the southern Ama-
zon, Lapland, and central Asia with major land cover changes (Fig. 2.3). Results with respect to DOLCEv3 E are
presented in Supplementary material Fig. S2.1. See Table 2.1 for details of the experiments.
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Figure 2.6: Annual mean soil moisture (2014–2018) (SM) in experiment CTR with (a) near-surface soil moisture
(SMs) and (c) subsurface soil moisture (SMsb), as well as the relative difference (∆rel) between annual mean
SM in experiments IALC and CTR ((IALC–CTR)/CTR) for (b) SMs and (d) SMsb. Blue (red) indicates increased
(reduced) soil moisture. Grey land areas indicate regions with annual mean SM < 0.01 m3 m−3. The boxes
highlight the three regions of the southern Amazon, Lapland, and central Asia with major land cover changes
(Fig. 2.3). See Table 2.1 for details of the experiments.

2.3.2 LEAF AREA INDEX INTERANNUAL VARIABILITY EFFECTS
The inclusion of interannual LAI variability in IAK5 (Fig. 2.4) generally led to an increased
anomaly standard deviation (i.e., variability) of E (Fig. 2.7a, b). This effect is mostly dom-
inated by Et (Fig. 2.7d), which, in the model, is linearly related to LAI (Eq. 2.1). Figure 2.7d
and h show that the variability in Et and Ei was mostly increased in semiarid regions such
as the Great Plains region of the US, central Asia, and southern Africa, with a stronger ef-
fect for Et than for Ei. In contrast, the Es variability was reduced with the enhanced LAI
variability in these semiarid regions but was increased in more temperate regions such
as in Europe, the eastern US, and the La Plata Basin in South America (Fig. 2.7e, f). While
the Et anomaly variability considerably increased in IAK5 compared to IALC in semiarid
regions, the anomaly variability in subsurface soil moisture (SMsb) that acts as the main
source of Et was reduced in these regions (Fig. 2.8c, d). On the other hand, the anomaly
variability of SMs increased (Fig. 2.8a, b), while the Es variability was reduced.

Figure 2.9 shows that the Pearson correlation coefficient (r ) of anomaly E with re-
spect to DOLCEv3 increased in IAK5 compared to IALC in 85 % of the land area in which
the r was significantly different in IAK5 compared to IALC. Consistently, the r of anomaly
SMs with respect to ESA-CCI SM also improved in 85 % of the significantly changing land
area. For both E and SMs r increased mostly in semiarid regions with predominantly low
vegetation (Fig. 2.3).
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Figure 2.7: Standard deviation (SD) of anomaly evaporation fluxes in experiment IALC with (a) total evapora-
tion (E), (c) transpiration (Et), (e) soil evaporation (Es), and (g) interception evaporation (Ei), as well as the
relative difference (∆rel) between the anomaly E SD in experiments IAK5 and IALC ((IAK5−IALC)/IALC) for
(b) E , (d) Et, (f ) Es, and (h) Ei. Blue (red) indicates an increased (reduced) SD. See Table 2.1 for details of the
experiments.
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Figure 2.8: Standard deviation (SD) of anomaly soil moisture (SM) in experiment IALC with (a) near-surface
soil moisture (SMs) and (c) subsurface soil moisture (SMsb), as well as the relative difference (∆rel) between
the anomaly SM SD in experiments IAK5 and IALC ((IAK5–IALC)/IALC) for (b) SMs and (d) SMsb. Blue (red)
indicates an increased (reduced) variability. See Table 2.1 for details of the experiments.

Figure 2.9: Pearson correlation difference (∆r ) between experiments IALC and IAK5 (IAK5–IALC) for
(a) monthly anomaly total evaporation (E) with respect to DOLCEv3 evaporation and (b) monthly anomaly
near-surface soil moisture (SMs) with respect to ESA-CCI SM. Blue (red) indicates an increased (reduced) cor-
relation in IAK5 compared to IALC, white indicates small and/or insignificant ∆r , and grey indicates no data
points. See Table 2.1 for details of the experiments. Similar figures for seasonal anomalies are presented in
Supplementary material Figs. S2.5–S2.6.
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2.3.3 VEGETATION-SPECIFIC EFFECTIVE VEGETATION COVER PARAMETERI-
ZATION EFFECTS

The observed relationship of LAI and FCover in Fig. 2.10 is broadly consistent with the
shape of the exponential functions with the vegetation-specific k, with RMSEs between
0.018 and 0.053 for the individual vegetation types. All optimized LAI–FCover relations
are characterized by k values that at 0.351–0.458 are consistently lower than the orig-
inal k = 0.5, which has been used as the constant default value in most HTESSEL ap-
plications so far (Alessandri et al., 2017; Boussetta et al., 2021). We found that the k
values for low-vegetation types (0.438–0.458) are higher than for high-vegetation types
(0.351–0.396), except for tundra regions (0.375) (Fig. 2.10 and Supplementary material
Table S2.4). These findings are in line with our expectations, as leaf organization of low
vegetation is more regular (larger k) than leaf organization of high vegetation, where
leaves are found more on top of each other (smaller k) (Chen et al., 2005, 2021).

The vegetation-specific Ceff parameterization (IAKV) generally reduced the k values
compared to the k = 0.5 setup (IAK5), and as a consequence the associated vegetation
densities cv,L and cv,H also decreased (Eqs. 2.8 and 2.9). On average, the global mean Ceff

was reduced from 0.21 in IAK5 to 0.19 in IAKV (Fig. 2.11). The reduced Ceff considerably
reduced the RMSE with respect to the FCover data in IAKV compared to IAK5 (Fig. 2.12),
as expected from the parameterization optimization presented in Fig. 2.10. The RMSE
was reduced the most over the boreal and tropical forests, with an average RMSE reduc-
tion from 0.12 to 0.06 for evergreen needleleaf trees and from 0.05 to 0.03 for evergreen
broadleaf trees. On the other hand, the differences in regions with predominantly low
vegetation were smaller because the fitted k value was closer to the original k = 0.5, with
an average RMSE reduction from 0.06 in IAK5 to 0.05 in IAKV for crops and from 0.04 to
0.03 for short grass. For low vegetation, the effects were not consistent throughout the
seasons, with RMSE increasing at high latitudes in JJA (Fig. 2.12d). Here the Ceff in IAK5
was smaller than the CGLS FCover and is further reduced in IAKV, increasing the RMSE.
This was likely caused by a poor fit for short grass at LAI> 2 (Fig. 2.10b) and tundra at
LAI>1 (Fig. 2.10g).

The reduced model Ceff in IAKV compared to IAK5 led to a shift in individual evap-
oration fluxes. On average, Es increased and Et and Ei were reduced, while the total E
was not very affected (Supplementary material Fig. S2.7). These shifts led to changes
in the temporal distribution of the evaporation. Figure 2.13 shows quite mixed results
of the vegetation-specific Ceff parameterization for the model E RMSE with respect to
DOLCEv3. The RMSE was consistently reduced during summer months in temperate
regions such as in Europe, the eastern US, and eastern China (JJA), as well as in south-
eastern Brazil and southern Africa (DJF). On the other hand, the results for tropical and
boreal regions were less consistent throughout the seasons (Fig. 2.13). The effects of
the vegetation-specific Ceff on SMs RMSE with respect to ESA-CCI SM show consistent
RMSE reductions in the JJA period for Canada and southeastern Brazil and in the DJF pe-
riod for the Sahel (Fig. 2.14). Consistent with the Ceff RMSE increase in boreal regions in
JJA (Fig. 2.12), the Pearson correlation coefficient for monthly anomaly E with respect to
DOLCEv3 E was significantly reduced in these regions in IAKV compared to IAK5, while
other regions were not very affected (Supplementary material Fig. S2.15). On the other
hand, the correlation of monthly anomaly SMs with respect to ESA-CCI SM did not con-
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siderably change (Supplementary material Fig. S2.15).

Figure 2.10: (a–j) LAI vs. FCover for a subsample (5000) of the selected points used for the least-squares op-
timization for all vegetation types with the optimized LAI–FCover relation in red (Eq. 2.10) and the k = 0.5
relation in light blue, with RMSE values of the data points with respect to the curve. The colors indicate the
point density, with purple indicating low density and yellow high density. (k) The optimized LAI–FCover re-
lation for all vegetation types. E stands for evergreen, D for deciduous, N for needleleaf, and B for broadleaf.
Values of k and RMSE are also presented in Supplementary material Table S2.4.
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Figure 2.11: (a) Mean monthly model effective vegetation cover (Ceff) in experiment IAK5 and (b) the absolute
difference between IAKV and IAK5 (IAKV−IAK5) mean monthly Ceff. Red (blue) indicates a reduced (increased)
Ceff in IAKV compared to IAK5. Details of model experiments are in Table 2.1.

Figure 2.12: Root mean squared error (RMSE) of model seasonal Ceff in experiment IAK5 with respect to CGLS
FCover for DJF (a) and JJA (c), with red indicating a larger RMSE. The difference between RMSE in IAK5 and
IAKV (IAKV–IAK5) for DJF (b) and JJA (d) with blue (red) indicating a reduced (increased) RMSE. White in-
dicates small and/or insignificant ∆RMSE. See Table 2.1 for details of the experiments. Similar figures for
monthly values and all the seasons are presented in Supplementary material Figs. S2.9–S2.10.
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Figure 2.13: Root mean squared error (RMSE) of model seasonal E in experiment IAK5 with respect to DOLCEv3
E for DJF (a) and JJA (c), with red indicating a larger RMSE. The difference between RMSE in IAK5 and IAKV
(IAKV–IAK5) for DJF (b) and JJA (d) with blue (red) indicating a reduced (increased) RMSE. White indicates
small and/or insignificant ∆RMSE. See Table 2.1 for details of the experiments. Similar figures for monthly
values and all the seasons are presented in Supplementary material Figs. S2.11–S2.12.

Figure 2.14: Root mean squared error (RMSE) of model standardized interannual seasonal anomaly SMs in
experiment IAK5 with respect to ESA-CCI SM for DJF (a) and JJA (c). The difference between RMSE in IAK5
and IAKV (IAKV–IAK5) for DJF (b) and JJA (d) with blue (red) indicating a reduced (increased) RMSE. White
indicates small and/or insignificant ∆RMSE, and grey indicates no data points. See Table 2.1 for details of the
experiments. Similar figures for monthly values and all the seasons are presented in Supplementary material
Figs. S2.13–S2.14.
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2.3.4 COMBINED EFFECTS OF LAND COVER, LEAF AREA INDEX, AND EFFEC-
TIVE VEGETATION COVER

The results presented in Sect. 2.3.2 demonstrate that the interannually varying LAI in
experiment IAK5 considerably improved the correlation of E and SMs with respect to
reference data. On the other hand, the annually varying LC and vegetation-specific Ceff

affected correlations merely to a minor degree (Sect. 2.3.1 and 2.3.3). Here, we further
elaborate on the effects of combining the enhanced variability in LC, LAI, and Ceff on
correlation of E and SMs.

Figure 2.15 shows that the E correlation improved in 68 % (JJA) and 54 % (DJF) of
the land area in which the r significantly changed in IAKV compared to CTR. Signifi-
cant reduction of r is found over boreal regions, which is related to the effects of the
effective vegetation cover parameterization, as discussed in Sect. 2.3.3 and shown in
Fig. S2.14. Figures 2.15b and d show that the SMs correlation consistently and signifi-
cantly improved in 83 % (JJA) and 76 % (DJF) of the land area in which the r significantly
changed in IAKV compared to CTR. The E and SMs correlations got consistently stronger
during dry periods in regions with a semiarid climate and predominantly low vegetation
(Figs. 2.3 and 2.15). For example, in northeastern Brazil during the dry JJA season, the
correlation coefficient for E increased from r = 0.79 in CTR to 0.84 in IAKV with respect
to DOLCEv3 and for SMs from r = 0.57 to 0.67 with respect to ESA-CCI SM. Similarly, in
western India during the dry DJF season, the correlation coefficient for E increased from
r = 0.78 to 0.85 and for SMs from r = 0.45 to 0.73.

Figure 2.15: Pearson correlation coefficient difference (∆r ) between experiment IAK5 and IAKV (IAKV−IAK5)
for (a, c) seasonal anomaly total evaporation (E) with respect to DOLCEv3 evaporation for DJF and JJA and
(b, d) seasonal anomaly near-surface soil moisture (SMs) with respect to ESA-CCI SM for DJF and JJA. Blue
(red) indicates an increased (reduced) correlation in IAKV compared to IAK5, white indicates small and/or in-
significant∆r , and grey indicates no data points. The red box is highlighted in Fig. 2.16. See Table 2.1 for details
of the experiments. Similar figures for all the seasons and monthly anomalies are presented in Supplementary
material Figs. S2.18–S2.20.
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To further explore the effects in these semiarid regions, we zoom in to northeast-
ern Brazil for the 2010–2013 period (Fig. 2.16). This period is characterized by posi-
tive LAI and Ceff anomalies in JJA 2011 and negative LAI and Ceff anomalies in JJA 2012
(Fig. 2.16a, b). The negative LAI and Ceff anomalies in 2012 characterize a dry period
in which the negative E anomaly was magnified in IAKV compared to CTR (Fig. 2.16c).
During this dry period, Et was reduced, while Es increased. This is consistent with the
soil moisture response presented in Fig. 2.16d, as the SMs was reduced (due to more Es)
and the SMsb increased (due to less Et) during the 2012 dry period. Opposite effects were
found for the 2011 period with positive LAI and Ceff anomalies. So in this specific case,
the variability in Et and SMs anomalies was enhanced in IAKV compared to CTR, while
the variability in Es and SMsb anomalies was dampened. This is consistent with the re-
sults presented in Figs. 2.7 and 2.8, in which the effects of the interannually varying LAI
on the variability of E and SM are presented.

The opposing effects of the enhanced LAI variability on anomaly Et and SMsb can be
explained by a negative feedback between vegetation and soil moisture schematized on
the right side in Fig. 2.17a. During dry periods, the soil moisture is reduced; this lower
soil water availability can result in vegetation water stress, consequently leading to lower
vegetation activity in terms of transpiration and primary production, which is reflected,
for example, in the typical dry season browning of grass species in low-vegetation re-
gions and in the model represented by negative LAI and Ceff anomalies (Fig. 2.16a, b).
As transpiration is reduced (Fig. 2.16c), the negative subsurface soil moisture anomaly is
similarly reduced because less water is extracted (Fig. 2.16d). On the other hand, the en-
hanced vegetation variability activated a positive feedback between anomaly vegetation
activity and anomaly SMs, as illustrated on the left side of Fig. 2.17a. Reduced vegetation
activity is reflected in the model by a reduced Ceff and an increased bare soil fraction
(Sect. 2.7), which leads to an increased Es (Fig. 2.16b) and, as a consequence, less SMs

during a dry period as long as soil moisture is available (Fig. 2.16d).
Figure 2.17b and c show that the positive feedback between Es and SMs, as intro-

duced by the improved vegetation variability, is the strongest over semiarid regions with
low vegetation, while the negative feedback between Et and SMsb is more pronounced
for temperate regions with deciduous vegetation and crops, where the interannual LAI
variability is larger (Fig. 2.4).
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Figure 2.16: Time series of the northeastern Brazil case highlighted in Fig. 2.15 for (a) LAI anomalies. (b) Ef-
fective vegetation cover (Ceff) anomalies with the CGLS FCover data in black as a reference. (c) Evaporation
anomalies with E total evaporation, Et being transpiration, Es soil evaporation, and Ei interception evapora-
tion; DOLCEv3 E is in black as a reference. (d) Soil moisture standardized anomalies with SMs near-surface
soil moisture and SMsb subsurface soil moisture; ESA-CCI SM is in black as a reference. Dashed lines in (c) and
(d) represent experiment CTR and solid lines IAKV. The shading in (c) and (d) represents the uncertainty asso-
ciated with the reference data. For this case TL is short grass, TH is deciduous broadleaf trees, AL =0.84, and
AH = 0.16.

Figure 2.17: (a) Processes contributing to the anomaly vegetation–soil moisture feedback mechanisms as acti-
vated with the improved vegetation variability in IAKV compared to CTR. Upward (downward) arrows indicate
positive (negative) change in the involved variables. Positive (blue) arrows indicate positive feedback and neg-
ative (yellow) arrows indicate negative feedback. The ± symbols refer to the resulting positive or negative
feedback loop relative to the sign of the change in the involved variables. The strength of the feedbacks (b, c) is
quantified as the absolute correlation between anomaly ∆Es and ∆SMs (b) and between ∆Et and ∆SMsb (c),
with ∆ representing the difference between anomaly CTR and IAKV (IAKV–CTR).
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2.4 DISCUSSION

2.4.1 SYNTHESIS AND IMPLICATIONS
The results presented in Sect. 2.3.4 indicate overall improvements of correlation coef-
ficients of E and SMs with all three aspects of vegetation variability implemented. We
attribute these effects primarily to the implementation of interannually varying LAI, as
the effects of the LC variability and vegetation-specific Ceff on E and SMs were smaller
(Sect. 2.3.1 and 2.3.3). The pronounced improvements in SMs and E correlation in semi-
arid regions (Fig. 2.15) are directly related to the feedback mechanisms typical of water-
limited regions that were activated by the vegetation variability. Regions where the posi-
tive feedback is strong (Fig. 2.17b) coincide with the regions that exhibit a strengthening
of the correlations. In the model setup with seasonally varying LAI only (experiments
CTR and IALC), the feedbacks in Fig. 2.17 are not represented because the interaction
between SM and LAI is activated by the interannually varying LAI. In particular, the in-
teractions between LAI, Ceff, and bare soil cover are only captured if model Ceff is ex-
ponentially related to LAI (Sect. 2.2.2). This finding complements the arguments from
previous studies for using the exponential LAI–Ceff relation instead of the lookup-table
Ceff in HTESSEL (Alessandri et al., 2017; Johannsen et al., 2019; Nogueira et al., 2020,
2021).

Recent studies also applied data assimilation methods to integrate satellite-based
LAI in LSMs. For example, Rahman et al. (2022) found improved anomaly correlations of
transpiration in many areas when integrating satellite-based LAI in the LSM called Noah-
MP (Noah Multi-Parameterization), with the largest effects in the regions where E and
SMs anomaly correlations consistently improved in our results (Fig. 2.9). However, this
study also found limited sensitivity of model surface and root zone soil moisture when
only LAI assimilation was applied (Rahman et al., 2022). Similarly, Albergel et al. (2017)
concluded that LAI assimilation only affected deeper SM. In contrast, our results showed
considerable changes in near-surface soil moisture when integrating CGLS LAI; this can
be explained by the interplay between LAI, effective vegetation cover, soil evaporation,
and near-surface soil moisture schematized in Fig. 2.17, which apparently differs from
the interplay in Noah-MP (Rahman et al., 2022) and ISBA (Albergel et al., 2017).

The vegetation-specific effective vegetation cover parameterization presented in Sect. 2.3.3
generally resulted in an improved match of model Ceff and CGLS FCover (Fig. 2.12),
which was expected because the FCover data were used for the estimation of the ex-
ponential coefficient k based on least-squares minimization (Sect. 2.2.3). CGLS FCover
explicitly represents the fraction of green vegetation cover and therefore matches the
model actively transpiring vegetation fraction Ceff. However, the non-green vegetated
area cover also affects the atmosphere by, e.g., modifying albedo and roughness lengths,
which is not considered in the model, as non-green vegetation is represented as bare
soil. This is a limitation for the present implementation of the vegetation-specific effec-
tive vegetation cover parameterization. The results presented in Fig. 2.13 showed both
increased and reduced RMSE for E with respect to the reference data in IAKV compared
to IAK5. Consistent reductions of E RMSE in Europe and the eastern US in the JJA period
were found. These regions coincide with regions with a high density of FLUXNET tower
observations used for generation of the DOLCEv3 E (Hobeichi et al., 2021). The lack of
tower observations in the tropics, in the Sahel, in southeastern Asia, and at high latitudes
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may potentially explain the mixed RMSE results in these regions presented in Fig. 2.13.
For high latitudes (e.g., northern Canada and eastern Siberia) the RMSE for both E as Ceff

increased and the Pearson correlation was reduced (Supplementary material Fig. S2.15)
in IAKV compared to IAK5 for the JJA period. This might be at least in part related to
the poor fit of the parameterization for high LAI values for short grass and tundra, as
explained in Sect. 2.3.3 (Fig. 2.10).

The interannually varying land cover locally affected the model E and SM as ex-
pected, with reduced (increased) E driven by corresponding reductions (increases) in
high-vegetation cover fraction (Figs. 2.5 and 2.6). However, the effects on E and SM
are likely underestimated due to the HTESSEL land cover structure in which the dom-
inant vegetation type and cover fraction are used and vegetation mixing within high- or
low-vegetation types is not represented (Fig. 2.1). With this, only major changes in the
ESA-CCI vegetation types and fractions are captured by the model. In IALC we evaluated
the effects of interannually varying LC individually, but for internal consistency LAI and
LC interannual variations should ideally be used together as they are interdependent.
The local effects of the interannually varying land cover on the total E were consider-
ably smaller than on the individual E fluxes (Fig. 2.5). The reduced (increased) Et and
Ei were compensated for by increased (reduced) Es. This compensation is related to the
Ceff parameterization (Eq. 2.6) and also to the offline setup, which does not allow for
couplings with the atmosphere. Reduced AH in the Amazon (Fig. 2.3) led to a reduced
Ceff and an increased bare soil fraction (Sects. 2.4–2.7) and therefore reduced Et and Ei

as well as increased Es in order to fulfill the atmospheric evaporation demand defined
by the prescribed atmospheric forcing. Similarly, the on average reduced Ceff with the
vegetation-specific Ceff parameterization (Fig. 2.11) introduced in experiment IAKV led
to a shift in annual mean individual E fluxes, with increased Es and reduced Et and Ei

(Supplementary material Fig. S2.7).

It is important to note that the partitioning of evaporation into the three individ-
ual components Et, Es, and Ei in the model remains problematic to compare with ob-
servations. There is widespread consensus that, globally averaged, transpiration is the
largest land evaporation flux component, followed by soil evaporation and interception
evaporation (Miralles et al., 2011; Wei et al., 2017; Nelson et al., 2020). However, esti-
mates of the average global Et contribution to total terrestrial evaporation are subject
to major uncertainties, with the global Et contribution quantified in the range of 35 %–
80 % (Schlesinger and Jasechko, 2014; Coenders-Gerrits et al., 2014). The global mean
modeled partitioning of evaporation in our study is on the low end of these estimates
with 39 % Et, 38 % Es, and 20 % Ei in CTR and 38 % Et, 41 % Es, and 20 % Ei in IAKV (the
values do not add to 100 % due to open-water evaporation). Despite the consistent im-
provements in anomaly correlation coefficients of E and SMs found in IAKV compared to
CTR (Fig. 2.15), the apparently low contribution of Et to total E needs further evaluation,
which was out of scope in this study.

2.4.2 METHODOLOGICAL LIMITATIONS

Our model experiments were performed in an offline mode with prescribed atmospheric
forcing, which allowed us to analyze individual hydrological processes in detail. How-
ever, the fixed atmospheric model input considerably constrains changes in model sur-
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face fluxes. Moreover, the ERA5 forcing used here is based on an LSM that does not
represent land cover and vegetation variability, which is partially corrected for by data
assimilation of observations (Hersbach et al., 2020; Nogueira et al., 2021). The potential
mismatch between our LSM and the ERA5 atmospheric forcing may have also influenced
the observed model effects. Another possible limitation is the absence of recalibration of
model parameters, such as roughness lengths and minimum stomatal resistances. Fixed
model parameters were originally calibrated using the lookup-table Ceff parameteriza-
tion, MODIS LAI, and GLCC LC, and they have not been adjusted for the three new model
scenarios tested here (IALC, IAK5, and IAKV). This was also emphasized by Johannsen
et al. (2019), Nogueira et al. (2020, 2021), and Boussetta et al. (2021), who concluded that
model vegetation changes should be implemented in an integral context and recalibra-
tion of model parameters is needed.

This study emphasizes the importance of realistic representation of vegetation vari-
ability for modeling land surface–atmosphere interactions. However, for further appli-
cations exploring how the vegetation variability influences atmospheric variables in a
coupled model setup is needed. The availability of reliable reference data is therefore
fundamental to properly understand and model the processes of relevance for the land
surface and interaction with the atmosphere. Here, the evaluation of model perfor-
mance was limited to total evaporation and near-surface soil moisture. The evaluated
performances of model E and SMs need to be interpreted in a careful way, bearing in
mind the uncertainties. For total evaporation we used the DOLCEv3 evaporation data
that merge FLUXNET tower observations with evaporation from FLUXCOM-RSMETEO,
GLEAM v3.5a and v3.5b, and ERA5-land, which all include very specific model assump-
tions on vegetation representations. Although these data are considered suitable for
time series and trend analyses, the associated uncertainty estimates are large (Hobe-
ichi et al., 2021) (Fig. 2.16). Figure 2.16c shows that the DOLCEv3 interannual variability
is systematically smaller than the modeled variability. This limited interannual variabil-
ity in DOLCEv3 could be at least in part related to the combination of several products
because the averaging based on FLUXNET towers unavoidably dampens the anomalies,
reducing the interannual variability. Evaluation of the modeled near-surface soil mois-
ture was limited by missing data due to dense forests or snow cover and the lack of in-
formation on the representative soil depth. While the ESA-CCI combined active–passive
SM product was generated using the absolute values and the dynamic range of GLDAS-
Noah soil moisture, preserving the dynamics and trends of the original retrievals (Liu
et al., 2012), it is important to note that during dry-downs the soil moisture dynamics
can also be impacted to some extent, as highlighted by Raoult et al. (2022). However, we
still find the ESA-CCI SM to be the best-suited globally available reference data for our
study because they represent a direct product of remote sensing observations, without
directly blending land surface model dynamics as done for DOLCEv3.
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2.5 CONCLUSIONS
This study aimed to address the limitations of state-of-the-art land surface models in
representing spatial and temporal vegetation dynamics. We evaluated the effects of im-
proving the representation of land cover and vegetation variability based on satellite ob-
servational products in the HTESSEL land surface model. Specifically, we directly inte-
grated satellite-based interannually varying land cover and seasonally and interannually
varying LAI. In addition, we formulated and integrated an effective vegetation cover pa-
rameterization that can distinguish between different vegetation types. The effects of
these three implementations were analyzed for soil moisture and evaporation in offline
experiments forced with ERA5 atmospheric forcing.

The interannually varying land cover locally altered the model evaporation and soil
moisture. In regions with major land cover changes, such as the Amazon, the model
evaporation fluxes and soil moisture responded consistently, capturing the effects of in-
creased or decreased high or low vegetation cover. The interannually varying LAI led
to significant improvements of the correlation coefficients computed with the available
reference data on near-surface soil moisture and evaporation. This was specifically true
in semiarid regions with predominantly low vegetation during the dry season. The inter-
annually varying LAI and effective vegetation cover allow for an adequate representation
of soil moisture–evaporation feedback by activating the couplings with vegetation dur-
ing vegetation-water-stressed periods (Fig. 2.17). From these results, we conclude that it
is essential to realistically represent interannual variability of LAI and to include the ex-
ponential relation between LAI and effective vegetation cover to correctly capture land–
atmospheric feedbacks during droughts in HTESSEL. The developments of the effective
vegetation cover parameterization considerably improved the spatial and temporal vari-
ability of the model effective vegetation cover and regionally reduced the model errors of
evaporation and near-surface soil moisture. Overall, our results emphasize the need to
represent spatial and temporal vegetation variability in LSMs used for climate reanalyses
and near-term climate predictions. In climate predictions, we obviously cannot rely on
satellite retrievals, and therefore the development and validation of dynamical or statis-
tical models able to reliably predict vegetation dynamics, from leaf to ecosystem scales,
remain an important challenge for the future in the land surface modeling community.
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MODELS

In the previous chapter we focused on aboveground vegetation characteristics in a land
surface model, and found considerable effects of interannual vegetation variability on the
performance of modeled interannual water dynamics. This chapter focuses on the be-
lowground part of the vegetation, of which spatial and temporal variability are also not
adequately represented in most land surface models. Here, we investigate the potential for
climate-controlled root zone parameters for improving modeled water dynamics in a land
surface model.

This chapter is based on:

van Oorschot, F., van der Ent, R. J., Hrachowitz, M., and Alessandri, A.: Climate-controlled root zone pa-
rameters show potential to improve water flux simulations by land surface models, Earth Syst. Dynam., 12,
725–743, 2021.
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SUMMARY

The root zone storage capacity (Sr) is the maximum volume of water in the subsurface
that can potentially be accessed by vegetation for transpiration. It influences the season-
ality of transpiration as well as fast and slow runoff processes. Many studies have shown
that Sr is heterogeneous as controlled by local climate conditions, which affect vegeta-
tion strategies in sizing their root system able to support plant growth and to prevent wa-
ter shortages. Root zone parameterization in most land surface models does not account
for this climate control on root development and is based on lookup tables that prescribe
the same root zone parameters worldwide for each vegetation class. These lookup tables
are obtained from measurements of rooting structure that are scarce and hardly repre-
sentative of the ecosystem scale. The objective of this research is to quantify and evalu-
ate the effects of a climate-controlled representation of Sr on the water fluxes modeled
by the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL)
land surface model. Climate-controlled Sr is estimated here with the “memory method”
(MM) in which Sr is derived from the vegetation’s memory of past root zone water storage
deficits. Sr,MM is estimated for 15 river catchments over Australia across three contrast-
ing climate regions: tropical, temperate and Mediterranean. Suitable representations of
Sr,MM are implemented in an improved version of HTESSEL (Moisture Depth – MD) by
accordingly modifying the soil depths to obtain a model Sr,MD that matches Sr,MM in the
15 catchments. In the control version of HTESSEL (CTR), Sr,CTR is larger than Sr,MM in
14 out of 15 catchments. Furthermore, the variability among the individual catchments
of Sr,MM (117–722 mm) is considerably larger than of Sr,CTR (491–725 mm). The climate-
controlled representation of Sr in the MD version results in a significant and consistent
improvement of the modeled monthly seasonal climatology (1975–2010) and interan-
nual anomalies of river discharge compared with observations. However, the effects on
biases in long-term annual mean river discharge are small and mixed. The modeled
monthly seasonal climatology of the catchment discharge improved in MD compared
to CTR: the correlation with observations increased significantly from 0.84 to 0.90 in
tropical catchments, from 0.74 to 0.86 in temperate catchments and from 0.86 to 0.96
in Mediterranean catchments. Correspondingly, the correlations of the interannual dis-
charge anomalies improve significantly in MD from 0.74 to 0.78 in tropical catchments,
from 0.80 to 0.85 in temperate catchments and from 0.71 to 0.79 in Mediterranean catch-
ments. The results indicate that the use of climate-controlled Sr,MM can significantly
improve the timing of modeled discharge and, by extension, also evaporation fluxes in
land surface models. On the other hand, the method has not been shown to significantly
reduce long-term climatological model biases over the catchments considered for this
study.
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3.1 INTRODUCTION
Root zone storage capacity Sr is an essential component of land surface hydrology as it
controls the amount and timing of vegetation transpiration. However, most LSMs rely on
a inadequate representation of the vegetation’s root zone (Chapter 1), resulting in uncer-
tainties in modeled water fluxes. Direct observations of Sr at scales larger than plot scale
do not exist and, therefore, several indirect methods have been developed to estimate Sr

from other observable ecosystem characteristics considering optimality principles (Klei-
don, 2004; Gao et al., 2014; Speich et al., 2018; Dralle et al., 2020a). One of these methods
is the memory method, a term coined in this thesis, but also referred to as water bal-
ance method (Nijzink et al., 2016; Hrachowitz et al., 2021) or mass curve technique (Gao
et al., 2014; Zhao et al., 2016). This method allows to estimate Sr based on root zone wa-
ter deficits arising from the phase shift between the seasonal signals of precipitation and
evaporation, here defined as the total of transpiration, soil evaporation, and interception
evaporation, following the terminology proposed by Savenije (2004) and Miralles et al.
(2020). This approach is based on evidence that root systems of present-day vegetation
are a legacy that reflects the memory of past water deficits during dry spells. Vegetation
has efficiently adapted the extent of its root system to past water deficits with a specific
memory (i.e. the dry spell return period) to guarantee continuous access to water to
satisfy canopy water demand, but no more than that (Savenije and Hrachowitz, 2017).
Numerous studies have successfully demonstrated the potential of the memory method
to provide estimates of climate controlled Sr for river catchments based on discharge
data (Gao et al., 2014; De Boer-Euser et al., 2016), as well as on larger scales based on re-
motely sensed estimates of evaporation (Wang-Erlandsson et al., 2016; Singh et al., 2020;
McCormick et al., 2021; Stocker et al., 2023). In addition, the method proved valuable to
track the temporal evolution of Sr due to changing hydro-climatic conditions (Bouaziz
et al., 2022) and human interventions, such as forest management (Nijzink et al., 2016;
Hrachowitz et al., 2021).

However, climate-controlled root zone parameters have not yet been widely incor-
porated in LSMs. The only LSM to our knowledge in which climate-controlled root zone
parameters are used is the JSBACH3.2 model (Hagemann and Stacke, 2015) in which
rooting depths are based on the optimization model of net primary production from
Kleidon (2004).

The objective of this study is to quantify and evaluate the effects of a climate-controlled
representation of Sr on the water fluxes modeled by the Hydrology Tiled ECMWF Scheme
for Surface Exchanges over Land (HTESSEL) land surface model. Specifically, we will
test the hypothesis that implementing the memory method Sr (Sr,MM) in HTESSEL can
improve the modeled magnitude and timing of catchment discharge and evaporation
fluxes. By applying the memory method for estimating ecosystem-scale Sr for use in
LSMs, the first three limitations of using sparse root observations mentioned above can
be overcome, but it should be acknowledged that, although the memory method in prin-
ciple allows for adaptively updating Sr, in this work we use a fixed value in time. In this
study, Sr,MM values representative for the 1973–2010 time period are estimated for 15
Australian catchments across different climate regions (Sect. 3.2.3 and Appendix A). The
Sr,MM estimates are then used to constrain the Sr in HTESSEL (Sect. 3.2.5). Section 3.3
evaluates the effects on discharge and evaporation in HTESSEL by performing offline



3

36 3. CLIMATE-CONTROLLED ROOT ZONE PARAMETERS IN LAND SURFACE MODELS

simulations with and without the improved representation of Sr. Finally, in Sects. 3.4
and 3.5 the potential for a wider application of climate-controlled root zone parameters
is discussed.

3.2 METHODS

3.2.1 STUDY AREA
Australia is characterized by large spatial differences in precipitation (Fig. 3.1), vegeta-
tion coverage and temperatures, varying from hot and dry deserts in the interior to trop-
ical forests with a monsoon season in the north. We have selected 15 Australian river
catchments with station observations of river discharge at the outlet of the catchment
to estimate Sr by applying the memory method (Fig. 3.1; Supplementary material Ta-
ble S3.1) (Australian Government Bureau of Meteorology, 2019). The catchments are
selected based on available discharge data (at least 30 years of station observations), size
(at least one-third of the land surface model grid cell area of approximately 5500 km2

in order to spatially extrapolate catchment characteristics to grid cells) and differences
in climate (spatial spread of the catchments across Australia for the analysis of different
climate zones). The catchments are classified in three climate regions based on their hy-
drological characteristics (Table 3.1; Fig. 3.2; Supplementary material Table S3.2). The
tropical catchments are characterized by pronounced seasonality of rainfall with a sea-
sonality index of precipitation (IS) of 0.7 or higher, while temperate and Mediterranean
catchments have year-round rainfall (IS < 0.7). The Mediterranean catchments are char-
acterized by a time lag φ between long-term mean maximum monthly potential evap-
oration Ep and precipitation P of 5 or 6 months, while in tropical and temperate catch-
ments mean maximum monthly Ep and P occur within 3 months.

Table 3.1: Average hydrological characteristics of the catchments in the three climate regions for the time pe-
riod 1973–2010 with long-term mean annual discharge Q, long-term mean annual precipitation P , long-term
mean annual potential evaporation Ep, aridity index IA = Ep/P , and the seasonality index of precipitation

IS = 1
Pa

∑m=12
m=1 |Pm − Pa

12 |, where Pa is the annual mean precipitation and Pm the monthly mean precipitation

in month m (Gao et al., 2014); φ is the time lag between long-term mean maximum monthly precipitation (P )
and potential evaporation (Ep). Values for all individual catchments are provided in Supplementary material
Table S3.2.

Climate region Q P Ep IA IS φ

(mm yr−1) (mm yr−1) (mm yr−1) (–) (–) (months)

Tropical (seven catchments) 302 1101 1869 2 0.9 2.3
Temperate (five catchments) 57 651 1488 2.5 0.2 0.6
Mediterranean (three catchments) 53 879 1276 1.7 0.3 5.7

3.2.2 DATA
For this study we use daily discharge data from station observations in the catchments
for the time period 1973–2010 (Australian Government Bureau of Meteorology, 2019).
For the same time period we use daily precipitation and daily mean temperature data
from the GSWP-3 dataset on a regular 0.5◦grid (Kim, 2017). Daily Ep is calculated by
applying the Hargreaves and Samani formulation based on temperature and radiation
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Figure 3.1: Location of the 15 study catchments within Australia. The green, red and orange markers indicate
the climate region, and the blue shades indicate long-term mean annual precipitation (Australian Government
Bureau of Meteorology, 2019). A list of the catchments and their characteristics is provided in Supplementary
material Table S3.1.
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Figure 3.2: Monthly seasonal climatology of precipitation (P ) and potential evaporation (Ep) for the (a) tropi-
cal, (b) temperate and (c) Mediterranean catchments, with the solid lines representing P and the dashed lines
Ep, for the time series 1973–2010. The different shades indicate the 15 individual study catchments.

(Hargreaves and Samani, 1982; Mines ParisTech Solar radiation Data, 2016). The FLUX-
COM RS+METEO dataset is used as a reference dataset to benchmark modeled actual
evaporation. FLUXCOM provides a gridded product of interpolated monthly evapora-
tion as a fusion of FLUXNET eddy covariance towers, satellite observations and mete-
orological data (GSWP-3) for the time period 1975–2010 (Jung et al., 2019). This dataset
has shown plausible estimates of mean annual and seasonal evaporation and is generally
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considered a suitable tool for global land model evaluations (Jung et al., 2019; Ma et al.,
2020). However, we found considerable differences between the long-term annual mean
evaporation E FLUXCOM and E derived from the catchment water balance (E WB) based on
observed Q and GSWP-3 P (E WB = P −Q) (Fig. 3.3). Figure 3.3 clearly illustrates that
the E FLUXCOM is consistently lower than E WB, with an average difference of 150 mm yr−1,
which is equivalent to about 20 % of the long-term water balances. E WB is likely to be
more reliable than E FLUXCOM because E WB provides an integrated catchment-scale es-
timate as it is derived from observations of Q assuming that the catchments are large
enough to neglect deep groundwater drainage to or from other catchments (Bouaziz
et al., 2018; Condon et al., 2020). In addition, E FLUXCOM is based on point-scale esti-
mates of FLUXNET stations that do not coincide with and are mostly located far from
the study catchments (Pastorello et al., 2020). The discrepancy between the FLUXCOM
and catchment water balance is addressed by scaling the monthly FLUXCOM evapora-
tion:

EFLUXCOM-WB = EFLUXCOM
E WB

E FLUXCOM
, (3.1)

with EFLUXCOM-WB as the monthly reference evaporation representative for the catch-
ment scale, EFLUXCOM from Jung et al. (2019) in the catchment corresponding grid cells

and E WB

E FLUXCOM
the catchment-specific scaling factor.

We use gridded data on vegetation type and coverage derived from the GLCC1.2
(ECMWF, 2016) and soil texture data from the FAO/UNESCO Digital Soil Map of the
World (FAO, 2003). Characteristics of the different soil textures are based on the Van
Genuchten soil parameters (Van Genuchten, 1980). These data are needed as input to
the HTESSEL model and for the estimation of Sr.
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Figure 3.3: Long-term mean annual evaporation (E) as estimated from long-term water balance data (EWB)
compared to the FLUXCOM dataset (EFLUXCOM) for the 1975–2010 period.
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3.2.3 MEMORY METHOD FOR ESTIMATING ROOT ZONE STORAGE CAPACITY
Sr,MM is estimated based on catchment hydrometeorological data according to the method-
ology described in the studies of De Boer-Euser et al. (2016), Nijzink et al. (2016) and
Wang-Erlandsson et al. (2016). Sr,MM is based on an extreme value analysis of the an-
nual maximum water storage deficits in the vegetation’s root zone (Sd). Sd maximizes
during dry periods, and therefore Sr represents an upper limit of root zone storage as-
suming that vegetation has sufficient access to water to overcome these dry periods. The
cumulative water storage deficit Sd (mm) in the root zone is based on daily time series
of effective precipitation Pe (mm d−1) and transpiration Et (mm d−1) for the time period
1973–2010 and is described by

Sd(t ) = max

0,−
τ∫

t0

(Pe −Et)dt

 , (3.2)

with an integration from t0 that corresponds to the first day in the hydrological year 1973
to τ that corresponds to the daily time steps ending on the last day of the hydrological
year 2010. Pe (mm d−1) is derived from the water balance of the interception storage Si:

dSi

dt
= P −Ei −Pe, (3.3)

with P representing the precipitation (mm d−1) and Ei the interception evaporation (mm d−1).
Equation (3.3) can be solved by Eqs. (3.4)–(3.6). Herein, for the sum of fluxes between
two time steps the following notation is used: Ft =

∫ t
t−1 F dt , where F is either P , Ei, Pe or

Ep (potential evaporation, mm d−1). The numerical solution was then thus obtained as
follows using daily time steps.

Pe,t =
{

0 if Pt +Si,t−1 ≤ Si,max

Pt +Si,t−1 −Si,max if Pt +Si,t−1 > Si,max
(3.4)

S∗
i,t = Si,t−1 +Pt −Pe,t (3.5)

Ei,t =
{

Ep,t if Ep,t < S∗
i,t

S∗
i,t if Ep,t ≥ S∗

i,t

(3.6)

Here, Si,max is the maximum interception storage (mm) that depends on the land cover
and is estimated between 2–8 mm for a tropical forest (Herwitz, 1985) and between 0–
3 mm for a temperate forest (Gerrits et al., 2010). However, De Boer-Euser et al. (2016)
found that the sensitivity of Sr to the value of Si,max is small, and therefore a value of
2.5 mm is used here in all catchments for simplicity.

Daily Et (mm d−1) in Eq. (3.2) was calculated by

Et = c Ep, (3.7)

where c (−) is a coefficient that represents the ratio between transpiration and potential
evaporation c = Et/Ep. Et (mm yr−1) is the long-term mean transpiration derived from

the water balance (Et = Pe −Q) and Ep (mm yr−1) the long-term mean potential evapo-
ration. Et considered here includes both transpiration and soil evaporation, but as the
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latter is much smaller, we use the term transpiration for simplicity. The subtle inter-
actions between atmospheric water demand and vegetation-available water supply can
lead to interannual variability in c. The above-described approach that provided con-
stant estimates of c is therefore extended by an iterative procedure to estimate annually
varying values of the coefficient c as described in Appendix 3.A.

Catchment Sr,MM (mm) is estimated based on the assumption that a catchment’s
ecosystem designs its rooting system while keeping memory of water stress events with
certain return periods. Previous studies provide evidence that these return periods are
likely to be longer for high vegetation (e.g., forest) than for low vegetation (e.g., grass).
Based on the results of Gao et al. (2014), De Boer-Euser et al. (2016) and Wang-Erlandsson
et al. (2016) drought return periods (RP) for high and low vegetation are set to 40 and
2 years, respectively. The Sr,MM corresponding to these drought return periods is cal-
culated by applying the Gumbel extreme value distribution (Gumbel, 1935) to annual
maximum storage deficits. Theoretically we could treat Sr separately for high and low
vegetation in HTESSEL. However, this would require changing the root distributions (see
Sect. 2.4), which we decided not to do as we did not want to change multiple parameters
at the same time. Therefore, for the implementation of Sr,MM in HTESSEL, catchment
Sr,MM is estimated as a weighted sum of the high and low vegetation Sr based on the cov-
erage fraction of high (CH) and low (CL) vegetation in the corresponding grid cell of that
specific catchment, described by

Sr,MM =CL Sr,L,2yr +CH Sr,H,40yr. (3.8)

3.2.4 HTESSEL MODEL DESCRIPTION
In this study we use the Hydrology Tiled ECMWF Scheme for Surface Exchanges over
Land (HTESSEL) land surface model (Balsamo et al., 2009). This section presents the
model parameterization of vegetated areas in the HTESSEL control model version (here-
inafter CTR) based on the IFS documentation of cycle CY43R1 and the model code itself
(ECMWF, 2016). The core structure of this model is described by van den Hurk et al.
(2000), and major changes in the hydrology parameterization were made by Balsamo
et al. (2009) with the implementation of a global soil texture map instead of a single soil
type and a runoff scheme accounting for sub-grid variability, which resulted in improve-
ments in global water budget simulations (Balsamo et al., 2011).

Figure 3.4a represents a simplified 3D view of a single grid cell. The HTESSEL model
describes eight different surface fractions within a grid cell (ECMWF, 2016), but we only
considered the vegetation-covered fractions (high and low vegetation) because of the
presence of roots. Considering exclusively vegetated areas, the grid cell surface is sub-
divided into high and low vegetation-covered area (CH and CL) with a dominant type of
vegetation (TH and TL) based on the GLCC1.2 vegetation database. This database dis-
tinguishes 18 different vegetation types (e.g., evergreen broadleaf, tall grass, crops), each
described with vegetation-specific parameters based on experiments and literature (e.g.,
minimum canopy resistance, root distribution). The subsurface has a single soil texture
based on FAO (2003) and is subdivided into four model layers with a total depth z of
2.89 m that is kept uniformly constant in the global domain.

Figure 3.4b presents the connection of the subsurface with the surface through roots
and transpiration fluxes (Et) in more detail. Sr is not explicitly described in the model pa-
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Figure 3.4: Root zone parameterization in the HTESSEL CTR version with the directly changed parameters in
the HTESSEL MD version highlighted in red. (a) 3D overview of a single grid cell. (b) Schematic image of the
four-layer subsurface. (c) Scheme of equations for the calculation of soil moisture, discharge and evaporation.
The symbols in this figure are as follows, with i representing high (H) and low (L) vegetation and k layers 1–4: C
(−) vegetation coverage, T dominant vegetation type, z (m) layer depth, P (m s−1) precipitation, Pt (m s−1) pre-
cipitation through-fall, M (m s−1) snowmelt, Q (m s−1) total discharge, Qs (m s−1) surface runoff, Qsb (m s−1)
subsurface runoff, Imax (m s−1) maximum infiltration rate, b (−) variable representing sub-grid orography, E
(m s−1) total evaporation, Et (m s−1) transpiration, Es (m s−1) soil evaporation, Ec (m s−1) canopy evaporation,
R (%) root distribution, θ (m3 m−3) unfrozen soil moisture, θpwp (m3 m−3) soil moisture at permanent wilting

point, θcap (m3 m−3) soil moisture at field capacity, θsat (m3 m−3) soil moisture at saturation, Sr (m) the root

zone storage capacity, θroots (m3 m−3) the root extraction efficiency, rc (s m−1) canopy resistance, ra (s m−1) at-
mospheric resistance, Rs (W m−2) downward shortwave radiation, Da (hPa) atmospheric water vapor deficit, q
specific humidity (kg kg−1), rs,min (s m−1) minimum canopy resistance, LAI (−) leaf area index, Sθ (m3 m−3 s−1)

root extraction rate, γ (m s−1) hydraulic conductivity, λ (m2 s−1) hydraulic diffusivity and ρw (kg m−3) density
of water.

rameterization, and therefore it is formulated based on our own understanding of its re-
lation to the HTESSEL vegetation and root zone parameterizations (Eq. 3.9). Vegetation
has roots in all four model soil layers (except for the vegetation types desert and tundra
that can only access the upper layer and the upper three layers, respectively; ECMWF,
2016). There is a variable root distribution across the layers that is different for each veg-
etation type. The vegetation-specific root distribution (Rk ) describes the root fraction
with respect to the total amount of roots in each model soil layer. At a single time step,
the capability of roots to extract soil moisture (θk,roots, represented by the brown boxes
in 3.4b) is a function of Rk and the layer of unfrozen soil moisture content (θk ). Thus,
the more roots we have in a soil layer, the more moisture can be extracted at each time
step. In the long term, however, the vegetation is able to extract all the plant-available
soil moisture in the layers where roots are present. Therefore, Sr,CTR, represented in blue
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in Fig. 3.4b, is described by

Sr,CTR = z(θcap −θpwp), (3.9)

with z representing the hydrologically active depth, which corresponds to the combined
depth of all soil layers with roots (z = 2.89 m is a default value in HTESSEL for all veg-
etation types except for desert and tundra), and θcap − θpwp the plant-available mois-
ture, which is constant over the four soil layers. The plant-available moisture is bounded
by the soil-texture-specific moisture contents at field capacity (θcap), above which soil
moisture drains by gravity, and at the wilting point (θpwp), below which soil moisture
is not accessible to roots. It should be noted that we aimed for a physical definition of
Sr,CTR but that the effective water used by vegetation may be different. We come back to
this point more elaborately in the Discussion section (Sect. 3.4.3).

Figure 3.4c presents the equation scheme of HTESSEL for calculating soil moisture
as well as discharge and evaporation fluxes, with i representing high (H) or low vegeta-
tion cover (L) and k the four soil layers. The relative soil moisture content θ controls the
calculations of discharge and evaporation fluxes. The surface runoff (Qs) is defined by
the precipitation through-fall (Pt), snowmelt (M) and maximum infiltration rate (Imax)
(Eq. 10). Imax is a function of Pt, M , a spatially variable parameter (b) that is defined by
the standard deviation in sub-grid orography, and the vertically integrated (top 0.5 m)
soil moisture (θ) and saturation soil moisture (θsat) (Eq. 11) (Dümenil and Todini, 1992;
van den Hurk and Viterbo, 2003). The subsurface runoff (Qsb) consists of two compo-
nents: free drainage from layer 4, which is a function of hydraulic conductivity in this
layer (γ4) and water density (ρw) (Eq. 12), and the excess absolute soil moisture when
θk > θsat (Eq. 13). Total discharge (Q) is the sum of Qs and Qsb (Eq. 14), and as typical
in-stream travel times through the catchments are about 1 d at most, we did not con-
sider routing to be important at the monthly timescale for which we analyze the results.
The average root extraction efficiency in all layers (θroots) is described by Eqs. (15) and
(16) as the weighted sum of the vegetation-specific Rk and θk . The canopy resistance
(rc) (Eq. 17) describes the resistance of vegetation to transpiration and is a function of
vegetation-specific values for minimum canopy resistance (rs,min) and LAI, a function of
shortwave radiation ( f1(Rs)), a function of atmospheric water vapor deficit ( f2(Da)) and
a function of the root extraction efficiency ( f3(θroots,i ,θpwp,θcap). The canopy resistance
defines Et,i together with specific humidity (q) and an atmospheric resistance term (ra)
(Eq. 18). Total Et is a weighted sum of the separate transpiration products based on the
sub-grid coverage CL and CH (Eq. 19), and total evaporation (E) is a sum of transpira-
tion (Et), soil evaporation (Es) and canopy evaporation (Ec) fluxes (Eq. 20). The detailed
formulations of the latter two fluxes are not relevant in this study and are therefore not
included in this model description. Et,i is attributed to the different soil layers in the cal-
culation of the root extraction (Sθ) based on the layer depth (zk ) and θk,roots (Eq. 21). The
change in soil moisture over time (∂θ/∂t ) is calculated by applying the Darcy–Richards
equation with γ and λ representing hydraulic conductivity and diffusivity (Eq. 22). This
equation is solved with a top soil boundary condition of P −E −Qs and a bottom soil
boundary condition of free drainage.
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3.2.5 IMPLEMENTATION OF MEMORY METHOD ROOT ZONE STORAGE CA-
PACITY ESTIMATES IN HTESSEL

Here we develop an approach to implement the climate-controlled Sr,MM (results in
Sect. 3.3.1) in HTESSEL, while maintaining the modeling framework of the CTR model
described in Sect. 3.2.4. We found that Sr,CTR is exclusively defined by the soil type and
the hydrologically active model soil depth (z) (Eq. 3.9). In our modified version of HTES-
SEL, hereafter referred to as the Moisture Depth (MD) model, the soil depth for moisture
calculations is changed to satisfy the following equation:

Sr,MM = zMD(θcap −θpwp), (3.23)

with zMD as the total soil depth in the MD model modified to satisfy Sr,MD = Sr,MM.
This depth change is achieved by changing model layer 4, except in the case that this
would cause the model depth of layer 4 to approach zero (z4 ≈ 0). In this case a mini-
mum threshold (0.2 m) is set for z4, and the depth of layer 3 is further changed to obtain
Sr,MD = Sr,MM as required in Eq. (3.23). This is necessary because z4 ≈ 0 in the mois-
ture calculation would cause inconsistencies in the thermal diffusion calculations as the
layer soil temperature is a function of the layer soil moisture. The layer depths for ther-
mal diffusion calculations are not modified in the MD model, and we found that the soil
layer temperatures are insensitive to depth changes in MD. The directly changed param-
eters in MD are highlighted in red in Fig. 3.4. Also, the root distribution is not modified
in MD because we aimed for a physical representation of Sr (Eq. 3.23) and we did not
want to change multiple model parameters at the same time. Furthermore, we would
like to reiterate that the soil depth in the model should be interpreted neither as actual
soil depth nor rooting depth, but merely as a way to represent the plant-accessible water
volume.

3.2.6 MODEL SIMULATIONS
Simulations are performed in a stand-alone version of HTESSEL (Balsamo et al., 2009) as
it was implemented in the framework of version 3 of the EC-EARTH Earth system model
(http://www.ec-earth.org, last access: August 2020) for both the CTR (Sect. 3.2.4)
and MD (Sect. 3.2.5) model versions. The model is forced with 3-hourly GSWP-3 at-
mospheric boundary conditions (Kim, 2017) for the historical time series 1970–2010,
with the first 5 years used for spin-up. The spatial resolution of the HTESSEL model
is a reduced Gaussian grid (N128), with the grid cells over Australia being approximately
5500 km2.

3.2.7 MODEL EVALUATION
Most study catchments are smaller than single HTESSEL grid cells (Supplementary ma-
terial Table S3.1). For catchments completely falling within a single HTESSEL grid cell,
this cell is selected for analysis. In the case that a catchment falls within more than one
grid cell, the average of the model output in the separate grid cells is used for analy-
sis. The model performances of CTR and MD are compared based on modeled monthly
discharge and evaporation fluxes for 1975–2010: long-term annual means, monthly sea-
sonal climatology and interannual anomalies of monthly fluxes (monthly fluxes minus
monthly climatology) are evaluated. Modeled Q is compared to station observations and

http://www.ec-earth.org
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modeled E to the FLUXCOM-WB evaporation (Sect. 3.2.2 and Eq. 3.1). For long-term an-
nual means, the percent bias between the reference and modeled fluxes is calculated
(evaporation p bias = (E mod −E ref)/E ref). For the monthly seasonal climatology and in-
terannual anomalies, the model performance is quantified by using the Pearson corre-
lation coefficient (r ) and a variability performance metric (v = (1−α)2) that depends on
the ratio of modeled and reference standard deviation (α = σmod/σref). These perfor-
mance metrics are calculated for the individual catchments and then averaged to evalu-
ate model performance over tropical, temperate and Mediterranean climate regions.

To test the significance of the improvement in model performance of MD compared
to CTR, a Monte Carlo bootstrap method (1000 repetitions) is employed. The 1000 sam-
ples are taken by randomly resampling with replacement among CTR and MD values at
each time step. The null hypothesis of getting as high or higher performance parame-
ters simply by chance is tested at the 5 % and 10 % significance levels for the individual
catchments as well as for the performance averages over the tropical, temperate and
Mediterranean climate regions. P values of the model improvements are provided in
Supplementary material Tables S3.5-S3.8.

3.3 RESULTS

3.3.1 ROOT ZONE STORAGE CAPACITY ESTIMATES
Figure 3.5 shows that there is no relation between Sr,MM and Sr,CTR. The range of Sr,MM

(125–722 mm) in the study catchments is much larger than the range of Sr,CTR (491–
725 mm), indicating that HTESSEL may not adequately represent the spatial heterogene-
ity of Sr (Supplementary material Table S3.2). The range of Sr,MM in the catchments is
consistent with Wang-Erlandsson et al. (2016), who found similar ranges of Sr (approx-
imately 100–600 mm) over Australia by using gridded products of Sr based on rooting
depths from observations and optimized inverse modeling, and they also found similar
ranges of global Sr,MM estimated based on satellite evaporation products. Sr,MM esti-
mates are on average smaller in the five temperate (194 mm) catchments than in the
three Mediterranean (321 mm) and the seven tropical (437 mm) catchments. In the trop-
ical and Mediterranean regions vegetation needs to bridge extensive dry seasons as rain-
fall seasonality is high (Fig. 3.2, Table 3.1), resulting in larger Sr,MM than in temperate
regions with year-round precipitation. In the Mediterranean, the average time lag be-
tween P and Ep of 5.7 months results in large root zone storage deficits in the hot and
dry summers and therefore larger Sr,MM than in the temperate catchments.
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Figure 3.5: Catchment Sr as estimated from the memory method (Sr,MM) compared to the HTESSEL CTR
parameterization (Sr,CTR) in the catchment corresponding grid cells.

3.3.2 LONG-TERM MEAN ANNUAL CLIMATOLOGY

The HTESSEL CTR version overestimates observed Q in 9 out of 15 catchments with on
average 40 mm yr−1 (tropical), 3 mm yr−1 (temperate) and 122 mm yr−1 (Mediterranean)
(Tables 3.2, Supplementary material Tables S3.3 and S3.4). This overestimation of ob-
served Q goes together with an average underestimation of E WB by CTR. As Sr,MM is gen-
erally smaller than Sr,CTR (Fig. 3.5), the MD version results in reduced E and increased
Q compared to CTR, but the changes are quite small (Table 3.2). The MD increase in
modeled Q compared to CTR results on average in larger p biases in tropical (+16.9 %
vs. +13.7 %), temperate (+24.4 % vs. +4.9 %) and Mediterranean (+263.8 % vs. +249.9 %)
catchments, but the results are largely variable among the individual catchments (Sup-
plementary material Table S3.4).

Table 3.2: Long-term annual mean modeled discharge (Q) and evaporation (E) in the HTESSEL CTR and MD
versions for the tropical, temperate and Mediterranean climate regions (catchment averages) as well as refer-
ence Q (station observations) and E (EWB, Sect. 3.2.2). The p biases of the modeled climate region average Q
and E are presented between brackets. Similar values for the individual catchments are shown in Supplemen-
tary material Tables S3.3 and S3.4.

Q (mm yr−1) E (mm yr−1)
Climate region Observations HTESSEL CTR HTESSEL MD WB HTESSEL CTR HTESSEL MD

Tropical 291 331 (+13.7 %) 345 (+18.6 %) 834 790 (−5.3 %) 776 (−7.1 %)
Temperate 56 59 (+4.9 %) 70 (+24.4 %) 626 624 (−0.4 %) 611 (−2.4 %)
Mediterranean 49 171 (+249.9 %) 177 (+263.8 %) 836 717 (−14.2 %) 709 (−15.2 %)



3

46 3. CLIMATE-CONTROLLED ROOT ZONE PARAMETERS IN LAND SURFACE MODELS

3.3.3 MONTHLY SEASONAL CLIMATOLOGY

Although Q does not considerably change in MD compared to CTR (Sect. 3.3.2), MD
reproduces the seasonal variations in Q considerably better than CTR (Fig. 3.6a–c and
Table 3.3). In the tropical and Mediterranean catchments, MD increases Q in the wet
months, while it decreases Q in the dry months compared to CTR and hence improves
the seasonal timing of observed Q (Fig. 3.6a, c and Table 3.3). In the temperate catch-
ments, MD increases Q in the wet months (July–September) compared to CTR in accor-
dance with observations, although in the other months the changes in MD compared
to CTR are mixed (Fig. 3.6b). In terms of the correlation between modeled and ob-
served monthly seasonal climatology, Q improved in MD compared to CTR in 12 out
of 15 catchments, with 7 catchments passing the 5 % significance level for improvement
(Supplementary material Table S3.5). For the climate region averages, the correlation
significantly improved in MD from 0.84 to 0.90 (tropical), from 0.74 to 0.86 (temperate)
and from 0.86 to 0.96 (Mediterranean) compared to CTR (Table 3.3). On average, MD
resulted in larger variations in monthly Q than CTR (Fig. 3.6a–c). The variability term
v = (1−σmod/σobs)2 improved from 0.17 to 0.06 (tropical) and from 0.17 to 0.10 (temper-
ate) in MD compared to CTR, but in the Mediterranean catchments the models strongly
overestimate the observed variations in Q (Fig. 3.6c), with the variability term increasing
from 2.80 in CTR to 8.73 in MD (Tables 3.3 and Supplementary material Table S3.5).

In contrast to the improvement in the monthly seasonal climatology of Q in MD,
the monthly seasonal cycle of E appears not to be significantly affected, as shown in
Fig. 3.6d–f and Table 3.3.

Table 3.3: Model performance parameters of monthly seasonal discharge (Q) and evaporation (E) climatolo-
gies (1975–2010), with r representing Pearson correlation and v = (1−α)2 variability (where α=σmod/σobs),
in tropical, temperate and Mediterranean climate regions for the HTESSEL CTR and MD versions (catchment
averages). Modeled Q is compared to station observations and modeled E to FLUXCOM-WB (Eq. 3.1). For r , a
value of 1 represents a perfect model; for v a value of 0 represents a perfect model. The significance test of the
MD improvements compared to CTR is represented by ∗∗ (passing the 5 % level) and ∗ (passing the 10 % level).
Values of r and α for the individual catchments and p values of improvement are shown in Supplementary
material Tables S3.6 (Q) and S3.8 (E).

Discharge Evaporation
Climate region HTESSEL version r (–) v (–) r (–) v (–)

Tropical CTR 0.84 0.17 0.98 0.07
MD 0.90∗∗ 0.05∗∗ 0.98 0.07

Temperate CTR 0.74 0.17 0.99 0.04
MD 0.86∗∗ 0.10∗∗ 0.98 0.05

Mediterranean CTR 0.86 2.80 0.81 0.08
MD 0.96∗ 8.73 0.80 0.07
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Figure 3.6: Monthly seasonal climatology of observed discharge (Q) (a–c) and FLUXCOM-WB evaporation
(EFLUXCOM-WB) (d–f ) as well as modeled values in the HTESSEL CTR and MD versions, averaged for the trop-
ical (a, d), temperate (b, e) and Mediterranean (c, f ) catchments for the time series 1975–2010. Labels (b1)
and (c1) represent the same data as in (b2) and (c2), but with a different y axis. Similar illustrations for the
individual catchments are shown in Supplementary material Figs. S3.1 (Q) and S3.2 (E).

3.3.4 INTERANNUAL MONTHLY ANOMALIES

Figure 3.7a and c show that MD is better in capturing the variations in interannual Q
anomalies than CTR in the presented tropical and temperate catchments, while in the
Mediterranean catchment both models strongly overestimate the interannual Q anoma-
lies compared to observations (Fig. 3.7e). In 14 out of 15 catchments, the variability in
the interannual Q anomalies increases in MD compared to CTR (Supplementary mate-
rial Fig. S3.1 and Table S3.6). This results in an average improvement in the interannual
anomaly variability (v) from 0.12 to 0.11 (tropical) and from 0.09 to 0.06 (temperate) in
MD compared to CTR (Table 3.4). However, in the Mediterranean catchments, the in-
creased variability in the Q anomalies leads to a strong overestimation of Q anomalies
with respect to observations (Figs. 3.7e and S1m–o), with v increasing from 0.99 in CTR
to 4.26 in MD. Figure 3.7a, c and e also show that the timing of the Q anomalies im-
proves in MD compared to CTR; in particular, the improved timing of the falling limbs is
clearly visible in Fig. 3.7a and e. The interannual Q anomaly correlation (corresponding
to the timing) improves in 14 out of 15 catchments, with 9 catchments passing the 5 %
significance level for improvement (Table S3.5). On average, the correlation (r ) increases
from 0.74 to 0.78 (tropical), from 0.80 to 0.85 (temperate) and from 0.71 to 0.79 (Mediter-
ranean) in MD compared to CTR. In contrast to the improvement in the interannual Q
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anomalies in MD, the interannual E anomalies do not considerably change compared to
CTR (Fig. 3.7b, d and f; Tables 3.4 and Supplementary material S3.8).
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Figure 3.7: Interannual monthly anomalies of observed discharge (Q) (a, c, e) and FLUXCOM-WB evaporation
(E) (b, d, f ) fluxes as well as modeled values in the HTESSEL CTR and MD versions in an individual repre-
sentative tropical (catchment Mi) (a, b), temperate (catchment Na) (c, d) and Mediterranean (catchment K)
(e, f ) catchment based on the time series for 1975–2010. Similar illustrations for the individual catchments are
shown in Supplementary material Figs. S3.1 (Q) and S3.2 (E).

Table 3.4: Model performance parameters of interannual monthly discharge (Q) and evaporation (E) anoma-
lies (1975–2010), with r representing Pearson correlation and v = (1−α)2 variability (where α = σmod/σobs),
in tropical, temperate and Mediterranean climate regions for the HTESSEL CTR and MD versions (catchment
averages). Modeled Q is compared to station observations and modeled E to FLUXCOM-WB (Eq. 3.1). For r , a
value of 1 represents a perfect model; for v a value of 0 represents a perfect model. The significance test of the
MD improvements compared to CTR is represented by ∗∗ (passing the 5 % level) and ∗ (passing the 10 % level).
Values of r and α for the individual catchments and p values of improvement are shown in Supplementary
material Tables S3.6 (Q) and S3.8 (E).

Discharge Evaporation
Climate region HTESSEL version r (–) v (–) r (–) v (–)

Tropical CTR 0.74 0.12 0.79 1.39
MD 0.78∗∗ 0.11 0.80∗∗ 1.52

Temperate CTR 0.80 0.09 0.81 1.12
MD 0.85∗∗ 0.06∗ 0.82∗∗ 1.46

Mediterranean CTR 0.71 0.99 0.78 1.17
MD 0.79∗∗ 4.26 0.78 1.31
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3.4 DISCUSSION

3.4.1 SYNTHESIS OF RESULTS
Sr,MM is lower than Sr,CTR in 14 out of 15 catchments (Fig. 3.5). This is seemingly in con-
trast to literature suggesting that the root depth in land surface models is too low and that
the absence of deep roots is a cause for uncertainties in simulated evaporation (Kleidon
and Heimann, 1998; Pan et al., 2020; Sakschewski et al., 2020). However, Sr represents a
conceptual water volume that is accessible to roots without defining where this volume
is in reality. Therefore, it is not necessarily proportional to root depth as a small Sr does
not preclude the presence of deep roots, as illustrated in Fig. 4 in Singh et al. (2020).

The modeling results show that the difference in long-term mean Q and E fluxes be-
tween CTR and MD are small (Table 3.2), whereas the differences between monthly (cli-
matological and interannual) variations are clearly visible (Figs. 3.6 and 3.7). This corre-
sponds to other studies on catchment hydrology that suggest that the root zone storage
mainly affects the fast hydrological response of a catchment (Oudin et al., 2004; Euser
et al., 2015; Nijzink et al., 2016; De Boer-Euser et al., 2016). Furthermore, previous stud-
ies found larger improvements in modeled discharge using Sr,MM in humid regions with
large rainfall seasonality (De Boer-Euser et al., 2016; Wang-Erlandsson et al., 2016). This
is not found in our study, as we obtain slightly smaller improvements in the discharge
correlation for the tropical catchments than for the temperate and Mediterranean ones.
This is at least partly related to the smaller difference between Sr,MM and Sr,CTR in the
tropical catchments than in temperate and Mediterranean ones (Fig. 3.5). The Mediter-
ranean catchments have large climatological biases and overly large discharge variabil-
ity in the seasonal cycle and interannual anomalies in CTR, and MD further degrades the
performance with respect to bias and variability (Tables 3.2–3.4). On the other hand, the
correlation of seasonal climatology and interannual anomalies consistently improves in
all climate regions with the implementation of Sr,MM. Therefore, it is suggested that as-
pects of the hydrology parameterization other than Sr (e.g., the lack of a groundwater
layer) could be primarily leading to the large climatological biases and overly large dis-
charge variability in the seasonal cycle and interannual anomalies in the Mediterranean.
On the other hand, uncertainties in the GSWP-3 forcing could also partly cause the large
biases in the Mediterranean. In this climate region, it is found that GSWP-3 P (0.5◦grid)
is considerably larger than P from the SILO dataset, which provides P on a 0.05◦grid
directly derived from ground-based observational data (Jeffrey et al., 2001).

Although we found significant differences in modeled Q between CTR and MD, the
discrepancy in E was very limited in all climate regions (Tables 3.3, 3.4 and Supplemen-
tary material S3.7-3.8; Supplementary material Fig. S3.2). As stated before, the reliabil-
ity of the FLUXCOM E is questionable in our study catchments (Fig. 3.3). Although the
model performance with respect to E fluxes is uncertain, the lack of evaporation sensi-
tivity to Sr was unexpected and requires more in-depth evaluation of the results in view
of the HTESSEL model parameterization.

In order to further explain the evaporation (in)sensitivity, we analyzed the modeled
soil moisture and specifically looked at a wet period (mid-1990) and a dry period (begin-
ning of 1991) in a temperate catchment, as shown in Fig. 3.8b. During the wet period,
soil moisture in the upper three layers is above or close to θcap for both MD and CTR,
while in the fourth layer MD has larger soil moisture than CTR. In this case evaporation
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is not moisture-limited and controlled by the top three layers because of the larger root
distribution in these layers (Eqs. 14 and 15). Therefore, the modeled transpiration is not
sensitive to the increase in layer 4 soil moisture in MD compared to CTR. During the
transition from wet to dry periods, the upper three layers dry out first as there is a reduc-
tion in precipitation input. As these layers are relatively dry, evaporation is controlled
by the fourth layer in which θ is reduced to values close to θpwp in MD, while it remains
relatively wet in CTR. It is this difference in θ4 that causes the sensitivity of transpira-
tion in MD during the wet-to-dry transition. However, most of the time the modeled soil
moisture is in the wet and insensitive regime, and therefore the overall effect of MD on
modeled evaporation tends to be small in the catchments considered in this study. To
further analyze the evaporation sensitivity to Sr changes, it would be useful to evaluate to
what extent it is model-dependent and compare HTESSEL behavior with other LSMs in a
multi-model context (e.g., van den Hurk et al., 2016; Ardilouze et al., 2017). On the other
hand, we also expect the evaporation sensitivity to Sr to be related to the methodology
applied, which will be further discussed in Sect. 3.4.3.

3.4.2 METHODOLOGICAL LIMITATIONS

Although the catchments were selected carefully, their location and sizes do not com-
pletely match the HTESSEL grid cells. Thus, assuming a one-to-one relation between
precipitation, evaporation, river discharge and root zone storage capacities at the catch-
ment and the grid cell is a potential source of error. However, this configures as ran-

Figure 3.8: Modeled transpiration and soil moisture content in the HTESSEL CTR and MD versions in an in-
dividual representative tropical (catchment Mi) (a), temperate (catchment Na) (b) and Mediterranean (catch-
ment K) (c) catchment. From top to bottom: transpiration, relative difference between CTR and MD transpi-

ration (
Et,CTR−Et,MD

Et,CTR
), soil moisture layer 1, soil moisture layer 2, soil moisture layer 3, soil moisture layer 4.

Additionally, the vegetation coverage (CL and CH) and the relative rooting distribution (Rk ) for the dominant
high and low vegetation types are presented.
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dom error and is therefore likely to cancel out in multiple catchment settings as is done
in this study. Another source of uncertainty is the parameterization of the memory
method for estimating catchment Sr. This method requires estimations of maximum
interception storage, seasonal and interannual transpiration signals, and return periods,
which lead to differences in Sr,MM when other values are chosen. A sensitivity analysis
of Sr,MM with a high Sr,MM (Si,max = 1.5 mm, RPlow = 3 years, RPhigh = 60 years, f = 0.15;
see Appendix A) and a low Sr,MM (Si,max = 3.5 mm, RPlow = 1.5 years, RPhigh = 20 years,
f = 0.35) on average deviated 45 mm from the average Sr,MM estimates used in this study
(Si,max = 2.5 mm, RPlow = 2 years, RPhigh = 40 years, f = 0.25). This deviation is small
considering the average Sr,MM of 319 mm. In addition, irrigation, as a possible external
water source in catchments with crops (Supplementary material Table S3.1), and deep
groundwater, as a water source for deep-rooting vegetation, are not accounted for in the
approach. However, we think that the estimation of transpiration is the main uncertainty
in the approach. The assumption that the seasonal variations in Et and Ep are in phase
may not hold in Mediterranean regions where Ep and P , and thereby the water available
for transpiration, tend to be out of phase. Applying the seasonal pattern of transpiration
modeled by CTR to the memory method in Mediterranean catchments results in smaller
Sr,MM estimates in these catchments (average: 292 mm) than with the initial approach
whereby the seasonality of Et was based on Ep (average: 321 mm). The relatively low de-
viation for both the parameter uncertainty and the uncertainty in the timing of Et leads
us to conclude that these assumptions have a small impact on the general finding that
Sr,MM is lower than Sr,CTR and that HTESSEL does not represent the spatial heterogeneity
of Sr. Station observations of river discharge are used in both the Sr,MM estimation and
the model evaluation. However, because the memory method is only based on observa-
tions of long-term annual mean discharge (Q) and the model evaluation is mainly based
on the monthly seasonal and interannual variations in Q, we consider model evaluation
based on these data appropriate.

3.4.3 ROOT ZONE STORAGE CAPACITY IMPLEMENTATION

The HTESSEL CTR version does not explicitly formulate Sr, and therefore we formu-
late Sr,CTR based on the root zone parameterization as presented in Sect. 3.2.4 in order
to modify the model parameters in a way to make the model consistent with the Sr,MM

estimates. This formulation represents the theoretical Sr,CTR, but it may not fully corre-
spond to the soil moisture in the four layers that is actually used by the modeled veg-
etation. The effective Sr (Sr,CTR,eff) can be derived a posteriori from the modeled soil
moisture storage deficits and an extreme value analyses as done in the memory method
(Sect. 3.2.3). Sr,CTR,eff is smaller than Sr,CTR based on depths (Supplementary material
Fig. S3.3c), which is likely related to the relatively small root percentage in layer 4 com-
pared to the other layers for most vegetation types (ECMWF, 2016). On the other hand,
the Sr,MM we implemented in MD by changing soil depths is close the Sr,MD,eff based on
modeled soil moisture deficits in MD (Supplementary material Fig. S3.3d).

In MD the depths for soil moisture calculations are changed, directly resulting in
changes in absolute soil moisture and thereby in indirect changes in discharge and tran-
spiration. This modification is relatively simple and flexible, and there is no limitation
on the possible range of soil depths for moisture calculations, so it could therefore sim-
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ilarly be implemented in other land surface models. However, it should be noted that
this strategy chosen for changing the HTESSEL Sr is not the only one possible. As follows
from Eq. (3.9), the plant-available soil moisture (θcap −θpwp) also defines the Sr. How-
ever, modifications in the model’s θcap or θpwp are not desired as these parameters are
soil-texture-specific properties. Moreover, modifications in the formulations of the root-
available moisture for each time step (θroots) appear not to be conceptually meaningful.

There are several alternative hypotheses that may potentially explain the limited sen-
sitivity of modeled E to the modified Sr. First, the resistance of vegetation to transpira-
tion is a function of the moisture supply (soil moisture) and the moisture demand (at-
mospheric condition) (Eqs. 14–16). The atmospheric conditions, which define moisture
demand and thereby constrain transpiration, are similar in both CTR and MD because
the models are run in an offline version. Therefore, the soil moisture–atmosphere feed-
back is not represented and the moisture demand side dominates the moisture supply
side in the evaporation calculations. This issue could be overcome by using coupled cli-
mate simulations. Second, although Sr is changed in MD compared to CTR, the param-
eterization of the vegetation water stress is kept constant. Ferguson et al. (2016) found
that different formulations of root water uptake considerably influence modeled water
budgets, and therefore it is likely that changes in evaporation in MD compared to CTR
are constrained by the vegetation water stress formulations (Eqs. 14–16). Third, the in-
sensitivity of evaporation to the changes in model soil depth is probably also related
to the fact that the resistance of vegetation to transpiration is a function of the relative
soil moisture (θ), which is not directly affected by changing the soil depth. On the other
hand, soil depth changes directly affect the modeled Q, as modeled surface (Qs) and sub-
surface runoff (Qsb) directly depend on the absolute moisture storage capacity of the soil
(see Eqs. 10 and 12), with Qs being a function of the absolute moisture in the top 50 cm of
soil and Qsb a function of the total excess soil moisture when the layer’s moisture content
exceeds saturation moisture content. Fourth, monthly fluxes of Q are often a full order
of magnitude smaller than E . Hence, small changes in the partitioning simply add up to
larger relative changes for Q.

3.5 CONCLUSIONS
This study is an attempt to overcome major limitations in the representation of the veg-
etation’s root zone in land surface models. Specifically, we looked at the HTESSEL land
surface model and found that the root zone storage capacity Sr is only a function of
soil texture and soil depth, the latter being kept constant over the modeled global do-
main (in HTESSEL z = 2.89 m), while from the state-of-the-art literature (e.g., Collins
and Bras, 2007; Guswa, 2008; Gentine et al., 2012; Gao et al., 2014) it is indicated that
Sr is, to a large extent, climate-controlled. We found that the HTESSEL control version
(CTR) indeed does not adequately represent the spatial heterogeneity of Sr, with the
range of Sr,CTR (491–725 mm) much narrower than the range obtained for the climate-
controlled estimate Sr,MM (125–722 mm) in 15 Australian catchments with contrasting
climate characteristics considered in this study. Furthermore, Sr,CTR was found to be
considerably larger than the climate-controlled estimate Sr,MM in 14 out of 15 catch-
ments. It is noted that these findings could be different for other LSMs when they have
shallower soil depths.
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We developed a new version of HTESSEL by suitably modifying the soil depths (MD)
to obtain modeled Sr,MD that matches Sr,MM over the 15 catchments considered over
Australia, while maintaining the overall HTESSEL model setup (Fig. 3.4). This strategy to
modify the model’s Sr is relatively simple and could similarly be implemented in other
land surface models. Moreover, the applied methodology could allow for a time-varying
Sr in LSMs, and hence all four limitations of using sparse root observations mentioned
in Chapter 1 could be overcome.

The comparison of the offline simulations with original (CTR) and modified (MD)
versions of HTESSEL shows that the difference of the biases in the modeled long-term
mean climatology of discharge and evaporation fluxes is generally small. On the other
hand, the seasonal timing of the discharge flux is significantly improved in MD, indi-
cating the beneficial effect of the climate-controlled representation of Sr. Consistently,
MD improves the correlation with observations for the monthly seasonal climatology of
discharge fluxes in 12 out of 15 catchments (with 7 catchments passing the 5 % signifi-
cance level) and for the interannual monthly discharge anomalies in 14 out of 15 catch-
ments (with 9 catchments passing the 5 % significance level) (Supplementary material
Tables S3.5-S3.6). Considering the climate region averages, the correlations of monthly
seasonal climatology significantly improve in MD compared to CTR from 0.843 to 0.902
(tropical), from 0.741 to 0.855 (temperate) and from 0.860 to 0.951 (Mediterranean). The
averaged correlations of the interannual monthly anomalies significantly improve in MD
compared to CTR from 0.741 to 0.778 (tropical), from 0.795 to 0.847 (temperate) and
from 0.705 to 0.785 (Mediterranean). Surprisingly, the modeled evaporation is shown
to be relatively insensitive to changes in Sr. In HTESSEL evaporation only depends on
the relative moisture content in each soil layer, which in the model is not directly af-
fected by the depth of the soil. Investigation of this insensitivity showed that it is only
sensitive during dry periods when evaporation is dominated by transpiration from the
fourth layer (Fig. 3.8). On the other hand, surface runoff and subsurface runoff in HT-
ESSEL depend on the total moisture content of the soil at any given time. Other than
the relative moisture content this depends on the absolute moisture storage capacity of
the soil that will vary together with the change in soil depth. Moreover, small changes in
absolute fluxes translated to larger relative changes for runoff compared to evaporation
(Fig. 3.6). As a final conclusion, we believe that a global application of climate-controlled
root zone parameters has the potential to improve the timing of modeled water fluxes by
land surface models, but from the results of this study a significant reduction of annual
mean climatological biases cannot be expected. More work will be needed in the future
to improve long-term mean simulations of discharge and evaporation fluxes by exploit-
ing station-based and latest-generation satellite observations. Toward this aim the use of
coordinated multi-model frameworks for the intercomparison of state-of-the-art LSMs
could be fundamental.
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3.A ITERATIVE PROCEDURE FOR TRANSPIRATION ESTIMATION
Daily transpiration is estimated by Eq. (3.7) with c, a coefficient that represents the ra-
tio between transpiration and potential evaporation (Sect. 3.2.3). With c = Et/Ep as a
constant value, we do not account for interannual variability in transpiration caused by
the interplay between atmospheric water demand and vegetation-available water sup-
ply. Therefore, we add an iterative procedure to estimate annually varying values for c,
which is described here.

Steps 1 to 6 describe the procedure used to estimate c, with step 1 providing the ini-
tial estimates and steps 2 to 6 executed iteratively. i represents the iterations (0–9) and
a the hydrological years (1973–2010). Pe, Et, Ep and Sd are daily values. After 10 itera-
tions (i = 9) the resulting annual transpiration estimates stabilized and the correspond-
ing storage deficits were used for the Gumbel Sr analysis as described in Sect. 3.2.3.

1. Create initial estimates (i = 0) of Et and Sd with a constant c0,a = E t/E p for a = 1973–
2010.

Et,0 = c0,a Ep (3.24)

Sd,0 = max

0,−
2010∫

1973

(Pe −Et,0)dt

 (3.25)

2. Calculate the annual change in storage in the root zone (S) with t0 and t1 repre-
senting the start and end of a hydrological year.

∆Si ,a = Sd,i (t0)−Sd,i (t1) (3.26)

3. Calculate annual transpiration following the water balance.

E t,i ,a = P e,i ,a −Q i ,a −
∆Si ,a

t1 − t0
(3.27)

4. Calculate ca for each hydrological year based on the annual Et estimate from step
3 and calculate daily Et.

ci ,a = E t,i ,a

E p,a
(3.28)

Et,i = ci ,aEp (3.29)

5. Calculate storage deficits based on daily Et from step 4.

Sd,i = max

0,−
2010∫

1973

(Pe −Et,i )dt

 (3.30)

6. The input storage deficit of iteration i +1 in step 2 is the average of iteration i and
i −1.

Sd,i+1 =
Sd,i +Sd,i−1

2
(3.31)



3.A. ITERATIVE PROCEDURE FOR TRANSPIRATION ESTIMATION

3

55

The following three constraints are set to the iterations.

• The long-term water balance closes (P e −Q −E t ≈ 0).

• Annual transpiration is always larger than zero and smaller than the annual po-
tential evaporation.

• Variations in c are limited by c0,a − f c0,a < ci ,a < c0,a + f c0,a , with f as a coefficient
set to 0.25.

Figure 3.9 illustrates the iterative approach for storage deficit calculations. Daily P ,
Ep and Et based on Eq. (3.24) are presented in Fig. 3.9a. Figure 3.9b shows annual vari-
ations of Pe and Et. During the years 1980–1984, Pe is clearly less than average, and the
Et,0 estimate is likely too high in these years because vegetation has less water available
for transpiration. The final iteration Et,9 provides a more realistic interannual pattern of
transpiration. Initial and final iteration storage deficits are presented in Fig. 3.9c.

Figure 3.9: Storage deficit iteration approach in a temperate catchment for the time period 1977–1987. (a)
Daily water fluxes with P representing precipitation, Ep potential evaporation and Et the initial transpiration
calculation based on Eq. (3.7). (b) Annual water fluxes with Pe representing effective precipitation, Et,0 the
initial transpiration estimate and Et,9 the final iteration transpiration estimate. Mean Pe is based on the full
time period (1973–2010). (c) Daily storage deficit with Sd,0 representing the initial calculation and Sd,9 the
final iteration.
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ROOT ZONE STORAGE CAPACITY

ESTIMATION

In the previous chapter we have shown that climate-controlled root zone parameters based
on the memory method have potential to improve water flux simulations by land surface
models. One limitation of this method as it was used in Chapter 3, is the lack of consid-
eration of irrigation as an external water source to the vegetation. This chapter addresses
this issue by evaluating the influence of irrigation on root zone storage capacity estimation
with the memory method for a large sample of catchments globally.
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SUMMARY

Vegetation plays a crucial role in regulating the water cycle through transpiration, which
is the water flux from the subsurface to the atmosphere via vegetation roots. The amount
and timing of transpiration is controlled by the interplay of seasonal energy and water
supply. The latter strongly depends on the size of the root zone storage capacity (Sr)
which represents the maximum accessible volume of water that vegetation can use for
transpiration. Sr is primarily influenced by hydro-climatic conditions as vegetation op-
timizes its root system in a way it can guarantee water uptake and overcome dry periods.
Sr estimates are commonly derived from root zone water deficits that result from the
phase shift between the seasonal signals of root zone water inflow (i.e., precipitation)
and outflow (i.e., evaporation). In irrigated croplands, irrigation water serves as an addi-
tional input into the root zone. However, this aspect has been ignored in many studies,
and the extent to which irrigation influences Sr estimates was never comprehensively
quantified. In this study, our objective is to quantify the influence of irrigation on Sr and
identify the regional differences therein. To this aim, we integrated two irrigation meth-
ods, based on irrigation water use and irrigated area fractions, respectively, into the Sr

estimation. We evaluated the effects in comparison to Sr estimates that do not consider
irrigation for a sample of 4856 catchments globally with varying degrees of irrigation ac-
tivities. Our results show that Sr consistently decreased when considering irrigation with
a larger effect in catchments with a larger irrigated area. For catchments with an irrigated
area fraction exceeding 10 %, the median decrease of Sr was 19 mm and 23 mm for the
two methods, corresponding to 12 % and 15 %, respectively. Sr decreased the most for
catchments in tropical climates. However, the relative decrease was the largest in catch-
ments in temperate climates. Our results demonstrate, for the first time, that irrigation
has a considerable influence on Sr estimates over irrigated croplands. This effect is as
strong as the effects of snow melt that were previously documented in catchments that
have a considerable amount of precipitation falling as snow.
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4.1 INTRODUCTION
Root zone storage capacity (Sr (mm)) can be estimated with the memory method (Chap-
ter 3). In this method Sr is derived from water storage deficit calculations in the root
zone at the catchment scale, assuming vegetation is able to keep memory of past deficit
conditions to size roots in such a way to guarantee continuous access to water (Gentine
et al., 2012; Gao et al., 2014). It is important to note that the memory method is based
on liquid water input to the root zone. As such, solid phase precipitation and storage as
transient, seasonal or perennial snow packs introduces time lags between the moment
of precipitation and the release of liquid water (i.e., melt water) into the sub-surface.
These time lags can lead to considerable temporal shifts in liquid water supply, thereby
affecting the development of seasonal water deficits and the associated magnitudes of
Sr. Various models with different levels of complexity have previously been integrated
into the memory method to account for the time lags due to snow accumulation and
melt dynamics (de Boer-Euser et al., 2018; Dralle et al., 2021; Stocker et al., 2023). Dralle
et al. (2021) have recently shown that explicitly accounting for snow accumulation and
associated time lags in melt water release in the memory method does generally lead to
lower values of Sr in regions where significant fraction of precipitation occurs in the form
of snow.

Irrigation similarly affects the timing of water input to the soil. Besides its effect on
timing, irrigation during the growing season leads to input of additional water next to
precipitation that otherwise would not be accessible for roots and thus not be avail-
able for vegetation uptake. Irrigation thereby also affects the magnitude of water input
and actively shapes the root development of crops. Irrigation leads to shallower roots
and higher root densities in the upper soil compared to non-irrigated vegetation, as it
reduces the need for resource allocation for root growth, and instead allows increased
resource allocation for above-surface growth (Klepper, 1991; Engels et al., 1994; Bakker
et al., 2009; Maan et al., 2023). The strength of this signal is variable and depends on the
irrigation method applied (Lv et al., 2010; Jha et al., 2017; Wang et al., 2020). Currently,
approximately 20 % of global croplands are irrigated (FAO, 2022) and with the increasing
demand for crop production, irrigation requirements are expected to increase in the fu-
ture (Alexandratos and Bruinsma, 2012). In spite of some exceptions (e.g. Roodari et al.
(2021)), irrigation is rarely systematically represented in hydrological and biogeophys-
ical models (McDermid et al., 2023), mostly due to a lack of sufficient data (e.g., Meier
et al. (2018)). This also holds for the memory method, as most studies using the memory
method for Sr estimation did not account for irrigation, which likely led to an overesti-
mation of Sr in irrigated areas (Gao et al., 2014; De Boer-Euser et al., 2016; Stocker et al.,
2023). To our knowledge, only Wang-Erlandsson et al. (2016) explicitly accounted for
irrigation when estimating Sr by adding irrigation estimates simulated by the LPJmL dy-
namic global vegetation model to the precipitation input (Jägermeyr et al., 2015). How-
ever, it remains unknown to which extent irrigation influences the magnitudes of Sr es-
timates and in which regions globally it is most relevant to take into account.

Our objective here is to quantify the influence of irrigation on the root zone stor-
age capacity estimated with the memory method and to identify the regional differences
therein. We do so by using a sample of 4856 catchments globally with varying degrees
of irrigation activities. Specifically, we test the hypothesis that irrigation considerably
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reduces root zone storage capacities Sr and therefore needs to be accounted for in the
estimation of Sr. To this aim, we introduce two methods that represent irrigation based
on catchment water balances to the memory method using irrigation data from two dif-
ferent sources. The first method explicitly uses estimates of irrigation water use from
Zhang et al. (2022) in the Sr calculation with the memory method. The second method
is a simpler parameterization based on the irrigated area fraction (Siebert et al., 2015).

4.2 METHODS

4.2.1 DATA

For this study we used station based discharge (Q) data from the following sources: the
Global Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018; Gudmunds-
son et al., 2018), the Australian edition of the Catchment Attributes and Meteorology
for Large-sample Studies (CAMELS-AUS) dataset (Fowler et al., 2021), the LArge-SaMple
DAta for Hydrology and Environmental Sciences for Central Europe (LamaH-CE) (Klin-
gler et al., 2021) and the Italian Hydrological Portal (Lendvai, 2020). We used annual
mean discharge (Q) for the catchment specific available time period. For the period
1981-2010, we obtained catchment average daily precipitation (P ) and daily mean tem-
perature (Ta) from the Global Soil Wetness Project Phase 3 (GSWP3) (Dirmeyer et al.,
2006) and daily potential evaporation (Ep) from the Global Land Evaporation Amster-
dam Model version 3.5a (GLEAMv3.5a), which is based on the Priestley-Taylor approach
(Martens et al., 2017; Miralles et al., 2011). We selected 4856 catchments based on the
following criteria: (1) at least 10 years of Q data during the 1981–2010 period; (2) catch-
ment area < 10000 km2 to limit the heterogeneity within catchments; (3) annual mean
discharge (Q) smaller than annual mean precipitation (P ) for the specific catchment.

For each catchment we obtained irrigation estimates from two different data sources.
Firstly, we used the average irrigated area fraction Ia (-), which is the areal fraction of land
equipped with infrastructure for irrigation. Ia was obtained from the "AEI_HYDE_FINAL_IR"
dataset developed by Siebert et al. (2015), which is representative for the irrigation extent
in the year 2005 (Fig. 4.1a). This dataset was based on sub-national irrigation statistics
and the History Database of the Global Environment (HYDE) version 3.1 land use data
(Klein Goldewijk et al., 2011; Siebert et al., 2015). Secondly, we used estimates of an-
nual mean irrigation water use representative for the 2011-2018 period (Iw (mm year−1))
from Zhang et al. (2022), who developed an algorithm to estimate irrigation from multi-
ple satellite-based products and the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL)
model (Fig. 4.1b).

To identify the effects of irrigation for different regions, we used the Köppen-Geiger
climate classes as a climate indicator. We selected for each catchment the predominant
Köppen-Geiger climate class based on a global map at a 1 km resolution representing
the 1980-2016 period (Beck et al., 2018). The gridded data products for P , Ep, Ia and

Iw were converted to catchment estimates using area weighted averages of the grid cells
that lie for more than 50 % inside the catchment. Before area weighting, the gridded
products were resampled to a spatial resolution of 0.05◦using nearest neighbour inter-
polation. This way, all gridded products were treated similarly and problems with small
catchments with no matching grid cells were avoided.
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Figure 4.1: Global irrigation characteristics. (a) Irrigated area fraction (Ia (-)) representative for 2005 based
on sub-national irrigation statistics and the HYDE 3.1 land use data (Siebert et al., 2015). (b) Annual mean
irrigation water use (Iw (mm year−1)) for the period 2011-2018 based on multiple satellite-based products and
the PT-JPL model (Zhang et al., 2022). White areas indicate Ia or Iw equal to zero.

4.2.2 MEMORY METHOD WITH IRRIGATION METHODS
Figure 4.2a shows a conceptualization of the memory method based on four storage
components (mm): interception storage Si, snow storage Ssn, "surplus" storage Ss, and
storage deficit Sd. Sd is initially conceptualized as an infinite deficit storage volume and
its temporal evolution can be described by:

Sd(t ) =
τ∫

t0

(Pe −Et + I −Ps)dt (4.1)

where Pe represents effective precipitation (mm day−1), Et is transpiration (mm day−1),
I is irrigation (mm day−1), and Ps is surplus precipitation (mm day−1) (Fig. 4.2a). In
Eq. (4.1) t0 corresponds to the first day of the first hydrological year and τ to the daily
time steps ending on the last day of the last hydrological year. Our hydrological year
starts the first day of the month after the wettest month, which is defined as the month
with on average the largest positive difference between monthly mean P and Ep. At t0,
the starting point of the analysis, Sd=0. In Eq. (4.1), Pe (mm day−1) is calculated from the
water balance of the interception storage Si (Fig. 4.2a), and Et (mm day−1) is described
as a fraction of daily potential evaporation Ep (mm day−1) based on the catchment water
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Figure 4.2: (a) Schematic bucket model representation of the memory method including an irrigation model
with the following storages (mm): interception storage (Si), snow storage (Ssn), storage deficit (Sd), surplus
storage (Ss), and root zone storage capacity (Sr); and fluxes (mm day−1): total precipitation (P ), liquid pre-
cipitation (Pl), precipitation falling as snow (Psn), interception evaporation (Ei), snow melt (Pm), effective
precipitation (Pe), transpiration (Et), precipitation surplus (Ps) and irrigation (I ). (b) An example time series
of Ss, Sd and I based on Eqs. (4.1–4.6), with ∆td the length of the deficit period (days), and Ss(ts1) the surplus
storage at the end of the surplus period. Note that this time series represents only two years to illustrate the
method, while all catchments have at least ten years of data.

balance. We used a simple snow model based on the degree-day method (e.g. Bergstrom,
1975; Gao et al., 2017) to account for the delay in liquid water input to the soil by describ-
ing liquid precipitation (Pl (mm day−1)), precipitation falling as snow (Psn (mm day−1)),
and snow melt (Pm (mm day−1)). The equations for the interception storage, snow stor-
age, and transpiration calculation are described in Appendix 4.A.

Surplus precipitation Ps (mm day−1) in Eq. (4.1) is described by Eq. (4.2), in which
we used the following notation for the sum of the fluxes between two time steps: Ft =∫ t

t−1 F dt , where F is either Pe, Et, I or Ps. Thus Ps,t is described by:

Ps,t = max(0,Sd +Pe,t −Et,t + It ), (4.2)

with Sd and It approaching zero during periods of abundant precipitation, and thus it
then holds that Ps,t ≈ Pe,t −Et,t .

For the computation of applied irrigation I we split the timeseries into surplus and
deficit periods (Fig. 4.2b). For each hydrological year, we defined one deficit period,
which is the longest deficit period with the largest Sd in the hydrological year. Surplus
periods were defined as the periods in between the deficit periods. For each surplus
period, the surplus precipitation Ps (Eq. (4.2)) accumulates in the surplus store Ss:

Ss(t ) = max(0,

ts1∫
ts0

(Ps − I )dt ) (4.3)

with ts0 the first day of the surplus period and ts1 the last day of the surplus period
(Fig. 4.2b). Ss does not have a maximum storage capacity, but it is reset to zero each year,
after each deficit period. This storage conceptualizes any water buffers that can be used
for irrigation in the consecutive deficit period and may encompass ditches, lakes and
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aquifers. This method assumes that irrigated water only originates from water inside the
catchment boundaries and that it is sustainably extracted so that the long term water
balance is closed. During a deficit period, the fraction of Ss that is used for irrigation
is defined by irrigation factor f (-), which determines how much of the surplus water
stored during the surplus period is used for irrigation during the consecutive deficit pe-
riod. f represents both the water evaporated or discharged during the irrigation process
before recharging the soil, and the spatial extent of the irrigation. It is assumed that daily
irrigation I is equally distributed over the deficit period (Fig. 4.2b), so that I (mm day−1)
is defined as:

I (t ) = f Ss(ts1)

∆td
(4.4)

with ∆td the length of the deficit period (td1 − td0) in days (Fig. 4.2b). Based on the
two irrigation data sources used (Sect. 4.2.1), we have here developed two methods to
estimate f in Eq. (4.4):

1. Irrigation Water Use method (IWU)

fd ,IWU (-) is defined for each deficit period d for each catchment by:

fd ,IWU = max(1,
Iwdt

Ss(ts,1)
), so that I (t ) = Iwdt

∆td
if sufficient water is available in Ss,

(4.5)
with Iw (mm year−1) the catchment annual mean irrigation water use, dt = 1year,
and Ss(ts,1) (mm) the surplus storage at the end of the surplus storage accumula-
tion period, i.e. the amount of water stored in Ss at the start of the deficit period.
In this method, fd ,IWU is different for each deficit period d , as Ss also varies. For
each catchment, fIWU is defined as the average fd ,IWU.

2. Irrigated Area Fraction method (IAF)

fIAF (-) is temporally non-varying, and is defined for each catchment by:

fIAF =βIa (4.6)

with Ia (-) the catchment irrigated area fraction and β (-) a correction factor that
is constant in space and time for all catchments. β was chosen as a constant to
create a relatively simple approach that does not directly rely on irrigation water
use data, which is beneficial for application in time periods (both historical and
future), without irrigation water use data, as well as for regions where no reliable
irrigation water use data is available. We estimated β by minimizing the difference
between fIAF and fIWU in terms of Root Mean Squared Error (RMSE). We generated
1000 linearly spaced values for β between 0 and 2.5, and computed fIAF for all
the catchments. For all these cases, the RMSE of catchment fIAF and fIWU was
computed (Fig. 4.3). The RMSE minimized for β = 0.9 (RMSE = 0.042), which is
applied for all catchments in Eq. (4.6).

To evaluate the effect of these methods on estimated Sr we tested a third case, re-
ferred to as No Irrigation (NI), in which fNI = 0. A priori we cannot and do not consider
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any of the two methods, i.e., the IWU or the IAF method to be more representative than
the other. While the IWU method uses the irrigation data more directly than the IAF
method, the latter directly takes the inter-annual variability of surplus water into ac-
count.

Figure 4.3: Root Mean Squared Error (RMSE) between the catchment irrigation factors fIWU (Eq. 4.5) and fIAF
(Eq. 4.6) for 4856 catchments for 1000 linearly spaced values of β between 0 and 2.5. βopt represents the value
for β where the RMSE minimizes. (b) Scatter of fIWU (Eq. 4.5) and fIAF (Eq. 4.6) for β=βopt=0.9 with lighter
colours a higher point density.

ROOT ZONE STORAGE CAPACITY CALCULATION

Catchment-scale root zone storage capacity Sr was here derived from the catchment-
scale storage deficit Sd timeseries for the three different irrigation cases NI, IWU, and
IAF (Table 4.1). For each catchment, the annual maximum storage deficits (Sd,M) were
defined for each hydrological year as:

Sd,M = max(Sd(t ))−min(Sd(t )) (4.7)

with the min(Sd) occurring earlier in the hydrological year than the max(Sd). Previous
studies (e.g. Gao et al., 2014; Wang-Erlandsson et al., 2016) applied a Gumbel distribution
on the Sd,M values to estimate Sr for different return periods T . Wang-Erlandsson et al.
(2016) found that for croplands, and thus irrigated land, the best evaporation simula-
tions with a global hydrological model were achieved with an Sr based on a return period
of 2 years, as croplands adapt to survive droughts with relatively short return periods.
Here, we directly used the observed Sd,M values with occurrences closest to T = 2 years
instead of a fitted extreme value distribution, because fitting an extreme value distribu-
tion is ambiguous for return periods of interest (here: 2 years) much smaller than the
timeseries length (here: >10 years). For all catchments, for each irrigation case sepa-
rately, the Sr was estimated as the mean of the three observed Sd,M-values with occur-
rences closest to T = 2 years, as represented by the cross-markers closest to the vertical
dashed line at T = 2 years in in Fig. 4.5b,d,f and h.
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EVALUATION

To visualize the effects of irrigation on Sd and Sr, we selected four example catchments
with different irrigation magnitudes (i.e., Ia and Iw) in four different continents and cli-
mate zones. For quantification of the effects of irrigation on Sr, we computed absolute
(∆) and relative (∆r) differences between the Sr estimates for the NI, IWU and IAF cases
(Table 4.1). Catchments were stratified based on (1) four different ranges of irrigated area
Ia: Ia ≤ 0.01; 0.01< Ia ≤ 0.05; 0.05 < Ia ≤ 0.1; and Ia > 0.1 (Supplementary material Fig.
S4.1); (2) regions, i.e., South-America, North-America, Europe and Asia; and (3) climate
zones based on Köppen-Geiger, subdivided into Tropical (Af, Am, Aw), Arid (BWh, BWk,
BSh, BSk), Temperate (Cfa, Cfb, Cfc), Mediterranean (Csa, Csb), and Continental (Dfa,
Dfb, Dfc, Dfd) climates, with the abbrevations of the Köppen-Geiger climate classifica-
tion (Beck et al., 2018) (Supplementary material Fig. S4.2). Uncertainty of the differences
in Sr were represented by the interquartile range (IQR).

Table 4.1: Details of the irrigation cases considered in this study.

Irrigation
case

Details Irrigation factor f (Eq. (4.4))

NI No irrigation fNI = 0

IWU Irrigation based on Irriga-
tion Water Use (Fig. 4.1b)

fIWU = max(1, Iwdt
Ss(ts,1) ) (Eq. (4.5))

IAF Irrigation based on Ir-
rigated Area Fraction Ia

(Fig. 4.1a)

fIAF =βIa (Eq. (4.6))

Figure 4.4: Catchment Sr for the No Irrigation (NI) case, with dots representing catchment outlets. Similar
figures for the IWU and IAF cases are presented in Supplementary material Fig. S4.3.
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4.3 RESULTS

4.3.1 IRRIGATION INFLUENCE ON ROOT ZONE STORAGE CAPACITY

Globally, the Sr estimates without accounting for irrigation ranged from 0–800 mm, with
larger values in semi-arid regions with high rainfall seasonality such as North-Eastern
Brazil (median Sr ≈ 250 mm) or monsoon regions such as North-Eastern Indian (median
Sr ≈ 450 mm), than in regions with temperate climates with year-round rainfall such as
Western Europe (median Sr ≈ 70 mm) or continental, colder, climates such as Canada
(median Sr ≈ 40 mm) (Fig. 4.4).

The storage deficits Sd (Eq. 4.1) in general reduced when accounting for irrigation
effects according to the IWU and IAF cases as compared to the case without irrigation

Figure 4.5: (a, c, e, g) Timeseries of storage deficits Sd (mm) (Eq. 4.1) for four illustrative catchments with
increasing irrigation from top to bottom for the three irrigation cases NI, IWU, and IAF (Table 4.1) with for
each catchment the associated annual mean irrigation water use (Iw), irrigated area fraction (Ia), and root
zone storage capacity (Sr) values. (b, d, f, h) Return level plot of annual maximum storage deficits (Sd,M)
(Eq. 4.7) for the three irrigation cases NI, IWU and IAF with the dashed vertical line corresponding to a return
period T of 2 years (Section 4.2.2). The locations of the catchments are shown in Fig. 4.6. Catchment identity,
continent, and Köppen Geiger climate zone are from top to bottom: br_0002356, South America, temperate
(Cfb); ca_0000689, North America, continental (Dfb); es_0000742, Europe, Mediterranean (Csa); in_0000252,
Asia, tropical (Aw).
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(NI). These overall effects of the method are illustrated by four selected example catch-
ments in Fig. 4.5. More pronounced effects of irrigation on Sd are visible for the example
catchments in Europe (Fig. 4.5e,f) and Asia (Fig. 4.5g,h), with larger Iw and Ia, than in
the example catchments in South-America (Fig. 4.5a,b) and North-America (Fig. 4.5c,d).
As Sd decreased, the annual maximum storage deficits Sd,M, as determined by Eq. (4.7),
decreased as well. Consequently, the estimated Sr decreased for the IWU and IAF cases
compared to NI, with more pronounced effects in the example catchments with larger
Iw and Ia (Fig. 4.5). Globally, Sr consistently decreased for IWU and IAF (Fig. 4.6), al-
beit the magnitudes vary to a considerable extent. Nevertheless, relatively clear regional
patterns of the effects of irrigation on Sr emerged. The most pronounced effects cluster
in catchments in regions that are characterized by widespread and intense crop cultiva-
tion, and thus high irrigation water use, such as Northern Spain and France and parts of
India (Fig. 4.1).

Figure 4.6: Relative difference in Sr (∆rSr (-)) for (a) IWU compared to NI ((NI-IWU)/NI) and (b) IAF compared
to NI ((NI-IAF)/NI). Red markers indicate the selected catchments from Fig. 4.5. See Table 4.1 for details on
the irrigation cases.
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4.3.2 REGIONAL DIFFERENCES OF IRRIGATION INFLUENCE ON ROOT ZONE

STORAGE CAPACITY

Figure 4.7 shows that the effects of irrigation on Sr increased with increasing irrigated
area fraction Ia for both IWU and IAF cases. We found the largest effects in catchments
with Ia > 0.1, such as the example catchment in Asia (Fig. 4.5g). For these catchments,
the median ∆Sr was 19 mm (IQR 10–31 mm) for IWU and 23 mm (IQR 11–42 mm) for
IAF (Fig. 4.7), which correspond with decreases of 12 % and 15 %, respectively (Table
4.2). These effects were considerably larger than the effects of irrigation in catchments
with 0.05 < Ia ≤ 0.1 that reached median ∆rSr of 6%, which corresponds to ∆Sr ≈ 9mm
(Fig. 4.7, Table 4.2). Although the median effects of irrigation on Sr for catchments with
Ia ≤ 0.05 were relatively small, the effects can be considerable for specific individual
catchments as shown by the outliers in Fig. 4.7.

Figure 4.7: Boxplots of absolute Sr difference (∆Sr(mm)) between the irrigation cases (IWU and IAF) and the no
irrigation case (NI) (Table 4.1). Catchments are stratified in four groups based on the irrigated area fraction Ia
(Supplementary material Fig. S4.1), with n the number of catchments in each group. The black line represents
the median, the box the interquartile range (IQR), and the whiskers the 5th and 95th percentiles. White markers
represent the points presented in Fig. 4.5. Median and IQR values for relative Sr differences (∆rSr(%)) are
presented in Table 4.2.

The strongest irrigation influence on Sr for catchments with Ia > 0.05 was found in
Asia, followed by South-America, North-America and Europe, for both IWU and IAF (Fig.
4.8a). For the catchments in Asia we found median values of ∆Sr for IWU of 21 mm (IQR
13–41 mm), and for IAF of 27 mm (IQR 12–56 mm). However, the relative differences in
Sr were with ∆rSr =9–10 % smaller in Asia than in other regions, reaching up to 14 % in
South America, because the initial Sr without accounting for irrigation was considerably
larger in Asia than in other regions (Fig. 4.4, Table 4.2). Figure 4.8b shows that Sr de-
creased the most in tropical catchments with median ∆Sr = 19 mm for IWU and 24 mm
for IAF. These findings are in line with the results presented in Fig. 4.8a since most of
the tropical catchments we evaluated were located in Asia (Supplementary material Fig.
S4.2). For catchments in the arid, Mediterranean, temperate, and continental climate



4.3. RESULTS

4

69

zones, median ∆Sr was smaller and varied between 5 mm and 15 mm. However, catch-
ments in temperate climates exhibited the largest relative influence of irrigation on Sr

with median ∆rSr =14 % for IWU and 15 % for IAF (Table 4.2).

Figure 4.8: Boxplots of absolute Sr difference (∆Sr (mm)) between the irrigation cases (IWU and IAF) and the
no irrigation case (NI) (Table 4.1). In (a) catchments are stratified regionally, similar to the maps in Fig. 4.6, and
in (b) catchments are stratified based on climate zone (Sect. 4.2.2, Supplementary material Fig. S4.2), with for
both (a) and (b) only catchments with irrigated area fraction Ia > 0.05. The total number of catchments (n) in
each group is given, with the numbers in brackets representing n in 0.05 < Ia ≤ 0.1, and Ia > 0.1, respectively.
The black line represents the median, the box the interquartile range (IQR), and the whiskers the 5th and 95th
percentiles. Median and IQR values for relative Sr differences (∆rSr(%)) are presented in Table 4.2.
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Table 4.2: Median and interquartile range (IQR) of the relative Sr difference (∆rSr(%)) between the irrigation
cases (IWU and IAF) and the no irrigation case (NI) with the catchments stratified for the top four rows based
on irrigated area fraction (Ia) (Fig. 4.7), for the middle four rows based on region (only catchments with Ia >
0.05) (Fig. 4.8a), and for the bottom five rows based on climate zones (only catchments with Ia > 0.05) (Fig.
4.8b). IQR is given as the 25th percentile – 75th percentile.

(NI–IWU)/NI (NI–IAF)/NI
median IQR median IQR

Ia ≤0.01 0 0–0 0 0–1
0.01< Ia ≤0.05 2 1–6 3 1–8
0.05< Ia ≤0.1 6 3–14 6 2–17
Ia >0.1 12 7–21 15 6–33

South-America 12 7–20 14 8–29
North-America 9 3–16 11 3–23
Europe 9 4–19 7 2–26
Asia 9 5–16 10 4–21

Tropical 9 5–17 10 5–26
Arid 5 2–11 3 1–7
Mediterranean 5 0–10 3 1–8
Temperate 14 6–23 15 6–33
Continental 8 4–12 22 4–34

4.3.3 COMPARISON IWU AND IAF METHODS

Figure 4.6 shows similar spatial patterns of∆rSr for IWU and IAF, but the magnitudes dif-
fered. For most groups of catchments, IAF had a more pronounced effect on Sr than IWU
(Table 4.2; Supplementary material Fig. S4.4). The different results for IWU and IAF can
be explained by the different methodologies (Table 4.1). The IWU method directly used
annual mean irrigation water use Iw from Zhang et al. (2022) as an estimate for I , if suffi-
cient water was available in the surplus store Ss. On the other hand, in the IAF method I
was defined as a fraction of Ss based on the irrigated area fraction Ia and the constant β.
Therefore, the estimated I in IAF directly reflected the inter-annual variability of surplus
water. Another cause for the different results for IWU and IAF lies in the estimation of
β in IAF, which was based on minimization of the differences between fi,IWU and fi,IAF

(Sect. 4.2.2; Fig. 4.3). In spite of this optimization, differences between fi,IWU and fi,IAF

remained, which partially explain the differences in ∆Sr between the two methods.

4.4 DISCUSSION

4.4.1 SYNTHESIS OF RESULTS

Our results showed that the effect of irrigation on Sr is discernible in all regions, but the
magnitude of the effect depends on the amount of irrigation applied (Fig. 4.5–4.8). For
many parts of the world the integration of irrigation in the Sr estimation did not have
a large influence (Fig. 4.6). However, Sr considerably reduced for catchments with ir-
rigated area fractions Ia > 0.05, and ignoring irrigation in these regions would lead to
biased estimates of Sr, and, as a consequence, to inadequate modeling of vegetation
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transpiration (Fig. 4.7). The reduction in Sr in catchments with irrigation was expected
following that the memory method is based on the theory that vegetation will invest
less in roots if sufficient water is available (Guswa, 2008). The observed changes in Sr

are here attributed to changes in the vegetation roots, as they are directly related to the
size of Sr. Additionally, adaptations at the plant scale associated with irrigation, such as
adjustments in stomatal aperture (Chaves et al., 2016) and root hydraulic conductance
(Lo Gullo et al., 1998), are also implicitly related to changes in Sr. The influence of ir-
rigation on Sr estimates, as presented in Fig. 4.6, resembled the spatial pattern found
in global assessments of irrigation water withdrawal (Huang et al., 2018), and the extent
of irrigation activities (McDermid et al., 2023). This was expected since we used similar
underlying irrigation data in the here developed irrigation methods. Given the ongoing
irrigation expansion as presented by McDermid et al. (2023), it is expected that larger
irrigation water volumes lead to further reductions of Sr at catchment scales in the near-
future compared to the reductions reported in this study. At the same time, irrigation
efficiency is also improving (McDermid et al., 2023), but this effect on Sr is less straight-
forward. Improved irrigation efficiency (i.e., reduced soil evaporation) reduces the irri-
gation water volumes needed, which, at the catchment scale, leads to increased long-
term mean discharge, and thus reduced long-term mean evaporation. This would result
in reduced Sr in the memory method compared to a situation with lower irrigation effi-
ciency. However, it has been shown that increased efficiency does not necessarily lead
to reduced irrigation water use, as the saved water by increasing irrigation efficiency is
often applied elsewhere (Grafton et al., 2018; Lankford et al., 2020).

Previous studies using the memory method did not consider irrigation in Sr esti-
mates (e.g. De Boer-Euser et al., 2016; Stocker et al., 2023), or did not evaluate its effects
(Wang-Erlandsson et al., 2016). To put our results into perspective, we looked at the ef-
fects of snow accumulation and melt on Sr estimates for the continental United States
from Dralle et al. (2021), as this process alters the Sd time series in a similar way as ir-
rigation by temporally shifting liquid water input into the system. Dralle et al. (2021)
estimated that integrating snow accumulation and melt in the memory method led to
an average reduction in Sr of 6 mm (2 %) for areas with >10 % winter snow coverage, and
28 mm (17 %) for areas with >80 % winter snow coverage (Dralle et al., 2020b). These
magnitudes are broadly consistent with our findings for irrigation (Table 4.2). Our re-
sults indicate that the effects of snow and irrigation on Sr are comparable. In our study,
27 catchments have both considerable snowfall (snow days > 5% of the total days) and
irrigation (Ia > 0.05). For these catchments, the snow model (Appendix 4.A) led on av-
erage to an Sr reduction of 7 mm (7%) for the NI case compared to a set-up without the
snow model. With irrigation, Sr further reduced by 6 mm (7%), and 11 mm (12%) for IAF
in these catchments.

Both the results of IWU and IAF showed considerable effects of irrigation on Sr (Figs.
4.6–4.8), and both are suitable to use in the memory method, keeping in mind the indi-
vidual uncertainties related to data and methodological assumptions. We think that the
IWU method is more suitable for regional application for periods with available Iw data
(Zhang et al., 2022) than IAF, because Iw was derived from water balances, that strongly
depend on the evaluated period. However, for spatial and temporal extrapolation the
direct use of the Iw data in the IWU method is more uncertain than the simpler IAF
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method, because the irrigated area fraction Ia used in IAF is expected to be temporally
less variable than the water used for irrigation Iw. Therefore, we think the simpler pa-
rameterized IAF method is more suitable to use in the memory method for global ap-
plications and varying time periods. Moreover, IAF has the potential to be integrated
dynamically in hydrological or land surface models used for global Earth system model
studies and future predictions.

4.4.2 METHODOLOGICAL LIMITATIONS

By using several data sources, we obtained a large sample of 4856 catchments on differ-
ent continents, characterized by a wide spectrum of climates, and in particular, regions
with various levels of irrigation activity. However, the global coverage is not entirely bal-
anced as Africa and large parts of Asia were undersampled. A further limitation may arise
from the assumption in the memory method with irrigation methods proposed here that
catchments are hydrologically closed systems. However, inter-catchment lateral flows,
such as groundwater and irrigation water can significantly alter catchment water bal-
ances (e.g., Bouaziz et al., 2018; Fan, 2019; Condon et al., 2020). Moreover, the extraction
of fossil groundwater for irrigation (Siebert et al., 2010; Grogan et al., 2017; de Graaf et al.,
2019) can violate the assumption of closing water balances for the here developed irri-
gation methods in the memory method. Our methodology based on a sustainable water
use assumption provides a lower boundary of Sr reduction in irrigated catchments. It
is expected that irrigation exceeding sustainable use would lead to larger Sr reductions
than reported here, as in this case more water is available to crops than derived from
the water balance. Furthermore, the methodology assumes single succession of excess
and deficit periods within a year (Fig. 4.2b), which is not necessarily representative in
regions with double cropping systems or bimodal monsoons (Biradar and Xiao (2011)).
Another limitation was the availability and quality of irrigation data (Sect. 4.2.1, Fig. 4.1).
The annual mean Iw used in IWU was based on the 2011-2018 period, while the catch-
ment time series varied between 1981 and 2010. Similarly, the Ia we used represented the
2005 irrigated area fraction (Siebert et al., 2015). The temporal mismatch between catch-
ment hydrological timeseries and irrigation data may have led to an overestimation of I
for the catchment specific period, as irrigated area, and irrigation techniques and effi-
ciency have developed over the evaluated period (McDermid et al., 2023). Although this
inconsistency in the temporal data influences the catchment specific outcomes, we be-
lieve that it did not have major influence the quantification of the general patterns of the
effects of irrigation on Sr, which was the aim of this study.

An additional source of uncertainty in the application of the memory method, as
used in this study, relates to the derivation of Sr from the Sd time series (Fig. 4.5). Given
that an ecosystem has developed its Sr in a way it optimally functions and can overcome
dry periods (e.g. Guswa, 2008), Sr for a specific time period would correspond to the
maximum Sd value observed during that same time period (Sr = max(Sd)). However, it
is important to note that the memory method represents a simplified approximation of
real ecosystem behavior and has inherent limitations. The most important limitation is
that our application of the memory method did not account for the feedback between Sd

and Et/Ep, which likely led to an overestimation of Sd (Van Oorschot et al., 2021). In this
study, we primarily focused on crops, that do not exhibit a multi-year root adaptation for
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survival, as there is no remaining Sr after each year’s harvest. However, the catchments
used here are in no case entirely covered by crops, and, therefore, we used a return period
of 2 years for the Sr estimation (following Wang-Erlandsson et al. (2016)).

4.5 CONCLUSIONS
Using a large sample of catchments globally, the presented results support the hypoth-
esis that irrigation considerably reduces root zone storage capacity Sr estimated with
the memory method. We found a median reduction of Sr by 12 % (IQR 7–21 %) for the
IWU method and 15 % (IQR 6–33 %) for the IAF method for catchments with an irrigated
area fraction Ia >10 %. In general, these effects were less pronounced in catchments
with a smaller irrigated area, although the Sr for individual catchments could also be
considerably influenced by irrigation. Sr decreased the most for catchments in tropical
climates with a median decrease of 19–24 mm (for Ia >5 %). The reductions of Sr found
in this study are in the same order of magnitude as the snow effects on Sr estimated
by Dralle et al. (2021). Of paramount relevance for regional-to-global hydrological and
climate modelling studies, this study demonstrates the relevance of irrigation for ade-
quately estimating Sr. The irrigation water use can be expected to further increase over
the next decades and so the related effects on Sr should be represented in the Earth sys-
tem models that are used for the next climate projections. The methodological approach
developed in this study could be profitably used in this respect.

4.A MEMORY METHOD EQUATIONS
These equations follow Chapter 3, who based their methods on Gao et al. (2014); De Boer-
Euser et al. (2016); Nijzink et al. (2016) and Wang-Erlandsson et al. (2016). Total precipi-
tation (P (mm day−1)) was split into liquid precipitation (Pl (mm day−1)), and precipita-
tion falling as snow (Psn (mm day−1)) based on temperature (Fig. 4.2). As temperature
varies with altitude, we divided each catchment in elevation zones of 250 m. For each
elevation zone z the daily temperature Tz was calculated by:

Tz (t ) = Ta(t )+λ∆H (4.8)

with Ta (°C) the catchment average temperature (GSWP3),λ the lapse rate of 0.0064 °C m−1,
and∆H (m) the elevation difference between the elevation zone and the mean elevation.
For each elevation zone z daily Pl and Psn were defined by:

Pl,z (t ) =
{

P (t ) if Tz (t ) > Tt

0 if Tz (t ) < Tt
(4.9)

Psn,z (t ) =
{

P (t ) if Tz (t ) < Tt

0 if Tz (t ) > Tt
(4.10)

The water balance of the snow storage (Ssn) (Fig. 4.2) for each elevation zone z was
described by:

dSsn,z

dt
= Psn,z −Pm,z . (4.11)
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Equation (4.11) can be solved by Eqs. (4.12) and (4.13), in which we used for the sum
of fluxes between two time steps the following notation: Ft =

∫ t
t−1 F dt , where F is either

Psn or Pm. Thus, the numerical solution using daily time steps can be described as:

Ssn,z,t = Ssn,z,t−1 +Psn,z,t −Pm,z,t (4.12)

Pm,z,t =
{

max(M(Tz,t −Tt), Ssn,z,t ) if Tz,t < Tt

0 if Tz,t > Tt
(4.13)

with Tt the threshold temperature for snowfall of 0 °C, and M the snow melt factor of
2 mm d−1 °C−1. Total catchment Pl, Psn, and Pm were calculated as an area weighted
sum of the values for the different elevation zones.

The calculation of effective precipitation Pe (mm day−1) and transpiration Et in Eq. (4.1)
are similar as in Van Oorschot et al. (2021). The water balance of the interception store
Si (Fig. 4.2a) is described by:

dSi

dt
= Pl −Pe −Ei (4.14)

with Pl the liquid precipitation (mm day−1) and Ei the interception evaporation (mm day−1).
Equation (4.14) can be solved by Eqs. (4.15)-(4.17), in which we used for the sum of fluxes
between two time steps the following notation: Ft =

∫ t
t−1 F dt , where F is either Pl, Ei, Pe

or Ep (potential evaporation (mm day−1)). Thus, the numerical solution using daily time
steps can be described as:

Pe,t =
{

0 if Pl,t +Si,t−1 ≤ Si,max

Pl,t +Si,t−1 −Si,max if Pl,t +Si,t−1 > Si,max
(4.15)

S∗
i,t = Si,t−1 +Pl,t −Pe,t (4.16)

Ei,t =
{

Ep,t if Ep,t < S∗
i,t

S∗
i,t if Ep,t ≥ S∗

i,t

(4.17)

with Ep potential evaporation (mm day−1) and Si,max the maximum interception storage
(mm). The size of Si,max has minor influence on estimates of Sr as shown by e.g. Hra-
chowitz et al. (2021) and Bouaziz et al. (2020), and was, therefore, set to a constant value
of 2.5 mm. Daily transpiration (Et) in Eq. (4.1) was calculated as a fraction of daily Ep by:

Et = (Ep −Ei)
Et

Ep −Ei
(4.18)

with Et the long-term mean Et derived from the water balance (Et = Pe −Q), and Ep the
long-term mean Ep.
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THE GLOBAL VARIABILITY IN ROOT

ZONE STORAGE CAPACITY

EXPLAINED

In previous chapter we have shown the relevance of irrigation for root zone storage ca-
pacity estimation. Here, we will explore how different climate, landscape, and vegeta-
tion variables influence root zone storage capacity globally, and how this varies spatially.
Based on these findings, we will develop an approach to obtain global estimates of root
zone storage capacity.

This chapter is based on:

van Oorschot, F., Hrachowitz, M., Viering, T., Alessandri, A., and van der Ent, R. J.: Global patterns in
vegetation accessible subsurface water storage emerge from spatially varying importance of individual drivers,
Environmental Research Letters, in review.
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SUMMARY

Vegetation roots play an essential role in regulating the hydrological cycle by removing
water from the subsurface and releasing it to the atmosphere. However, the present un-
derstanding of the drivers of ecosystem-scale root development and their spatial vari-
ability globally is limited. This study investigates the varying roles of climate, landscape,
and vegetation on the magnitude of root zone storage capacity (Sr) worldwide, which is
defined as the maximum volume of subsurface moisture accessible to vegetation roots.
To this aim, we quantified Sr and evaluated 21 possible climate, landscape, and veg-
etation controls for 3612 river catchments worldwide using a random forest machine
learning model. Our findings reveal climate as primary, but spatially varying, driver of
ecosystem scale Sr with landscape and vegetation characteristics playing a minor role.
More specifically, we found the mean inter-storm duration as most dominant control of
Sr globally, followed by mean temperature, mean precipitation, and mean topographic
slope. While the inter-storm duration, temperature, and slope exhibit a consistent rela-
tion with Sr globally, the relation between precipitation and Sr varies spatially. Based on
this spatial variability, we classified two different regimes: precipitation driven and en-
ergy limited. The precipitation-driven regime exhibits a positive relation between pre-
cipitation and Sr for precipitation of up to 3 mm day−1, above which the relation flattens
and eventually becomes negative. The energy-limited regime exhibits a strictly nega-
tive relation between precipitation and Sr. Using the random forest model based on
these three dominant climate variables and the landscape variable slope, we generated
a global gridded dataset of Sr, which closely resembles other global datasets of root char-
acteristics. This suggests that our parsimonious approach based on four globally avail-
able variables to estimate Sr on a global scale has the potential to be readily and easily
integrated into the parameterization of Sr in global hydrological and land surface mod-
els. This may enhance the accuracy of global predictions of land-atmosphere exchange
fluxes and hydrological extremes by providing a robust representation of both spatial
and temporal variability in vegetation root characteristics.
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5.1 INTRODUCTION
Vegetation continuously adjusts to the prevailing climate and landscape characteristics
ensuring optimal functionality (Fan et al., 2017; Gentine et al., 2012). One of the prop-
erties identified as adaptive in both space and time are vegetation root systems, that are
shaped in a way to provide both anchoring in the subsurface (Read and Stokes, 2006), as
well as access to sufficient nutrients and water (Zhang et al., 2019; Oldroyd and Leyser,
2020; Maan et al., 2023). Water uptake by roots of vegetation regulates vegetation tran-
spiration, globally the largest water flux released from terrestrial systems (Schlesinger
and Jasechko, 2014), and the associated latent heat flux into the atmosphere. In spite of
its importance for the global water and energy budgets, direct large scale (i.e., beyond
lab scale or individual plants) observations of root systems and the related water uptake
do not exist.

Therefore, several indirect methods have been developed to represent vegetation
root characteristics on large (here: global) scales. Schenk et al. (2009) provided global
estimates of the soil depths that contain 95 % of the roots (i.e., the 95 % rooting depth),
extrapolated from a sample of several hundred direct point-scale root observations of
individual plants (Schenk and Jackson, 2003). Other studies followed inverse methods
based on optimality principles to infer root characteristics at a global scale. For exam-
ple, Kleidon (2004) maximized net primary production, while Yang et al. (2016) used
balances of carbon cost and benefits, and Fan et al. (2017) derived depths of root water
uptake from balances of water supply and demand. Similar water supply and demand
considerations were also used by Wang-Erlandsson et al. (2016) and Stocker et al. (2023)
to estimate global distributions of root zone storage capacity Sr (mm). Sr is defined as
the maximum volume of subsurface moisture accessible to vegetation roots, represent-
ing all sources of water within the reach of roots, including unsaturated soil, deep and
shallow groundwater (Gao et al., 2014). Sr is a fundamental characteristic of terrestrial
hydrological systems as it regulates not only water budgets by partitioning precipita-
tion into drainage and evaporation, but also energy budgets over the associated latent
heat flux (Zhang et al., 2001; Donohue et al., 2012; Wang-Erlandsson et al., 2016). Many
studies have suggested that, on ecosystem scale, Sr is mainly shaped by climate and in
particular by the interplay of the temporal dynamics of water and energy availability, as
vegetation optimizes its root system to sustain water demand (Kleidon, 2004; Laio et al.,
2006; Guswa, 2008; Gentine et al., 2012; Gao et al., 2014; De Boer-Euser et al., 2016; Gao
et al., 2023). Consequently, ecosystem disturbances such as climate change and human
land-use change also influence the evolution of Sr, as demonstrated by multiple studies
(Nijzink et al., 2016; Liu et al., 2020; Hrachowitz et al., 2021; Bouaziz et al., 2022; Tempel
et al., 2024; Wang et al., 2024). Thus, insight in the specific controls of Sr is essential for
predicting how different ecosystems will respond to such disturbances.

A range of other recent studies has explored how climate variables influence the ex-
tent of Sr across different regions in varying climatic zones. Gao et al. (2014) identified
precipitation inter-storm duration and seasonality index as key controls of Sr in Thai-
land and the United States. Inter-storm duration is an indicator for the length of dry
periods during which vegetation relies on its subsurface water buffer for transpiration
and was linked to the size of vegetation root systems in multiple previous studies (e.g.,
Gentine et al., 2012; Sivandran and Bras, 2013). Conversely, de Boer-Euser et al. (2018)
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observed a strong positive relationship between mean temperature and Sr in Finland,
along with a positive correlation between aridity index and Sr, as also found by Zhao
et al. (2016) in China. Also Gao et al. (2014) noted that, on average, drier regions have
larger Sr than wetter regions in Thailand and the United States, but eco-region classes
Tropical Savanna and Semi-arid Prairies deviated from this trend. Contrasting signals
were also reported by Singh et al. (2020), who showed that increased aridity in tropical
forests leads to decreased tree cover but increased Sr due to the remaining scarcer vege-
tation investing more in roots to create a water buffer for drier periods. However, in drier
savanna-grasslands, Sr decreases with increased aridity (Singh et al., 2020). Yet, other
studies do highlight that vegetation (de Boer-Euser et al., 2018) and landscape charac-
teristics such as soil properties (Laio et al., 2006; Collins and Bras, 2007) and geology
(Hahm et al., 2019; McCormick et al., 2021; Hahm et al., 2024) can play a relevant role
at regional scales. Furthermore, vegetation and landscape characteristics in practice ef-
fectively determine Sr in most land surface models (Liu et al., 2020; Van Oorschot et al.,
2021; Wang et al., 2021).

Overall, previous studies suggest that the influence of climate variables on Sr, consid-
ering both their magnitude and direction, is not consistent across different regions (Gao
et al., 2014; Zhao et al., 2016; de Boer-Euser et al., 2018; Singh et al., 2020). Similarly, the
spatially varying role of landscape and vegetation characteristics versus climate has not
been systematically quantified and analyzed on a global scale. Thus, it remains unclear
which aspects of climate, landscape and vegetation are the most important controls on
Sr on global scale, and how these controls vary in space.

Here we bridge this knowledge gap by quantitatively characterizing, for the first time,
how different climate, landscape and vegetation variables control the magnitude of Sr at
the global scale, and how these controls vary spatially. Based on historical long-term
water balance data, we estimate Sr in 3612 catchments worldwide using the memory
method as in van Oorschot et al. (2024). We then test a wide range of climate, landscape,
and vegetation variables to quantify their influence on Sr in different regions using a ran-
dom forest model. Having identified a set of first order controls, we then use this model
to extrapolate the catchment Sr estimates to a global gridded map of Sr ensuring cover-
age of regions where insufficient water balance data are available to directly estimate Sr.
Finally, we evaluate how these estimates relate to other global datasets of root charac-
teristics (Schenk and Jackson, 2003; Kleidon, 2004; Schenk et al., 2009; Yang et al., 2016;
Wang-Erlandsson et al., 2016; Fan et al., 2017; Stocker et al., 2023).

5.2 METHODS

5.2.1 CATCHMENT DATA

Following the data and methods from van Oorschot et al. (2024), we estimated catchment-
scale root zone storage capacity Sr in the 3612 study catchments using catchment-averaged
daily precipitation data P (mm day−1), daily potential evaporation Ep (mm day−1), and

annual mean discharge Q (mm day−1) from sources documented in Table 5.1. We se-
lected 3612 catchments based on the following four criteria: (1) at least 10 years of over-
lap between Q, P and Ep data; (2) catchment not exceeding the water limit, i.e., Q <
P ; (3) catchment not exceeding the energy limit, i.e., annual mean actual evaporation
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(Ea = P−Q) < Ep; (4) catchment area<10000 km2 to limit the heterogeneity within catch-
ments.

To investigate the controls on Sr, we selected 21 catchment-averaged variables (Table
5.2), subdivided into three categories: climate, landscape, and vegetation. All variables
were obtained from global datasets to ensure data consistency across catchments and
in view of extrapolation from catchments to global scale. These variables were selected
based on three main criteria: (1) globally available data that is representative for catch-
ment scales; (2) variables with limited mutual interactions and (3) variables with lim-
ited assumptions on vegetation root characteristics (e.g., root depth) that are based on
scarce observations that are not representative for ecosystems at landscape scales (Van
Oorschot et al., 2021).

Table 5.1: Data sources used for the hydrological variables daily precipitation (P (mm day−1)), daily potential
evaporation (Ep (mm day−1)), and annual mean discharge (Q (mm day−1)).

Variable Data source
P (mm day−1) Global Soil Wetness Project Phase 3 (GSWP-3) (Dirmeyer et al.,

2006; Lange and Büchner, 2020)
Ep (mm day−1) Global Land Evaporation Amsterdam Model version 3.5a

(GLEAMv3.5a); based on the Priestley-Taylor approach (Mi-
ralles et al., 2011; Martens et al., 2017)

Q (mm day−1) GSIM (Do et al., 2018; Gudmundsson et al., 2018), LamaH-CE
(Klingler et al., 2021), CAMELS Australia (Fowler et al., 2021),
CAMELS US (Addor et al., 2017), and EStreams (do Nascimento
et al., 2024)

5.2.2 ROOT ZONE STORAGE CAPACITY ESTIMATION
Using the memory method, a term introduced in Chapter 3 and also known as water
balance method and related to the mass curve technique, root zone storage capacity Sr

(mm) is derived from root zone storage deficits (Sd (mm), e.g., Dralle et al., 2021; Gao
et al., 2014; Wang-Erlandsson et al., 2016; Van Oorschot et al., 2021; van Oorschot et al.,
2024). Based on long-term precipitation, potential evaporation and river discharge data
we here computed long-term time-series of catchment Sd following the methodology
described in Chapter 4 (Appendix 4.A). These time-series reflect both water supply to
and water uptake by the vegetation’s roots, leaving the vegetation as transpiration. De-
spite the inherent limitations of this method (Chapters 3 and 4) the Sr estimates it pro-
duces have been shown to closely align with those derived from hydrological model cal-
ibration, providing independent confirmation of their accuracy (Gao et al., 2014). After
fitting the Sd time-series with the Gumbel distribution, Sr was estimated based on the
extreme Sd values with a 20-year return period to represent the memory of vegetation
to past water deficit conditions. The extreme value analysis was done to generalize the
results as the time-series of the catchments have different lengths and do not neces-
sarily overlap, and to represent the timescale of vegetation adaptation. Previous studies
have shown that low vegetation adapts its Sr to droughts occurring with relatively low re-
turn periods (<10 years) and high vegetation to >40 years (Wang-Erlandsson et al., 2016).
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For the aim of this study a-priori differentiation between land cover types is not desir-
able, and therefore a fixed 20 year return period was selected for all catchments following
Singh et al. (2020) and Bouaziz et al. (2020).

5.2.3 RANDOM FOREST MODEL
We used a random forest regression model to predict catchment Sr and identify the dom-
inant controls on Sr using the variables presented in Table 5.2. A random forest model
was selected because it can represent the non-linear interactions between catchment
variables and Sr which appeared during the studies of Gao et al. (2014), Zhao et al. (2016),
de Boer-Euser et al. (2018), and during exploratory analyses on our dataset. The model
was trained by minimizing the mean absolute difference (MAD (mm)) between root zone
storage capacity from the memory method (Sr,M) and from the random forest model pre-
dictions (Sr,P). We applied a five-fold cross validation in order to fairly estimate the gen-
eralization performance. This implies that we performed model training and testing five
times on a different subset of the total dataset, with for each fold 80% of the catchments
(2890) were used for model training and 20% of the catchments (722) for model testing.
Model performance is quantified by the mean and the standard deviation of the MAD
between the Sr,M and Sr,P over the five cross-validation folds. Supplementary section
S5.1 describes the details of the random forest model.

With the above described procedure we built a model with 21 predictor variables (21-
variable model) (Table 5.2), which was used to investigate which catchment variables are
a dominant control on Sr. The degree of control, i.e., the variable importance, is quan-
tified by the permutation feature importance, which represents the decrease in model
performance (∆MAD) when the values of this single variable are randomly shuffled,
while keeping the values of other variables (Breiman, 2001). Based on the variable im-
portance of the 21-variable model and cross-correlations between individual variables,
we selected a subset of four predictor variables used in a second 4-variable model. The
reduced number of variables in the 4-variable model allows for in-depth model inter-
pretation, and is simpler for future applications than the 21-variable model as it requires
less data.

5.2.4 MODEL INTERPRETATION METHODS
For the 4-variable model, we used Individual Conditional Expectation (ICE) curves to an-
alyze how individual variables influence Sr,P in each catchment (Goldstein et al., 2015).
In the ICE curves, Sr is predicted by the 4-variable model for each catchment with a
range of hypothetical values for one of the variables, while keeping the original values of
the other variables. This way we obtain a curve for each variable, for each catchment,
that represents the dependence between the model Sr,P and that variable for a single
catchment. The 4-variable model is then also used to globally estimate Sr,P at a 0.5◦ lati-
tude × 0.5◦ longitude spatial resolution. This global Sr map is compared to other global
datasets of root characteristics in terms of spatial patterns and Spearman rank correla-
tions (r ). Details of these global datasets are provided in Supplementary material Table
S5.4.
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Table 5.2: Catchment variables used for the random forest models (Sect. 5.2.3). All variables represent a single
value per catchment, obtained through averaging grid cells that lie within the catchment boundary. For each
catchment time series matching the available discharge data were used.

Name Description Units Data Source

C
li

m
at

e

P Mean precipitation mm day−1 GSWP-3 (Dirmeyer et al., 2006;
Lange and Büchner, 2020)

Ep Mean potential evaporation mm day−1 GLEAMv3.5a (Martens et al., 2017;
Miralles et al., 2011)

T Mean temperature °C GSWP-3
tIS Mean inter-storm duration d GSWP-3
IS,P Seasonality index of precipita-

tion (Gao et al., 2014)
− GSWP-3

IS,Ep Seasonality index of potential
evaporation (Gao et al., 2014)

− GLEAMv3.5a

Td Temperature difference, de-
fined as the difference between
the monthly mean maximum
and minimum temperature

°C GSWP-3

IAS Asynchronicity index between
monthly mean precipitation
and potential evaporation
(Feng et al., 2019)

− GSWP-3 and GLEAMv3.5a

f snow Mean snow cover fraction − MOD10A1 (Hall and Riggs, 2021)
fsnow,v Variability of snow cover frac-

tion defined as fsnow,s/ f snow
with fsnow,s the standard devi-
ation of monthly mean fsnow

− MOD10A1

La
n

d
sc

ap
e

e Elevation m HydroSHEDS Hydrologically
Conditioned DEM (Lehner et al.,
2008) and Multi-Error-Removed
Improved-Terrain (MERIT) DEM
for latitudes > 60◦ (Yamazaki et al.,
2017)

s Slope % Same as for elevation.
db Depth to bedrock m SoilGrids250m (Hengl et al., 2017)
fclay Fraction of soil clay content for

0-200 cm depth
− SoilGrids250m

fsand Fraction of soil sand content
for 0-200 cm depth

− SoilGrids250m

Ve
ge

ta
ti

o
n

ftree Tree cover fraction − MOD44B.006 (DiMiceli et al.,
2015)

fnontree Non tree cover fraction − MOD44B.006
fnonveg Non vegetation fraction de-

fined as 1− ftree − fnontree

− MOD44B.006

LAI Mean leaf area index − CGLS (Verger et al., 2019)
vLAI Variability of leaf area index

defined as LAIs /LAI with LAIs

the standard deviation of
monthly mean LAI

− CGLS

Ia Irrigated area fraction − (Siebert et al., 2015)
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5.3 RESULTS AND DISCUSSION

5.3.1 ROOT ZONE STORAGE CAPACITY PREDICTION
The median Sr,M estimated from the memory method in the 3612 catchments reached
120 mm (5-95th percentiles: 10–390 mm). The lower Sr,M values are concentrated in
cool-temperate humid regions while higher values are scattered around warmer, more
arid regions (Fig. 5.1a). These magnitudes and pattern are broadly consistent with previ-
ous regional Sr estimates based on the memory method (Gao et al., 2014; De Boer-Euser
et al., 2016; Zhao et al., 2016; Singh et al., 2020).

Figure 5.1: (a) Memory method root zone storage capacity (Sr,M (mm)). (b) Difference between the 4-variable
model predicted and memory method: ∆Sr=Sr,P-Sr,M of the test data, represented by the combined test results
of the five-fold cross validation models. Relative differences between Sr,M and Sr,P are shown in Supplemen-
tary material Fig. S5.3. Dots represent the catchment outlets.

Using these estimates to train the 21-variable model then resulted in a MAD=13±0.2 mm
(R2 = 0.97) (Fig. 5.2a). The test sets of the cross-validation analysis exhibited with 35±2
mm (R2 = 0.81) a larger scatter (Fig. 5.2b), but the limited performance fluctuations
between the individual cross validation folds on the unseen test data (Supplementary
material Table S5.2) indicate that the model is robust. The sequence of variable impor-
tance in the 21-variable model suggests that climate variables play by far the largest role,
while landscape and vegetation variables are less important for explaining Sr,P globally
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(Fig. 5.2c). We found that the inter-storm duration (tIS) is the most important vari-
able in the 21-variable model. This can be seen in Fig. 5.2c by the increase of MAD
by ≈25 mm when the catchment values of the mean inter-storm duration (tIS) are ran-
domly shuffled between catchments, while keeping the other variables unchanged. The
variable importance of mean inter-storm duration tIS is followed by the climate variables
mean snow cover f snow (∆MAD ≈ 13 mm), mean temperature T (∆MAD ≈ 13 mm), and
mean precipitation P (∆MAD ≈ 7 mm) (Fig. 5.2c, Table 5.2). While the most important
landscape variables slope (s) and elevation (e) play a moderate role (∆MAD ≈ 5 mm), all
other landscape variables and all vegetation variables are characterized by much lower
∆MAD < 2 mm. This indicates that they only have minor explanatory power for Sr.

Figure 5.2: (a,b,d,e) Scatter plots of catchment memory method root zone storage capacity (Sr,M) and pre-
dicted root zone storage capacity (Sr,P) for (a, b) the 21-variable model, and (d, e) the 4-variable model. (a,
d) show the training results and (b, e) the testing results of one of the cross validation folds. The mean and
standard deviation of the mean absolute difference (MAD) and the R2 in the title are based on the five-fold
cross validation. (c) and (f) represent the variable importance (i.e., permutation feature importance) for the
21-variable model (c) and 4-variable model (f) expressed as an increase in MAD (∆MAD) for each variable
for the test data for the five-fold cross validation, with the bars representing the mean and the black lines the
standard deviation. Table 5.2 shows the variable details and Supplementary material Fig. S5.1-5.2 shows the
cross-correlation tables of the variables.
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Based on these results we have then removed variables with low variable importance
as well as correlated variables (see Supplementary material Fig. S5.1-5.2) to obtain an
interpretable model, while maintaining high model performance. The resulting parsi-
monious 4-variable model uses tIS, T (excluding f snow due to its strong correlation with
T ), P , and s (Fig. 5.3). With a training MAD=14±0.2 mm (R2 = 0.97) (Fig. 5.2d), this
reduced model predicts Sr,P for the unseen test data with a MAD=38±2 mm (R2 = 0.78)
(Fig. 5.2e), which is very close to the test performance of the full 21-variable model (Fig.
5.2b). Here tIS also emerges as the most important variable, followed by T , P , and s in
the same hierarchy as in the full 21-variable model (Fig. 5.2f). Figure 5.1b shows that
Sr,P as predicted by the 4-variable model captures well the general pattern of Sr,M with
only rather limited deviations across all regions. Overall, ∆Sr remains within ±50 mm
for 3173 (88%) catchments. Larger ∆Sr, both positive and negative, are found in regions
such as India, Spain, and Northern Australia (Fig. 5.1b). However, in these regions Sr,M

is relatively large, thus resulting in relatively minor relative differences (Supplementary
material Fig. S5.3).

Figure 5.3: Global maps of the gridded variables that are input to the 4-variable model with (a) mean inter-
storm duration tIS (d), (b) mean temperature T (°C), (c) mean precipitation P (mm day−1), and (d) slope s
(%), based on the data products described in Table 1. Black markers represent the 3612 catchment outlets.
Lightgrey areas represent regions with values outside the ranges of the values in the catchments for at least
one of the variables or oceans.

The dominance of climate variables as primary controls on Sr corresponds well with
previous studies (e.g., Gao et al. (2014), De Boer-Euser et al. (2016), and Yang et al. (2016)).
Our findings also show the relevance of topography, albeit to a lesser degree compared
to climate, in shaping Sr, which was also highlighted by Fan et al. (2017). However, other
studies also emphasized the importance of other landscape characteristics such as geol-
ogy and soil textures for Sr (Laio et al., 2006; Hahm et al., 2019; McCormick et al., 2021;
Hahm et al., 2024). In particular, Hahm et al. (2024) demonstrated that in regions with
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limited variability in climate characteristics, geologic factors can become a stronger con-
trol on Sr. This also holds for the relevance of irrigation, that was previously found to be
regionally influencing Sr (Chapter 4). Besides that, the limited impact of the degree of ir-
rigation and other vegetation variables in shaping Sr directly results from their inherent
dependence on climate conditions. The results of our analysis above are largely consis-
tent with previous findings as they suggest that landscape characteristics are important
as a secondary control at regional scales where differences of climate factors are more
limited. For ecosystem scales in a global context, and thus a wide range in climates,
climate is the clear first order control on Sr.

5.3.2 RELATION BETWEEN PREDICTOR VARIABLES AND ROOT ZONE STOR-
AGE CAPACITY

The individual influences of the four variables on Sr,P in the 4-variable model are rep-
resented by the Individual Conditional Expectation (ICE) curves in Fig. 5.4. Generally,
as mean inter-storm duration tIS and mean temperature T increase, Sr,P also increases
(Fig. 5.4a,b). Thus, overall, Sr,P is higher in warmer regions with longer dry periods. How-
ever, it can also be observed that tIS has more effect on Sr,P, i.e., a steeper slope in the ICE
curve, for values between 3–5 days than for higher tIS, i.e., longer periods without rainfall
(Fig. 5.4a). As tIS increases, vegetation needs to invest more in roots in order to maintain
transpiration during dry periods up to that value before it levels off and Sr,P does not
significantly increase anymore at higher tIS, which is related to lower vegetation density
in drier regions with longer dry periods. The modelled Sr,P has a stronger response to
changes in T for T >10 °C than in colder regions with T <10 °C. With increasing T , there
is more energy available for transpiration, and, as long as water is available, vegetation
will transpire more under higher temperatures, leading to larger Sr (Fig. 5.4b). On the

Figure 5.4: Individual Conditional Expectation (ICE) curves of the evaluation data for (a) mean inter-storm
duration tIS (d), (b) mean temperature T (°C), (c) mean precipitation P (mm day−1), and (d) slope s (%) in the
4-variable model. The histograms represent the distribution of catchments (n) over the specific range of the
variable. The curves are based on the model results of all 3612 catchments of the five-fold cross validation
combined.
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other hand, Sr,P consistently decreases with increasing slope s (Fig. 5.4d). Steeper slopes
are typically found in regions with higher elevations, which are associated with lower
temperatures and reduced vegetation density, leading to lower Sr. In contrast with the
almost monotonically increasing behaviour of tIS and T , and monotonically decreasing
behaviour of s in relation to Sr,P (Fig. 5.4a,b,d), the mean precipitation P exhibits a more
complex relationship with Sr,P. For P < 2 mm day−1, the median relationship shows an
increase in Sr,P, while for P > 2 mm day−1 this relationship is inverted and Sr,P decreases
with increasing P . In addition, while for tIS, T , and s, the general shapes of the ICE curves
of the individual catchments largely resemble each other, considerable differences from
the average pattern are observed for P , as indicated by the curves of the 10th and 90th

percentiles of the curves in Fig. 5.4c.

To further investigate these diverging patterns in the relationship between P and Sr,P,
we disentangled the individual curves of Fig. 5.4c and grouped them based on their over-
all trajectories (considering slopes and peaks of the curves) in Fig. 5.5. This resulted
in two distinct groups with each group showing similar influence of P on Sr,P, charac-
terizing different regions globally (Fig. 5.5, Table 5.3). Overall, the precipitation-driven
group shows the largest influence of changes in P on Sr (Fig. 5.5a). In these regions, Sr,P

strongly increases with increasing P up to ∼3 mm day−1. This is related to the lower veg-
etation density and thus less actively transpiring plants in these dry regions (Fig. 5.6a,
Table 5.3). Here, increases in P directly lead to more vegetation activity and/or cover,
and thus higher Sr. Hence, the development of Sr is mostly precipitation driven. Above
P > 3 mm day−1, the systems experience transitions into systems that are not water lim-
ited anymore and where additional water input does not result in more root develop-
ment and transpiration. This pattern dominates in regions that are characterized by rel-
atively high temperatures and high rainfall seasonality (indicated by a large tIS), typical
of tropical monsoon and (semi)-arid climates (Fig. 5.5c, Fig. 5.3, Table 5.3), for example
North-Eastern Brazil, India, and Northern Australia. For the energy-limited group, an
opposite signal compared to the precipitation-driven group is found, with P negatively
influencing Sr,P (Fig. 5.5b, Table 5.3). This pattern is found in energy-limited regions
with year-round rainfall and relatively high tree cover, such as Europe and Canada, as
well as tropical rainforests in the Amazon and Indonesia (Fig. 5.5c, Fig. 5.6b, Table 5.3).
Here, sufficient water is available throughout much of the year to satisfy vegetation water
demand. Therefore, an increase in water availability here does not lead to denser veg-
etation, and existing vegetation can reallocate resource investment into above-surface
growth instead of extending its root system. As a consequence, additional water input,
i.e., increase in P , and thus frequent water re-supply to the root zone results in a reduced
ecosystem-scale Sr (Fig. 5.5b): vegetation can access sufficient water with the need for
deeper roots.

The spatial variability of the relation between P and Sr as shown in Fig. 5.5 is in line
with previous regional studies by Gao et al. (2014), de Boer-Euser et al. (2018), and Singh
et al. (2020). Specifically, the contrasting P-Sr-relation between tropical rainforests (en-
ergy limited) and the savanna or prairie grassland regions (precipitation driven), corre-
spond to the water stress and vegetation regimes in rainforest-savanna transitional re-
gions found by Singh et al. (2020). Also Guswa (2008) found similar contrasting relations
between wetness and rooting depth for energy-limited vs. water-limited regions. The re-
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lations between our selected variables and Sr presented in Fig. 5.4 and 5.5 can represent
how ecosystems can be plausibly expected to respond in terms of Sr to changes in the
three climatic variables over time, resulting from internal variability and climate change.
However, it should be noted that this only holds for relatively small changes in the vari-
ables, while larger changes may be accompanied by a transition of the entire ecosystem
into a different state and the associated changes in vegetation composition. Further-
more, we assumed that the patterns are largely climate driven, but human influences
can have major effects as well (e.g., Grill et al., 2019; Hrachowitz et al., 2021).

Figure 5.5: (a,b) Individual Conditional Expectation (ICE) curves for the mean precipitation P (mm day−1) in
the 4-variable model with the catchments categorized into two groups: (a) precipitation driven and (b) energy
limited (Table 5.3). Groups are based on the patterns (slope and peaks) of the ICE curves in Fig. 5.4c. The
histograms are as in Fig. 5.4. (c) Geographical location of the catchment outlets colored as the groups from (a)
and (b).
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Figure 5.6: Fraction of tree cover ( ftree (-)) for the groups from Fig. 5.5 (Table 5.3): (a) precipitation driven and
(b) energy limited. Dots represent the catchment outlets and histograms show the distribution of ftree for the
specific map.

Table 5.3: Characteristics of the two groups with distinct relations between mean precipitation P (mm day−1)
and root zone storage capacity Sr (mm) as identified in Fig. 5.5, with values for mean inter-storm duration tIS
(d), mean temperature T (°C), mean precipitation P (mm day−1), slope s (%), and tree cover fraction ftree (-)
representing the median and inter quartile range (25th percentile – 75th percentile) of the catchments in the
specific group (Table 5.2).

Group
name

tIS

(d)
T
(°C)

P
(mm
day−1)

s
(%)

ftree

(-)
Sr in-
creas-
ing
with P

Sr de-
creas-
ing
with P

Precipi-
tation
driven

7
(6–8)

20
(14–24)

2.3
(1.6–3.4)

5
(3–9)

0.13
(0.08–
0.20)

P ≈ 0−3 P > 3

Energy
limited

4
(3–4)

9
(4–14)

3.0
(2.3–3.8)

6
(3–12)

0.39
(0.27–
0.49)

- P > 0
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5.3.3 GLOBAL COMPARISON OF ROOT CHARACTERISTICS

Here we used the 4-variable model and the data from Fig. 5.3 to create a global gridded
map of Sr,P (Fig. 5.7a), extrapolating beyond regions with available discharge observa-
tions. To place our results into a wider context, we compared them to seven other global
estimates of root characteristics obtained with a wide range of different approaches (Sup-
plementary material Table S5.4) (Schenk and Jackson, 2003; Kleidon, 2004; Schenk et al.,
2009; Yang et al., 2016; Wang-Erlandsson et al., 2016; Fan et al., 2017; Stocker et al., 2023).
Note that this comparison can only consider the general spatial pattern, while the ab-
solute magnitudes are not necessarily comparable between these studies due to differ-
ences in methods, assumptions and underlying data.

Overall, the global distribution of Sr,P broadly corresponds with the spatial patterns
of other studies reflecting the hydrologically active rootzone in terms of root zone storage
capacities reported by Stocker et al. (2023) (r =0.72) and Wang-Erlandsson et al. (2016)
(r =0.48), and in terms of the optimized hydrologically active rooting depth by Kleidon
(2004) (r =0.61) (Fig. 5.7a-d, Fig. 5.8a-d). Major differences are observed in the La Plata
basin, where our Sr,P estimates and Kleidon (2004) show relatively large values, while the
Sr values from Stocker et al. (2023) and Wang-Erlandsson et al. (2016) are relatively small
(Fig. 5.7a-d). Other differences are found in relatively arid regions of the Central US, and
Central Asia (Fig. 5.7a-d), in which our 4-variable model Sr,P estimates are higher com-
pared to Stocker et al. (2023), Wang-Erlandsson et al. (2016), and Kleidon (2004) (Sup-
plementary material Fig. S5.4).

It should be noted that the rooting depth characteristics presented in Fig. 5.7e-h
are not necessarily proportional to the root zone storage capacity Sr due to the fact that
rooting depth is a single plant property compared to Sr being an ecosystem property.
Moreover, while rooting depth only represents the vertical extension of the roots, Sr ac-
counts for the entire root profile, including lateral root extent and root density. Never-
theless, the rooting depth related products of Fan et al. (2017) and Schenk et al. (2009)
(Fig. 5.7e,g) broadly resemble the spatial patterns of Sr,P, with r =0.70 and 0.73, respec-
tively (Fig. 5.8a,e,g). However, considerable differences are observed between the max-
imum depth of root water uptake in Fig. 5.7e and our Sr,P (Fig. 5.7a) in Australia and
Southern Africa, where the maximum depth of root water uptake (Fan et al., 2017) is con-
siderably larger than Sr,P (Supplementary material Fig. S5.4). In these arid regions, the
maximum depth of root water uptake is high because individual trees have deep roots
to access sufficient water. However, the ecosystem Sr is low because of low vegetation
density.

The spatial pattern of our Sr,P in North-America with relatively low values in the Mid-
west US and relatively high values in the Great Plains corresponds well with the results
of Fan et al. (2017) (Fig. 5.7e), Schenk et al. (2009) (Fig. 5.7g) and Gao et al. (2014), but
less with the other datasets (Fig. 5.7b-d, Supplementary material Fig. S5.4). These differ-
ences arise likely from dry season/summer dormancy that is common for this C3-grass
dominated part in the prairies of the Great Plains (e.g., Ke et al., 2013). In the memory
method used in this study (van Oorschot et al., 2024) as well as by Gao et al. (2014), tran-
spiration is defined as a fraction of potential evaporation based on the long-term mean
actual evaporation from the water balance. During the dry season when potential evap-
oration is typically high and grasses go dormant, this methodological assumption likely
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leads to an overestimation of transpiration, and thus Sr. The root characteristics from
Kleidon (2004), Wang-Erlandsson et al. (2016), and (Stocker et al., 2023) are derived from
datasets that directly represent vegetation activity, and are, therefore, less exposed to this
limitation. This possibly also explains the differences in arid regions discussed before.

Our Sr,P estimates contrast with the effective plant rooting depth values from Yang
et al. (2016) in many regions, but it should be noted that Yang et al. (2016) similarly and
markedly contrasts with all other datasets, with r < 0.08 (Fig. 5.8a,f). Also the compari-
son of observed rooting depths from Schenk and Jackson (2003) (Fig. 5.7h) with the other
datasets reveals limited similarity. However, amongst all these global datasets our mod-
eled Sr,P exhibits the strongest correlation with these rooting depths, with r =0.23 (Fig.
5.8a,h).

Overall, the major features in the spatial pattern of Sr,P in our study mirror those in
the other compared seven datasets. In addition, Sr,P correlates better with most of the
other datasets than these datasets among themselves (Fig. 5.8a). This is a strong indi-
cation that using a parsimonious 4-variable model based on globally available hydro-
climatic indices and the topography represented by slope, produces global pattern of
Sr,P that are at least as good as those of alternative approaches. These alternative ap-
proaches rely on higher dimensional models to estimate evaporation as compared to
our 4-variable model, which is grounded in discharge observations. Furthermore, the
four variables are readily represented and simulated by Earth system models (ESMs),
therefore enabling the possibility of an interactive representation of Sr as a dynamically
evolving variable in ESMs.

Our Sr,P estimates contrast with the effective plant rooting depth values from Yang
et al. (2016) in many regions, but it should be noted that Yang et al. (2016) contrasts with
all other datasets, with r not exceeding 0.08 (Fig. 5.8a,f). Also the comparison of ob-
served rooting depths from Schenk and Jackson (2003) (Fig. 5.7h) with the other datasets
reveals limited similarity. However, the strongest correlation emerges between our mod-
eled Sr,P and these rooting depths, with r =0.23 (Fig. 5.8a,h).

Overall, the major features in the spatial pattern of Sr,P in our study mirror those in
the other compared datasets. In addition, Sr,P correlates better with most of the other
datasets than these datasets among themselves (Fig. 5.8a). This is a strong indication
that using a simple, 4-variable model, based on readily and globally available hydro-
climatic indices and the topography represented by slope, produces global pattern of
Sr,P that are at least as good as those of alternative approaches that rely on higher di-
mensional models and the associated assumptions.
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Figure 5.7: Global information on normalized vegetation root characteristics from this study and reference
products. (a) Root zone storage capacity Sr,P as predicted by the 4-variable model (average Sr,P based on the
five cross validation folds) and the data from Fig. 5.3. (b-g) The titles in all panels are corresponding with
the original terminology used in the respective references. (h) Point data of measured rooting depths i.e., the
depth of the 95th percentile of root mass, which may include extrapolation and at locations where several
measurements have been made the average is shown (Schenk and Jackson, 2003). Note that the colorbars and
bottom labels represent normalized values, with on top the corresponding original values and units. Maps of
the differences are shown in Supplementary material Fig. S5.4.
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Figure 5.8: (a) Spearman rank correlation coefficients between reference root characteristics from Fig. 5.7(b-h)
and the root zone storage capacity Sr,P as predicted by the 4-variable model and the data from Fig. 5.2 (Fig.
5.7a). (b-h) Scatterplots of Sr,P and the reference root characteristics. Note that the variables and the units are
not the same for each product. The numbers in the title indicate the Spearman rank correlation coefficients,
and the marker colors represent the point density. See Fig. 5.7 for the abbreviations used.
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5.4 CONCLUSIONS
In our analysis we quantified for the first time the controls of ecosystem-scale root zone
storage capacity Sr at the global scale using a random forest model. From this analysis,
hydro-climatic variables emerged as the most dominant controls. Topographic slope
also influences Sr, though to a lesser extent than climate. Other landscape and vege-
tation characteristics were found to play a minor role. More specifically, we found that
inter-storm duration, temperature, precipitation, and topographic slope are the most
dominant controls of Sr globally. We further found that inter-storm duration and tem-
perature exhibit a near-monotonic positive relations with Sr, and that the slope is con-
sistently negatively related to Sr. In contrast, the relation between precipitation and
Sr varies in space. The emerging pattern suggests that while precipitation is strongly
positively correlated with Sr in relatively dry regions with low vegetation cover, energy-
limited regions are rather characterized by a negative relation. This highlights the dis-
tinct roles of precipitation for vegetation water-use in different climatic settings.

Our global Sr predictions, based on random forest models driven with the above vari-
ables, correspond closely with other global datasets of rootzone characteristics, which
typically rely on more complex data sources and computations. In contrast, our model
predicts Sr from the long-term means of three hydro-climatic variables (P , T , tIS), for
which both historical data as well as future projections are readily available, and from
topographic slope (s) that can be assumed as temporally invariant. The strength of our
Sr prediction is further highlighted by its stronger correlation with most other datasets
compared to the correlations observed between those datasets themselves.

For future studies, our approach opens the possibility to formulate and implement
Sr as dynamically-evolving prognostic variable in large-scale land surface and hydrolog-
ical models, mimicking the continuous evolution of Sr over time (Wang et al., 2024) and
replacing the current static representation of this parameter in most of these models. As
such, we emphasize that the methodology to estimate Sr provided here can readily be
applied in land surface and hydrological models to improve their global representation
of the coupling of root zone storage capacity with hydro-climatic variability (Abramowitz
et al., 2024). This does not only have the potential to improve predictions of extreme river
flow and seasonal water supply but, perhaps more importantly, also transpiration and
thus latent heat fluxes representation (Van Oorschot et al., 2021; Giardina et al., 2024),
which as a knock-on effect is expected to have major implications for climate predic-
tions and projections.





6
CONCLUSIONS

In previous chapters several approaches have been explored to improve the model repre-
sentations of the spatial and temporal variability of both aboveground and belowground
vegetation. In this concluding chapter, we first discuss the main findings of our research
in terms of model developments and the potential of these developments to improve mod-
eled water fluxes. Then we focus on the insights and implications related to these main
findings. Finally, we provide an outlook for future research activities related to large scale
modeling of vegetation-water interactions.
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6.1 MAIN FINDINGS
This dissertation addressed the issue of limited spatial and temporal vegetation variabil-
ity in large scale hydrological and land surface models. The objective of this doctoral
research was to develop more realistic model representations of spatial and temporal
vegetation variability, and explore their potential for improving modeled water fluxes in
these large scale models.

We presented model representations that adequately capture the spatial and tempo-
ral variability of both aboveground and belowground vegetation characteristics. These
representations were based on readily available data that is representative for the scale
of interest, namely large ecosystem scales (∼5 to 100 km). Specifically, we included en-
hanced temporal variability of aboveground vegetation in the land surface model HTES-
SEL by integrating interannual variability of land cover and leaf area index (LAI) based
on satellite remote sensing data (Chapter 2). Furthermore, we developed a spatially and
temporally varying model parameterization of effective vegetation cover using remote
sensing data, which was integrated in HTESSEL (Chapter 2). Additionally, we developed
an effective method to allow for more realistic spatial variability of the belowground veg-
etation characteristic root zone storage capacity (Sr), that is suitable to represent tem-
poral variations as well. This Sr representation was obtained using the memory method
that reflects the climate control on vegetation root development. We integrated, for the
first time, climate-controlled Sr estimates based on the memory method in a land sur-
face model, replacing inadequate lookup-table-based root zone parameters that do not
reflect the spatial heterogeneity of roots (Chapter 3). Furthermore, we integrated a novel
approach within the memory method to account for irrigation (Chapter 4). Finally, we
established a parsimonious model to obtain adequate global estimates of Sr, that are
suitable to be integrated in large scale models to accurately represent both spatial and
temporal variability in Sr (Chapter 5).

We conclude that these more realistic representations of vegetation variability have
potential for improving modeled water fluxes in large scale hydrological and land sur-
face models. This outcome is supported by model simulations with the HTESSEL land
surface model. Incorporating enhanced aboveground vegetation variability based on re-
mote sensing data consistently improved the associated variability of modeled hydrol-
ogy compared to simulations lacking this variability (Chapter 2). Additionally, we found
that a more realistic, climate-controlled, representation of the vegetation’s root zone im-
proved the timing of modeled discharge in a regional context, and thus has potential to
improve modeled water fluxes globally (Chapter 3). To achieve such improvements on
a global scale, we found that our global Sr estimates based on a parsimonious model
would be suitable to represent adequate spatial and temporal root zone variability, as
they closely resemble other global estimates of root characteristics based on more com-
plex data and computations (Chapter 5).

6.2 INSIGHTS AND IMPLICATIONS
In addition to the main findings, the outcomes of this dissertation also provide other
valuable insights and implications for the large scale hydrological and climate modeling
communities.
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One of these insights emerges from the model improvements found when integrating
interannual variability of aboveground vegetation characteristics (Chapter 2), emphasiz-
ing the importance of temporal vegetation variability in land modeling. Remote sensing
data of vegetation characteristics is suitable to reflect realistic variability, and is directly
applicable in model studies of historical periods for which data is available. This implies
that, for example, the accuracy of climate reanalysis datasets such as ERA5 could be en-
hanced by incorporating interannual vegetation variability derived from remote sensing
data. However, when modeling future periods in view of climate projections, we cannot
directly rely on remote sensing data. In this case, historical data can be used to develop
methodologies capable of projecting vegetation variability into the future. An example
of such a methodology is provided in this research by the novel effective vegetation cover
parameterization (Chapter 2).

Furthermore, our analyses emphasize the relevance of considering appropriate data
and methods at the scale of interest, i.e., the model scale (∼5 to 100 km). Upscaling
processes and properties based on small scale observations to the coarse resolution of
global models does not necessarily provide representative results. This is supported by
the model improvements found when using a holistic representation of ecosystem scale
Sr instead of lookup table based values that were based on point measurements (Chap-
ter 3). Moreover, this is demonstrated by the inconsistency of these point measurements
with the Sr patterns from our simple model and from other approaches based on ecosys-
tem scales (Chapter 5; Fig. 5.7 and 5.8). This implies that adopting holistic approaches
considering the scale of interest could also be beneficial for other aspects of large scale
modeling, including model representations and evaluation of outputs.

Moreover, this dissertation highlights the value of analysing and understanding in-
ternal model processes in addition to the mere model outputs. This was achieved in
two ways. First, we conducted thorough assessments of how internal model processes
and feedbacks were influenced by the improved vegetation representations (Chapters
2 and 3). These assessments were accomplished with offline (land-only) model setups
which establish a relatively controlled model environment. This additional analysis step
is very valuable as it allows understanding of the underlying causes of observed changes
in model outputs. As a consequence, it provides insights on how similar developments
would potentially influence other models than the HTESSEL model used in this research,
thus facilitating meaningful model comparisons. Furthermore, insights into the effects
of model developments in an offline setup lead to enhanced understanding of how sim-
ilar developments would influence model outputs in a coupled model setup used for cli-
mate predictions. Second, we zoomed in to the internal interactions in the random forest
model used for predicting Sr from four simple, globally available variables (Chapter 5).
These interactions revealed how different variables influence Sr across different regions,
which can provide a first, quick understanding of the influence of climate changes on
Sr within these regions. Thus, our efforts to develop and integrate more realistic model
representations of vegetation variability contribute not only to improved outputs in the
model world, but also to enhanced understanding of its connections with real-world
processes.

Overall, the main implication from this research is that there is a clear potential of
improved vegetation variability parameterizations to improve the modeled water fluxes
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in large scale models. This would, furthermore directly imply improved predictions of
global water budgets and hydrological extremes such as droughts and floods. In addi-
tion, more accurate model evaporation would also result in more accurate energy fluxes
through the latent heat flux, and thus more accurate climate predictions.

6.3 OUTLOOK
The insights and implications from this research provide a base for future research aim-
ing to further enhance vegetation variability in large scale models. Specifically, our re-
sults call for fully adaptive modeling of root zone storage capacity. In Chapter 3 we em-
phasize the potential of climate-controlled root zone parameters to improve water flux
simulations in land surface models. Additionally, the outcomes from Chapters 4 and 5
pave the way for application of climate-controlled root zone storage capacity in global
models. Specifically, the global estimates of Sr presented in Fig. 6.1a can be integrated
in global hydrological and land surface models to adequately represent the spatial vari-
ability of the vegetation’s root zone. However, it should be noted that directly integrating
Sr into these models is not straightforward. This is because Sr is typically not explicitly
described in most models, but, instead, it results from the defined model rooting depth.
Therefore, integrating Sr into these models requires careful consideration of the existing
model structure.

For the specific case of HTESSEL, the theoretical Sr is solely based on soil textures
and a spatially fixed model soil depth (Chapter 3). The spatial variability of the theoreti-
cal Sr, as presented in Fig. 6.1b, thus only reflects the spatial variability of the model soil
texture and does not match our global Sr estimates, as quantified by a Spearman cor-
relation between the two Sr representations of r = 0.12 (Fig. 6.1a, b). Additionally, the
theoretical Sr values are considerably larger than our estimates (Fig. 6.1a, b). However,
we found that part of this theoretical root zone storage is inactive, meaning that part of
the root accessible soil water volume is not actually taken up by the model vegetation.
Therefore, we also looked at the ‘effective’ Sr, which is here based on the amplitude of
the modeled soil moisture. The HTESSEL effective Sr, presented in Fig. 6.1c, has lower
values than the theoretical one which reduces the bias with respect to our Sr estimates.
However, the spatial pattern of the effective Sr does also not resemble our global Sr spa-
tial variability, with r = 0.13. From these findings we conclude that for any application of
climate-controlled Sr in an existing model, one should carefully study how the different
definitions and representations relate to each other. This also holds for application of re-
mote sensing data of vegetation characteristics into models and for evaluation of model
outputs compared with reference datasets.

The above described potential integration of global estimates of Sr in large scale
models directly addresses the first three limitations concerning the spatial variability of
root zone representation in land surface models, as discussed in Chapter 1. Taking it one
step further, the findings from this research also support temporally dynamic and adap-
tive modeling of vegetation accessible soil water volumes, addressing also the fourth lim-
itation regarding temporal root zone variability from Chapter 1. Specifically, the simple
model from Chapter 5 to predict Sr based on three climate variables, that can be easily
obtained from standard prognostic climate model variables, and one topographic vari-
able, can be used to represent continuous adaptation of ecosystems in future predictions
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Figure 6.1: Global root zone storage capacity Sr (mm). (a) Sr estimates developed in Chapter 5 (Fig. 5.7a). (b)
Sr as represented in the HTESSEL land surface model based on soil types and model soil depth (Chapter 3).
(c) Effective Sr in HTESSEL (Sr = max(max(SM)year −min(SM)year)years) based on the modeled soil moisture
(SM) in model experiment IAKV from Chapter 2.

based on the modeled temporal evolution of these variables. Another option to repre-
sent the temporal variability of Sr is by directly integrating the memory method into the
models. In this case, internal model computations of the root zone storage deficits based
on modeled precipitation and evaporation can be translated into model Sr to represent
the evolution of Sr over time. Both methods allow root systems to dynamically adapt in
response to changes in rainfall and atmospheric water demand. This way we can over-
come all the limitations of the representation of the vegetation’s root zone presented in
Chapter 1.

With a dynamic and adaptive model root zone representation in large scale hydro-
logical and land surface models, improved modeled hydrology is expected, which would
lead to higher accuracy of global climate predictions. More adequate models and predic-
tions contribute directly to a deeper understanding of the effects of climate change on
the Earth system. Moreover, beyond the scientific community, improved models facili-
tate more targeted climate change mitigation and adaptation strategies for both citizens
and governments. In addition to further improving model representations and outputs
in large scale models, future research should also focus on improving accessibility of
these advancements (e.g., Hut et al., 2022). All the outcomes of this dissertation have
been openly shared to promote research transparency, accessibility, and collaboration.
However, the degree of reproducibility remains limited due to the lack of open access
to essential research components such as the underlying models used. Improving ac-
cessibility and openness in hydrological and climate research would not only advance
individual scientific progress but also create opportunities for collective progress.
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SUMMARY

Vegetation strongly influences evaporation from land by transporting water from the
subsurface to the atmosphere through root water uptake. The amount and timing of this
water flux depends on the aboveground (e.g., the amount of leaves) and belowground
(e.g., the root extent) characteristics of the vegetation. Although these vegetation char-
acteristics vary strongly both in space and time, there is lack of adequate representation
of this vegetation variability in large scale hydrological and land surface models. This
causes deficiencies in representing the associated variability in modeled water and en-
ergy states and fluxes, which introduces uncertainties in future predictions of the hydro-
logical cycle, including hydrological extremes such as droughts and floods. To address
this issue, this research aims to develop more realistic model representations of spatial
and temporal vegetation variability, and explore their potential for improving modeled
water fluxes in large scale hydrological and land surface models.

Chapter 2 focuses on model representations of spatial and temporal variability of
aboveground vegetation characteristics based on satellite remote sensing data. Interan-
nual variability of land cover and leaf area index (LAI) from latest global remote sensing
datasets are integrated into the land surface model Hydrology Tiled ECMWF Scheme for
Surface Exchanges over Land (HTESSEL). Furthermore, datasets of LAI and the fraction
of green vegetation cover are used to develop and integrate a spatially and temporally
varying model parameterization of the effective vegetation cover. The effects of these
three implementations on simulated hydrology are evaluated using offline (land-only)
model simulations. The results show that the enhanced variability of aboveground veg-
etation characteristics considerably improves the simulated variability of evaporation
and near-surface soil moisture. These improvements are connected to a framework that
describes how the implemented vegetation variability influences internal model inter-
actions between vegetation, soil moisture, and evaporation.

Chapter 3 evaluates how climate-controlled root zone parameters influence water
flux simulations with the land surface model HTESSEL. To this aim catchment scale root
zone storage capacity Sr (mm), defined as the maximum volume of subsurface moisture
that can be accessed by the vegetation roots, is estimated using the memory method.
In this method Sr is derived from soil water deficits, reflecting the ability of vegetation
to adapt to the local climate conditions by sizing their roots in such a way to guarantee
continuous access to water, keeping memory of past water deficit conditions. Climate-
controlled Sr is estimated with the memory method for 15 catchments in Australia to
adequately represent the spatial variability of the vegetation roots. These estimates are
integrated into HTESSEL, replacing the static root representation based on soil types
and uniform soil depth. The results of offline model simulations show that climate-
controlled Sr representation significantly improves the timing of modeled discharge in
the study regions. This suggests that a climate-controlled representation of the model
Sr has potential for improving water flux simulations by land surface models in a global
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context.
Chapter 4 presents the influence of irrigation on the estimation of Sr with the mem-

ory method. The memory method Sr is derived from the seasonal patterns of root zone
water input and output. Besides precipitation as input, irrigation supplies additional
water to the root zone in irrigated agricultural fields. However, the influence of irrigation
on the memory method Sr estimates has not been assessed previously. In this study two
methods based on different globally available irrigation datasets are developed to ac-
count for irrigation in the memory method for estimating Sr. The Sr estimates from these
two methods are compared to a case without considering irrigation for a large sample of
catchments globally. The results show, for the first time, that irrigation considerably re-
duces Sr in regions with extensive irrigation, highlighting the relevance of irrigation for
adequately estimating ecosystem scale Sr.

Chapter 5 investigates the influence of climate, landscape, and vegetation variables
on Sr globally. So far, there is limited insight on the controls of global-scale root de-
velopment and their spatial variation. A random forest model is used to predict Sr as
estimated with the memory method based on 21 variables for a large sample of catch-
ments globally. The results indicate that hydro-climatic variables are the dominant, but
spatially varying, driver of ecosystem scale Sr, while landscape and vegetation play a mi-
nor role. Based on the importance of the various drivers, a reduced parsimonious model
using four variables is used to predict Sr on a global scale. These predictions largely re-
semble other global estimates of root characteristics based on more complex methods
and datasets. This indicates that the here developed parsimonious model to estimate
global scale Sr based on four simple globally available variables adequately represents
the spatial variability of Sr globally. Together with the results from Chapter 2, it can be
concluded that integration of these estimates into large scale hydrological and land sur-
face models has potential to improve model water fluxes.

The findings of this dissertation directly contribute to the large scale hydrological
and climate model communities by providing methods to adequately represent spa-
tial and temporal vegetation variability. The results demonstrate the potential of these
methods to improve modeled water fluxes by large scale hydrological and land surface
models, with major implications for the accuracy of hydrological and climate predic-
tions. This dissertation lays the foundation for future research aimed at further improv-
ing the realism of model vegetation variability.



SAMENVATTING

Vegetatie beïnvloedt de verdamping op land door water vanuit de ondergrond te ver-
plaatsen naar de atmosfeer via het opnemen van water door wortels. De hoeveelheid en
timing van deze waterflux hangt af van de bovengrondse (bijv. de hoeveelheid bladeren)
en ondergrondse (bijv. de omvang van wortels) kenmerken van de vegetatie. Hoewel
deze vegetatiekenmerken sterk variëren zowel in ruimte als in tijd, ontbreekt het aan een
adequate representatie van deze vegetatievariabiliteit in grootschalige hydrologische en
landoppervlakte modellen. Dit leidt tot tekortkomingen in het weergeven van de bij-
behorende variabiliteit in gemodelleerde water- en energietoestanden en -fluxen. Dit
introduceert onzekerheden in toekomstige voorspellingen van de hydrologische cyclus,
inclusief hydrologische extremen zoals droogtes en overstromingen. Om dit probleem
aan te pakken, is het doel van dit onderzoek om realistischere modelrepresentaties van
ruimtelijke en temporele vegetatievariabiliteit te ontwikkelen, en hun potentieel te ver-
kennen voor het verbeteren van gemodelleerde waterfluxen in grootschalige hydrologi-
sche en landoppervlakte modellen.

Hoofdstuk 2 richt zich op modelrepresentaties van ruimtelijke en temporele vari-
abiliteit van bovengrondse vegetatiekenmerken op basis van remote sensing gegevens
van satellieten. Interjaarlijkse variabiliteit van landbedekking en bladoppervlakte-index
(leaf area index; LAI) uit de nieuwste wereldwijde remote sensing datasets worden ge-
ïntegreerd in het landoppervlakte model Hydrology Tiled ECMWF Scheme for Surface
Exchanges over Land (HTESSEL). Daarnaast worden datasets van LAI en de fractie van
groene vegetatiebedekking gebruikt om een ruimtelijk en temporeel variërende model-
parameterisatie van de effectieve vegetatiebedekking te ontwikkelen en te integreren. De
effecten van deze drie implementaties op gesimuleerde hydrologie worden geëvalueerd
met behulp van offline (alleen land) modelsimulaties. De resultaten laten zien dat de
verbeterde variabiliteit van bovengrondse vegetatiekenmerken de gesimuleerde variabi-
liteit van verdamping en vochtgehalte in de bovenste bodemlagen aanzienlijk verbetert.
Deze verbeteringen zijn gekoppeld aan een kader dat beschrijft hoe de geïmplemen-
teerde vegetatievariabiliteit de interne modelinteracties tussen vegetatie, bodemvocht
en verdamping beïnvloedt.

Hoofdstuk 3 evalueert hoe klimaat-gereguleerde wortelzoneparameters simulaties
van water fluxen beïnvloeden in het landoppervlakte model HTESSEL. Daartoe wordt
de opslagcapaciteit van de wortelzone op schaal van een stroomgebied (root zone stor-
age capacity) Sr (mm), gedefinieerd als het maximale volume van ondergronds vocht dat
door de wortels van de vegetatie kan worden bereikt, geschat met de memory method. In
deze methode wordt Sr afgeleid van bodemvochttekorten. Dit weerspiegelt het vermo-
gen van vegetatie om zich aan te passen aan de lokale klimaatomstandigheden door hun
wortels zodanig te dimensioneren dat ze continu toegang tot water garanderen, door het
’herinneren’ van watertekorten uit het verleden. Klimaat-gereguleerde Sr wordt met de
memory method geschat voor 15 stroomgebieden in Australië om de ruimtelijke varia-
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biliteit van de wortels van vegetatie adequaat te weergeven. Deze schattingen worden
geïntegreerd in HTESSEL, waarbij de statische wortelrepresentatie op basis van bodem-
typen en uniforme bodemdiepte wordt vervangen. De resultaten van offline modelsi-
mulaties tonen aan dat de representatie van klimaat-gereguleerde Sr de timing van ge-
modelleerde rivierafvoer in de onderzoeksgebieden aanzienlijk verbetert. Dit suggereert
dat een klimaat-gereguleerde modelrepresentatie van Sr potentieel heeft om waterflux-
simulaties door landoppervlakte modellen in een mondiale context te verbeteren.

Hoofdstuk 4 presenteert de invloed van irrigatie op de schatting van Sr met de me-
mory method. De memory method Sr is gebaseerd op de seizoenspatronen van de wa-
tertoevoer en -afvoer in de wortelzone. Naast neerslag als toevoer, levert irrigatie extra
water aan de wortelzone in geïrrigeerde landbouwvelden. Echter, de invloed van irriga-
tie op de schattingen van Sr met de memory method is nog niet eerder beoordeeld. In
deze studie worden twee methoden ontwikkeld, gebaseerd op verschillende wereldwijd
beschikbare irrigatiedatasets, om rekening te houden met irrigatie in de memory method
voor het schatten van Sr. De Sr-schattingen van deze twee methoden worden vergeleken
met een situatie zonder irrigatie voor een groot aantal stroomgebieden wereldwijd. De
resultaten laten voor het eerst zien dat irrigatie Sr aanzienlijk vermindert in regio’s met
uitgebreide irrigatie, wat de relevantie van irrigatie benadrukt voor het adequaat schat-
ten van Sr op ecosysteemniveau.

Hoofdstuk 5 onderzoekt de invloed van klimaat-, landschap- en vegetatievariabelen
op Sr wereldwijd. Tot nu toe is er beperkt inzicht in de factoren die de ontwikkeling
van wortels op mondiale schaal beïnvloeden en hoe deze factoren ruimtelijke variëren.
Een random forest model wordt gebruikt om Sr te voorspellen zoals geschat met de me-
mory method, gebaseerd op 21 variabelen voor een groot aantal stroomgebieden we-
reldwijd. De resultaten geven aan dat hydro-klimatologische variabelen de dominante,
maar ruimtelijk variërende, drijfveer zijn van Sr op ecosysteemniveau, terwijl landschap
en vegetatie een ondergeschikte rol spelen. Op basis van het belang van de verschillende
drijfveren wordt een gereduceerd, eenvoudig model met vier variabelen gebruikt om Sr

op mondiale schaal te voorspellen. Deze voorspellingen vertonen veel gelijkenis met an-
dere mondiale schattingen van wortelkenmerken die gebaseerd zijn op complexere me-
thoden en datasets. Dit geeft aan dat het in deze studie ontwikkelde eenvoudige model
om Sr op mondiale schaal te schatten, gebaseerd op vier eenvoudige en wereldwijd be-
schikbare variabelen, de ruimtelijke variabiliteit van Sr wereldwijd adequaat weergeeft.
Samen met de resultaten uit Hoofdstuk 2 kan worden geconcludeerd dat integratie van
deze schattingen in grootschalige hydrologische en landoppervlakte modellen potenti-
eel heeft om waterfluxen in modellen te verbeteren.

De bevindingen van dit proefschrift dragen direct bij aan de grootschalige hydrolo-
gische en klimaatmodellen gemeenschappen door methoden te bieden om ruimtelijke
en temporele vegetatievariabiliteit adequaat weer te geven. De resultaten tonen het po-
tentieel van deze methoden aan om gemodelleerde waterfluxen te verbeteren in groot-
schalige hydrologische en landoppervlakte modellen, wat grote gevolgen heeft voor de
nauwkeurigheid van hydrologische en klimaatvoorspellingen. Dit proefschrift legt de
basis voor toekomstig onderzoek dat gericht is op het verder verbeteren van de realiteit
van vegetatievariabiliteit in modellen.
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