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Robust Randomized Model Predictive Control for
Energy Balance in Smart Thermal Grids

Vahab Rostampour and Tamás Keviczky

Abstract— This paper presents a stochastic model predictive
control approach for a thermal grid with uncertainties in the
consumer demand profiles. This approach leads to a finite-
horizon chance-constrained mixed-integer linear optimization
problem at each sampling time, which is in general non-convex
and hard to solve. Earlier approaches for such problems are
either suboptimal ad-hoc methodologies, or computationally
intractable formulations. We provide a unified framework to
deal with production planning problems for uncertain systems,
while providing a-priori probabilistic certificates for the robust-
ness properties of the resulting solutions. Our methodology is
based on solving a random convex optimization problem to
compute the uncertainty bounds using the so-called scenario
approach and then, solving a robust mixed-integer optimization
problem with the computed randomized uncertainty bounds
at each sampling time. Using a tractable approximation of
uncertainty bounds, the proposed problem formulation retains
the complexity of the problem without chance constraints.
In the presented thermal grid application this implies that a
robust mixed-integer program is solved to provide a day-ahead
prediction for the thermal energy production plan in the grid.
The performance of the proposed methodology is illustrated
using Monte Carlo simulations and employing two different
problem formulations: optimization over input sequences (open-
loop MPC) and optimization over affine feedback policies
(closed-loop MPC).

I. INTRODUCTION

Smart Thermal Grids (STGs) represent a new concept
in the energy sector that involves the use of the smart
grid concept in thermal energy networks connecting several
households and greenhouses (agents) to each other via a
transport line of thermal energy. One of the major challenges
in sustainable energy systems is to improve the efficiency,
reliability, and sustainability of the production and the dis-
tribution of energy. STGs can contribute to obtaining sustain-
able energy systems by introducing a reliable production plan
using renewable energy sources such as solar or geothermal
energy and provide efficient large-capacity storage options.
This results in a reduction of carbon dioxide (CO2) emis-
sions, improved energy efficiency, and the implementation
of renewable energy systems [1].

In an STG setting, the agents have a potential to contribute
to the overall energy balance. Every agent fulfills the role
of a consumer when it demands more energy than it pro-
duces with its production units (e.g. micro-combined heat
and power), and fulfills the role of a producer when the
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demand is less than the production of its production units
[2]. Since the major energy consumption is typically used
for thermal purposes, the motivation for STGs can be both
economical and environmental. A better price is achieved
with less energy transport when the resources are used more
efficiently, while the thermal energy losses are reduced.

We therefore foresee a shift towards a situation where a
large number of small scale agents (e.g. utility companies
and independent users) have more impact on the energy
balance of the grid, while their optimal decisions are made
by considering the thermal demand profiles, which are
uncertain. The planning of thermal energy production to
match supply and demand is challenging since predictions on
the thermal energy demand are not perfect. This highlights
the necessity of formulating stochastic variants of standard
day-ahead planning problems in the grid, while providing
probabilistic guarantees regarding the satisfaction of smart
grid system constraints.

Model predictive control (MPC) is one of the most
widely used advanced control design method that can handle
constraints on both inputs and states, and can obtain an
optimal control sequence that minimizes a given objective
function subject to the model and operational constraints in
a receding horizon fashion. One way to treat uncertainty
is to use a robust MPC formulation [3], [4], [5], which
provides a control law that satisfies the problem constraints
for all admissible uncertain variables by assuming that
the uncertainty is bounded. However, the resulting solution
tends to be conservative since all uncertainty realizations
are treated equally. Stochastic MPC offers an alternative
approach to achieve a less conservative solution, thereby the
system constraints are treated in a probabilistic sense (chance
constraints), meaning that the constraints need to be satisfied
only probabilistically up to a pre-assigned level to reduce
the conservatism of robust MPC. An effective solution to
address such problems is to employ randomized algorithms
that require substituting the chance constraint with a finite
number of hard constraints corresponding to samples of the
uncertainty set. Randomized MPC approximates stochastic
MPC via the so-called scenario approach (see [6] and the
references therein), and if the underlying optimization prob-
lem is convex with respect to the decision variables, finite
sample guarantees can be provided for a desired confidence
level of constraint fulfillment.

In this paper we cannot employ the well-known scenario
approach due to the fact that the underlying problem is not
convex (mixed-integer program). The main challenge here is
in the presence of the uncertain thermal energy demands to
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compute a discrete (binary) variable vector that corresponds
to the on-off status of the generating units, and a continuous
variable vector that is related to the amount of thermal energy
that each unit should produce to satisfy a given demand
level at each sampling time. Instead, we propose a-two-step
procedure that is based on a mixture of randomized and
robust optimization [7]. We first determine a probabilistic
bounded set of uncertainties that is guaranteed to include a
given percentage of uncertainty realizations. Then, we use
the obtained set in a deterministic robust MPC approach.
Note that the first step leads to a convex sub-problem even
if the original problem contains binary variables. In this way
we can have similar results in terms of confidence level of
constraint fulfillment as in the standard scenario approach.
Using a tractable approximation of uncertainty bounds, the
deterministic robust formulation leads to a tractable problem
for each sampling time. A framework for stochastic linear
systems using a combination of randomization and robust
optimization was introduced in [8]. In this paper instead
we introduce a new framework for stochastic hybrid linear
systems that leads to stochastic mixed-integer optimization
problems.

The main contributions of this paper are as follows:

• A technical description of smart thermal grids with
uncertainties in the consumer demand profiles as an
optimization problem formulation.

• The problem formulation leads to a finite-horizon
chance-constrained mixed-integer linear program at
each sampling time. To solve this problem, we first
formulate an auxiliary problem to obtain a bounded set
for the uncertainty. Using the scenario approach, the
result of this sub-problem is a subset of the uncertainty
space that contains a portion of the probability mass
of the uncertainty with high confidence level. We then
solve a robust version of the initial problem subject to
the uncertainty confined in the obtained set. Note that
our method does not restrict the underlying probability
distribution of uncertainty as in robust optimization
methods and it is only assumed that the uncertainties
are independent and identically distributed.

• To guarantee that the resulting problem is solvable, we
develop a tractable scheme based on the dependency of
the constraint functions on the uncertainty sets.

• Both the open-loop stochastic MPC formulation and
the closed-loop affine feedback policies of stochastic
MPC formulation are described and used to illustrate a
performance of the proposed methodology using Monte
Carlo simulations.

The layout of this paper is as follows: Section II provides
a general stochastic MPC framework for the problem of
uncertain smart thermal grids. In Section III a tractable
methodology is developed and probabilistic performance
guarantees are provided. In Section IV, we demonstrate the
efficiency of the proposed methodology through a numeri-
cal example. Finally, Section V provides some concluding
remarks and directions for future work.

II. PROBLEM FORMULATION

This section provides a brief description of smart thermal
grids with multiple agents that can be producers and con-
sumers of power and heat in a smart grid setting. The goal of
the agents is to match the local consumption and production
to avoid transport losses in the network and improve energy
efficiency.

A. System Description

Consider a regional thermal grid consisting of N agents
(households, greenhouses). We describe the model of a single
agent that is facilitated with a micro-combined heat and
power plant (micro-CHP), a boiler, and a heat storage. Each
agent can be both producer and consumer which is known as
the prosumer concept. This model introduces the technical
constraints of each agent and the coupling between such
agents in the network. Moreover, for every transaction of
thermal energy in the smart grid, there are several heat
exchangers located near the corresponding agents and we
assume that the heat exchangers do not add additional costs
to the heat production for the sake of simplicity.

For a day-ahead planning production problem of each
agent, we consider a finite horizon Nt = 24 problem with
hourly steps, and introduce the subscript t in our notation
to characterize the value of the quantities for a given time
instance t ∈ {0,1, · · · ,Nt − 1}. For each sampling time t of
the problem for all agents i ∈ {1,2, · · · ,N}, we define the
main vector of control decision variables to be

um
i,t := [pg,t , pug,t , pdg,t ,hg,t ,hb,t ,him,t ,csu

g,t ,c
su
b,t ,zg,t ,zb,t ]

> ∈R10,

where pg,t ,hg,t denote the electrical power and heat produc-
tion by the micro-CHP, pug,t , pdg,t relate to the up and down
spinning of electrical power by the micro-CHP, hb,t ,him,t
correspond to the heat provided by the boiler and imported
heat from external parties during period of high heat demand,
csu

i,t := [csu
g,t ,c

su
b,t ]

> is a vector that contains the startup cost of
micro-CHP and boiler, and zi,t := [zg,t ,zb,t ]

> are auxiliary
variables needed to model the minimum up and down times
of each micro-CHP and boiler, respectively. Moreover, vi,t :
[vg,t ,vb,t ]

> ∈ {0,1}×{0,1} is a binary vector of dimension 2
and denotes the on-off status of each micro-CHP and boiler
for each agent i at step t. We call the difference between the
level of heat storage and the forecast of heat demand hf

d,t the
imbalance error xi,t ∈ R at agent i, defined as

xi,t = hs,t −hf
d,t , (1)

where hs,t represents the heat storage level (assuming there
are no thermal losses in the conversion and storage system).
The heat storage level has the following dynamics:

hs,t+1 = ηsxi,t +ηs

(
hg,t +hb,t +him,t + ∑

j∈N−i

(1−αi j)h
i j
xc,t

)
,

where ηs ∈ (0,1) and αi j ∈ (0,1) denote the efficiency of
storage and the heat loss coefficient due to transportation
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between agent i and j, respectively. N−i is the set of
neighbors of agent i and is given by

N−i ⊆ {1,2, · · · ,N}\{i} .

In order for an agent to contribute to the local balancing
of heat by exchanging heat with neighbors, we define an
auxiliary control variable vector ua

i,t ∈ R|N−i| with elements
hi j

xc,t denoting the exchanged heat between agent i and
other adjacent agents j ∈ N−i. Notice that hi j

xc,t can have
either positive or negative values depending on if agent i
imports or exports heat from or to agent j, respectively. By
substituting hs,t in (1), one can derive the dynamical behavior
of imbalance xi,t that is given by

xi,t+1 = Aixi,t +Biui,t +wi,t , (2)

where Bi = ηs[b>1 ,b
>
2 ]

>, with b1 = [0,0,0,1,1,1,0,0,0,0] ∈
R10, b2 ∈ R|N−i| containing elements (1−αi j), and Ai = ηs.
The complete vector of control decision variables is ui,t =
[um>

i,t ,ua>
i,t ]

> ∈ RNu with Nu = 10+ |N−i| for every agent i at
each step t. By definition (1), wi,t :=−hf

d,t+1 ∈R corresponds
to the forecast heat demand in the next time step. We now
consider that the only uncertainty is due to the deviation of
the actual heat demand from its forecast value and therefore,
wi,t represents an uncertain parameter for every hour and for
each agent.

Our goal is to find the control input ui,t for each agent
i such that the imbalance error stays as a small positive
value for all steps t ∈{0,1, · · · ,Nt −1} at minimal production
cost and satisfying physical constraints. We associate an
economical linear cost function with each agent i at step
t as Ji(ui,t) = c>i um

i,t , where ci is a cost vector and is defined
as

ci := [cgasη
−1
CHP,cup,cdp,0,cbη

−1
b ,cim,1,1,0,0]> ∈ R10.

cgas relates to the cost of natural gas that is used by micro-
CHP and ηCHP,ηb ∈ (0,1) are the efficiency of a micro-CHP
and a boiler at each step, respectively. cup,cdp denote the
cost of up and down spinning electrical power production
by micro-CHP, respectively. We define pug,t , pdg,t to be up
and down spinning variables that are related to the amount
of surplus and needed electrical power, respectively, in each
agent at each step with respect to the local power demand.
The cost of heat generated by a boiler is cb, and the cost
of imported heat from an external party is cim. The seventh
and eighth entry of ci represent the start-up costs. The cost
associated to the thermal energy produced by the micro-
CHP is considered to be zero due to the fact that the
electrical power and thermal energy generated by a micro-
CHP are coupled by hg,t =

ηh
ηp

pg,t where ηh,ηp ∈ (0,1) are
the efficiency of a micro-CHP for production of electrical
power and thermal energies, respectively.

The resulting optimization problem for an agent i is given
by

min
{ui,t ,vi,t}

Nt−1
t=0

Nt−1

∑
t=0

Ji(ui,t) (3a)

subject to:
1) Startup cost constraints for t = 0,1, · · · ,Nt −1:

csu
i,t ≥ Λ

su(vi,t − vi,t−1) , csu
i,t ≥ 0 , (3b)

where Λsu is a diagonal matrix including the startup
costs of each micro-CHP and boiler.

2) Production and transportation capacity constraints for
t = 0,1, · · · ,Nt −1:

vg,t pmin
g ≤ pg,t ≤ pmax

g vg,t , (3c)

vg,thmin
g ≤ hg,t ≤ hmax

g vg,t , (3d)

vb,thmin
b ≤ hb,t ≤ hmax

b vb,t , (3e)

hmin
im,t ≤ him,t ≤ hmax

im,t , (3f)

hmin
xc,t ≤ hi j

xc,t ≤ hmax
xc,t , ∀i, j ∈ N−i (3g)

where pmin
g , pmax

g denote the minimum and maximum
electrical power production capacities of each micro-
CHP, hmin

g ,hmax
g relate to the minimum and maxi-

mum heat production capacities of each micro-CHP,
hmin

b ,hmax
b are the minimum and maximum heat pro-

duction capacities of each boiler, hmin
im ,hmax

im are the
minimum and maximum available heat capacities of
each external party, hmin

xc ,hmax
xc represent the minimum

and maximum transportation capacities of neighbor.
3) Balance constraints for heat exchanged with neighbors

for t = 0,1, · · · ,Nt −1:

hi j
xc,t +h ji

xc,t = 0 . ∀i, j ∈ N−i (3h)

4) Up and down spinning electrical power constraints for
t = 0,1, · · · ,Nt −1:

−pdg,t ≤ pg,t − pd,t ≤ pug,t , pug,t ≥ 0, pdg,t ≥ 0, (3i)

where pd,t is a local electrical power demand for each
agent i ∈ {1, · · · ,N}.

5) Ramping capacity constraint for all t = 0,1, · · · ,Nt −1:

−pdown
g ≤ pg,t − pg,t−1 ≤ pup

g , (3j)

where pdown
g , pup

g denote the down and up capacity
of decreasing and increasing electrical power of a
micro-CHP within two consecutive periods, respec-
tively. Note that this constraint is considered just for
the electrical power of micro-CHP due to the fact that
heat can be produced within each step.

6) Status change constraints for t = 0,1, · · · ,Nt −1:

zi,t ≥ vi,t−vi,t−1 , zi,t ≥ 0 ,
t

∑
k=t+1−∆tup

zi,k ≤vi,t ,∀t ∈ {∆tup, · · · ,Nt −1} ,

t+∆tdown

∑
k=t+1

zi,k ≤ 1−vi,t ,∀t ∈ {1, · · · ,Nt −1−∆tdown} ,

(3k)
where ∆tup,∆tdown ∈R+ denote the minimum time an
agent needs to change status of the micro-CHP and the
boiler.
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7) Probabilistic constraint:

P(xi,t+1 ≥ 0 , ∀t ∈ {0,1, · · · ,Nt −1})≥ 1− ε , (3l)

where ε ∈ (0,1) is the admissible constraint violation
parameter. This constraint implies that the imbalance
error should be a positive value at minimum production
cost for all heat demand realizations except for a set
of probability at most ε .

The proposed optimization problem (3) is a finite-horizon
multi-stage, chance-constrained mixed-integer linear pro-
gram, whose stages are coupled by the binaries (3b), ramping
(3j), status change (3k) and imbalance error (3l) constraints.

B. Open-loop Stochastic MPC

In order to formulate a stochastic MPC for the overall
smart thermal grid imbalance problem, we first extend the
optimization problem (3) for all agents in the grid. Let us
define Xt := [x>1,t , · · · ,x>N,t ]

> ∈ RN , Ut := [u>1,t , · · · ,u>N,t ]
> ∈

RNuN and Vt := [v>1,t , · · · ,v>N,t ]
> ∈R2N to be the state, control

input and binary variables of the grid, respectively. We
also define Wt := [w>

1,t , · · · ,w>
N,t ]

> ∈RN to be an uncertainty
vector of all the agents. The grid cost JJJ(Ut) at step t is
assumed to be the sum of the individual costs for all agents

JJJ(Ut) =C>Ut =
N

∑
i=1

Ji(ui,t) ,

where C := [c>1 , · · · ,c>N ]>. The dynamics of the imbalance
error of all agents in the grid can be expressed as

Xt+1 = AXt +BUt +Wt , (4)

where A = diag(A1, · · · ,AN) and B = diag(B1, · · · ,BN). The
uncertain variable vector Wt ∈RN is defined on a probability
space ∆. It is assumed that ∆ is endowed with the Borel
σ−algebra and P is a probability measure defined over ∆.
It is important to note that for our study we only need a
finite number of instances of Wt , and we do not require
the probability space ∆ and the probability measure P to
be known explicitly.

To illustrate the advantages obtained by adopting the
policies that were discussed at the end of the preceding
section, we first need to introduce some compact notations
for the overall system dynamics evolution along the finite
time horizon. Consider the following vectors of state, control
input, binary variables, and uncertainty parameter matrices.

X =


X1
X2
...

XNt

 , U =


U0
U1
...

UNt−1

 , V =


V0
V1
...

VNt−1

 , W =


W0
W1

...
WNt−1

 .
The imbalance error dynamics for all agents over the predic-
tion horizon can be now written as

X = AX0 +BU+HW .

The exact form of A, B and H matrices are omitted in
the interest of space and can be found in [9]. The initial
state values are defined by X0 := [x>1,0, · · · ,x>N,0]

> ∈ RN and

it is assumed that the full information of each agent, such
as the production plan, the demand request for the next
day stepwise, is available to the whole grid. The objective
function can be expressed by J(U) = C>U, where C =
1Nt
⊗

C using the Kronecker product.
We are now in a position to define the optimization

problem for the overall smart thermal grid as follows:

min
U

J(U) (5a)

s.t. PW(AX0 +BU+HW ≥ 0)≥ 1− ε , (5b)
EU+FV+P ≤ 0 , (5c)

where E, F and P are matrices of appropriate dimensions.
Notice that PW depends on the string of uncertain scenario
realizations. The solution of (5) is the optimal planned input
sequence {U∗

0 ,V
∗
0 , · · · ,U∗

Nt−1,V
∗
Nt−1}. Based on the MPC

paradigm the current input is set to {Ut ,Vt} := {U∗
0 ,V

∗
0 } and

we proceed in a receding horizon fashion. This means (5) is
solved at each step t by using the current measurement of
the state Xt . Due to the presence of chance constraints, the
feasible set is in general non-convex and hard to determine
explicitly. We describe a tractable formulation to solve (5)
by using robust randomization techniques in Section III.

C. Closed-loop Stochastic MPC

In the presence of uncertainty, the problem of finding the
optimal state feedback policy becomes quite challenging.
One way to tackle this problem is to look for a sub-optimal
solution by parameterizing the control input variables. As
a first approach, one can directly parameterize the control
input variables as an affine function of the uncertainty

Ut =U t +
t−1

∑
j=0

θt, jWj ,

where U t and θt, j are optimization variables. In this way
the designed closed-loop control system is equivalent to an
open-loop control system with a feedforward uncertainty
compensator [9], [10]. Consider the following finite-horizon
chance-constrained mixed-integer linear program by adopt-
ing a feedback control policy (6d) that is affine in the
uncertainty samples.

min
U,G,V

J(U) (6a)

s.t. PW(AX0 +BU+HW ≥ 0)≥ 1− ε , (6b)
EU+FV+P ≤ 0 , (6c)

U = U+GW , (6d)

where matrices U and G are given by

U =


U0
U1

...
UNt−1

 , G =


0 0 · · · 0

θ1,0 0
. . . 0

...
. . . . . . 0

θNt−1,0 · · · θNt−1,Nt−1 0

 .
Notice that each element of G has dimension RNuN×N .
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To solve (5) and (6), we have to transform the chance-
constrained problem to a tractable one without introducing
any assumptions on P and its moments. Hence, we follow
a randomization-based approach. The proposed procedure in
[6] is called scenario approach that allows to substitute the
chance constraints with a finite number of hard constraints
corresponding to scenarios of the uncertainty and provides
a probabilistic guarantee, if the underlying problem is con-
vex with respect to the decision variables. The number of
scenarios of the uncertainty realizations Ns that needs to be
extracted must satisfy

Ns ≥
2
ε
(d + ln

1
β
), (7)

where ε ∈ (0,1) is a desired level of constraint violations,
d is the number of decision variables and β ∈ (0,1) is a
desired confidence level with which the drawn scenarios lead
to a feasible solution. Unfortunately, we cannot follow this
approach, due to the binary vector V. Even if the convexity
condition were satisfied, the number of scenarios that one
needs to generate grows linearly with the number of decision
variables, thus hampering the applicability of the method
to large-scale problems [11]. For example, the number of
decision variables in the proposed open-loop stochastic MPC
formulation (5) is d = (Nu+Nv)NtN, and the number of deci-
sion variables in the proposed closed-loop affine uncertainty
feedback policy stochastic MPC formulation (6) is d + dG,
where dG = NuNw

(Nt−1)Nt
2 . Due to the high dimension of

decision space, we cannot even employ the extended results
in [12]. To overcome this difficulty, we propose a tractable
methodology based on the results of [7] in the Section III.

III. TRACTABLE METHODOLOGY

In this section, we use the results in [7] to approximate the
chance constraints that appear in the proposed formulations
(5) and (6). We then develop a tractable methodology to
reformulate the proposed robust formulations. The approxi-
mation is done in a way to provide a feasible solution for
all scenarios of the uncertainty realizations with probabilistic
guarantees. In the first step, a bounded set that contains the
uncertainty realizations with a specific probability of viola-
tions is constructed. We then formulate a robust optimization
problem with respect to that set and show that the solution
is guaranteed to be feasible for the initial chance constrained
problems (5) and (6) with the desired level of confidence.

A. Randomization-Based Reformulation

Define Bi(γ) to be a bounded set of uncertainty real-
izations and we assume that it is an axis-aligned hyper-
rectangle for each agent i. Note that the choice of a hyper-
rectangle is not restrictive and any convex set with convex
volume could have been chosen instead [7]. We parametrize
Bi(γ) := ×Nt−1

k=0 [γ
k
,γk] by γ = (γ,γ) ∈ R2Nt , where γ =

(γ
0
, · · · ,γ

Nt−1
)∈RNt and γ =(γ0, · · · ,γNt−1)∈RNt . Consider

now the following chance-constrained optimization problem

min
γ

Nt−1

∑
k=0

γk − γ
k

s.t. P(wi ∈ ∆ | wi,k ∈ [γ
k
,γk], ∀k)≥ 1− ε.

(8)

By construction the problem (8) is a convex program and we
can apply the standard scenario approach to obtain a solution
as follows.

min
γ

Nt−1

∑
k=0

γk − γ
k

s.t. w j
i,k ∈ [γ

k
,γk] ,

{
∀k ∈ {0, · · · ,Nt −1}
∀ j ∈ {1, · · · ,Ns}

,

(9)

where Ns is the required number of scenarios (7) for each
agent i with d = NtN. The optimal solution of (9) γ∗ is a
feasible solution for the problem (8) with confidence 1−β .

We now establish Bi(γ
∗) for all i ∈ {1, · · · ,N} and define

B∗ := {B1(γ
∗), · · · ,BN(γ

∗)} and pose the robust counterpart
of the problems (5)-(6) where W ∈B∗ ∩∆N . Note that the
robust counterparts of (5)-(6) are not randomized programs
and instead, they are finite-horizon robust mixed-integer
linear problems where the constraints have to be satisfied for
all values of the uncertainty inside B∗ ∩∆N . It is worth to
mention that any feasible solution of the robust counterparts
of (5)-(6) is a feasible solution for the problems (5) and
(6) with at least confidence of 1−β . The robust counterpart
problems are tractable and equivalent to mixed-integer linear
programs, since the uncertainty is bounded in a convex set
[13]. It is shown in [13] that the robust problems are tractable
and remain in the same class as the original problems,
e.g. robust mixed-integer programs remain mixed-integer
programs, for a certain class of uncertainty sets. This is
achieved under the assumptions that the constraint functions
are linear and homogeneous with respect to the uncertainty
vector. In the sequel, we describe a tractable scheme for the
robust counterparts of (5)-(6).

B. Tractable Robust Reformulation

Following the methodology outlined in the previous sec-
tion, define γγγooo := [γo

0 ,γ
o
1 , · · · ,γo

Nt−1] ∈ RNNt to be a vector
whose elements are the middle points of the hyper-rectangle
B∗ and is defined as γγγooo = 0.5(γγγ∗ + γγγ∗) and each element
of γγγooo represents a vector for all agents i ∈ {1,2, · · · ,N}.
Consider now the following tractable reformulations of the
proposed robust counterpart of problems (5) and (6).

min
U,V

J(U) (10a)

s.t. AX0 +BU+Hγγγ
ooo +ηηη ≥ 0 , (10b)

EU+FV+P ≤ 0 , (10c)

where ηηη := [η0,η1, · · · ,ηNt−1] ∈ RNNt is a vector with each
element ηt ∈RN denoting a bound for the worst-case uncer-
tainty realizations at step t for all agents i ∈ {1,2, · · · ,N}.
We refer to Proposition 1 below that shows how to achieve
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this bound. We next present a tractable reformulation of the
proposed robust counterpart of problem (6).

min
U,G,V

J(U) (11a)

s.t. AX0 +BU+Hγγγ
ooo +ηηη ≥ 0 , (11b)

EU+FV+P ≤ 0 , (11c)

U = U+Gγγγ
ooo +ηηηggg , (11d)

ηg,t ≤ [G(γγγ∗− γγγ
ooo)]t ,∀t ∈ {0,1, · · · ,Nt −1}, (11e)

ηg,t ≤ [G(γγγ∗− γγγ
ooo)]t ,∀t ∈ {0,1, · · · ,Nt −1}, (11f)

where ηηηggg := [ηg,0,ηg,1, · · · ,ηg,Nt−1] ∈ RNNt is a vector with
each element ηg,t ∈RN . The following proposition shows the
link between the tractable problems (10) and (11), and the
proposed formulations (5) and (6), respectively.

Proposition 1: If the tractable problems (10) and (11)
have an optimal solution, where ηηη is obtained by solving
the following problem

max
ηηη∈RNNt

ηηη

s.t. ηt ≤ [H(γγγ∗− γγγ
ooo)]t ,∀t ∈ {0,1, · · · ,Nt −1},

ηt ≤ [H(γγγ∗− γγγ
ooo)]t ,∀t ∈ {0,1, · · · ,Nt −1},

(12)

then it is a feasible solution for the chance-constrained
problems (5) and (6) with at least 1− β confidence level,
respectively.

Proof: It is shown in [14, Proposition 1] that any
feasible solution of the robust counterparts of (5)-(6) is a
feasible solution of the initial chance-constrained problems
(5) and (6), respectively. Therefore, we have to show that the
proposed tractable problems (10) and (11) are equivalent with
the robust counterparts of (5)-(6). Consider the following
robust constraint,

0 ≤ AX0 +BU+HW , ∀W ∈B∗∩∆
N ,

that can be written in an equivalent format using the linearity
and homogeneity assumption of the constraint with respect
to the uncertainty, leads to

0 ≤AX0 +BU+H(γγγooo +∆γγγ) =

AX0 +BU+Hγγγ
ooo +H∆γγγ , ∀∆γγγ ∈ [γγγ∗− γγγ

ooo,γγγooo − γγγ
∗] .

We need to introduce the vector ηηη := [η0,η1, · · · ,ηNt−1] ∈
RNNt with each element ηt ∈ RN representing a bound for
H∆γγγ . Consider now the worst-case uncertainty realizations
to be (γγγ∗− γγγooo) and (γγγ∗− γγγooo). We pose the problem (12) to
find bound ηηη , using this bound leads to

0 ≤ AX0 +BU+Hγγγ
ooo +ηηη

≤ AX0 +BU+Hγγγ
ooo +H∆γγγ = AX0 +BU+H(γγγooo +∆γγγ).

Remark 2: Note that we can use the same approach by
introducing ηg,t to be the worst-case superposition of the
uncertainty realizations with the following constraints:

ηg,t ≤ ∑
t−1
j=0 θt, j[(γγγ

∗− γγγ
ooo)] j , ηg,t ≤ ∑

t−1
j=0 θt, j[(γγγ

∗− γγγ
ooo)] j .

C. Robust Randomized Model Predictive Control

The proposed procedure of a robust randomized MPC
is summarized in Algorithm 1. We compare our proposed
methodology to illustrate its performance against a hybrid
approach as a benchmark, where the generating unit status
problem is solved deterministically meaning that we initialize
γγγooo ≡ Wforecast, ηηη ≡ 0 in (10), (11) with the forecast value of
the energy demand and solve the deterministic variant of
the problems. At the next step, we fix the on-off status of
the generating units (and also the startup cost and auxiliary
variables) to the binary vector computed by the previous
deterministic program, and formulate a stochastic produc-
tion planning problem. We refer to this as the Benchmark
approach and the steps are summarized in Algorithm 2.

Algorithm 1 Robust Randomized MPC

1: Fix X0 ∈ RN ,V0 ∈ {0,1}2N . initial state and status of
the generating units, respectively.

2: Fix ε ∈ (0,1), β ∈ (0,1) . level of constraint violations
and confidence level, respectively.

3: Generate Ns scenarios (7) with d = 2NtN and establish
B∗ by solving the optimization problem (9).
Open-loop

4: Solve (10) and determine an optimal solution U∗,V∗.
Apply the first optimal solution Ut := U?

0 ,Vt := V ?
0 to

the smart thermal grid agents.
Affine Uncertainty Feedback

5: Solve (11) and determine an optimal solution U∗
,G∗,V∗.

Apply the first optimal solution Ut := U?
0 + [G∗

γγγooo +
ηηηggg]0,Vt :=V ?

0 to the smart thermal grid agents.
6: Go to step 2.

Remark 3: The proposed framework solves a stochastic
mixed-integer program and it does not necessarily lead to a
less conservative approach due to the fact that the number
of required scenarios (7) is a function of the dimension of
the decision variables. The decision size in our framework is
proportional to the uncertainty dimension and in case of the
high uncertainty size, the advantage of our solution comes
at the expense of a more conservative performance.

IV. NUMERICAL STUDY

We carried out Monte Carlo simulations and a comparison
with the Benchmark Algorithm 2 to illustrate the perfor-
mance of our proposed Algorithm 1 (robust randomized
MPC) for both open-loop and closed-loop formulations. All
optimization problems were solved using the solver BNB via
the MATLAB interface YALMIP [15].

A. Simulation Setup

In this simulation study we consider a small thermal
grid with three agents as an example. Figure 1 depicts the
connections between each agent and their local components.
Each agent has a micro-CHP, a boiler and a thermal storage.
In the proposed model the difference between the level of
thermal storage and local thermal energy demand (imbalance
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Algorithm 2 Benchmark Approach
Deterministic Generating Unit Status

1: Fix X0 ∈ RN ,V0 ∈ {0,1}2N and γγγooo ≡ Wforecast, ηηη ≡
0 . initial state and status of the generating units,
respectively, and no heat demand prediction error.
Open-loop

2: Solve (10) and determine an optimal solution V∗
OLP.

Affine Uncertainty Feedback
3: Solve (11) and determine an optimal solution V∗

AUF.
Stochastic Production Planning

4: Fix ε ∈ (0,1), β ∈ (0,1) and consider γγγooo ≡ W( j), ηηη ≡ 0,
j = 1, · · · ,Ns . level of constraint violations and
confidence, respectively.
Open-loop

5: Generate Ns scenarios (7) with d = NuNtN.
6: Fix Vt =V ∗

OLP,0 → Solve (10) and determine an optimal
solution U∗. Apply the first optimal solution Ut :=U?

0 to
the STGs agents. Go to step 2.
Affine Uncertainty Feedback

7: Generate Ns scenarios (7) with d = NuNt(N +Nw(Nt −1)/2).
8: Fix Vt =V ∗

AUF,0 and solve (11) and determine an optimal
solution U∗

,G∗. Apply the first optimal solution Ut :=
U?

0 +[G∗
γγγooo +ηηηggg]0 to the STGs agents. Go to step 3.

Parameter Value Unit
pmax

g , hmax
g , pmin

g , hmin
g 120.0,120.0,0.0,0.0 [KW]

hmax
b , hmax

im , hmin
b , hmin

im 120.0,120.0,0.0,0.0 [KW]
hmax

xc , hmin
xc , hi

s,0 20.0,−20.0,10.0 [KW]
ηCHP, ηh, ηp 0.25,0.7,0.3 -

ηs, ηb, αi j 0.85,1.0,0.25 -
cgas, cup, cdp, cb, cim 45.0,0.0,100.0,45.0,300.0 e

Λsu (micro-CHP, boiler) diag(60.0,120.0) e
ε,β 0.1,0.0001 -

TABLE I
PARAMETERS WITH THEIR SYMBOLS AND VALUES.

errors) is defined as a state of the local agent. The thermal
storage level of agent one, two and three are presented in
Figure 1 using h1

s ,h
2
s ,h

3
s , respectively. There are also three

lines between agents indicating that thermal energy exchange
is possible. It is considered to have an external party available
for all agents to provide thermal energy.

The proposed Algorithm 1 and the Benchmark approach
are applied to the example provided in Figure 1 with N = 3.
We solve a day-ahead production planning problem for an
uncertain thermal grid with Nt = 24 and hourly steps. It is
assumed that the up and down capacity of decreasing and
increasing electrical power are pup

g = pdown
g = pmax

g /3 and
the minimum time for a change of production unit status
(∆tup,∆tdown) is 2 hours. Table I contains all parameters
that are considered for the example in Figure 1. In order to
generate scenarios for the thermal energy demand error, we
used a Markov chain based model (we refer the reader to [16]
for more details). Moreover, we consider to have different
forecast of energy demand profiles for each agent. We
construct scenarios of uncertain demand profiles assuming
that the realization changes randomly to represent historical
uncertain demand data.

 -CHP -CHP

 -CHP

23
exh

32
exh

31
exh 13

exh

1
sh

21
exh

3
sh

2s
h

1
b
h

3 3,
d d
h p

12
exh

3
b
h

2
b
h

1
im
hExternal Party

2
im
h

3
im
h

Line 3 Lin
e 1

Line 2
1 1,
d d
h p

2 2,
d d
h p

Fig. 1. Three-agent (households, greenhouses) thermal grid example. Each
agent has a µ−CHP, a boiler and a thermal storage. h1

s ,h
2
s ,h

3
s are related

to the local thermal storage in agent one, two and three, respectively. There
are also three lines between agents indicating that thermal energy exchange
is possible. It is considered to have an external party available for all agents
to provide thermal energy.

B. Simulation Results

Figure 2 shows imbalance error trajectories for different
agents. Due to the definition of the imbalance error in
equation (1), our goal is to minimize these errors. This means
that the requested thermal energy demand is provided for
each agent at each step with the desired level of violation ε as
in equation (3l). The initial value for the storage level in each
agent is considered to be 10 [KW]. In Figure 2 the ‘blue’,
‘red’ and ‘green’ lines are related to the imbalance error
profiles (x1,x2,x3) in the first, second and third agent. The
top sub-figure shows the result of optimizing directly over
input sequences in each sampling time (open-loop MPC),
the middle depicts the result of closed-loop MPC considering
affine uncertainty feedback, and the last sub-figure shows the
result of the Benchmark approach. In Figure 3 the ON/OFF
status of boilers at each sampling time using blue for the
first, second and third agent are shown, respectively. The
left-hand-side sub-figures are related to the closed-loop MPC
considering affine uncertainty feedback, and the-right-hand
side ones shows the results of Benchmark approach. In
Figure 4 the relative cost improvement between the cost gen-
erated by the closed-loop MPC considering affine uncertainty
feedback and the cost generated by the Benchmark approach
in each sampling time is shown.

The proposed Algorithm 1 offers a better working plan
for production units as well as an hourly-based production
cost improvement compared to the Benchmark approach.
The improvement in terms of cost is due to the scheduling
flexibility offered by the proposed algorithm, where the
binary variables are solved together with the production
planning problem, allowing us to identify more optimal
working status for production units.

V. CONCLUDING REMARKS

This paper formulated an optimization problem for a day-
ahead prediction plan of smart thermal grids with uncertain
local demands. Smart thermal grids refer to energy networks
whose main goal is to provide and distribute thermal energy
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Fig. 2. Imbalance error trajectories. ‘Blue’ lines show to the imbalance
error x1 in the first agent and x2 the imbalance error in the second agent
is shown by ‘Red’ lines. ‘Green’ lines represent the imbalance error x3 in
the third agent. The first, second and third sub-figures are related to the
results of open-loop MPC, closed-loop MPC considering affine uncertainty
feedback, and the Benchmark approach, respectively.

Fig. 3. ON/OFF status of boilers. The first, second and third sub-figures
are related to agent 1, 2, and 3, respectively. The sub-figures on the left
are the results of closed-loop MPC considering affine uncertainty feedback,
and the sub-figures on the right are the results of the Benchmark approach.

among their local agents. This formulation leads to a multi-
stage chance-constrained mixed-integer linear program. We
proposed a unified framework, namely a robust randomized
MPC approach to solve such a problem, while providing
a-priori guarantees for the chance constraint fulfillment.
Our current work focuses on incorporating aquifer thermal
energy storage (ATES) systems in the developed framework
and distributing the computations in the developed scheme
among the agents.
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