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Propositions

belonging to the doctoral dissertation

Contribution to advanced modelling of turbulent
natural and mixed convection

by Gunarjo Suryanto Budi

. It is worthwhile spending time and effort on thorough testing of turbulence

models in simple generic fluid flows, not only because generic phenomena
are present in most complex flows, but also because such tests can disclose
subtle model deficiencies, which will make them unreliable for predicting
real-life complex flows.

. A good turbulence model does not always need to be sophisticated and very

advanced: the optimum model is harmony and balance between accuracy,
robustness, computational cost, applicability, and complexity.

. The k — ¢ — vZ — f — 62 model developed in this thesis is at present the

optimum model for complex turbulent flows driven or affected by thermal
buoyancy: it has provided relatively accurate results in a range of applica-
tions with affordable mesh density.

. Turbulence models are like fashion in dressing: fashionable models appear

and disappear in cycles: new releases remain in fashion for some time,
then they disappear and suddenly they are back again with new minor
modification and new success claims. Only the k — & model remains eternal.

. Most CFD model developers are fond of Reynolds Stress Models, because

they provide the soundest physical rationale within the framework of RANS
modelling. However, because of formidable demands on computer power
and personal computational skill, people in industry facing dynamic market
demands, consider these models as a nightmare!

. Natural is a heavenly word for many groups of people: for women it means

plants, health and beauty; for environmentalists it means clean water, fresh
air and green forests; for artists it means mountains, blue ocean, green
valley, and clear sky. For engineers, unfortunately, natural is mostly related
to convection.

. To spend four years working on turbulence models developing and testing

seems like one season. To spend one season in a cold, wet, windy weather
in winter time it seems like 4 years. That is the relativity.



8.

Sometimes it is not easy to distinguish between an abstract painting and
turbulence feature, because both of them exhibit unclear looks. For an
artist, a painting can be expressed in thousands beautiful words: harmony,
heavenly, moonlight, rainbow, aurora. On the other hand, for an experi-
mentalist or CFD modeller, the feature of turbulence can be explained with
only several odd words: random, chaotic, irregular and disorder.

The thing that comes first into our mind after we wake up in the morning
is usually the most important one in our life on that day. If during five
years one has thought about turbulence at least 555 times after getting up
from bed, one is certainly qualified and legitimized to work professionally
in the field of turbulence modelling and computations.

These propositions are considered defendable and as such have been approved by
the supervisor prof dr. K. Hanjalié




Stellingen

behorende bij het proefschrift

Contribution to advanced modelling of turbulent
natural and mixed convection

van Gunarjo Suryanto Budi

. Het is de moeite waard tijd en energie te investeren in het grondig testen

van turbulentie modellen in eenvoudige generieke stromingen, niet alleen
omdat generieke verschijnselen optreden bij complexe stromingen, maar
ook om subtiele onvolkomenheden in de modellen te ontdekken, die anders
tot onbetrouwbare voorspellingen leiden in complexe stromingen.

. Een goed turbulentie model hoeft niet altijd ingewikkeld en zeer geavanceerd

te zijn: het optimum model weerspiegelt balans en harmonie tussen nauw-
keurigheid, robuustheid, hoeveelheid rekenwerk, toepasbaarheid en com-
plexiteit.

Het k — e — v2 — f — 62 model, dat ontwikkeld werd in dit proefschrift,
is momenteel het optimum model voor complexe turbulente stromingen
die gedreven of beinvloed worden door dichtheidsverschillen: relatief nauw-
keurige resultaten werden ermee behaald met haalbare roosterdichtheden,
in een reeks toepassingen.

Turbulentie modellen zijn als mode voor kleding: modieuze modellen ver-
schijnen en verdwijnen in cycli: nieuwe publicaties blijven een tijd in de
mode, verdwijnen dan, en duiken plotseling weer op met nienwe kleine aan-
passingen en nieuwe succes verhalen. Alleen het k£ — ¢ model is immer
aanwezig.

. De meeste CFD-modelbouwers zijn erg gecharmeerd van Reynolds Stress

Modellen, omdat ze de krachtigste fysische basis hebben in de RANS mod-
ellering. Echter, door hun grote vraag naar rekenkracht van computers en
rekenervaring van de gebruiker, beschouwen mensen, die op de industriéle
markt met een continu veranderende vraag te maken hebben, ze als een
nachtmerrie!

‘Natuurlijk’ is een hemels woord voor vele groepen mensen: voor vrouwen
betekent het planten, gezondheid en schoonheid; voor milieudeskundigen
betekent het schoon water, frisse lucht en groene wouden; voor kunstenaars
betekent het bergen, een blauwe oceaan, een groene vallei en een heldere
hemel. Voor wetenschappers is 'natuurlijk’ helaas meestal verbonden met
convectie.



7. Vier jaar doorbrengen, werkend aan het ontwikkelen en testen van turbu-
lentie modellen, lijkt slechts een seizoen te duren. Eén seizoen doorbrengen
in koud, nat en winderig winterweer lijkt vier jaar te duren. Dat is de
relativiteit.

8. Soms is het onderscheid tussen een abstract schilderij en turbulente struc-
tuur moeilijk te maken, omdat beide een onduidelijk uiterlijk hebben. Een
kunstenaar kan een schilderij uitdrukken in een duizendtal prachtige wo-
orden: harmonie, hemels, maanlicht, regenboog, dageraad. Daarentegen,
een experimentalist of CFD-modelbouwer kan de structuur van turbulentie
alleen uitdrukken in een aantal vreemde woorden: willekeurig, chaotisch,
onregelmatig en wanorde.

9. Hetgeen het eerst in ons opkomt na het ontwaken in de ochtend is meestal
hetgeen dat het belangrijkst voor ons is op die dag. Als je vijf jaar lang
op zijn minst 555 keren aan turbulentie gedacht hebt na het ontwaken, dan
ben je zeker bekwaam genoeg en is het je geoorloofd om professioneel te
werken op het gebied van turbulentie modellering en berekeningen.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door
de promotor prof. dr. K. Hanjalié
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CHAPTER 1

Turbulent convective flows

1.1 Introduction

Computational Fluid Dynamics (CFD) modellers and experimentalists should be
grateful to CNN for promoting their field of interest: turbulence. Although the
TV channel talks about it in the sensc of turbulent time, the term turbulence
is acknowledged as an important aspect of life. From the CNN point of view
turbulence means "hurry, chaotic, difficult to predict”. It is so often that in ev-
cryday life an intuitive understanding of turbulence is adopted in different sense.
Not surprising if what ”other part of the world” understands about turbulence is
somewhat similar to what is understood by scientists and engineers. The above
mentioned "turbulent tirne” is one of many examples.

According to Oxford dictionary, "hurry” is a kind of cagerness to get a thing
done quickly, or great urgency of movement. From physical view point hurry
might be related to irregular or something that can be associated with hurri-
cane. Chaotic is the most common fcature of turbulence which is associated with
disorderly. The third of the characteristic properties, difficult to predict: it is
the most distinguished behavior of turbulence. It is well known among the CFD
community that turbulence is a phenomenon with several characteristics, that
are very difficult to predict. Many scientists and engineers have dedicated their
life to develop a theory for turbulence. Although large progress has been made,
more research is still nceded. Not to be pessimistic, the necessity of having a
universal turbulence model is like a pursue of a universality in heavenly diver-
sity. It is therefore not surprising that Rotta [94] expressed his opinion about
a turbulence model: ”A really universal turbulence model is a dream and will
be a dream possibly forever”. A similar remark, which is attributed to either
Sommerfeld, Einstein, and Feynman, says: ” Turbulence is the last great unsolved
problem of classical physics”. To some extent in view of an optimist, this can in
part be disputed by the fact that great improvements have been achieved in the
last few years by both experimental and computational research, thanks to the
developments in supercomputers and new experimental techniques.

Convection is a mode of heat transport associated with the flow of fluids. The
word convection has its roots in the Latin verbs "convecto-are” and ”conveho-
vehere”, which mean to bring together or to carry from one place to another,
Bejan [2]. It is often referred to as free or natural convection when it is caused
by density difference in gravitational field. The natural term emphasiscs that the
convection occurs duc to neither an imposing flow nor an external intervention.
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Temperature difference in a cavity causes a difference in the density of fluid par-
ticles, i.e fluid with higher temperature would be less dense while cold fluid would
be more dense. Due to the gravitational force, dense particles move downward
and light particles move upward. This process happens over and over again, and
that is how the natural convection in a cavity occurs.

If the ratio between the convective (inertial) force and the viscous force is
low, the flow is considered to be laminar. On the other hand when the ratio is
sufficiently high the process becomes turbulent. An example of natural convection
in our daily life, especially in a four season country, is a heating system of a
house. Moreover, natural convection also occurs in the atmosphere, for instance
motion of hot air from subtropical region to the neighboring areas, motion of air
(wind) from sea to land and vice versa. Apart from the temperature difference,
the density difference can also be caused by concentration difference between
chemical species. Example is motion in sea due to salinity difference of the sea
water.

When flow is driven by an imposed external force -usually a pressure difference
and the presence of buoyancy is negligible, it is regarded as forced convection.
When the imposed force and buoyancy are comparable, the flow is referred to as
mixed convection. Example is a convection in rooms due to heating or during
summer time, where for comfort reason, windows are opened allowing external
air to enter or a cold air is injected into a room through vents. Other example is
an air conditioning system that supplies cold air jet in providing thermal comfort.

1.2 Computational Fluid Dynamics

1.2.1 Why CFD

It is difficult to imagine what wold be our present knowledge of turbulence with-
out computational fluid dynamics, by which turbulence is studied with the aid of
computer hardware and software. Though the Navier-Stokes equations that gov-
ern the fluid flow have been known since the nineteenth century, turbulence theory
advanced very slowly until the significant computer resources became available.
The slow development was not only due to the limiting accuracy of experimental
apparatus, but also due to the fact that many turbulent flows are too expen-
sive or even impossible to access by the existing experimental techniques. When
cxperimental problems exist, CFD is an alternative to investigating turbulence.
While it is true that CFD will never replace the role of experimental study, it re-
duces some part of expensive work and possibly gives an insight and guidelines to
experimentalists to a better and more effective design of their work. Recent devel-
opment in advanced techniques, such as supercomputers for CFD and laser-based
as optical measuring technique in experiment, has improved the way turbulence
is studied. This parallel development is likely to accelerate better understanding
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of turbulence.

The seemingly rapid development of computational study as compared to ex-
periment can be attributed to several reasons. First, the availability of computers
has attracted many researcher to employ this resource in turbulence modelling.
Sccond, in the computational approach there is a huge flexibility in modifying
geometry and boundary conditions. Moreover, measuring cquipment with high
precision is not only expensive, but also often cannot be used in certain flows.
Another reason is the difficulty to modify the experimental sct up, for example
to change Raylecigh numbecr, since such a modification requires great cffort.

Experimental data are practically always used for validation of computational
studies. The reason lies not only because they are result of direct measurement,
but also due to "psychological™ real life reflection of the experiment. However.
experiments hardly ever provide all information we would like to have, and it is
therefore reasonable to give more research attention to CFD.

1.2.2 Why RANS

There are three different approaches by which computational fluid dynamics is
conducted: Direct numerical simulation (DNS), Large eddy simulation (LES),
and Reynolds averaged Navier-Stokes equation (RANS). Each approach intro-
duces some advantages and disadvantages over the other and therefore it is diffi-
cult to judge which one is the most appropriate approach in computing turbulent
flows. Instead, one approach is more suitable in one casc while the other is more
appropriate in other conditions.

Properties of a turbulent fluid flow, such as velocity, pressure, and temperature
and their variation in space and time, can be captured by numerically solving the
Navicr-Stokes equations. The calculation of the instantancous turbulent variables
can only be donc by direct numerical simulation (DNS). Since such a calculation
uses no approximation, the results are assumed to represent the real feature of
turbulence which can be used for validation research of both the modelling and
experimental work. In fact, DNS can calculate the complete turbulent budget
that often can not be accessed by experiment, and therefore new ideas and theory
can be evaluated.

However, despite advances in computer technology and in simulation meth-
ods, it is still not feasible to perform DNS for turbulent flows occurring in most
engineering applications. This is duc to the fact that all turbulence scales, which
range from large scale of the size of the flow gcometry to the smallest scale, must
be resolved in the numerical grid with the high order of computational accu-
racy. As the smallest scale that must be resolved is in the size of O(n), where
n= 3/ )74 is the Kolmogorov scale, such a simulation nceds a very finc mesh.
As an illustration of how fine the mesh should be to resolve the smallest scales by
different differencing schemes, we quote here some requirements for mesh spacing.
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A second order central differencing scheme requires mesh spacing 0.267, fourth
order of central differencing scheme needs 0.95n, while Fourier spectral scheme
requires mesh spacing about 1.57. One can say that the lower the order of the
differencing scheme, the smaller the mesh spacing. In other words, lower order
schemes need greater resolution. In addition, the number of grid points of the
computation domain depends on Reynolds number. The number of required grid
points NN, is proportional to Re®/% and the number of numerical operations Nop is
proportional to Re''/4. According to observation on the computer development,
the speed of computer becomes twice faster in every one and half year, known as
Moore’s law. If this trend continues to hold true, it will be possible to perform
DNS of flows for ten times higher Re number within the next 15 years. It is
therefore wise not to expect a giant leap in DNS in the near future. Therefore,
DNS will remain available for only relatively low Reynolds numbers and sim-
ple geometries. Yet, DNS data can serve as a basis for model and experiment
validation.

In order to overcome the drawback of DNS, other approach that offers at-
tractive solution is Large Eddy Simulation. LES resolves only large scales as the
major target of calculation, while the small scale or subgrid-scale motion is mod-
elled. The main argument behind LES is that most transport of momentum or
energy are carried out by large eddies, while the small eddies do not contribute to
the transport process significantly. Hence, LES requires relatively coarser mesh
spacing and thus needs less computer resources. It is a fact that important heat
transfer process in turbulent natural convection mostly occurs at near-wall re-
gion. Unfortunately, the size of the large scale eddies in the near wall regions
of a turbulent flow is as small as the size of small scale ones. And inevitably,
simulation of turbulent natural convection must put high attention on the treat-
ment in this regions, including how to create proper mesh. As a result, LES also
employs large number of grid points which is still expensive for most industrial
applications.

Turbulence models based on Reynolds Averaged Navier-Stokes Equation have
been widely used by most industrial community and university researchers. The
reasons are primarily for the practicality and computer resources availability. Foe
most engineering problems, calculations using RANS model are considered to be
sufficient, while the availability of computers at the recent days is adequate for the
RANS based models. It is well known that turbulence quantities calculated using
models based on RANS approach are only approximation of the real turbulence.
This is due to the fact that RANS relics on the statistical averaging rather than
treating instantaneous properties of turbulence fluid flows. With the statistical
approach, one can approximate the turbulence in simpler way and solve flow
problem with much less effort. Since most enginecrs need only the mean field
properties, the RANS approach has been well accepted by industry.
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1.2.3 Turbulence model

Turbulence modelling has received a lot of research attention by industrial com-
munities and universities in the past years. Some CFD users, for the sake of
practicality, have been satisfied with the available models, while others, cspe-
cially ones who really put lot attention on the quality of model performance, have
looked for better models. In spite of successful application of existing models,
in many situations some shortcomings and deficiencies still exist. Despite con-
siderable progress in modelling the turbulence, more research attention should
be directed towards developing more fundamental formulation so that the gen-
cral behavior of turbulence can be better reproduced. A robust and sufficiently
accurate prediction is the main challenge for turbulence models.

Turbulence modelling has its roots in the Reynolds averaging which introduces
new unknown quantities. These are called Reynolds stresses and turbulent heat
flux and this quantities make the Navier-Stokes equations no longer a closed
system. In order to calculate the Reynolds stress and turbulent heat flux, a
model should be developed. The turbulent viscosity hypothesis that relates the
Reynolds stress to the velocity gradients is the first known turbulence model.
This proposal was relatively successful for very simple flows, but its applicability
is very limited. Improvement is proposed by introducing two equation models,
such as k — £ model, in which the model transport equations are solved for two
turbulent quantities, namely turbulent kinetic encrgy k and its dissipation rate
¢. Here, the turbulent viscosity is independent to any a priori prescription in
form of bulk flow parameters. As a result, the range of applicability is much
wider. In addition, the k — & model is relatively simple, and has been tested in
many engineering applications. However, the model has revealed a number of
shortcomings and deficiencics. Those are poor performances whenever the stress
transport is important, insensitivity to the orientation of turbulence structure and
anisotropy of normal stress, inability to account for extra-strain and so on. In
order to overcome the limitation of the model, higher level of modelling approach
is proposed. The task is conducted by introducing further diffcrential equations
that describes the relation between the Reynolds stress and the turbulent heat
flux and the mean quantities. This approach is known as the second moment
closure model, which is considered as the highest model level in RANS approach.

A turbulence model is considered to bc a good model if it possess features:
generality, physical meaning, simple, and suitable for incorporation into numer-
ical code. Generality refers to the applicability of the model to any turbulent
flows in addition to basic flows, in which the model was calibrated. The model
must also work for a wide range of turbulence levels, from very weak to strong
turbulent flows. In addition, the model should be based on physical conception
of turbulence structure expressed by the mathematical formulation. The model
must be as simple as possible but without leaving out any important factors, and
should be suitable for incorporation into a numerical code. Ideally, any turbu-
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lent model should be robust to available solution method and mesh. However
this requirement is hard to fulfill by the existing turbulence models. The reason
is that turbulence takes place almost everywhere ranging from simple to very
complex geometries, and with various levels from very low to very high turbu-
lence intensities. Indeed, it is not expected that one simple model can perfectly
compute any turbulent flow. Alternatively, a moderately sophisticated turbulent
model that can be applied in any kind of flows with considerable performance
is demanded. Of course, that kind of model will not fit perfectly in every case.
However reasonable results must be predicted. Therefore a trade off between
model’s complexity, robustness, application and accurateness is unavoidable, the
priority is given to aspects that are most important in the case considered.

1.3 Objective of the study

The aim of this study is to expand and improve a turbulence model for flows
driven or affected by thermal buoyancy, which would be applicable to a range of
problems encountered in engineering and nature. At the early step, a new second
moment closure turbulence model is developed based on the work of Hanjalié
and Jakirli¢ [43] for Reynolds stress model and the work of Dol et al. [26] for
scalar flux model. In this study, attention is given to the buoyancy effects. The
buoyancy is introduced in the Reynolds stress equation and in pressure strain
correlation. Moreover, a reduction in the complexity level of previous model is
also the aim of the study. The first objective is to simplify the turbulent heat flux
model of Dol et al. [26]. The main purpose of this modification is to reduce the
complicated model of the pressure scrambling into moderate model by cutting
out insignificant terms, and optimising the important terms in order to maintain
the performance of the model. The model is then applied to one of the generic
flow cases, namely natural convection in a vertical channel heated from the side.
For completion, algebraic calculation based on the second moment closure model
is also studied and comparison is made with the full differential model.

Despite its success, it is recognised that the second moment closure model is
indeed more complicated than the standard k — & model. Since most industries
have been using the k& — £ model, and are still reluctant to employ the second
moment closure model, it is for practical reasons that this study to focus on
enhancement of the £ — ¢ model with an elliptic relaxation equation. The model
is first introduced by Durbin [28] known as k—¢ —v2 — f model. In this approach,
the Reynolds stress is calculated using the modified Eddy Viscosity Model in
terms of v2, k and e, while heat flux is calculated by Algebraic Flux Model. The
effect of buoyancy on the Reynolds stress is accounted by buoyancy terms in the
extended EVM.

The proposed model (k—e—v2— f—82) is tested in several types of flows rang-
ing from simple infinite vertical and horizontal channel to real life free and mixed
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convection. The application of the model covers a range of Rayleigh numbers,
from Ra = 5 x 108 for vertical channcl to Ra = 5 x 101° for three-dimensional
enclosure. For validation purposes, experimental data are used to test the model
performance. In addition, comparison is also made with direct numerical simu-
lation data which are available in the literature and are relevant to this study.
In order to demonstrate its wide range of application, the model was applied
to turbulent mixed convection, which is relevant to many practical engineering
problems. Two different mixed convection cases have been studied:

(i) Mixed convection in an two-dimensional enclosure with supply and exhaust
in stable thermal stratification; the case is matched to the experimental
study of Blay et al. [4] and numerical study of Murakami et al. [79], and

(ii) Indoor-climate mixed convection under summer cooling condition.

1.4 Outline of the thesis

This book consists of seven chapters: Introduction, Literature review, Survey of
relevant models for turbulent buoyant flow, Advancement and improvement of
models, Application of the model for turbulent natural convection and Applica-
tion of the model in mixed convection under summer cooling condition.

After some introductory material in Chapter 1, Chapter 2 presents a review
of the phenomena of turbulent natural and mixed convection, and of turbulent
closures with reference to previous related studies. The focus is given on the re-
view of development in turbulence modelling, followed by discussion of advantage
and disadvantage of different approaches.

Mathematical description of turbulent flows is discussed in Chapter 3. The
first part summarises the governing equations and Reynolds averaging technique
used. A brief discussion of transport equations for turbulent kinetic energy and
dissipation rate is also given, followed by a review on several versions of eddy
viscosity and diffusivity models. A close look at turbulence modelling is given by
discussing the transport equation for the Reynolds stress. Attention is also paid to
transport equation for turbulent heat flux, temperature variance, and dissipation
of temperature variance. In addition, algebraic models are also shortly reviewed.
Here the budget of Reynolds stress and turbulent heat flux are discussed.

Chapter 4 presents the proposed second moment closure and algebraic & —
€ — v2 — f — 62 models. In the mechanical part of the second moment closure
model, attention is paid to thc enhancement of the pressure-strain correlation
and in the dissipation rate equations. In the thermal part of the second moment
closure model, the focus is given on the pressure scrambling term, which is one
of the main targets of the modification. To closc the chapter, a comprehensive
discussion of the proposed k — e — v% — f — 82 modcl is given.
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Chapter 5 reviews the computational method used. A short discussion is given
on control volume methods, collocated grid arrangements, differencing schemes,
and discretisation procedures. In the last part of this chapter, application of the
numerical method in unsteady state laminar natural convection is presented in
order to test the accuracy of the method.

Applications of the second moment closure to turbulent natural convection in
vertical channel is given in Chapter 6. In order to validate the turbulence model,
comparison is made with DNS data and previous second moment closure model.
The focus is then given on the application of the k — & — v2 — f — 62 model in
turbulent natural convection heated from side and heated from below. In the
case of heating from the side, several flow cases are presented: vertical channel,
2-D enclosures of different aspect ratios, followed by comparisons with several
experimental data. Moreover, application of the proposed model in turbulent
natural convection in a cubical enclosure is presented and comparison is made
with experimental study of Opstelten [85]. The last part of this chapter reviews
the application of the model in turbulent natural convection heated from below.

Chapter 7 provides a discussion of turbulence mixed convection. Here two
different cases are presented: 2-D mixed convection in stably stratified fields, and
3-D mixed convection under summer cooling condition. The latter case is the
real application of numerical simulation in practical engineering design, where
ventilation system in summer time or air conditioning system are the major
means for providing the thermal comfort for human.




CHAPTER 2

Literature Review

2.1 Overview

In the last few decades, there have been a large number of studies of natural
and mixed convection. Numerical studies on the subject have attracted much
rescarch attention following rapid increase in the computer power. This is also
motivated by the fact that natural and mixed convection have important techno-
logical applications. Some of the applications are thermal insulation of buildings
using double glass air gaps, heating and cooling system in rooms. nuclear reactor
systems, electronics compartment system, solar energy collectors, indoor-climate
optimisation, smoke dispersion and others.

This chapter presents a literaturc review on recent computational and exper-
imental studies of natural and mixed convection in enclosures. The focus is given
on several studics of turbulence closurce that are closely related to the current
work. This includes studies of modelling of transport terms, pressure correlation
processes, and the ncar wall treatment in k — ¢, algebraic and differential second
moment closure models.

2.2 Convective flows in enclosures

There have been a number of reports on experimental and numerical studics of
laminar natural convection in two and three dimensional enclosures, which were
aimed at serving as benchmark cases. Examples are numerical studies of de Vahl
Davis [22], Lankhorst and Hoogendoorn [51], and Leong et al. [72]. An important
trend has been the stcady increase in level of the Rayleigh number considered.
Some studies have taken into account the effect of partitions in the cavities, see
Nansteel and Greef [80]. In addition, attention has been given to heat transfer
modification due to change of inclination between the imposed heat flux and the
gravitational orientation, Hamady et al. [40] for two-dimensional enclosure and
Kenjeres [60] for three-dimensional enclosure.

Leong et al. [72] performed an experimental study on a physically realizable
benchmark problem in internal natural convection. He argued that, despite the
interest as a benchmark problem, the adiabatic boundary conditions are consid-
ered physically not realisable. In that study, the natural convection in a cube
was set up with two opposing isothermal walls and the remaining walls having a
lincar temperature variation from the cold wall to the hot wall. The argument

9



10 Chapter 2. Literature Review

was supported by the study of Le Quere [69] who conducted a study of the square
thermally driven cavity at high Rayleigh number. Leong et al. [72] and Le Quere
[69] concluded that benchmark problems should be physically realisable.

A significant research attention has been given to convection resulting from
thermal buoyancy, while convection due to purely concentration buoyancy have
received less attention. Similarly, a lot attention is given to situation where
combined buoyancy effect due to temperature and concentration gradients exist.
Van der Eyden et al. [100] reported results of numerical and experimental study
of turbulent double-diffusive natural convection of a mixture of two gases in a
trapezoidal enclosure with imposed thermal stratification. The turbulent fluxes
of momentum, heat and mass were modelled by standard and low-Re-number
k — ¢ eddy diffusivity model with inclusion of thermal and mass buoyancy. It
was shown that the computed mean velocity, temperature, and concentration
agreed quite well with the measurement. Numerical study of the dynamics of the
temperature and concentration fields in simulated salt-gradient solar ponds was
reported by Hanjalié¢ and Musemié [47]. The method of simulation employs a two-
equation model of turbulence with variable turbulent Prandtl-Schmidt numbers,
modified to account for thermal and mass buoyancy. Good agreement between
the computed results with several sets of experimental data is obtained. Study
of computational modelling of double diffusive flows in stratified media is con-
ducted by Armitage [1]. Here, two-layer modelling strategy was applied to a
one-dimensional double diffusive flow. The calculation for the near wall region is
conducted by using a buoyancy extended low-Reynolds number model that has
been interfaced to the high-Reynolds number second moment closure model for
flow in the core of the enclosure.

During the past three decades experimental studies of natural convection
in enclosures heated from sides have been reported by a number of authors.
Cheesewright et al. [9] presented data on heat transfer, velocity, and velocity
fluctuation for turbulent vertical boundary layers of a large air-filled cavity (5: 1
aspect ratio) at sufficiently high Rayleigh number (Ra = 5 x 108). Olson et al.
[84] performed experiments on three-dimensional natural convection in empty and
partitioned enclosures. Their experiments indicated that at Rayleigh number up
to 3 x 10'° the boundary layers are still laminar. Opstelten et al. [86] presented
experimental data of velocity and velocity fluctuations for turbulent boundary
layers. They have shown with flow visualisation, that the resulting experimental
boundary conditions obtained with optimal insulation at horizontal walls show
different flow structures when compared to numerically predicted adiabatic case.

Convective transport under the combined influence of buoyancy force and
external imposed flow, known as mixed convection, occur in many practical ap-
plications, and hence this type of flow has also received a lot of research attention.
Neiswanger et al. [82] conducted experimental study of high Rayleigh number
mixed convection in a rectangular enclosure. The experiment was performed in
a small-scale test section with uniformly heated vertical side walls and adiabatic
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remaining walls using water as the test fluid. Kasagi and Nishimura [59] per-
formed a study of direct numerical simulation of combined forced and natural
turbulent convection in a vertical plane channel. The Reynolds number based on
the chanmnel half-width and friction velocity was 150, while the Grashof number
based on the channel width and the wall temperature difference was varied up to
1.6 x 10°. It was shown that the buoyancy force has a substantial effect on the
near wall force balance, which governs the distribution of shear stress. Numeri-
cal study of laminar mixed convection in a horizontal square channel with heated
side walls, at Reynolds number Re = 500, and the Grashof number varied around
Gr = 10°, was conducted by Sillekens et al. [97]. The computed velocity was
validated with result of particle-tracking experiments, while that of temperature
was compared to liquid crystal measurements. It is shown that the numerical
results agree quite well with the experimental data.

2.3 Turbulence closure studies

There have been many numerical studies relating to turbulence models, and more
recently a very advanced sccond moment closure models have been developed. It
is well rccognised that the turbulence closure problem is very challenging, and
thereforc a lot of efforts have been devoted to development and evaluations of
turbulence models. Generally, such models give a global overview of behaviour of
turbulence flows in a wide range of situation and practical application. Impressive
progress has been made, but until now it is very difficult to find a model that is
both accurate, sufficiently general and robust.

One of the earliest works dealing with turbulence closure was that by Rotta
[94]. who suggested that transport equation of Reynolds stress could be derived
in an exact form but contains terms that must be modelled to close the system.
Specifically, the work was about modelling the pressurc strain correlation. Monin
(78] reported a model for pressure temperature gradient correlation that appears
in heat flux transport equation. Extcnsion of those models was made by Gib-
son and Launder [37] by introducing cffects due to buoyancy in both pressure
correlation processes. Rodi[91] proposed an interesting and uscful algebraic sim-
plification to Reynolds stress model. The primary purpose of this simplification
was to reduce the computational complexity of solving the differential transport
equation for the Reynolds stress tensor. In the algebraic model the pressure
strain correlation is still retained, with an assumption that the total (convective
plus diffusive) transport of the Reynolds stress is proportional to the convec-
tion and diffusion of the turbulent kinetic encrgy. Similar approach was made
to reduce the transport equation for heat flux into algebraic flux model, Gibson
and Launder [37]. Although the model exhibited some limitations, especially
when convective and diffusive transports are very important, it appeared to be
relatively acceptable for several flows types.



12 Chapter 2. Literature Review

Unlike the standard k — € model which is relatively simple to solve, Reynolds
stress models contain large number of partial differential equations and coeffi-
cients, by which several effects such as buoyancy and anisotropy are taken into
account without ad hoc treatment. With that, Reynolds stress models can over-
come some of deficiencies that appear in simpler models. In recent years, many
Reynolds stress and heat flux models modifications have been proposed and a
number of computational studies have been carried out. Lumley [76] recom-
mended the direction in which in order to obtain accurate prediction, modellers
should focus on extending linear pressure strain models by including higher or-
der terms. Following the works of Shih and Lumley [96] and Fu [36], Craft
[18] extended models to derive pressure-strain and pressure-temperature gradi-
ent correlations which contain cubic order terms. With this model, the need for
empirical wall reflection terms which are normally added in order to account for
the incorrect behaviour of pressure correlations terms near a wall is avoided. It
was shown that by including buoyancy and higher order terms in the pressure
correlations, satisfactory prediction of turbulent fields in several flows including
separating and impinging flows are obtained.

Peeters and Henkes [89] performed a numerical study on turbulent natural
convection boundary layer along a heated vertical plate, using both full differen-
tial stress and algebraic models. Several model functions are modified in order to
obtain better prediction in the near wall region. The pressure strain is modelled
using the return to isotropy assumption of Rotta [94], while the diffusion term is
calculated through generalised gradient diffusion model of Daly and Harlow [21].
In order to accurately capture the near-wall turbulence fields, wall correction
term of Gibson and Launder [38] was used. This study showed that some RSM
constants are very influential for overall predictions, while others are important
only in thermal field. This analysis of the RSM coefficients is very important
since it gave the overall view about the behaviour of terms in the second mo-
ment closure model of natural convection boundary layer along a vertical plate.
They reported that Reynolds stress model is superior to the algebraic model, as
local equilibrium assumption is not always valid. Craft et al. [19] used a cubic
eddy viscosity model of turbulence in order to improve performance of linear and
quadratic stress strain correlation model. Despite its complexity, the model has
shown consistently better than the lower order model over a range of flows, from
simple shear at high strain rates and pipe flow, to flows involving strong stream-
line curvature and stagnation. Because of very specific features of the near-wall
turbulence in buoyancy driven flows, several authors focused on modifying the
model for near wall behaviour. An example is the model of Hanjali¢ and Jakirlié
[44]. In principle, this model is a modification of high-Re number model, to ac-
count for the vanishing near wall Reynolds number, wall blocking effects, strong
inhomogeneity and large stress anisotropy. The obvious extension of the high-Re
number model to low-Re model is the idea of using the model function in terms
of stress invariants and turbulence Reynolds number to capture near wall be-
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haviour. The wall effect is accounted for through coefficients, expressed in terms
of anisotropy invariants for the stress and dissipation rate. The model is applied
to many flows and produced a significant improvement in predicting turbulence
fields, particularly in the ncar wall region. In the later version Jakirli¢ and Han-
jali¢ citeJakirlic02, the model is modified by using homogeneous dissipation rate
, which is free from any wall configuration parameters. This new approach has
been applied to flows in a pipe, plane channel, constant pressure boundary layer,
behind a backward facing step and in an axially rotating pipe. all showing good
near wall behaviour.

Dol [27] conducted numerical study on turbulent natural convection in dif-
ferentially heated tall cavity for a range of Raylcigh numbers. He adopted the
model of Hanjali¢ and Jakirli¢ [44] for pressure strain correlation and dissipation
rate, while the model of the thermal part for the pressure scrambling based on
the model of Craft [17]. For validation purpose, Dol [27] used Dircct numerical
simulation of Nicuwstadt and Versteegh [83]. With the availability of term by
term DNS budget, the task is quite successful. It is worth to mention that the
important aspect of his model is in proper prediction of cocfficients based on term
by term modelling of the pressure scrambling term.

While the second moment closure has demonstrated its superiority over sim-
pler models, it has often suffered from numerical difficulties that hinders its wider
application to industrial flow computations. The difficulties are mainly caused by
loose coupling of the mean velocity and turbulent stress field. For more detail, a
comprehensive review about higher turbulence closure and numerical implication
can be found in Hanjali¢ [42]. In order to expand the use of turbulence model to
research communities and industry, a moderate complexity of turbulence model
is desired. An example is the work of Kenjeres [62] who used low-Re number k —¢
and AFM model in turbulent natural convection. In the threc-equation model,
turbulent kinctic energy k, its dissipation rate ¢, and temperature variance 62
arc solved, while in the four-cquation model one additional transport equation is
solved for the dissipation rate of the temperature variance 4. In the former case,
€g is calculated using algebraic relation for the ratio of thermal to mechanical
time scales, which is assumed to be constant. The model is applied to flows with
different geometries ranging from generic flows in enclosure, in annuli, in real
three dimensional configurations, and in flows under the influence of magnetic
field.

Finally, Durbin [28] proposed an elliptical relaxation method in the frame-
work of the eddy viscosity hypothesis. This approach is aimed to account for
near wall behaviour. Wall treatment in a low-Reynolds number model is usually
provided by introducing damping functions. Such dumping functions are derived
on ad hoc basis and are often unsatisfactory. Because such a trcatment is often
conducted with the use of parameters dependence on wall distance, their gener-
ality is limited. It is obvious that any model possessing wall distance dependency
is less preferable, because it is difficult to be used in complex flows and hence
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it is not suitable for industrial applications. In this approach, computation is
conducted by solving k and £ with one additional transport equation for the new
velocity scale v2, and an elliptic equation for the relaxation function and therefore
known as k — ¢ — v2 — f model. The equation for v2 can be derived from the
transport equation for the wall normal Reynolds stress component and it can be
used to account for anisotropy of the flow in the near wall region. The elliptic
relaxation approach allows an integration of equations up to the wall and hence
the eddy viscosity is correctly damped without using damping function.



CHAPTER 3

A Survey of Relevant Models of Turbulent

Buoyant Flows

3.1 Introduction

This chapter presents a review of fundamental principles and mathematics that
have served as a basis for studying of the turbulent convective flows driven or
affected by thermal buoyancy. The beginning of the chapter reviews the general
partial differential equations of conscrvation of mass, momentum and energy that
govern the fluid flows and their averaging. This is followed by the discussion of the
basic turbulence models of different levels, starting from the eddy-viscosity type
to Reynolds stress models, followed by the outline of the equations for turbulent
kinetic energy, and its dissipation rate. In addition, a brief review of the problem
of closing the equations, known as turbulence closure, is presented. Next, we
discuss the problem of modelling the transport equation for heat flux and for
the temperature variance. This chapter also presents the truncation approach
to the transport equations for Reynolds stress and turbulent heat flux which
leads to algebraic stress/flux model. In the context of algebraic models, the
weak cquilibrium hypothesis is discussed. The details of the proposed model are
presented in Chapter 4.

3.2 Governing Equation and Review of Models

Turbulent fluid flow and heat transfer are fully defined by the equations for
conservation for mass, momentum, and energy for the instantaneous motion. The
conservation of mass equation, which is commonly referred to as the continuity
equation, is:
op  0pU;
Lo 9P (3.1)

ot T om

where p is the density, U, is velocity vector and
values. Momentum equation reads:

N A n

denotes instantaneous
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where p is fluid viscosity and F; is the body force acting on the fluid. The
general momentum balance of equation (3.2) describes the motion of fluid driven
by body force E}, pressure gradient and the strain tensor gradient. The equation
for energy conservation is derived from the first law of thermodynamics, and in
the absence of internal heat source it can be written as:

opT - 9T _ 9 (,u BT> (3.3)

ot iz, oz, \Proz,

In equation (3.3) the left hand side represents time-dependent and convective
terms, and on the right hand side is the rate of heat diffusion term.

3.2.1 The Reynolds-averaged Navier Stokes Equation

Introducing the Reynolds averaging and Boussinesq hypothesis for the buoyancy
force, equation (3.1)-(3.3) can be written as:

Op | OpU;
5+ oz; =0 (3.4)

OpUs 1y OpUs _ 0P | 0 [ (00 (OU\ o)
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The averaged equations, known also as the Reynolds Averaged Navier Stokes
(RANS) have the same form as the instantaneous equations (3.2)-(3.3), with the
exception of the new unknown quantities, the second-moments %;%;, and fu;, the
former being the Reynolds stress tensor and the latter the turbulent heat flux
vector.

3.2.2 Eddy viscosity models

In order to close the averaged equation, the unknown variables %;%; and fu; have
to be provided. The auxiliary algebraic or differential equation set that provides
these quantities are commonly known as a turbulence model. The level of turbu-
lence modelling ranges from very simple to very sophisticated ones. The simplest
approach is based on eddy viscosity/diffusivity concept, where the Reynolds stress
and heat flux are expressed in terms of averaged ("mean”) velocity and temper-
ature gradient, respectively, i.e.:

oU; | oU;
(3_551 + &,«j)

TG = - kdij — 1

- (3.7)
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T — v, OT
b= O a(l,'i

(3.8)

where g; denotes the turbulent Prandtl number. The eddy viscosity is a tur-
bulence parameter and should be defined in term of turbulence quantities. On
dimensional ground, the eddy viscosity can be defined as:

v x VL (3.9)

where V and L are the turbulence velocity and length scale, respectively. By
specifying suitable values of the velocity and the length scale, the system is
closed. There have been munerous ways to model the eddy viscosity. The closure
level of the eddy viscosity model is related to the manner in which the velocity
and length scales are defined. It is common to relate the eddy viscosity with
measurable quantities that can be interpreted physically. The square root of the
turbulent kinetic energy has been used as the velocity scale, i.e.

v = C,Lk? (3.10)

This leads to the requirement for solving the transport equation for the turbulent
kinetic energy &. The definition of the length scale is less obvious. The most com-
mon approach is to use the length scale of the energy containing eddies unaffected
by fluid viscosity (high Reynolds number assumption), which can be defined on
pure similarity arguments and dimensional analysis in term of turbulent kinetic
energy and its dissipation rate L o« k¥2/e. In this case the cddy viscosity is
defined as:
k2
ve=Cur (3.11)

where the coefficient €, equals to 0.09. This value of C, arises from the as-
sumption of turbulence cnergy equilibrium. For low-Reynolds number and near
wall flows when the integration is conducted up to the wall, the high-Reynolds
number approach needs to be modified. The conventional modification involves
one or more damping functions. For the eddy viscosity models usually a function
Ju expressed in terms of turbulent Reynolds number is added to equation (3.11),
Jones and Launder [57]. Despite its relatively simple formulation, the model
works quite well for most near-cquilibrium flows. Unfortunately, in most real
flows of practical relevance, eddy viscosity is usually anisotropic.
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3.2.3 Turbulent kinetic energy and dissipation-rate equations

The exact transport equation for the turbulent kinetic energy k=0.5 w%;w; reads:
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where terms in boxes: turbulent diffusion, pressure diffusion, and dissipation rate
need to be modelled, while the remaining terms can be treated in their exact form.
The pressure diffusion is usually modelled together with the turbulent velocity
diffusion using a simple gradient diffusion hypothesis:
DL =

v Ok
k™ 0z, \ ok Oz

This leads to the final form of the model transport equation for the turbulent
Wy ok

kinetic energy:
[(” * a—k) a—]

The exact transport equation for the dissipation rate of the turbulent kinetic
energy can be written as:

0

(3.13)
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where terms in the boxes: turbulent diffusion, pressure diffusion, productions and
destruction need to be modelled, while the only term that can be treated in the
exact form is the viscous diffusion. For modelling the turbulent diffusion of &
due to velocity fluctuation, the simple gradient diffusion hypothesis of Daly and
Harlow [21] is often employed:

p = (”—‘ﬁ) (3.17)
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where ¢, is the turbulent Prandtl number for ¢ for which most authors take
o = 1.3.

For high Reynolds number flows, the "mixed” production P.; and P, are
negligibly small. The main production of ¢ is attributed to P.,, while the major
destruction is Y;. It is worth to mention that the difference between P, and Y is
roughly balanced with the diffusion transport terms. These two dominant terms
are usually modelled together:

&

Ps4+Y:k

(Cer P — f:Cepe) (3.18)

For high Reynolds number model the standard value of f, is 1. However for low
Reynolds number model Jones and Launder [57] introduced f. as a function of
turbulent Reynolds number Re,:

f- =1 —0.3exp(—Re?) (3.19)

The buoyancy term G, is modelled in a similar form as its analogous in the
transport equation for the turbulent kinctic energy:

€
Ge = — "s3ﬁgi0uiE (3.20)
The model transport equation for the dissipation rate becomes:

de UBs
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where C;; equals to Ces.
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3.3 Second Moment Closure

The two equation models, and among them the most popular £ — £ model, are
the most widely used for research and engineering application. A considerable
amount of work has been invested in testing of the k — ¢ model and a number of
modifications and improvements have been proposed, though with a limited suc-
cess. In many complex flows the restrictions imposed by equilibrium assumptions
inherent in of the k& — & model reduce its performance. These are the assumption
of the isotropic (scalar) turbulent viscosity, and the assumption of the propor-
tionality of the stresses to the rate of mean strain.

The Reynolds stress and turbulent heat flux that appear in momentum equa-
tion are the turbulence second moments for which exact differential transport
equations can be derived. These equations contain a number of terms that can-
not be treated exactly, but need to be modelled in order to close the equations.
The closure at this level is known as the second moment closure. Because the
second moments are now obtained by solving the model transport equations in
differential form, this closure level should provide more accurately prediction of
turbulence quantities than when using standard EVM and EDM such as &k — ¢
model. Several levels of second moment closures have been proposed, (see e.g.
Hanjali¢ [42]) The main difference appears in modelling the term involving the
correlation between the fluctuating pressure and velocity or temperature, for
which the simplest second moment closure use linear models with constant coef-
ficient in both Reynolds stress and heat flux equations.

3.3.1 Reynolds Stress Equation

For incompressible buoyant flow under the Boussinesq approximation, the partial
differential equation for the Reynolds stress tensor reads:
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where L;; is local time rate of change, and Cj; is the convection, Dy is the
viscous diffusion, ij is the turbulent diffusion by velocity fluctuations, ij is the
turbulent diffusion by pressure fluctuations, P,; is the mean strain production,
Gj 1s the buoyant production, ®;; is the pressure strain correlation, and ¢;; is
the stress dissipation rate. The terms in boxes need to be modelled.

Reynolds stress budget

In order to properly develop a turbulence model of Reynolds stress, it is useful to
study how the budget of the stress is distributed in some generic flows. Ideally,
a second monent closure model should reproduce cach term in the Reynolds
stress and scale providing equation, i.e the model should affect the budget of
the stress. Studying the budget discloses the importance of various terms and
difficulties in term-by-term modelling. As an illustration, we consider here the
stress budget for natural convection between two infinite vertical plates heated
from the side, using the DNS data of Versteegh and Nieuwstadt {102]. The
budget of the Reynolds stress i, 70, and wWw and shear stress Wo are shown in
Figs. (3.1)ab -(3.2)ab. Note that the adopted coordinate system is: x-horizontal,
y-vertical and z-spanwise direction. The corresponding velocity arguments arc
denoted as u = uy, v = uy, and w = u,. It is clear that the shear and buoyancy
productions appcar in the Reynolds stress budget of the vertical stress 7o. The
former is a consequence of the velocity gradient, while the latter is caused by
the vertical heat flux. It is worth mentioning that the production term for the
Reynolds stress 70 budget has a negative value in the ncar-wall region. However
this negative value is compensated by either the transport by velocity fluctuation
or the buoyant production, ensuring that 77 has always positive value. Note that
the pressure strain correlation ®;; is very influential not only in the near wall
region, but also in the far away from the wall. This term will be discussed in
more details in Chapter 4.

For the horizontal Reynolds stress wm budget, the transport by pressure fluc-
tuation and pressure strain correlation in the near wall region arc quite large and
almost in equilibrium. On the other hand, pressure transport is rclatively small
in the center region. Note that dissipation is important in the center region.
It is notable that transport by viscosity is very small, indicating small viscous
effect. For Reynolds stress ww budget, the pressure strain correlation and the
dissipation are almost in equilibrium, cspecially in the center region, while the
other components are very small. The budget of shear stress and the vertical
stress are similar. An interesting featurc of the shear stress budget is the balance
between the shear production and the pressure scrambling, and between buoyant
production and dissipation rate. Since the shecar production is more dominant,
the negative valuc of the shear stress in that region is still observed.
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Figure 3.1: The budget of stress 77 (a), w@ (b), in a side-heated infinite cavity at
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Figure 3.2: The budget of stress ww (a), and wv (b), in a side-heated infinite cavity
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3.3.2 Turbulent heat flux equation

The derivation of the transport equation for turbulent heat flux can be conducted
in analogous way to the Reynolds stress equation:
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The term on the left hand-side is the material rate of change (time rate of change
plus convection). On the right hand-side are the molecular diffusion Dj;, the
turbulent velocity diffusion Dg;, the thermal production P}, the mechanical pro-
duction P}, the buoyancy production Gy;, the pressure scrambling ®;, and the
molecular dissipation rate g¢;. It is clear that the mechanical and thermal pro-
ductions are exact and therefore need not be modelled. On the other hand, the
turbulent diffusion, buoyant production, pressure scrambling and the dissipation
which are shown in boxes, should be modelled. It is interesting that unlike in
the stress transport equation, even the molecular diffusion needs to be modelled
if Prandtl number Pr = v/« is different from 1. In general, the terms of the
transport equation of turbulent heat flux are modelled in the similar manner as
those in the transport equation for the Reynolds stress. Both transport equations
contain exact production terms, while the rest need to be modelled. It is noted
that the mean quantity in the Reynolds stress equation is only the gradient of
the mean velocity, while in the turbulent hecat flux equation it is the gradient
of the mean velocity and the mean temperature. These brings to a conclusion
that turbulent heat flux depends not only on the thermal field, but also on the
velocity field. Similar to the Reynolds stress equation, the pressure scrambling
in the budget of turbulent heat flux plays an important role (see e.g. Dol [27]).

Turbulent heat flux budget

The budget of the two components of turbulent heat flux for the side-heated
infinite vertical channel, fu and fv, are shown in Figs. (3.3)a-b. The most
distinguished feature of both budgets is their similarity in the sense that molecular
and turbulent diffusion are significant in the near wall region, while in the core
region they arc negligibly small. The difference between the two budgets is the
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Figure 3.3: The budget of the turbulent heat flux u (a) and v (b) in a side-heated
infinite cavity at Ra = 5.0 x 10° of Versteegh [102]: Dj;(—©~), Db, (-0-), Pi(— A
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absence of the buoyancy and mechanical production in the horizontal component.
In addition, the production of u is roughly balanced by the pressure scrambling
term. Similarly, the pressure scrambling term in fv is also balanced by the sum
of the thermal, mean-strain, and buoyancy production, especially in the region
far away from the wall. In the the near wall region all budget contributions are
influential. An interesting feature is observed in the shear production of fv where
it has negative value in the near wall region. The positive values of v is ensured
by the turbulent and molecular diffusion, which compensates the negative terms
in this region.

3.3.3 Temperature variance

In order to calculate the buoyancy generation Gp; in equation (3.23), the tem-
perature variance §2 must be evaluated. Temperature variance is an important
parameter that affects the whole thermal field. The transport equation for 02 can
be derived in a similar manner as for turbulent kinetic energy equation:

7 v S B T2
bt _ 0 a@— —60%u, —20uk£ - 2a( % ) (3.24)
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Equation (3.24) contains three terms: the diffusion, the production, and the dissi-
pation terms. The molecular diffusion and the production can be treated exactly,
whereas the turbulent diffusion and the dissipation rate need to be modelled. In
equation (3.24) one can notice the similarity of the corresponding terms in the
transport equation for the turbulent kinetic energy. In addition, several experi-
mental studies have shown that close similarity does exist between the budget of
k and 62, Sommer [98].

3.3.4 Algebraic stress and flux models

The full differential Reynolds stress/flux model presumes that equation for each
stress and flux are solved plus at least two equations for variables providing tur-
bulence scale. For a general 3-dimensional flow this involves in total 11 transport
differential equation in addition to the mean continuity momentum and energy.
This requires additional computer resources as compared with similar isothermal
flows. For buoyancy driven flows where temperature and velocity gradients in the
near-wall region are being of the main concern, a large number of grid points is
required if the near-wall flow fields needs to be well captured. In order to reduce
this complexity, it is useful to approximate the differential form of the transport
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equations of the Reynolds stress and heat flux. A common way to achieve this
is to truncate the differential Reynolds stress and turbulent heat flux equations
into algebraic formulation. As a result, only a few differential scalar transport
equations need to be solved and this is the best compromise between physical
representation and numerical robustness.

This simplification eliminates the convective and diffusive transport terms in
the Reynolds stress and turbulent heat flux equations (3.22) and (3.23). This
approach leads to an algebraic formulation of the Reynolds stress and heat flux
models and is known as Algebraic Stress Model (ASM) and Algebraic Flux Modcl
(AFM). Although the transport terms are truncated, the important redistribution
®;; and productions F;;, Gj; are still kept as in the full differential stress model.
Similarly, the important redistribution ®g;, productions P, Pt and Gy are
still kept as in the full differential flux model. In this approach, only major scalar
quantities need to be solved, these are turbulent kinetic energy, dissipation rate
and temperature variance, and thercfore ASM/AFM is considered as an extended
k — & model.

When the transport term of Reynolds stress is neglected, Duzi;/ Dt — D;; = 0,
u;u; can be expressed as a function of the nondifferential terms in the right hand
side of equation (3.22). The Reynolds stress reads (Rodi [92]):

2 1-0C: 2
iy = kb + 5 [t (P = 2Pay) + 122 (6 - 565,)] (329)

where Cy = 1.8, C; = C3 = 0.6. Equation (3.25) is called the reduced algebraic
stress model. In order to still account for the stress and flux transport and thus to
improve the model performance, Rodi [92] proposed to assume the proportionality
between the transport terms of Reynolds stress and turbulent kinetic energy k:

Dz D. _ Wiy

B>~ Dy = (P+G—e) (3.26)

Introducing equation (3.26) into the modelled Reynolds stress equation (3.22),
we obtain expression of full algebraic stress model similar to the equation (3.25):
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where C] = Cy + (P + G)/e — 1. Similarly, when the transport term of the heat
flux is neglected DM/ Dt — Dy; = 0, fu; can be expressed as a function of the
non-differential terms in the right hand side of equation (3.23). The algebraic
expression for the turbulent heat flux vector reads:

Ou; = —ng (u u,hg:,l + §9uk§U + r)g,[)’é)?) (3.28)
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Based on the assumption of "weak equilibrium”, Gibsg and Launder {37] ex-
tended Rodi’s idea to express the transport terms of fu; as a function of the
transport terms of k and 62, to derive an algebraic flux model:

DOu; Ou; D
Dr ~Du= (ezk)”2 [Dt(ezk)l/z - Dw_%)’”]
D§? 'Dk

Providing the transport of k and 62 by their sources, and substituting equation
(3.29) into the modelled heat flux equation (3.23), we obtain:

uiukgT + £0uk6—U— + 1g:00%
e -C; ¢ + 1 20uy or +e 1 TUs oU; + giB0u; + ¢ )
] E 2m ka Tx 2k i ka Gi t)

where Cy = 0.2, £ =1 — Cyg, and n = 1 — Cps.



CHAPTER 4

Advancement and Improvement of Models

4.1 Introduction

This chapter outlines the adopted models of various terms in the model equations
and describes the major contribution of this thesis. These novelties consist of:

(i) buoyancy extension of a low Re number second moment closures and its
truncation to algebraic form,

(ii) introduction of the "homogeneous” dissipation rate equation,

(iii) buoyancy extension of the elliptic relaxation model, resulting in the k —e —
v? — f — 62 model, and

(iv) proposal and comparative assessment of several variants of the ASM/AFM
models.

4.2 Buoyancy Extended Low-Re number Reynolds stress
model

Most industrial CFD codes use high Reynolds number models which do not have
any provision for accounting for near-wall viscous and blocking effects. In order
to bridge the near-wall viscous layer, wall functions are used to bridge the viscous
layer by providing flow parameter in the first grid point next to wall, which must
lic outside the molecular layer. Because it allows a relatively coarse grid, the use
of wall functions is very attractive for complex industrial flows at high Reynolds
and Rayleigh numbers where integration of equations up to the wall would require
a formidable computer resources. However, the common wall functions are based
on energy-equilibrium, constant shear stress and validity of the semi-logarithmic
velocity law in the ncar-wall layer and are inaccurate in more complex flows in
regions where the turbulence dynamics departs from the equilibrium conditions.
Although several attempts have been made to provide more general wall function
for wider applications in non-equilibrium flows and for forced convective heat
transfer, for examples by Chieng and Launder [12], Yuan [107], the results were
only marginally successful. For example, no reliable wall functions exist for flows
driven by thermal buoyancy.

29
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In order to overcome the problem, it is necessary to provide a model that
permits integration of the governing equations up to the wall and thus to use
exact wall boundary conditions. Such a model must mimic the flow behaviour
and its physics in the near-wall region which is affected both by molecular ef-
fects (viscosity, thermal conductivity) and non-molecular wall blocking effects.
This is achieved by introducing molecular and wall-blocking modifications to the
basic models developed for high Reynolds and Rayleigh numbers. The modi-
fications must satisfy various physical constraints such as two-component tur-
bulence limit at the edge of the viscous sublayer, and to capture the vanishing
turbulent Reynolds number when approaching a solid wall. As a consequence, a
low-Reynolds number model requires a very fine mesh in the near-wall region to
resolve very high gradients of most mean and turbulence properties, that leads
to a large number of grid points.

This chapter outlines a low-Re-number model for flows affected or driven
by thermal buoyancy. The near-wall modifications are especially important for
buoyant flows over heated and cooled walls because most interaction take place at
near-wall region and therefore it is important to capture accurately all turbulent
quantities in that region. We consider here in details the models of various terms
in the new low Re-number second moment closure for buoyancy-driven flows.

4.2.1 Pressure strain correlation in the Reynolds stress equation

A considerable attention has been given in the literature to modelling the pressure-
velocity correlations because this term plays an important role in the turbulence
stress dynamics. The pressure strain correlation represents a stress redistribu-
tion process that redistributes turbulent energy among stress components acting
towards stress isotropisation, without affecting directly the value of turbulent
kinetic energy. In order to get a physical insight into the process and make it
casier to model this term, the pressure-strain correlation is decomposed into:
slow, rapid, buoyant and wall contributions:

Dy = D1 + Pijo + Dija + 1 + Dia + P55 (4.1)

This decomposition follows from the analysis of Chou [13] and Rotta [94] based
on Poisson equation for pressure fluctuation to obtain an integral cxpression in
which four different contributions can be distinguished: turbulence-turbulence
interaction (the "slow” term) ®;;, turbulence-mean flow interaction (the "rapid”
term) ®;;0, buoyancy effect @;;3, and wall effect ®;}. The turbulence-turbulence
term is known as the slow term, because it is associated with the slow relaxation
of the turbulence toward isotropy. The turbulence-mean flow interaction is known
as the rapid term, which is associated with the rapid response of the turbulence
to imposed mean velocity gradient or to buoyancy and other body forces.
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Figure 4.1: The coefficients C7, Cy and Cj5 for a side-heated infinite vertical channel

using DNS data of Versteegh [101] at Ra = 5.0 x 108

For modelling the slow term, Rotta [94] proposed a simple linear model:

q)ij,l = —Clz(uiuj _ gk‘(sl) (42)
where the value of C varies between 1.5 to 3.0. Lumley [76] pointed out that C;
is not a universal constant, but it depends on the turbulent Reynolds number and
the rate of anisotropy and proposed a quadratic model in term of stress anisotropy.
The differences in the value of C; proposed by various authors arises mainly from
the difference in features of flows considered for model tuning. Recent DNS data
for a plane channel flow showed that C is not constant across the flow irrespective
whether the linear or quadratic model is considered, as shown in Fig.(4.1), and
that the closest value for the outer wall layer is about 1.8, though the DNS of the
buoyancy driven flow in a vertical channel suggest in the outer region the valuc
of 2.2.
For the rapid term originating from the mean rate of strain, Naot et al. [81]
proposed a mode] analogous to the slow term, but in terms of the redistribution
of the stress production:

2
q)ij,‘z = ——CQ(BJ' —_— ng(S,J) (43)
wherc most authors take the coefficient Co = 0.6
It is well known that for any flow affected by buoyancy, i.e. where the variation

in fluid density caused by temperature or concentration stratification, the body
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Figure 4.2: The stress and scalar flux invariants in a side-heated infinite channel using

DNS data of Versteegh [101] at Ra = 5.0 x 106.

Figure 4.3: The stress and scalar flux invariants in infinite horizontal channel heated

from below using DNS data of Wéerner [104] at Ra = 6.3 x 10°




4.2. Buoyancy Extended Low-Re number Reynolds stress model 33

force plays an important role not only in the stress production or destruction, but
also in the stress redistribution dynamics, and therefore it should be introduced
in the mechanical field equation. The buoyant contribution to the pressure strain
corrclation can be modelled in a similar manner as the rapid term reflecting the
redistribution and isotropisation of the buoyant production:

2 .
Dijn = —C3(Gyj — gGkOij) (4.4)

Duc to the lack of experimental or DNS information on the buoyant pressure-
redistribution term, most authors take Cy = 5. Gibson and Launder [37] pro-
posed, in contrast (3 = 0.5, whereas Launder [67] adopted C3 = 0.33.

The non-viscous wall blocking effect tends to retard the redistributive action
of the fluctuating pressurc. The most popular model of this ("wall echo™) effect
is that of Gibson and Launder [37]:

wer € - 3 3
o, = C{"fu,.z(ukumn.;,,n,,,(),-j = U = illku]‘”k'"i) (4.5)
P, =Cy fo(® Roniiy — DBy aman; — Sy 4.6
ij,2 = L2 S| Prm2minmdi; — 2 ik 21T — 2 k2T 1Y (4.6)
e =CY ful® o 3<I> 3 3<I> g 4
i3 = O3 Fuol rm 3nknmbi; — o Pikanuny — o Pijamn (4.7)

In equations (4.5)-(4.7) the coefficients have constant values, i.e. C¥ = 0.6,
Cy =03 and C} =0.

Low Re number and near wall modification

For integration up to the wall the pressure strain needs to be modified to ac-
count for viscous effects, but also for possible variation of the coefficients from
constant values. Following Hanjali¢ and Jakirli¢ {43] (see also Jakirli¢ [54]) these
modifications can be accomplished by expressing all coefficients in the models
of the pressure-strain terms as functions of local turbulence Reynolds number
Re, = k*/(ve) and stress- and dissipation-rate anisotropy invariants. This model
was tested successfully in scveral turbulent flows, such as boundary layers at
strong favourable and adverse pressure gradicents, oscillatory flows, and other un-
steady flows, channel flow, back-step, rotating and swirling flows and many more.
These functions have been designed to satisfy various near-wall constraints, such
a two-component limit and vanishing Reynolds number at a solid wall.

The coeflicients used in the pressure-strain correlation model is given by the
following expression:

Cy=C+VAE? (b, =C;=0.8A"2 (4.8)

CY = max(1 - 0.7C;0.3) 7y = min(A;0.3) (4.9)
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The functions used in the pressure-strain correlation coefficients are:

C=25AFif F=min{0.6;As} (4.10)
Rey\? ki
= min { (T;_(;) g 1} » o fu=min [2.5;%; 1'4] . Re.=Fk/(ve)
(4.11)
where Reynolds stress anisotropy invariants can be written as:

A2 = 555, A3 = 05k Aki, A=1- 9/8(A2 - Ag,) (412)

and dissipation rate anisotropy invariants can be expressed similarly as:
Ez = €45€5i, E3 = €45€kCki, E=1- 9/8(E2 - E3) (413)
a;; = m/k’ - 2/35,'3', €5 = E,‘j/E — 2/35” (414)

Figure (4.1)a shows the variation of the coeflicients used in the slow, rapid,
buoyant terms of pressure scrambling. In the away-from-the-wall region, C; and
C, are approaching values recommended by previously mentioned authors. The
obvious difference is found in the near-wall region, where these coefficients ap-
proach zero values at the wall to satisfy the wall limits of the stress budget.
The coefficient C; is modified as function of the Reynolds stress and dissipation
rate anisotropy invariants A and FE, respectively. In addition, the coefficient C,
is modified as a function of the stress second invariant A,, while the coefficient
C3 = C,. The variation of the stress anisotropy invariants A;, As, A and of
the flux anisotropy invariant Asy in two generic buoyancy driven flows, infinite
vertical and horizontal channels, is given in Figs.4.2 and 4.3.

4.2.2 Diffusion

The diffusion term D;; consists of three terms: turbulent diffusion by pressure
and velocity fluctuations and the viscous diffusion. Since the molecular diffusion
is an exact expression, only the turbulent diffusion that originate from triple cor-
relation %;u;uy and the pressure diffusion must be modelled. Ideally, these triple
correlation should be provided from their exact differential transport equations,
that should be closed (modelled) in similar way as the transport equation for
the Reynolds stress. However, this route would end up with correlation of third
and fourth order that need to be modelled further. In order to overcome the
modelling task, Hanjali¢ and Launder [45] proposed a simplified model, where
the transport terms and the mean flow contributions of the w%;u; are omitted
leaving simple algebraic formulation. Daly and Harlow [21] introduced a simpler
but not frame invariant formulation of the turbulent diffusion which is known as
gradient diffusion hypothesis. '

Dt =2 (c.kem
ij 81:k (C e UrUy

T
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The pressure diffusion is often modelled in a similar way of the turbulent diffu-
sion model. Dol [27], used this model to calculate the turbulent flow in vertical
channel. However, since the pressure diffusion is relatively small, Peeters and
Henkes [89] neglected the term.

4.2.3 Stress Dissipation Rate

For high Re number flows and away from a solid wall the dissipation rate &;;
is modelled with isotropic assumption. These is due to the fact that viscous
dissipation of isotropic turbulence occurs at the smallest eddies. The isotropic
model of the dissipation rcads:

2
Eij = §€5ij (416)
This isotropic model is not valid in the near-wall region and for flows at low Re
numbers. To account for the viscous effect and anisotropy of the near-wall small
eddies, Hanjali¢ and Launder [46] proposed a formulation of the stress dissipation
rate €;;:

2 €
eij = (1= fo)ge0 + fop 0t (4.17)

1

'ﬁ:(1+OJR@)

(4.18)

Since the cxpression (4.17) does not satisfy the wall limiting values of ¢,
several modifications have been proposcd, the most recent being that of Hanjalié
and Jakirli¢ [44]:

2 Y *
Eij = (1- fS)gsoij + fsEij (4.19)

é [wiw; + (Wugn;ne + Tugnng, + wrmmngmning) fa

g = - (4.20)
’ 1+ %g‘lz:i“npand
fo=1-VA E? (4.21)
1 .
fa (4.22)

T (I+0.1Re)
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Figure 4.4: The profiles of the homogeneous dissipation rate at side-heated cavity at

Ra = 5.0 x 10° of Versteegh [101]

4.2.4 Homogeneous dissipation

Recently, Jakirli¢ and Hanjali¢ [55] proposed a new model for the dissipation
rate € and the anisotropy of the dissipation rate tensor €;;. The model of the
dissipation rate is derived in term of homogeneous part €*. The derivation is
based on the two-point velocity covariance analysis of Jovanovié¢ et al. [58] and
reinterpretation of the viscous term. The anisotropy of the dissipation rate ¢;;
is expressed in term of " to provide the wall limit condition. With this new
model, the algebraic expression for the components of ¢;; is independent of any
wall-configuration parameters.

2 :
£ 305t + 7. Bk (423)

Here " is provided from its transport equation, which differs marginally from
the conventional equation:

_(1_

De* Ut oway, 0%U; k owpw; OU; 0%U;
= —Caliljg——F — 2| ——7——F— +C3— =
Dt Oz; k or; 001 eh Ox; Oxy Ox;0x,

“h h a h. a
e2fs —6?): |:< Vo + Ce— ukul> aih] (4 24)

where fy =1—VAE? C.y =144, f.=1— (Ce2 — 1.4)/Cesexp|—(Rer/6)?]. The

new equation for homogeneous dissipation rate can be solved with the model of
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transport equation for the Reynolds stress w;. The only difference from the
conventional dissipation rate is that " serves as the sink term in the Re-stress
equation, and factor of 0.5 appears in the viscous diffusion terms of both the
w;u; and " equations. In addition, the Jow-Re-number production term in the
" equation is somewhat different. It was reported by Jakirlié and Hanjali¢ [55]
that the use of " gave considerable improvement as compared to the conven-
tional dissipation rate equation. Examples of this application are flows in a pipe,
plane channel, constant-pressure boundary layer, backward-facing step, and in
an axially rotating pipe.

4.3 Modelling the transport equation for turbulent heat

flux

4.3.1 Thermal Pressure scrambling

In this study the pressure diffusion is modelled together with the pressure -
temperature-gradient correlation, known as pressure scrambling. Many authors
neglect the pressure diffusion, e.g Peeters and Henkes [89], whereas others treated
this term separately. Lumley [76] proposed a separate model for the pressure dif-
fusion, however the model behaved badly, especially in the near wall region. As
demonstrated by Dol et al. [25] the joint treatment of the pressurc diffusion and
the pressure - tempcrature-gradient correlation is much easier to model and the
result shows better agreement with DNS. As mentioned in Chapter 3 that pres-
sure scrambling dominates the budget of turbulent heat flux, consequently the
performance of the complete model is affected heavily by this contribution. The
pressurc scrambling is conventionally decomposed into four parts: slow, rapid,
buoyant, and wall parts.

Slow term

The simplest way to model the slow term ®g;; is by expressing it in a "return
to isotropy” form. In the absence of all turbulence generating mechanism, the
slow term returns the turbulence heat flux field to the isotropic state. The model
proposed by Monin [78] reads:

Dgi = —001%%; (4.25)

Different authors used different values of Cy;. For example, Monin [78] took Cp
equals 3, while Peeters and Henkes [89] took Cp is equal 3.75. Equation (4.25)
is the most widely used form of the slow part of the pressure scrambling term
and it is known as the linear or basic model. In order to improve the basic
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model, a modification have been proposed to the coefficient Cy; to be a function
of Reynolds stress invariants. A more complex model function of Cp;, including
stress invariants, Reynolds stress, heat flux, and time scale ratio R, has been
proposed by Shih and Lumley [95]. However, the attempt was not very successful.

It was reported by Dol [27] that the model cannot be improved through the
modification of Cy;. This leads to extension of the basic model of the slow term
to a higher-order expression. The inclusion of non-linear term has been adopted
by Launder [66]. The model reads:

q)ei,l = _CGI%<_OE; + C’,’,laijﬁvj) (426)

Similar attempt has been proposed by Dol [27] to model the pressure scrambling
of heat flux. He expanded the slow term into quadratic and cubic expressions,
which are linear in fu; and quadratic to a;:

q’gi,l = —%(Colﬂ + Cglaij?)Tj + C,;’laijajw_uk) (4.27)

The model given by equation (4.27) reduces to the slow term of the basic model
when coefficient Cj; = Cp; = 0 and Cjy constant. This higher order model was
adopted in order to match the DNS data for the infinite side-heated vertical chan-
nel. The coefficients Cy;, Cp; and Cy, are exponential functions defined by four
parameters. As the slow term dominates the pressure scrambling, these coeffi-
cients have important impact on the modelling of the total pressure scrambling
contributions. It was shown by Dol et al.[26] that the performance of this model
of the pressure scrambling model is very good and matches to the DNS data for
the vertical channel very well. However, this model introduces more empirical
coefficients. The difference between the quadratic and the cubic model is the
number of terms in the slow part of the pressure scrambling, where Cy, = 0 for
the quadratic model. It was also reported that the quadratic model is very sen-
sitive and can produce oscillation during the computations. The problem could
be overcome by using adequate value of the parameters r and s.
The coefficient involved in the pressure scrambling model are defined as:

1 — exp(—qA)]
Y v 1 Fopro(Agg) = P[ )
C917 (-'01) Cf)l C pgr. ( 29) 1 + Tegjp(-—sAZo) (4 28)

where Ay is the scalar flux invariant. It is important to mention that Asy has
replaced the stress invariant A, which is used in the previous model. The scalar
flux invariant is defined as :

Agg = — (4.29)

As shown in Fig.(4.2) the profiles of Ay in both the vertical channel and in
the horizontal channel of Fig.( 4.3) are similar. In the vertical channel both
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Dol et al model Present model
Ca| Cop | C4 [[Ca| Co 1|Cq
p| 49 |-2Ch | 129§ 6 |-1.5Cy | -
qg| 36| o 1.2 4 - -
r| 10 0 |-094) 1 - -
s | 37 - 10 20 - -

Table 4.1: The values of the shape factors constituting Fpers(Agg) for the new model

invariants A and Agg have similar shape, but they differ in magnitude. On the
other hand, in the horizontal channel they are obviously different in both the
shape and magnitude.

The final goal of this study is to develop new models that can be applied for
a range of different turbulent flows driven by thermal buoyancy. In order to have
a robust model and avoid numerical instability, a simple form with less number
of coefficients is desired. We propose here a new model of the slow term of the
pressure scrambling process that reads:

q)()i,l = —Colé(éui - 1.5(1,‘j9ﬂj) (430)
where Cy; is given by equation (4.28). Equation (4.30) reduces to basic model
when Cy; is constant and the second term is omitted. This new model is more
preferable, since it consists of less terms. It is mentioned before that the pressure
scrambling is dominated by the slow term. Indeed, the proper modelling of the
slow term is required, not only for physical reasons, but also for making it possible
to define and use unique model coefficients Cp; and Cj,, where Cy, is expressed as
a function of Ay, with parameters p, ¢, r, s specified in Table 4.1. The new model
of the equation (4.30) is relatively simple, but it works well for more general

cases. The new model with introduction of Asp produced ®y; in close agreement
with DNS data.

Rapid and Buoyant term

In analogy with the rapid part of the pressure scrambling term in the Reynolds
stress equation, which is associated with the rapid response of the turbulence to
imposed mean velocity gradient, the rapid term of turbulent heat flux is modelled
in association with the mechanical production. Peteers and Henkes [89] use rapid
term model as:

®pio = —Co Py} (4.31)
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with Cypy = 0.5 as most authors take. Equation (4.31) is the most common model
for the rapid term of the turbulent heat flux.
The buoyant term is often modelled in analogy with equation (4.31):

®p;3 = —Co3Goi (4.32)

For most application, Cyps = Cp3 = 0.5 is the appropriate choice. Launder [68]
argued that for the correct value in the limit of vanishing anisotropy, Cs3 should
be about 0.33. A more advanced model for the rapid and buoyant terms was
introduced by Craft[17] by expanding the turbulent-interaction part in terms of
the stress anisotropy a,; and fu;. Similarly, Dol et al. [26] lumped the rapid term
of the pressure scrambling ®g; » together with the buoyant term ®y; 3, denoted as
®y; 2/3. They represent the action of pressure fluctuation to produce isotropisation
of turbulence production due to strain rate for and buoyancy. The rapid and
buoyant term can be expressed as:

@9@2/3 = —092 JZL - Cézpot:‘ - C{)3G9i (433)

where coefficients Cye, and Cy,, are functions of local invariant turbulence proper-
ties Agg, while Cy3 = 0.45. The model function of Cp, is set to match ®gy 973/ Pih,
while function of Cys has been approximated to —(®gg,2/3+ChyFPis + CoasGez)/ Pgy.
The profiles of coefficients Cy;, Cgs and Cpy3 are shown in Figs.4.5.

The coeflicients used in the new model read:

Coz = 1.25A%, (4.34)

e = 6.A% — 19.A5, + 15.0A3, (4.35)

Modelling the wall term

Wall reflection is an important effect that must be considered in any turbulence
model. The wall causes a blocking effect on the normal heat flux much more
than on the parallel component. There have been several proposals to model the
wall reflection, an example is by Gibson and Launder [38]. The model has been
adopted by Peeters and Henkes [89], Craft [16], Dol et al.[25], to mention a few.
Following the model of Dol et al. [26], the wall term is expressed as:

By = O laij| (Poi + Poiayn) (4.36)

Cy = maz (0,0.58 — 0.694"/?) (4.37)

Figures (4.6)a-b show the performance of the new pressure scrambling model
for side-heated infinite channel. It is evident that the term by term modelling
of the pressurc scrambling, especially of the slow term, shows a good agreement
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Figure 4.5: The profiles of Cpy,Cpy and Cys of vertical channel of DNS data by Ver-
steegh [101] at Ra = 5.10° (a) and horizontal channel (b) of DNS data by Woerner
[104] at Ra = 6.3 x 10°.
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with the DNS data, especially for the horizontal component. Since these term
dominates the pressure scrambling, the remaining terms are less influential in
affecting the whole performance. The contribution of the second term of equation
(4.30) is very influential since it makes possible to reduce the growth of the
pressure scrambling in region far away from the wall due to the effect of the Cy,.
The presence of the scalar flux invariant Ay instead of A is aimed to broaden the
use of the model in other flow situations. The vertical component of the pressure
scrambling also shows as good performance as the horizontal component.

4.3.2 Molecular Diffusion

In modelling the viscous diffusion, Peeters and Henkes [89] derived:

. 0% 570 Du; 00
Dﬂi = I/*é&‘:i— + ((l - l/)uigx—z + (a - I/) P~ (438)

8xk Brk

Clearly, the viscous diffusion of equation (4.38) consists of three terms, in which
the first term is the most influential. In a similar manner, Dol [27] proposed the
same formula for viscous diffusion. Additional modification of diffusion coefficient
is required to obtain suitable value, and decomposition of o with v is often the
best choice giving the mean value (o + v)/2.

4.3.3 Turbulent diffusion

The turbulent velocity diffusion represented by the triple correlation of fluctuat-

ing velocity and temperature is often modelled in similar way as the turbulent

diffusion of the Reynolds stress by using invariant modelling. The turbulent
diffusion is expressed :
0

o= 2 [a

81‘k

k(__ _00u ___ 00u, 0w
- (ukul o, + T e, + 6y o, )] (4.39)

Ideally, the triple correlation is modelled by considering its transport equation
in a similar manner as in modelling the triple velocity correlation in the second
moment closure. As a consequence, higher order correlations appear. In fact for

most engineering flows, this diffusion contributes only a small part to the mean
turbulent quantities, and therefore GGDH model is considered to be sufficient.

4.3.4 Dissipation rate of heat flux

The dissipation rate of the turbulent heat flux can usually be neglected for high
Re number flow regions, but close to a solid wall it becomes significant. Several
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models have been proposed in the literature. We adopt here the model of Dol et
al. [26]:

—gg = —["ep; — €g; (4.40)
where
. 1 1\ 65—
—Ep; = —5 (1 + P_> —ﬂu,: (4.41)
T | Dy, ;
g =5 Dhr g (1+ P—) Zhgu, (4.42)

where f* = exp(—3/4A4%?). The inclusion of the molecular diffusion of tur-
bulent kinetic energy introduces the second derivative of k. However, this disad-
vantage has been compensated by not using any topology-dependent parameters,

Dol [27].

4.4 Modelling the Equation for Thermal Variance

Dol et al. [26] used a model for the turbulent diffusion of the temperature variance
02 in the same way as for the turbulent diffusion in equation (4.39), by including
the production of the triple correlation u;62. This inclusion, although of an ad
hoc nature improved matching with the Direct Numerical Simulation of Versteegh
[101]. In this approach the turbulent diffusion of 2 reads:

0 002 __00u, — 0T
t ,
Dy = Bz, [Cong (ukuza + 20u—— o2, + 20uzuy (9’1‘1)] (4.43)

The modelled term contains a triple correlation of fluctuating velocities and
fluctuating temperature, and again these needs to be modelled:

00u; 3%)

4.44
oz, Ty (4.44)

Oury = —CopaTy, (Ukul

By omitting the last two terms, equation (4.43) reduces to GGDH model, which
was used by Kenjeres [62], Peeters and Henkes [89]. The coefficient Cyy = 0.22
is adopted by most authors, with slightly different proposal by Launder [66] who
chose Cpg to be 0.11. When the last term is omitted, the most appropriate value
of Cgp is 0.11. In order to improve the performance of the model, Dol [27] replaced
the mechanical time scale in equation (4.43) by the thermal time scale. However
this attempt was not successful. Boudjemadi [6] modified the mechanical time
scale with a lower bound of Cr(v/€)Y/2, but this does not give any better result.
It is worth that the proposal of the GGDH model for the turbulent diffusion of
62 can be adopted for both the low- and high-Reynolds number flows.

In order to close the cquation for the thermal variance, it is necessary to
provide its dissipation rate. Ideally, the dissipation rate 4 is derived as an exact
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differential equation similar to the dissipation rate € equation in standard k — ¢
model. The transport equation for the dissipation of temperature variance can
be written:

%_i —s_u+a% 194 6u;,60 o6
Dt Oz 85" " oak Oz, Bz, Oz,
Dt \;_/ N i
co D€9 . P€e4
D,,
Our 00 0T 06 08 OU, 08 o°T 020
|oa Tt 2 TR - 4.45
a('):z, Ox; Oz + oz Bxl o, + Oz 0z 071 208:%8% (4.45)
PEGl P€62 + P€03 on

Several closure of this equation have been proposed in the past, but none seems to
be sufficiently tested to be used in predicting buoyancy driven flows. The equation
has twice many terms as the equation for mechanical dissipation, introducing thus
many new coefficients and a lot of uncertainty. For that reason we will avoid
modelling and solving differential transport equation for €9 and use an algebraic
approximation for the ratio of thermal to mechanical time scale, from which €
can be deduced. As an illustration, we show here the model equation used by
Peeters and Henkes [89]: -

D€o _ 7] 3&‘ —_—
Dt om (O‘axk ke ") (C” 2 CD‘oﬁ)
+ (Cmf - Omg) €6 (4.46)

It is noted that the thermal time scale 75 = 82/2¢4 appears in the equation above
in addition to the mechanical time scale 7,,. It is obvious from equation (4.46)
that the last term in the right hand side resembles its thermal counterpart repre-
sented by the second term. In order to calculate &4, without solving the transport
equation for ¢4 one often employs the thermal to mechanical time scale ratio R
which is then expressed in terms of stress and flux invariants, or even assuming
it to be a constant. This topic is discussed in more details below.

4.4.1 Thermal to mechanical time-scale ratio R

There have been a number of attempts to develop a scalar second moment clo-
sure in which the dissipation rate of temperature variance gy is calculated from
the thermal to mechanical time scale ratio R. This approach is relatively sim-
ple as compared to modelling and solving the transport equation of €. The
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dimensionless quantity of R is defined:

R=2 (4.47)

TIIL

where 7y = @/269 is the thermal time scale and 7, = k/¢ is the mechanical
time scale. The turbulence quantities k, ¢, and 62 are solved from their transport
equations, while R is either expressed as a function of turbulent stress and flux
invariants, or is set as a constant from experimental or DNS data. For forced
convection Craft [16] expressed R as a function of the scalar flux invariant Aog.

1

R=—~
1.5(1 + Agp)

(4.48)

Equation (4.48) was applied in calculation of heat transfer in an inhomogeneous
planc and axisymmetry jets. The use of the scalar flux invariant Ay helped to
increasc the value of R as required in the buoyant plumes.

In turbulent natural convective flow heated from the side, R is almost constant
in the region not so close to a solid wall, with a relatively strong peak observed
very close to the wall. DNS data indicate that R increases with a decrease in
Rayleigh number, for example at Ra = 5.4 x 10° (z/L > 0.1) R is about 0.5,
while that at Ra = 5 x 10® R is around 0.4. In addition, the spike of R is smaller
as the wall is approached with an increase in the Rayleigh number. Dol [27]
proposed an analytical formula for the thermal to mechanical time scale ratio R,
which reflects this behaviour:

R = min (2.2Ra;***,0.75) (4.49)

where Ra, = gB3(8%)'/2k%2Pr/(v2%€?) is the turbulent Rayleigh number. Indeed,
no universal constant value of R is expected in all turbulent flows. It is therefore
instructive to express R by relating it to scalar and stress invariants in order
to define a more gencral formulation. While it is true that dissipation rate of
temperature variance is not the weakest point in turbulent closure, resolving
the transport equation for ey shows a reasonable improvement of the turbulent
thermal field, Kenjeres [62]. It is clear that R is not constant in the entire region,
and therefore solving €y makes it possible to mimic the behaviour of R, especially
in near wall region where it shows a peak value.
We propose here the following model of R:

A"
R = max [(m) ,O.GA] (4.50)

The performance of the model equation (4.50) is shown if Fig.(4.8)a for a side-
heated cavity and in Fig.(4.8)b for a cavity hcated from below. In the same
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Figure 4.8: The thermal to mechanical time scale ratio R of a side-heated infinite
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infinite horizontal channel at Ra = 6.3 x 105 (Woerner [104])
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figures, the model of Craft [16] is also presented. The wall value of R of the
model of Craft [16] provides a satisfactory requirement to viscous effect, ie. it
yields approximately the value of Prandlt number, R = 0.71 (for air). On the
other hand, the proposed model predicted a slightly higher Pr at the boundary.
However, it can be seen that the new model predicts better the peaks in the
ncar wall region for both cascs. For region far away from the wall, the model
corresponds to DNS only for side-heated cavity, while for heating from below it
is underpredicted.

4.4.2 A priori test of the model

The DNS database of Versteegh [101] for natural convection in vertical chanuel at
Ra = 5.0x 10% is used to perform a priori tests of the new model. Figures (4.9)a-b
show results of a priori test for the side-heated tall cavity compared with DNS
of Versteegh [101] and also with Dol [27], as well as with the basic model. The
basic model refers to cquation (4.25) for the slow term of pressure scrambling.
The figures clearly show good agreement between the new model and DNS. This
is as expected, because the pressure scrambling is well predicted by the model
and the remaining parts arc taken from the DNS. On the other hand, the basic
model obviously fail to predict the DNS. The main cause for discrepancy lies in
the linear model of the slow term as well as in the coefficient Cy;. As explained
in the previous section, it is impossible to reproduce DNS by simply changing
the value of the coefficient Cy;.

In the case of turbulent natural convection heated from below Rayleigh-
Bénard convection the calculation is conducted at Rayleigh number Ra = 6.3 x
10%, to match the DNS data of Woerner [104]. The heat flux profile of a priori
test using the new model, Dol model and the basic model arc plotted against
DNS in Fig.(4.10). It is evident that the basic model overpredicted the heat
flux in the near wall region and this mainly due to the coefficient Cy; which is
much lower than implied by the DNS. Similar disagreement is observed in Dol
[27] model. This disagreement is attributed to the use of the stress invariant A
in the coefficient Cyy, Cp;, and Cygy. The proposed model shows a considerable
improvement as compared to the previous models. In the near wall region the
new model yields some overpredictions, while in the far-wall region it gives a
slightly lower value. The success of the new model is mainly attributed to the
introduction of the second term in the slow part. The use of the new coefficient
Cp1 has also improved the performance of the models.
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4.5 Elliptic Relaxation

The modifications of fluid flow and turbulence in the vicinity of a solid wall
comes from several effects that have different physical origin. Very close to the
wall in the viscous sublayer (which is present irrespective of the bulk Reynolds
number) the dominant effect comes from viscosity. However, the impermeability
of a solid wall causes non-viscous blocking effect that damps the fluid velocity
and its fluctuations, especially in the direction normal to the wall. That is why
the wall-normal turbulent stress is mush smaller than the stream wise and span
wise ones, not only very close to the wall, but also in the turbulent wall region
which is much thicker than the viscous sublayer.

In most near-wall modifications of turbulence closures these two effects are
modelled jointly, by introducing one or more damping functions in terms of non-
dimensional wall distance, or in terms of turbulence Reynolds number Re, =
k*/(ve). The best known damping function is f, = f(Re;) in the expression
for eddy viscosity, v, = C,f.k*/e in the so called "low-Re-number” k — ¢ and
similar eddy-viscosity models. It is obvious that such functions cannot capture
the non-viscous wall-blocking effects, but nevertheless these models have proved
reasonably successful in some simpler flows, thanks mostly to the fortunate varia-
tion of Re; and other nondimensional parameters that increase with the distance
from a wall, making it suitable to mimic the diminishing wall effects in terms of
this parameter.

In second-moment closures where the reproduction of stress anisotropy close
to the wall is essential for predicting wall-related phenomena-friction and heat
transfer, the use of simple damping functions has not been successful. Instead, the
wall-blockage effects has been modelled by introducing ” wall reflection” modifica-
tions of the pressure-redistribution terms, such as given by expressions (4.5)-(4.7)
and (4.36) in Reynolds stress equation and in pressure - temperature-gradient cor-
relation of turbulent heat flux equation. Generally, such near-wall treatment has
proved successful in predicting wall-attached flows, and with some modifications
also in other flow types. However, the major shortcomings is the lack of physical
foundation: the models have been derived intuitively using assumptions of quasi-
homogeneity of velocity field, which is far from truth in the near-wall region,
Bradshaw et al. [8]. The other deficiency is the need to use wall-normal unit
vectors to distinguish between the wall-normal and other stress and flux compo-
nents. This shortcoming is especially serious if flow with complex geometry are
considered.

In order to account for the physics of the wall-blocking effect, which has an
elliptic character, Durbin [28] proposed to relate the redistributive tensor with
the elliptic effect. Because this effect primarily blocks the wall-normal velocity,
Durbin proposed to solve a separate transport equation for a scalar quantity -
another velocity scale (called "v2”) directly derived from the transport equation
of the wall-normal Reynolds stress, and which effectively reduces to this stress
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component close to a solid wall (equation (4.53)). This equation is closed by an
elliptic relaxation equation for the elliptic function f. Unlike conventional way of
formulating the non-viscous wall effect by using the unit wall normal for turbu-
lence properties, the wall effect thus is accounted for by the following:(i) through
boundary conditions for v2 and f (ii) the model relaxcs to quasi-homogeneous be-
haviour in far-wall region (iii) the effect then enters via solution of the governing
equations.

The elliptic relaxation cddy viscosity model (k —e — 02 — f —2) is formulated
in the following way. First, instcad of conventional expression, the eddy viscosity
is defined as:

vy = CPVT (4.51)

where Cff = 0.22, instead of classical value C, = 0.09 and the time scale T is

defined as
k v\ /2
T = mar [E’CT< ) } (4.52)

s
<

where Cr = 6 is a model constant, which is an insensitive parameter and thercfore
variation of its value gives no appreciable affect on model. In the near wall-region
where turbulent kinetic energy is very small the time scale T is bounded by the
Kolmogorov time scale 6(v/£)/2 (the low bound of equation (4.52)). On the other
hand, in the region far away from the wall, the contribution due to molecular
effect is negligible and T takes the standard form k/e. In addition, the function
of the Kolmogorov time scale is to avoid a singularity in the source term of the
dissipation rate equation.

Next, a transport equation for a scalar velocity scale v? is formulated and
modclled, based on the model-transport equation for the wall-normal Reynolds
stress:

o ov?

0 v,  Ov?
- R e [i) . — Y
ot + UJ 6l’j P22 + G“ P2t 61}]‘ ((U + (T,U_g)a.’lfj

) — &9 (453)
Durbin proposed to split the dissipation £99 into £90 — ev‘z/ k and ev?/k, the
former is lumped together with the pressurc-strain term and modified by the
elliptic relaxation effect, and the later is left as the destruction term.

+ U @22—522‘%5;

o2 o2 2 v v O
B Uigg = ( T) (

In order to account the wall effect, the first three terms on the right hand side are

expressed as a function of the clliptic relaxation function & f, and equation (4.54)
becomes
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2 712 "2 )12
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This equation is closed with the conventional k¥ and € equations. In addition,
an elliptic relaxation equation is solved for the elliptic function f:

o2 f 1 v 2
— 2 == | —_Z
f—-1L o8, ~ F (ti) 2+ e 35) (4.56)

Clearly, the homogeneous source term (v?/k — 2/3¢)/k of equation (4.56) is
added into the ®%, to which the equation reduces in a homogeneous field. The
source term ®%, is then given by the slow ®g 1, rapid @225 and buoyant ®a3
terms. Any model of the pressure strain term can be used for the homogeneous
contribution. For example, by adopting the simple return to isotropy model of
Rottal94] and model of Naot et al. [81] for the rapid part with added buoyancy
contribution, the equation for the elliptic relaxation function f reads:

o2f

T2
f L (9wj6:rj

G-8)_, rec
(€ -D 16 Z (4.57)

where L is the length scale that uses the Kolmogorov scale as a lower bound to
prevent from going to zero at wall. Moreover, the length scale L makes the elliptic
relaxation function f to relax to the value which correspond to homogeneous state
away from the wall. By using the same approach as for the time scale, the length

scale is expressed as:
k3/2 8 1/4
L= CLmCL.’l' T, C’? (‘e—) (458)

The low bound of equation (4.58) is significant only in the near wall region -
though extending further from the wall than the low bound time scale (which
has been recognized as an inconsistency of the Durbin model), while the first
part dominates in the region far from a boundary. The boundary condition of f
reads: 2 =
fu.‘all = _'201/—1)_ (459)
Ewall -T-n_
where z,, is the direction normal to the wall, and £,y is the boundary condition
for the energy dissipation rate at the wall. It can be seen that f,. goes with
(1/2}) and, as a consequence, it can cause numerical instabilities when a fine mesh
is applied in the near wall region. Lien and Kalitzin [74] introduced a modification
of the standard model. The way the standard model is modified is by splitting
€99 Into £99 + nev_2/ k and —nsv_‘z/ k. With this modification, the coefficient of
—cv?/k in equation (4.54) becomes n, while equation (4.57) becomes:
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O*f
ijaxj
When n = 6 the boundary condition is f = 0.

The dissipation equation used is essentially the standard one, except for the
time-scale switching and some modification of the coefficients. It can be written

P+G

_r2
f-L 3

(4.60)

v? 2
= (n—Cl)%+(1 ~01)§+C2

as
15 O Co(P+G)—Cuae 0 ut> Oe
U= = 2 Ty = 4.61
at !z T + Oz; [(V+ 0./ Ox; (4.61)
where the production term in equations (4.61) and (4.67) is given by:
ou;  ou;\ au;
=y (&0 D) T 4.
P=w (837]- + (%i) ox; (4.62)

The boundary condition for € reads:

0%k
Ewall = V (a 2) (463)
wall

n

To account for the nonequilibrium in the near wall region Durbin [29] suggested
to modify the coefficient C,, as a function of P/e.

C., = 1.44[1 + 0.1 (P) /e] (4.64)

or in an alternative form as:

0.25 -

Cel =1.3 -+ [—IW (460)
where d is the distance from the closest boundary and L is the length scale. The
function of d/L was calibrated such that in attached boundary layers C,, equals
to 1.55, while in far-from-the-wall region is equal to 1.3. The coefficient C;, is
expressed in different manner by Manceau [77], namely as k/v2. The introduction
of this functional form is aimed to enhance the generation of the ¢ close to the
wall. The coeflicient reads:

C., = 1.44 (1 + 0.045(A:/F)‘/2) (4.66)

In this work, we extended the coefficient by including buoyancy production. The
new coeflicient can be written as:

Ce, =144[14+01(P+G) /e (4.67)

One important feature of the extended coefficient is its dependence to both shear
and buoyant productions. A summary of the coefficients is given in Table 4.2
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Coefficients
Cr|Cy|Co| Cup |Cr | CL|Cy| Ch
1410619022 6 {02] 50| 0.49

Table 4.2: The coefficients used in the proposed model

In order to calculate the heat flux, it is necessary to provide Reynolds stress
components. Here, the buovancy extended eddy viscosity model is used.

2 ou; U
W, = 31\-0,-1 — I (;—L + O ) + Cor3 (J,Huj + g;fu; ) (4.68)
z; 2

The inclusion of the buoyancy in equation (4.68) is essential for flows driven or
affected by buovancy.
The turbulent heat flux is calculated using an algebraic flux model:

T
Ou; = —Cyt {u u];) + EOu; g[ + nglﬂm] (4.69)

where where 7 is the time scale, for which several options have been considered.

4.5.1 The choice of the time scale

The time scale 7 that appears in equation (4.69) is an important paramcter by
which turbulent heat flux is calculated. From an a priori analysis of natural
convection in an infinite vertical channel heated from the side, the AFM given
by equation (4.69) with 7 = k/e yields an overprediction in the normal heat
flux. This overprediction is mainly attributed to the normal Reynolds stress 7z,
regardless whether it is expressed by eddy viscosity or by algebraic expression.
It is recalled that the eddy viscosity expression yields in this case wu = 2/3k.
Although the eddy viscosity model is extended by accounting the buoyancy ef-
fect, it does not improve the performance since for the horizontal component the
gravity effect is zero. This value, 2/3k is too large for W, especially in the near
wall region. Similarly, when the normal stress is cxpressed in the algebraic form,
the result is even larger, since the productions gives risc to wa.

Several attempts have been made in order to capture the DNS performance of
the normal heat flux. Firstly, the focus of modification is given to the coefficient
Cy. Although Cy can be modified to predict well the normal heat flux, this
approach is not appropriate since the required value of this coefficient is too
small and this will negatively affect the other components of the heat flux.

The second possibility is to express 7z in terms of v2. The reduction from 2/3k
to v2 significantly improves the performance of the normal heat flux. However,
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this approach is inappropriate not only because it leads to tensorial inconsistency
of the equation but also because Tu could be associated with 22 only when the
flow is one-dimensional, while in the two and three-dimensional cavities they
are quite different. For those reasons it was found necessary to perform further
alternative approach. The solution was sought in the approach similar to that
of Durbin [28] in modifying the new turbulent viscosity through the introduction
of a new coefficient C, and replacement of k£ with v2. Here, a new function is
introduced: .
_ CPkv/e
fr= Cuk?/e

where Cff = 0.22 and C, = 0.09 are coefficients proposed by Durbin [28] and
the standard one, respectively. Basically, equation (4.70) is the ratio between the
eddy viscosity v; of Durbin [28] and v; of the standard EVM. The coefficient in
the equation can be replaced by Cf /Cy = 2.44. The introduction of the new
damping function f, in equation (4.70) gives:

(4.70)

or  —oU;

—f+:Ce1 [u,u,a + &6u; T +ng,,392] (4.71)

where f,.CyT = 7* = 0.49v%/¢ and this is regarded as the new time scale. The
final heat flux expression reads:

Far = [uugg e ZU + ny.ﬁf?z] (4.72)
J

where 7* = Cjv?/e with C5 = CoCP/C,,.

At first, this new time scale is difficult to assign a physical meaning. However,
the expression is correct mathematically, and essentially is consistent with the
approach used by Durbin in arriving to his turbulent viscosity ;. In addition,
from a priori test in calculating the normal heat flux in a vertical infinite cavity,
it shows that this new time scale gives much better result than the classical time
scale. Note that the same time scale 7* in the third term of equation (4.68) yields
better results.

A priory analysis of the new Algebraic Flux Model

Figure(4.12) show a priori analysis of heat flux using SGDH,GGDH, and AFM
with different time scales. The difference between the models is illustrated in
Table 4.3-4.4 where full terms in the AFM expression are given. Of course the
SSGH and GGDH do not contain any other terms. This analysis is aimed at
choosing the appropriate model that will predict with acceptable accuracy heat
flux in both generic test cases: the turbulent natural convection in infinite vertical
and horizontal cavities. It is obvious that GGDH model failed not only in the
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vertical component which, in contrast to reality, is predicted zero, but also in the
normal component which is severely overpredicted, especially in the region around
x/L = 0.075 to 0.1. This failure on the normal component is mainly attributed
to turbulent kinetic energy k, which is too large for this formulation. When
Durbin’s approach is applied into GGDH by simply changing C5k with C,02, a
better performance is achieved. On the other hand, calculation using AFM gives
a substantial improvement as compared to that of using GGDH. Although the
normal heat flux is still overpredicted, the shape of the vertical component is
considerably captured. Reasonable improvement is observed when the damping
function is applied in AFM. The function is able to damp the overprediction
of the normal heat flux. As can be seen from Fig.(4.12), perfect agreement is
observed in the normal component with slightly diserepancy in the near wall
region. Similarly, the model performs a fairly well in the natural convection
heated from below of Fig.(4.13).

4.5.2 Conclusions

In this chapter second-moment closures for %;u; and fu; have been developed. A
priori testing is performed first, using DNS data for turbulent natural convection
in the differentially heated vertically or horizontally oriented infinite channels. In
addition, simplifications of parent transport equations for %z; and u; resulted in
their algebraic formulations. Both variants of model showed good agreement with
the available DNS data. Despite these performances, the second-moment closures
still posses mathematically complex forms with many empirical coefficients.

In order to simplify turbulence model, the elliptic relaxation method, previ-
ously developed for pressure-driven flows (Durbin [28]), has been extended with
buoyancy effects. Several time scales which appear in the algebraic flux equation
are extensively tested using a priori analysis. It has been found that v2/¢ is the
best definition of time scale. Finally, the new 5-equation model (k—&—v2— f —62)
is proposed as the best compromise between mathematical complexity and nu-
merical behaviour.
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Figure 4.12: A priory test of vertical (a) and horizontal (b) heat flux against DNS of

Versteegh [101] of different time scales in AFM at Ra = 5.10°
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62

Model Ou; Bv (vertical component)
o0 R #E

AFM IQQW ASSWM + mgwm %v |Qmw Agm + :@%v

AFM-NEW -2 Ass. wM + mﬂwm %v ~ m% AS wlM, f%%wv
GGDH — % _c; Ien wM o Iew MM

Table 4.4: The final expression for heat flux components resulting from different time scale proposals for the heated from below

infinite channel flow.
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Figure 4.13: A priory test of heat flux against DNS Woerner [104] of different time
scales in AFM at Ra = 6.3 x 10°
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CHAPTER 5

Numerical method

5.1 Introduction

Computational fluid dynamics is an approximate method for solving governing
equations in order to obtain a numerical description of fluid flow and heat transfer
of interest. There arc several steps to perform such a computation. These includes
pre-processing (grid generation). processing (calculation). and post-processing
tasks (data analysis and visualisation). Since the main task of this study was
development and validation of turbulent models. numerical method will be just
briefly mentioned.

This chapter gives a general overview of the numecrical method used in the
current study. The discussion of control volume method and collocated grid ar-
rangement together with differencing schemes is presented. A benchmark appli-
cation of accepted numerical method in an unsteady laminar convection in cubical
enclosures is presented in order to demonstrate the accuracy of the method.

5.2 Control volume method

In principle, the physical aspects of any fluid flow arc described by three funda-
mental conservation equations: mass, momentum and cnergy. The general form
of the conservation equations read:

0
5= () + div (pii® ~ pL's V) = Sy (5.1)

where I'g is a diffusion coefficient, while @ could represent an actual scalar, for
example temperature; or it could be a vector such as velocity or heat flux; or a
tensor for example Reynolds stress, and Sg denotes a source term. Since finite
volume method is used in this computation, cquation( 5.1} needs to be integrated
over control volume. By applying the Gauss-Ostrogradski theorem:

/V divddV = /A ®dA (5.2)

the integral form of a general conservation law can be expressed in the following
form:

o ' - -

g / pddV + / pAdIdA — / pLeVOidA = / SadV (5.3)
L JV A , A J1
unsteady convection dif fusion source
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Figure 5.1: Two-dimensional control volume configuration (a) and collocated grid (b).

As an example, a two-dimensional control volume configuration is shown in
Fig. (5.1) a. The rectangular dashed line shows one control volume at grid point
P. Points W and E are the x-direction neighbors at west and east, respectively.
While points S and N are the y-direction neighbors at south and north, respec-
tively. The solution domain is subdivided into a finite number of control volumes
by a numerical grid, within which the integration is carried out. Computational
nodes at which the variable values are to be calculated are placed at the geo-
metric center of each control volume. The advantage of control volume approach
is that it keeps conservative properties of discretised variables. Moreover, im-
plementation of boundary condition is relatively easy. Additional discussions of
the control volume method in computation can be found in the literature, for
example Ferziger and Peri¢ [33].

Discretisation of the governing equations are often conducted using two pop-
ular approaches: collocated and staggered grids. Figure (5.1) b shows the collo-
cated grid configuration, at which the quantities are located at the same center
point of the grid. The obvious advantage of this arrangement is due to the fact
that only a single control volume is used for all equations, and only a single set
of grid metric is required. For complex grid systems, collocated arrangement is
therefore preferable. Discussion on the advantages and disadvantages of using
collocated and staggered grids in computation is given by Peri¢ [90], Wesseling
[103].

There have been several differencing schemes that are often used in turbulent
numerical simulation, for example central differencing scheme (CDS), upwind dif-
ferencing scheme (UDS), linear upwind differencing scheme (LUDS), quadratic
upwind differencing scheme (QUDS), and total variation diminishing scheme
(TVD). It is well recognised that any simulation should employ at least a scheme
of second order in order to obtain good computation result. Examples of sec-
ond order scheme are LUDS, QUDS or QUICK, and CDS. In this study, upwind
scheme is used (for steady state flow) only at the beginning of calculation, be-
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cause it exhibits computational stability. At convergence stage, all calculation is
done using LUDS. For unsteady statc flow, LUDS or QUICK is used from the
beginning of calculation.

5.3 Discretisation procedure

The discretised form of cquation(5.3) consists of four terms: unsteady rate of
change, convection, diffusion, and source. The principle of their discretisation
are given next.

Unsteady term

In this study, calculation of the unsteady term is conducted by cmploying the
second order implicit three-level differencing scheme. The discrctisation of the
unstcady term can be derived using Taylor-series expansion and it reads:

(aq)) 3(¢))n - 4((1))11‘1 + ((D)n-—‘z

ot | 2At

n

(5.4)

where ® is a variable, and n,n — 1, and n — 2 denote the current time, and two
previous successive time instants, respectively.

Diffusion

The diffusion term for the flux term using average rule can be expressed as:
/ pIV®,idA = p, TV d,iAn (5.5)
ATL

where A,, is the surface over n cell face. The discretised diffusive flux can be
expressed by using central differencing scheme as:

o . Zj q)jAj

Convection

The rate at which variable @ is convected into or out of the control volume
through cell face is represented by the convective flux of ®. Following Demirdzié
and Muzaferija [23], the convective flux can be expressed as:

C, = / pi ®idAxm, o, (5.7)
An
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In the case for orthogonal mesh, the mass flux m,, through the cell face can be
expressed:

m, = /A p@idA ~ p(Uhy— VAz), (5.8)

Source term

The source term is integrated by assuming linear variation of ® over the control
volume.

S¢=A@de©AV (5.9)

It is often necessary to linearise the source term, in order to enhance the conver-
gence behaviour of the simulation. The practice of linearisation of source term is
discussed more details in Patankar [88].

The discretisation of pressure and velocity coupling is done by using Semi
Implicit Method for Pressure Linked Equations (SIMPLE) of Patankar [88]. The
method is widely used and it is proved to be accurate and effective way for
most computation. Velocity is calculated by using estimated pressure, and then
improved from iteration to iteration to reach satisfaction of continuity equation.
A detailed description of the SIMPLE algorithm can be found in Ferziger and
Perié¢ [33].

5.4 Boundary condition and convergence criterion

Boundary conditions can be classified in two groups: Dirichlet and Neumann
boundary conditions. When the boundary condition of variable such as temper-
ature is specified explicitly, the approach is called Dirichlet boundary condition.
On the other hand, when they arc specified in derivative form, the approach is
called Neumann boundary condition. The boundary condition on walls assumes
no relative velocity between the boundary and the fluid immediately to the walls,
which is known as no-slip condition. For impermeable walls there is no mass flux
across solid boundary. This leads to the constant condition of variable ®. The
wall boundary conditions are specified as follows:

U=V=W=k=0=12=0 (5.10)

Unlike other variables, the boundary conditions for the clliptic relaxation function
f and dissipation rate € are finite:

0%k
Ewall =V <_2> (511)
023, ) et
-9 2 2
hm=—iiﬁ (5.12)

Ewall -r;‘,
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In order to reach convergent solution in a proper way, it is reconunended
to use underrelaxation. In this study, all computations are performed with un-
derrelaxation approach, but with different relaxation parameters for momentum
pressure correction, and the turbulence transport equations. General rule is to
use a small underrelaxation factor at the beginning of calculation and then to
increcase gradually until convergent solution is obtained. Convergence is achieved
when the following criteria is satisfied:

.

<107 5.13
‘ . (5.13)

where 1 refers to the value of @ at the n'® iteration level.

In principle, sufficiently fine grid is required in order to obtain an accurate so-
lution. especially in regions where scalar and turbulent ficlds change very rapidly
and this is usually observed in the near wall region. As a consequence, the grids
are clustered against wall. On the other hand, relatively coarse grid could be em-
ployed in regions away from walls in order to save the computational expenses,
especially when the change of quantities is mild. Paradoxical requirement is faced
in dcaling with near wall grid arrangement. On one side, as the flow is under
buoyancy effect that creates very important fields in the near wall region, it re-
quires very fine mesh. On the other side, because the boundary condition of f is
proportional to 1/z* very fine grid near the wall can cause numerical instability.
Optimisation is made in order to satisfy these requirements by using fine mesh
in the near wall region with adjustment of the first grid point.

5.5 Application of the numerical method in a benchmark

problem

The laminar natural convection in a cubical cavity with various inclination angles
has been studied extensively both numerically and experimentally. Examples are
Leong et al. [73] for experimental work and Kenjeres et al. [60] for numerical
work. It is of intcrest because it combines geometrical simplicity with a reasonable
level of physical complexity (different orientation between imposed temperature
gradients and gravitational vector).

The numerical method was tested first in the benchmark problem of laminar
natural convection of side-hcated cubical cavity which is characterised by two non-
dimensional parameters: Rayleigh number and Prandtl number. This calculation
is conducted with Boussinesq approximation. The vertical thermally active walls
arc kept at constant temperature difference (AT), while the remaining walls
arc treated as perfectly conducting (with lincar temperature variation). The
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Figure 5.2: Specification of the boundary conditions and applied coordinate system

for defined inclined cubical cavity.

temperature profile of the conducting walls is defined as :
T=T,— (T - Tc)% (5.14)

where z denotes the position and L is the length of the cavity. The calculation
is conducted for various angles of inclination, namely ¢ = 0°,45°, and 90°. The
geometrical configuration of the cavity is shown in Fig. (5.2). It can be seen
from the figure that when the inclination angle ¢ = 90° the temperature gradient
is perpendicular to the gravitational vector. On the other hand, when ¢ = 0°,
the Rayleigh Bénard convection is obtained (gravitational vector and the initial
temperature gradient are aligned). Calculations are performed using central dif-
ferencing scheme and an implicit three-level scheme for the time integration. The
grid size was 82 x 82 x 82 clustered towards the walls in order to accurately cap-
ture the near wall region. The convergence solution is reached when all residuals
of the quantities are less than 1078, The calculation is conducted in a range of
Rayleigh numbers, Ra = 10%, 107, and 10%, for various inclination angles.
Figures (5.3)-(5.5) show the velocity and temperature distributions in the cen-
tral (z — z) plane of the cavity heated from the side at Ra = 10%, for ¢ = 90°, 45°,
and 0°, respectively. The figures show the effects of inclination angles on flow
pattern, where the smaller the angle the more instabilities is created. The tran-
sient (T) behaviour was obtained for four specific situations: both simulations
for (¢ = 45°) inclination angle and highest Rayleigh numbers in other two con-
figurations, i.e for the side-heated (¢ = 90°,Ra = 10%) and for heated from below
(¢ = 0°Ra = 10%). The final value of Nu number was obtained by time av-
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Th Te

Figure 5.3: Velocity vectors and temperature contours in central vertical (x-z) plane

at Ra = 10%, ¢ = 90°.

Figure 5.4: Velocity vectors and temperature contours in central vertical (x-z) plane

at Ra =108, ¢ = 45°.
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Th

Figure 5.5: Velocity vectors and temperature contours in central vertical (x-z) plane

at Ra = 108, ¢ = 0°.

Table 5.1: Comparison of integral Nusselt numbers between computations and

experiment of Leong et al. [73]

¢ = 90° ¢ = 45° ¢ =00
Ra | Exp | CFD ANu Exp | CFD ANu Exp | CFD ANu
10° 3.91 | 3.98 | 1.6%(S)

108 ] 6.3 | 64 | 1.8%(S) | 883 | 8.81 |-0.2%(T) | 7.88 | 7.89 | 0.14%(T)
107 | 12.9 | 12.9 | -0.3%(S) | 17.50 | 17.35 | -0.8%(T)
108 | 26.7 | 25.0 | -6.6%(T)
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Figure 5.6: Time evolution of integral Nusselt number at hot (—) and cold (——) walls;

time averaged experimental value of Leong et al. [73] (---): Ra=10%¢=45% (above);
Ra=107,¢=45" (below).
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Figure 5.7: Time evolution of integral Nusselt number at hot (—) and cold (——) walls;

time averaged experimental value of Leong et al. [73] (---): Ra=108,6=00 (above);

Ra=108,6=90" (below).
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eraging over last 100 non-dimensional time units when the statistically steady
statc was established, Figs.(5.6)-(5.7). It is interesting to note the amplitude
of oscillations for integral N« number for different configurations. The maxi-
mum of oscillations was observed for heated from below (¢ = 0°) situation at
Ra = 108, with amplitude of 25% of time-averaged value. Despite its largest
Ra = 10® value, the side-heated configuration produced time evolution with the
minimal amplitude of oscillations (with 5% amplitude of time-averaged value).
As seen from Table 5.1 as well as from Figs.(5.6)-(5.7), good agreement between
experimental and simulated values of Nu number was obtained, except, at our
surprise, for ¢ = 90°, Ra = 108 situation. Simulation underpredicted integral Nu
by more than 5%. Since very good agreement was obtained for other configu-
rations over range of Ra and different angles of inclination, we suspect that the
imposed three-dimensionality as well as additional promotion of instabilities duc
to presence of perfectly-conductive walls probably promoted turbulence regime
earlier than in situations with adiabatic side walls. Only with additional grid
refinement or with a turbulence closure activation this hypothesis can be proved.

5.5.1 Conclusions

A numerical method has been presented to simulate turbulent natural and mixed
convection. For evaluation purpose, the method is used to calculate three-
dimensional laminar natural convection in an air-filled cubical enclosure heated
from the side under different angles of inclination. The numerical method is
tested, and it is found to produce results that are in agreement with experiments.
In the simulation with angles of inclination ¢ = 45° and 0°, the results indicated
a transient (unsteady) behaviour. Similar bchaviour is obscrved at ¢ = 90° for
Ra = 10°%. In the case of simulations for Ra = 10% and 107, regardless of the in-
clination angles, the Nusselt numbers are well predicted. However, at Ra = 108,
the numerical calculation yielded underpredicted values of Nusselt number. Since
the method shows good performance, it can be used for simulation in turbulent
flows.
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CHAPTER 6

Turbulent Natural Convection Results

6.1 Introduction

Natural convection phenomena in an enclosure can exhibit very different features,
depending on the geometry and mutual orientation between gravitational vector
and initial temperature gradient. In this work we focus on natural convection in
enclosures. Very different geometrical configurations can be encountered in engi-
neering applications. However, in order to illustrate the performance of various
models and to perform their validation two generic cases are usually consid-
ered: (i) enclosure heated from the side, (ii) enclosure heated from below. These
two flow cases exhibit conditions, in which the imposed temperature gradient is
aligned or perpendicular to the gravitational vector, respectively.

A side-heated turbulent natural convection in a vertical channel is shown in
Fig.(6.1)a. Here, the flow is solely driven by density or temperature gradients
in the gravity field. Due to temperature difference, higher temperature of the
fluid means lower density (7, > T, then p, < p.) and this creates the thermal
buoyancy force which drives fluid to move. As a consequence, less dense fluid
has a tendency to move upward and more dense fluid to move downward. As-
suming that the transport properties are uniform, the flow field between the two
isothermal walls would show anti-symmetric profiles. In general, the side-heated
enclosures are characterised by the presence of two distinct regimes: boundary
layers along the vertical walls and slowly rotating core region.

Figure (6.1)b shows a horizontal channel where the bottom wall is isother-
mally heated at temperature T}, and the top cold wall is maintained at a lower
temperature 7. Unlike the flow heated from the side where the temperature gra-
dient is perpendicular to the gravitational vector, here the temperature gradient
is parallel to the buoyancy force. This causes an unstable stratification not only in
region close to the wall, but also in most part of the enclosure. As a result, this
configuration promotes turbulence generation at much lower Rayleigh number
compared to the side-heated enclosures. In addition, for the side-heated natural
convection turbulence might occur only in a portion of flow domain (boundary
layer) while in heated from below situation, turbulence occurs almost in the entire
flow domain.

In this chapter, two different turbulent models are validated (run in full
simulations mode): (i) the second moment closure and its algebraic simplifi-
cation (ASM/AFM) (ii) k—e—v%—f—62 model. The second moment closure and
ASM/AFM are used for simulation of:

[
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o side-heated infinite vertical channel

The buoyancy-extended (k—e—v2— f—82) is applied for simulations of the natural
convection in:

e side-heated infinite vertical channel

e side-heated natural convection in a 2-D enclosure of aspect ratio 5:1

side-heated natural convection in a 3-D enclosure of aspect ratio 1:2:3

side-heated turbulent natural convection in a 3-D cubical enclosure

Natural convection heated from below of a 2-D enclosure with aspect ratio
1:1.5

The reason for selecting the above flow cases is based on the fact that in terms
of geometry, flows in enclosure are very basic and have served to model testing.
With a simple geometry, the model performance can be considered as the outcome
of the turbulence model and the numerical method only, rather than due to the
influence of geometrical complexity.

In this study, simulations are performed using Boussinesq approximation. The
Boussinesq approximation is valid only when density of the fluid varies only with
the temperature and only within a narrow range. Contrary to this, when the
density variation is significant the Boussinesq approximation is no longer valid
and therefore the variation of the density must be taken into account directly in all
equations. The working fluid used in this study is air, because its properties are
well known and majority of experimental and DNS studies are performed with air
as the working fluid. For model validation and evaluation, comparisons are made
with either experimental data or direct numerical simulation, or computational
result of other models.

6.2 Simulations with second moment closure in side-heated
infinite vertical channel

The present section considers the application of the second moment closure in
differentially heated infinite vertical channel. The second moment closure model
that was developed in Chapter 4 is the modification of model developed by Han-
jalié and Jakirlié [43] for the mechanical part and by Dol et al. [26] for the
thermal part. The development of this model is aimed to combine the necessity
of proper level of physics represented by model of turbulence and its numerical
stability. This is very important issue in computational fluid dynamics. Although
second moment closure is the logical and natural level for modelling turbulent
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Figure 6.1: Geometrical configuration of natural convection in a side-heated vertical

channel (a) and a horizontal channel (b)

fluid flow, heat and mass transfer within the framework of RANS, industrial users
are still reluctant to use the model, Hanjalié [41]. Tt is therefore the goal of this
investigation to develop a compromising model of turbulence. Requirement of
proper turbulence modelling involving moderate level of complexity is vitally im-
portant to predict buoyancy driven flows, because natural convection has many
engineering applications.

Natural convection in vertical channel corresponds to a very tall cavity with
negligible influence from the horizontal walls. The flow described above has been
cxtensively studied numerically by Versteegh [101] in direct numerical simula-
tion, and experimentally by Dafa’ala and Betts [20]. The simulation is per-
formed using control volume method with second order discretization scheme
on 48 x 90 x 180 and 96 x 216 x 432 grid points, which are considered suffi-
ciently fine with respect to the requircment of mean grid spacing as specified by
Grotzbach [39]. The dimensionless paramcters which describes the flow problem
are Prandtl and Rayleigh numbers. The flow fluid used in this simulation is air
with Pr=0.709. In addition, the simulation is performed in a range of Rayleigh
numbers: Ra=5.4x10%;8.227x10% 2.0x10%; and 5.0x10¢. Similar DNS data of
the turbulent natural convection at Ra=5.4x10? is provided by Boudjemadi et
al. [7].

In this section, the second moment closure is evaluated. In addition, calcu-
lations using algebraic Reynolds stress and heat flux model are also performed
here. As explained in Chapter 3, the algebraic model is formulated by truncat-
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ing the transport terms in the Reynolds stress and heat flux equations. This
algebraic form is mathematically complex and special care should be taken in
order to avoid singularity of solution. This is accomplished by keeping nonzero
denominator in the equations of Reynolds stress and heat flux. In order to avoid
complex mathematical formulation, fully implicit formulation of w;w; and Qu; is
used.

The mean velocity profiles predicted by the second moment closure model is
shown in Fig.(6.2)a. The velocity has been non-dimensionalised by the charac-
teristic velocity V, = v/BgATL, and the temperature by the temperature differ-
ence AT. The figure indicates that the new model predicts the mean velocity
reasonably well in the region far from the wall. Although the peak velocity is
underpredicted, the position of the peak is well predicted. On the other hand,
the algebraic model predicts the peak at location slightly closer to the wall. The
mean temperature profile is plotted against DNS in Fig.(6.2)b. It is evident that
the new model agrees well with DNS. Similar profile is shown by the algebraic
model, with exception of small discrepancy in region between (0.2 < z/L < 0.35).

The profiles of the Reynolds stress 77, wu, ww, and the shear stress uw, are
plotted in Figs. (6.3)a-b and (6.4)a-b. It is worth noting the near wall behaviour
of the Reynolds stress. The presence of a wall introduces reflection effect that
influence the normal stress . This indicates the importance of the wall reflection
effect that damps the stress.

The normal stress @ is underpredicted by the new model in the central part
of cavity but overpredicted in the near-wall region. This indicates a small wall
reflection effect in the near-wall region but significant effect in the far-wall region
reproduced by the wall term of pressure strain correlation. This discrepancy
is due to the profile of the wall coefficient C}’ used in the wall term. On the
other hand, the vertical component 7% is overpredicted in the central part, while
in the near-wall region is underpredicted. The span-wise component ww and
shear stress wo are well predicted by the new second moment closure model. The
algebraic model gives a slightly lower prediction than the new second moment
closure model. This is due to truncation of the transport term in the Reynolds
stress equation.

The vertical heat flux v profile predicted by the new model is plotted against
DNS in Fig.(6.5)a. It is obvious that the second moment closure model does not
agree well with DNS. In the near-wall region, DNS data increases very rapidly
while the model increases gradually. In the core region the level of Gv is higher
than the DNS data. Figure (6.5)b shows the profile of the horizontal heat flux
Ou. Contrary to the vertical heat flux fv, the calculated horizontal heat flux fu
agrees quite well with DNS. This good agreement is primarily attributed to the
fact that the horizontal heat flux strongly depends on the gradient of temperature.
Since the mean temperature is well predicted, the heat flux fu is also accurately
calculated.

While it is true that the omission of the transport terms in both Reynolds
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Figure 6.2: The vertical velocity distribution V (a) and temperature 7' (b) in an
infinite vertical cavity heated from the side at Ra = 5 x 108, Pr = 0.71 DNS data of
Versteegh [101].
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Figure 6.3: The horizontal Reynolds stress wu (a), and vertical stress 70 (b) , in an
infinite vertical cavity heated from the side at Ra = 5 x 10%, Pr = 0.71 DNS data of
Versteegh[101].
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Figure 6.4: The Reynolds stress ww (a), and shear stress 7o (b) in an infinite vertical

cavity heated from the side at Ra = 5 x 10% Pr = 0.71 DNS data of Versteegh [101].
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Figure 6.5: The vertical heat flux fv (a) and the horizontal heat flux fu (b) in an

infinite vertical cavity heated from the side at Ra = 5 x 10%, Pr = 0.71 DNS data of
Versteegh [101].
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Figure 6.6: The temperature variance 62 in an infinite vertical cavity heated from the

side at Ra =5 x 10°, Pr = 0.71 DNS data of Verstcegh [101].

stress and heat flux equations affects the performance of the algebraic model,
the main effect caused by the absence of the transport terms appears only in
the vertical heat flux fv. This may be caused by a fact that the buoyancy
production and pressure scrambling terms are dominant oncs for v. In addition,
the viscous effects are important in the near wall region. Therefore turbulence
is strongly generated in this region and this lcads to the creation of significant
turbulent diffusion. As a consequence, truncation of the transport term causes
deterioration of the vertical heat flux.

Dol et al.[25] obtained similar profile of fv. This discrepancy was explained in
terms of unsatisfactory modelling of turbulent diffusion and slow term of pressure
scrambling. Both terms are claimed too dissipative. In the later study, Dol [27]
observed that although the turbulent diffusion and the slow term of pressure
scrambling were well predicted, significant improvement was not obtained. This
disagreement could be overcome by introducing more advanced modeclling for
the mechanical part. This argument was supported by the fact that when the
mechanical part was frozen into DNS, the fv was very well predicted.
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6.3 Simulations with elliptic relaxation model

6.3.1 A side-heated infinite vertical channel

Natural convection in differentially side-heated infinite vertical channel is inves-
tigated using the proposed k — & — v2 — f — 62 model. In order to calculate the
Reynolds stress, the buoyancy extended eddy viscosity is used. The heat flux is
calculated using three different approaches, namely SGDH, GGDH, and AFM.
The use of these three level modelling approaches is aimed to give insight of how
they predict the turbulent flows in the vertical channel. The model has been val-
idated with the DNS data of Versteegh [101] at Rayleigh number under identical
conditions as for the second moment closure model in previous section. In order
to give a clear view of how the numerical stability is affected by changing y*, the
calculation has been conducted for various values of y*, namely y* = 0.1, 1 and
2. The non-dimensional wall distance y* is defined as:

Ury
yt =

14

(6.1)

where U, = (1,,/p)"/? and 1,, = p 0U/y.

Figure (6.7)a shows the mean velocity profile for various y* compared with
the DNS data. The model agrees well with DNS data in the near wall region.
However it deteriorates in 0.05 < z/L < 0.3 region. It can be seen that variation
of y* does not affect the performance of the model. The profile of the mean
temperature is plotted against DNS in Fig.(6.7)b. It is evident that the model
predicts DNS very well.

Figure (6.8)a shows the profiles of the vertical heat flux calculated with dif-
ferent values of y+. The profiles of vertical heat flux obtained by using SGDH,
GGDG, AFM approaches are plotted in Fig.(6.8)b. It is notable that the effect
of different approaches on Qv is very significant. As expected, AFM is superior
over other approaches. On the other hand, the variation of y* on fu; is negligibly
small, indicating no significant influence of the y* in the model’s performance.

In general, the proposed k — e — 82 — f — 62 model predicted reasonably well
the natural convection in the side-heated infinite vertical channel. The differ-
ence between SGDH, GGDH. and AFM approaches is visible just for the vertical
heat flux component fv. Contrary to fv, effect on the normal component of
Ou is negligible. In addition, variation of y* reveals no significant effect on the
model performance. Nevertheless, when y* is increased further, the number of
calculating points before the maximum value of mean velocity is not sufficient
(only 2 points for y* = 5) and this leads to deterioration of the velocity gradient.
When simulation is conducted with ™ < 0.01, numerical problem is observed.
The problem is either oscillatory behaviour of residuals or even divergence. This
problem is primarily caused by the finitc boundary condition of f. It is recom-
mended to use y*ta<1 in simulation of natural convection of differentially heated
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Figure 6.7: The mean vertical velocity distribution (a) and temperature (b) for dif-
ferent values of non-dimensional wall distance, y™ in an infinite vertical cavity heated

from the side at Ra =5 x 10%, Pr = 0.71 calculated using k — & — v2 — f — 62 model.
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Figure 6.8: The vertical heat flux for different values of non-dimensional wall distance,
yt (a) and by using different expressions for representation of #v; SGDH,GGDH, and
AFM (b) in an infinite vertical cavity heated from the side at Ra = 5x 108, Pr =0.71

calculated using k — ¢ — v2 — f — 62 model.
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Figure 6.9: The horizontal heat flux (a) and temperature variance (b) for a various y*

in an infinite vertical cavity heated from the side at Ra = 5x 108, Pr = 0.71 calculated

using k — ¢ — v2 —~ f — 62 model.
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Figure 6.10: The profiles of f (a) and v2 (b) for various y™ in an infinite vertical cavity
heated from the side at Ra =5 x 108, Pr = 0.71 calculated using k — ¢ — V- f-62

model.
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vertical channel. The reason lies not only in the stability of numerical simulation,
but because it also reproduces good results. As can be seen from Figs.(6.10), the
variation of the elliptic relaxation function f and v? is negligible when y* is
varied.
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6.3.2 Natural convection in a side-heated 2D 5:1 aspect ratio enclo-

sure

In this section, natural convection in an enclosure with aspect ratio 5 : 1 is
investigated numerically using k—e—v2— f —62 model. In order to further validate
the model, the simulation is carried out at the same condition of the experimental
study of Cheesewright et al. [9]. The experiment was conducted in an enclosure
of 2.5 m height and 0.5 m width of two isothermal vertical walls maintained at
temperature 68° C and 22° C for the hot and cold walls, respectively, while the
remaining horizontal walls are adiabatic. This configuration results in Rayleigh
number Ra=5x10%. The number of grid points for computations is 62 x 62 control
volumes. Variable grid spacing is introduced to resolve steep gradient of velocity
and temperature in the near-wall regions. The convergent solution is achieved
when the maximum residual is 1076.

Figure (6.11)a shows the distribution of the y* along the isothermal vertical
walls. It can be seen that very small y* is observed at the upper and lower
parts of the walls. This may be the reason for oscillatory behaviour of residuals,
especially at the beginning of the calculation. In addition, asymmetric shape
of the y* along the isothermal hot wall is observed. This is attributed to the
development of boundary layer. Similar situation is observed at the opposite
cold wall.

The distribution of the local Nusselt numbers along the isothermal walls is
shown in Fig.(6.11)b. The main feature of these distribution is characterised by
the antisymmetry profile between the hot and cold walls. The maximum Nusselt
number of the hot wall occurs at the lower part of the wall, while the maximum
Nusselt number at the cold wall takes place at the top part of the enclosure.
The transition at the isothermal hot wall occurs at about at y/H = 0.12 which
is sooner than that calculated using four-equation model of Kenjeres et al. [61].
This fact indicates that proposed model predicted more turbulence than the four-
equation model.

The results obtained by the proposed model are shown in Figs.(6.12)-(6.13).
It can be seen from the velocity vectors in Fig.(6.12)a that boundary layers are
characterised by the presence of strong buoyant jet that hits the top wall. From
here the jet is turncd right creating a strong flow along horizontal adiabatic
wall. Some of the fluid is however reflected back towards the core region. This
reverse flow vanishes in the middle of the cavity. Similar reverse flow from the
bottom part of cold wall is also observed. Figure (6.12)b shows the contour
of the turbulent Reynolds number. This contour shows the relatively strong
interaction between two scparate boundary layers. It is interesting to mention
that the contours of turbulent kinetic energy, the horizontal, vertical stresses,
and the v2 in Figs.(6.12)efgh show a similar pattern. The difference is mainly
in their maximum values. The maximum value of the v2 is about 2/3 of the
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maximum value of the turbulent kinetic energy. Note that the anisotropy can
be distinguished by comparing the horizontal to the vertical stresses. This result
indicates the significant effect of buoyancy term in the extended eddy viscosity
model.

In Fig.(6.14)a the experimental data and computed result of the mean velocity
at the mid-height of the cavity are plotted. Predictions show good agreement with
experimental velocity data. The velocity maximum is well predicted in the region
close to the heated wall. The experimental data is not absolutely symmetrical
about the center point of the enclosure because of the imperfect insulation of
the horizontal walls. Considering the asymmetry of the experimental data in the
cavity due to the heat losses. it is not valuable to compare the computed result
in the region near the cold wall.

Figure(6.14)b shows the profile of the turbulent shear stress at y/H = 0.5.
The model shows reasonably good agreement with the experimental data, espe-
cially in proximity of the hot wall. The peak value of computed shear stress
is approximately 10% higher compared to the experimental data with a similar
slope around the maximumn value. Unlike the experimental data, where the shear
stress is always positive in the entire enclosure, the model produced steep and
narrow negative value in the near wall region.

The comparison between Cheesewright's data and calculated vertical heat
flux fv, at y/H = 0.5, is shown in Fig.(6.15)a. Similar profile was obtained
by Kenjeres [62], where it was shown that calculation using AFM reproduces a
substantial improvement over the GGDH approach. The calculated profile for
the horizontal heat flux fu at y/H = 0.63 is shown in Fig.(6.15)b. The model
overpredicts the experimental data. Nevertheless, the qualitative agreement is
observed. The profile of the elliptic relaxation function f is shown in Fig.(6.16).
Similar patterns between the hot and cold wall are observed. The maximum
values arc found in the near wall regions, while far away from the wall they
are very small. Notc that the profiles at y/H = 0.9 and at y/H = 0.1 arc
antisymmetric.

In general, k—e—v2— f —§2 model has demonstrated the ability to predict the
flows in natural convection in the side-heated 2D enclosure with moderate aspect
ratio. From comparisons shown above, it can be concluded that the proposed
model has correctly predicted the experiment of Cheesewright.
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Figure 6.11; The profiles of y* (a) and Nu (b) in side-heated 5:1 aspect ratio cavity
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Figure 6.12: Velocity vector and contour distribution of different quantities in side-
heated 5:1 aspect ratio cavity at Ra = 5 x 108: (a.) velocity vector, (b.) turbulent
Reynolds number (max:0.7 x 1072; min:0.24 x 1073), (c.) temperature (max:68 ° C;
min:22 ° C), (d.) temperature variance (max:0.3 x 103 °C?; min:0.1 x 10! °C?), (e.)
v? (max:0.36 x 1072 m?/s%; min:0.1 x 1073 m?/s?), (f.) normal stress (max:0.51 x
1072 m2?/s?%; min:0.17 x 1073 m?2/s?), (g.) vertical stress (max:0.61 x 1072 m?/s?;

min:0.21 x 1073 m2?/s?), (h.) strcam line.
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Figure 6.13: Contour distribution of different quantities in side-heated 5:1 aspect ratio
cavity at Ra = 5x10%: (a.) turbulent kinetic energy (max:0.7 x 1072 m?2/s%; min:0.24 x
1073 m?/s?), (b.) vertical heat flux (max:0.14 x 107! m?2/s?; min:—0.51 x 1072 m?/s?),
(¢.) horizontal heat flux (max:0.1 x 107! m/s°C; min:—0.1 x 1072 m/s°C), (d.) elliptic

relaxation function f.(max:2.0; min:—1.0)
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Figurc 6.14: The mean velocity (a) and shear stress (b) profiles (at y/H=0.5) in

side-heated 5:1 aspect ratio cavity at Ra = 5 x 10%.
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Figure 6.15: The vertical turbulent heat flux (at y/H=0.5) (a) and horizontal heat
flux (at y/H = 0.63) (b) in side-heated 5:1 aspect ratio cavity at Ra =5 x 108.
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Figure 6.16: The elliptic relaxation function f (at y/H = 0.1,0.5 and 0.9) in side-

heated 5:1 aspect ratio cavity at Ra = 5 x 108.
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6.3.3 A side-heated 3D enclosure with 1:2:3 aspect ratio

This section presents numerical investigation of three dimensional enclosure with
height, depth to length aspect ratio of H : D : L=1: 2 : 3. The simulation is
performed with grid size of 102 x 62 x 42 of nonuniform mesh clustered towards
the wall in order to accurately capture the turbulent fields in the near wall region.
This numerical study is compared with the experimental work of Olson et al. [84]
on the steady state natural convection. The experiment was carried out in three
dimensional cavity of 2.5 m high, 7.9 m long and 3.9 m width, with isothermal
hot wall at 29.3 °C and opposite cold wall at 10.9 °C. This specification gives
a relatively high Rayleigh number, Ray = 3 x 10, or Ray = 9.5 x 10!, In
addition to the full-scale experiment, Olson et al. [84] also performed measure-
ment at small-scale model in order to see possibility for scaling-down but still to
keep all interesting physics of flows. Several advantages of using the small scale
model could be obtained. For example, much better control of heat-losses and
significant reduction of running cost for experimental equipment. It was reported
that the main characteristic of the flow were turbulent boundary layers on the
isothermal vertical walls, with two horizontal loops, one near the ceiling and one
near the floor. In the region far from the boundary layers no motion was detected
indicating a stagnant region in the core of the enclosure. In addition, Olson et
al. [84] observed that the velocities of the full room and the small scale model in
the horizontal layers agreed well (within experimental uncertainty).

The velocity contours, turbulent kinetic energy, temperature distribution and
temperature variance predicted by the model are shown in Figs.(6.17)a-d, re-
spectively. The velocity field shows a typical boundary layer pattern for the
side-heated enclosures. It can be seen that the thin boundary layers are devel-
oped along thermally active vertical walls. When the vertical jet hits the top
wall, a reverse flow is created. The reverse flow creates a small vertical loop at
the upper part of the boundary layer. In a similar manner, the antisymmetrical
flow is observed along the cold wall with small vertical loop at the lower part of
the wall. At the boundary layer exterior, a stagnant core with very small velocity
is observed, indicating weak interaction betwecen two isothermal walls. However,
the reverse flows along the horizontal walls arc not predicted by the numeri-
cal simulation. The contours of the turbulent kinetic energy and temperature
variance appear to be concentrated along the isothermal walls.

Figures (6.18)a-d present the contours of v%, 70, W, and elliptic relaxation
function f. It can be seen that the most significant fields are concentrated in the
vertical boundary layers. It is evident that the contours of v2, Reynolds stresses,
and turbulent kinetic energy have similar pattern!. The difference is mainly in
their maximum values. Note that due to buoyancy production in the Reynolds

!Note that for the adopted coordinate system v2 should be compared to Ta (wall normal

stress) to which it reduces in equilibrium flows very close to a wall.
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aspect ratio 1:2: 3 at Ra = 3 x 1010

-1 — Left wall
- - Right wall

0 0.5 1 1.5 2 2.5

Figure 6.20: The distribution of y™ at the isothermal walls in side-heated 3-D cavity

with aspect ratio 1:2:3 at Ra =3 x 10'0
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Figure 6.21: The elliptic relaxation function f (at y/H = 0.1,0.5 and 0.9) in the

isothermal walls of side-heated 3-D cavity with aspect ratio 1:2: 3 at Ra = 3 x 10%°

stress equation, the maximum value of 7T is considerably higher than that of w@.

The profile of the mean temperature in proximity of the hot wall are plotted
against experiment for the full scale room and the small scale model in Fig.(6.19).
Very close to the wall, the calculated temperature decreases very rapidly until
z/L < 0.005, i.e. about 4 cm from the hot wall, while away from that region, the
temperature is almost constant. In general, the computational result captures
qualitative profile of the experimental data. However, discrepancy is obscrved
in the near wall region. This discrepancy is mainly attributed to the turbulence
level of the flow. The present model obviously overpredicts level of turbulence,
causing more pronounced gradients.

Figure (6.20) shows the distribution of y* along the vertical walls. The profile
is similar to that of the side-heated enclosure with aspect ratio 5 : 1, with excep-
tion of larger value of almost 200%. Note that the profiles between the left and
right walls are antisymmetrical. The profiles of the elliptic relaxation function f
at y/H = 0.1,0.5 and 0.9 are shown in Fig.(6.21). It can be seen that f has a
significant value only in the near wall region, while in the far away from the wall
region f is almost zero.
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Figure 6.22: The geometrical configuration of cubical cavity (a) and the slice of the

planc at z/D = 0.5 (b).

6.3.4 A side-heated cubical enclosure

The natural convection inside a cubical cavity has been extensively studied in
both the laminar and turbulent regimes. Example is the experimental study of
turbulent natural convection in a cubical enclosure heated from the side at a suffi-
ciently high Rayleigh number Ra = 5 x 10'°, by Opstelten [85]. The experimental
set-up was designed to overcome limitations and to give improvements of previous
experiments of Cheeswright et al.[9] and King [65]. In order to achieve the high
Rayleigh number, the dimension of the cavity is taken as large as possible within
the given constraint (size of a laboratory room) and to keep the value of AT
relatively small (for which the Boussinesq approximation is valid). Two lateral
wall configurations have been tried, with passive or active walls. The lateral wall
is called passive one when it is insulated in order to reduce 3D effects caused
by heat transfer through the wall. It is called active wall when localised heating
is applied to the lateral wall to compensate the flow stratification. In the case
with the passive walls, a significant heat loss is found. These heat losses occur
due to exchange of heat with environment. The experiment clearly demonstrates
the complexity of imposing adiabatic boundary conditions. Despite experimental
difficulties, this study provides useful database for validation purposes. Dol and
Hanjali¢ [24] performed numerical simulation of this configuration using second
moment closure: for 2D and 3D computations. The model was based on the sec-
ond moment closure of Peeters and Henkes [89]. Realistic experimental boundary
conditions have been applied for these simulations.

The objective of this numerical study is to test the ability of the adopted
k—¢e—0v2— f— 0% (5 equation model) in a side-heated cubical enclosure. The
numerical simulation is aimed to match with the experimental study of Opstelten
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Figure 6.23: The trajectories of massless particles released in characteristic vertical
plane in heated from the side cubical enclosure, Ra=5x10'%, Pr=0.71: left- z/D=0.5,
right- z/D=0.05.

[85] of turbulent natural convection at Rayleigh number Ra = 5 x 10°. A
nonuniform grid of 62 x 62 x 52 nodes is used. The mesh is clustered towards walls
in order to properly capture turbulent fields. In order to improve convergence, the
solution for a lower Rayleigh number (Ra = 5 x 10®) was used for specification of
initial fields. Different underrelaxation factors have been applied to all variables.
Convergence of simulations has been accelerated by using small time step at the
beginning of the calculation, which was gradually increased as time progressed.
The full convergence of computations was declared when all residuals reached
1078,

The geometrical configuration of the cubical cavity is shown in Fig.(6.22).
Analysis is focused in the boundary layer, because the main flow and heat trans-
fer occur in this region. Here, intensive shear and buoyancy productions drive
the convection that influence the whole fluid flow in the cavity. It is therefore
important to evaluate the model performance in this region. In order to obtain
a better insight in the flow pattern, the instantaneous trajectories of massless
particles in the central vertical plane and in the proximity of back lateral wall
are shown in Fig.(6.23). Figures (6.24)a-b show the velocity vectors and tem-
perature distribution in the mid-plane (2/D = 0.5), respectively. The contours
of the turbulent kinetic energy (k) and v? are plotted in Figs.(6.25)a-b. Both
distributions show a similar pattern, with highest concentration in the near-wall
region. Similar contours are observed for Reynolds stress wu and vv.

The non-dimensional vertical velocity (V/V;, where V3 = VgBATH) in the
central vertical plane (z/D = 0.5) at different heights (y/H = 0.1,0.3,0.5,0.7
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Figure 6.25: The turbulent kinetic energy (a) and v2 (b) contours; heated from the
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Figure 6.26: The contours of wu (a) and ¥ (b) of the heated from the side cubical
enclosure; z/D = 0.5, Ra = 5 x 1010

and 0.9) are shown in Figs.(6.27)a-b, (6.28)a-b, and (6.29)a, respectively. In
general, the proposed model agrees quite well with the experiment. The proposed
model predicts fairly well the vertical velocity in the laminar part of boundary
layers (y/H = 0.1) shown in Fig.(6.27)a. Similar prediction was observed in
the fully turbulent part of boundary layers (y/H = 0.7). However, the model
slightly underpredicts velocity in the transitional (from laminar to turbulent)
part of the boundary layer (y/H = 0.3). This discrepancy may be caused by
the premature transition predicted by simulations. Figures (6.34)a-b show the
horizontal velocities in the near-wall regions. It can be seen that both the second
moment closure and the proposed model differ from the experimental data. Note
that there is no significant difference between the results obtained by presented
model and by second moment closure of Dol and Hanjali¢ [24].

In order to produce turbulent solution, local triggering was applied by Henkes
[50] for low-Reynolds number k — £ model, followed by Dol and Hanjali¢ [24] for
second moment closure model. Without this treatment, numerical simulation will
result in laminar solution. The new k — ¢ — v% — f — 62 proved that the local
triggering is not needed in order to get solutions in turbulent regime.

The comparisons between numerically obtained and the measured horizontal
and vertical components of the rms velocity fluctuations are shown in Figs.(6.30)a-
b and 6.31a-b. Generally, a good agreement between simulations and exper-
iments is obtained. The second moment closure of Dol and Hanjali¢ [24] ex-
hibits better agreement in the near-wall region for almost all positions (except
for z/D = 0.5, y/H = 0.7), see Fig. (6.31)a. This is not surprising, since the
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Figure 6.27: The mean velocity V of the heated from the side of the cubical enclosure

at z/D = 0.5 of (a): y/H = 0.1 and (b): y/H = 0.3 at Ra =5 x 1010
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Figure 6.28: The mean velocity V of the heated from the side of the cubical enclosure

at z/D = 0.5 of (a): y/H = 0.5 and (b): y/H = 0.7 at Ra = 5 x 1017




111

o Exp. Opstelten et al. (1996) passive
A Exp. Opstelten et al. (1996) active |

— Present model
— — SMC Dol & Hanjalic (2001)

"re 1 T T T T v
-
b
«
>0
|§
=
[ ° °
o
2t §
o Exp. Opstelten et al. (1996) © o
—— Present model oo
3k — — SMC Dol & Hanjalic (2001) i
i 1
(]
-4 1 1 . 1 . 1 .
A X X 0.9 0.95 1
0.75 0.8 0.85 x/L

Figure 6.29: The mean velocity (a): V (y/H = 0.9) and shear stress (b): % (z/L =
0.1) of the heated from the side of the cubical enclosure at 2/D = 0.5 at Ra = 5 x 10'°
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Figure 6.30: The rms velocity fluctuation (a): trms and (b): vrms of the heated from

the side of the cubical enclosure at z/D = 0.5 of y/H = 0.5 at Ra =5 x 1010
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Figure 6.35: The elliptic relaxation function f at y/H = 0.1,0.5 and 0.9 of the heated

from the side of the cubical enclosure at Ra = 5 x 1010
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enclosure at Ra =5 x 1010
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possibility to capture correctly the stress anisotropy in the near-wall region is one
of the most prominent features of second moment closure. The present model
shows still very acceptable behaviour in the near-wall region and, at our initial
surprise, it even outperformed the second moment closure in central region of
cubical enclosure. A reason for this probably lies in the elliptical nature of re-
laxation function (f) compared to empirically assumed dumping functions used
by Dol and Hanjali¢ [24]. In addition, it is important to note that the present
k —e—v? — f — 8% model is able to capture anisotropy effects since the buoyancy
contribution is taken into account in algebraic representation. The similar conclu-
sions can be drawn from behaviour of the shear stress components, Figs.(6.31)b
and (6.33)b. A small negative shear stress is observed only at y/H = 0.9. This
negative value is also well captured by the proposed model, Fig.(6.33)b.

The profiles of elliptic relaxation function f at different locations, (y/H =
0.1,0.5 and 0.9) are presented in Fig.(6.35). At y/H = 0.5 the profile at hot
and cold walls are symmetrical, while those at y/H = 0.1 and y/H = 0.9 are
antisymmetrical. Variations of y* along the thermally active vertical walls are
shown in Fig.(6.36). Note that both distributions exhibit symmetrical shapes. It
can be seen that relatively large value of y+ does not have a significant negative
effect on results, indicating a good performance of the k — & — v — f — 62 model
when relatively coarse mesh is applied. This condition is very beneficial for sav-
ing computational time as compared to the low-Reynolds model which normally
requires very fine mesh for proper calculations.
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6.4 Natural convection in heated from below enclosure

Natural convection in enclosures heated from below has been extensively stud-
ied both experimentally and numerically, thanks to simplicity of geometry and
boundary conditions. Examples of experimental studies can be found in Bénard
[3]. Fitzjarrald [34], Leong et al. [73], and Pallares et al. [87]. Similarly, a number
of numerical studies have also been conducted by Woérner and Grotzbach [106],
Leong et al.[72], Kenjeres [62]. Direct numerical simulation of Raleigh-Bénard
convection was carried out by Grétzbach [39], Wérner [104] and Kerr [64]. The
available DNS data have greatly enhanced the possibilities for model validation.

6.4.1 Natural convection in heated from below 1:1.5 aspect ratio en-

closure

The present section considers the application of the 5-equation k —e — 2 — f — 02
model in natural convection in heated from below 1 : 1.5 aspect ratio enclo-
sure. The simulation is conducted under the Boussinesq approximation. Two
horizontal walls are kept at constant temperature difference, while the remaining
walls are adiabatic. The geometry was represented by 82 x 82 nonuniform collo-
cated grid with a fine spacing near the horizontal walls (necessary for capturing
the steep gradients in the thin boundary layers accurately). The simulation is
conducted at Rayleigh number Ra = 2 x 10°, Pr = 0.71. In order to obtain
convergent solution, underrelaxation is applied to all variables but with different
values. The false-time stepping procedure is applied in order to stabilisc iterative
procedure with A7=0.1.

It can be seen from the flow pattern in Fig.(6.37)a that a single-circular clock-
wise rotating flow is produced with rotation center, which is a stagnation point,
at the cavity mid-point. In the top left and right bottom corners of the isother-
mal horizontal walls secondary counter clockwise flows appear. Note that the
contours of turbulent Reynolds number, temperature, and stream lines show di-
agonal symmetry patterns. The contour of the turbulent kinetic energy is shown
in Fig.(6.38)a, while the contour of v? is shown in Fig. (6.38)b. It is obvious
that the pattern of v? is similar with that of the turbulent kinetic cnergy. How-
ever, its maximum value is about a half of that of the turbulent kinctic energy.
The maximum values of the horizontal stress are located in the left-bottom and
right-top corners.

The computed temperature profile for Ra=2x10? are plotted against the nu-
merical result of Kenjeres [62] in Fig.(6.39)a. In the figure, the measured temper-
ature for Rayleigh number Ra = 108 of Chu and Goldstein [14] is also presented.
Good agreement is observed between 4-equation model of Kenjeres with the cx-
periment. It is obvious that the proposed model agrees well with the 4-equation
model of Kenjeres [62]. The local Nusselt number that reflects the heat transfer
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Figure 6.39: The profile of temperature (a) and the local Nusselt numbers (b) at

isothermal walls of rectangular cavity heated from below at Ra = 2 x 10°.

rate at the wall is shown in Fig.(6.39)b. The maximum value of the Nu is located
at the border between the secondary eddies and the main circular flow at the wall.
A less pronounced peak is found at the other end of the wall. Similar pattern
is reported by Kenjeres [62]. Note that the average Nusselt number obtained by

Y
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Figure 6.40: The profile of f (a) and the distribution of y* (b) at isothermal walls of

rectangular cavity heated from below at Ra = 2 x 10°.

the proposed model is 5% less than the value calculated by using the 4-equation
model.

"The profile of the elliptic relaxation function f is shown in Fig.(6.40)a. Clearly,
a negative value is observed at walls as defined by boundary condition. It then
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crosses zero line to reach its peak value at location still close to the side-wall. It
is interesting to note that the wall value of f at the isothermal wall is compa-
rable to that of f at the adiabatic wall (sec contour of f in Fig.(6.38)). Figure
(6.40)b shows the distribution of y* along the isothermal horizontal walls. Wavy
shape is observed in the near corner regions, while a smooth change is found in
the remaining part of enclosure. The secondary eddies are responsible for such
distribution of y* (velocity gradients exhibit intensive changes).

6.4.2 Conclusions

The differential Reynolds stress and heat flux models are evaluated in the turbu-
lent natural convection in the side-heated infinite vertical channel. In addition,
their algebraic forms are evaluated and tested under identical conditions. Vali-
dation is made using available DNS data and it is observed that the results agree
well with DNS. Although the second moment-closure has produced better results
compared to the algebraic model, especially in the prediction of vertical heat flux,
there is no significant difference in performances of two modelling levels. Simu-
lations using the k — e — v2 — f — 62 have been performed for turbulent natural
convection in the side-heated (with several aspect ratios) and heated from below
enclosures. For all cases considered, good agreement with available DNS and
experimental results is obtained.




CHAPTER 7

Turbulent Mixed Convection Results

7.1 Introduction

Convective heat transfer under combined effects of thermal buoyancy and an ex-
ternally imposed flow occurs in a munber of important technological applications.
These combined effects. referred as the mixed convection. may arise, for exam-
ple, in externally induced flow in heated channels, in the cooling of clectronic
circuitry by mean of a fan, in indoor-climate situations, etc. With a better un-
derstanding of the fundamental mechanism of mixed convection, it is possible to
optimise and improve the performance of various industrial applications. For this
purpose, a variety of experimental and numerical studies have been performed in
the literature under different conditions.

The current chapter presents calculations using the proposed k—&—v? — f —2
model in turbulent mixed convection of three different situations:

¢ Enclosure with supply and exhaust under stable thermal stratification: 2D
simulations

¢ Indoor-climate mixed convection under summer cooling condition at low
flow rate: 3D simulations

e Indoor-climate mixed convection under summer cooling condition at high
flow rate: 3D simulations

The cases considered above are sclected because of their relevance in realistic
applications. In present investigation, the mixed convection under stable ther-
mal stratification and under summer cooling condition have been validated using
experimental data and results of previously performed numerical simulations.

7.2 Enclosure with supply and exhaust under stable ther-
mal stratification: 2D simulations

In this section are performed numecrical simulations of mixed convection in a
2D enclosure with supply and exhaust under stable thermal stratification. This
configuration corresponds to conditions found in buildings with glassed roofs.
The stable thermal stratification suppresses turbulent transport creating local
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Figure 7.1: The geometrical configuration of the enclosure

coexistence of laminar and turbulent flow regimes. Purpose of this investigation
is to extend model validation further to cases with mixed convection conditions.

The similar numerical study was performed by Murakami et al. [79]. They de-
veloped a new-version of k — € model by taking into account algebraic stress/flux
representation in which terms were modified in order to provide damping effects
of stable thermal stratification. The new damping functions were introduced for
shear-stress wo and vertical heat flux component §v. However these functions
have a relatively complex form and they are introduced just to directly affect ww
and Bv only. Authors reported significant improvements obtained with the new
model compared to standard k — ¢ approach with wall functions for three config-
urations: stable stratified shear flow within a 2D channel, natural convection in
2D side-heated cavity and mixed convection under stable thermal stratification
conditions.

The sketch of a two-dimensional enclosure with supply and exhaust under
stable thermal stratification is shown in Fig.(7.1). An inlet with 0.018 mn width
with incoming air of temperature T = 15°C is placed on the front wall (H =
1.04 m) under the ceiling (L = 1.04 m). Initial specification of uniform inlet
profiles resulted in deviation from the experimental data. Then by performing
separate simulation, the fully developed profiles of all variables were obtained
and used at inlet. On the other side of the wall, an outlet with 0.024 m width is
placed on the back wall above the floor. In order to satisfy mass flux balance, a
mean velocity is specified at outlet. Temperature in the ceiling is maintained at
T = 35°C and the remaining walls are kept at T = 15°C.

Figure (7.2)a illustrates the flow pattern predicted by the model. It is evident
that the velocity field is almost diagonally symmetrical, with intensive flow in the
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upper right part of the cavity. The most prominent feature of the flow pattern
is the reversed flow from the right bottom corner to the left top corner. Due
to this strong jet, the reversed diagonally oriented flow is created. Flow splits
into two streams when the corner region is reached. First stream is directed
downwards along the left vertical wall and is trapped in the left-bottom corner
by incoming diagonal jet. Second stream continues to move in parallel to the
incoming horizontal jet. Flow visualisation in experiment of Blay et al. [4] shows
flow along the diagonal line. The identical flow pattern is reproduced by proposed
model. Unlike the result obtained by simulations of Murakami et al. [79], where
the primary vortex is located in the mid-height of the right side of the cavity, the
present model predicted the vortex in the upper part of the cavity. In addition,
a secondary vortex is observed at left-bottom cavity corner. This interesting
feature might be due to the strong diagonal flow coming from the right-bottom
corner. Temperaturc distribution, turbulent kinetic energy, and v2 contours of the
flow are shown Fig. (7.2)b, and (7.3)a-b, respectively. As for natural convection
cases, similarity between k and v? is observed. In Figs.(7.4)a-b the contours of
temperature variance 62 and heat flux @u are presented. As expected, the most
intensive heat transfer takes place along the horizontal top wall.

The horizontal velocity component (U) in the central vertical line is shown in
Fig.(7.5). It can be seen that the present model reproduced well the experimental
data, especially in the upper part of the cavity. Similarly, the model of Murakami
et al. [79] agrees well with the experimental data. However, the present model
gives better agreement in the middle of the cavity, while the model of Murakami
et al. [79] performs slightly better in the lower part of the cavity. Figure (7.6)
shows the vertical velocity profile against experiment along the horizontal center
line, y = 0.52 m. It is evident that the proposed k — ¢ — v2 — f — @2 brings
data in close agreement with experiment. Noticeable improvements with the new
model compared to modcl of Murakami et al. [79] are achieved in predicting
in the maximum velocity profile in the central part of the cavity. The strong
non-monotonic behaviour of f distribution across horizontal profiles at different
enclosure heights (y/H = 0.1,0.5,0.9) are observed, Fig.(7.7). The amplitude
of changes increases as the right vertical wall is approached. The profiles of y*
along the vertical walls are shown in Fig.(7.8). The strong variations of y* are
appearing ouly in vicinity of horizontal top and bottom walls. Similar distribution
of y* along the horizontal walls is shown in Fig.(7.9).

It seems that the proposed variant of model works quite well for this case
of turbulent mixed convection in a 2D enclosure with supply and exhaust under
stable thermal stratification. Although the case considered is relatively complex
- characterised by the direct interaction between strong jet with high tempera-
ture gradient (at the top wall), velocities are well predicted. In addition, strong
fluctuation of y*, especially in the near inlet region, does not affect the numerical
stability.
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7.3 Indoor-climate mixed convection under summer cool-
ing conditions: 3D simulations

According to an epidemiological survey with more than 10000 participants in the
USA and Canada, they spent, on average, about 10% of their time outdoors in
summer time and only 2—4% in winter time, Leech et al. [70]. Such large fractions
of time spent indoors are typical for all industrial countries, especially in seasons
when out-doors thermal conditions are too hot or too cold for comfort. Similar
statistics is found in industrial cities of tropical countries, where hot weather
and humidity may have an adverse impact on occupant comfort. It is therefore
important to put a more resecarch attention on indoor-climate investigation.

Thermal comfort is gencrally defined as that condition of mind which ex-
presses satisfaction with the thermal environment, Hoppe [52]. For example,
thermal condition in residential or office space has to be cousidered carefully
mainly because of its influence on possible creation of negative conditions which
can lead towards dissatisfaction with environment, productivity decrease, and ill
health. The dissatisfaction may be caused by the body being too warm or too
cold as a whole, or by unwanted heating or cooling of a particular part of the
body. Another important parameter involved in the thermal comfort is the mois-
ture content of the inside air. This variable, which is obvious in humid tropical
climate, has a significant impact not only on the occupant’s comfort, but also
on the required energy to heat or to cool specific space. In order to provide
indoor thermal comfort, several approaches have been used: natural ventilation,
mechanical ventilation (fans) and air-conditioning system. The term ’ventilation’
includes all procedures where air in the interior of a closed space is replaced by
external air masses, entering through building openings.

Natural ventilation is the cheapest way of providing a comfortable environ-
ment in indoor or in workplace, because of its potentials in reduction of energy
costs. Many studies dealing with natural ventilation in enclosures can be found
in literature. Most of these studies have concentrated on ventilation flows which
are solely driven by either the buoyancy force associated with the temperature
difference between the fluid inside the enclosure and that of its surroundings, or
the wind, Linden et al. [75]. The mathematical models have been developed by
Cooper and Linden [15] to predict the thermal stratification in enclosures due to
buoyancy driven ventilation flows. Wind driven ventilation flows is well under-
stood, particularly with the use of wind tunnel models for the determination of
pressure coefficient for model buildings, Hunt and Linden [53]. They investigated
the fluid mechanics of combined effects of buoyancy and wind natural ventilation
in an enclosure. It was shown that the relationship between the buoyancy and
wind effects are non-linear.

Tsutsumi et al. [99] conducted the full scale measurement of indoor thermal
factors and numerical simulation of indoor air flow. The measurement was carried
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out during summer in an apartment building in two operational modes: ventilated
and unventilated. The numerical simulation of indoor air How in a single unit
house was carried out to predict the air speed by natural ventilation through
opening windows. The standard & — ¢ model was applicd in the simulation.

Mechanical ventilation by fans is environmentally friendly and is frequently
used because of relatively low running costs. For example. Wong and Khoo [105)
carried out an investigation on adequacy of mechanical ventilation by fans in pro-
viding thermal comfort in Singaporcan classrooms. In this study, several aspects
are examined: (i) thermal condition in classrooms. (ii) thermal acceptability in
classrooms, and (iit) neutral temperature.

Air conditioning system in interior environment of buildings is most frequently
used to provide a comfortable indoor environment for occupants. However, the
air-conditioning would consume much more energy as compared to natural and
mechanical ventilations. Cheong et al. [11] examined the thermal comfort con-
ditions of an air-conditioned lecture theater in a Singaporecan tertiary institution
using both experimental techniques and numecrical simulations. It was reported
that the measured thermal comfort paramcters, such as temperature, airflow rate,
and relative humidity are in good agrcement with the calculations.

The thermal comfort in a room depends on many parameters such as: hu-
midity, weather season and type of application. Under hot and humid tropical
climate, people werc found to prefer cooler environment, with slightly higher air
velocity, Wong [105]. From Wong [105] study on thermal comfort carried out in
tropical countries, such as Singapore and Indonesia, it was shown that tempera-
ture of 25.1° C was the optimal value. For European countries where humidity
is very low, the preferred temperature may be for some degrees lower than that
in tropical countries. It is interesting to note that psychological aspects of ther-
mal comfort play an important role both indoors and outdoors, Hoppe [52]. As
reported by Rohles [93] in his paper ”"Temperature or temperament: a psychol-
ogist looks at thermal comfort”, just adding wood-panels, without any changes
of thermal parameters in the chamber, carpets and comfortable furniture, made
occupants feel warmer, compared to test without them. Just telling occupants
that temperature is higher than it really was, alrcady made them feel warmer.

The mixed convection under summer cooling conditions based on The Inter-
national Engineering Agency project called ANNEX 20, on the Air flow Pattern
in Building project, was carried out by Lemaire {71], Chen [10], Johanson [56],
Fossdal [35], Heikkinen [49] and Ewert et al.[31]. The experimental work was
carried out using thermal anemometry with hot-wire probe and Laser Doppler
Anemometry. Heikkinen [49] used constant temperature thermistor ancmome-
ters for tcmperature measurement. The choice of locations for measuring the
temperature and velocity was based on the expected flow patterns. In a similar
measurement, Fossdal [35] used anemometers and thermocouples. Ewert [32] used
Laser Doppler Anemometry to measure local velocity component near supply air
diffuser in the test room.
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Figure 7.10: Sketch of three-dimensional ventilated room configuration

A numerical study of mixed convection of this situation was conducted by
Lemaire [71], Chen [10], Johanson [56}. Several methods of defining inlet bound-
ary condition are introduced: one-slot inlet model, multiple-slot model, and the
momentum method. The inlet boundary condition is obtained from manufactures
data for various room configurations. Chen [10] used inlet model of multiple slots
containing 12 slots and 84 slots, while Emvin [30] used one-slot model of the same
nozzles area of diffuser. In order to improve the performance of the model, a local
refinement in the near-diffuser region was used by Lemaire [71]. It was shown that
the inlet model of multiple slots was superior over the one-slot model. In addition,
the numerical prediction showed good agreement with those from measurement.

The motivation of the current work was to predict numerically air flow in
rooms using k — & — v2 — f — 62 and to compare the numerical result with the
available experimental results and in the previous numerical simulations. In the
present study we focus on two different flow cases. The first is the case E1 with
low air flow rate (0.0158 m3/s), and the second is the case E2 with high air flow
rate (0.0315 m?/s).

The geometry and basic configuration of the test room is shown in Fig.(7.10).
The room configuration used for the research is based on common features of the
European working place facilities. The height of the room H = 2.5 m, the length
L = 4.2 m, and the width D = 3.6 m. An inlet is centrally located on the front
wall at 0.285 m below the ceiling. The width of the inlet is D;, = 0.18 m while
the height is H;, = 0.062 m. An outlet is situated on the same wall at 1.7 m
above the floor and symmetrically situated between the side walls. The height
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of the outlet is H,, = 0.2 m and the width is D, = 0.3 m. On the opposite
side of the front wall a hot window with surface temperature of 30°C is situated
symmetrically 0.70 m above the floor (Hyin=1.6 m and D,;,=2 m). This hot
window is expected to produce upwards buoyant flow. The remaining walls are
kept at temperature of 21° C except the front wall which was kept at 22° C.
In the experimental studies, a HESCO diffuser with 84 tiny nozzles which are
distributed over a fairly large area is directed upwards with an angle of 40° with
respect to the ceiling. The volume flux of the jet of case E1 is Q;,, = 0.0158 m3/s
and for case E2 is Q;, = 0.0315 m3/s.

In this study, the inlet is divided into 6 slots situated symmetrically at the
upper part of the front wall. In order to satisfy the experimental specification, the
area of the slots are taken as the real diffuser used in the experiment. The inlet
velocity is directed upwards with the angle of 40°. Ideally, the inlet should be as
similar to the diffuser as possible, consisting of 84 circular nozzles of the same
area. However this requirement leads to necessity of using very fine mesh for the
simulation. As a consequence, the computational times increases. In addition,
very fine mesh in the near wall region produces small ¥y and introduces numerical
instabilities in simulation. The simulation uses a non-uniform grid clustered
towards the walls for better capturing of turbulence fields in the near wall region.
The grid used in this simulation is 52 x 42 x 42. LUDS convection scheme was
employed for all variables. The problem was solved in unsteady mode to capture
possible inherent unsteadiness. The time integration was performed using the
three-level implicit integration scheme.

Because mixed convection is affected by two different processes, it is important
to identify in which region forced or natural convection is more dominant. As
expected, forced convection is the dominant mechanism of heat transfer in the
region close to the inlet. For case E2 where the incoming flow rate is stronger
than that of case E1, this region is further extended towards the opposite wall. It
is evident that region in which thermal buoyancy prevails is further reduced due
to strong cold air supply from inlet. For case E1, the region where buoyancy is
the dominant mechanism of heat transfer is significantly larger compared to E2
case.

Figures (7.11)-(7.12) show the flow pattern and temperature contour for cases
El and E2. A large quantity of fresh cold jet air is supplied by the inlet at the
top of the room. It can be seen that the incoming jet of the case E1 is reflected
from the upper horizontal wall at about z/L = 0.25. On the other hand, the
supply air of the case E2 is detaching at almost 2/L = 0.75 along the ceiling.
Here the warm air from the near window region collides with the incoming cold
jet. As a results of these interactions unstable flow pattern is observed.

The typical velocity predicted by model is in 0.1 to 0.2 m/s range and it
corresponds well to measurement of Fossdal [35] and numerical results of Lemaire
[71], but it is slightly underpredicted compared to measurement of Blomqvist [5].
For case E2, the predicted velocity corresponds well to the experimental data of
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Heikkinen [49]. In the lower part of the room, the velocity is very small, about
0.05 to 0.1 mm/s, with the exception of region below the window where a relatively
strong downward flow is observed. In general, the velocity field predicted by
present model is consistent with the experimental data.

In order to prevent draft resulting from external flow, it is important to design
appropriate ventilation system. One important parameter is the penetration
depth of incoming flow. The penetration depth is defined as distance from inlet
to a position in which the incoming jet collides with buoyancy jet that is driven
by the opposite heated wall. Clearly, a short penctration depth is not desirable,
because it causes strong cold jet that enters the occupied zone, which is defined
as a region bounded with height of 0.18 m from floor and width with 0.6 m from
walls. The penetration depth of case E1 and E2 arc 0.25 and 0.76 of the length
of the room, respectively. On the other hand, the region close to the back wall,
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where the hot window is placed, promotes a different type of convective flow.
Since this region is beyond the penetration depth of the incoming jet, the flow is
buoyancy driven.

Figure (7.13)-(7.14) show the velocity vectors in the horizontal plane near the
ceiling for different time instants. Vortices are found in the near corner region of
the back wall. Note that near the front wall, strong span-wise flow is observed.
Figure(7.15) shows the time evolution of vertical, horizontal, and span-wise veloc-
ity profiles at preselected locations for case E2. At (Mon2) location, the vertical
and span-wise velocities are damped at the same level with similar pattern, while
the horizontal velocity fluctuates with high amplitude indicating strong jet with
unsteadiness, as also shown by Kenjeres et al. [63]. Since the Mon2 is within the
penctration depth of the incoming jet, most flow is horizontally directed towards
the back wall. On the other hand, in the near outlet location (Monl), the time
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history of velocities shows that the vertical and span-wise components fluctuate
intensively, while the horizontal component is damped. This behaviour can be
explained by the presence of the vertical wall which damps horizontal velocity
component. Figure(7.16) show the time evolution of the velocity profiles for case
El. Here, at location Monl, the horizontal component is again damped, while
the other components fluctuate with high amplitude. It is worth to mention that
synchronised fluctuations between the vertical and span-wise velocity occurs at
Monl, where both components reach maximum and minimum values with almost
same period and amplitude.

The calculated velocity profiles and the experimental data of Fossdal [35] and
Heikkinen [49] in the vertical plane at 2=1.4 m are plotted in Fig.(7.17)a. Sur-
prisingly, both experimental data show an obvious discrepancy, especially close
to the floor and ceiling. At y = 2.25 m the measured velocity of Heikkinen [49]
is about 0.11 m/s, while the velocity measured by Fossdal [35] is about 0.42
m/s. Near the floor, the velocity of experimental data of Heikkinen is about
two times larger than measured by Fossdal [35]. Relatively good agreement is
observed at the midplane. The proposed model gives values which are in reason-
able agreement with experiments and shows significant improvements compared
to the numerical results of Chen [10]. Note that close to the floor, both models
fail to capture the secondary peak. Figure(7.17)b shows the velocity profiles of
vertical plane at £=3.0 m. The proposed model is clearly not able to capture the
velocity peak of the experiment in the near floor region. In the middle vertical
plane the present simulations show good agreement with experiment of Fossdal
[35]. Chen [10] obviously fails to predict this particular flow feature.

Figures(7.18)a-b show the temperature profiles of the proposed model against
experimental data in vertical plane z=1.4 m and £=3.0 m, respectively. It can
be seen that discrepancy between the two experimental data is about 0.5° C.
Although the present model consistently underpredicts experiment, it is still sig-
nificantly better than model of Chen [10].

The disagreement between the experimental data and the proposed model
may be caused by several factors. First, the inlet jet in experiment is created by
a diffuser with 84 circular nozzles, while in present simulation is created by only
6 square nozzles. Although both inlets have the same area, the configuration of
the inlet jet and the spacing distance between nozzles might affect flow spreading
in the vertical and span-wise directions, and in turn, the penectration depth of
the jet. Second, the size of such test room with huge walls may introduce some
difficulties to maintain the steady temperature boundary conditions due to heat
loses.

Figures (7.19) and (7.21) represcnt the profiles of the elliptic relaxation func-
tion f for case E1 and E2, respectively. All profiles cross the zero line close to
the walls. For the profile at y/H = 0.9, a large peak is observed, while the others
show a minor peak in the same region. The peak for situation at y/H = 0.9 is
mainly attributed to the location of the inlet. Variations of y* on the isothermal
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walls arc illustrated in Fig. (7.20) and (7.22) for casc E1 and E2, respectively.
The horizontal variation of y* is apparent only in the arcas near the end walls.
Note that the wiggling shape of y* is due to proximity of inlets and outlet. The
distribution demonstratcs roughly the grid size level of the system. Although the
values of y* are much larger than what is commonly used in low-Reynolds num-
ber model, the present model have reproduced the mean values of temperature
and velocity fairly well.

Figures (7.23)-(7.24) show instantancous trajectories of massless particles in
the ncar wall regions and in the middle of room at characteristic vertical and
horizontal planes. In the vertical plane, strong flow is observed in the middle of
the room, characterised by dark regions with dense streamlines. It is seen that
air jet and the buoyant flows collide in the middle of the room creating strong
motion. In the horizontal plane, strong flow is observed only in the upper region.

Trajectories of massless particles for several time instances are shown in Fig.
(7.25)-(7.26). The trajectorics arc taken in the horizontal plane closc to the
ceiling. In this region, the strong incoming jet exhibits an obvious unsteady be-
haviour with large periodical pattern. It is important to mention that vorticcs
are observed in the corner regions close to the incoming jet. In this region, the
vortices show a periodical pattern: in the first stage, the left vortex (from the in-
let) is strong, while the right one (from the inlet) is weak. As the time progresses,
the left vortex is becoming weaker while the right one is getting stronger. Finally,
the vortices are formed similar as in the first pattern. Periodicity of the flow can
also be observed from the changes in direction of the incoming jet. First, the jet
is deflected to right. As the time progresses, it is directed straight forward, and
then is deflected to the left. In the end, the first pattern is observed again.

The three-dimensional trajectories of massless particles of case E1 and E2
are shown in Figs.(7.27). For E2 case, particles travel along the cciling and are
deflected downwards in proximity of the opposite wall. When the wall is reached,
the particles are reflected back and they travel along the floor. An interesting
feature can be observed by analysing particles flow patterns for E1 case. After
being released from the inlet, the cold jet is deflected downwards in the center
of the room. The particles are then bounced upward from the floor. Since the
outlet is located near the inlet, some particles are circulated in the region without
first traveling in the center of the room.

Figures (7.28)a-b display instantaneous flow fields in terms of isosurfaces of the
turbulent kinctic cnergy for case E1 and E2, respectively. The overall shapes of
the isosurfaces for the two cases are qualitatively different. For case E1, intensive
turbulent kinetic energy is distributed in front of the inlet, and in the midway
of the room down to the floor. For case E2, large turbulent kinetic energy is
distributed along the side-top corners and along the ceiling. It should be pointed
out that intensive turbulent kinetic energy is observed in front of the hot window,
indicating strong generation due to buoyancy. In general, the main pattern of the
turbulent kinetic energy for both cases is confined to areas of the main stream.
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Figure 7.17: The horizontal velocity profiles at: (a) z = 1.4m, (b) z = 3.0m against
experiment of Fossdal [35] (— o —) and Heikkinen [49] (—O—) standard EVM (Chen
[10]) (dashed line) and present model (solid line) for case E2 set up.




7.3. Indoor-climate mixed convection under summer cooling conditions: 3D simulations145

a.
- 2-5 L*}
g T T
=
202 ° -
5
'= = -
g
g 15| -
m -
1+ o -
0.5 ° -
3 o o
; ] \ -
47 18 19 20 20 2
Air temperature ( C)
b.
z 25 . s
=
L8 2 -
L
= .
E 1.5
° a — —
g ]
1 oo —
0.5 oo -
B o .

G

-

21 o 22
Air temperature ( C)

Figure 7.18: The horizontal temperature profiles at: (a) z = 1.4m, (b) z = 3.0m

against experiment of Fossdal [35] (— o —) and Heikkinen [49] (—O-) standard EVM

(Chen [10]) (dashed line) and present model (solid line) for case E2 set up.



146 Chapter 7. Turbulent Mixed Convection Results

Figure 7.19: The elliptic relaxation function f at y/H = 0.1,0.5 and 0.9 of case E1
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7.3.1 Conclusions

A k — e — v2 — f — 6% model has been applied to calculate turbulent mixed
convection with supply and exhaust under stable stratification and indoor-climate
mixed convection under summer cooling conditions. In the case of 2D mixed
convection, the model has reproduced the experiment fairly well. This means
that the model is able to predict flows under combined effects of buoyancy and
shear force. Simulations of indoor-climate mixed convection show several features:

e unsteady flows with periodical pattern.

e mean temperatures are slightly underpredicted compared to experiment.
e mean velocities are in good agreement with experimental measurements.
e the present model outperformed standard & — & model.

Although relatively moderate mesh is employed, the model shows its ability to
predict accurately mixed convection. This situation is beneficial for saving com-
putational times, because simulations using a low-Reynolds number model re-
quires significantly finer mesh with a large number of grid points. Despite its
simplicity, the proposed model is capable of reasonably predicting flow, heat
transfer and turbulence features in flows with strong incoming jets without in-
troducing any ad hoc treatment to the flow condition, indicating a robust and
elegant model.
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Figure 7.23: Instantaneous trajectories of massless particles in characteristic vertical

planes for case El at z/D = 0.9, 0.5, 0.1
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planes for casc El1 at y/H = 0.9, 0.5, 0.1.
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Figure 7.25: Massless particles trajectories of several instantaneous times in horizontal

plancs (y/H = 0.92) for case E1: A7=>5 minute
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Figure 7.26: Massless particles trajectories of several instantaneous times in horizontal

planes (y/H = 0.92) for case E2: A7=10 minute
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Figure 7.27: The three-dimensional trajectories of particles, coloured by local temper-

atures, relcased at diffuser inlet for E1 and E2 situations.
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Figure 7.28: The three-dimensional isosurface of turbulent kinetic energy for E1 (k =

10~* m?/s%) and E2 (k = 2.5 x 10~% m?/s?) situations.




CHAPTER &

Conclusions

The main goal of this thesis was to improve and to extend the mathematical
models of the effects of thermal buoyancy on turbulent flows in enclosures. This
work is an extension of the earlier Ph.D. projects of S. Kenjeres [62] and H.
Dol [27] in the Section for Thermal and Fluids Sciences, aimed at merging the
best outcome of these two theses and expanding and generalizing the modecl
with specific purpose of predicting complex flows driven or affected by thermal
buoyancy. The adopted framework are the two advanced turbulence closures with
some recent improvements: (i) the second moment closure with the near-wall and
low-Re-number modifications, and (ii) the Elliptic Relaxation k —e —v2 — f — 62
model. Both of these two modecl classes have been extensively tested previously in
isothermal flows without buoyancy, showing in general very good performances.
Because the ultimate target of this work are complex flows, an immportant concern
has been to adopt a moderate level of modcl complexity which will not deteriorate
the computational robustness and which can be managed with the conventional
computational methods, such as finite-volume or finite element approach, while
still reproducing acceptably accurate main flow, heat transfer and turbulence
features. The buoyancy modification of the second moment closure model was
focused on the pressure scrambling term, where the new coefficients with scalar
flux invariant arc introduced. Also the new concept of "homogeneous” dissipation
rate has been used to close the Reynolds stress equation. The new version of
k —&—v2— f —62 modcl has been developed which includes the buoyancy effects.
The latter model has been used in connection with an algebraic lux and buoyancy
extended eddy viscosity models. Several options for the turbulcnce time scale in
the algebraic flux model have been investigated. All models have been tested
in two generic test cases: infinite plane channel with one heated and one cooled
wall, positioned vertically or horizontally. In the first case the mean temperature
gradient is perpendicular and in the sccond case it is aligned with the gravitation
vector. The following conclusions have been drawn:

o The buoyancy extension of the low-Re-number second moment closure model,
based on @ priort term-by-term validation against the available DNS data
for natural convection in a vertical infinite channel at a range of Rayleigh
numbers, showed that these extensions improved agreement with the DNS
data as compared with models available in the literature. An a priori anal-
ysis of turbulent natural convection in a horizontal channel heated from be-
low showed improved performance. This improvement is mainly attributed
to the use of the scalar (thermal) flux invariant, in terms of which the new
coefficients in the pressure scrambling term are formulated.

155



156

Chapter 8. Conclusions

e The k — ¢ — v2 — f — 2 model has been originally developed in order to

compromise the complexity, accuracy, and robustness between the advanced
second moment closures and the conventional k — ¢ eddy-viscosity models.
Early validations of this model in various non-buoyant flows showed that
the prediction quality, although not perfect, is generally closer to the full
second moment closure than to the linear eddy-viscosity models, with only a
marginal increase in complexity as compared with the latter model class. In-
corporation of buoyancy effects proposed in this thesis confirmed the model
features: the test in natural convection in a vertical infinite channel, in
two- and threc-dimensional side heated cavities, in Rayleigh-Bénard con-
vection, and in mixed convection at a range of Rayleigh numbers, provided
significant improvements in reproducing both the mean and turbulence pa-
rameters as compared with the conventional & — ¢ and similar models.

This work confirmed earlier findings of Kenjeres [62] that a simple alge-
braic flux model obtained by truncation of the full differential second-
moment. flux model is far superior to the eddy diffusivity models, irre-
spective whether an isotropic ("simple gradient diffusion hypothesis”) or
tensorial ("generalized gradient diffusion hypothesis”) eddy diffusivity is
used. The main prerequisite for this success is to keep all flux-production
terms in the algebraic expression for heat flux, i.e. the term containing
the mean velocity gradient interacting with turbulent heat flux, the term
containing mean temperature gradient interacting with turbulent stresses
and the buoyancy source of the heat flux.

An important finding in the present work was the role of the time scale in
the algebraic flux model. The use of the conventional mechanical time scale
k/e proved to be not fully adequate, at least in the context of conventional
derivation of algebraic models. The new time scale used in the k — ¢ —
vZ — f — 62 model in the expression for eddy viscosity, which is based on
the velocity scale v? and, when used in the algebraic expression for heat
flux yielded significant improvements. This time scale seems to represent
better the near-wall turbulence dynamics accounting for the wall-blocking
effects. It suppresses the heat flux in the near-wall region in accord with
the DNS and experimental findings for both the horizontal and vertical
configurations.

Although the Reynolds stress and heat flux are calculated using the eddy
viscosity and algebraic flux model, respectively, they can predict major
features of flow, heat transfer and turbulence statistics in a range of appli-
cations. This may be due to the introduction of buoyancy term in eddy
viscosity model and the new time scale in the algebraic flux model. This
approach is still less satisfactory as compared to that of advanced second
moment closure model, however its appealing simplicity and suitability for
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handling complex flows makes it an attractive and preferred option, espe-
cially for industrial application.

It was observed that using very small y; affects the performance of the
k—e— 02— f—62. The weakness of the model appears to lic in the bound-
ary condition for the elliptic relaxation function (which varies as 1/x).
This study examined the optimum values for i, which should be suffi-
ciently small to ensure good near-wall resolution. but still sufficiently large
to avoid the numerical problems. In the side heated infinite channel the
most appropriate value appeared to be in the range 0.1 < yf < 2, while
for the two- and three-dimensional enclosures the range can be extended
further at 0.1 < yi < 5.

Among the several classes of models considered it has been coneluded that
the k — ¢ — v2 — f — 62 with buoyancy modifications proved to be the best
compromisc for complex buoyancy driven flows. It is robust and provides
results with acceptable accuracy in several generic flows and in a range of
application-relevant situations.
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Summary

Contribution to advanced modelling of
turbulent natural and mixed
convection

The main objective of this thesis was to develop, improve and extend turbulence
models for natural and mixed convection in enclosures. The models targeted
were expected to perform well in various configurations, with different boundary
conditions and in the range of Rayleigh and Reynolds numbers numbers relevant
to practical application. The flows considered are encountered in many engi-
neering applications, such as indoor climate, conventional and renewable space
heating and cooling systems, solar engineering, electronics cooling, nuclear engi-
neering and others. The turbulence models developed in this thesis are based on
Reynolds Averaged Navicr-Stokes Equations (RANS) and to the two classes of
advanced closure models: the second moment closures and the elliptic relaxation
k—e—v?— f— 62 models.

In the first phase of the rescarch, the study was focused on the buoyancy
modification of the second moment closure of Hanjali¢ and Jakirlié [43] model
for the mechanical (isothcrmal) turbulent flows following the work of Dol et al.
[26] for the thermal field. The development and validation of various ideas to-
wards the model improvement was first analyzed in a priori term-by-term tests
based on DNS data. An important enhancement of the mechanical model is the
straightforward inclusion of buoyancy in the transport equation for the Reynolds
stress, but also in the pressure strain correlation. This introduction of buoyancy
is vitally important in order to capture the turbulent fields, especially in the
boundary layer region. The modification of the thermal part is mainly focused in
the pressurc scrambling term, particularly on omitting the less significant terms
and optimising the significant ones. In addition, a new model function in terms
of scalar flux invariant, is introduced. The usc of the scalar flux invariant is sup-
ported by the fact that it behaves relatively general in many flows. This replaces
the existing model function based on the stress invariant, which showed different
behaviour in channel flows when its oricntation with respect to the gravity vec-
tor is changed. The new second moment closure model is applicd in side heated
vertical channel for a range of Rayleigh numbers, and they are validated using
the DNS data. Algebraic stress and flux models based on the differential second
moment closure has also been derived by truncating the convection and diffusion
terms in the parent transport cquations for Reynolds stress and heat flux. Here,
the truncated terms are totally neglected, while the major terms such as shear
and buoyancy productions, associated with the gradients of mean velocity and
temperature, and with the temperature variance respectively, are kept as in the
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transport equations. The second moment closure models are generally superior
to algebraic and basic model, but in the flows considered this superiority is not
so dramatic and reasonable accuracy has been achieved with algebraic models.

It is well known that the second moment closures demand large computational
resources, and also may lead to numerical instabilities when applied in a complex
geometry. Concerned with these issues, this study was subsequently focused on
the elliptic relaxation approach, specifically on the k — ¢ — v2 — f — 62 model,
which was extended to account for buoyancy effects. Here the Reynolds stresses
are calculated using the buoyancy extended eddy viscosity model, while the heat
flux is calculated using an algebraic flux model. The k — ¢ — vZ — f — 62 model
with an additional transport equation for v2, representing an additional velocity
scale relevant to near-wall region, and an elliptic equation for the relaxation
function f, offers several attractive features: It is simple to solve comparable
to the conventional low-Re-number two equation models, it is robust, and it
reproduces the near-wall turbulence accurately without a need to employ damping
functions.

The model is applied and tested in a range of flows in turbulent natural
and mixed convection. For natural convection these include side heated vertical
channel, side heated two-dimensional enclosures with various aspect ratio, three-
dimensional enclosure, and Rayleigh-Bénard convection. For mixed convection
the model was applied in three different situations: in an enclosure with air supply
and exhaust under thermal stratification, and in mixed convection under summer
cooling condition with high and a low air flow rates.

Most of the numerical results are validated with the available experimental
data, DNS, and other results from the literature. The DNS data being only avail-
able for very simple flow case of natural convection in infinite channels, have been
used for term-by-term model validation. For other cases considered, experimen-
tal data available in the literature have been used, such as two-dimensional and
three-dimensional side heated enclosures, and in mixed convection under summer
cooling condition. In general, the model reproduced reasonable agreement with
both DNS and experimental data. This indicates that the model is well formu-
lated. Since the computation using the model covers a range of turbulent flows,
it is prospective to employ the model in industrial applications.
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Samenvatting

Bijdrage aan de geavanceerde modellering van
turbulente natuurlijke en gemengde
convectie

Het hoofddoel van dit. proefschrift was het ontwikkelen, verbeteren cn uitbrei-
den van turbulentiemodellen voor natuurlijke en gemengde convectie in gesloten
ruimten. Van de bedoelde modellen wordt verwacht, dat ze goed presteren on-
afhankelijk van de vorm van de¢ ruimte, met verschillende randvoorwaarden en
voor Rayleigh- en Reynolds-getallen die relevant zijn bij practische toepassin-
gen. De beschouwde stromingen komen bij vele technische toepassingen voor,
zoals binnenklimaat, conventionele en duurzaie verwarmings- en koelsystemen,
tocpassingen van zonneénergie, koeling van electronica, nucleaire installaties, en-
zovoorts. De in dit proefschrift ontwikkelde turbulentiemodellen zijn gebaseerd
op de Reynolds-gemiddelde Navier-Stokes vergelijkingen (RANS) en op twee
klassen van van geavanceerde sluitingsmodellen: tweede moment sluitingen en
de k — & —v? — f — 62 elliptische relaxatie modellen.

In het eerste gedeelte van het onderzoek was de aandacht gericht op de op-
waartse kracht modificatie van de tweede moment sluiting volgens van het mecha-
nisch model van Hanjalié¢ and Jakirli¢ [48] voor isotherme turbulente stromingen.
Dit in navolging van het werk van Dol et al. [26] voor het temperatuurveld. De
ontwikkeling en de geldigheid van de verschillende ideeén voor verbetering van de
modellen, werd eerst geanalyseerd in cen term-voor-term a priori test gebaseerd
op DNS gegevens. Een bcelangrijke verbetering van het mechanisch model is de
rechtstreeksc opneming van opwaartse kracht niet alleen in de transportvergeli-
jking voor de Reynolds spanning, maar ook in correlaties van drukgradiént en
snclheid. Het opnemen van de effecten van opwaartse kracht is van groot be-
lang om de turbulente effecten juist te beschrijven, met name in grenslagen. De
modificatie in de temperatuurvergelijkingen is vooral gericht op de correlatie van
drukgradiénten en temperatuur, met name op het weglaten van de minder belan-
grijke termen en het optimaliseren van de meest bepalende. Daarnaast is er een
nieuw model in termen van een scalaire flux-invariantie geintroduccerd. Het ge-
bruik van invarianties wordt ingegeven door het feit, dat deze zich vrij algemeen
gedragen in vele stromingen. Dit vervangt bestaande modelfuncties gebaseerd op
de stress-invariantie, welke verschillend gedrag vertoonden in kanaalstromingen
athankelijk van de orientatie van de zwaartekrachtsvector. Het nieuwe tweede mo-
ment sluitingsmodel wordt tocgepast in cen van opzij verwarmd vertikaal kanaal
voor een aantal verschillende Rayleigh-getallen en het is gevalideerd met behulp
van resultaten verkregen met directe numericke simulatie. Algebraische stress-
en fluxmodellen gebaseerd op de differentiéle tweede moment sluiting zijn ook
afgeleid door afbreking van de convectie- en diffusietermen in de oorspronkelijke
transportvergelijkingen voor Reynolds-stress en warmteflux. De afgebroken ter-
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men worden hier verwaarloosd, terwijl de belangrijke termen, zoals productie door
afschuiving en zwaartekracht, geassocieerd met de gradiénten van gemiddelde
snelheid en temperatuur respectievelijk temperatuurvariaties, worden gehouden
zoals gegeven in de transportvergelijkingen. Tweede moment sluitingsmodellen
zijn over het algemeen superieur aan algebraische modellen en aan het basismodel,
maar in de hier beschouwde stromingen is deze superioriteit niet zo dramatisch
en is een redelijke nauwkeurigheid bereikt met algebraische modellen.

Het is wel bekend dat de tweede moment sluiting aanzienlijke rekenkracht
vergt en ook kan leiden tot numerieke instabiliteiten wanneer ze wordt toegepast
in complexe geometrieén. Rekening houdend met deze eigenschappen, is eze
studie vervolgens gericht op een aanpak met elliptische relaxatie, met name
op het k — e — v — f — 2 model, dat was uitgebreid om rekening te houden
met zwaartekrachtseffecten. De Reynolds-spanningen worden berekend met een
eddy viscositeitsmodel met zwaartekrachtseffecten, terwijl de warmteflux berek-
end wordt met een algebraisch flux model. Het k —s —v2 — f — 62 model met een
toegevoegde transport vergelijking voor v2, die een extra snelheidsschaal toevoegt
die karakteristiek is voor het gebied nabij de wand, en een elliptische vergelijking
voor de relaxatiefunctie f, bieden verschillende aantrekkelijke kenmerken: Het
is eenvoudig om de vergelijkingen op te lossen op een vergelijkbare manier als
de conventionele twee vergelijkingen modellen voor lage Reynolds-getallen, het is
robuust en het reproduceert de turbulentie nabij de wand nauwkeurig, zonder de
noodzaak dempingsfuncties te gebruiken.

Het model is toegepast en getest voor een verscheidenheid aan stromingen met
turbulente natuurlijke en gemengde convectie. Voor natuurlijke convectie betref-
fen deze het van opzij verwarmde kanaal, van opzij verwarmde tweedimensionale
gesloten ruimten met verschillende breedte-hoogte verhoudingen, driedimension-
ale gesloten ruimten en Rayleigh-Bénard-convectie. Voor gemengde convectie
is het model toegepast in drie verschillende situaties: In een ruimte met toe-
en afvoer van lucht bij thermische gelaagdheid en bij gemengde convectie onder
zomerse condities, waarbij gekoeld wordt met hoog en laag luchtdebiet.

Het merendeel van de numerieke resultaten is gevalideerd met beschikbare
experimentele data, directe numerieke simulatie en andere resultaten uit de liter-
atuur. Resultaten van directe numerieke simulatie, die alleen maar beschikbaar
zijn voor de eenvoudige stroming in oneindig lange kanalen, zijn gebruikt voor een
term-voor-term model validatic. Voor de andere beschouwde modellen is gebruik
gemaakt van experimentele data beschikbaar in de literatuur, zoals de van opzij
verwarmde twec- en driedimensionale gesloten ruimten en voor gemengde con-
vectie bij kocling onder zomerse omstandigheden. In het algemeen gaf het model
een redelijke overeenstemming met zowel de resultaten uit directe numeriek sim-
ulatic als dc resultaten uit experimenten. Dit geeft aan dat het model goed is
geformuleerd. Aangezien de berekeningen met het model zijn uitgevoerd voor
verschillende turbulente stromingen zijn er goede vooruitzichten voor industri€le
tocpassing.
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