Wireless Indoor Climate Sensor

Implementing the Control Unit at Ultra Low Power

-2
(7]
Q

=

|_
(D]
O
c

Q
O

wn

G
o
-

ie
(D)

=
O
(9]
m

Delft
U De I ft Uﬁiversity of) .
I Technology Electronic Instrumentation Laboratory

Wireless Indoor Climate Sensor

Implementing the Control Unit at Ultra Low Power

Bachelor of Science Thesis

For the degree of Bachelor of Science in Electrical Engineering at Delft
University of Technology

J.A. Angevare, 1. Jager

June 25, 2012

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) - Delft
University of Technology

Copyright ©
All rights reserved.

Delft University of Technology
Department of

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics and Computer Science (EEMCS) for acceptance
a thesis entitled

Wireless Indoor Climate Sensor
by
J.A. Angevare, 1. Jager
in partial fulfillment of the requirements for the degree of

Bachelor of Science Electrical Engineering

Dated: June 25, 2012

Supervisor(s):

dr.ir. M.A.P, Pertijs

ir. Z.Y. Chang

Reader(s):

dr.ing. [.LE. Lager

dr.ir. R.C. Hendriks

Preface

The Electronic Instrumentation Laboratory department at Delft University of Technology has
designed the sensor parts of a multi-sensor IC called the MIST1431[1], which is manufactured
by NXP. This is an ultra-low power sensor chip that measures relative humidity, temperature
and ambient light intensity. Because of the low power characteristic the chip is extremely
suitable for applications where information about the ambient climate is needed, but energy
is scarce.

One specific application for the MIST chip is to be part of wireless climate sensor modules
that could be used to implement a smart climate system in buildings. Such modules can
provide additional information about the climate in a room.

Now that the MIST chip is being finished at NXP, the need arises for a demonstrator for the
smart climate control application. We, a total of six students, have been asked to design and
build a Wireless Indoor Climate Sensor demonstrator with the MIST chip. This demonstrator
should be fully wireless; furthermore, it should be able to take measurements in a timely
fashion and send it to a computer. The demonstrator should also be able to work for at least
a year without intervention. The complete set of requirements is found in appendix A.

Sensor module

MIST1431 |_
Sensor <> Control
/ v
Power Transmitter/ Receiver/ |_
supply transceiver > ansceiver €| Computer

Figure 1: Block diagram of the to be designed system

As the system is to be designed by a group of six students and time is limited, a proper
subdivision of design tasks was necessary. An additional constraint to the project was that
three theses were to be written. The team was split into three groups of two students each.

We have divided the design into subparts (see figure 1), in order to have smaller and better
solvable problems and be able to work together. We have divided the students into three

Bachelor of Science Thesis J.A. Angevare, |. Jager

i Preface

groups of 2 students each. Wireless communication is presented in [2], energy management
and harvesting in [3] and third, control of the demonstrator, is done by us. The reasoning
behind this subdivision was that the three tasks were expected to take approximately equal
amounts of time to complete. Additionally, they could be completed in parallel as their design
is largely independent of one another.

J.A. Angevare, |. Jager Bachelor of Science Thesis

Abstract

With the completion of the MIST1431 multi sensor IC a demonstrator developed by the
Electronic Instrumentation Laboratory of Delft University of Technology and NXP, a demon-
strator that shows the capabilities of the MIST chip was needed. This thesis describes the
implementation of the control unit, which has to control the MIST chip and wireless commu-
nication module residing in the demonstrator. Temperature and relative humidity had to be
transmitted wirelessly at low power consumption.

A method of analysis and assessment of the different methods and hardware was developed.
Then a suitable controller was chosen: the LPC1114. After choosing the controller, a study
about the functionalities of the controller was done. Software was designed and written. Fi-
nally measurements were taken proving the functionalities of the demonstrator.

Testing showed that the demonstrator is capable of sending its measurements once per second

to a computer while using a mean of 50.807uA. The result is that the demonstrator meets
its requirements.

Bachelor of Science Thesis J.A. Angevare, |. Jager

iv Abstract

J.A. Angevare, |. Jager Bachelor of Science Thesis

Contents

Preface i
Abstract ili

1 Introduction 9
2 Project Description 11
2-1 Requirements 11
2-2 Research Statement 12

3 Selecting the Control Unit for the Demonstrator 13
3-1 FPGA Analysis 13
3-2 Microcontroller Analysis L 14
3-2-1 Method of Comparison 14

3-2-2 Microcontroller Comparison 16

4 Power Saving Techniques 19
4-1 LPC1114 Sleep Modeso 19
4-2 XBeeSleep Modes. 20
4-3 MIST power saving 21
4-4 Efficient Package Handling oL 21
4-5 Buffering Optimization 21

Bachelor of Science Thesis J.A. Angevare, |. Jager

2 Contents

5 Control Unit Implementation 23
5-1 High Level Software Design 23
5-2 MIST Implementation 23
5-3 ZigBee Implementation 25
5-4 Power Implementation 27
5-5 WICS data protocol 28

6 Measurements 29
6-1 Measurement method 29
6-2 Power Consumption 30
6-3 DataRate 33

7 Conclusion 35
7-1 Conclusion 35
7-2 Recommendations 35
Bibliography 37

A Program of Requirements 39
A-1 Usage Requirements 39
A-2 Requirements according to the ecological situation of the system's environment . 40
A-3 System Requirements 40
A-4 Installation Requirements 40
A-5 Project Requirements 41

B Source Code 43
B-1 ZigBee 43
B-2 ZigBee_buffer 48
B-3 ZigBee_constructor 49
B-4 ZigBee_receiver 51
B-5 ZigBee_sender 53
B-6 ZigBee translator 56
B-7 UART . . . e 59
2-8 Power_modes 61
2-9 MIST . . . e 65
2-10 Main loop 78

J.A. Angevare, |. Jager Bachelor of Science Thesis

List of Tables

3-1 Microcontroller Power Consumption, 17

3-2 Microcontroller Comparison Table 18

Bachelor of Science Thesis J.A. Angevare, |. Jager

4 List of Tables

J.A. Angevare, |. Jager Bachelor of Science Thesis

List of Figures

1 Block diagram of the to be designed system i
3-1 Power Modes Consumption Estimation, 15
3-2 Microcontroller Power Estimation 17
4-1 Circular Buffer Implementation 21
4-2 Buffer Handle Implementation oL 22
5-1 High level software design 24
5-2 High level flow chart 24
5-3 MIST topology 25
5-4 MIST Driver flow chart 25
5-5 ZigBee Topology 26
5-6 ZigBee preparation for transmit Lo 26
5-7 ZigBee Packet 26
5-8 ZigBee transmit flow 27
5-9 ZigBeereceive flow 27
5-10 WICS Data Frame 28
6-1 Average Sleep Mode Current Measurement Setup 29
6-2 Average On Mode Current Measurement Setup 30
6-3 Association Period Current Consumption Graph 30
6-4 Send Period Current Consumption Graph 31

Bachelor of Science Thesis J.A. Angevare, |. Jager

6 List of Figures

6-5 Resend Period Current Consumption Graph 32
6-6 Average Period Current Consumption Graph 32

J.A. Angevare, |. Jager Bachelor of Science Thesis

Listings

B.1 ZigBeeho 43
B.2 ZigBee.c e 44
B.3 ZigBee buffer.h 48
B.4 ZigBee buffer.c. 48
B.5 ZigBee constructorho oo 49
B.6 ZigBee constructor 49
B.7 ZigBee_ receiver.ho 51
B.8 ZigBee receiver.c. L 51
B.9 ZigBee sender.h 53
B.10 ZigBee_sender.c L 54
B.11 ZigBee_translator.ho oo 56
B.12 ZigBee_translator.c Lo o7
B3 UART.h o o 59
B.14 UART.c o e 60
2.15 Power modes.h 61
2.16 Power modes.c e e e e 61
217 mist.h . ..o 65
218 mist.c ... 66
2.19 mist definitions.h 71
2.20 mist lowlevel.ho 74
2.21 mist _lowlevel.c e 75
2.22 main.cl 78

Bachelor of Science Thesis J.A. Angevare, |. Jager

8 Listings

J.A. Angevare, |. Jager Bachelor of Science Thesis

Chapter 1

Introduction

The MIST1431 is an ultra-low-power sensor chip partly made by the Electronic Instrumenta-
tion Laboratory, which has recently been finished. For the development of a wireless indoor
climate sensor demonstrator, based on the MIST1431 chip and the XBee Series 2 ZigBee
module, a control unit is needed. This bachelor thesis presents the process of methodologically
selecting a way to control the demonstrator, and the implementation of the subsystem.

The control unit has to communicate with the MIST chip to retrieve the measurement data.
The XBee Series 2 module has to be issued to send the measurements to a computer. A
power budget of 100uA is available for the entire demonstrator.

In chapter 2 the requirements for the subsystem are presented and the resulting research
statements. When the requirements are clear, two ways of controlling the demonstrator are
evaluated in chapter 3. Chapter 4 will look into methods for power savings. Subsequently, the
implementation of the demonstrator’s control unit is treated in chapter 5. Finally, measure-
ments are done to validate the system against the program of requirements. This is presented
in chapter 6.

Bachelor of Science Thesis J.A. Angevare, |. Jager

10 Introduction

J.A. Angevare, |. Jager Bachelor of Science Thesis

Chapter 2

Project Description

In this chapter, the requirements for the project are enumerated in section 2-1. Then, in
section 2-2 the research statement, which forms the basis for the literature study is composed.

2-1 Requirements

For wireless communication, the XBee Series 2 module[4] was selected[2]. This module inter-
faces through UART with the control unit. The MIST chip communicates via Serial Peripheral
Interface(SPI). The MIST also needs an external clock at 1 MHz. The mean power budget
for the entire demonstrator was rated at 100 pA. This was derived from the requirement
that the demonstrator should last at least one year without changing a battery. This section,
together with the program of requirements (Appendix A) establishes the requirements for the
control unit:

UART interface

e SPI Master interface
e 1 MHz external PWM signal (for MIST clock)

e Two operation modes: normal mode and demo mode. In normal mode, the sample and
transmission rate must be at least once per minute. In demo mode, the sample and
transmission rate must be at least once per second.

e Deliver the measured data, while retaining the accuracy of the MIST chip used.
e Measure and transmit relative humidity and temperature.

e Power budget of 100 nA

Bachelor of Science Thesis J.A. Angevare, |. Jager

12 Project Description

2-2 Research Statement

The requirements lead to the main research statement that is evaluated in this thesis:

Provide a means to send data, collected from the MIST chip, and receive commands, through
the wireless communication module, at ultra low power.

This statement is treated in three parts by the following sub statements:

1. Compare ways to control the wireless communication module and the sensors at ultra
low power.

2. Find methods to decrease power consumption of the wireless communication module,
while maintaining the specified data-rate (see appendiz A).

3. Find methods to decrease power consumption of the sensors, while maintaining full
accuracy.

Statement 1 is treated in chapter 3, statement 2 and 3 in chapter 4.

J.A. Angevare, |. Jager Bachelor of Science Thesis

Chapter 3

Selecting the Control Unit for the
Demonstrator

To serve the first research statement, this chapter evaluates two possibilities of controlling
the MIST chip via SPI and the XBee module through UART. In section 3-1, FPGAs (field
programmable gate arrays) are analyzed. Subsequently, microcontrollers are evaluated in
section 3-2. Finally, a method to control the demonstrator is selected.

3-1 FPGA Analysis

FPGAs are generally not considered for low power applications, since FPGAs are less energy
efficient than dedicated logic due to the overhead of reconfiguration[5]. They are especially
suited for complex algorithms and digital signal processing as they can do a lot of calculations
concurrently.

FPGAs usually do not have low power modes as contemporary microcontrollers do. However,
efforts (e.g. Xilinx Pika Technology[5]) are made by FPGA producers to catch up with the
microcontrollers by adding low power features into FPGA cores.

In regular FPGAS, all transistor blocks are always on and running at full speed, consuming a
lot of power. On average, only 20% of the transistors in a FPGA are timing critical[6]. So the
power usage can be significantly reduced by putting the non-critical 80% of the transistors
blocks in low power mode. Power usage improvements such as these and the vast performance
and flexibility of FPGAs make them more and more interesting for mobile applications. How-
ever, this flexibility comes with its drawbacks. FPGAs do not offer dedicated SPI and UART
peripherals. These functionalities have to be built in separately, bringing in more complexity
and increased development time.

FPGAs are still less energy efficient than microcontrollers, and they do not ship with dedi-
cated support for SPI and UART. So custom hardware has to be written in order to use these

Bachelor of Science Thesis J.A. Angevare, |. Jager

14 Selecting the Control Unit for the Demonstrator

protocols. However, time for this bachelor project is limited. Thus, FPGAs are not suitable
for this project, since rapid development and low power consumption are essential.

3-2 Microcontroller Analysis

Microcontrollers are fast, cheap and very dynamic. They are dynamic in the sense that the
functionality of the microcontroller can be changed with little effort, and without any modi-
fication to the physical circuit. This makes microcontrollers an ideal solution to the research
statement introduced in section 2-2.

This section describes the comparison of different microcontrollers. First, in section 3-2-1,
the method used to compare the microcontrollers is presented. Then in section 3-2-2 mi-
crocontrollers are found and compared, using the method of comparison described in section
3-2-1.

3-2-1 Method of Comparison

Section 2-1 defined the requirements for the subsystem: a SPI interface is needed for com-
munication with the MIST chip and UART is needed for the XBee module. Most modern
microcontrollers implement an UART and SPI peripheral. Therefore, the low-power criterion
together with ease of development will be the most important criteria.

This subsection starts with making a few assumptions on the microcontrollers to be com-
pared. Then it gives the method of power consumption estimation. Finally it will list the
other criteria, including ease of development.

No benchmarks (a test to determine the calculation power of a CPU) have been found with
the calculation power of all the CPU’s. In fact, only ARM states a Dhrystone [7, 8] result for
its microcontrollers. Therefore all CPU’s are assumed to be of equal calculation power.

Assuming that all CPU’s are equal in processing power makes it easier to do a power consump-
tion prediction. The microcontroller has to wait for either the ZigBee module or the MIST
chip most of the time. In between a lot of data copying, bitwise operations and branches have
to be done.

With the assumption of equal processing power, these operations can be modeled as a series
of clock cycles. Also, the waiting for either the ZigBee module or the MIST chip can be mod-
eled as a series of clock cycles. Note that all operations can only be modeled as clock cycles
because the clock frequency is set to 1 Mhz. Taking the highest clock frequency available will
result in more power consumption on behalf of the CPU, since it has to wait most of the time.

Measurements have to be taken each second or each minute, depending on the operation
mode of the demonstrator (see appendix A). Also the measurements have to be sent at the
same rate for both modes. This means that the mode of operation is periodic, thus in order to
predict the power consumption a single period of power consumption is needed. Each period
consists of 4 stages:

J.A. Angevare, |. Jager Bachelor of Science Thesis

3-2 Microcontroller Analysis 15

- Sleep
g
s
)
08—
06—
04—
02—
T T 1
0 0.5 1.5 2
Time
Figure 3-1: Power Modes Consumption Estimation
e Waking up

e Taking measurement and sending
e Going to sleep

e Sleeping until 60, or 1, seconds have passed

A graphic display of these stages can be found in figure 3-1. With this model, formulas to
calculate the power consumption of each period can now be made:

Conjeriod = (Tmeasurement + Tsend) * Aon * 1MhZ/Fon = Ton * Aon * 1MhZ/Fon (3'1)

Where Cyy, perioa is the power consumption of one period while the microcontroller is active,
Tneasurement + Tsend = Ton is the time duration the microcontroller is turned on each period,
Aon is the on-current given by the datasheet and Fy, is the frequency associated with the
on current. The multiplication with 1Mhz divided by the frequency is done to calculate the
power consumption of the microcontroller with a 1 Mhz clock.

Cwake—up = Lywake—up * 1/2 * (Aon * 1]\4}“5/1:’0” + ASZ@@;D) (3_2)

Where Tiyqke—up is the time required to get out of the deep sleep mode and Ay is the power
consumption of the microcontroller in deep sleep mode.

Cgoftofsleep = Awakefup (3_3)

Cwake—up a0d Cyo_to—sieep is the power needed to either to get out of deep sleep or into deep
sleep mode, both are assumed equal.

Bachelor of Science Thesis J.A. Angevare, |. Jager

16 Selecting the Control Unit for the Demonstrator

Csleep = (Tperiod - Ton — 2x Twake — UP) * Asleep (3'4)

Where Cyjeep is the deep sleep power consumption per period and Tjerioq is the period time,
which is 60s.

Cperiod - (Ton + Twakefup) * (Aon * 1MhZ/Fon - Asleep) + Tperiod * Asleep (3'5)

Where Cperiog is the power consumption per period.

During the measurements and transmitting phase the microcontroller is turned on, thus the
power consumption of the microcontroller during this fase is the on state power consumption
give by the datasheet. Since the microcontroller will operate at 1Mhz the on-current is mul-
tiplied by 1 Mhz and divided by the associated frequency (see equation 3-1).

Now that a model for the power consumption estimation of the microcontroller is found, other
criteria can be assessed. Although low power consumption is the most important criterion it
is also important that the time to development does not exceed the time restrictions (Time
to development includes properties like: good compiler availability, good documentation a
development board and available on-hands experience.). If the Electronic Instrumentation
Laboratory wants to reuse the demonstrator some time in the future it is also preferred that
they have some familiarity with the microcontroller. This will make it easier for them to work
with the demonstrator and it also means that they already have the tools needed. The last
factor included in the comparison is support (specifically in the form of fora and helpdesk).
Support is a handy tool to help solve problems, which is what makes it different from time
to development. These last criteria (the criteria excluding the power consumption) are not
measurable, that is why a relative weight factor is attributed to them.

3-2-2 Microcontroller Comparison

In this section the microcontrollers are compared. The microcontrollers were selected by
searching for microcontrollers which the manufacturer has labeled as ultra low power. This
search has led to the microcontrollers listed in table 3-1. The data required for the power
consumption estimation are found in the datasheets [9, 10, 11, 8, 12, 13, 14, 15, 16, 17] see
table 3-1). It must be noted that some wake-up times were missing in the datasheets, these
have been set to zero.

Figure 3-2 shows that the power consumption per clock cycle of the microcontrollers is the
most significant property. The wake-up time has no major influence on the average power
consumption, which was expected since it only has to wake-up once every minute. The sleep
current is also negligible because it is small compared to the on state power consumption.

Applying the other criteria was done for the MSP430, the LPC11AXX the ¢8051F9806 and
the cc430 (see table 3-2). These microcontrollers have a similar power consumption, while the
rest of the microcontroller have a higher power consumption. Since the power consumption
criterion is still the most important one, the choice will go to one of these more energy efficient

J.A. Angevare, |. Jager Bachelor of Science Thesis

3-2 Microcontroller Analysis 17

Table 3-1: Microcontroller Power Consumption

|| on current [mA] | sleep current [uA] | wake up time [us] | frequency [MHz] |

PIC16LF1823[9] 2.2 0.03

0 8
MSP430[10] 3.6 1.3 150 25
ATtiny1634[11] 0.23 40 4 1
LCP11AXX]8] 7 2 0 50
ATiny2313A[12] 0.2 4 6 1
Si1004[13] 0.18 0.3 2 1
c8051F980(14] 0.15 0.3 2 1
cc430[15] 3.1 1.3 150 25
ATmegal28RFA1[16] 3.7 1.2 0.38 16
efm32g210[17] 5.67 0.59 2 32
)
g ——PIC16LF1823
5 ——MSP430
5 —— ATmega128RFA1
3 —— LPC11AXX
© ——MSP cc430
Si1004
——C8051F980/6
ATiny231A
EFM32G210
ATiny1634
% o6 o0d 06 o0 ‘ o1 o1a o6 XE o2

0.1
Ton [s]

Figure 3-2: Microcontroller Power Estimation

Bachelor of Science Thesis J.A. Angevare, |. Jager

18 Selecting the Control Unit for the Demonstrator

Table 3-2: Microcontroller Comparison Table

i
- 3
2 < § o3 8 X o
e [ap] — 0 — =
a R S < C’ND >» < o~
o] — = o0 o0
HOA 5 O 3 B 0 &® B @
S E & & 32 ¥ B E
no =2 < a9 < ©»n B S <« B
Power Consumption + 1 - + | -1|-1+]++ _
Development Time - ++ + -
Support + ++ NI
Familiarity + ++ | F

microcontrollers.

The MSP430 and cc430 do not come with a freely available compiler, that is why development
time has been judged negatively. A support site for the MSP430 has been set up, however the
cc430 (which is an MSP430 with a wireless communication module) does not have much sup-
port in the form of libraries or example code. The LPC11AXX has an ARM cortex-MO core,
therefore a lot of coding examples and free compilers are available. Also, the LPC11AXX
has a cheap development board which comes with IDE, compiler and a support site. The
¢8051F9806 has a 8051 core, which is old and long-lasting core and also has a free compiler.
Because of it’s long life there is a lot to be found on different internet fora.

From table 3-2 follows that the LPC11AX chip is the most favorable. The MSP430 is slightly
more power efficient, but decisive was the fact that the LPC1114 is already used on the
Electronic Instrumentation Laboratory department and has a development board with free
unrestricted compiler, IDE and support site. So LPC1114 was chosen to be the heart of the
demonstrator.

J.A. Angevare, |. Jager Bachelor of Science Thesis

Chapter 4

Power Saving Techniques

This chapter evaluates different methods for saving power and treats the second and third
research statement given in section 2-2. The program of requirements states that the demon-
strator should last at least one year on a battery in normal mode. The sensors should do one

measurement per minute and transmit the data at least once per minute over the wireless
link.

Since a measurement and transmitting combined takes about a 100 miliseconds, the demon-
strator will be idle most of the time. Thus, there is a lot to gain in minimizing power
consumption when the demonstrator is waiting. This can be achieved by literally turning off
certain parts of the device.

The LPC1114 microcontroller has several low power modes built in that provide this function-
ality. In section 4-1 these low power modes are investigated. Then the sleep modes supported
by the XBee module are described in section 4-2. Section 4-3 evaluates the power saving by
the MIST chip. Efficient package handling is described is section 4-4 and buffer optimization
in section 4-5.

4-1 LPC1114 Sleep Modes

The LPC1114 supports four different levels of power modes[18]:

Active Mode is the normal, non-power-saving mode. The Cortex-MO core and the memory
are on and are clocked by the system clock. Peripherals are clocked by the system clock
or a dedicated peripheral clock.

Sleep Mode is the first level power saving mode. The system clock is stopped, so the Cortex-
MO core is off as well as the memory, the related controllers and the internal buses. This
diminishes the dynamic power consumption. Peripherals however can still be used if
selected in the SYSAHBCLKCTRL register. Also, the processor state and registers are
maintained. Waking up can be achieved by interrupts generated by peripherals.

Bachelor of Science Thesis J.A. Angevare, |. Jager

20 Power Saving Techniques

Deep Sleep Mode powers down all analog blocks in addition to the Sleep Mode power
savings. Omnly the brown out detector and the watchdog can be selected to remain
active. Waking up from deep sleep mode can be done either by an external signal,
brown out reset or by a watchdog timer reset.

Deep Power Down Mode shuts off the entire chip. Only the data in five general purpose
registers is saved. Waking up from deep power down mode can only be achieved by
pulling the WAKEUP pin low.

The demonstrator has to transmit the measurements periodically. Also there is no external
device to wake up the LPC1114. That means Deep Power Down Mode cannot be used. This
leaves Sleep Mode and Deep Sleep Mode. The latter can be used if no peripherals are needed,
which is the case when measurements are done and sent over the ZigBee connection. Then
the LPC has to wait until it can start the measurement cycle again. While waiting nothing
has to be done, so the peripherals can be powered off.

Sleep Mode can be used if peripherals need to be powered. This is the case when the LPC1114
has issued the MIST chip to do a measurement. The MIST chip needs a tenth of a second
(see equation 4-1) to finish a measurement. In the meantime, the LPC can go into Sleep
Mode while maintaining the clock signal for the MIST chip. Sleep Mode can also be used
while sending packets through UART. Sending a character at 9600 BAUD takes equals 1250
CPU instructions at a clock frequency of 12 MHz. That is 1250 instructions of potential sleep
time.

Note that it is required to implement asynchronous functionality for the UART and MIST(SPI)
(i.e. using interrupts instead of polling) to be able to go into Sleep Mode while the demon-
strator is idle.

4-2 XBee Sleep Modes

The XBee series 2 module also has two sleep modes for power saving[4].

Pin/Host Controlled Sleep is the first low power mode. In this configuration, sleep mode
is entered by asserting (logical high) the Sleep_ RQ pin. When the XBee is signaled to
go to sleep it will finish any transmit or receive operation before entering a low power
state. When the same pin is de-asserted (pulled to ground) the module will wake up
again.

Cyclic Sleep sets an interval for the XBee module to wake up periodically to check for or
to send RF data.

The LPC will be controlling the state of the demonstrator. In order for the LPC to have
more control, the XBee module will be configured in Pin/Host Controlled Sleep. The LPC
will issue the XBee module when it is time to transmit or sleep.

At least each half minute the ZigBee module needs to poll the coordinator in order to not
loose its connection. This means that in demonstrator mode at least the LPC and the ZigBee
module need to wake up. If the program of requirements permits it, it will be interesting to
see if in demonstrator mode the demonstrator can send three measurements per minute.

J.A. Angevare, |. Jager Bachelor of Science Thesis

4-3 MIST power saving 21

Construct

Packet S

Measurementg

Figure 4-1: Circular Buffer Implementation

4-3 MIST power saving

So far power saving features for the control part and the wireless communication part of the
demonstrator have been assessed. Contributing for the sensor part, the MIST chip offers a
deep power down mode to save power[l]. This mode is entered by pulling the RESETn pin
to ground. When in deep power down mode the MIST consumes < 0.3nA. De-asserting the
RESETn pin results in rebooting of the MIST. After 1.5ms the chip is ready to accept com-
mands again. A temperature measurement takes, at full resolution (12 bit), 100 miliseconds.
Humidity measurements take about 18 miliseconds, which results in:

T = wake_up T Ttempev'ature + Thumidity =1.5+100 + 18.0 = 119.5ms (4'1)

These waiting times are ideal for sleep mode, since deep sleep mode cannot sustain the
peripherals. Making the MIST code perform asynchronously will enable the microcontroller
to also perform other tasks.

4-4 Efficient Package Handling

The demonstrator would perform optimally if 10 measurements are sent in each packet. How-
ever the program of requirements states that the demonstrator has to send at least one sample
each minute. In order to keep the power consumption to a minimum it was decided that the
demonstrator sends one measurement each minute in normal mode.

The program of requirements requires the demonstrator to send at least one measurement each
second in demo mode. Since measurements take a little over 119.5 milliseconds, accounting
for microcontroller times also, it is technically possible to send 4 measurements each second.
However this would not increase functionality while decreasing performance by consuming
more power. Therefore it is decided that in demonstrator mode one measurement is sent each
second.

4-5 Buffering Optimization

Circular buffers are often used in low level applications. Circular buffers are fast first in first
out streams. Therefore they seem ideal for use in the demonstrator.

However it was decided that the demonstrator is not going to use circular buffers. Streaming
would be very nice to have during the sending of packets or the storing and translating

Bachelor of Science Thesis J.A. Angevare, |. Jager

22 Power Saving Techniques

Figure 4-2: Buffer Handle Implementation

of sensor data. But as can be seen in figure 4-1 it would require more data copying than
necessarily needed. Since sending data is only done once every time the controller is awake
no stream is needed.

It was decided that the demonstrator needs to have a pool of buffers. If some part of the
code is in need of a buffer it can request a buffer from the pool. Passing data from one point
to another would be done by passing the buffer handle (a pointer to the first address of the
buffer along with the size of data in the buffer). Passing along the buffer handle also means
passing allong ownership of the buffer. Since the buffer pool has an endless amount of buffers
it is also required that buffers are released (returned to the buffer pool) after usage.

The buffer pool with buffer handles are an excellent solution for this application, however
when large data streams have to be handled, it is recommendable to use circular buffers.

J.A. Angevare, |. Jager Bachelor of Science Thesis

Chapter 5

Control Unit Implementation

This chapter describes how the control unit of the demonstrator has been implemented.
Chapter 3 described the reasons to go with the LPC1114 as control unit. Chapter 4 explained
how energy can be saved by the microcontroller, the MIST chip and the XBee module. The
software designed for the LPC will be explained top-down. First the high level software design
will be explained in section 5-1. Then the lower level software is described in sections 5-2 to
5-4. Section 5-5 describes the data protocol used for transmitting the measurement data. All
corresponding source code can be found in Appendix B

5-1 High Level Software Design

On the highest level, the software design consists of four parts: WICS Main Loop, Power,
ZigBee and MIST. This is illustrated in figure 5-1. The main loop controls the MIST driver to
acquire the measurement data, it uses the ZigBee driver to make the XBee module transmit
data and it uses the Power functions to manage sleep and deep sleep mode in order to
save power. The main loop also makes it possible to switch between normal mode and
demonstrator mode. Switching can be done via a wireless message over ZigBee. In addition
to the two modes, the sample rate and transmitting rate are configurable individually as well.

The main loop cycle is illustrated in figure 5-2. It starts with waking up from deep sleep and
turning on the XBee module, which checks for incoming messages. If there are any, they will
be processed. Then, the measurement process starts, and concurrently any available data will
be transmitted (data from earlier cycles). After that, XBee will be turned off and the LPC
goes into deep sleep.

5-2 MIST Implementation

The MIST code is responsible for dealing with the MIST chip. The MIST chip communicates
through SPI with the LPC(see figure 5-3). In addition, the MIST chip also needs an external

Bachelor of Science Thesis J.A. Angevare, |. Jager

24 Control Unit Implementation

WICS
Main Loop

Power MIST ZigBee

Figure 5-1: High level software design

Measurement

Check for and —
process
messages

Transmit data if
available
R

Deep Sleep

Figure 5-2: High level flow chart

1MHz clock, which is also generated by the LPC. When measurement data is needed, MIST
follows the steps as illustrated in figure 5-4. First the MIST is enabled. This means the
clock is generated on a PWM pin. Then the temperature measurement is started. Since this
measurements takes over 100ms the LPC goes into sleep mode during this measurement. The
1MHz clock is still generated in sleep mode. When the temperature measurement is finished,
the data is retrieved and the humidity measurement is started. During this measurement
sleep mode is invoked as well. After retrieving the humidity data the MIST is disabled.

J.A. Angevare, |. Jager Bachelor of Science Thesis

5-3 ZigBee Implementation 25

MIST

SPI CLK

Figure 5-3: MIST topology

Start

Enable MIST > temperature > LF:;:':SZ:\::?Q
measurement
T —— R — T
. Retrieve
Disable MISL temperature data
Y
Retrieve humidity | LPC sleep during | Start humidity
data - measurement | measurement

Figure 5-4: MIST Driver flow chart

5-3 ZigBee Implementation

ZigBee is the driver for the XBee module. It realizes the communication with the XBee
module via the LPC UART peripheral, see figure 5-5. All processes in the ZigBee driver
run asynchronously. So they work with interrupt requests in stead of polling. When ZigBee
receives data to send, first a buffer is allocated. Then the ZigBee packet is constructed and
stored in the buffer. Then a transmit is requested for the data in the buffer, see figure 5-6.

The ZigBee packet (see figure 5-7) is constructed around every data set to be sent. Every
packet starts with 0x7E as start byte, followed by two bytes that indicate the packet size.
Then, an arbitrary ID byte can be assigned just before the actual data is inserted. Finally
a checksum is calculated over the entire packet except the start byte. Also all bytes that
happen to match a XBee control byte are escaped|[4].

The transmit routine waits for a transmit request. At a request it will issue the UART to send

Bachelor of Science Thesis J.A. Angevare, |. Jager

26 Control Unit Implementation

ZigBee

UART

Figure 5-5: ZigBee Topology

Get buffer »| Construct packet P Request transmit

Figure 5-6: ZigBee preparation for transmit

start size checksum| _
3

Ox7E ||| MSB | LSB CRC | |§
S

~

3

ID data &

Figure 5-7: ZigBee Packet

the first byte. Then it checks if there are any bytes left to send. This is illustrated in figure 5-8.

The XBee module can also receive data. If data is received, UART triggers an interrupt
in ZigBee, which will store the data byte for byte in a buffer. When the entire packet is
received, the buffer is sent to the handler, which will decode the packet. See figure 5-9 for
the corresponding flow chart.

J.A. Angevare, |. Jager Bachelor of Science Thesis

5-4 Power Implementation 27

ZigBee New byte
available?

Y

ZigBee Wait for ».| ZigBee Send -
transmit request o byte »- UART Send byte

Figure 5-8: ZigBee transmit flow

ZigBee Buffer
available?

UART Byte
received

A/

ZigBee Request
buffer

ZigBee Store
byte in buffer

A

ZigBee Complete
package received?

ZigBee Handle
packet

Figure 5-9: ZigBee receive flow

5-4 Power Implementation

As explained in chapter 4 the LPC needs to be able to enter Sleep Mode and Deep Sleep
Mode. The Power part of the microcontroller source code has three functions: One function
to initialize the watchdog oscillator and the counter needed to wake up from sleep and two
functions to enter either sleep or deep sleep mode.

The watchdog oscillator runs at the lowest possible frequency, 0.5/64MHz in which 64 is the
frequency divider and 0.5 is the lowest possible RC oscillator frequency.

Waking up from sleep mode is done through either a timer interrupt or any other interrupt
that occurs during sleep. For the timer interrupt, timer 32B1 is used driven by the watchdog
oscillator. The timer generates this interrupt when the timer value matches the value stored
in the timer match register. This register is used to control the time the LPC is in sleep mode.

Bachelor of Science Thesis J.A. Angevare, |. Jager

28 Control Unit Implementation

Deep sleep mode uses timer 32B0 to drive an external pin to invoke the start logic which
in its turn wakes up the LPC. The timer is driven by the watchdog oscillator, which is the
only oscillator running in deep sleep mode.

5-5 WICS data protocol

The measurements are sent to a pc in a WICS data frame. The data frame can hold a
maximum of 10 measurements. This is because a XBee packet holds a maximum of 72 bytes
of user data and one packet of measurement data is 7 bytes. Figure 5-10 shows the structure
of the data frame. Sequence ID indicates the packets number in the packet sequence. Interval
is the measurement interval in seconds. The status flags indicate MIST sensor errors and
harvesting errors and battery status.

WICS Data frame

Seq ID | Interval

8 bits 8 bits Measurements

2nd n-th

1st Measurement M rement | M B ——

Temp | Humid Light Status
16 bits | 16 bits | 16 bits | 8 bits

Figure 5-10: WICS Data Frame

J.A. Angevare, |. Jager Bachelor of Science Thesis

Chapter 6

Measurements

This chapter explains how testing of the demonstrator and subsystems is done in section
6-1. Then section 6-2 presents and evaluates the test data. First power consumption will be
looked into. Then the data rate will be checked against the specifications in the program of
requirements (see appendix A) in section 6-3.

The demonstrator supports 2 different operation modes: Normal mode and Demo mode. In
Normal mode measurements and data transmissions should be done once per minute. In
Demo mode once per second.

6-1 Measurement method

The measurements were done with the Agilent 6613C power supply [19], Agilent 34401A
digital multimeter [20] and the DSO6034A scope [21]. The digital multimeter was used for
measuring the deep sleep mode current of the circuit (see figure 6-1). This was done because
the scopes have an offset, which had to be compensated for. The measurements taken with
the scope (see figure 6-2)start and end with the demonstrator in sleep mode, these parts are

Sensor module

i > 1. VBAT
| > 2.GND
[> 3.CELL

— | * Agilent 6613C
T 40V

Agilent 34401A

> HI
i > LO

GND

Figure 6-1: Average Sleep Mode Current Measurement Setup

Bachelor of Science Thesis J.A. Angevare, |. Jager

30 Measurements

Sensor module

* Agilent 6613C > 1. VBAT

4.0V | > 2.GND
T > 3.CELL
AVAYAY
_ 4R7 .
= BS120 oscilloscope
GND
| > Signal
> GND

Agilent DSO6034A

1 > Signal
> GND

Figure 6-2: Average On Mode Current Measurement Setup

calibrated to zero. Then the measurements are transformed to a current, using Ohm’s law:
I = U/R, and finally the sleep current is added.

The measurements are taken this way because the digital multimeter is very accurate at
measuring the demonstrator current, but not at high sample frequencies. The scope on the
other hand can sample at high enough frequencies but has an offset. Also the scope has
to measure the current by measuring the voltage over a shunt resistor, and thus loses some
accuracy.

6-2 Power Consumption

Associate

0.04 — / ,

0.02 — -

Humidity
0.01 — Wake-up / i
i w M

—0.01 1 1 1 1 1 1 1
0 50 100 150 250 300 350 400

Current [A]

200
Time [ms]

Figure 6-3: Association Period Current Consumption Graph

J.A. Angevare, |. Jager Bachelor of Science Thesis

6-2 Power Consumption 31

In figure 6-3 a measurement period can be seen. During these measurement periods the XBee
module is only turned on to keep its association (connection) with the coordinator. This is
done because after about 28 seconds of sleep time the ZigBee module will lose its association.
Since the microcontroller is turned on it might as well gather temperature and humidity
samples. Note that just before the ZigBee module power consumption peak occurs, a small
peak can be seen, which is the microcontroller waking up. Also at the end of the period
the MIST is done with it’s temperature measurement, a small peak can be seen which is the
microcontroller waking up to setup a humidity measurement.

0.05

0.04 — —

0.02 — Transmit

Current [A]

0.01 Wake-up

/ Humidity

—0.01 L L L L L L L
0 50 100 150 250 300 350 400

200
Time [ms]

Figure 6-4: Send Period Current Consumption Graph

Figure 6-4 depicts a period in which the ZigBee module sends its data and the MIST takes
a measurement. As can be seen the ZigBee is turned on longer than the duration of a
measurement period.

Figure 6-5 shows the power consumption when one of more resends are necessary. The demon-
strator uses considerably more power than without packet resending, because the ZigBee
module is on for a longer time.

Finally all the sampled periods are averaged out and presented in figure 6-6. A lot of noise
has been canceled by averaging the samples. But it is still possible to see the peak when
the XBee module tries to keep associated, the transmit peak and the humidity measurement
bump.

Nsamples

Aaverage = Asleep+Tmeasurement/Nsamples*kperiods/minute Z Al = 6027M+44780M = 50807}“‘4
i=1
(6-1)
Equation 6-1 sates the average power consumption. Agecp is the average deep sleep current
as measured with fig 6-1. T,casurement is the measurement duration which is 400ms. Ngpapies
is the amount of samples taken and A; is the i*" sample. Eperiods /minute 1S the amount of mea-

Bachelor of Science Thesis J.A. Angevare, |. Jager

32

Measurements

0.05

0.04 —

0.03

0.02 —

Current [A]

—-0.01

Wake-up

Retransmit

/ + transmit

/Humidity

0.035

150 200 250 300 350 400
Time [ms]

Figure 6-5: Resend Period Current Consumption Graph

0.03

0.025 —

0.015 —

Current [A]

0.005

—0.005
0

Wake-up

Associate

Transmit

/ Humidity

150 200 250 300 350 400
Time [ms]

Figure 6-6: Average Period Current Consumption Graph

surements taken per minute which is: 3/60. The average current is lower than the maximum
power budget of the entire demonstrator, which was 100 A. Even with 3 measurements a
minute the average power consumption is only 52uA, which is slighlty more than half the

power budget.

J.A. Angevare, |. Jager

Bachelor of Science Thesis

6-3 Data Rate 33

6-3 Data Rate

After extensive measuring it appeared that sometimes the ZigBee module is not able to deliver
the packet in one try and on the next send period it has to send both the old data and the
new. This means that the ZigBee module does not have the time during the measurement
periods to both keep its association and send its data. This can be solved by allowing the
ZigBee to be awake for just a little longer during a measurement period. However, because
the ZigBee is not able to send the data in one go means that there is something wrong. The
problem seems to be caused by a collapsing voltage supply. After extensive measuring it
appears that in 5.2% of all cases a retransmit is necessary. The packet loss was 0%

Receiving data on the demonstrator(sent from a computer) is very unreliable. Using the
demonstrator with the energy harvester a packet loss of 100% was measured. Using the
demonstrator without the energy harvester resulted in very unreliable receiving. Packets
could arrive minutes later, not at all, and even multiple times. The reason for the unrelia-
bility is probably the supply voltage drop, due to the power consumption of the ZigBee in
combination with the voltage regulator.

When watching the data sent from the ZigBee module to the LPC it became apparent that
the ZigBee resets itself due to the voltage drop out. Since the ZigBee module polls its co-
ordinator for packets it is sometimes so that the ZigBee already has the packet but hasn’t
successfully send and acknowledgement back to the coordinator. This is why sometimes a
single packet is received multiple times.

The data rate is configurable in the code. However, packets losses may affect the data rate
negatively because of retransmits. The one transmit per second requirement for the demo
mode was achieved. It is possible to transmit more frequently by adjusting the time the LPC
goes into deep sleep mode every cycle.

Bachelor of Science Thesis J.A. Angevare, |. Jager

34 Measurements

J.A. Angevare, |. Jager Bachelor of Science Thesis

Chapter 7

Conclusion

This chapter evaluates the measurement results in section 7-1. Then it continues to present
recommendations on microcontroller comparison in section 7-2.

7-1 Conclusion

The purpose of this project was to find a method to control a wireless indoor climate sensor
with a maximum mean power usage of 100 puA. First a way had to be found to control the
MIST1431 multi sensor IC and the XBee Series 2 wireless communication module chosen in [2].
FPGASs proved not appropriate because of the high energy usage and long development time
needed. Subsequently microcontrollers were compared on power consumption, performance
and usability. The NXP LPC1114 microcontroller turned out the most suitable. Its low power
characteristic and availability of on-hand experience were decisive. To reach the low power
goal, the LPC1114 can be put into Sleep Mode and Deep Sleep Mode when it is idle. The
LPC also controls the operation mode of the XBee module and the MIST chip by putting
them in low power modes or by waking them up.

These low power modes were used to keep the control unit of the demonstrator within its
power budget of 100uA. The measurement results show that the power consumption of the
demonstrator has been kept well within its power budget, even when packets had to be resend.

7-2 Recommendations

Comparing the microcontrollers was not a straightforward task. A lot of problems came up,
most of them had something to do with the power consumption estimation and subsequently
with determining the CPU calculation power.

The modeling of power consumption of embedded systems is an upcoming problem. With

Bachelor of Science Thesis J.A. Angevare, |. Jager

36 Conclusion

the need for low power microcontrollers comes the need for accurate power consumption pre-
diction. A set of cycle-accurate tools have been developed to accurately predict the power
consumption of microcontrollers. These tools simulate the processor with the code running
on the processor and can predict the power consumption within 3-8%, depending on the sim-
ulator [22, 23]. The downside of these simulators is that they need a very accurate model of
the processor and the code which will be running on the processor. Extensive testing will be
needed. Therefore the usage of cycle-accurate simulators was not an option within a narrow
time restriction. However no other tool has been found which predicts the power consumption
of the CPU or microcontroller.

A new method to predict/compare the power consumption of microcontrollers is needed.
Ideally at this moment a weight factor is found specifying the calculation power of the differ-
ent CPUs. With these weight factors a CPU specific clock cycle can be found and the power
consumption can be estimated. Although there are more than enough benchmarks [24] no
benchmark could be found for the CPUs, only ARM gives the Dhrystone benchmark.

The datasheets of the manufacturers do not seem reliable, not only do they not state in
what condition measurements are taken, measurements sometimes contradict each other. So
a solution is needed for microcontroller benchmark.

Some recommendations on behalf of the ZigBee must also be made. Sometimes the Zig-
Bee module needs to resend a packet to the coordinator. However, it is not able to find
the time during an measurement period, in which the ZigBee is turned on only to keep its
association. The ZigBee is probably turned off too soon, waiting much longer is not really
desirable since the microcontroller is waiting. Therefore it is better to include a time-out in
the ZigBee. Then the ZigBee could also be turned off asynchronously after a time-out has
occurred.

One requirement was that our implementation could not affect the accuracy of the MIST
chip measurements. This has not been tested. Since the XBee module is transmitting at the
same time the MIST chip takes samples, the electromagnetic waves due to the ZigBee could
affect the samples. To be sure that this requirement is met, this should be tested.

J.A. Angevare, |. Jager Bachelor of Science Thesis

[10]

[11]
[12]
[13]
[14]

Bibliography

MIST1431 Multi-Sensor I1C with SPI interface, 1st ed., NXP, April 2012.

A. van Rijs and D. van ’t Hof, “Wireless indoor climate sensor: Wireless communication
at ultra low power,” 2012.

J. van Straten, “Energy management system for a wireless indoor climate sensor,” 2012.
XBeeTM Series 2 OEM RF Modules, Digi International, Inc., July 2007.

T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90nm low-power FPGA
for battery-powered applications,” in Proceedings of the 2006 ACM/SIGDA 1/th inter-
national symposium on Field programmable gate arrays. ACM, 2006, pp. 3—11.

Altera. (2012, May) Stratix series FPGA low power consumption fea-
tures. [Online]. Available: http://www.altera.com/devices/fpga/stratix-fpgas/about/
low-power-consumption /stx-power-about.html

A. Weiss, “Dhrystone benchmark,” History, Analysis, Scores and Recommendations,
White Paper, ECL/LLC, 2002.

LPC1110/11/12/13/14 Product data sheet, Rev. 6 ed., NXP, November 2011.

PIC16LF1823 Datasheet - 8/14-Pin Flash Microcontrollers with nanoWatt XLP Tech-
nology, Microchip Technology.

MSP430G2x32 Datasheet - MIXED SIGNAL MICROCONTROLLER, Rev. f ed., Texas
Instruments, may 2012.

ATtiny1634 Datasheet, Rev. 8303c ed., Atmel, March 2012.
ATtiny2313A Datasheet, Rev. 8246b ed., Atmel, September 2011.
Si1000/1/2/3/4/5 Datasheet, Rev. 1.0 ed., Silicon Labs, September 2010.
C8051F98x Datasheet, Rev. 1.1 ed., Silicon Labs, May 2011.

Bachelor of Science Thesis J.A. Angevare, |. Jager

http://www.altera.com/devices/fpga/stratix-fpgas/about/low-power-consumption/stx-power-about.html
http://www.altera.com/devices/fpga/stratix-fpgas/about/low-power-consumption/stx-power-about.html

38 Bibliography

[15] CC430F613x Datasheet, Texas Instruments, December 2011.

[16] ATmegal28RFA1 Datasheet, Preliminary ed., Atmel, October 2011.

[17) EFM32G210 Datasheet, Rev 1.20 ed., Energy Micron, December 2010.

[18] LPC111x/LPC11Czzx User manual, Rev. 6 ed., NXP, August 2011.

[19] 6610C Series Single-Output, 40-50 W GPIB Power Supplies, Agilent Technologies, April
2012.

[20] Agilent 34401A Multimeter Uncompromising Performance for Benchtop and System
Testing, Agilent Technologies, February 2012.

[21] Agilent Technologies InfiniiVision 6000 Series Oscilloscopes, Agilent Technologies, May
2011.

[22] T. Simunic, L. Benini, and G. De Micheli, “Cycle-accurate simulation of energy con-
sumption in embedded systems,” in Design Automation Conference, 1999. Proceedings.
36th. IEEE, 1999, pp. 867-872.

[23] J. Russell and M. Jacome, “Software power estimation and optimization for high per-
formance, 32-bit embedded processors,” in Computer Design: VLSI in Computers and
Processors, 1998. ICCD’98. Proceedings. International Conference on. IEEE, 1998, pp.
328-333.

[24] R. Weicker, “An overview of common benchmarks,” Computer, vol. 23, no. 12, pp. 6575,

1990.

J.A. Angevare, |. Jager Bachelor of Science Thesis

Appendix A

Program of Requirements

Note: the following appendiz applies to the complete sensor system, not just the energy system
presented in this thesis. See Preface for more information.

The required product is a wireless indoor climate sensor. It is an autonomous sensor that
transmits several parameters about it’s environment wirelessly. The product will be used to
demonstrate a set of energy efficient sensors, which are developed at the Electronic Instrumen-
tation department at Delft University of Technology. This document lists all requirements
and wishes as stated by the client.

In the requirements below, the following definitions apply.

1. Sensor - the sensor module to be designed.
2. Host - the system which the sensor communicates its data to.
3. Sampling rate - the rate at which the sensor takes sensor value samples.

4. Transmission rate - the rate at which the sensor transmits (previously recorded) sensor
data.

A-1 Usage Requirements

[1.1] The product must measure at least temperature and humidity. More measured quanti-
ties are encouraged.

[1.2] All communications between the sensor and the host must be done wirelessly.
[1.3] The product must function autonomously in terms of energy supply.
[1.4] If a battery is used, the user should be notified when the battery needs to be replaced.

[1.5] The measured quantities should be visible on a computer.

Bachelor of Science Thesis J.A. Angevare, |. Jager

40

Program of Requirements

A-2

[2.1]

2.2]

2.3]

A-3

[3.1]

[3.2]

A-4

[4.1]

Requirements according to the ecological situation of the sys-
tem’s environment

The product must function indoors.

The transmitter frequency, bandwidth and output power must fall within Dutch regu-
lations.

The product must be non-intrusive within it’s operating environment, i.e. it should not
draw attention to itself.

System Requirements

If a battery is used, the sensor must operate without battery replacement for at least a
year. This requirement assumes the sensor is run in normal (not demo) mode.

The range for wireless communication must be at least 5 meters.

The sensor must have at least two operating modes in terms of sampling rate and
transmission rate: a demo mode and a normal mode. In demo mode, the sample and
transmission rate must be at least once per second. In normal mode, the sample and
transmission rate must be at least once per minute.

The operating mode must at least be selectable using a jumper or switch on the sensor.
Being able to set the operating mode wirelessly is a nice to have. Being able to set more
sampling and transmission rates is also a nice to have.

Having the possibility to set minima and maxima for the measured quantities is a nice
to have. If such a limit were to be exceeded, the sensor should wirelessly transmit the
current sensor data regardless of transmission rate.

To measure the temperature and humidity, the sensor chip developed by the Electronic
Instrumentation department at Delft University of Technology and produced by NXP
must be used.

The chip mentioned above must be visible and influenceable during a demonstration.
For instance, it must be possible to breathe on or touch the sensor to demonstrate that
the measured quantities indeed change on the screen in such a case.

The system must deliver the measured data in such a way that does not reduce the
accuracy of the sensor chip(s) used.

Installation Requirements

It must be possible to install the product without changes to the environment.

J.A. Angevare, |. Jager Bachelor of Science Thesis

A-5 Project Requirements 41

[4.2] The installation must be as simple as inserting a battery and installing some software
on a computer. In other words, it should be "Plug & Play". It is acceptable if something
like a USB dongle is required for communications.

[4.3] Replacing a battery must be possible within a minute.

A-5 Project Requirements

[5.1] All software written for this product must be well documented.

[5.2] All hardware designed for this product (circuits and circuit board layout) must be well
documented.

[5.3] Writing platform independent software is encouraged. The "platform" is defined here as
being the operating system for PC based software and the microcontroller (architecture)
used for hardware based software/firmware.

Bachelor of Science Thesis J.A. Angevare, |. Jager

42 Program of Requirements

J.A. Angevare, |. Jager Bachelor of Science Thesis

Appendix B

B-1 ZigBee

Source Code

Listing B.1: ZigBee.h

/%
x ZigBee.h

* Created on: 4 mei 2012

* Author: Jan Angevare

*/
#ifndef ZIGBEE H INCLUDED
#define ZIGBEE_H_INCLUDED

#include "UART.h"

#include "ZigBee_buffer.h"
#include "ZigBee_constructor.h"
#include "ZigBee receiver.h’

5|#include "ZigBee_ sender.h'

#include "ZigBee_translator.h"

"|#include "power_modes.h"

// ZigBee initialze will initialize the ZigBee
// And all it’s subparts plus the UART

void ZigBee_init(void);

// Send a piece of data to the Coordinator

// This sending will be done asynchronously
void ZigBee_send(charx data, int length);

// is false no message was returned, otherwise a subsequent

;| // This function returns true if a message was ready
1 // and if a message was returned. If the return

value

// call must be made to ZigBee_done_reading_new_ message

// to free up the buffer
int ZigBee_check_for_new_message (charx*x data,

Bachelor of Science Thesis

intx size);

J.A. Angevare, |. Jager

S NS NS TS RS TS TS B S B S|
N O Gk W N

S
oo

44 Source Code

// Must be called after ZigBee check for new_message returns
// a message. This function free’s up the buffer
void ZigBee_done_reading_new_message (void);

i| // Wait’s for the ZigBee code to stop receiving and
// sending and then set’s the ZigBee module to sleep
void ZigBee_set_sleep(void);

// Wake’s the ZigBee module up, the ZigBee module must
// be awake in order for ZigBee to be able to send and
// Receive

void ZigBee_wake_up(void);

// Explicit request for connection status

// After the ZigBee module sends a reply

i| // The ZigBee_ state will be updated

void ZigBee_request_connection_status(void);

// Returns the State the ZigBee is in, which is either
// associated (false) or Disassociated (true)
int ZigBee_get_state(void);

enum ZIGBEE_STATE {
ZIGBEE_ASSOCIATED = O,
ZIGBEE_DISASSOCIATED =1

}s

#endif /+ ZIGBEE H x/

Listing B.2: ZigBee.c

W N

[V] (V] (V] (V] [V [V
o o &

~

/
x ZigBee.c
*
* Created on: 4 mei 2012
* Author: Jan Angevare

*/
#include "ZigBee.h'

// To keep apart status of sending frames
static charx _frames[4];

static int _frames_size[4];

static int _frame_id;

// For keeping incomming receives
// will be filled on interrupt

;| // Should be emptied by main loop
static charx volatile _data;
volatile static int _size;

volatile static int _state;
static void ZigBee_sleep(void) {

LPC_GPID2—>DATA |= 0x040;
}

static int ZigBee_is_sending(void) {
return ZigBee_sender_get_state();

J.A. Angevare, |. Jager Bachelor of Science Thesis

B-1 ZigBee 45

}

static int ZigBee_is_receiving(void) {
return (ZigBee_receiver_get_state() & 1);
}

// Initialize
void ZigBee_init () {

_frame_id = 0;
_data = 0;
_size = 0;

_state = ZIGBEE_DISASSOCIATED;

// Initialize sleep pin
LPC_IOCON—>PI02_6 = 0xCO0; // set GPIO, no pullup
LPC_GPI02—>DIR |= 0x040; // set output

ZigBee_buffer_init ();
ZigBee_receiver_init () ;
ZigBee_sender_init () ;
UART_init () ;

)

}

// This handle gets called when ZigBee_ sender completes a send request
void ZigBee_sender_send_complete_handle(charx data) {
ZigBee_buffer_release_buffer(data);

if (!ZigBee_is_receiving())

ZigBee_sleep();

}

// Send an amount of data to the coordinator

2| void ZigBee_send(charx data, int length) {

charx buffer;
int size;

// Just to be sure, wake the ZigBee up
ZigBee_wake_up () ;

// Try to get a buffer for filling
while (! ZigBee_buffer_get_buffer(&buffer));

// Construct message and set the frames ID etc, for resend if neccesary
_frames[_frame_id++] = buffer;

size = ZigBee_constructor_construct_message(data, length, buffer, _frame_id);
_frames_size[_frame_id — 1] = size;
_frame_id %= 4;

// Loop until we get an ok for sending
while (! ZigBee_sender_send_frame (buffer, size));

}

// Is called whenever there has been received an whole frame on UART
void ZigBee_receiver_new_message_handle () {

Bachelor of Science Thesis J.A. Angevare, |. Jager

90

96

99
100
101
102
103
104
105
106
107
108
109
110

130

133
134

136
137
138
139
140
141

46

Source Code

5}

charx buffer;
int size;

// Get the frame
ZigBee_receiver_get_message(&buffer, &size);

// And translate it
if (ZigBee_translator_translate(buffer, size))
ZigBee_buffer_release_buffer (buffer);

}

// If an transmit status: successful is received

7| // put the ZigBee module to sleep

void ZigBee_translator_send_success_handle(int data_frame) {
if (!ZigBee_is_receiving() && !ZigBee_is_sending())
ZigBee_sleep();

}

// If an transmit status: unsuccessful is received

// do the same as an successful send, this means

// the data is lost

void ZigBee_translator_send_failure_handle(int data_frame) {
ZigBee_translator_send_success_handle(data_frame);

}

// Gets called if the ZigBee sends an associated status
void ZigBee_translator_associated() {
_state = ZIGBEE_ASSOCIATED;
if (!ZigBee_is_receiving() && !ZigBee_is_sending())
ZigBee_sleep();

// 1f the ZigBee is dissacociated

void ZigBee_translator_disassociated() {
_state = ZIGBEE_DISASSOCIATED;

}

// If an received message has been received
// put it in the queue
// The main loop should poll with check for new message

void ZigBee_translator_receive_data_handle(char* data, int size) {

if (_data)
ZigBee_buffer_release_buffer(_data);

_size = size;
_data = data;

if (!ZigBee_is_receiving() && !ZigBee_is_sending())
ZigBee_sleep();

}

// If a new message is ready, get it

// this function returns true if a new message has been rece
// else this function returns false

// if this function returns true a subsequent call to

// ZigBee_ done_reading new_message should be done

int ZigBee_check_for_new_message(char*x data, intx size) {

J.A. Angevare, |. Jager

ived

Bachelor of Science Thesis

186

188
189
190
191
192
193
194

195

B-1 ZigBee

47

if (_data) {

*data = _data;
*size = _size;
return 1;

} else return O0;

// This function empties the message queue and releases the buffer
void ZigBee_done_reading_new_message () {
if (_data) ZigBee_buffer_release_buffer(_data);

_data = 0;
_size = 0;

// Wait until no more sending or receiving is done
// then put the ZigBee module to sleep
void ZigBee_set_sleep() {
while (ZigBee_is_receiving() || ZigBee_is_sending()) {
ZigBee_wake_up () ;
power_modes_sleep (10, 0);

}

ZigBee_sleep () ;

}

void ZigBee_wake_up() {
LPC_GPI0O2—>DATA &= ~0x040;

// Explicit poll for connection status

void ZigBee_request_connection_status(void) {
charx buffer;
int size;
unsigned short command = ('A’'<<8) + '1’;

// Try to get a buffer for filling
while (! ZigBee_buffer_get_buffer(&buffer));

// Construct message and set the frames ID etc, for resend if neccesary
_frames[_frame_id++]| = buffer;

size = ZigBee_constructor_construct_at(command7 buffer);
_frames_size[_frame_id — 1] = size;
_frame_id %= 4;

// Loop until we get an ok for sending

while (! ZigBee_sender_send_frame (buffer, size));

int ZigBee_get_state(void) {
return _state;

Bachelor of Science Thesis J.A. Angevare, |. Jager

20

>~

NONON NN
1 U]

16
17
18
19

20

NN N NN
N

ot

48 Source Code

B-2 ZigBee_buffer

Listing B.3: ZigBee_buffer.h

/%

% ZigBee__buffer.h

*

* Created on: 9 mei 2012
* Author: bap

*/

#ifndef ZIGBEE BUFFER H
#define ZIGBEE BUFFER H

void ZigBee_buffer_init(void);

// Tries to give a buffer back, all buffers are 128 bytes length

// return true if succeeded, returns false if no buffer could be found

// buffer parameter should point to a char pointer, the char pointer is set
// to the buffer, if succeeded, else is ignored

il int ZigBee_buffer_get_buffer (charxx buffer);

// Release the buffer, buffer parameter should point to the buffer
void ZigBee_buffer_release_buffer(chars buffer);

enum ZIGBEE_BUFFER_STATES {
ZIGBEE_BUFFER_EMPTY ,
ZIGBEE_BUFFER_IN_USE

}s

#endif /x ZIGBEE BUFFER_H x/

Listing B.4: ZigBee_buffer.c

x ZigBee_ buffer.c
*

* Created on: 9 mei 2012
* Author: bap

*/
#include "ZigBee_ buffer.h"

// Buffers and their states
static char _buffers[4][128];

2| int _buffer_states [4];

// Initialize

5| void ZigBee_buffer_init () {

int 1i;

for (i = 0; i < 4; i++)
_buffer_states[i] = ZIGBEE_BUFFER_EMPTY;

}

// Request a buffer
int ZigBee_buffer_get_buffer (charxx buffer) {
int i;

J.A. Angevare, |. Jager Bachelor of Science Thesis

B-3 ZigBee_ constructor 49

// Check all buffers for availability
for (i = 0; 1 < 4; i++) {

// If available set buffer, set state and return true
if (_buffer_states[i] = ZIGBEE_BUFFER_EMPTY) {
xbuffer = _buffers[i];
_buffer_states[i] = ZIGBEE_BUFFER_IN_USE;

return 1;

}
}

// No free buffer was found, return false
return 0;

}

// Set buffer state to empty
void ZigBee_buffer_release_buffer(charx buffer) {

_buffer_states [((buffer — _buffers[0])>>7)] = ZIGBEE_BUFFER_EMPTY;
}

B-3 ZigBee_constructor

Listing B.5: ZigBee_constructor.h

/ *

x ZigBee__constructor.h

*
* Created on: 9 mei 2012
* Author: bap

*/

#ifndef ZIGBEE CONSTRUCTOR H
#define ZIGBEE CONSTRUCTOR H

// Constructs a message to the coordinator

int ZigBee_constructor_construct_message (char*x source, int size, charx
destination, char frame_id);
int ZigBee_constructor_construct_at (unsigned short command, charx

destination);
#endif /x ZIGBEE CONSTRUCTOR_H x*/

Listing B.6: ZigBee_constructor

/

x ZigBee__constructor.c

*
* Created on: 9 mei 2012
* Author: bap
*/

#include "ZigBee_ constructor.h'

#ifdef DEBUG
#include <stdio.h>

Bachelor of Science Thesis J.A. Angevare, |. Jager

7|}

50 Source Code

#endif

static int _checksum;
static int _offset;
static char _transmit_frame_header[14] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // 64—Dbit address
, 0xFF, OxFE // 16—bit address
, 0x00 // Broadcast radius
, 0x00}; // Options

// Add data to the frame data
void ZigBee_constructor_add_data(charx source, int size, charx dest) {
int i;

for (i = 0; i < size; i++) {
_checksum += (dest|[_offset++] = source[i]);
}

}

// Set size and checksum
void ZigBee_constructor_finalize (charx buffer) {

int size = _offset — 2;
buffer [0] = (char) (size>>8);
buffer [1] = (char)(size);

buffer|[_offset++| = 0xFF — (0xFF & _checksum);

// Construct message
int ZigBee_constructor_construct_message(charx source, int size, charx
destination, char frame_id) {
_offset = 2;
_checksum = 0;

_checksum += (destination|[_offset++] = 0x10);
_checksum += (destination|_offset++] = frame_id);

ZigBee_constructor_add_data(_transmit_frame_header, 12, destination);
ZigBee_constructor_add_data(source7 size, destination);
ZigBee_constructor_finalize(destination);

return _offset;

}

// Construct AT command request
int ZigBee_constructor_construct_at(unsigned short command, charsx destination)

{

_offset = 2;

_checksum = 0;
_checksum += (destination|_offset++] = 0x08);
_checksum += (destination|_offset++] = 1);

(
(

_checksum += (destination
(

destination|[_offset++4] = (char)command);

]
]
_offset++] = (command>>8));
_checksum +=]

J.A. Angevare, |. Jager Bachelor of Science Thesis

66

68

69

B-4 ZigBee_ receiver

51

ZigBee_constructor_finalize(destination);

return _offset;

B-4 ZigBee_receiver

Listing B.7: ZigBee_ receiver.h

* ZigBee_ receiver.h

*
* Created on: 9 mei 2012
* Author: Jan Angevare

*/

#ifndef ZIGBEE RECEIVER H
#define ZIGBEE RECEIVER H

#include "UART.h"
#include "ZigBee_buffer.h"

void ZigBee_receiver_init(void);
int ZigBee_receiver_get_state(void);
int ZigBee_receiver_get_message(char*x message, intx size);

// get called by ZigBee receiver whenever a
// new message was received
void ZigBee_receiver_new_message_handle (void) ;

enum ZIGBEE_RECEIVER_STATES {
ZIGBEE_RECEIVER_IDLE = 0,
ZIGBEE_RECEIVER_RECEIVING = 1,
ZIGBEE_RECEIVER_MESSAGE_READY = 2,

}s

#endif /+ ZIGBEE RECEIVER H x/

Listing B.8: ZigBee_ receiver.c

* ZigBee_ receiver.c

* Created on: 9 mei 2012
* Author: bap

*/

#include "ZigBee_ receiver.h'

// Buffer for completeley received frames
static charx volatile _b_buffer;

volatile static int _b_size;

// Buffer for receiving of frames

Bachelor of Science Thesis

J.A. Angevare, |. Jager

52 Source Code
static charx _buffer;

static int _size;

static int _offset;

static int _state;

// State for escape characters
static char _escape;
static unsigned int _checksum;
// Initialize ZigBee_receiver
void ZigBee_receiver_init () {

_b_buffer = 0;

_b_size = 0;

_buffer = 0;

_size = 0;

_offset = 0;

_checksum = 0;

_state = ZIGBEE_RECEIVER_IDLE;

}

// Return the ZigBee receiver_ state

int ZigBee_receiver_get_state() {
return _state;

}

// Try to get the frame, this function returns true
// else it returns false

int ZigBee_receiver_get_message(char** message,

if (_state & ZIGBEE_RECEIVER_MESSAGE_READY) {
*message _b_buffer;

*size = _b_size;

intx size) {

// reset frame buffer and state
_b_buffer = 0;
_b_size = 0;
_state = _state & 1;
return 1;
} else return O;

}

56| // The received data handle

void UART_RBR_handle () {
char data;

// Read the data
data LPC_UART—>RBR;

// If we don’t have a buffer to file,
if (!_buffer) {
if (data = 0x7E) {
while (! ZigBee_buffer_get_buffer(&_buffer))
_state ‘: ZIGBEE_RECEIVER_RECEIVING;

} oelse {

return;
}

get one

J.A. Angevare, |. Jager

if a frame was ready

Bachelor of Science Thesis

B-5 ZigBee_sender 53

N N
(&)

o

switch (data) {

74 // Started new frame
75 case 0x7E:

76 _size = 0;

77 _offset = 0;

78 _escape = 0;

79 _checksum = 0;
80 break;

81

82 // escape mnext character
83 case 0x7D:

84 _escape = 0x20;

85 break;

87 // Nothing special, just add the byte
88 default :

89 {

90 char t = _buffer|_offset++] = data ~ _escape;
91 _checksum += (_offset>2)? t: O0;
92 _escape = 0;

93 }
o4}

96| // We now have the size delimiter, so read it

97 if (_offset — 2) {

98 _size = (_buffer[0]<<8) + _buffer[1];

99

100 // 1f we have received the complete message, put it in the hold buffer
101 } else if (_offset = _size + 3) {

102 charx b = _buffer;

103 _b_buffer = _buffer;

104 _b_size = _offset;

105 _state = ZIGBEE_RECEIVER_MESSAGE_READY;

106 _buffer = 0;

107 _offset = 0;

108 if ((_checksum & 0xFF) =— 0xFF) ZigBee_receiver_new_message_handle();
109 else ZigBee_buffer_release_buffer(b);

110 _checksum = 0;

111 }
12| }

B-5 ZigBee_sender

Listing B.9: ZigBee_sender.h

2| * ZigBee_sender.h

Created on: 9 mei 2012
5| % Author: Jan Angevare

6| x/

s|#ifndef ZIGBEE_SENDER H
o|#define ZIGBEE SENDER H

- W
*

Bachelor of Science Thesis J.A. Angevare, |. Jager

™

oW

wt

N

©

54 Source Code

#include "UART.h"
#include "ZigBee_ buffer.h"

// Initialize ZigBee_ sender
void ZigBee_sender_init(void);

i| // Request send data, returns false if ZigBee sender could not comply

// returns true if ZigBee sender is going to transmit

// transmits asynchronously

// No need to add Ox7E to buffer, this function automatically starts with 7E
// Characters which need to be escaped are automatically escaped

int ZigBee_sender_send_frame (charx data, int size);

int ZigBee_sender_abort (void);

int ZigBee_sender_get_state(void);

// Define this function in your file

// This function is called when the transmit is completed

// the data parameter equals the data parameter form the send_frame function

;| // This function is called asynchronously

void ZigBee_sender_send_complete_handle(char#< data);

enum ZIGBEE_SENDER_STATES {
ZIGBEE_SENDER_IDLE = O,
ZIGBEE_SENDER_SENDING = 1

}s

s|#endif /x ZIGBEE SENDER, _H %/

Listing B.10: ZigBee_sender.c

/
* ZigBee_ sender.c
*
* Created on: 9 mei 2012
* Author: bap

*/
#include "ZigBee sender.h"

static charx _buffer;
static int _size;

static int _offset;
static int _escape;

volatile static int _state;

5| // Initialize state to zero

void ZigBee_sender_init () {

_buffer = 0;
_size = 0;

_offset = 0;
_escape = 0;

_state = ZIGBEE_SENDER_IDLE;

}

// Request send frame
int ZigBee_sender_send_frame(charx data, int size) {
// If a transmit request is in progress

J.A. Angevare, |. Jager Bachelor of Science Thesis

B-5 ZigBee_sender

55

// return false
if (_buffer) return O0;
_state = ZIGBEE_SENDER_SENDING ;

// Set variables
_buffer = data;

_size = size;
_offset = 0;
_escape = 0;

// Write new frame
UART _write (0x7E);

// return true
return 1;

}

int ZigBee_sender_abort () {
charx buffer = _buffer;

_buffer =
_size = 0;
_offset = 0;
_escape = 0;
_state = ZIGBEE_SENDER_IDLE;

ZigBee_buffer_release_buffer (buffer);

return 0;

}

int ZigBee_sender_get_state() {
return _state;
}

2| // Event handle for Transmit Hold Register Empty interrupt

void UART_THRE_handle () {
// Nothing to do here
if (!_buffer) return;

// 1f escaped and escape 0x7D sent
if (_escape) {

LPC_UART—>THR = _buffer|[_offset++] = 0x20;

_escape = 0;

// If not escaped sent next char
} else {
char data = _buffer|[_offset];
switch (data) {

// If next char needs to be escaped
case Ox7E:
case 0x7D:
case 0Ox11l:
case 0x13:
LPC_UART—>THR = 0x7D;

Bachelor of Science Thesis

J.A. Angevare, |. Jager

56 Source Code

85 _escape = 1;

86 break;

87

88 // Normal, just sent

89 default :

90 LPC_UART—>THR = data;
91 _offset++;

92 }
93 }

95 // Sent all data

96 if (_offset =— _size) {

97

98 // Call send_complete handler

99 charx buffer = _buffer;

100 _buffer = 0;

101 _size = 0;

102 _offset = 0;

103 _state = ZIGBEE_SENDER_IDLE;

104 ZigBee_sender_send_complete_handle (buffer);

B-6 ZigBee_translator

Listing B.11: ZigBee_ translator.h

2| % ZigBee_translator.h

i| * Created on: 9 mei 2012
5| % Author: Jan Angevare

6| */

s|#ifndef ZIGBEE TRANSLATOR H
o|#define ZIGBEE TRANSLATOR H

11| // Translates the message and calls the specified handle function
12 int ZigBee_translator_translate(charx message, int size);

14| // These functions get called by the ZigBee translator whenever it
15| // is translating the handles message

16| void ZigBee_translator_send_success_handle(int data_frame);

17| void ZigBee_translator_send_failure_handle(int data_frame);

18| void ZigBee_translator_receive_data_handle(char* data, int size);
19| void ZigBee_translator_associated(void);

20| void ZigBee_translator_disassociated(void);

22| enum ZIGBEE_FRAME_ID {
23] // Sent from ZigBee in specific conditions:
4 ZIGBEE_MODEM_STATUS = (x84,

26| // Allows for module parameter registers to be
27| // queried or set

J.A. Angevare, |. Jager Bachelor of Science Thesis

B-6 ZigBee_ translator 57

28 ZIGBEE_AT_COMMAND = 0x08,

30 // Same as AT COMMAND but parameters not applied
31 // until an AT COMMAND or an APPLY_ CHANGES
32 ZIGBEE_AT_COMMAND_QUEUE = 0x09,

34 // Sent from ZigBee, in response from AT COMMAND
35 ZIGBEE_AT_COMMAND_RESPONSE = 0x88,
36 ZIGBEE_REMOTE_COMMAND_REQUEST = 0x17,

38| // Let ZigBee send data
39 ZIGBEE_TRANSMIT_REQUEST = 0x10,

41| // Same as transmit but expl. adr.
42 ZIGBEE_EXPLICIT_ADRRESSING = 0Ox11,

44 // When a TX request is completed, the module
45| // sends a TX message
46 ZIGBEE_TRANSMIT_STATUS = 0x8B,

48| // When the ZigBee receive an packet it sends
40| // it to the UART with this message
50 ZIGBEE_RECEIVE_PACKET = 0x90,

52 // Received expl. adr. package
53 ZIGBEE_EXPLICIT_RX = 0x91,

57 ZIGBEE_NODE_IDENTIFICATION = 0x95

58]}

56 ZIGBEE_SENSOR_READ = 0x94,
60|#endif /+ ZIGBEE TRANSLATOR H x/

Listing B.12: ZigBee_ translator.c

e

2| * ZigBee_ translator.c

3| x

4] % Created on: 9 mei 2012
5| * Author: bap

6| */

g|#include "ZigBee_translator.h"

10| int ZigBee_translator_translate(charx message, int size) {
11| switch (message[2]) {

13 // Only in debug mode use printf to print modem status
14 case ZIGBEE_MODEM_STATUS:
15 switch (message[3]) {

17 case 2: // Associated

18 ZigBee_translator_associated();
19 break;

20

21 case 3: // Disassociated

Bachelor of Science Thesis J.A. Angevare, |. Jager

58

Source Code

ZigBee_translator_disassociated();

break;
case 0: // Hardware reset
case 1: // Watchdog timer reset
case 4: // Synchronization lost
case 5: // Coordinator Realignment
case 6: // Coordinator Started
default :

break;

}
break;

case ZIGBEE_AT_COMMAND_RESPONSE:
// If ZigBee Associated Indication Response
if (message[4] = ’'A’ && message[5] = 'I’) {

// If no error
if (message[6] = 0) {

// If associated

if (message[7] = 0) {
ZigBee_translator_associated();

// If not associated

} else {
ZigBee_translator_disassociated();

}

}
}
break;

case ZIGBEE_TRANSMIT_STATUS:
switch (message[7]) {
case 0x00: //Success
ZigBee_translator_send_success_handle ((int)message[3]);
break;

case 0x22: //Not joined to network
ZigBee_translator_disassociated();
// continue
case 0x02: //CCA Failure
case 0x15: //Invalid destination endpoint
case 0x21: //Network ACK failure
case 0x23: //Self—addressed
case 0x24: //Address Not Found
case 0x25: //Route Not found
default:
ZigBee_translator_send_failure_handle ((int)message[3]);
break ;

}
break;

case ZIGBEE_RECEIVE_PACKET:
ZigBee_translator_receive_data_handle(message + 14, size — 15);
return 0;

J.A. Angevare, |. Jager Bachelor of Science Thesis

79
80
81
83
84

85

19

29

B-7 UART

59

//break;

default :
break;
}

return 1;

}

B-7 UART

Listing B.13: UART.h

/%
UART. h

¥ %

* Created on: 3 mei 2012
* Author: bap

*/

7|#include "LPCllxx.h"

#ifndef UART_ H_INCLUDED
#define UART H_INCLUDED

// Initialize the UART, after calling this

// function interrupts on the UART are turned on
void UART_init(void);

// Write a char to the UART

int UART _write(char);

// Get the UART state
int UART _get_state(void);

// these functions get called by the UART
// after a char has been received and send
// respectively

void UART_RBR_handle(void);

void UART_THRE_handle(void);

27| enum UART_STATE {

UART_receive_data = 0x01,
UART_overrun_error = 0x02,

UART _parity_error = 0x04,
UART_framing_error = 0x08,

UART _break_interrupt = 0x10,
UART_transmit_hold_register_empty = 0x20,
UART_transmiter_empty = (x40,

UART _receive_error = 0x80

s

enum RX_TRIGGER_LEVEL {
BYTE_1 = 0x00,
BYTES_4 = 0x40,
BYTES_8 = 0x80,
BYTES_14 = 0xCO

}s

Bachelor of Science Thesis

J.A. Angevare, |. Jager

44
45
46
47
48
4

UL W N =

~

16

60 Source Code

//const enum RX TRIGGER LEVEL TriggerLevel = BYTE_1;

#endif /x UART H x/

Listing B.14: UART.c

/%

x UART. c

%

* Created on: 3 mei 2012
* Author: bap

*/

#include "UART.h"

//extern const enum RX TRIGGER LEVEL TriggerLevel;
const enum RX_TRIGGER_LEVEL TriggerLevel = BYTE_1;

void UART_init () {
// Imnitialize UART Con
LPC_IOCON—>PIO1_6 = 0xC1; // Set RXD
LPC_IOCON—>PI01_7 = 0xC1; // Set TXD
LPC_IOCON—>PI00_7 = 0xCl; // Set CTS
LPC_IOCON—>PIO1_5 = 0xCl; // Set RTS

LPC_SYSCON—>SYSAHBCLKCTRL |= 0x1000; //Turn on clock
LPC_SYSCON—>UARTCLKDIV = 1; //Set clock divider to 1
LPC_UART—>MCR = 0xCO; // Enable auto RTS and CTS

LPC_UART—>LCR |= 0x80; // Gain acces to DLL and DLM

//IPC_UART->DLL = 71; // Set UART clock divider to 71 (baud = 9600)
LPC_UART—>DLL = 4; // Set UART clock divider to 3 (baud = 115200)

LPC_UART—>DLM = 0; // High byte
LPC_UART—>LCR = 0x03; // Stop acces to DL and set LCR in the meantime

//IPC_UART—>FDR = 0xAl; // Set prescaler to a good number (baud = 9600)
LPC_UART—FDR = 0x85; // Set prescaler to a good number (baud = 115200)

LPC_UART—>IER = 0x03; // Data Receive Interupts enabled
NVIC—ISER[0] |= (1<<21); //Enable UART interrupts

// Clear FIFO Buffers and set interrupt trigger level
LPC_UART—>FCR = 0x07 | TriggerLevel;

}

// Write a char to the UART

int UART_write(char c¢) {
// Wait until we can write a char to the transmit holde register
while (!(LPC_UART—>LSR & UART_transmit_hold_register_empty));

// write it

LPC_UART—>THR = c;
return 0;

J.A. Angevare, |. Jager Bachelor of Science Thesis

2-8 Power_modes 61

}

int UART_get_state() {
return LPC_UART—>LSR;
}

void UART_IRQHandler (void) {
int state = LPC_UART—IIR;
state = LPC_UART—LSR;

if (state & UART_receive_data)
UART_RBR_handle () ;

if (state & UART_transmit_hold_register_empty)
UART_THRE_handle () ;

2-8 Power_modes

Listing 2.15: Power_modes.h

/%

% power__modes.h

*
% Created on: 22 mei 2012
* Author: bap

*/

#ifndef POWER MODES H
#define POWER MODES H

void power_modes_init (void);
// sleep for milliseconds, if interruptable this function will
return on every interrupt, if not interruptable this function
t int t if t int table this f ti
will only return when the timer expires.
/] will 13 t b tl i pi
// if the timer has expired this function return true

;| // if the timer has not expired this function returns false

// whenever milliseconds equals zero the timer is not reset
// but retains his value from last call

int power_modes_sleep(int milliseconds, char interruptable);
void power_modes_deep_sleep(int timerValue);

#endif /+ POWER MODES H x/

Listing 2.16: Power_modes.c

/%

% power__modes. c

*

x Created on: 22 mei 2012
* Author: Ingmar Jager
*

#include "power_ modes.h"
#include <LPCllxx.h>

Bachelor of Science Thesis J.A. Angevare, |. Jager

10
11

13
14

16

62 Source Code

void sampling_timer_init(void);
void wakeup_timer_init(int timerValue);

volatile int wakeup_clkctrl;
volatile int wakeup_nvic_O0;
volatile int wakeup_nvic_1;

void power_modes_init () {
// Enable the watchdog oscillator
LPC_SYSCON—>PDRUNCFG &= ~0x40;

//Set watchdog oscillator frequency to 0.5MHz/64
LPC_SYSCON—>WDTOSCCTRL = 0x3F;

// Setting timer for sleep

LPC_SYSCON—>SYSAHBCLKCTRL |= (1<<10); // Enable timer

LPC_TMR32B1—>PR = 12000; // Prescaler

LPC_TMR32B1—>MCR = 0x07; // Interrupt on MRO and Stop on MRO, also TCR[O0]

reset
LPC_SYSCON—>SYSAHBCLKCTRL &= ~(1<<10); // Disable timer
NVIC—ISER[0] |= (1<<19); // enable timer21b2 interrupt

j| int power_modes_sleep(int milliseconds, char interruptable) {

// PCON DPDEN zero
LPC_PMU—>PCON &= ~0x02;

// SCR SLEEPDEEP = 0;
SCB—>SCR &= ~0x04;

// Check if we need to reset the timer
if (milliseconds) {
// Enable timer
LPC_SYSCON—>SYSAHBCLKCTRL |= (1<<10);

// Reset timer
LPC_TMR32B1—>TCR = 0x02;

// Set timeout value
LPC_TMR32B1—>MRO = milliseconds;

// Timer control = Timer Counter + Prescale Counter enabled
LPC_TMR32B1—>TCR = 0x01;
} else {
if (!(LPC_TMR32B1—>TCR & 1)) return O;
}
// Sleep
do {
__WFI();

} while ((LPC_TMR32B1—>TCR & 1) && !interruptable);

J.A. Angevare, |. Jager Bachelor of Science Thesis

65
66
67
68
69

70

ST N

w 0 N N N N N~ 4~
= O © 0w N O

0
¥]

jod]
&

84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

2-8 Power_modes

63

return (LPC_TMR32B1—>TCR & 1);

}

void TIMER32_1_IRQHandler () {
LPC_TMR32B1—>IR = 1;
NVIC_ClearPendingIRQ(TIMER_32_1_IRQn);

// Disable timer
LPC_SYSCON—>SYSAHBCLKCTRL &= ~(1<<10);

}

void power_modes_deep_sleep(int timerValue) {
// WAKEUP CONFIG

// Configure PDAWAKECFG to restore PDRUNCFG on wake up
LPC_SYSCON—>PDAWAKECFG = LPC_SYSCON—>PDRUNCFG;

// Store current value of SYSAHBCLKCTRL for restoration

wakeup_clkctrl = LPC_SYSCON—>SYSAHBCLKCTRL;

// Store current value of interrupt registers
wakeup_nvic_0 = NVIC—>ICER[0];
wakeup_nvic_1 = NVIC—ICER[1];

// Disable all interrupts

NVIC—>ICER[0] = OxFFFFFFFF;
NVIC—>ICER[1] = OxFFFFFFFF;

// WAKEUP TIMER

//init timer: select timer32MAT3 mode

LPC_IOCON—>R_PI0DO_11 = 0xC3;
LPC_GPIO0O—>DIR |= (1 << 11);

// Enable clock to the timer
LPC_SYSCON—>SYSAHBCLKCTRL |= 0x200;

// Configure timer

// No interrupts
LPC_TMR32BO—>IR = 0x00;

// Disable and reset timer
LPC_TMR32BO—>TCR = 0x2;

// No prescaler
LPC_TMR32BO—PR = 0;

// Let the timer stop automatically when it matches
LPC_TMR32BO—>MCR = (0x800;

// Set match register to timerValue
LPC_TMR32BO—>MR3 = (int)(500000.0 / 64.0) % timerValue;

// No PAWM functionality used

Bachelor of Science Thesis

later

J.A. Angevare, |. Jager

138
139
140
141
142
143
144

64 Source Code

LPC_TMR32BO—>PWMC = 0x00;
// Set external match thing to make the pin high at first and then drive the
pin low upon match 3
LPC_TMR32BO—>EMR = (0x408;

// WORKAROUND FOR RESET CURRENT CONSUMPTION

// Make reset pin GPIO
LPC_IOCON—>RESET_PIO0O0_O |: 0x01;

// Make reset pin an output
LPC_GPIOO—>DIR |: 0x001;

// Drive reset pin high
LPC_GPIO0O—>DATA |= 0x001;
/] START LOGIC

// Falling edge
LPC_SYSCON—>STARTAPRPO &= ~(1 << 11);

// Clear pending bit
LPC_SYSCON—>STARTRSRPOCLR = 1 << 11;

// Enable Start Logic
LPC_SYSCON—>STARTERPO |= 1 << 11;

// Enable wakeup interrupt
NVIC_EnableIRQ(WAKEUPll_IRQn);

// GO TO SLEEP NOW

// Shut down clocks to almost everything
LPC_SYSCON—>SYSAHBCLKCTRL = 0x215;

// Configure deep sleep with WDT oscillator
LPC_SYSCON—>PDSLEEPCFG = 0x18BF;

// Set SLEEPDEEP
SCB—>SCR |= 0x04;

// Switch main clock to low—speed WDO
LPC_SYSCON—>MAINCLKSEL = 0x02;
LPC_SYSCON—>MAINCLKUEN = O0;
LPC_SYSCON—>MAINCLKUEN 1;

// Start the timer
LPC_TMR32B0O—>TCR = 0x1;

// Preload clock selection for quick switch back to XTAL on wakeup

LPC_SYSCON—>MAINCLKUEN = O0;
LPC_SYSCON—>MAINCLKSEL = 0x01;

J.A. Angevare, |. Jager Bachelor of Science Thesis

178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210

AW N e

N

10
11
12
13
14
15
16

17

2-9 MIST

65

// Enter deep sleep mode
~-WFI();

// Restore main clock to IRC 12 MHz
LPC_SYSCON—>MAINCLKUEN = 1;

// Clear match bit on timer
//LPC_TMRI16BO—>EMR = 0;

// Clear pending bit on start logic
LPC_SYSCON—>STARTRSRPOCLR = 1 << 11;

// Restore clocks to chip modules
LPC_SYSCON—>SYSAHBCLKCTRL = wakeup_clkctrl;

// Restore interrupts
NVIC_DisableIRQ(WAKEUP11_IRQn);
NVIC_ClearPendingIRQ(WAKEUP11_IRQn);
NVIC—>ISER[0] = wakeup_nvic_0;
NVIC—>ISER[1] = wakeup_nvic_1;

}

void WAKEUP_IRQHandler (void) {
// Clear pending bit on start logic

// Disable start logic
LPC_SYSCON—>STARTERPO &= ~(1 << 11);
LPC_SYSCON—>STARTRSRPOCLR = 1 << 11;

// Disable start logic interrupt
NVIC_DisableIRQ(WAKEUP11_IRQn);
NVIC_ClearPendingIRQ(WAKEUP11_IRQn);

}

2-9 MIST

Listing 2.17: mist.h

// Project: WICS

// Author: Jeroen van Straten

// Date: 20120503

// Purpose: High level access to MIST chip.

#ifndef mist__guard
#define mist__guard

#include <stdint .h>

// Struct containing the measurement result
__packed struct measurement {
uintl6_t temperature;
uintl16_t humidity;
uintl6_t ambience;
uint8_t error;

Bachelor of Science Thesis

J.A. Angevare, |. Jager

66 Source Code

s

#define ERRFLAG BAT MASK 0x07
#define ERRFLAG_MIST ERROR 0x08
#define ERRFLAG NOT HARVESTING 0x10
#define ERRFLAG_INVALID LIGHT 0x20

#define ERRFLAG_ INVALID HUMIDITY 0x40

5|#define ERRFLAG INVALID TEMPERATURE 0x80

// Initialize 1/O and driver.
extern void initializeSensor(void);

// Takes a sample and writes this to data. Blocking!
extern uint8_t getMeasurement(struct measurement xdata);

| #tendif

Listing 2.18: mist.c

#include "mist.h"

#include "LPCllxx.h"
#include <stdint .h>

i|#include "mist_lowlevel .h"
7|#include "mist_definitions.h"

#include "power_modes.h"
//#include "main.h'

uint8_t mist_enable(struct measurement *data);

il void mist_read_temperature(struct measurement x*xdata);

void mist_read_humidity(struct measurement xdata);

void mist_read_light(struct measurement xdata);

void mist_disable(struct measurement xdata);

void adc_read_battery_and_pvcell(struct measurement *data);

// Sends a command, returns the reply code. The number of data words sent are
defined by

// data_count (which must thus be 0, 1 or 2).

uintl6_t mist_send_command(uint16_t command, uintl6_t datal, uintl6_t data2,
uint8_t data_count);

// Receives a response code
uint16_t mist_receive_response(void);

volatile uint16_t debug;

void initializeSensor () {

J.A. Angevare, |. Jager Bachelor of Science Thesis

89

2-9 MIST 67

// Initialize I/O ports
mist_11_init ();

uint8_t analog_trim_value;
uint8_t getMeasurement (struct measurement xdata) {

// Reset measurement data
data—>temperature = 0;
data—>humidity = 0;
data—>ambience = 0;
data—>error = ERRFLAG_INVALID_TEMPERATURE | ERRFLAG_INVALID_HUMIDITY |
ERRFLAG_INVALID_LIGHT;

// Read MIST stuff

if (mist_enable(data)) {
mist_read_temperature(data);
mist_read_humidity(data);
mist_read_light(data);

}

mist_disable(data);

// Read battery stuff
adc_read_battery_and_pvcell(data);

return 1;

void adc_read_battery_and_pvcell(struct measurement xdata) {

// TODO
}

uint8_t mist_enable(struct measurement *data) {

volatile uint32_t i;
uint8_t analog_trim_value;

// enable and init clock and SPI
mist_clock_enable () ;
mist_spi_enable();

// reset

mist_reset_assert ();

for (i = 200; i; i——); // just a short delay
mist_reset_release();

// wait for SINT (enable pulldown just for the first test to test
// for disconnected sensor)

LPC_IOCON—>R_PIO1_0 |= 0x08; // enable SINT pulldown

while (!mist_get_sint()); // TODO: timeout

LPC_IOCON—>R_PI01_0 &= ~0x08; // disable the SINT pulldown

// receive status word from the unit and save the factory calibration

Bachelor of Science Thesis J.A. Angevare, |. Jager

68 Source Code

// value for the analog LDO
analog_trim_value = (mist_receive_response() >> 8) & 0xOE;

// enable analog LDO
if (mist_send_command (POWER_LEVEL | analog_trim_value |

POWER_LEVEL_LDO_ON, 0, 0, 0) != ACK) {
data—>error |= ERRFLAG_MIST_ERROR;
return O;
}
return 1;

}

void mist_read_temperature(struct measurement xdata) {

// power up the temperature sensor

if (mist_send_command(SENSOR_POWER | SENSOR_TEMPERATURE, 0, 0, 0) != ACK) {
data—>error |: ERRFLAG_MIST_ERROR;

return;
}

// setup sensor
if ((debug = mist_send_command (SENSOR_SETUP | SENSOR_TEMPERATURE,

TEMP_OPMODE, TEMP_OPMODE_OM_CALI ‘ TEMP_OPMODE_RES_12B, 2)) = ACK) {
data—>error |: ERRFLAG_MIST_ERROR;

return;
}
// start sensor read
if (mist_send_command(SENSUR_START ‘ SENSOR_TEMPERATURE, 0, O, 0) = ACK) {
data—>error |= ERRFLAG_MIST_ERROR;

return;
}

// wait for sensor to be done
while (!(mist_send_command(STATUS, 0, 0, 0) & STATUS_TEMP_IRQ))
power_modes_sleep (10, 0);

// fetch result
data—>temperature — mist_send_command(SENSUR_READ_UUTPUT |
SENSOR_TEMPERATURE, 0, 0, 0);
data—>error &= ~ERRFLAG_INVALID_TEMPERATURE;

// turn off sensor again
mist_send_command (SENSOR_SHUTDOWN | SENSOR_TEMPERATURE, 0, 0, 0);

void mist_read_humidity(struct measurement xdata) {
__£pl16 half;
// power up the humidity sensor

if (mist_send_command(SENSOR_POWER | SENSOR_HUMIDITY, 0, 0, 0) != ACK) {
data—>error |: ERRFLAG_MIST_ERROR;

J.A. Angevare, |. Jager Bachelor of Science Thesis

159
160
161
162

163

164
165
166
167

168

2-9 MIST

69

return;

}

// sensor opmode
if ((debug = mist_send_command (SENSOR_SETUP | SENSOR_HUMIDITY,

HUMID_OPMODE, HUMID_OPMODE_VAL, 2)) != ACK) {
data—>error |: ERRFLAG_MIST_ERROR;
return ;
}
if ((debug = mist_send_command (SENSOR_SETUP | SENSOR_HUMIDITY,
HUMID_INPUT_SEL, HUMID_INPUT_SEL_1, 2)) != ACK) {
data—>error |= ERRFLAG_MIST_ERROR;
return;
}

// sensor calibration

if ((debug = mist_send_command (SENSOR_SETUP | SENSOR_HUMIDITY,
HUMID_CAL_AO, mist_send_command(NVMEM_READ | RH_1_A0, 0, 0, 0), 2))
AcK) {

data—>error |: ERRFLAG_MIST_ERROR;
return ;

}

if ((debug = mist_send_command (SENSOR_SETUP | SENSOR_HUMIDITY,
HUMID_CAL_A1, mist_send_command (NVMEM_READ | RH_1_A1, 0, 0, 0), 2))
ACK) {

data—>error |= ERRFLAG_MIST_ERROR;
return;

}

if ((debug = mist_send_command (SENSOR_SETUP | SENSOR_HUMIDITY,
HUMID_CAL_BO, mist_send_command (NVMEM_READ | RH_1_BO, 0, 0, 0), 2))
ACK) {

data—>error |= ERRFLAG_MIST_ERROR;
return;

}

if ((debug = mist_send_command (SENSOR_SETUP | SENSOR_HUMIDITY,

HUMID_CAL_B1, mist_send_command (NVMEM_READ | RH_1_B1, 0, 0, 0), 2)) !=

ACK) {

data—>error |= ERRFLAG_MIST_ERROR;
return;

}

half = (__fp16)((float)data—>temperature * 0.015625f);

if ((debug = mist_send_command (SENSOR_SETUP | SENSOR_HUMIDITY, HUMID_TEMP,

x(uint16_t*) &half, 2)) != ACK) {
data—>error |= ERRFLAG_MIST_ERROR;
return;
}
// start sensor read
if (mist_send_command (SENSOR_START | SENSOR_HUMIDITY, 0, 0, 0) != ACK) {
data—>error |: ERRFLAG_MIST_ERROR;
return;
}

Bachelor of Science Thesis J.A. Angevare, |. Jager

70 Source Code

// wait for sensor to be done
while (!(mist_send_command (STATUS, 0, 0, 0) & STATUS_HUMID_IRQ))
power_modes_sleep (10, 0);

// fetch result
data—>humidity = mist_send_command (SENSOR_READ_QUTPUT | SENSOR_HUMIDITY,
0, 0, 0);
data—>error &= ~ERRFLAG_INVALID_HUMIDITY;

// turn off sensor again
mist_send_command (SENSOR_SHUTDOWN | SENSOR_HUMIDITY, 0, 0, 0);

void mist_read_light(struct measurement xdata) {
// TODO: not yet implemented

}

void mist_disable(struct measurement xdata) {

// disable analog LDO
mist_send_command (POWER_LEVEL | analog_trim_value | POWER_LEVEL_LDO_OFF,
0, 0, 0);

// disable peripherals to reduce power consumption
mist_reset_assert () ;

mist_clock_disable () ;

mist_spi_disable();

uintl6_t mist_send_command(uint16_t command, uintl6_t datal, uintl6_t dataZ2,
uint8_t data_count) {
volatile uint32_t delay;

// Make sure no reply was pending still

if (mist_get_sint()) {
mist_receive_response();

}

// Something is wrong if the command is still pending, return ERR.
if (mist_get_sint()) {

return ERR;
}

// Select MIST chip
mist_spi_select();

// Give the chip a little time to get ready
for (delay = 20; delay; delay——);

J.A. Angevare, |. Jager Bachelor of Science Thesis

19

2-9 MIST

71

// Send command

mist_spi_transfer(command);

if (data_count > 0) mist_spi_transfer(datal);
if (data_count > 1) mist_spi_transfer(data2);

// Deselect the MIST chip again
mist_spi_deselect();

// Wait for the MIST chip to get its data ready
while (!mist_get_sint());

// Wait for reply and return it.
return mist_receive_response();

uint16_t mist_receive_response() {

volatile uint32_t delay;
uintl6_t response;

// Select MIST chip

mist_spi_select();

// Give the chip a little time to get ready
for (delay = 20; delay; delay——);

// Retrieve the response
response = mist_spi_transfer (0x0000);

// Deselect the MIST chip again
mist_spi_deselect () ;

return response;

Listing 2.19: mist_definitions.h

// Project: WICS
// Author: Jeroen van Straten
// Date: 20120503

// Purpose: Defines a bunch of constants such as register numbers

//

and command IDs used by the MIST chip.

7|#ifndef mist__defs__guard

#define mist_defs_guard

// Return codes

Bachelor of Science Thesis

#define ERR 0xA1A1

#define ILLEGAL 0x5555

#define ACK 0xAC00
i| // Command codes

#define RESET 0x0000

#define POWER,_ILEVEL 0x0100

#define STATUS 0x0200
|#define IC_LOCK 0xC300

J.A. Angevare, |. Jager

STV C R

0N NN NN NN NN
© o N O

31

A W N = O

R B T B B B

~

72

Source Code

#define IC_UNLOCK
#define SENSOR_POWER
#define SENSOR_SHUTDOWN
#define SENSOR,_START
#define SENSOR,_SETUP

i|#define SENSOR_READ OUTPUT

#define SENSOR, STATUS
#define NVMEM UNLOCK BANK
#define NVMEM LOCK BANK
#define NVMEM_SET PASSWORD
#define NVMEM READ
#define NVMEM_WRITE

// Power level parameters

#define POWER LEVEL ILDO ON

i|#define POWER LEVEL IDO OFF

0xC400
0x0500
0x0600
0x0700
0xC800
0x0900
0x0A00
0xD000
0xD200
0xD300
0x1500
0x5400

0x0000
0x0001

// Sensor identifiers

#define
#define

#define
#define
#define
#define
#define
#define
#define

7|#define

o|#define

#define SENSOR_TEMPERATURE 0x0001
#define SENSOR_HUMIDITY 0x0002
#define SENSOR, LIGHT 0x0003
#define SENSOR,_ADC 0x0004
// Status masks

#define STATUS_TEMP_IRQ 0x1000
i|#define STATUS_HUMID IRQ 0x2000
#define STATUS_LIGHT IRQ 0x4000
#define STATUS ADC_IRQ 0x8000
// Temperature sensor registers
#define TEMP_OPMODE 0x0020
#define TEMP_CAL A 0x0021
#define TEMP_CAL_B 0x0022
#define TEMP_ CAL ALPHA 0x0023

;| // Temperature sensor opmode register values

TEMP OPMODE OM RAW 0x0000
TEMP OPMODE OM CALI 0x0001

TEMP OPMODE RES 5B 0x0000
TEMP_OPMODE RES 6B 0x0002
TEMP_OPMODE RES 7B 0x0004
TEMP OPMODE RES 8B 0x0006
TEMP_OPMODE RES 9B 0x0008
TEMP_ OPMODE RES 10B 0x000A
TEMP_ OPMODE_RES 11B 0x000C
TEMP_ OPMODE RES 12B 0x000E

TEMP_OPMODE VCAL 0x0040

// Humidity sensor registers

#define
#define
#define
#define

i|#define

#define

HUMID OPMODE 0x0020
HUMID_CAL A0 0x0021
HUMID_CAL Al 0x0022
HUMID_CAL BO 0x0023
HUMID CAL B1 0x0024
HUMID TEMP 0x0025

J.A. Angevare, |. Jager

Bachelor of Science Thesis

89

90

2-9 MIST

73

#define HUMID INPUT SEL 0x0026

// Humidity sensor opmode register
#define HUMID OPMODE VAL 0xECO07

// Humidity sensor input selection
#define HUMID INPUT SEL 1 0x0001
#define HUMID INPUT SEL 2 0x0002

s|#define HUMID INPUT SEL 3 0x0004
7|#define HUMID INPUT SEL 4 0x0008

// NVRAM calibration addresses

#define T_A 0x0040
#define T B 0x0041
#define T ALPHA 0x0042
#define RH_1_AO 0x0044
#define RH_1_Al 0x0045
#define RH_1_ B0 0x0046
#define RH 1 Bl 0x0047
#define RH_2 A0 0x0048
#define RH_2 Al 0x0049
#define RH_2 B0 0x004A
#define RH_2 Bl 0x004B
#define RH_3 A0 0x004C
#define RH_3 Al 0x004D
#define RH_3 B0 0x004E
#define RH 3 Bl 0x004F
#define RH_4 A0 0x0050
#define RH_4 Al 0x0051
#define RH_4 B0 0x0052
#define RH_4 Bl 0x0053
#define AL 1 R N 0x0054
#define AL 1 R M 0x0055
#define AL_1_R MIR 0x0056
#define AL 1 RB N 0x0057
#define AL 1 RB M 0x0058
1|#define AL_1_RB MIR 0x0059
5|#define AL 2 R N 0x005A
#define AL 2 R M 0x005B
‘|#define AL 2 R MIR 0x005C
#define AL 2 RB N 0x005D
#define AL 2 RB M 0x005E
#define AL 2 RB MIR 0x005F
1|#define AL 3 R N 0x0060
#define AL 3 R M 0x0061
#define AL_3 R MIR 0x0062
#define AL 3 RB N 0x0063
25| #define AL 3 RB M 0x0064
#define AL_3 RB_MIR 0x0065
#define AL 4 R N 0x0066
#define AL 4 R M 0x0067
#define AL_4 R MIR 0x0068
#define AL 4 RB N 0x0069
#define AL 4 RB M 0x006A
#define AL_4 RB MIR 0x006B
#define AL 5 R N 0x006C
#define AL_5 R M 0x006D

Bachelor of Science Thesis

values — only 1 value

register

values

is supported

J.A. Angevare, |. Jager

135
136
137
138
139
140
141
142
143
144
145
146
147

-
> = O ©

NN N NN
TR W N

74 Source Code
#define AL_5 R MIR 0x006E
#define AL 5 RB N 0x006F
#define AL 5 RB M 0x0070
#define AL_5 RB MIR 0x0071
#define AL 6 R N 0x0072
#define AL 6 R M 0x0073
#define AL 6 R MIR 0x0074
#define AL 6 RB N 0x0075
#define AL_6 RB M 0x0076
#define AL_6_RB_ MIR 0x0077
#endif

Listing 2.20: mist_lowlevel.h

// Project: WICS

// Author: Jeroen van Straten

// Date: 20120503

// Purpose: Low level access to MIST chip.

#ifndef mist_lowlevel guard
#define mist_lowlevel__guard

#include <stdint.h>

// Imitializes MIST chip I/O ports
extern void mist_11_init(void);

5| /* SPI control =/

// Enables and initializes the SPI peripheral.
extern void mist_spi_enable(void);

// Powers down the SPI peripheral.
extern void mist_spi_disable(void);

// Transfers a data word over the SPI bus.
extern uintl16_t mist_spi_transfer(uintl6_t data);

// Asserts /CSN (pulls it low).

extern void mist_spi_select(void);

// Releases /CSN (pulls it high).
extern void mist_spi_deselect(void);

/% Clock control x/

;| // Enables and initializes the 1 MHz clock.
| extern void mist_clock_enable(void);

// Powers down the 1 MHz clock.
extern void mist_clock_disable(void);

J.A. Angevare, |. Jager

Bachelor of Science Thesis

63

16

2-9 MIST 75

/% Reset control x/

// Asserts /RESET (pulls it low).

ilextern void mist_reset_assert(void);

// Releases /RESET (pulls it high).

extern void mist_reset_release(void);

/% SINT x/

// Returns the state of the SINT pin (nonzero if high, 0 if low)
extern uint8_t mist_get_sint(void);

/* DOUT x/

// Returns the state of the DOUT pin (nonzero if high/stable, 0 if low)

extern uint8_t mist_is_reg_stable(void);

#endif

Listing 2.21: mist_lowlevel.c

#include "mist_lowlevel .h"

#include "LPCllxx.h"
#include <stdint.h>

void mist_11_init() {
// CLK pin (pin 0.11)
LPC_IOCON—>R_PI00_11 = 0xCl; // set GPIO, no pullup
LPC_GPIO0O—>DIR |= 0x800; // set pin as output

// /CS pin (pin 0.2)

LPC_IOCON—>PI0N0_2 = 0xCO0; // set GPIO, no pullup
LPC_GPIO0O—>DIR |= 0x004; // set output
LPC_GPIO0O—>DATA |= 0x004; // set default high

// MISO pin (pin 0.8)
LPC_IOCON—>PIN0_8 = 0xC1l; // set MISO, no pullup

// MOSI pin (pin 0.9)
LPC_IOCON—>PI00_9 = 0xC1l; // set MOSI, no pullup
LPC_GPIO0O—>DIR |= 0x200; // set output

// SCLK pin (pin 2.11)

LPC_IOCON—>SCK_LOC = 0x01; // set SCK on pin 2.11
LPC_IOCON—>PI02_11 = 0xC1l; // set SCLK, no pullup
LPC_GPI02—>DIR |= 0x800; // set output

// /RESET pin (pin 1.1)

LPC_IOCON—R_PIO1_1 = 0xC1l; // set GPIO, no pullup
LPC_GPIO1—>DIR |= 0x002; // set output

Bachelor of Science Thesis J.A. Angevare, |. Jager

76 Source Code

33 // SINT pin (pin 1.0)

34 LPC_IOCON—>R_PIO1_0 = 0xC1l; // set GPIO, no pullup
35

36 // DOUT pin (pin 1.2)

37 LPC_IOCON—>R_PIO1_2 = 0xC1l; // set GPIO, no pullup
38] }

39

40

11| void mist_spi_enable() {

42 // enable SPI clock (set to 1 MHz input clock)

43 LPC_SYSCON—>SYSAHBCLKCTRL |= 0x800;

44 LPC_SYSCON—>SSPOCLKDIV = 12;

16 // release SPI reset
47 LPC_SYSCON—>PRESETCTRL |= 0x01;

49 // setup SPI

50 LPC_SSPO—>CRO = 0x000F; // 16 bit, SPI mode 0, no further clock division
51 LPC_SSPO—>CR1 = 0x0002; // enable SPI

LPC_SSPO—>CPSR = 0x0010; // set prescaler to lowest acceptable value

}

56| void mist_spi_disable() {
57 // assert SPI reset
58 LPC_SYSCON—>PRESETCTRL |= 0x01;

60 // disable SPI clock
61 LPC_SYSCON—>SYSAHBCLKCTRL &= ~0x800;

62| }

64| uint16_t mist_spi_transfer (uintl6_t data) {
65 // ensure the SPI is turned on (otherwise this will block forever)

66 if (!(LPC_SSPO—>CR1 & 0x0002)) {
67 return 0;

68 }

69

70 // start the transfer

71 LPC_SSPO—>DR = data;

// wait for the SPI to finish the transfer (wait for busy and RX empty
// to be released)
while ((LPC_SSPO—>SR & 0x10) && !(LPC_SSPO—>SR & 0x04));

~

// return received data
return LPC_SSPO—>DR;

0

I B TS BN S B TS

ol }
80

si| extern void mist_spi_select() {
82 // Set /CS pin low

83 LPC_GPIOO0O—>DATA &= ~0x004;

84| }

85

86| extern void mist_spi_deselect() {
87 // Set /CS pin high

88 LPC_GPIO0O—>DATA |= 0x004;

J.A. Angevare, |. Jager Bachelor of Science Thesis

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110

2-9 MIST

7

void mist_clock_enable() {
// enable sensor clock timer
LPC_SYSCON—>SYSAHBCLKCTRL |= 0x200;

// reset timer before setup
LPC_TMR32B0O—>TCR = 0x02;

// setup sensor clock timer
LPC_TMR32BO—>PR = 0; // no prescaler
LPC_TMR32BO—>MRO = 11; // count to 12 for 1 MHz

LPC_TMR32BO—>MR3 = 6; // 50% duty cycle
LPC_TMR32BO—>MCR = 0x02; // reset on MRO
LPC_TMR32BO—>PWMC = 0x08; // enable PWM for MR3
// sensor clock pin
LPC_IOCON—>R_PIODO_11 = 0xC3; // select timer output
// start semnsor clock timer
LPC_TMR32BO—>TCR = 0x01;

}

void mist_clock_disable() {

// disable sensor clock timer
LPC_SYSCON—>SYSAHBCLKCTRL &= ~0x200;
// set pin to GPIO mode to ensure the output is defined
LPC_IOCON—R_PI00_11 = 0xCO;
}
void mist_reset_assert() {

// assert reset (pull it low)
LPC_GPIO1—>DATA &= ~0x002;

void mist_reset_release() {

// release reset (pull it high)
LPC_GPIO1—>DATA |= 0x002;

}

uint8_t mist_get_sint () {

return LPC_GPIO1—>DATA & 0x001;

uint8_t mist_is_reg_stable() {
return LPC_GPIO1—>DATA & 0x004;

Bachelor of Science Thesis

J.A. Angevare, |. Jager

S N U C R

10
11
12
13
14
15
16
17
18
19

20

N =

N
aos W

AR R R A W W W W W W oW W W W NN NN NN
B W N = O © oUW RO © O

o

78

Source Code

2-10 Main loop

Listing 2.22: main.c

/%

Name : main.c

Author : Ingmar Jager & Jan Angevare
Version :1.0.0

Copyright : $(copyright)

Description : main definition

*/

#include "LPCllxx.h'

#include "ZigBee.h"
#include "mist.h"
#include "power_modes.h"

__packed struct WICS_data {
char SequencelID;
char MeasurementInterval;
__packed struct measurement Measurements|[10];

i

int associate(void);
void wait_for_associated(void);

void SystemInit(void) {
int i

// Set running mode for PDRUNCFG and SYSAHBCLKCTRL
LPC_SYSCON—>PDRUNCFG = (0xED88;
LPC_SYSCON—>SYSAHBCLKCTRL = 0x1305F;

// Switch to XTAL
for (i = 0; i < 200; i++) __NOP();

LPC_SYSCON—>SYSPLLCLKSEL = 0x01;
LPC_SYSCON—>SYSPLLCLKUEN = 0x00;
LPC_SYSCON—>SYSPLLCLKUEN = 0x01;

LPC_SYSCON—>MAINCLKSEL = 0x01;
LPC_SYSCON—>MAINCLKUEN = 0x00;
LPC_SYSCON—>MAINCLKUEN = 0x01;

// Disable IRC
LPC_SYSCON—PDRUNCFG ‘: 0x003;

// Set complete pin config here

LPC_IOCON—>RESET_PI00_O0 = 0x0CO;
LPC_IOCON—>PIOO_1 = 0x0DO0;
LPC_IOCON—>PI0NO0_2 = 0x0C1;
LPC_IOCON—>PI0NO0_3 = 0x0C0;
LPC_IOCON—>PI0O0_4 = 0x1CO0;

J.A. Angevare, |. Jager

Bachelor of Science Thesis

66

67

69

93

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

2-10 Main loop

79

LPC_IOCON—>PI0NO_5 = 0x1CO0;
LPC_IOCON—>PI0O_6 = 0x0C0;
LPC_IOCON—>PI0NO_7 = 0x0C1;
LPC_IOCON—>PI0NO0_8 = 0x0C1;
LPC_IOCON—>PI0O0_9 = 0x0C1;

LPC_IOCON—>SWCLK_PI00_10 = 0x0CO;

LPC_IOCON—>R_PIO0O_11 = 0x0C3;
LPC_IOCON—>R_PIO1_0 = 0x0C1;
LPC_IOCON—>R_PIO01_1 = 0x0C1;
LPC_IOCON—>R_PIO1_2 = 0x0C1;
LPC_IOCON—>SWDIO_PIO1_3 = 0x0CO;
LPC_IDCON—>PIO1_4 = 0x041;
LPC_IOCON—>PIO1_5 = 0x0C1;
LPC_IOCON—>PIO01_6 = 0x0C1;
LPC_IDCON—>PIO1_7 = 0x0C1;
LPC_IDCON—>PIO1_8 = 0x0C0;
LPC_IOCON—>PI01_9 = 0x0C0;
LPC_IDCON—>PIO1_10 = 0x0C0;
LPC_IOCON—>PIO01_11 = 0x041;
LPC_IDCON—>PI02_0 = 0x0C0;
LPC_IOCON—>PI02_1 = 0x0C0;
LPC_IOCON—>PID2_2 = 0x0C0;
LPC_IDCON—>PI02_3 = 0x0C0;
LPC_IOCON—>PI02_4 = 0x0C0;
LPC_IOCON—>PID2_5 = 0x0C0;
LPC_IOCON—>PI02_6 = 0x0C0;
LPC_IDCON—>PI02_7 = 0x0C0;
LPC_IDCON—>PI02_8 = 0x0C0;
LPC_IOCON—>PI02_9 = 0x0C0;
LPC_IDCON—>PI02_10 = 0x0C0;
LPC_IDCON—>PI02_11 = 0x0C1;
LPC_IDCON—>PI03_0 = 0x0C0;
LPC_IOCON—>PI03_1 = 0x0C0;
LPC_IOCON—>PID3_2 = 0x0C0;
LPC_IDCON—>PI03_3 = 0x0C0;
LPC_IOCON—>PI03_4 = 0x0C0;
LPC_IOCON—>PID3_5 = 0x0C0;
LPC_GPID0O—>DIR = 0xA3C;
LPC_GPIOO—>DATA = 0x004;
LPC_GPIO1—>DIR = 0x7A2;
LPC_GPIO1—>DATA = 0x0AO0;
LPC_GPI02—>DIR = 0xFFF;
LPC_GPIO2—>DATA = 0x000;
LPC_GPIO3—>DIR = 0x03F;
LPC_GPIO3—>DATA = 0x000;

}

int associate() {
if (ZigBee_get_state()) {
ZigBee_request_connection_status();

Bachelor of Science Thesis

J.A. Angevare, |. Jager

112

80

Source Code

power _modes_sleep (10000, 1);

while (ZigBee_get_state())
if (!power_modes_sleep(0, 1))
break ;

return !ZigBee_get_state();

}

2| void wait_for_associated() {

if (ZigBee_get_state()) {
ZigBee_wake_up () ;

while (!associate()) {
// Association is taking way too long, the coordinator

is probably off.

// Enter deep sleep for five minutes to save power while waiting for it

// to turn on.
ZigBee_set_sleep();
//power__modes_deep_sleep (300) ;
ZigBee_wake_up () ;
}
}
}

int main(void) {
// Buffer handle
charx data;
int size;

// Header data + sample count
struct WICS_data measure_data;
int i = 0;

int sample_amount = 1;

// Initialize
LPC_GPIO3—>DATA |= 0x008;
LPC_GPI02—>DATA &= ~0x040;
ZigBee_init () ;
initializeSensor ();
power_modes_init ();

/% vOOR MEETING/
//LPC_GPIO2->DATA |= 0x040;
//while (1) power_ modes_deep_sleep(300);

[xx/

measure_data.MeasurementInterval = 1;
measure_data.SequenceID = 0;

power_modes_sleep (10, 0);
i = 0;

// Enter main—loop
while (1) {

J.A. Angevare, |. Jager

Bachelor of Science Thesis

2-10 Main loop

81

Bachelor of Science Thesis

// Enter out of order Loop (measurments are taken while ZigBee sends)
while (1) {
// Get measurement, this takes a while
getMeasurement(&measure_data.Measurements[i]);

// Ensure that we are still associated
wait_for_associated();

// Wait till time has transpired, this takes even longer
ZigBee_set_sleep();
power_modes_deep_sleep(measure_data.MeasurementInterval);

// Check for new messages, if so reconfigure everything
// Send the data we already got and reset count
ZigBee_wake_up () ;

if (ZigBee_check_for_new_message(&data, &size)) {

// Send everything we’ve got
//ZigBee_send ((char«)&measure_data, 2 + 7 % (i + 1));

ZigBee_send(data, size);

// Reset count
i= 0;
measure_data.SequencelD++;

// Reconfiguring
//measure data.MeasurementInterval = data[0];
//sample amount = (((data[l]>0)? data[1l]: 1)<1l)?data[1]:10;

// Release buffer
ZigBee_done_reading_new_message();

// Only if no message was received will we update the count
// and on enough samples send, otherwise the count will be
// reset and no measurements will be in the buffer
} else {
i =(i+ 1) % sample_amount;
if (i =0) {
ZigBee_send ((char*)&measure_data, 2 + 7 % sample_amount);
measure_data.SequencelID++;
} else {
power_modes_sleep (3, 0);
ZigBee_set_sleep();

}
}

//Enter in order Loop (first measurement then send)
while (1) {
// Get measurement, this takes a while
getMeasurement(&measure_data.Measurements[i]);

// Check for new messages, if so reconfigure everything
// Send the data we already got and reset count
ZigBee_wake_up () ;

J.A. Angevare, |. Jager

82 Source Code

225 if (ZigBee_check_for_new_message(&data, &size)) {

226

227 // Send everything we’ve got

228 //ZigBee_send ((char«)&measure_data, 2 + 7 % (i + 1));

229 ZigBee_send(data, size);

230

231 // Reset count

232 i = 0;

233 measure_data.SequencelID++;

234

235 // Reconfiguring

236 measure_data.MeasurementInterval = data[0];

237 sample_amount = (((data[l]>0)? data[l]: 1)<1l)?data[1]:10;
238

239 // Release buffer

240 ZigBee_done_reading_new_message();

241

242 // Only if no message was received will we update the count
243 // and on enough samples send, otherwise the count will be
244 // reset and no measurements will be in the buffer

245 } else {

246 i = (i+ 1) % sample_amount;

247 measure_data.SequencelD++;

248 if (i = 0) ZigBee_send((char*)&measure_data, 2 + 7 % sample_amount);
249 }

250 }

251

252 }

253

254 // Without this stuff won’t compile

255| //return 0O

256 }

J.A. Angevare, |. Jager Bachelor of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Preface
	Abstract

	Main Matter
	Table of Contents
	List of Tables
	List of Figures
	Table of Contents
	Introduction
	Project Description
	Requirements
	Research Statement

	Selecting the Control Unit for the Demonstrator
	FPGA Analysis
	Microcontroller Analysis
	Method of Comparison
	Microcontroller Comparison

	Power Saving Techniques
	LPC1114 Sleep Modes
	XBee Sleep Modes
	MIST power saving
	Efficient Package Handling
	Buffering Optimization

	Control Unit Implementation
	High Level Software Design
	MIST Implementation
	ZigBee Implementation
	Power Implementation
	WICS data protocol

	Measurements
	Measurement method
	Power Consumption
	Data Rate

	Conclusion
	Conclusion
	Recommendations

	 Bibliography

	Appendices
	Program of Requirements
	Usage Requirements
	Requirements according to the ecological situation of the system's environment
	System Requirements
	Installation Requirements
	Project Requirements

	Source Code
	ZigBee
	ZigBee_buffer
	ZigBee_constructor
	ZigBee_receiver
	ZigBee_sender
	ZigBee_translator
	UART
	Power_modes
	MIST
	Main loop

