

Delft University of Technology

Not all bugs are the same
Understanding, characterizing, and classifying bug types
Catolino, Gemma; Palomba, Fabio; Zaidman, Andy; Ferrucci, Filomena

DOI
10.1016/j.jss.2019.03.002
Publication date
2019
Document Version
Final published version
Published in
Journal of Systems and Software

Citation (APA)
Catolino, G., Palomba, F., Zaidman, A., & Ferrucci, F. (2019). Not all bugs are the same: Understanding,
characterizing, and classifying bug types. Journal of Systems and Software, 152, 165-181.
https://doi.org/10.1016/j.jss.2019.03.002

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2019.03.002
https://doi.org/10.1016/j.jss.2019.03.002

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

The Journal of Systems and Software 152 (2019) 165–181

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Not all bugs are the same: Understanding, characterizing, and

classifying bug types

Gemma Catolino

a , ∗, Fabio Palomba

b , Andy Zaidman

c , Filomena Ferrucci a

a University of Salerno, Italy
b University of Zurich, Switzerland
c Delft University of Technology, the Netherlands

a r t i c l e i n f o

Article history:

Received 6 July 2018

Revised 4 March 2019

Accepted 6 March 2019

Available online 7 March 2019

Keywords:

Bug classification

Taxonomy

Empirical study

a b s t r a c t

Modern version control systems, e.g., GitHub , include bug tracking mechanisms that developers can use

to highlight the presence of bugs. This is done by means of bug reports, i.e., textual descriptions re-

porting the problem and the steps that led to a failure. In past and recent years, the research community

deeply investigated methods for easing bug triage, that is, the process of assigning the fixing of a reported

bug to the most qualified developer. Nevertheless, only a few studies have reported on how to support

developers in the process of understanding the type of a reported bug, which is the first and most time-

consuming step to perform before assigning a bug-fix operation. In this paper, we target this problem in

two ways: first, we analyze 1280 bug reports of 119 popular projects belonging to three ecosystems such

as Mozilla , Apache , and Eclipse , with the aim of building a taxonomy of the types of reported bugs;

then, we devise and evaluate an automated classification model able to classify reported bugs according

to the defined taxonomy. As a result, we found nine main common bug types over the considered sys-

tems. Moreover, our model achieves high F-Measure and AUC-ROC (64% and 74% on overall, respectively).

© 2019 Elsevier Inc. All rights reserved.

1

B

g

p

i

f

a

b

t

d

d

f

fi

a

t

P

(

v

m

(

e

t

t

v

m

m

(

c

a

d

i

t

c

h

0

. Introduction

The year 2017 has been earmarked as The Year That Software

ugs Ate The World . 1 It serves as an apt reminder that software en-

ineers are but human, and have their fallacies when it comes to

roducing bug-free software. With modern software systems grow-

ng in size and complexity, and developers having to work under

requent deadlines, the introduction of bugs does not really come

s a surprise.

Users of such faulty software systems have the ability to report

ack software failures, either through dedicated issue tracking sys-

ems or through version control platforms like GitHub. In order to

o so, a user files a so-called bug report , which contains a textual

escription of the steps to perform in order to reproduce a certain

ailure (Breu et al., 2010; Hooimeijer and Weimer, 2007).

Once a failure is known and reported, the bug localization and

xing process starts (Zeller, 2009; Beller et al., 2018). Developers

re requested to (i) analyze the bug report, (ii) identify the bug

ype, e.g., if it is a security- or a performance-related one, and
∗ Corresponding author.

E-mail addresses: gcatolino@unisa.it (G. Catolino), palomba@ifi.uzh.ch (F.

alomba), a.e.zaidman@tudelft.nl (A. Zaidman), fferrucci@unisa.it (F. Ferrucci).
1 https://tinyurl.com/y8n4kxgw , last visited April 17, 2018.

ttps://doi.org/10.1016/j.jss.2019.03.002

164-1212/© 2019 Elsevier Inc. All rights reserved.
iii) assign its verification and resolution to the most qualified de-

eloper (Zhang and Lee, 2013). The research community proposed

ethodologies and tools to identify who should fix a certain bug

 Anvik, 2006; Anvik et al., 2006; Anvik and Murphy, 2011; Jeong

t al., 2009; Murphy and Cubranic, 2004; Xuan et al., 2015; 2017),

hus supporting developers once they have diagnosed the bug type

hat they have to deal with.

However, there is still a lack of approaches able to support de-

elopers while analyzing a bug report in the first instance. As a

atter of fact, understanding the bug type represents the first and

ost time-consuming step to perform in the process of bug triage

 Akila et al., 2015), since it requires an in-depth analysis of the

haracteristics of a newly reported bug report. Unfortunately, such

 step is usually performed manually before the assignment of a

eveloper to the bug fix operation (Breu et al., 2010). Perhaps more

mportantly, most of the research approaches aimed at supporting

he bug triage process treat all bugs in the same manner, without

onsidering their type (Zaman et al., 2011).

We argue that the definition of approaches able to support devel-

opers in the process of understanding the bug types can be bene-

ficial to properly identify the developer who should be assigned to
its debugging, speeding-up the bug analysis and resolution process.

https://doi.org/10.1016/j.jss.2019.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.03.002&domain=pdf
mailto:gcatolino@unisa.it
mailto:palomba@ifi.uzh.ch
mailto:a.e.zaidman@tudelft.nl
mailto:fferrucci@unisa.it
https://tinyurl.com/y8n4kxgw
https://doi.org/10.1016/j.jss.2019.03.002

166 G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181

Fig. 1. Bug reported and reopened in Apache HBase .

a

i

n

fi

t

A

i

p

a

1

e

m

a

a

w

A

w

t

b

b

c

o

a

p

c
1.1. Motivating example

To support our statement, let us consider a real bug report

from Apache HBase , 2 one of the projects taken into account in

our study. This project implements a scalable distributed big data

store able to host large relational tables atop clusters of commod-

ity hardware. On August 15th, 2015 the bug report shown in Fig. 1

was created. 3

The developer who opened the report (i.e., H. C.) encountered

an issue related to a network-related problem. Specifically, due to

the wrong management of the so-called World Atlas of Language

Structures (WALS), a large set of structural (phonological, gram-

matical, lexical) properties of languages gathered from descriptive

materials (such as reference grammars). Specifically, when a Region

Server (RS) aborts its operations, the directory containing the WAL

data is not cleaned, causing possible data incoherence or inconsis-

tency issues. Looking at the change history information of the sys-

tem, the class HRegionServer —the file containing the reported

bug—has been mostly modified by developer G. C., who was in-

deed assigned to the resolution of this bug report on May 30, 2017.

Such an assignment is in line with the recommendations provided

by existing bug triaging approaches (Shokripour et al., 2013; Tian

et al., 2016), that would suggest G. C. as an assignee since he has

a long experience with this class. However, not all bugs are the

same : a more careful analysis of the types of changes applied by

G. C. reveals that they were mainly focused on the configuration of

the server rather than on the communication with the client. As a

result, the bug was marked as ‘ resolved ’ on September 17, 2017:

however, the bug was not actually fixed and was reopened on Oc-

tober 6, 2018. This indicates that the experience of a developer on
2 https://hbase.apache.org .
3 The full version of the bug report is available here: https://goo.gl/rS8iQU .

M

p

G
 certain class—taken as relevant factor within existing bug triag-

ng approaches (Shokripour et al., 2013; Tian et al., 2016)—might

ot be enough for recommending the most qualified developer to

x a bug. In other words, we conjecture that understanding the

ype of a newly reported bug might be beneficial for bug triage.

t the same time, it might reduce the phenomenon of bug toss-

ng (Jeong et al., 2009)—which arises when developers re-assign

reviously assigned bugs to others, as in the example above—by

llowing a more correct bug assignment.

.2. Our work and contributions

In this paper, we aim to perform the first step towards the (i)

mpirical understanding of the possible bug types and (ii) auto-

ated support for their classification. To that end, we first propose

 novel taxonomy of bug types, that is built on the basis of an iter-

tive content analysis conducted on 1280 bug reports of 119 soft-

are projects belonging to three large ecosystems such as Mozilla ,

pache , and Eclipse . To the best of our knowledge, this is the first

ork that proposes a general taxonomy collecting the main bug

ypes. This also enables the construction of a dataset of labeled

ug reports that can be further exploited.

In the second place, we build an automated approach to classify

ug reports according to their type; in other words, we built our

lassification model training our classifier using the textual content

f the bug report to predict its type.

We empirically evaluate the classification model by running it

gainst the dataset coming as output of the taxonomy building

hase, measuring its performance adopting a 100 times 10-fold

ross validation methodology in terms of F-Measure, AUC-ROC, and

atthew’s Correlation Coefficient (MCC).

The results of the study highlight nine different types re-

orted in bug reports, that span across a broad set of issues (e.g.,

UI-related vs Configuration bugs) and are widespread over the

https://hbase.apache.org
https://goo.gl/rS8iQU

G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181 167

c

p

F

t

S

o

S

o

s

t

2

c

s

o

s

s

Z

2

p

s

c

p

g

a

t

t

p

s

b

c

d

o

c

d

c

u

t

s

p

t

t

H

a

w

c

i

g

I

t

b

c

c

b

p

W

v

t

O

i

o

e

L

s

g

i

d

o

a

p

o

Z

T

q

t

c

t

b

t

M

s

s

i

c

≈

v

v

a

p

s

p

c

p

2

d

A

d

r

c

t

H

c

(

s

s
onsidered ecosystems. In addition, the classification model shows

romising results, as it is able to classify the bug types with an

-Measure score of 64%.

To sum up, the contributions made by this paper are:

1. A taxonomy reporting the common bug types raised through

bug reports, and that has been manually built considering a

large corpus of existing bug reports;

2. An in-depth analysis of the characterization of the different bug

types discovered. In particular, we took into account three dif-

ferent perspectives such as frequency, relevant topics discussed,

and the time needed to fix each bug type.

3. A novel bug type classification model to automatically classify re-

ported bugs according to the defined taxonomy.

4. A large dataset and a replication package (Catolino et al., 2018)

that can be used by the research community to further study

the characteristics of bug reports and bugs they refer to.

The remainder of the paper is as follows. Section 2 overviews

he related literature on bug report analysis and classification.

ection 3 describes the research methodology adopted to conduct

ur study, while in Section 4 we report the achieved results. In

ection 5 we deeper discuss our findings and the implications of

ur work. Section 6 examines the threats to the validity of the

tudy and the way we mitigated them. Finally, Section 7 concludes

he paper and provides insights into our future research agenda.

. Background and related work

Our work revolves around the problem of classifying bugs ac-

ording to their type with the aim of supporting and possibly

peeding-up bug triaging activities. Thus, we focus this section

n the discussion of the literature related to bug classification

tudies and approaches. A comprehensive overview of the re-

earch conducted in the context of bug triaging is presented by

hang et al. (2016) .

.1. Bug classification schemas

The earliest and most popular bug classification taxonomy was

roposed by IBM (Chillarege et al., 1992), which introduced the

o-called Orthogonal Defect Classification (ODC). This taxonomy in-

ludes 13 categories and classifies bugs in terms of the involved

rogram structure: as an example, a bug is assigned to the cate-

ory “Assignment” in case it has to do with a problem occurring in

 statement where a variable assignment is performed; similarly,

he category “Function” is the one characterizing bugs located in

he code implementing a function. As such, ODC can indicate the

rogram structure involved in the bug, but not the type of the is-

ue . For instance, a bug of type “Assignment” can be both caused

y a performance or a security issue. Thus, the 13 categories in-

luded in ODC can be related to any of the higher-level categories

iscovered in this paper (see Section 4 for further details): on the

ne hand, this excludes the possibility of an abstraction, i.e., the 13

ategories of ODC cannot be matched/related to the categories we

iscovered; on the other hand, we argue that the two taxonomies

an be used in a complementary manner, e.g., a developer can first

se our taxonomy to understand the type of bug that occurred and

hen refine the process by using ODC to characterize the program

tructure causing that bug type. In this sense, we argue that the

roposed taxonomy represents a novel contribution that can fur-

her and complementarily support developers when understanding

he cause behind a newly identified defect.

Another popular bug characterization schema was developed by

ewlett-Packard (Freimut et al., 2005). In this case, bugs are char-

cterized by three attributes: (i) “origin”, that is the activity in
hich the defect was introduced (e.g., during requirement specifi-

ation or design); (ii) “mode”, which describes the scenarios lead-

ng to a bug; and (iii) “type”, that describes more in-depth the ori-

in of a bug, by specifying if it is hardware- or software-related.

t is important to note that the attribute “type” of this classifica-

ion schema is not intended to be used for the specification of the

ug type (e.g., a performance issue), but rather it provides more

ontext on the location of a bug.

More recent works defined ad hoc taxonomies (i) for spe-

ific application types or (ii) aiming at characterizing particular

ug types. As for the former category, Chan et al. (2007) pro-

osed a taxonomy that captures the possible failures that arise in

eb service composition systems, while Bruning et al. (2007) pro-

ided a corresponding fault taxonomy for service-oriented archi-

ectures according to the process of service invocation. Similarly,

strand and Weyuker (1984) conducted an industrial study involv-

ng an interactive special-purpose editor system, where a group

f developers were asked to categorize 173 bugs based on the

rror they referred to: as a final result, a taxonomy was built.

al and Sureka (2012) analyzed commonalities and differences of

even different types of bug reports within Google; they provided

uidelines to categorize their bug reports. Moreover, recent stud-

es (Leszak et al., 2002; Buglione and Abran, 2006) showed how

evelopers manually classify defects into the ODC categories based

n the reported descriptions using, for example, root cause defect

nalysis.

As for the second category (related to the characterization of

articular bug types), Aslam et al. (1996) defined a classification

f security faults in the Unix operating system. More recently,

hang et al. (2018) analyzed the symptoms and bug types of 175

ensorFlow coding bugs from GitHub issues and StackOverflow

uestions. As a result, they proposed a number of challenges for

heir detection and localization. Tan et al. (2014) proposed work

losest to ours: they started from the conjecture that three bug

ypes, i.e., semantic, security, and concurrency issues, are at the

asis of most relevant bugs in a software system. Thus, they inves-

igated the distribution of these types in projects such as Apache ,

ozilla , and Linux . Finally, they performed a fine-grained analy-

is on the impact and evolution of such bugs on the considered

ystems; they proposed a machine learning approach using all the

nformation of a bug report to automatically classify semantic, se-

urity, and concurrency bugs and having an average F-Measure of

70%. As opposed to the work by Tan et al. (2014) , we start our in-

estigation without any initial conjecture: as such, we aim at pro-

iding a wider overview of the bug types and their diffusion on

 much larger set of systems (119 vs 3); furthermore, we aim at

roducing a high-level bug taxonomy that is independent from a

pecific type of system, thus being generically usable. Finally, the

resented bug type classification model is able to automatically

lassify all the identified bug types, thus providing a wider sup-

ort for developers.

.2. Bug classification techniques

Besides classification schemas, a number of previous works

evised automated approaches for classifying bug reports.

ntoniol et al. (2008) defined a machine learning model to

iscriminate between bugs and new feature requests in bug

eports, reporting a precision of 77% and a recall of 82%. In our

ase, we only consider bug reports actually reporting issues of

he considered applications, since our goal is to classify bugs.

ernández-González et al. (2018) proposed an approach for

lassifying the impact of bugs according to the ODC taxonomy

 Chillarege et al., 1992): the empirical study conducted on two

ystems, i.e., Compendium and Mozilla , showed good results. At

ame time, Huang et al. (2015) , based on the ODC classification,

168 G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181

Table 1

Characteristics of ecosystems in our

dataset.

Ecosystem Project Bug reports

Apache 60 406

Eclipse 0.939 0.94 4 4

Mozilla 20 430

Overall 119 1280

i

t

s

b

t

y

o

b

t

h

c

t

m

t

s

3

t

p

s

s

p

m

r

d

a

b

t

p

s

n

b

t

p

w

T

2

3

e

4 https://bugzilla.mozilla.org .
5 https://bz.apache.org/bugzilla/ .
6 https://bugs.eclipse.org/bugs/ .
proposed AutoODC , an approach for automating ODC classifica-

tion by casting it as a supervised text classification problem and

integrating experts’ ODC experience and domain knowledge; they

built two models trained with two different classifiers such as

Naive Bayes and Support Vector Machine on a larger defect list

extracted from FileZilla. They reported promising results. With

respect to this work, our paper aims at providing a more compre-

hensive characterization of the bug types, as well as providing an

automated solution for tagging them.

Thung et al. (2012) proposed a classification-based approach

that can automatically classify defects into three super-categories

that are comprised of ODC categories: control and data flow, struc-

tural , and non-functional . In a follow-up work (Thung et al., 2015),

they extended the defect categorization. In particular, they com-

bined clustering, active learning and semi-supervised learning al-

gorithms to automatically categorize defects; they first picked an

initial sample, extract the examples that are more informative

for training the classification model, and incrementally refining

the trained model. They evaluated their approach on 500 de-

fects collected from JIRA repositories of three software systems.

Xia et al. (2014) applied a text mining technique in order to

categorize defects into fault trigger categories by analyzing the

natural-language description of bug reports, evaluating their solu-

tion on 4 datasets, e.g., Linux, Mysql, for a total of 809 bug reports.

Nagwani et al. (2013) proposed an approach for generating the

taxonomic terms for software bug classification using LDA, while

Zhou et al. (2016) combined text mining on the defect descriptions

with structured data (e.g., priority and severity) to identify correc-

tive bugs. Furthermore, text-categorization based machine learning

techniques have been applied for bug triaging activities (Murphy

and Cubranic, 2004; Javed et al., 2012) with the aim of assigning

bugs to the right developers. With respect to the works mentioned

above, our paper reinforces the idea of using natural language pro-

cessing to automatically identify the bug types; nevertheless, we

provide a more extensive empirical analysis of the types of bugs

occurring in modern software systems, as well as their categoriza-

tion according to different perspectives such as frequency, relevant

topics, and time required to be fixed.

On the basis of these works, in the context of our research we

noticed that there is a lack of studies that try to provide automatic

support for the labeling of bugs according to their type: for this

reason, our work focuses on this aspect and tries to exploit a man-

ually built taxonomy of bug types to accomplish this goal.

3. Research methodology

In this section, we report the empirical study definition and de-

sign that we follow in order to create a bug type taxonomy and

provide a bug type classification model. From a high-level per-

spective, our methodology is exploratory in nature (Stebbins, 2001),

and, as such, enabled us to freely explore the problem without pre-

defined conjectures and/or hypotheses. For this reasons, we do not

formulate any kind of hypothesis on type, distribution, and charac-

teristics of different types of defects.

3.1. Research questions

The goal of the study is threefold: (i) understanding which types

of bugs affect modern software systems, (ii) characterizing them to

better describe their nature, and (iii) classifying bug reports accord-

ing to their type. The purpose is that of easing the maintenance

activity related to bug triaging, thus improving the allocation of

resources, e.g., assigning a bug to the developer that is more qual-

ified to fix a certain type of issue. The quality focus is on the com-

prehensiveness of the bug type taxonomy as well as on the ac-

curacy of the model in classifying the bug types. The perspective
s that of both researchers and practitioners: the former are in-

erested in a deeper understanding of the bug types occurring in

oftware systems, while the latter in evaluating the applicability of

ug type prediction models in practice. The specific research ques-

ions formulated in this study are the following:

• RQ 1 : To what extent can bug types be categorized through the in-

formation contained in bug reports?
• RQ 2 : What are the characteristics, in terms of frequency, topics,

and bug fixing time, of different bug types?
• RQ 3 : How effective is our classification model in classifying bugs

according to their type exploiting bug report information?

In RQ 1 our goal is to categorize the bug types through the anal-

sis of bug reports that are reported in bug tracking platforms. Sec-

nd, in RQ 2 we analyze (i) frequency, (ii) relevant topics, and (iii)

ug fixing time of each category with the aim of characterizing

hem along these three perspectives. Finally, in RQ 3 we investigate

ow effectively the categories of bug types can be automatically

lassified starting from bug reports via standard machine learning

echniques, so that developers and project managers can be auto-

atically supported during bug triaging. In the following subsec-

ions, we detail the design choices that allow us to answer our re-

earch questions.

.2. Context selection

In order to answer our research questions, we first needed

o collect a large number of bug reports from existing software

rojects. To this aim, we took into account bug reports of three

oftware ecosystems such as Mozilla , 4 Apache , 5 and Eclipse . 6 The

election of these systems was driven by the results achieved in

revious studies (Bettenburg et al., 2007; Sun et al., 2010; Zimmer-

ann et al., 2010), which reported the high-quality of their bug

eports in terms of completeness and understandability. We ran-

omly sampled 1280 bug reports that were ‘ fixed ’ and ‘ closed ’:

s also done in previous work (Tan et al., 2014), we included them

ecause they have all the information required for understanding

he bug types (e.g., developers’ comments or attachments). It is im-

ortant to note that we checked and excluded from the random

ampling the so-called misclassified bug reports, i.e., those that do

ot contain actual bugs (Antoniol et al., 2008; Herzig et al., 2013),

y exploiting the guidelines provided by Herzig et al. (2013) . In

he end, our dataset is composed of bug reports from 119 different

rojects of the considered ecosystems.

Table 1 contains for each ecosystem the (i) number of projects

e considered, and (ii) number of bug reports taken into account.

he final dataset is available in our online appendix (Catolino et al.,

018).

.3. RQ 1 : toward a taxonomy of bug types

To answer our first research question, we conducted three it-

rative content analysis sessions (Lidwell et al., 2010) involving

https://bugzilla.mozilla.org
https://bz.apache.org/bugzilla/
https://bugs.eclipse.org/bugs/

G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181 169

t

p

s

t

o

i

i

t

n

c

c

i

t

b

d

s

3

d

p

p

c

p

r

r

t

d

2

u

o

i

g

o

c

1

d

d

c

o

c

d

w

a

m

t

o

a

3

i

M

t

t

m

f

c

t

t

g

p

o

S

o

d

p

a

c

i

t

t

f

b

wo software engineering researchers, both authors of this pa-

er, (1 graduate student and 1 research associate) with at least

even years of programming experience. From now on, we refer to

hem as inspectors . Broadly speaking, this methodology consisted

f reading each bug report (both title and summary, which reports

ts detailed description), with the aim of assigning a label describ-

ng the bug type that the reported problem refers to. It is impor-

ant to note that in cases where the bug report information was

ot enough to properly understand the type of the bug, we also

onsidered patches, attachments, and source code of the involved

lasses, so that we can better contextualize the type of the bug by

nspecting the modifications applied to fix it. The final goal was

o build a taxonomy representing the bug types that occur during

oth software development and maintenance. In the following, we

escribe the methodology followed during the three iterative ses-

ions, as well as how we validate the resulting taxonomy.

.3.1. Taxonomy building

Starting from the set of 1280 bug reports composing our

ataset, overall, each inspector independently analyzed 640 bug re-

orts.

Iteration 1: The inspectors analyzed an initial set of 100 bug re-

ports. Then, they opened a discussion on the labels assigned

to the bug types identified so far and tried to reach consen-

sus on the names and meaning of the assigned categories.

The output of this step was a draft taxonomy that contains

some obvious categories (e.g., security bugs), while others

remain undecided.

Iteration 2: The inspectors first re-categorized the 100 initial

bug reports according to the decisions taken during the dis-

cussion, then used the draft taxonomy as basis for catego-

rizing another set of 200. This phase was for both assess-

ing the validity of the categories coming from the first step

(by confirming some of them and redefining others) and for

discovering new categories. After this step was completed,

the inspectors opened a new discussion aimed at refining

the draft taxonomy, merging overlapping bug types or char-

acterizing better the existing ones. A second version of the

taxonomy was produced.

Iteration 3: The inspectors re-categorized the 300 bug reports

previously analyzed. Afterward, they completed the final

draft of the taxonomy verifying that each kind of bug type

encountered in the final 339 bug reports was covered by the

taxonomy.

Following this iterative process, we defined a taxonomy com-

osed of 9 categories. It is important to note that at each step we

omputed the inter-rater agreement using the Krippendorff’s al-

ha Kr α (Bauer, 2007). During the sessions, the agreement measure

anged from 0.65, over 0.76, to 0.96 for the three iterative sessions,

espectively. Thus, we can claim that the agreement increased over

ime and reached a considerably higher value than the 0.80 stan-

ard reference score usually considered for Kr α (Antoine et al.,

014).

Taxonomy validation. While the iterative content analysis makes

s confident about the comprehensiveness of the proposed taxon-

my, we also evaluated it in an alternative way: specifically, we

nvolved 5 industrial developers having more than 10 years of pro-

ramming experience. They were all contacted via e-mail by one

f the authors of this paper, who selected them from her personal

ontacts.

We provided them with an Excel file that contained a list of

00 bug reports randomly selected from the total 1139 in the

ataset (we excluded 141 of them as explained in Section 4). Each

eveloper analyzed a different set of bug reports and was asked to
ategorize bugs according to the taxonomy of bug types we previ-

usly built. During this step, the developers were allowed to either

onsult the taxonomy (provided in PDF format and containing a

escription of the bug types in our taxonomy similar to the one

e discuss in Section 4.1) or assign new categories if needed.

Once the task was completed, the developers sent back the file

nnotated with their categorization. Moreover, we gathered com-

ents on the taxonomy and the classification task. As a result, all

he participants found the taxonomy clear and complete : as a proof

f that, the tags they assigned were exactly the same as the ones

ssigned during the phase of taxonomy building.

.4. RQ 2 : characterizing different bug types

In the context of this research question, we aimed at provid-

ng a characterization of the different bug types discovered in RQ 1 .

ore specifically, we took into account three different perspec-

ives such as frequency, relevant topics discussed, and time needed

o fix each bug type. In the following subsections, we report the

ethodology applied to address those perspectives.

Frequency analysis. To study this perspective, we analyzed how

requently each category of bug type in our taxonomy appears. We

omputed the frequency each bug report was assigned to a cer-

ain type during the iterative content analysis. It is worth noting

hat in our study a bug could not be assigned to multiple cate-

ories because of the granularity of the taxonomy proposed: we

referred, indeed, working at a level that allows its generalization

ver software systems having different scope and characteristics. In

ection 4 we present and discuss bar plots showing the frequency

f each category of bug type in the taxonomy.

Topics analysis. With this second investigation, we aimed at un-

erstanding what are the popular topics discussed within bug re-

orts of different nature. To perform such an analysis, we exploited

 well-known topic modeling approach called Latent Dirichlet Allo-

ation (LDA) (Blei et al., 2003; Hecking and Leydesdorff, 2018). This

s a topic-based clustering technique, which can be effectively used

o cluster documents in the topics space using the similarities be-

ween their topics distributions (Wei and Croft, 2006). Specifically,

or each category of our taxonomy, we adopted the following steps:

1. First, we extracted all the terms composing the bug reports of

a certain category.

2. An Information Retrieval (IR) normalization process (Baeza-

Yates and Ribeiro-Neto, 1999) was applied. In particular, as bug

reports are written in natural language, we first applied (i)

spelling correction, (ii) contractions expansion, (iii) nouns and

verbs filtering, and (iv) singularization. Then, terms contained

in the bug reports are transformed by applying the following

steps: (i) separating composed identifiers using the camel case

splitting, which splits words based on underscores, capital let-

ters, and numerical digits; (ii) reducing to lower case letters

of extracted words; (iii) removing special characters, program-

ming keywords and common English stop words; (iv) stemming

words to their original roots via Porter’s stemmer (Porter, 1980).

3. Finally, the preprocessed terms are given as input to the LDA-

GA algorithm devised by Panichella et al. (2013) . This is an en-

hanced version of the standard LDA approach that solves an im-

portant problem, namely the setting of the parameter k , that is

the predefined number of topics to extract. In particular, LDA-

GA relies on a genetic algorithm that balances the internal co-

hesion of topics with the separation among clusters. In this

way, it can estimate the ideal number of clusters to generate

starting from the input terms (Panichella et al., 2013).

In Section 4 we report and discuss the topics given as output

y the LDA-GA algorithm.

170 G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181

s

t

p

I

l

r

o

o

s

t

a

g

s

c

a

a

r

w

s

w

r

i

i

e

(

a

m

r

p

p

w

s

c

T

v

(

m

S

r

a

h

s

s

c

G

c

g

S

fi

e

p

c

e

s

w

1

t

i

i
Time-to-fix analysis. To investigate such a perspective, we fol-

lowed the procedure previously adopted by Zhang et al. (2012) .

Specifically, we mined a typical bug fixing process where (i) a user

defines a bug report, (ii) the bug is assigned to a developer, (iii) the

developer works and fixes the bug, (iv) the code is reviewed and

tested, and (v) the bug is marked as resolved. Correspondingly, we

computed five time intervals:

• Time before response (TBR). This is the interval between the

moment a bug is reported and the moment it gets the first re-

sponse from development teams.
• Time before assigned (TBA). This measures the interval between

a bug getting the first response and its assignment.
• Time before change (TBC). This is the interval between a bug

getting assigned and the developer starting to fix the bug,

namely she performs the first commit after the bug has been

assigned.
• Duration of bug fixing (DBF): This measures the interval be-

tween the developer starting and finishing the bug fixing,

namely the time between the first and last commit before the

bug has been marked as solved.
• Time after change (TAC): This is the interval between the de-

veloper finishing the bug fixing and the status of the bug being

changed to resolved.

To compute these metrics, we relied on the evolution of the

history of each bug report using the features available from the is-

sue tracker. In particular, we mined (1) the timestamp in which a

bug has been opened and that of the first comment for computing

TBR ; (2) the timestamp of the first comment and the one report-

ing when a bug report changed its status in “assigned ” for DBA ;

(3) the timestamp of the “assigned ” status and that of the first

commit of the author involving the buggy artifact for TBC ; (4) the

timestamp of the first and last commit before the bug is marked as

solved for DBF ; and (5) the timestamp of the last commit and the

one reporting the bug as “resolved ” for TAC . For all the metrics,

in Section 4 we report descriptive statistics of the time in terms

of hours. It is important to note that, as done in previous work

(Zhang et al., 2012), we filtered out all bugs whose final resolution

was not fixed to ensure that only actually fixed bugs were investi-

gated. It is important to note that the detailed results and script of

these analyses are available in the online appendix (Catolino et al.,

2018).

3.5. RQ 3 : automated classification of bug types

Our final research question we focused on assessing the fea-

sibility of a classification model able to classify bug types start-

ing from bug reports. We relied on machine learning since this

type of approach can automatically learn the features discriminat-

ing a certain category, thus simulating the behavior of a human ex-

pert (Pantic et al., 2007). As a side effect of this research question,

we also pose a baseline against which future approaches aimed at

more accurately classifying bug types can be compared. The fol-

lowing subsections detail the steps followed when building and

validating our bug type classification model.

Independent and dependent variables. Our goal was to classify

the bug type based on bug report information. We exploited sum-

mary messages contained in such reports as independent variables

of our bug type classification model: our choice was driven by

recent findings that showed how in most cases bug report sum-

maries properly describe a bug, thus being a potentially powerful

source of information to characterize its type (Zimmermann et al.,

2010). Moreover, we did not include the title of a bug report as an

independent variable because it might contain noise that poten-

tially limits the classification performance (Zhou et al., 2016).
It is important to note that not all the words contained in a

ummary might actually be representative and useful to charac-

erize the type of a bug. For this reason, we needed to properly

reprocess them (Chowdhury, 2003).

In our context, we adopted the widespread Term Frequency-

nverse Document Frequency (TF-IDF) model (Salton and Buck-

ey, 1988), which is a weighting mechanism that determines the

elative frequency of words in a specific document (i.e., a summary

f bug report) compared to the inverse proportion of that word

ver the entire document corpus (i.e., the whole set of bug report

ummaries in our dataset). This technique measures how charac-

erizing a given word is in a bug report summary: for instance,

rticles and prepositions tend to have a lower TF-IDF since they

enerally appear in more documents than words used to describe

pecific actions (Salton and Buckley, 1988). Formally, let C be the

ollection of all the bug report summaries in our dataset, let w be

 word, and let c ∈ C be a single bug report summary, the TF-IDF

lgorithm computes the relevance of w in c as:

elevance (w, c) = f w,c · log (| C| / f w,C) (1)

here f w, c equals the number of times w appears in c , | C | is the

ize of the corpus, and f w, C is equal to the number of documents in

hich w appears. The weighted words given as output from TF-IDF

epresent the independent variables for the classification model. It

s important to note that the choice of TF-IDF was driven by exper-

mental results: specifically, we also analyzed the accuracy of mod-

ls built using more sophisticated techniques such as Word2Vec

 Goldberg and Levy, 2014) and Doc2Vec (Le and Mikolov, 2014). As

 result, we observed that the use of TF-IDF led to an improve-

ent of F-Measure up to 13%. Therefore, we focus on TF-IDF in the

emainder of the paper.

As for dependent variable , it was represented by the bug types

resent in our taxonomy.

Classifiers. With the aim of providing a wider overview of the

erformance achieved by different classifiers, we experimented

ith classifiers previously used for prediction purposes by the re-

earch community, i.e., (i) Naive Bayes , (ii) Support Vector Ma-

hines (SVM), (iii) Logistic Regression , and (iv) Random Forest .

hese classifiers have different characteristics and different ad-

antages/drawbacks in terms of execution speed and over-fitting

 Nasrabadi, 2007). It is important to note that before running the

odels, we also identified their best configuration using the Grid

earch algorithm (Bergstra and Bengio, 2012). Such an algorithm

epresents a brute force method to estimate hyperparameters of

 machine learning approach. Suppose that a certain classifier C

as k parameters, and each of them has N possible values. A grid

earch basically considers a Cartesian product f | k ×N
of these pos-

ible values and tests all of them. We selected this algorithm be-

ause recent work in the area of machine learning has shown that

rid Search is among the most effective methods to configure ma-

hine learning algorithms (Bergstra and Bengio, 2012).

After the experimental analysis, we found that Logistic Re-

ression provided the best performance. For this reason, in

ection 4 we only report the findings achieved using this classi-

er. A complete overview of the performance of the other mod-

ls built with different classifiers is available in our online ap-

endix (Catolino et al., 2018).

Validation strategy. To validate the model, we adopted 10-fold

ross validation (Stone, 1974). It splits the data into ten folds of

qual size applying a stratified sampling (i.e., each fold has the

ame proportion of each bug type). One fold is used as a test set,

hile the remaining ones as a training set. The process is repeated

00 times, using each time a different fold as a test set. Given that

he distribution of the dependent variable is not uniform (see more

n Section 4.2), we took into account the problem of training data

mbalance (Chawla et al., 2002). This may appear when the num-

G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181 171

b

t

t

b

S

C

t

p

c

e

f

f

(

o

p

Y

p

w

n

p

m

c

F

i

q

i

1

A

c

2

a

M

w

(

t

A

t

t

4

e

4

o

A

s

t

n

r

r

s

b

a

a

o

h

l

s

m

r

p

r

g

t

d

l

l

w

l

fi

a

t

t

p

t

s

w

e

a

p

p

a

r

l

l

o

p

l

b

i

o

a

p

m

r

f

n

er of data available in the training set for a certain class (e.g.,

he number of bugs belonging to a certain type) is far less than

he amount of data available for another class (e.g., the number of

ugs belonging to another type). More specifically, we applied the

ynthetic Minority Over-sampling Technique (SMOTE) proposed by

hawla et al. (2002) to make the training set uniform with respect

o the bug type available in the defined taxonomy. Since this ap-

roach can be run once per time to over-sample a certain minority

lass, we repeated the over-sampling until all the classes consid-

red have a similar number of instances.

Finally, to cope with the randomness arising from using dif-

erent data splits (Refaeilzadeh et al., 2009), we repeated the 10-

old cross validation 100 times, as suggested in previous work

 Hall et al., 2011). We then evaluated the mean accuracy achieved

ver the runs (Stone, 1974).

To measure the performance of our classification, we first com-

uted two well-known metrics such as precision and recall (Baeza-

ates and Ribeiro-Neto, 1999), which are defined as follow:

recision =

TP

TP + FP

recall =

TP

TP + TN

(2)

here TP is the number of true positives, TN the number of true

egatives, and FP the number of false positives. In the second

lace, to have a unique value representing the goodness of the

odel, we compute the F-Measure, i.e., the harmonic mean of pre-

ision and recall:

 - Measure = 2 ∗ precision ∗ recall

precision + recall
(3)

Moreover, we considered two further indicators. The first one

s the area under the ROC curve (AUC-ROC) metric. This measure

uantifies the overall ability of the classification model to discrim-

nate between the different categories. The closer the AUC-ROC to

, the higher the ability of the model. In contrast, the closer the

UC-ROC to 0.5, the lower the accuracy of the model. Second, we

omputed the Matthews Correlation Coefficient (MCC) (Baldi et al.,

0 0 0), a regression coefficient that combines all four quadrants of

 confusion matrix, thus also considering true negatives:

CC =

(TP ∗ TN) − (FP ∗ FN) √

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

here TP, TN, and FP represent the number of (i) true positives,

ii) true negatives, and (iii) false positives, respectively, while FN is

he number of false negatives. Its value ranges between −1 and + 1.

 coefficient equal to + 1 indicates a perfect prediction; 0 suggests

hat the model is no better than a random one; and −1 indicates

otal disagreement between prediction and observation.

. Analysis of the results

In this section, we report the results of our study, discussing

ach research question independently.

.1. RQ 1 : taxonomy of bug types

The manual analysis of the 1280 bug reports led to the creation

f the taxonomy of 9 bug types, described in the next subsections.

t the same time, we had to discard 141 bug reports for two rea-

ons. In particular, 18 of them—all found in Mozilla —were related

o bug reports listing multiple bugs to solve before the release of a

ew version of the system: from a practical point of view, they

epresent a to-do list rather than accurate bug reports. For this

eason, we decided to exclude them as we could not identify a

pecific category to which to assign them. On the other hand, 123

ug reports could be considered as false positives due to propos-

ls for improvement or suggestions on how to fix existing bugs:
lso in this case, we did not consider these suitable for the scope

f our study. To some extent, the latter category of false positives

ighlights how the use of a fully automated filtering technique

ike the one proposed by Herzig et al. (2013) (used in the context

election phase to gather bug reports actually reporting observed

alfunctions) is not enough to discard misclassified bugs, i.e., the

esults of such tools must always be double-checked to avoid im-

recisions. At the end of this process, the final number of bug

eports classified was 1139. In the following, we explain each cate-

ory of bug type in our taxonomy, reporting an example for each of

hem. Given the excessive length of the bug reports analyzed, we

o not report the entire summary in the examples but we high-

ight the main parts that allow the reader to understand the prob-

em and why we marked it as belonging to a certain category.

A. Configuration issue. The first category regards bugs concerned

ith building configuration files. Most of them are related to prob-

ems caused by (i) external libraries that should be updated or

xed and (ii) wrong directory or file paths in xml or manifest
rtifacts. As an example, the bug report shown below falls under

his category because it is mainly related to a wrong usage of ex-

ernal dependencies that cause issues in the web model of the ap-

lication.

Example summary.

“JEE5 Web model does not update on changes in web.xml”

[Eclipse-WTP Java EE Tools] - Bug report: 190198

B. Network issue. This category is related to bugs having connec-

ion or server issues, due to network problems, unexpected server

hutdowns, or communication protocols that are not properly used

ithin the source code. For instance, in the following, we show an

xample where a developer reports a newly introduced bug due to

 missing recording of the network traffic of the end-users of the

roject.

Example summary.

“During a recent reorganization of code a couple of weeks ago,

SSL recording no longer works”

[Eclipse-z_Archived] - Bug report: 62674

C. Database-related issue. This category collects bugs that report

roblems with the connection between the main application and

 database. For example, this type of bug report describes issues

elated to failed queries or connection, such as the case shown be-

ow where the developer reports a connection stop during the

oading of a Java Servlet.

Example summary.

“Database connection stops action servlet from loading”

[Apache Struts] - Bug report: STR-26

D. GUI-related issue. This category refers to the possible bugs

ccurring within the Graphical User Interface (GUI) of a software

roject. It includes issues referring to (i) stylistic errors, i.e., screen

ayouts, elements colors and padding, text box appearance, and

uttons, as well as (ii) unexpected failures appearing to the users

n form of unusual error messages. In the example below, a devel-

per reports a problem that arises because she does not see the

ctual text when she types in an input field.

Example summary.

“Text when typing in input box is not viewable.”

[Mozilla-Tech Evangelism Graveyard] - Bug report: 152059

E. Performance issue. This category collects bugs that report

erformance issues, including memory overuse, energy leaks, and

ethods causing endless loops. An example is shown below, and

eports a problem raised in the Mozilla project where developers

ace a performance bug due to the difficulties in loading an exter-

al file.

172 G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181

Fig. 2. RQ 2 —frequency of each category of bug type.

4

c

d

i

p

s

a

F

4

s

d

i

A

d

c

a

d

s

s

a

h

d

s

1

n

e

c

m

t

i

i

2

p

r
Example summary.

“Loading a large script in the Rhino debugger results in an end-

less loop (100% CPU utilization)”

[Mozilla-Core] - Bug report: 206561

F. Permission/deprecation issue. Bugs in this category are related

to two main causes: on the one hand, they are due to the pres-

ence, modification, or removal of deprecated method calls or APIs;

on the other hand, problems related to unused API permissions are

included. To better illustrate this category, in the following we pro-

vide an example for each of the causes that can fall into this cat-

egory. The first involves a bug appearing in the case of an unex-

pected behavior when the method of an external API is called. The

second mentions a bug that appears through malformed commu-

nication with an API.

Example summary.

“setTrackModification(boolean) not deprecated; but does not

work”

[Eclipse-EMF] - Bug report: 80110

Example summary.

“Access violation in DOMServices::getNamespaceForPrefix

(DOMServices.cpp:759)”

[Apache-XalanC] - Bug report: XALANC-55

G. Security issue. Vulnerability and other security-related prob-

lems are included in this category. These types of bugs usually re-

fer to reload certain parameters and removal of unused permis-

sions that might decrease the overall reliability of the system. An

example is the one appearing in the Apache Lenya project, where

the Cocoon framework was temporarily stopped because of a po-

tential vulnerability discovered by a developer.

Example summary.

“Disable cocoon reload parameter for security reasons”

[Apache-Lenya] - Bug report: 37631

H. Program anomaly issue. Bugs introduced by developers when

enhancing existing source code, and that are concerned with spe-

cific circumstances such as exceptions, problems with return val-

ues, and unexpected crashes due to issues in the logic (rather than,

e.g., the GUI) of the program. It is important to note that bugs

due to wrong SQL statements do not belong to this category but

are classified as database-related issues because they conceptually

relate to issues in the communications between the application

and an external database, rather than characterizing issues arising

within the application. It is also worth noting that in these bug

reports developers tend to include entire portions of source code,

so that the discussion around a possible fix can be accelerated. An

example is shown below and reports a problem that a developer

has when loading a resource.

Example summary.

“Program terminates prematurely before all execution events

are loaded in the model”

[Eclipse-z_Archived] - Bug report: 92067

I. Test code-related issue. The last category is concerned with

bugs appearing in test code. Looking at bug reports in this cat-

egory, we observed that they usually report problems due to (i)

running, fixing, or updating test cases, (ii) intermittent tests, and

(iii) the inability of a test to find de-localized bugs. As an example,

the bug report below reports on a problem occurred because of a

wrong usage of mocking.

Example summary.

“[the test] makes mochitest-plain time out when the HTML5

parser is enabled”
[Mozilla-Core] - Bug report: 92067 i
.2. RQ 2 : the characteristics of different bug types

After we had categorized and described the taxonomy, we fo-

used on determining the characteristics of the different bug types

iscovered. For the sake of comprehensibility, in this section, we

ndividually discuss the results achieved for each considered as-

ect, i.e., frequency, relevant topics, and time-to-fix process.

Frequency analysis. With this first perspective, we aimed at

tudying how prevalent each bug type is in our dataset.

Fig. 2 shows the diffusion of bug types extracted from the 1139

nalyzed bug reports. As depicted, the most frequent one is the

unctional Issue , which covers almost half of the entire dataset (i.e.,

1.3%). This was somehow expected as a result: indeed, it is rea-

onable to believe that most of the problems raised are related to

evelopers actively implementing new features or enhancing ex-

sting ones. Our findings confirm previous work (Tan et al., 2014;

randa and Venolia, 2009) on the wide diffusion of bugs intro-

uced while developers are busy with the implementation of new

ode or when dealing with exception handling.

GUI-related problems are widely present in the bug reports an-

lyzed (17% of the total number of issues in the dataset). Nowa-

ays, GUIs are becoming a major component of many software

ystems because they shape the interaction with the end-user. As

uch, they can evolve and become more complex, thus attracting

s many bugs as the codebase (Memon, 2002). This result some-

ow confirms the findings reported by Tan et al. (2014) , who also

iscovered that GUI-related issues are highly popular in modern

oftware systems.

The third most popular type is the configuration issue one, as

6% of the bug reports referred to this type. Since the use of exter-

al libraries and APIs is growing fast (Robbes et al., 2012; Mileva

t al., 2009; Salza et al., 2018), bugs related to how an application

ommunicates or interacts with external components are becoming

ore frequent. Moreover, McDonnell et al. (2013) recently showed

hat the API adaptation code tends to be more bug-prone, possibly

ncreasing the chances of such category of bugs. At the same time,

t is also worth noting that some recent findings (Bezemer et al.,

017) also reported that issues with configuration files (e.g., the

resence of unspecified dependencies (Bezemer et al., 2017)) rep-

esent a serious issue for developers, which might lead them to

ntroduce more bugs.

G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181 173

Table 2

RQ 2 —relevant topics of each category of bug type.

Categories Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Configuration issue link file build plugin jdk

Network issue server connection slow exchange –

Database-related issue database sql connection connection –

GUI-related issue page render select view font

Perfomance issue thread infinite loop memory –

Permission/deprecation issue deprecated plugin goal – –

Security issue security xml packageaccess vulnerable –

Program anomaly issue error file crash exception –

Test code-related issue fail test retry – –

b

o

t

s

t

a

i

Z

B

T

t

f

c

t

i

t

F

o

p

m

d

i

w

t

fi

r

t

s

(

r

w

d

t

t

s

T

t

a

p

o

L

c

c

F

z

o

a

a

o

p

t

c

“

n

c

o

s

r

l

d

t

c

“

n

t

r

c

(

c

u

t

t

t

(

t

c

a

b

T

a

s

l

d

p

i

t

e

m

“

p

i
After these first three bug types, we discovered that 7% of the

ug reports in our dataset referred to test code bugs . Using an-

ther experimental setting, and observing the relative diffusion of

his type, we confirm the results of Vahabzadeh et al. (2015) , who

howed that the distribution of bugs in test code does not variate

oo much with respect to that of production code. Our findings are

lso in line with what is reported in recent studies on the increas-

ng number of test-related issues (Luo et al., 2014; Palomba and

aidman, 2017; 2019; Bell et al., 2018; Zaidman et al., 2008; 2011;

eller et al., 2017).

Performance issues comprise 4% of the total number of issues.

his result confirms the observation from Tan et al. (2014) . Indeed,

hey discovered that bugs related to performance are much less

requent than functional bugs and that their number usually de-

reases over the evolution of a project. A likely explanation for

he relatively low diffusion of this bug type is that the developers

nvolved in the software ecosystems considered in the study of-

en use performance leak detection tools during the development.

or instance, the Mozilla guidelines 7 highly recommend the use

f such tools to limit the introduction of performance leaks in the

roject as much as possible.

Other specific bug types such as network, security , and per-

ission/deprecation appear to be less diffused over the considered

ataset, i.e., they are the cause of ≈ 4% reported bugs. Interest-

ngly, our findings related to security-related bugs are not in line

ith those reported in the study by Tan et al. (2014) . Indeed, while

hey found that this type is widespread in practice, we could only

nd a limited number of bug reports actually referring to secu-

ity problems. Finally, the least spread bug type is database-related ,

hat arises in 3% of the cases, confirming that such bugs repre-

ent a niche of the actual issues occurring in real software systems

 Schröter et al., 2006): in this regard, it is worth remarking that

eplications of our study targeting database-intensive applications

ould be beneficial to further verify our finding.

To broaden the scope of the discussion, we noticed that the

iffusion of the bug types discussed so far is independent from

he type of system considered. Indeed, we observed similar dis-

ributions over all three ecosystems analyzed, meaning that the

ame bug types might basically be found in any software project.

his supports our next step: the creation of an automated solution

o classify the bug types, something which could be immediately

dopted for improving the diagnosis of bugs.

Topics analysis. Table 2 reports the results achieved when ap-

lying the LDA-GA algorithm over the bug reports of each category

f bug type present in our taxonomy. It is important to note that

DA-GA found up to five different clusters that describe the topics

haracterizing each bug type; a ‘ –’ symbol is put in the table in

ase LDA-GA did not identify more topics for a certain bug type.

rom a general point of view, we can observe that there is almost
7 https://developer.mozilla.org/en-US/docs/Mozilla/Performance .

t

p

“

i
ero overlap among the terms describing each bug type: on the

ne hand, we notice that all the topics extracted for each category

re strictly related to the description of the categories discussed

bove (e.g., the word “test ” describes test-related issues); on the

ther hand, the lack of overlap is a symptom of a good systematic

rocess of categorization of the bug reports.

Going more in depth, the topics extracted for the configura-

ion issue category are very much linked to problems appearing in

onfiguration files and concerned with build issues (“build ”, “file ”,

jdk ”), caused by wrong file paths (i.e., “link ”) or external compo-

ents that should be updated (i.e., “plugin ”). A similar discussion

an be delineated in the case of network issues. In particular, based

n the bug reports belonging to this category, we found words

uch as “server ” and “connection ” that represent topics strictly

elated to network information, together with words reporting the

ikely causes of these issues, i.e., “slow ” connection or problems

ue to the “exchange ” of data over the network.

In the context of database-related issues, our findings provide

wo main observations. The words contained in these bug reports

ontain clear references to problems occurring with databases, like

database ”, “SQL ”, or “connection ”. At the same time, it is worth

oting that the word “connection ” occurs twice and, more impor-

antly, is in overlap with a word appearing in network-related bug

eports. On the one hand, it is important to note that LDA analysis

an generate multiple topics having the same discriminant word

 Blei et al., 2003): indeed, each document (i.e., bug reports, in our

ase) is viewed as a mixture of various topics. That is, for each doc-

ment LDA-GA assigns the probability of the bug report belonging

o each topic. The probability sums to 1: hence, for every word-

opic combination there is a probability assigned and it is possible

hat a single word has the highest probability in multiple topics

 Blei et al., 2003). From a practical perspective, this may indicate

hat problems with the database connection can be the principal

ause of this type of bugs. As for the overlap between network

nd database issues, this is somehow expected: both the types of

ugs have to deal with connection problems of different nature.

his might possibly create noise for automated solutions aiming

t discriminating different bug types. Regarding the GUI-related is-

ues, we find that the topics are represented by words clearly re-

ated to a GUI interface of a software project i.e., “page ”, “ren-

er ”, “select ”, “view ”, and “font ”. For instance, they could concern

roblems with the rendering of a certain “font ” or an entire page;

n any case, these are problems with the visualization of the in-

erface of a system. As for performance-related issues, the topics

xtracted faithfully represent problems connected with excessive

emory consumption; indeed, words such as “thread ”, “infinite ”,

loop ”, and “memory ” are the four topics that most frequently ap-

ear and that better describe those bug reports. On the other side,

n the category related to security issues we found topics linked

o problems of “package access ”, but also to “vulnerable ” com-

onents that may lead to “security ” problems. Regarding the topic

XML ”, it is important to note that there are a number of security

ssues involving the configuration of XML parsers and how they

https://developer.mozilla.org/en-US/docs/Mozilla/Performance

174 G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181

Fig. 3. RQ 2 —box plots reporting the time before response (TBR) for each identified bug type.

Fig. 4. RQ 2 —box plots reporting the time before assigned (TBA) for each identified bug type.

a

l

c

i

b

b

s

a

t

i

t

h

t

i

w

a

t

v

t

r

t

f

c

t

o

c
interact with the document structure (Moradian and Håkansson,

2006; Lowis and Accorsi, 2011). For example, let us consider the

validation against untrusted external DTD s (Document Type Dec-

laration) files. The DTD of an XML document is one way to de-

fine the valid structure of the document, i.e., the rules that specify

which elements and values are allowed in the declaration. A se-

curity problem may arise in case the server’s XML parser accepts

an arbitrary external DTD URL and attempts to download the DTD

and validate the XML document against it. In this case, an attacker

could input any URL and execute a Server Side Request Forgery

(SSRF) attack where the attacker forces the server to make a re-

quest to the target URL.

When considering program anomalies, we noticed that the top-

ics extracted are strictly connected with the description of the cat-

egory given in the context of RQ 1 . Indeed, topics such as “error ”,

“file ”, “patch ”, “crash ”, and exception are concerned with prob-

lems caused by issues in the logic of the program (e.g., a wrong

return value or an exception). Finally, permission/deprecation and

test code-related issues follow the same discussion: all the words

extracted by LDA-GA have clearly something to do with their na-

ture: as an example, the word “retry ” appearing in tests is con-

nected with a JUnit annotation (@Retry) that highlights the pres-

ence of some form of test flakiness, i.e., unreliable tests that ex-

hibit a pass and fail behavior with the same code (Palomba and

Zaidman, 2017).

All in all, our results indicate that the words characterizing the

identified bug types are pretty disjoint from each other. As a con-

sequence, it is reasonable to use the words occurring within bug

reports to classify them according to the defined taxonomy. This is
 clear motivation for adopting a natural language-based machine

earning approach like the one proposed in RQ 3 .

Time-to-fix analysis. Figs. 3–7 depict box plots of the five metrics

onsidered to measure the time required from the entire bug fix-

ng process of each bug type belonging to the taxonomy, i.e., time

efore response, time before assigned, time before change, duration of

ug fixing , and time after change , respectively. The black dots pre-

ented in the figures represent the mean value of each distribution.

From a high-level view, we could first confirm that not all bugs

re the same, as each bug type has its own peculiarities in terms of

he time required for the entire bug fixing process. Looking more

n-depth on the single indicators, the first observation is related

o TBR : in this case, we see that security-related issues are those

aving the smallest time from reporting to the first response from

he development team. This is somehow expected, since security

ssues have a high harmfulness for the overall reliability of a soft-

are system (Di Penta et al., 2008). More specifically, both mean

nd median values are equal to 2, indicating that in a pretty short

ime window the developers tend to take action after a potential

ulnerability is detected. Moreover, the distribution is all around

he median, meaning that there is no variability in the time to

esponse among the analyzed security issues: thus, we can claim

hat independently from the system or other factors such as their

requency of appearance, these issues are seriously taken into ac-

ount by developers.

Also bugs due to program anomalies present a limited time in-

erval between their discovery and the first reaction from devel-

pers. Also in this case, the result is quite expected: indeed, this

ategory relates to issues in the inner-working of a program that

G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181 175

Fig. 5. RQ 2 —box plots reporting the time before change (TBC) for each identified bug type.

Fig. 6. RQ 2 —box plots reporting the duration of bug fixing (DBF) for each identified bug type.

Fig. 7. RQ 2 —box plots reporting the time after change (TAC) for each identified bug type.

m

m

P

t

b

i

t

e

t

t

i

c

a

i

t

b

e

W

b

t
ight potentially have negative consequences on reliability and

ake the system less appealing for end-users (Bavota et al., 2015;

alomba et al., 2018; 2017). The distribution is close to the median,

hus highlighting that developers pay immediate attention to these

ugs.

A more surprising result is the one obtained for test-related

ssues. Even though they are generally perceived as less impor-

ant than bugs appearing in production (Meyer et al., 2014; Tufano

t al., 2016), our data shows that developers react pretty fast to

heir reporting: both mean and median are equal to 7, meaning

hat the reaction of developers is observed within one week. Also
n this case, the distribution is not scattered and, therefore, we can

laim that the short-time reaction to test-related issues represents

 rule rather than the exception. Likely, this result reflects the ever

ncreasing importance that test cases have in modern software sys-

ems, e.g., for deciding on whether to integrate pull requests or

uild the system (Beller et al., 2017; Gousios et al., 2015; Beller

t al., 2015; 2019).

Performance issues have a median time before response of 12.

hen comparing this value with those achieved by other types of

ugs, we can say that it is pretty low and that, as a consequence,

he developers’ reaction to this kind of bugs is fast. Our finding

176 G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181

Table 3

RQ 3 —performance (in percentage) achieved by the bug type predic-

tion model. P = Precision; R = Recall; F-M = F-Measure; AR = AUC-

ROC; MCC = Matthews correlation coefficient.

Categories Logistic regression

P R F-M AR MCC

Configuration issue 46 52 49 68 66

Database-related issue 71 63 67 72 76

GUI-related issue 61 68 65 77 65

Network issue 36 40 38 56 59

Performance issue 67 57 62 65 67

Permission/deprecation issue 86 55 67 69 74

Program anomaly issue 68 65 67 74 68

Security issue 76 74 75 88 85

Test code-related issue 90 70 79 93 88

Overall 67 60 64 74 72

c

t

(

s

h

e

a

c

b

t

t

4

m

o

c

3

b

p

a

m

p

a

t

w

i

s

t

p

f

s

m

r

7

p

u

p

o

“

t

e

p

e

confirms previous analyses conducted in the field of performance

bug analysis (Jovic et al., 2011). As for the rest, all the other bug

types have much higher distributions, and this likely indicates that

developers tend to focus first on issues that directly impact func-

tionalities and reliability of the system.

Turning the attention to TBA (Fig. 4), we observe that network-

related issues are those assigned faster for fixing. If we com-

pare the time required to performance-related issues or permis-

sion/deprecation issues to be assigned, we can hypothesize that

the observed findings are strictly connected to the difficulty to find

good assignees. For instance, a possible interpretation of our re-

sults is that, based on the developers’ expertise and workload, a

certain type of bug is assigned faster than others. While further

investigations around this hypothesis would be needed and bene-

ficial to study the phenomenon deeper, we manually investigated

the bugs of our dataset to find initial compelling evidence that sug-

gests a relation between time-to-assignment and developer-related

factors. As a result, looking at both bug reports and comments, we

found 21 cases (out of the total 42) in which the assignment of

performance issues has been delayed because of the lack of qual-

ified personnel. For example, let consider the following comment

made by a Mozilla developer:

“I’m reluctant to do such a task, not really and expert... maybe

something for E.?”

Conversely, in the cases of network-related and security issues,

we observed that there exist specific developers that have peculiar

expertise on these aspects: this potentially make the assignment

faster. Nonetheless, our future research agenda includes a more

specific investigation on the factors impacting bug fixing activities;

in the context of this paper, we only limit ourselves in reporting

that it is possible to observe differences in the way different bug

types are treated by developers.

As for the TBC (Fig. 5), we still observe differences among

the discovered bug types. Security issues are those that develop-

ers start working on faster: as explained above, this is likely due

to the importance of these issues for reliability. At the same time,

bugs due to database-related problems have a small time interval

between assignment and beginning of the actual fixing activities

(median = 4 h). Also in this case, it is reasonable to believe that

these bugs can cause issues leading end-users not to interact with

the system in a proper manner and, therefore, they represent is-

sues that are worth to start fixing quickly. More surprisingly, the

fixing process of program anomalies requires a higher number of

hours to be started. While more investigations would be needed,

we can conjecture that factors like severity and priorities assigned

for their resolution have an important impact on how fast devel-

opers deal with them.

Looking at DBF , namely the duration of bug fixing, we can ob-

serve that the differences are less evident than the other metrics.

Indeed, the fixing duration of most of the bugs ranges between 2

and 30 h. This is especially true for program anomalies, GUI and

test code-related issues, and security problems. A different discus-

sion is the one for database- and network-related issues: despite

them being quickest in terms of TBA and TBC , respectively, their

duration is much longer than other bugs. Factors like the complex-

ity of the solution or priority assigned to them might explain such

a difference. Overall, however, it seems that developers tend to fo-

cus more and more quickly on certain types of bugs, confirming

the fact that not all bugs are treated in the same manner.

Finally, when considering the TAC reported in Fig. 7 , we ob-

serve that the majority of bug types have a similar time after that

the corresponding patches have been submitted. Most likely, this

heavily depends on the processes adopted within the projects to

control for the soundness of a patch: for instance, most of the

modern projects perform code review activities of all the newly
ommitted code changes, and have standard procedures to assess

he validity of the change before integration in the code base

 Pascarella et al., 2018). The only exception to this general discus-

ion is related to the configuration-issue, which takes up to 33

ours to be integrated: however, given previous findings in lit-

rature (Anvik and Murphy, 2011; Mockus et al., 2002; Twidale

nd Nichols, 2005), we see this as an expected result because

onfiguration-related discussions generally trigger more comments

y developers since a change in configuration files might impact

he entire software project. As a consequence, they take more time

o be actually integrated.

.3. RQ 3 : automated classification of bug types

Table 3 reports, for each bug type, the mean precision, recall, F-

easure, AUC-ROC , and Matthews correlation coefficient achieved by

ur bug type prediction model over the 100 runs of the 10-fold

ross validation. We observed that the F-Measure ranges between

5% and 77%, the AUC-ROC between 56% and 93%, while the MCC

etween 59% and 88%. Thus, overall, we can claim that the devised

rediction model is reasonably accurate in identifying the type of

 bug by exploiting bug report information. It is important to re-

ark that the model considers the words composing the bug re-

ort summary as an independent variable: the model is already

ble to achieve high performance for most of the categories only

aking into account such words, meaning that our initial step to-

ard the automatic classification of bug types based on bug report

nformation can be considered successful. Nevertheless, further re-

earch on the features that influence the type of bugs (e.g., struc-

ural information of the involved classes) might still improve the

erformance. We plan to perform a wider analysis of additional

eatures in our future research.

Looking more in-depth into the results, the first interesting ob-

ervation can be made when analyzing the performance of the

odel on the Test Code-related issue category. In this case, it

eaches the highest F-Measure, AUC-ROC, and MCC values (i.e.,

7%, 93%, and 88%, respectively). Since the model relies on bug re-

ort words, the result can be explained by the fact that the terms

sed by developers in bug reports involving test-related issues are

retty powerful to discriminate this type. As a matter of fact, 87%

f the test-related bug reports in our dataset contain terms like

test” or “test suite”, as opposed to bug reports related to different

ypes. This means that a textual-based learning model can more

asily classify bug type. For instance, let us consider the bug re-

ort number 358221 available on the Lyo project of the Eclipse

cosystem, which reports the following summary:

“Investigate possible test suite bug when ServiceProviderCatalog

contains ref to serviceProvider resource”

G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181 177

S

o

d

N

i

r

b

A

f

c

m

d

w

c

b

t

5

s

p

s

o

a

fi

t

t

s

p

t

w

t

t

i

d

m

o

v

g

w

r

c

5

c

e

t

u

O

h

d

u

b

r

t

T

d

s

Similar observations can be made to explain the results for the

ecurity issue category (AUC-ROC = 88%). Also in this case, devel-

pers frequently adopt terms like “security” or “vulnerability” to

escribe a bug having this bug type.

Still, categories related to Functional Issue, GUI-related issue , and

etwork issue can be accurately classified by the model. Specif-

cally, F-Measure values of respectively 67%, 64%, and 62% are

eached. On the one hand, these results confirm that a textual-

ased approach can be effective in classifying the type of bugs.

t the same time, our findings eventually reveal that developers

ollow specific patterns when describing issues related to different

ategories.

Turning the attention toward the categories for which the

odel does not perform very well, there are two main cases to

iscuss. The first one is related to the Configuration issue type,

hich has an F-Measure = 48%. To better understand the possible

auses behind this result, we manually analyzed the bug reports

elonging to this bug type. Let us consider two cases coming from

he Apache XalanC project (bug reports number XALANC-44 and

8288):

“Could not compile”

“VE hangs; times out; then throws NPE doing pause/reload”

Looking at these bug reports, we could not immediately under-

tand the type they refer to. Indeed, during the taxonomy building

hase we could analyze other information like developers’ discus-

ions and attachments; however, since our classification model is

nly based on words composing the summary, sometimes it cannot

ssociate such words to the correct bug type. To some extent, our

nding contextualizes the findings by Zimmermann et al. (2010) on

he quality of bug reports, showing it varies depending on the bug

ype that developers have to report.

A similar situation arises when considering database-related is-

ues. While in RQ 2 we discovered that the corresponding bug re-

orts have textual characteristics that might be exploited to iden-

ify their type, we also highlighted the presence of overlapping

ords with other categories that may preclude the correct func-

ioning of the model. As such, this finding indicates once again

hat the performance of our bug type classification model may be

mproved by considering further bug report components such as

evelopers’ discussions and attachments.

To conclude the discussion, it is worth relating the perfor-

ance of the classification model to the results reported in RQ 2

n the diffusion of each bug type. Put into this context, the de-

ised model is able to properly predict all the most diffused cate-

ories, with the notable exception of configuration issues. As such,

e argue that the model can be useful in practice and that more

esearch is needed in order to improve its capabilities in detecting

onfiguration-related problems.

. Discussion and implications

Our results highlighted a number of points to be further dis-

ussed as well as several practical implications for both practition-

rs and researchers.

Discussion. At the beginning of our investigation, we conjec-

ured that the knowledge of the underlying bug types could be

seful information to exploit to improve bug triaging approaches.

ur findings clearly highlighted that bugs are different in nature,

ave different characteristics with respect to the way developers

eal with them, and can be classified with a pretty high accuracy

sing machine learning models. We argue that this information can

e useful for the bug triaging process for the following three main

easons:
• Raising awareness on the decision-making process. In the

first place, through RQ 2 we discovered that different bugs are

subject to a different bug fixing process with respect to both

the time they required to be assigned and to be actually fixed

and integrated into production. Our automatic classification

technique can first support developers in the decision-making

process, as it can immediately pinpoint the presence of bugs

having a nature making them potentially more dangerous than

others: as an example, our technique can tag a newly reported

bug report as a security issue, raising the awareness of develop-

ers on the need to take prompt actions, thus possibly speeding

up their reaction time, considering its assignment and resolu-

tion as well as the in-between activities, e.g., pushing the as-

signed developer(s) to perform the required bug fixing action

in a timely manner.
• Comprehending the bug types. As a complementary support

to awareness, the findings reported in our study have the po-

tential to make developers more focused on the signaled type

of a reported bug, thus reducing the time required in the un-

derstanding of the problem. We hypothesise that this could

help reduce the time required to (i) assign a bug to the most-

skilled developer and (ii) involve the most-qualified develop-

ers in the discussion on how to fix the bug. For instance, the

output of the proposed approach would support developers in

timely spotting configuration-related issues, that are those hav-

ing the most time fixing process according to our analyses. As

a result, community shepherds and developers could use this

information to take actions and involve the appropriate set of

experienced developers in an effort of finding a solution to fix

the newly submitted bug.
• Improving bug triage. Finally, the bug type prediction model

proposed in this study can be exploited within existing but

triaging approaches to improve their performance. As reported

by Shokripour et al. (2013) , current approaches can be broadly

divided into two sets: activity- and location-based. The former

identifies the most-skilled developer to be assigned to a new

bug on the basis of her previous activities, namely on the anal-

ysis of which bugs she fixed, while the latter takes into account

the location of the bug within the source code. More recently,

Tian et al. (2016) proposed a model that combined these two

approaches: they considered both developers’ previous activi-

ties (e.g., developer bug fixing frequency) and code locations

associated with a bug report as similarity features in order to

capture the similarity between a bug report and developers’

profile. Nevertheless, all these approaches only consider the de-

velopers’ perspective, without taking into account the nature of

the bug that needs to be fixed. Our model can complement all

the existing techniques by complementing the information on

the location of a newly reported bug with developers’ activities

aimed at fixing specific bug types rather than their merely atti-

tude to resolve bugs : we envision the definition of novel ensem-

ble approaches and/or search-based algorithms that can exploit

the bug type together with developers’ experience and location

of the bug to improve the identification of the most-skilled de-

veloper that can fix the bug.

We believe that all the aspects reported above deserve more at-

ention, especially on the basis of the results reported in our study.

hey are, therefore, part of our future research agenda, which is

evoted to the improvement of current bug triaging approaches.

Implications. Besides the discussion points reported above, we

ee some important implications of our work. More specifically:

1. A better understanding of bugs is needed. In our work, we

discovered a number of issues being reported in bug reports:

bugs are different from each other, and it would be particularly

useful to better study the characteristics of each of them, e.g.,

178 G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181

c

s

t

g

o

t

b

a

p

p

t

e

n

n

t

f

r

o

o

e

t

n

t

a

i

b

d

c

t

i

6

t

r

s

b

t

t

b

p

7

f

b

b

o

fi

i

t

(

a

i

s

c

1

M

t

a

r

b
investigating whether they are introduced differently, with the

aim of improving or specializing bug localization approaches

and bug prediction models. Moreover, we believe that particu-

lar attention should be devoted to the understanding of func-

tional bugs, which are those that appear more frequently in

practice. For instance, further studies aimed at decomposing the

category in multiple more specific sub-categories or investigat-

ing their perceived harmfulness would be beneficial to provide

an improved support to developers.

2. More research on test code bugs is needed. Our work

revealed that a large number of bugs impact test code.

The research community has heavily studied production bugs

(Ray et al., 2016), however, only a few studies are available with

respect to bugs in test code (Luo et al., 2014; Palomba and Zaid-

man, 2017; Bell et al., 2018). We argue that more research on

these bugs can be worthwhile to improve both quality and re-

liability of test cases.

3. Configuration checkers are important. According to our find-

ings, configuration-related bugs are among the most popular

ones. Unfortunately, little is known on this category of bugs

(Bezemer et al., 2017) and there are no tools able to support

developers in managing the quality of configuration files. We

argue that more research aimed at devising such configuration

quality checkers is needed to assist practitioners and avoid the

introduction of bugs.

4. Establishing whether the role of other bug report features

would improve bug types analysis. While a key results of our

work is the good performance of a classification model relying

on bug summaries as independent variable, we noticed that in

some cases it cannot perform well because words contained in

bug reports are not enough to identify the bug type. On the

one hand, studies investigating the linguistic patterns used by

developers would be worthwhile to learn how to better clas-

sify bug reports; on the other hand, the analysis of the value of

other bug report features (e.g., developers’ discussions) would

represent the next step toward an improved support for bug

types analysis.

6. Threats to validity

In this section, we discuss possible threats affecting our results

and how we mitigated them.

6.1. Taxonomy validity

To ensure the correctness and completeness of the bug types

identified in the taxonomy building phase, we performed an it-

erative content analysis that allowed us to continuously improve

the quality of the taxonomy by merging and splitting categories if

needed. Moreover, as an additional validation, we involved 5 ex-

pert industrial developers and asked them to classify a set of 100

bug reports according to the proposed taxonomy. They related the

sampled bug reports to the same bug types as those assigned by us

during the phase of taxonomy building, thus confirming the com-

pleteness and clarity of the identified bug types. Nevertheless, we

cannot exclude that our analysis missed specific bug reports that

hide other bug types.

6.2. Conclusion validity

Threats to conclusion validity refer to the relation between

treatment and outcome. In the context of RQ 2 , we extracted rel-

evant topics within bug reports referring to different bug types

using Latent Dirichlet Allocation (LDA) (Blei et al., 2003). To over-

come the problem of configuring the parameter k —whose wrong
onfiguration has been shown to bias the interpretation of the re-

ults (Peng et al., 2001)—we employed the LDA-GA version of the

echnique proposed by Panichella et al. (2013) : this is based on a

enetic algorithm that is able to exercise the parameter k until an

ptimal number of clusters is found. Still in RQ 2 , we investigated

he time required for the bug fixing process of different bug types

y replicating the study of Zhang et al. (2012) , thus taking into

ccount all the metrics they employed to measure the bug fixing

rocess. Nonetheless, it is important to point out that further em-

irical analyses aimed at understanding the specific reasons behind

he observed findings, namely what are the factors that develop-

rs take into account when treating different bug types, would be

eeded: indeed, in our study, we limit ourselves to observing that

ot all bugs are equal and are indeed treated differently. In order

o evaluate the bug type prediction model, we measured the per-

ormance using a number of different indicators such as precision,

ecall, F-Measure, AUC-ROC, and MCC, which can provide a wide

verview of the model performance. As for the validation method-

logy, we relied on 10-fold cross validation. While such a strat-

gy has recently been criticized (Tantithamthavorn et al., 2017), we

ackled its main issue, i.e., the randomness of the splits, by run-

ing it 100 times. Finally, it is worth noting that before running

he model, we configured its parameters using the Grid Search

lgorithm (Bergstra and Bengio, 2012). Given the nature of the val-

dation strategy adopted, we discussed the overall prediction capa-

ilities of the classification model, while we did not provide the

etailed confusion matrix: however, this was not possible in our

ase because we built 1,0 0 0 different confusion matrices due to

he 100-times 10-fold cross validation. This would have made the

nterpretation of the results hard.

.3. External validity

Threats in this category mainly concern the generalizability of

he results. We conducted this study on a large sample of 1280 bug

eports publicly available on the bug tracking platforms of the con-

idered ecosystems. Such a sample allowed us to get bug reports

elonging to 119 different projects. However, we are aware that

he proposed taxonomy may differ when considering other sys-

ems or closed-source projects. Similarly, the performance of our

ug type classification model might be lower/higher on different

rojects than the ones reported herein.

. Conclusion and future directions

Not all bugs are the same. Understanding their type can be use-

ul for developers during the first and most expensive activity of

ug triaging (Akila et al., 2015), i.e., the diagnosis of the issue the

ug report refers to. While several previous works mainly focused

n supporting the bug triage activity with respect to the identi-

cation of the most qualified developer that should take care of

t (Murphy and Cubranic, 2004; Javed et al., 2012), they basically

reat all bugs in the same manner without considering their type

 Zaman et al., 2011).

In this paper, we started facing this limitation, by proposing (i)

n empirical assessment of the possible bug types, (ii) a character-

zation study of the different bug types identified, and (iii) a clas-

ification model able to classify bugs according to their type.

To this aim, we first proposed a novel taxonomy of bug types,

onducting an iterative content analysis on 1280 bug reports of

19 software projects belonging to three large ecosystems such as

ozilla , Apache , and Eclipse . Then, we studied the discovered bug

ypes under three different perspectives such as (i) frequency of

ppearance, (ii) principal topics present in the corresponding bug

eports, and (iii) time required to fix them. Finally, we devised a

ug type prediction model that classifies bug reports according to

G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181 179

t

c

t

a

M

h

s

w

b

t

c

M

w

m

F

o

t

a

g

m

s

R

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

D

F

G

G

H

H

H

H

H

H

J

J

J

L

L

L

L

L

L

M

M

he related type. We empirically evaluated ourbug type classifi-

ation model by running it against the dataset that came out of

he taxonomy building phase, measuring its performance adopting

 100 times 10-fold cross validation methodology in terms of F-

easure, AUC-ROC, and Matthew’s Correlation Coefficient (MCC).

The results of the study highlight nine different bug types be-

ind the bugs reported in bug reports, that span across a broad

et of issues (e.g., GUI-related vs configuration bugs) and are

idespread over the considered ecosystems. We observed that the

ug types we discovered are treated differently with respect to

he process developers follow to fix them. The proposed bug type

lassification model reached an overall F-Measure, AUC-ROC, and

CC of 64%, 74%, and 72%, respectively, showing good performance

hen adopted for the classification of the most diffused bug types.

Our future research agenda focuses on improving the devised

odel and better characterizing bugs referring to different types.

urthermore, we plan to exploit the proposed classification in

ther contexts: for instance, we envision the proposed taxonomy

o be successfully employed for post-mortem analysis of bugs, as

rgued by Thung et al. (2012) ; at the same time, we will investi-

ate whether bug prioritization approaches can benefit from infor-

ation on the nature of bugs, e.g., security issues might be con-

idered more important than GUI-related ones.

eferences

kila, V. , Zayaraz, G. , Govindasamy, V. , 2015. Effective bug triage–a framework. Pro-
cedia Comput. Sci. 48, 114–120 .

ntoine, J.-Y. , Villaneau, J. , Lefeuvre, A. , 2014. Weighted Krippendorff’s alpha is a

more reliable metrics for multi-coders ordinal annotations: experimental stud-
ies on emotion, opinion and coreference annotation. In: EACL 2014, p. 10p .

ntoniol, G. , Ayari, K. , Di Penta, M. , Khomh, F. , Guéhéneuc, Y.-G. , 2008. Is it a bug or
an enhancement?: a text-based approach to classify change requests. In: Pro-

ceedings of the 2008 Conference of the Center for Advanced Studies on Collab-
orative Research: Meeting of Minds. ACM, p. 23 .

nvik, J. , 2006. Automating bug report assignment. In: Proc. Int’l Conference on

Software Engineering (ICSE). ACM, pp. 937–940 .
nvik, J. , Hiew, L. , Murphy, G.C. , 2006. Who should fix this bug? In: Proceedings of

the International Conference on Software Engineering (ICSE). ACM, pp. 361–370 .
nvik, J. , Murphy, G.C. , 2011. Reducing the effort of bug report triage: recommenders

for development-oriented decisions. ACM Trans. Softw. Eng. Methodol. 20 (3),
10 .

randa, J. , Venolia, G. , 2009. The secret life of bugs: going past the errors and omis-

sions in software repositories. In: Proceedings of the International Conference
on Software Engineering (ICSE). IEEE Computer Society, pp. 298–308 .

slam, T. , Krsul, I. , Spafford, E. , 1996. Use of A Taxonomy of Security Faults. Purdue
University .

aeza-Yates, R.A. , Ribeiro-Neto, B. , 1999. Modern Information Retrieval. Addis-
on-Wesley Longman Publishing Co., Inc .

aldi, P. , Brunak, S. , Chauvin, Y. , Andersen, C.A. , Nielsen, H. , 20 0 0. Assessing the ac-

curacy of prediction algorithms for classification: an overview. Bioinformatics
16 (5), 412–424 .

auer, M.W. , 2007. Content analysis. an introduction to its methodology—by Klaus
Krippendorff from words to numbers. narrative, data and social science–by

roberto franzosi. Br. J. Sociol. 58 (2), 329–331 .
avota, G. , Linares-Vasquez, M. , Bernal-Cardenas, C.E. , Di Penta, M. , Oliveto, R. ,

Poshyvanyk, D. , 2015. The impact of API change-and fault-proneness on the user

ratings of android apps. IEEE Trans. Softw. Eng 41 (4), 384–407 .
ell, J. , Legunsen, O. , Hilton, M. , Eloussi, L. , Yung, T. , Marinov, D. , 2018. Deflaker: au-

tomatically detecting flaky tests. In: Proceedings of the International Conference
on Software Engineering (ICSE). ACM .

eller, M. , Georgios, G. , Panichella, A. , Proksch, S. , Amann, S. , Zaidman, A. , 2019. De-
veloper testing in the IDE: patterns, beliefs, and behavior. IEEE Trans. Softw. Eng

(1) 1-1 .

eller, M. , Gousios, G. , Panichella, A. , Zaidman, A. , 2015. When, how, and why devel-
opers (do not) test in their ides. In: Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE). ACM, pp. 179–190 .
eller, M. , Gousios, G. , Zaidman, A. , 2017. Oops, my tests broke the build: An explo-

rative analysis of Travis CI with GitHub. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). IEEE, pp. 356–367 .

eller, M. , Spruit, N. , Spinellis, D. , Zaidman, A. , 2018. On the dichotomy of debug-
ging behavior among programmers. In: Proceedings of the 40th International

Conference on Software Engineering (ICSE). ACM, pp. 572–583 .

ergstra, J. , Bengio, Y. , 2012. Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13 (February), 281–305 .

ettenburg, N. , Just, S. , Schröter, A. , Weiß, C. , Premraj, R. , Zimmermann, T. , 2007.
Quality of bug reports in eclipse. In: Proceedings of the 2007 OOPSLA Workshop

on Eclipse Technology Exchange. ACM, pp. 21–25 .
ezemer, C.-P. , McIntosh, S. , Adams, B. , German, D.M. , Hassan, A.E. , 2017. An empir-
ical study of unspecified dependencies in make-based build systems. Empirical

Softw. Eng 22 (6), 3117–3148 .
lei, D.M. , Ng, A.Y. , Jordan, M.I. , 2003. Latent Dirichlet allocation. J. Mach. Learn. Res.

3 (January), 993–1022 .
reu, S. , Premraj, R. , Sillito, J. , Zimmermann, T. , 2010. Information needs in bug re-

ports: improving cooperation between developers and users. In: Proceedings of
the ACM Conference on Computer Supported Cooperative Work (CSCW). ACM,

pp. 301–310 .

runing, S. , Weissleder, S. , Malek, M. , 2007. A fault taxonomy for service-oriented ar-
chitecture. In: 10th IEEE High Assurance Systems Engineering Symposium, 2007.

HASE’07. IEEE, pp. 367–368 .
uglione, L. , Abran, A. , 2006. Introducing root-cause analysis and orthogonal defect

classification at lower CMMI maturity levels. Proc. MENSURA 910, 29–40 .
atolino, G., Palomba, F., Zaidman, A., Ferrucci, F., 2018. Not all bugs are the

same:understanding, characterizing, and classifying bug types—online appendix

https://figshare.com/s/dcb95c70c4472b2ac935 .
han, K.M. , Bishop, J. , Steyn, J. , Baresi, L. , Guinea, S. , 2007. A fault taxonomy for web

service composition. In: International Conference on Service-Oriented Comput-
ing. Springer, pp. 363–375 .

hawla, N.V. , Bowyer, K.W. , Hall, L.O. , Kegelmeyer, W.P. , 2002. Smote: synthetic mi-
nority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 .

hillarege, R. , Bhandari, I.S. , Chaar, J.K. , Halliday, M.J. , Moebus, D.S. , Ray, B.K. ,

Wong, M.-Y. , 1992. Orthogonal defect classification—a concept for in-process
measurements. IEEE Trans. Softw. Eng. 18 (11), 943–956 .

howdhury, G.G. , 2003. Natural language processing. Annu. Rev. Inf. Sci. Technol. 37
(1), 51–89 .

i Penta, M. , Cerulo, L. , Aversano, L. , 2008. The evolution and decay of statically de-
tected source code vulnerabilities. In: Eighth IEEE International Working Con-

ference on Source Code Analysis and Manipulation. IEEE, pp. 101–110 .

reimut, B. , Denger, C. , Ketterer, M. , 2005. An industrial case study of implementing
and validating defect classification for process improvement and quality man-

agement. In: Software Metrics, 2005. 11th IEEE International Symposium. IEEE,
pp. 10–pp .

oldberg, Y., Levy, O., 2014. word2vec explained: deriving Mikolov et al.’s negative-
sampling word-embedding method. arXiv: 1402.3722 .

ousios, G. , Zaidman, A. , Storey, M.-A. , Van Deursen, A. , 2015. Work practices and

challenges in pull-based development: the integrator’s perspective. In: Proceed-
ings of the 37th International Conference on Software Engineering-Volume 1.

IEEE Press, pp. 358–368 .
all, T. , Beecham, S. , Bowes, D. , Gray, D. , Counsell, S. , 2011. Developing fault-predic-

tion models: what the research can show industry. IEEE Softw. 28 (6), 96–99 .
ecking, T., Leydesdorff, L., 2018. Topic modelling of empirical text corpora: Valid-

ity, reliability, and reproducibility in comparison to semantic maps. arXiv: 1806.

01045 .
ernández-González, J. , Rodriguez, D. , Inza, I. , Harrison, R. , Lozano, J.A. , 2018. Learn-

ing to classify software defects from crowds: a novel approach. Appl. Soft Com-
put. 62, 579–591 .

erzig, K. , Just, S. , Zeller, A. , 2013. It’s not a bug, it’s a feature: how misclassifica-
tion impacts bug prediction. In: Proceedings of the International Conference on

Software Engineering (ICSE). IEEE, pp. 392–401 .
ooimeijer, P. , Weimer, W. , 2007. Modeling bug report quality. In: Proceedings of

the International Conference on Automated Software Engineering (ASE). ACM,

pp. 34–43 .
uang, L. , Ng, V. , Persing, I. , Chen, M. , Li, Z. , Geng, R. , Tian, J. , 2015. AutoODC: au-

tomated generation of orthogonal defect classifications. Autom. Softw. Eng. 22
(1), 3–46 .

aved, M.Y. , Mohsin, H. , et al. , 2012. An automated approach for software bug clas-
sification. In: 2012 Sixth International Conference on Complex, Intelligent and

Software Intensive Systems (CISIS). IEEE, pp. 414–419 .

eong, G. , Kim, S. , Zimmermann, T. , 2009. Improving bug triage with bug tossing
graphs. In: Proceedings of the Joint Meeting of the European Software Engineer-

ing Conference & the Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, pp. 111–120 .

ovic, M. , Adamoli, A. , Hauswirth, M. , 2011. Catch me if you can: performance bug
detection in the wild. In: ACM SIGPLAN Notices, 46. ACM, pp. 155–170 .

al, S. , Sureka, A. , 2012. Comparison of seven bug report types: a case-study of

Google chrome browser project. In: Software Engineering Conference (APSEC),
2012 19th Asia-Pacific, 1. IEEE, pp. 517–526 .

e, Q. , Mikolov, T. , 2014. Distributed representations of sentences and documents.
In: International Conference on Machine Learning, pp. 1188–1196 .

eszak, M. , Perry, D.E. , Stoll, D. , 2002. Classification and evaluation of defects in a
project retrospective. J. Syst. Softw. 61 (3), 173–187 .

idwell, W. , Holden, K. , Butler, J. , 2010. Universal Principles of Design, Revised and

Updated: 125 Ways to Enhance Usability, Influence Perception, Increase Appeal,
Make Better Design Decisions, and Teach Through Design, 2nd ed. Rockport

Publishers .
owis, L. , Accorsi, R. , 2011. Vulnerability analysis in SOA-based business processes.

IEEE Trans. Serv. Comput. 4 (3), 230–242 .
uo, Q. , Hariri, F. , Eloussi, L. , Marinov, D. , 2014. An empirical analysis of flaky tests.

In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering. ACM, pp. 643–653 .
cDonnell, T. , Ray, B. , Kim, M. , 2013. An empirical study of API stability and adop-

tion in the android ecosystem. In: Proc. Int’l Conf. on Software Maintenance
(ICSM). IEEE, pp. 70–79 .

emon, A.M. , 2002. GUI testing: pitfalls and process. Computer 35 (8), 87–88 .

http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5001
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5001
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5001
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5001
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0023
https://figshare.com/s/dcb95c70c4472b2ac935
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0029
http://arxiv.org/abs/1402.3722
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0031
http://arxiv.org/abs/1806.01045
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0046

180 G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181

T

T

T

T

V

W

X

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

p

of IEEE and ACM.
Meyer, A.N. , Fritz, T. , Murphy, G.C. , Zimmermann, T. , 2014. Software developers’ per-
ceptions of productivity. In: Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering. ACM, pp. 19–29 .
Mileva, Y.M. , Dallmeier, V. , Burger, M. , Zeller, A. , 2009. Mining trends of library us-

age. In: Proceedings of the joint international and annual ERCIM workshops on
Principles of software evolution (IWPSE) and software evolution (Evol) work-

shops. ACM, pp. 57–62 .
Mockus, A. , Fielding, R.T. , Herbsleb, J.D. , 2002. Two case studies of open source soft-

ware development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11

(3), 309–346 .
Moradian, E. , Håkansson, A. , 2006. Possible attacks on xml web services. IJCSNS Int.

J. Comput. Sci. Netw. Secur. 6 (1B), 154–170 .
Murphy, G. , Cubranic, D. , 2004. Automatic bug triage using text categorization. In:

Proceedings of the International Conference on Software Engineering & Knowl-
edge Engineering (SEKE), pp. 92–97 .

Nagwani, N. , Verma, S. , Mehta, K.K. , 2013. Generating taxonomic terms for software

bug classification by utilizing topic models based on latent Dirichlet alloca-
tion. In: 2013 11th International Conference on ICT and Knowledge Engineering

(ICT&KE). IEEE, pp. 1–5 .
Nasrabadi, N.M. , 2007. Pattern recognition and machine learning. J. Electron. Imag-

ing 16 (4), 049901 .
Ostrand, T.J. , Weyuker, E.J. , 1984. Collecting and categorizing software error data in

an industrial environment. J. Syst. Softw. 4 (4), 289–300 .

Palomba, F. , Linares-Vásquez, M. , Bavota, G. , Oliveto, R. , Di Penta, M. , Poshyvanyk, D. ,
De Lucia, A. , 2018. Crowdsourcing user reviews to support the evolution of mo-

bile apps. J. Syst. Softw. 137, 143–162 .
Palomba, F. , Salza, P. , Ciurumelea, A. , Panichella, S. , Gall, H. , Ferrucci, F. , De Lucia, A. ,

2017. Recommending and localizing change requests for mobile apps based on
user reviews. In: Proceedings of the 39th International Conference on Software

Engineering. IEEE Press, pp. 106–117 .

Palomba, F. , Zaidman, A. , 2019. The smell of fear: on the relation between test
smells and flaky tests. Empirical Softw. Eng. Springer . In press.

Palomba, F. , Zaidman, A. , 2017. Does refactoring of test smells induce fixing flaky
tests? In: 2017 IEEE International Conference on Software Maintenance and Evo-

lution (ICSME). IEEE, pp. 1–12 .
Panichella, A. , Dit, B. , Oliveto, R. , Di Penta, M. , Poshyvanyk, D. , De Lucia, A. , 2013.

How to effectively use topic models for software engineering tasks? An ap-

proach based on genetic algorithms. In: Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, pp. 522–531 .

Pantic, M. , Pentland, A. , Nijholt, A. , Huang, T.S. , 2007. Human computing and ma-
chine understanding of human behavior: a survey. In: Artifical Intelligence for

Human Computing. Springer, pp. 47–71 .
Pascarella, L. , Spadini, D. , Palomba, F. , Bruntink, M. , Bacchelli, A. , 2018. Informa-

tion needs in contemporary code review. Proc. ACM Hum. Comput. Interaction

2 (CSCW), 135 .
Peng, J. , Heisterkamp, D.R. , Dai, H. , 2001. LDA/SVM driven nearest neighbor classifi-

cation. In: Computer Vision and Pattern Recognition, 20 01. CVPR 20 01. Proceed-
ings of the 2001 IEEE Computer Society Conference on, 1. IEEE, p. I .

Porter, M.F. , 1980. An algorithm for suffix stripping. Program 14 (3), 130–137 .
Ray, B. , Hellendoorn, V. , Godhane, S. , Tu, Z. , Bacchelli, A. , Devanbu, P. , 2016. On the

naturalness of buggy code. In: Proceedings of the International Conference on
Software Engineering (ICSE). ACM, pp. 428–439 .

Refaeilzadeh, P. , Tang, L. , Liu, H. , 2009. Cross-validation. In: Encyclopedia of database

systems. Springer, pp. 532–538 .
Robbes, R. , Lungu, M. , Röthlisberger, D. , 2012. How do developers react to API dep-

recation?: the case of a smalltalk ecosystem. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineer-

ing. ACM, p. 56 .
Salton, G. , Buckley, C. , 1988. Term-weighting approaches in automatic text retrieval.

Inf. Process. Manage. 24 (5), 513–523 .

Salza, P. , Palomba, F. , Di Nucci, D. , D’Uva, C. , De Lucia, A. , Ferrucci, F. , 2018. Do devel-
opers update third-party libraries in mobile apps? In: Proceedings of the 26th

Conference on Program Comprehension. ACM, pp. 255–265 .
Schröter, A. , Zimmermann, T. , Premraj, R. , Zeller, A. , 2006. If your bug database could

talk. In: Proceedings of the 5th International Symposium on Empirical Software
Engineering, 2, pp. 18–20 .

Shokripour, R. , Anvik, J. , Kasirun, Z.M. , Zamani, S. , 2013. Why so complicated? Sim-

ple term filtering and weighting for location-based bug report assignment rec-
ommendation. In: Mining Software Repositories (MSR), 2013 10th IEEE Working

Conference on. IEEE, pp. 2–11 .
Stebbins, R.A. , 2001. Exploratory Research in the Social Sciences, 48. SAGE .

Stone, M. , 1974. Cross-validatory choice and assessment of statistical predictions. J.
R. Stat. Soc. Ser. B 111–147 .

Sun, C. , Lo, D. , Wang, X. , Jiang, J. , Khoo, S.-C. , 2010. A discriminative model ap-

proach for accurate duplicate bug report retrieval. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1. ACM,

pp. 45–54 .
Tan, L. , Liu, C. , Li, Z. , Wang, X. , Zhou, Y. , Zhai, C. , 2014. Bug characteristics in open

source software. Empirical Softw. Eng. 19 (6), 1665–1705 .
Tantithamthavorn, C. , McIntosh, S. , Hassan, A.E. , Matsumoto, K. , 2017. An empirical

comparison of model validation techniques for defect prediction models. IEEE

Trans. Softw. Eng. 43 (1), 1–18 .
Thung, F. , Le, X.-B.D. , Lo, D. , 2015. Active semi-supervised defect categorization. In:

Proceedings of the 2015 IEEE 23rd International Conference on Program Com-
prehension. IEEE Press, pp. 60–70 .
hung, F. , Lo, D. , Jiang, L. , 2012. Automatic defect categorization. In: 2012 19th
Working Conference on Reverse Engineering (WCRE). IEEE, pp. 205–214 .

ian, Y. , Wijedasa, D. , Lo, D. , Le Goues, C. , 2016. Learning to rank for bug report
assignee recommendation. In: 2016 IEEE 24th International Conference on Pro-

gram Comprehension (ICPC). IEEE, pp. 1–10 .
ufano, M. , Palomba, F. , Bavota, G. , Di Penta, M. , Oliveto, R. , De Lucia, A. , Poshy-

vanyk, D. , 2016. An empirical investigation into the nature of test smells. In:
2016 31st IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE). IEEE, pp. 4–15 .

widale, M.B. , Nichols, D.M. , 2005. Exploring usability discussions in open source
development. In: Proceedings of the 38th Annual Hawaii International Confer-

ence on System Sciences, 2005. HICSS’05. IEEE, p. 198c .
ahabzadeh, A. , Fard, A.M. , Mesbah, A. , 2015. An empirical study of bugs in test

code. In: 2015 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME). IEEE, pp. 101–110 .

ei, X. , Croft, W.B. , 2006. LDA-based document models for ad-hoc retrieval. In: Pro-

ceedings of the 29th annual international ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM, pp. 178–185 .

ia, X. , Lo, D. , Wang, X. , Zhou, B. , 2014. Automatic defect categorization based
on fault triggering conditions. In: Engineering of Complex Computer Systems

(ICECCS), 2014 19th International Conference on. IEEE, pp. 39–48 .
uan, J. , Jiang, H. , Hu, Y. , Ren, Z. , Zou, W. , Luo, Z. , Wu, X. , 2015. Towards effective bug

triage with software data reduction techniques. IEEE Trans. Knowl. Data Eng. 27

(1), 264–280 .
uan, J., Jiang, H., Ren, Z., Yan, J., Luo, Z., 2017. Automatic bug triage using semi-

supervised text classification. arXiv preprint, arXiv:1704.04769 .
aidman, A. , Van Rompaey, B. , Demeyer, S. , van Deursen, A. , 2008. Mining software

repositories to study co-evolution of production & test code. In: First Interna-
tional Conference on Software Testing, Verification, and Validation (ICST). IEEE

Computer Society, pp. 220–229 .

aidman, A., Van Rompaey, B., van Deursen, A., Demeyer, S., 2011. Studying the co-
evolution of production and test code in open source and industrial developer

test processes through repository mining. Empirical Softw. Eng. 16 (3), 325–364.
doi: 10.1007/s10664- 010- 9143- 7 .

aman, S. , Adams, B. , Hassan, A.E. , 2011. Security versus performance bugs: a case
study on firefox. In: Proceedings of the Working Conference on Mining Software

Repositories (MSR). ACM, pp. 93–102 .

eller, A. , 2009. Why Programs Fail—A Guide to Systematic Debugging, second ed.
Academic Press .

hang, F. , Khomh, F. , Zou, Y. , Hassan, A.E. , 2012. An empirical study on factors im-
pacting bug fixing time. In: 2012 19th Working Conference on Reverse Engi-

neering. IEEE, pp. 225–234 .
hang, T. , Jiang, H. , Luo, X. , Chan, A.T. , 2016. A literature review of research in bug

resolution: tasks, challenges and future directions. Comput. J. 59 (5), 741–773 .

hang, T. , Lee, B. , 2013. A hybrid bug triage algorithm for developer recommenda-
tion. In: Proceedings of the 28th Annual ACM Symposium on Applied Comput-

ing. ACM, pp. 1088–1094 .
Zhang, Y. , Chen, Y. , Cheung, S.-C. , Xiong, Y. , Zhang, L. , 2018. An empirical study on

TensorFlow program bugs. In: Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2018). ACM, New

York, NY, USA, pp. 129–140 .
hou, Y. , Tong, Y. , Gu, R. , Gall, H. , 2016. Combining text mining and data mining for

bug report classification. J. Softw. Evol. Process 28 (3), 150–176 .

immermann, T. , Premraj, R. , Bettenburg, N. , Just, S. , Schroter, A. , Weiss, C. , 2010.
What makes a good bug report? IEEE Trans. Softw. Eng. 36 (5), 618–643 .

Gemma Catolino received the master’s degree in com-

puter science from the University of Salerno, Italy, in

2016. She is currently working toward the Ph.D. degree
at the University of Salerno, Italy, under the supervision

of Prof. Filomena Ferrucci. Her research interests include
effort estimation, software maintenance and evolution,

mining software repositories, and empirical software en-
gineering. She is a student member of ACM and IEEE.

Fabio Palomba is a senior research associate at the Uni-

versity of Zurich (Switzerland), where he works under
the Zurich Empirical Software Engineering Team (ZEST).

Previously, he worked as Research Associate at the Delft
University of Technology (The Netherlands). He received

the European Ph.D. Degree from the University of Salerno
(Italy). His research activities include technical debt man-

agement, source code quality, predictive analytics for

fault-, change-, and effort-prediction, social aspects of
software engineering, and mobile app evolution. He has

published more than 30 papers on these topics in inter-
national journals and conference proceedings. He serves

and has served as referee for international journals and
rogram committee member of several international conferences. He is a member

http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5002a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5002a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5002a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5002a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5002a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5002a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5002a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0071
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0071
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0079
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0079
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0079
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0081
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0081
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0081
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0082
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0082
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0082
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0082
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0082
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0083
http://arxiv.org/abs/1704.04769
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0084
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0084
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0084
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0084
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0084
https://doi.org/10.1007/s10664-010-9143-7
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0086
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0086
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0086
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0086
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0087
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0087
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0088
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0088
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0088
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0088
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0088
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0089
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0089
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0089
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0089
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0089
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0090
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0090
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0090
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5003a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5003a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5003a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5003a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5003a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref5003a
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30053-6/sbref0092

G. Catolino, F. Palomba and A. Zaidman et al. / The Journal of Systems and Software 152 (2019) 165–181 181

Andy Zaidman is an associate professor at the Delft

University of Technology, the Netherlands. He obtained
his M.Sc. (2002) and Ph.D. (2006) in Computer Science

from the University of Antwerp, Belgium. His main re-
search interests are software evolution, program com-

prehension, mining software repositories and software

testing. He is an active member of the research commu-
nity and involved in the organization of numerous con-

ferences (WCRE’08, WCRE’09, VISSOFT’14 and MSR’18). In
2013 Andy Zaidman was the laureate of a prestigious Vidi

career grant from the Dutch Science Foundation NWO.
Filomena Ferrucci is professor of software engineer-

ing and software project management at University of
Salerno, Italy. Her main research interests include soft-

ware metrics, effort estimation, search-based software en-
gineering, empirical software engineering, and human–

computer interaction. She has been program co-chair of

the International Summer School on Software Engineer-
ing. Web page: http://docenti.unisa.it/ 001775/home.

	Not all bugs are the same: Understanding, characterizing, and classifying bug types
	1 Introduction
	1.1 Motivating example
	1.2 Our work and contributions

	2 Background and related work
	2.1 Bug classification schemas
	2.2 Bug classification techniques

	3 Research methodology
	3.1 Research questions
	3.2 Context selection
	3.3 RQ1: toward a taxonomy of bug types
	3.3.1 Taxonomy building

	3.4 RQ2: characterizing different bug types
	3.5 RQ3: automated classification of bug types

	4 Analysis of the results
	4.1 RQ1: taxonomy of bug types
	4.2 RQ2: the characteristics of different bug types
	4.3 RQ3: automated classification of bug types

	5 Discussion and implications
	6 Threats to validity
	6.1 Taxonomy validity
	6.2 Conclusion validity
	6.3 External validity

	7 Conclusion and future directions
	References

