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Abstract
Transformers are a type of neural network archi-
tecture used in natural language processing. They
excel in tasks such as translation, text generation,
and language modeling by capturing long-range de-
pendencies. Increasing input sequence length en-
hances performance but at a high computational
cost. This study investigates the effectiveness of
Infini-attention, a proposed solution to mitigate
these costs, and explores its integration strategies.
We implemented and trained Infini-attention on the
GPT-NEO platform and TinyStories dataset, evalu-
ating on the BabyLM pipeline. Our findings reveal
the optimal strategy for integrating Infini-attention.

1 Introduction
Transformers [26] have revolutionized natural language pro-
cessing, yet they grapple with limitations thanks to fixed-size
context windows, restricting their capacity to process lengthy
documents and understand dependencies outside these win-
dows. Previously proposed model architectures such as
Transformer-XL [7] and BigBird [33] have addressed these
issues through sparse attention mechanisms and cacheing of
past Key-Value matrices. However, challenges persist in
terms of scalability and especially performance [25]. For
instance, BigBird struggles with certain tasks that standard
attention mechanisms can easily handle, such as finding the
most distant point for each point in a sequence [33]. Sim-
ilarly, Transformer-XL improves efficiency but suffers from
a lack of gradient flow into previous segments, impacting its
ability to utilize the extended context effectively [7].

In response to these ongoing challenges, Munkhdalai et
al. have introduced the concept of Infini-attention [17], an
innovative approach for efficient management of infinitely
long contexts. Infini-attention integrates a compressive mem-
ory [12] into the transformer architecture, allowing for a dy-
namic and scalable handling of extended contexts with a lin-
ear instead of quadratic increase in computational demands.
This mechanism enables continuous contextual understand-
ing over extended sequences.

While Infini-attention has demonstrated promising results
in fine-tuning scenarios, this study explores whether the ar-
chitecture becomes even more powerful when integrated at
earlier stages of training. Our approach involves evaluating
the performance of Infini-attention when integrated during
pre-training versus fine-tuning and pinpointing the optimal
amount of fine-tuning required for successful integration of
Infini-attention. Additionally, we empirically test the feasi-
bility of using shortened local context lengths in conjunc-
tion with Infini-attention in order to determine how effec-
tively compressive memory can alleviate the problems that
arise with shortened context length.

These experiments yield valuable insights for optimizing
transformer configurations, particularly in scenarios where
extending the context window is resource-constrained. One
example of such a domain is local devices like laptops and
smartphones. Having language models (LMs) available lo-
cally would aid in the insurance of privacy of consumers and

greatly reduce latency. Additionally, improved sample effi-
ciency is critical as we face a scarcity of new data for model
training. Using the data we have available to us efficiently is
highly important for future advancements.

To align our experiments to use small and sample-efficient
models, we utilize the TinyStories dataset [9] and a small lan-
guage model, GPT-NEO [4], enhanced with rotary embed-
dings [24]. This experimental setup aims to uncover the full
potential of Infini-attention and compressive memory, guid-
ing the development of future transformer models that are
both data-efficient and powerful.
Our contributions are as follows:

• Concluded whether Infini-Attention should be incorpo-
rated during pre-training or fine-tuning.

• Provided insights into the integration process of Infini-
attention by analyzing the convergence behavior of gat-
ing parameters during fine-tuning.

• Created a replication package1 for reproducing our find-
ings, our models2 published on HuggingFace, and our
modified transformers library3 to work with segment-
level Infini-Attention.

2 Background
Transformers’ self-attention mechanism incurs quadratic
costs as sequence length increases. This section examines the
origins and implications of this issue and reviews solutions
that aim to address these limitations.

2.1 The Quadratic Cost of Self-attention

Figure 1: Attention scores of a single token visualized. Taken from
Alammar [1]

1https://github.com/AISE-TUDelft/tiny-transformers
2https://huggingface.co/collections/AISE-TUDelft/brp-tiny-

transformers-666c352b3b570f44d7d2a519
3https://github.com/laurikskl/transformers



Transformers, since their introduction by Vaswani et al.
[26], have become the cornerstone of modern natural lan-
guage processing (NLP) due to their capability to model
long-range dependencies through self-attention mechanisms.
However, the fixed-size context window inherent to standard
Transformers limits their ability to process lengthy docu-
ments and understand dependencies beyond these windows.

Increasing the context length in Transformers leads to
a quadratic scaling in computational and memory require-
ments. Specifically, the self-attention mechanism, which is
the heart of Transformers, has a time complexity of O(n2)
and a space complexity of O(n2), where n is indicative of
sequence length.

Quadratic scaling arises because the self-attention mech-
anism computes pairwise interactions between all elements
in the input sequence (see Figure 1). Consequently, pro-
cessing very long sequences becomes infeasible, necessitat-
ing further innovations in model architecture and optimiza-
tion techniques. Techniques such as sparse attention [11],
memory-efficient attention mechanisms [15, 7, 3], and hierar-
chical models [18, 32] are actively being explored to mitigate
these challenges and push the boundaries of sequence length
that Transformers can effectively handle.

2.2 Previously Proposed Solutions
One of the more popular solutions proposed, Transformer-
XL [7], aims to address the limitations of fixed-length context
in standard Transformer models by incorporating a segment-
level recurrence mechanism. By reusing hidden states from
previous segments as memory, Transformer-XL can model
dependencies spanning multiple segments, thereby enhancing
its ability to process and generate long texts.

Figure 2: Segment-wise processing of Transformer-XL, which cap-
tures long-term dependencies by reusing hidden states from previous
segments as memory. Taken from Munkhdalai et al. [17]

However, Transformer-XL also comes with notable chal-
lenges, particularly in terms of computational resources. The
requirement to cache hidden states from previous segments
leads to substantial memory usage, which can be manage-
able for smaller models but becomes problematic for larger
models (e.g., 30B parameters or more). Segment 3 (see Fig-
ure 2), for example, needs to maintain the cache from seg-
ments 1 and 2 in VRAM, which significantly increases mem-
ory demands. This high memory demand makes it difficult to
scale Transformer-XL. Additionally, engineering the training
pipeline to handle the recurrence mechanism and the exten-
sive memory caching adds complexity. These factors con-
tribute to Transformer-XL being less popular despite its in-
novative approach.

BigBird [33] is a Transformer model that addresses the
problem of quadratic scaling by introducing a sparse atten-
tion mechanism. This reduces the computational complexity
from quadratic to linear, enabling the model to process sig-
nificantly longer sequences with the same computational re-
sources.

The core innovation in BigBird is its sparse attention mech-
anism, which combines three types of attention patterns:
global, local, and random. Global attention involves a small
set of special tokens that attend to all parts of the sequence,
ensuring that important global information is captured. Local
attention ensures that each token attends to its neighboring to-
kens, preserving local context. Random attention allows each
token to attend to a set of randomly selected tokens, facilitat-
ing the capture of long-range dependencies without the need
for full attention across the entire sequence.

Figure 3: Self-attention mechanism of BigBird. Each colored square
is indicative of a pair-wise score calculation between two tokens in
a sequence. Taken from Zaheer et al. [33]

However, while BigBird achieves improvements in han-
dling longer contexts, it is not without drawbacks. The in-
troduction of sparse attention patterns requires careful tuning,
making it difficult to maintain universally high performance
among different tasks. Moreover, the random selection pro-
cess in the attention mechanism leads to unwanted variability
in model performance.

Infini-attention [17] addresses the limitations of traditional
Transformers by incorporating a compressive memory into
the Transformer architecture. This approach allows the model
to handle infinitely long contexts with a linear increase in
computational demands, transitioning from O(n2) time com-
plexity to O(n) time complexity and achieving O(1) space
complexity.

Infini-attention combines local self-attention and long-
term linear attention [21] within a single Transformer block.
It works by storing key-value (KV) pairs from previous seg-
ments in a compressive memory [12] instead of discarding
them. When processing new sequences, the model uses at-
tention queries to retrieve values from this memory.

The authors of Infini-attention promise that their solution
to the context-length problem allows Large Language Mod-
els to naturally scale to infinitely long inputs while using
bounded memory and computation. However, their approach
relies on a linear attention mechanism [22]. Past architec-
tures that have relied on the same mechanism, such as the
Performer [5], have been empirically demonstrated to suffer
from performance issues in comparison to the vanilla Trans-
former architecture [25].

Furthermore, Munkhdalai et al. do not push the limits of
the compressive memory mechanism satisfactorily nor pro-



Figure 4: Architecture proposed in Infini-attention. Taken from
Munkhdalai et al. [17]

vide detailed instructions on the amount of fine-tuning re-
quired for successful integration. The lack of comparison
with vanilla Transformers further limits the evaluation of the
Infini-attention architecture. These omissions suggest that
while promising, the proposed method may face practical
challenges in real-world applications and its advantages over
existing architectures remain unclear.

3 Approach
In the following paragraphs, we will focus on the compressive
memory component of the Infini-attention architecture. First,
we define its structure and motivation. Next, we detail the
processes of information updating and retrieval. Finally, we
address to what extent our finite compressive memory can
store an infinite amount of information.

3.1 Structure of the Compressive Memory
The Compressive memory is parameterized with an asso-
ciative matrix described in Schlag et al. [20]. It is hetero-
associative [16], meaning that it allows for retrieval of partial
matches, which is important in the context of language mod-
elling with the attention mechanism, as a query and key have
a non-binary, scored match. The dimensions of the memory
are described below.

M ∈ Rdkey×dvalue

3.2 Key-Value Binding in Compressive Memory
Binding [13, 12] is a fundamental concept used for com-
pressive memory as it is crucial for storing and retrieving
information efficiently.

Basic Concept

Key-value binding involves associating a key vector k with
a value vector v. This association can be conceptualized as
storing data in a memory slot where the key serves as an ad-
dress and the value as the data. Typically, the outer product
of the key and value is used:

M = k⊗ v

Here, M represents the memory matrix, and the outer product
k⊗ v ensures that each element of the key is associated with
each element of the value.

Binding and Retrieval
To bind a key k with a value v, these vectors are combined
such that the original value can be retrieved when the key is
provided. If kquery is the query key, the retrieval operation can
be expressed as:

vretrieved = Mkquery

In high-dimensional spaces, the orthogonality of vectors
plays a crucial role. Orthogonal vectors ensure that incorrect
keys retrieve essentially ‘useless’ information, while only
the correct or nearly correct keys will retrieve the original
or close-to-original values. This property is essential for
maintaining the integrity of stored information and for
efficient retrieval.

Binary Vectors and XOR Operation:
Binary vectors are an excellent way to demonstrate this
property, as a similar principle applies using the XOR
operation.

Suppose we have two binary vectors:

• Key vector k = [1, 0, 1, 0]

• Value vector v = [0, 1, 0, 1]

To bind k and v using XOR:

k⊕ v = [1, 1, 1, 1]

Retrieving the value v given the key k involves applying
XOR again with the result of the previous XOR operation:

v = k⊕ (k⊕ v) = [0, 1, 0, 1]

Taking our memory M that has the binding k ⊕ v =
[1, 1, 1, 1], and applying XOR again with the key that was
used to store it, retrieves the original value vector v =
[0, 1, 0, 1].

3.3 Updating the Compressive Memory
We first give a simplified version of the update equation of
M for demonstrative purposes, which is an adapted version
of the delta rule [30]

M = M + kT (v − k ·M) (1)

To understand this better, we can ‘open up’ the matrix M as
the outer products of key and value vectors that populate it.
Suppose that we have already added the entries kT

1 v1 and
kT
2 v2. We are now adding the entry k3, v3, such that k3 is



not orthogonal to k2 and k3 = k2. The update proceeds as
follows:

M = M + kT
3 (v3 − k3M) (2)

= kT
1 v1 + kT

2 v2 + kT
3 (v3 − v2) (3)

= kT
1 v1 + kT

2 v2 + kT
3 v3 − kT

3 v2 (4)

= kT
1 v1 + kT

2 v2 + kT
3 v3 − kT

2 v2 (5)

= kT
1 v1 + kT

2 v2 + 0 (6)

= kT
1 v1 + kT

2 v2 (7)

This can be described as clearing k2 ·v2 and keeping k3 ·v3,
the newest entry. Essentially, the component k2 · v2 is
nullified by k3 · (v3 − v2) since k3 = k2 and they are not
orthogonal, ensuring that v3−v2 almost entirely cancels out
k2 · v2.

Infini-attention’s update rule
A modern twist to the delta update rule was first presented
in Schlag et al. [21], which the Infini-attention version of the
update rule borrows from. The update to the memory state is
given by:

Ms ←Ms−1 + (σ(K))T
(
V − σ(K)Ms−1

σ(K)zs−1

)
(8)

This operation adjusts the memory by integrating new key-
value pairs while ensuring that duplicate values are not stored.
The update rule Infini-attention uses has an added normaliza-
tion term for numerical stability and an element-wise activa-
tion function ELU+1 [6], which is represented by σ in the
above equation. The use of ELU+1 is notably not motivated
or explained by Munkhdalai et al. [17]. Previous research
[14, 21] suggests that ELU+1 is desirable in similar contexts
due to its non-zero gradients on negative inputs and its ability
to preserve dimensions. ELU+1 was likely chosen for these
properties, particularly its dimension preservation, which is
beneficial for memory operations. Nonetheless, a detailed
comparison with other activation functions would provide a
clearer understanding of its specific advantages in this con-
text.

3.4 Retrieving From the Compressive Memory
The retrieved memory content Amem is computed as follows:

Amem =
σ(Q)Ms−1

σ(Q)zs−1
(9)

This equation utilizes the query specific to the local context to
fetch relevant values from memory. Here σ and zs−1 are the
same activation function and normalization term that are used
by the update rule. According to Schlag et al. [20], the as-
sociative memory mechanism allows for the retrieval of pat-
terns that differ from the input pattern. This indicates that
the model can handle overlapping keys storing different val-
ues, enabling strong performance even when the compressive
memory begins to store non-orthogonal keys.

3.5 How Infinite is this Finite space?
From an analytical perspective, if we have a key dimension
of n, then the compressive memory should become full af-
ter n unique keys have been added to it. This would give a
capacity of 128 values in the case of having keys in 128 di-
mensions. This, however, would be in stark contrast to the
impressive results displayed in Munkhdalai et al. [17], where
a model with a key dimension of 1024 and a segment length
of 2048 was comfortably scaled to succeed at book summa-
rization tasks which had lengths of up to 500K tokens. Ana-
lytical methods would lead us to believe that the compressive
memory would allow for a roughly two-fold increase in con-
text length, since we can expect some values to repeat in a
story. This would lead us to believe that in such a situation
Infini-attention would allow us to extend our model to work
with context lengths of up to around 4092, which is dwarfed
by the 500k token summarization tasks it was found to be
capable of.

This phenomenon can be explained by the principles estab-
lished by Pentti Kanerva, who demonstrated that nearly or-
thogonal vectors are sufficient for effective memory retrieval
[12]. As illustrated in Figure 5, the distances between most
vectors in high-dimensional spaces such as our compressive
memory cluster tightly around 0.5, indicating that they are
nearly orthogonal and highly dissimilar. Consequently, even
when the memory contains keys that are not perfectly or-
thogonal, the model can still perform well by leveraging the
nearly-orthogonal properties of high-dimensional vectors.

Figure 5: Distribution of distances in 10,000-dimensional spaces. In
high-dimensional space (N=10,000), most vectors cluster around a
distance of 0.5, indicating near orthogonality and high dissimilarity.
Taken from Stanford Online [23]

To summarize, the compressive memory component of
Infini-attention leverages the properties of high-dimensional
spaces to effectively store and retrieve vast amounts of infor-



mation. Despite the theoretical limits imposed by key dimen-
sions, Kanerva’s work shows that nearly orthogonal vectors in
high-dimensional spaces allow for the practical storage of an
almost infinite number of key-value bindings. This capability
significantly enhances the model’s performance and storage
efficiency in tasks requiring long-term dependencies.

4 Experimental Setup
4.1 Research Questions
Our study is guided by the following research questions:
RQ1: Does incorporating Infini-attention from the begin-

ning of pre-training yield better performance compared
to adding it in fine-tuning?
Independent Variable: Stage of incorporating Infini-
attention (pre-training vs. fine-tuning)
Dependent Variable: Model performance on the
BabyLM pipeline, described in section 4.4

RQ2: How well can the compressive memory compensate
for shortened context lengths?
Independent Variable: Segment length
Dependent Variable: Model performance on the
BabyLM pipeline, described in section 4.4

RQ3: How long should the fine-tuning process last for the
gating parameters (betas) to converge?
Independent Variable: Duration of fine-tuning
Dependent Variable: Convergence of the gating param-
eters (betas), measured by stability and performance on
the BabyLM pipeline, described in section 4.4

4.2 Datasets
We exclusively use the TinyStories [9] dataset, which is a
collection of short, simple stories generated by GPT-3.5 and
GPT-4. The longest samples have a length of 512 tokens,
while the median length is 216 tokens. Although there are
some stories longer than 1000 tokens, they constitute less
than 1% of the dataset and have been trimmed to a maximum
length of 512 tokens. The stories use words understandable
to 3-4 year olds. By limiting the breadth of our dataset in this
manner, it can be used to train and evaluate small language
models (LMs), with the sole goal of learning to understand
grammar. We use this dataset to leverage its simplicity and
manageability, ensuring that our models remain coherent, in-
terpretable, and effective even with limited parameters and a
constrained training budget.

4.3 Models
For our baseline, we employ the GPT-NEO model [4], which
is derived from the original transformer architecture pro-
posed by Vaswani et al. [26]. In our experiments, we uti-
lize a modified version of GPT-NEO that incorporates ro-
tary embeddings [24] to provide positional encodings to the
input sequence. Additionally, we replace the standard self-
attention mechanism with Infini-attention [17], aiming to en-
hance the model’s capacity to manage extended contexts ef-
ficiently. An important point to note is that due to the tri-
angular (causal) mask in causal language models, each in-
put sequence to a model that trains on segments of length

64 ‘sees’ 512
64 fewer total training samples. With a context

length of 512, the model processes tokens incrementally from
p = (tn|t0, ..., tn) for n = [0, ..., 512], where t is segment
length. This makes each training sample effectively 512 train-
ing samples.

4.4 Evaluation Settings and Metrics
We evaluate on the evaluation pipeline intended for use in
the BabyLM 2023 challenge [29]. The pipeline consists of
BLiMP [28] and superGLUE [27].

BLiMP (Benchmark of Linguistic Minimal Pairs) tests
models on their ability to distinguish between grammatically
acceptable and unacceptable sentences across various linguis-
tic phenomena. It includes pairs of minimally different sen-
tences in categories such as anaphoric agreement, argument
structure, and subject-verb agreement.

SuperGLUE (General Language Understanding Evalua-
tion) is a benchmark consisting of several language under-
standing tasks. It evaluates a model’s ability to understand
and reason about text through tasks involving single-sentence
classification, similarity and paraphrase detection, and natu-
ral language inference.

4.5 Configuration and Implementation Details
In lieu of a replication package from the authors of Infini-
attention, we have undertaken the challenge of implement-
ing several components from scratch. This process includes
significant modifications to the HuggingFace transformers li-
brary [31] to support Infini-attention for input prompts ex-
ceeding the model’s local context length. As traditional posi-
tional embeddings are limited to the local context length they
were trained on, we integrated rotary embeddings inspired by
GPT-NEOX [2] to meet our need for positional embeddings
capable of handling infinitely long contexts.

Additionally, we have developed a custom attention mech-
anism aligned with the specifications detailed by Munkhdalai
et al. [17]. Although we drew inspiration from various
sources, we have tailored our implementation to fit the unique
requirements of our study, ensuring robustness and fidelity to
the original concepts.

Evaluation and training were conducted using an NVIDIA
GTX 3080 and NVIDIA V100 with 4 CPUs and 24GB of
memory on the DelftBlue cluster [8]. cards, leveraging the
PyTorch library [19].

5 Results
This section presents the outcomes of our experiments, orga-
nized by research questions.

5.1 Pretraining vs fine-tuning
The performance differences between pre-training with
Infini-Attention and pre-training followed by fine-tuning with
Infini-Attention were analyzed. The results are presented in
Table 1.
Models that were fully pre-trained with Infini-Attention out-
performed those that were only fine-tuned with this augmen-
tation. Notably, the fully pre-trained Infini-Attention GPT-
Neo with a segment length (SL) of 256 achieved the high-
est score on BLiMP with 0.618 and also performed well on



Table 1: BLiMP and SuperGLUE scores for vanilla GPT-Neo, GPT-
Neo models that were fully pre-trained with Infini-attention enabled
and GPT-Neo models that were first pre-trained without augmenta-
tions and then fine-tuned with Infini-Attention enabled. SL stands
for the segment length that the model was trained on.

Name BLiMP SuperGLUE

GPT-NEO (SL = 32) 0.604 0.478
GPT-NEO (SL = 64) 0.595 0.512
GPT-NEO (SL = 128) 0.587 0.478
GPT-NEO (SL = 256) 0.611 0.540
GPT-NEO (SL = 512) 0.561 0.537
INFINI-ATTENTION GPT-NEO FULLY PRE-TRAINED (SL = 64) 0.580 0.474
INFINI-ATTENTION GPT-NEO FULLY PRE-TRAINED (SL = 256) 0.618 0.533
INFINI-ATTENTION GPT-NEO FINE-TUNED (SL = 32) 0.572 0.476
INFINI-ATTENTION GPT-NEO FINE-TUNED (SL = 64) 0.558 0.470
INFINI-ATTENTION GPT-NEO FINE-TUNED (SL = 128) 0.574 0.528
INFINI-ATTENTION GPT-NEO FINE-TUNED (SL = 256) 0.566 0.549

SuperGLUE with a score of 0.533. However, it is notewor-
thy that the fine-tuned model with a segment length of 256
achieved the best SuperGLUE score of 0.549, while other
fine-tuned models showed relatively lower performance. De-
spite this, fully pre-training using Infini-attention appears to
yield better results across different metrics compared to just
fine-tuning.

5.2 How much fine-tuning is required
The gating parameters, referred to as betas, are critical for
the Infini-attention architecture. These parameters govern
the extent to which each attention head incorporates in-
formation from the compressive memory, thereby enhanc-
ing the model’s ability to manage long-term dependencies.
When transitioning a vanilla transformer to one equipped
with Infini-attention, the betas are the only new parameters
introduced that necessitate fine-tuning.

Figure 6: Beta values during a single epoch of fine-tuning with
Infini-attention enabled and a segment length of 32.

Figures 6 and 7 illustrate the convergence of gating param-
eters during the fine-tuning process for segment lengths of
32 and 256, respectively. In Figure 6, the gating parameters
exhibit relatively high values, whereas in Figure 7, they trend
towards lower values. Notably, Figure 8 presents the best bal-
ance between high and low beta values among all the segment
lengths observed.
We also note that the beta values of the first self-attention
layer tend to cluster around slightly positive values near 0.1.
However, an exception is observed in the model trained with

Figure 7: Beta values during a single epoch of fine-tuning with
Infini-attention enabled and a segment length of 256.

a segment length of 32, where the beta values are significantly
higher, clustering around 0.6.

Figure 8: Beta values during a single epoch of fine-tuning with
Infini-attention enabled and a segment length of 128.

Figure 9: BLiMP and superGLUE scores of Infini-attention en-
abled GPT-NEO models throughout the fine-tuning process that are
trained with differing segment lengths

Figure 9 shows the model performance during training with
different segment lengths for BLiMP and superGLUE tasks.
The performance values for both metrics are plotted for seg-
ment lengths of 32, 64, 128, and 256.

5.3 Decreasing the context length
The results show (Table 1) that Infini-Attention enabled GPT-
NEO models which have been trained on shortened segment



lengths are able to maintain performance on the BLiMP
benchmark but do suffer from decreased performance on the
tasks posed in superGLUE.

6 Discussion
6.1 Implications
Impact of Pre-training and Fine-tuning
The key difference between fully pre-training using Infini-
attention and doing pre-training followed by fine-tuning with
Infini-attention appears to stem from the choice of segment
length used during training. We observed that models tend
to perform better if they are consistently trained on the same
segment length throughout the entire training process. This
holds true regardless of whether Infini-attention is enabled or
not. The models that were fine-tuned using Infini-attention
started from a common checkpoint, which had been trained
on segment lengths of 512 tokens. We suspect that fully pre-
trained models managed to beat out the fine-tuned models be-
cause they were trained on the same segment length through-
out the process. While it may be tempting to vary segment
lengths due to budget constraints, our recommendation for us-
ing Infini-attention is to maintain a consistent segment length
during both pre-training and fine-tuning phases.

Although we hypothesized that the model might benefit
from having more time to acclimate to Infini-attention, our
findings tend to indicate otherwise. It is difficult to state
this for certain without additional experiments, in which we
maintain a consistent segment length throughout vanilla pre-
training and Infini-attention enabled fine-tuning. However, it
is important to note that training with Infini-attention enabled
is more computationally expensive due to the extra matrix
multiplication steps involved in the forward pass during
update and retrieval operations with compressive memory.
Therefore, pre-training with Infini-attention-enabled is likely
unnecessary.

Efficiency of Fine-tuning: Rapid Convergence of Be-
tas
The behavior of beta values in the Infini-Attention architec-
ture indicates the model’s reliance on compressive memory
versus local context. High beta values show a dependence
on compressive memory, while low values emphasize local
context.

Figures 6, 8, and 7 show that beta values converge around
step 4000 for all models. Evaluations confirm that per-
formance improvements beyond this point are marginal, as
shown in Figure 9. This suggests that fine-tuning beyond
step 4000 (0.5 epochs) offers diminishing returns, marking
it as a practical convergence point. Despite variations in seg-
ment length, the gating parameters stabilize around similar
values, ensuring a balanced use of local context and compres-
sive memory.

The higher beta values exhibited by the model with a short
segment length of 32 tokens (Figure 6) indicate a greater re-
liance on compressive memory due to the limited local con-
text. In contrast, the model with a 256-token segment length
has lower beta values (Figure 7), relying more on the suffi-
cient local context available. The beta values found in the 128

token segment length model however seem to be the most bal-
anced in their attention towards local context and compressive
memory (Figure 8). This may be a sign that Infini-attention
is most comfortably able to extend the maximal processable
sequence length of a model by a factor of 4, as the longest
sequence we trained on had a length of 512.

In summary, shorter segment lengths necessitate higher
beta values, while longer segment lengths favor local
context. The convergence around step 4000 indicates that
0.5 epochs worth of fine-tuning is required to fully utilize
Infini-Attention.

Effects of Context Length on Performance
The results show (Table 1) that shorter context lengths
in Infini-attention-enabled GPT-NEO models lead to de-
creased performance, especially on the superGLUE bench-
mark. Tasks in superGLUE often involve long sequences that
need detailed contextual understanding.

As previously discussed, Infini-attention uses a compres-
sive memory to store past key-value (KV) pairs. While this
enhances the model’s capacity for long-term dependencies,
it may introduce challenges for induction heads [10], which
rely on precise patterns in the input sequence to predict token
completions. Compressive memory may obscure these pat-
terns, as the values retrieved from it are ‘fuzzy’, but this calls
for further experiments.

6.2 Threats to the Validity
Internal Validity
One potential threat to the validity of our findings is the
size of the model used in our experiments. The model
may be too small to fully leverage the benefits provided
by Infini-Attention. Larger models might better utilize the
enhanced capacity for long-term dependencies provided
by Infini-Attention, potentially leading to more significant
performance improvements.

External Validity
The quality of the TinyStories dataset also poses a threat to
the validity of our findings. Although this dataset is specif-
ically designed for grammatical evaluation, it falls short in
terms of contextual understanding, which is a critical com-
ponent of the superGLUE evaluation metric. For instance,
consider the following excerpt from one of the stories:

“She felt it was too boring to just write about trees and
flowers. Suddenly, an idea came to her. She decided to write
about her waist.”

This snippet illustrates the lack of contextually coherent
narrative that can be found in some samples. Such issues
in the dataset can lead to misleading evaluations, as the
data might not adequately represent the complexities and
contextual dependencies required for tasks like those in
superGLUE. Therefore, the dataset’s limitations must be
considered when interpreting our results, and future studies
should ensure that evaluation datasets are contextually rich
and coherent.

Construct Validity Another critical threat to the valid-
ity of our results is the suitability of the evaluation metric.



The evaluation metrics used, particularly BLiMP, may not
be adequately designed to push the limits of a model’s
context length capabilities. These metrics might not fully
capture the improvements in contextual understanding and
long-term dependency management that Infini-attention aims
to provide. To fit the BabyLM challenge, we had to test
tuning down the local context length of Infini-Attention,
which is undesirable in terms of performance with such
short segment lengths to begin with (512). Consequently, the
observed performance differences might not reflect the true
potential of Infini-Attention, highlighting the need for more
tailored evaluation metrics that can better assess performance
on longer sequences.

6.3 Future Work
As we have found that using Infini-Attention during pre-
training is not necessary and that a small amount of addi-
tional fine-tuning is sufficient, future research should focus
on models that utilize a checkpoint that has been pre-trained
on the same segment length intended to be used after fine-
tuning with Infini-attention enabled. This approach could re-
veal more significant performance improvements that were
not fully captured with the smaller models used in the current
study.

Additionally, current evaluation metrics may not be fully
capable of pushing the limits of a model’s context length
capabilities. Future studies should employ or develop eval-
uation metrics specifically designed to measure how well
models handle longer context lengths. Such metrics would
better assess the improvements in contextual understanding
and long-term dependency management that Infini-Attention
aims to provide.

We also hypothesize that Infini-attention and compressive
memory show promise for ’open-book’ questions, where a
question or task is posed before presenting the model with
the input sequence required to complete the given task. This
contrasts with the ’closed-book’ questions typical of bench-
marks like superGLUE, where the model is first given an in-
put sequence and then required to answer based on what it
has seen. Future research should explore the application of
Infini-attention in scenarios that simulate ’open-book’ con-
ditions, as this could fully leverage the model’s capability to
manage long-term dependencies as it would be able to ‘know’
beforehand what kind of signal it should save from the input
sequence to complete the task it was given.

7 Conclusion
The primary goal of this research was to evaluate the effec-
tiveness of Infini-Attention in transformer models, specifi-
cally investigating whether its integration during pre-training
or fine-tuning yields better performance. We also explored
how well compressive memory can compensate for shortened
context lengths in transformer models.

Our findings indicate that models trained with consistent
segment lengths throughout the entire training process out-
performed those with varied segment lengths. This suggests
that maintaining consistent segment lengths during both pre-
training and fine-tuning phases is crucial for optimal perfor-
mance when using Infini-Attention.

Additionally, we have found that beta values converge
around step 4000 for all models in our experiments, and eval-
uations confirm that performance improvements beyond this
point are marginal. This suggests that fine-tuning beyond
step 4000 (0.5 epochs) offers diminishing returns, marking
it as a practical convergence point. Despite variations in seg-
ment length, the gating parameters stabilize around similar
values, ensuring a balanced use of local context and compres-
sive memory.

The results also showed that shorter context lengths lead to
decreased performance, which Infini-attention did not seem
to properly compensate for. This happened particularly on
tasks requiring long-term dependencies, as seen in the su-
perGLUE benchmark. This highlights the importance of ad-
equate context length for maintaining high performance in
models utilizing Infini-Attention.

Future research should focus on evaluating models that uti-
lize a baseline model that has been pre-trained on the same
segment length intended to be used after fine-tuning with
Infini-attention enabled. Additionally, more tailored evalu-
ation metrics that better assess performance on longer se-
quences should be developed to capture the true potential of
Infini-Attention.

8 Responsible Research
In this study, we prioritized transparency and reproducibility
by openly sharing our data, methodologies, and findings. The
necessary modifications to the HuggingFace Transformers li-
brary for processing long text inputs in segments are avail-
able in a forked version on Lauri Kesküll’s GitHub4. Further-
more, the altered GPT-NEO model, utilizing Infini-Attention
for its attention mechanism and incorporating rotary embed-
dings from GPT-NEOX, is also accessible on this platform.

We strictly adhered to scientific integrity principles, avoid-
ing any data manipulation, fabrication, or plagiarism. All re-
ported results stem from our experimental setup and are accu-
rately presented without any alterations. The data used in this
study is properly cited, and all references to previous work
are duly acknowledged.

Ethical considerations were thoroughly addressed through-
out the study. There were no conflicts of interest, and all pro-
cedures complied with guidelines for ethical research con-
duct. Our experiments were designed and conducted with a
commitment to honesty, rigor, transparency, and respect for
intellectual property.

We integrated principles and practices from chapters 2 and
3 of the Netherlands Code of Conduct for Research Integrity.
This included maintaining detailed records of our research
process, openly sharing our findings, and fostering an envi-
ronment of integrity and respect within our research team.
We remain committed to upholding the highest standards of
ethical research practice.
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A The Convergence of Gating Parameters
Betas

Figure 10: Beta values during a single epoch of fine-tuning with
Infini-attention enabled.
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