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De woorden die hij prevelde waren niet te begrijpen, maar dat het belangrijke
woorden waren, daar mogen we zeker van zijn.

Herman Brusselmans, De man die werk vond





PREFACE

This thesis is the result of the four memorable years I spent as a PhD student
in the Theoretical Physics group at the TU Delft. It all began in the summer
of 2002, when I came to Delft to apply for a position. Among some friendly
PhDs, I met one professor who was disappointed to hear that I was not into
video games, one professor who gave me a hard time during my presentation
because I neglected localization effects in the explanation of my results (I had
no idea what he was talking about), and an enthusiastic young postdoc who
offered me a position in Israel, which was a perfectly safe place, she assured me
several times. Gerrit Bauer (the video games professor) offered me a position
on a joint project with the geophysics department to study classical waves in
complex media. Improving methods to find oil using theoretical physics seemed
like an interesting topic to work on. I decided to try my luck in Delft and started
in the autumn of that year.

It quickly became clear to me that it would take quite some effort to turn
an “natuurkundig ingenieur” with some experience in numerical calculations,
and a bit of background in theoretical physics, into a full-fledged theoretician
and a part-time geophysicist. Furthermore, shortly before I arrived in Delft,
the department of Applied Physics had been reorganized and the theory group
was now part of the department of Nanoscience. Trying to do classical physics
with seismic waves on a kilometer scale, I was surrounded by people occupied
with nanotubes, quantum noise and electron spin dynamics. It was a great
opportunity to follow seminars in both the Nanoscience and the Geophysics
departments, and to get acquainted with some of the main principles of these
interesting fields and the new directions they are heading. Still, in this somewhat
schizophrenic setting I sometimes got lost as well.

The past four years have definitely been all about “Strikes and gutters”(ups
and downs), to quote The Dude. However, it has been great to get into contact
with the incredibly rich field of waves in complex media and to discover that
there are still many classical problems left to be solved. The excellent talks
and discussion between (young) scientists from many different disciplines and



backgrounds at the “Imaging, Communication and Disorder” summer school in
Corsica in June 2006, made it the absolute best “week at the office” for me
as a PhD student. Maybe in the end, I only partially became that full-fledged
theoretician and part-time geophysicist, but it has been worth the effort.

The fact that only my name is printed on the cover suggests that I managed
to do the research and write this thesis all by myself. This could not be further
from the truth. The main purpose of this preface is to acknowledge the persons
that have in any way been involved in making the completion of this task easier.
Before I mention anyone in particular, I have to thank the (very well organized)
“Stichting Fundamenteel Onderzoek der Materie” (FOM) for paying my salary
and providing excellent training opportunities for their PhDs.

So, let’s get personal (and all emotional). I am in many ways indebted to my
supervisor Gerrit. Here I can mention his ability to manage the group, travel
the world and supervise his students, all at the same time. Or say that he is an
expert on the politics of academia and weird culinary traditions. However, be-
sides his friendliness, I think his most admirable character trade is his patience.
It looks like the guinea pig turned out alright in the end, and his willingness to
give me time and space to learn from my mistakes is most to thank for that.
Mauro should be thanked for sharing the recursive Green function code, having
me over in Dublin and discussing the numerics. Jos probably does not know
how important his involvement in my PhD was. It may not have seemed much
to him, but his cooperation came at a time when it was much appreciated. His
skills, but definitely also his friendliness and openness made it a pleasure to
work with him. I want to thank Kees Wapenaar and Deyan for giving me some
insight in the interesting world of geophysics and of seismic interferometry in
particular. The user committee members of the STW project “Wave propaga-
tion, reflection and localization in inhomogeneous media” should be thanked for
sitting through my talks and discussing my work during the meetings.

My other colleagues of the theory group were always (very) willing to listen
when I was boring them with earthquakes and finding oil. I want to thank all
staff members, postdocs, PhDs, and students, that shared the floor with me.
Some of them I should mention in particular. It has been more than interesting
to be in the same group as Yuli Nazarov. His ability to understand the essence
of a physics problem in only one or two slides during a presentation never seized
to amaze me. It was even more so a pleasure to discuss, and (dis)agree with
him on topics unrelated to physics. I admire Miriam for her endless enthusiasm,
the group is a more lively place because of it. I want to thank Yvonne for the
numerous occasions she helped me out, and Yaroslav for being the group’s “Big
Friendly Giant”.
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Several PhD students in the group made the struggle a bit easier, by sharing
the experience. I had a good start working in the same office as Oleg and Jens,
a well-balanced couple. The Italian coffee breaks with Gabriele were nice, and
there should have been more. Thanks to Jeroen and Xuhui the group remained a
lively place after these people left. Fabian is way too enthusiastic and outspoken
to become a good theoretical physicist, and it has been good to have him around,
as long as he wasn’t nagging about the weather (but do keep on telling yourself
that everything is better in Switzerland). I have to thank Wouter for never
stop being “nice guy Eddie”, even when I was constantly mocking his elitist
treehugger friends. Also, I really appreciate the fact that he eventually decided
not to bail out on me and continued his PhD. Without Omar’s LaTeX support
I would never have been able to finish this thesis at all. More importantly, he
is one of the most likeable idiots I have ever met (and I know quite a few). He
hardly ever stopped talking since the day we both started to work in Delft, and
I am very thankful for that (not for the chaos in our office, though).

Having friends outside (theoretical) physics has definitely been beneficial for
my mental health. First of all, Fetsje and Eefje should be thanked, as their
support enabled me to throw those strikes again. I want to thank the young
doctors Gitte, Mohand, and Pi for sharing their experiences and frustrations.
The epic journeys to Belgium with VriendenweekendTM were a great way to
forget about the hardships of the PhD for a weekend. Jelle and Daaf should
be thanked for the (sort of) weekly dinners, I hope many will follow. The
TriathlistTM initiative was and is an excellent way to blow off steam, I want
to thank Rob, Gert, and Susanne for participating. My good friends Bart,
Niek, and Maarten should be thanked for not getting totally fed up with my
complaints (or at least not showing it). My family has been a great support. I
am proud of my brothers and sister, and I guess I could use some of Wannes’
courage, Mathijs’ pragmatism and Lieke’s ability to combine ambition with a
no-stress attitude to life. The sacrifices my parents made for us are remarkable,
and there is no way in which I can thank them enough.

Still, there is only one person who is solely responsible for the fact that I
managed to finish my PhD research and this thesis. I owe it all to Leonie. If
she does not change her mind we will get married on the 27th of April this year.
I consider myself to be quite lucky. Bedankt meisje!

Delft, February 2007
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1. INTRODUCTION

1.1 Waves and inhomogeneous media

Waves are literally everywhere. We observe them when we get seasick, listen to
music or open our eyes. We use them to communicate, heat food and to cheer
sports heroes. Of all the waves around us, we are only able to sense a small
amount by our eyes and ears and we usually do not recognize them as such.
Still, any undergraduate physics student will acknowledge that there is hardly
any field in physics in which wave motion does not play an important role.

A wave is a disturbance that propagates through space. In the case of a sound
wave, “space” is a medium (gas, fluid or solid) and the disturbance is a change
in local particle position or velocity. Electromagnetic field disturbances do not
need support of a medium, but can travel through vacuum. However, they can
propagate through and interact with matter. We refer to sound and electro-
magnetic waves with continuously varying amplitudes as classical (or massless)
waves. Quantum mechanics is the fundamental theory for matter as well as
fields. Quantum matter waves related to fundamental particles (electrons, for
example) do carry mass and the amplitude of the wave function is not an ob-
servable quantity; its modulus squared is. On the other hand, both classical and
quantum matter waves transport energy and (linear and angular) momentum.
Furthermore, quantized fields, such as photons, phonons and magnons are in
the classical limit described by wave equations that are similar to the equations
that govern the wave nature of particles in the quantum limit. These analogies,
that will be further discussed in this introduction, allow physicists to transfer a
method or formalism developed in one field without too much labor to a totally
different one.

Interactions with inhomogeneities in the medium alter the propagation di-
rection, velocity or amplitude of waves. When energy is (not) conserved during
these interactions, waves are scattered (in)elastically. In this thesis we restrict
ourselves to elastic scattering processes, and refer to them simply as scattering.
How a wave is scattered depends on the difference in constitutive parameters



1.2. Imaging with waves in inhomogeneous media

(like the wave velocity) of the inhomogeneity with the reference medium, its
shape and its size compared to the wavelength.

1.2 Imaging with waves in inhomogeneous media

When observing the world around us visually, our brain continuously creates
images based on the information it receives from the receptors in our eyes.
These receptors detect the intensity and frequency of light that was emitted by
a source that reaches the eye via reflections from the objects around us. We are
able to make useful images from light waves because their wavelength is much
smaller than the objects we see and the medium between the objects and our eyes
affects light wave propagation relatively weakly. To create images from objects
that are not observable with the naked (or lens-assisted) eye, techniques have
been and are being developed that make use of the same principles, i.e. a source
emitting waves illuminating an object with reflections that are picked up by a
detector. Digital data processing is then often used to convert the measured
data into an image. In this thesis we address two examples of such imaging
techniques: imaging with sound waves in seismic exploration and (earthquake)
seismology to investigate the structure of the earth’s subsurface and medical
imaging using light to acquire information about biological tissue. The main
differences between these imaging methods and imaging with our eyes are that
here the wavelengths are not always smaller than the objects to be imaged and
often the opacity of the medium between the object and the detector seriously
affects wave propagation.

1.2.1 Imaging inhomogeneous media in geophysics

In seismic exploration, information about the earth’s interior is acquired by
detecting waves, originating from active (man-made) sources, that have prop-
agated through the subsurface [1], while in seismology passive sources (earth-
quakes and noise from microseismic sources) are used for this purpose [2, 3].
In both fields this essentially yields information about the position dependence
of properties such as the propagation velocity and the mass density. The con-
ventional approach to seismic imaging is to treat the subsurface of the earth as
a layered structure, where every layer is described by a certain set of parame-
ters. Recorded arrival times and amplitudes of reflected pulsed signals are then
used to reconstruct the properties of the layers. Unfortunately, this “inverse
problem” has unique solutions only in very idealized situations, which makes its
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1. Introduction

Fig. 1.1: Illustration of active seismic acquisition on land using a dynamite source and
a cable of geophones. From Drijkoningen [4].

solution notoriously difficult when the underlying data set is incomplete and/or
noisy.

An illustration of active seismic acquisition is shown in Fig. 1.1, where dy-
namite is used as a source and the reflected energy is detected by an array of
geophones. The upper left panel of Fig. 1.2 shows a field seismic shot record
from the geophones positioned at a certain offset from the source. The geo-
phones record the ground movement from the time that the explosion creates
a broadband pulse that propagates through the subsurface. From the arrival
times of the reflected and refracted waves of which the travel paths are shown
in the lower panels of Fig. 1.2, a subsurface model, with depth and wave prop-
agation velocity of the layers, is deduced. The model of the near subsurface is
shown in the middle of Fig. 1.2 and the model at larger depth is shown in the
bottom. When this model is used to create a synthetic seismogram which is
shown in the upper right panel, we can indeed recognize the reflection and re-
fraction events in the original seismogram. However, it is clear that the original
seismogram looks much more “noisy” than the synthetic one.

3
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Fig. 1.2: Field seismic shot record from land survey (top left), its synthetic seismogram
(top right) using the model of the near surface (middle) and at larger depths
(bottom). From Drijkoningen [4].
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1. Introduction

Fig. 1.3: Vertical ground motion recorded in The Netherlands after an earthquake
in Greece (top panel). Also shown are the band-passed filtered seismogram
(middle panel) and the low-passed filtered seismogram (bottom panel). From
Snieder [6].

Deviations from the perfectly layered subsurface model, like lateral inhomo-
geneities, gradual changes in the constitutive parameters and roughness of the
interfaces limit its applicability. In active seismic exploration of heterogeneous
subsurface layers the extra scattering from these inhomogeneities shows up in
the recorded time traces in the seismic records, where it can even completely
mask the arrivals of the reflections and makes conventional imaging difficult.
This is also the reason why the seismogram of Fig. 1.2 looks so irregular, al-
though multiple reflections from the interfaces also contribute to this, but they
can be corrected for. In seismology the scattered waves that follow the arrivals
of directly propagated waves from earthquakes are known as coda waves [5].
An earthquake seismogram is shown in Fig. 1.3, where the ground movement
in The Netherlands was recorded after an earth quake in Greece [6]. The top
panel shows the unfiltered trace, while a low frequency filter shows the first

5
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arrival of the different modes of propagation (P for pressure, S for shear and R
for Rayleigh (surface) waves) in the lowest panel. In the middle panel a filtered
trace is shown, where the impulsive arrival is followed by a wave-train that is
the so-called coda, which literally means “tail”.

The coda is caused by waves that have been delayed by multiple scatter-
ing [7]. As the (lateral) inhomogeneities in the subsurface responsible for the
scattering are static, the coda is a deterministic signal [6]. The “noisy” looking
data are therefore not stochastic in the sense that a second shot experiment
for the setup that created the seismogram of Fig. 1.2 would yield (almost) the
exact same result. Therefore, the multiply scattered coda contains information
about the inhomogeneous medium that the waves traversed. One could even say
that these waves contain even more information than the directly propagating
waves, as they sampled a larger part of the medium. In order to image proper-
ties of distributions of inhomogeneities responsible for multiple scattering in the
subsurface, we should relate them to coda properties by statistical methods.

Relating coda properties to medium properties is difficult, because the in-
homogeneities can be both small and large compared to the wavelength [6].
Theories that describe (multiple) scattering are usually formulated for only one
of the two regimes, as we will see in the following section. Tourin et al. [8] stud-
ied codas in laboratory experiments where ultrasonic transducers were used as
sources and receivers and a water filled tank with iron wires modelled the mul-
tiple scattering system. For such disordered media with many similar scatterers
with a size comparable to the wavelength, they showed that relatively simple
diffusive models can be used to model the average intensity of the acoustic coda.
However, such model experiments are not necessarily a good representation of
the media that are responsible for the coda in seismograms. In the elastic
subsurface, shear as well as pressure waves are present, mode conversions at
boundaries have to be taken in to account, and the inhomogeneities can be very
dissimilar. Margerin et al. [9] showed that the decay of the seismic coda (the
coda Q) in earthquake data acquired in Mexico can be explained with a simple
model of diffusively propagating elastic waves. The equipartitioning of energy
of coda waves over the different elastic modes, a clear sign of multiple scattering
in elastic inhomogeneous media, was calculated and measured by Hennino et
al. [7]. Larose et al. [10] showed that interference of multiply scattered seismic
waves can be observed, by measuring weak localization of seismic waves.

These studies gave strong evidence to support the theory that the seismic
coda can be explained by multiple scattering of waves, instead of a combination
of single scattering and absorption. Effective medium properties such as the
Q-factor of the coda decay or the (average) mean free path can be derived from

6
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the averaged coda properties. However, it remains a challenge to extract more
detailed information about the medium from seismic data sets, such as the fre-
quency dependence of these properties. Besides the ongoing scientific interest in
multiple scattering in seismic media, there is a huge economic incentive to study
this topic. Squeezing more information out of data obtained by active seismic
exploration could improve hydrocarbon reservoir characterization, giving more
accurate information to limit the amount of unsuccessful (expensive) drilling
operations before being able to successfully exploit a discovered reservoir.

1.2.2 Diffuse optical tomography for medical imaging

Medical doctors have several methods at their disposal to image biological tissue
and the human body in particular. Three of these methods, projection radiog-
raphy (x-rays), ultrasonography (ultrasound) [11], and optical tomography are
based on imaging with waves with a source-detector setup. Radiography, and
ultrasonography use waves that interact relatively weakly with the tissue so
that multiple scattering of waves between source and object and object and
receiver does not prohibitively perturb the image. Both methods have their
limitations. Ionizing x-rays can damage tissue, while contrast between different
types of (soft) tissue for this radiation is often low. Ultrasonography is limited
by the low penetration through bone, and the high impedance mismatch with
gas filled tissue (lungs). Furthermore, recording good quality ultrasound images
requires highly skilled operators. Optical tomography, or diffuse optical tomog-
raphy, uses near infrared (NIR) light waves for medical imaging and it works in
a rather different way than radiography and ultrasonography. Here we discuss
some basic principles, advantages and limitations of this technique.

In Fig. 1.4 in vitro absorption spectra of hemoglobin and water are plotted
as a function of wavelength between 600 and 1100 nm. From this figure it can be
seen that the absorption factor µa (the inverse of the absorption length) is low
around 800 nm for three important constituents of biological tissue, i.e. water,
oxygenated and deoxygenated hemoglobin [12]. Light in this NIR window can
therefore be used to image biological tissue, which has great advantages, as light
waves are not ionizing and they can be used for spectroscopy. However, there
is one fundamental problem, as can be seen from the accompanying table to
Fig. 1.4. In this table, the absorption factors and the scattering factors (µs, the
inverse of the mean free path) are given at 780 and 820 nm, for different types of
tissue. This shows that although absorption is low for these frequencies, light in
tissue is scattered so strongly that a wave is scattered many times while cross-
ing one cm of tissue. For most interesting medical imaging applications light

7
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Fig. 1.4: Plot of the absorption spectra of three important constituents of biological
tissue: water, oxygenated and deoxygenated hemoglobin. The table shows
the scattering and absorption factors in the NIR window for different types
of tissue. From Yodh and Chance [12].

never travels directly from object to detector. NIR light propagates diffusively
in biological tissue and imaging with diffuse signals requires a different approach
compared to imaging with directly propagating waves. We discuss two practical
examples of imaging with diffuse optical tomography (DOT), i.e. cancer tumor
detection in breast tissue and studying the oxygenation of blood in the brain
[13].

Conventional mammography (imaging of breast tissue) is done with (low-
dose) x-rays. Besides the disadvantage of the radiation used (which prevents
the method from being used for regular screening), the contrast between cancer
and healthy tissue is not strong enough to detect all tumors (false-negatives).
Furthermore, in a significant number of cases false-positives are reported, i.e.
the imaging technique shows a tumor that is actually not there. Better and
less damaging imaging techniques are therefore needed, and diffuse optical to-
mography appears to be a promising alternative, or at least a useful addition
to existing methods [14].
When breast tissue is illuminated by an array of sources, the penetration depth

of NIR light is up to 10 cm. In general, tumors contain more blood vessels than
the surrounding tissue, and therefore the scattering and absorption properties

8
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Fig. 1.5: (a) MRI image of a breast containing a ductal carcinoma (tumor). (b) DOT
image of the volume of interest (dashed box in panel a), imaging plane per-
pendicular to the plane of the MRI image. Lighter regions represent higher
scattering factor. (c) MRI image in the same plane as the DOT image. From
Ntziachristos et al. [15].

of a tumor differ considerably from the surrounding medium. An array of de-
tectors positioned on the breast measures the scattered light affected by the
presence of a tumor. The measured data have to be processed to translate the
properties of the scattered field into an image of the position dependence of the
optical properties of the tissue. An example of an acquired image is shown in
Fig. 1.5 [15]. Panel (a) shows an MRI image of a breast with an approximately 1
cm large tumor. The volume of interest, the dashed box in panel (a), is imaged
with DOT perpendicular to the plane of the MRI image. This image is shown
in panel (b), where the light region represents a different scattering parameter
that coincides with the position of the tumor.
As light can propagate through bone, DOT can also be used for monitoring

brain activity [13]. This application of DOT is based on the different absorp-
tive properties of oxygenated and deoxygenated hemoglobin. Fig. 1.6 shows a
setup to study the influence of electrical stimulation of a rat’s forepaw on the
oxygenation of the blood in its brain [16]. Arrays of fibers act as sources and
detectors and the resulting spatially resolved DOT images are shown in Fig. 1.7.
The relative increase in oxygenated hemoglobin and decrease in deoxygenated
hemoglobin and a net increase of total hemoglobin caused by the stimulation

9
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Fig. 1.6: Setup to study brain activity of rats using DOT. From Siegel et al. [16].

can be measured in this way. This is a non invasive and relatively inexpensive
way to map brain functionality and it can just as well be used on human brains
[17]. Furthermore, it can be used to image bleeding in the brain [18].

These two examples of possible applications show the potential of DOT for
medical imaging purposes. We have not discussed how exactly the detected sig-
nals are processed into useful images. This is the difficult part of DOT, as the
(diffuse) inverse problem that has to be solved is ill-defined. This means that rel-
atively large changes in the multiple scattering medium might only have a small
effect on the detected scattered field. What is problematic is that the imaged
tissue is in general a complex medium, containing not only many small scatter-
ers, but also larger objects, interfaces and boundaries with homogeneous media.
Forward modelling of these media with a priori knowledge of the medium under
study is already challenging and a lot of effort was and is being invested into
modelling diffuse wave propagation and reconstructing scattering media from
the information of the scattered field [18, 19, 20]. In order to further improve
imaging with DOT, more studies of wave propagation in inhomogeneous media
are needed, preferably leading to relatively straightforward formalisms and de-
scriptions. In the following section we discuss some of the basic principles used
to describe wave propagation in inhomogeneous media.

10



1. Introduction

Fig. 1.7: DOT image of rat brain activity resulting from forepaw stimulation. Change
in levels of oxygenated and deoxygenated hemoglobin show where the brain
activity is high as a result of the stimulation. From Siegel et al. [16].

1.3 Some principles of wave propagation

1.3.1 Wave equations in continuum mechanics, electromagnetism and
quantum mechanics

In a homogeneous, unbounded, isotropic, elastic medium, the displacement
u (r; t) originating from a bodyforce f (r; t) is described by [3]

ρ∂2
t u = f + (λ+ 2µ) ∇ (∇ · u)− µ∇× (∇× u) , (1.1)

where ρ is the mass density of the medium and λ and µ are the Lamé moduli
that are obtained from the stress-strain relations. The displacement u can
be expressed in terms of the scalar potential ψ and the vector potential φ by
u = ∇ψ+∇×φ, with ∇ ·φ = 0 and Eq. (1.1) then reduces to two independent
wave equations. One that describes the propagation of the pressure or P-wave
component with a particle displacement parallel to the propagation direction

∂2
t ψ =

Ψ
ρ

+ α2∇2ψ, (1.2)

11



1.3. Some principles of wave propagation

and one that describes the propagation of the two shear (S-)wave modes with a
particle displacement perpendicular to the propagation direction

∂2
t φ =

Φ
ρ

+ α2∇2φ. (1.3)

Here α =
√

(λ+ 2µ) /ρ, and β =
√
µ/ρ are the P- and S-wave velocities, and

Ψ and Φ are related to the bodyforce by f = ∇Ψ + ∇ ×Φ. In a liquid µ = 0
and only the P-wave polarization exists. We redefine ψ = −ρ0∂tψ and write

∇2ψ (r; t)− 1
c20
∂2

t ψ (r; t) = −ρ0Q (r; t) , (1.4)

so that the amplitude is related to the pressure by p = ∂tψ and to the local
particle velocity by v = −ρ−1

0 ∇ψ. c0 and ρ0 are the acoustic wave velocity
and the mass density of the homogeneous medium. Formulated in this way,
the source term on the right hand side is a volume injection (an explosion, for
example), which is related to the body force by Q = −∂tΨ/

(
c20ρ0

)
.

When the mass density in an acoustic medium can be considered constant,
but the wave velocity is inhomogeneous, then c0 in Eq. (1.4) is just replaced by a
position dependent velocity c (r) to describe waves in inhomogeneous media. By
Fourier transforming the wave equation in the frequency domain, one obtains
for a given frequency ω, in the absence of a source term[

−∇2 + V (r;ω)
]
ψ (r;ω) = E (ω)ψ (r;ω) , (1.5)

where E (ω) = ω2/c20, and a “scattering potential”

V (r;ω) =
ω2

c20

(
1− c20

c2 (r)

)
, (1.6)

is introduced, where c0 is now a reference velocity. This means that scattering
of classical waves is frequency dependent, and we further discuss this in the next
subsection.

The Maxwell equations govern all classical electromagnetic phenomena. They
can be summarized by two uncoupled wave equations [21]

∇2Φ− 1
c2
∂2

t Φ = − ρ

ε0
, (1.7)

∇2A− 1
c2
∂2

t A = −µ0J, (1.8)

12



1. Introduction

that describe the propagation of electromagnetic waves in vacuum. Here the
potentials Φ and A are related to the electric field by E = −∇Φ−∂tA and to the
magnetic flux density B = ∇×A. ρ is the charge density, J the current density,
ε0 and µ0 the vacuum permittivity and permeability and c the propagation
speed. In the absence of source terms (J, ρ) this yields two modes in which
the magnetic flux and electric field components are perpendicular. The analogy
between these equations and Eqs. (1.2)-(1.3) that describe the propagation of
sound waves is clear.

For electrons in a potential V , the time-independent Schrödinger equation
[22] [

− ~2

2m
∇2 + V (r)

]
ψE (r) = EψE (r) (1.9)

is the eigenvalue equation for the electron states with energy E. The analogy
to the classical wave equation in the frequency domain (Eq. (1.5)) is obvious.
However, the amplitude of the wavefunctions is not an observable. Another
difference is that the potential does not depend on energy for the electrons,
whereas the impurity potential for classical waves does depend on frequency.

1.3.2 Scattering, radiative transfer and diffusion

We first discuss scattering of acoustic waves in the frequency domain, where
inhomogeneities are described by the impurity potential V (r;ω) given by Eq.
(1.5). Let us take a system with a single finite region with wave velocity differ-
ent from the surrounding medium (but equal mass density), and assume that
this velocity changes abruptly from one value to the other (on a lengthscale
much smaller than the wavelength). Incoming and outgoing solutions of the
homogeneous wave equations in the frequency domain can then be matched by
the appropriate boundary conditions. This is the basic principle of scattering
theory. When the density is allowed to vary as well, and/or shear modes are
supported, this principle is still applicable, although the boundary conditions
are formulated differently and mode conversion has to be taken into account.

When one medium with wave velocity ci is embedded in another medium
with velocity c0 an incoming plane wave with wave vector κ0 = ω/c0 is scattered,
giving rise to a total wave field that, sufficiently far from the embedded object,
is [22]

ψtot (r;ω) ∝ eiκ0·r + fκ0 (r̂)
eiκ0r

r
, (1.10)

the sum of the unperturbed and scattered contributions (here the origin is taken

13



1.3. Some principles of wave propagation

at the center of the scatterer). The angular dependence of the scattered ampli-
tude is described by fκ (r̂). When the scatterer is spherical fκ is a function of
the polar angle θ only. When it furthermore has a radius a much smaller than
the wavelength the scattered contribution does not depend on angles at all and

fκ (r̂) = f0 =
e−2iκ0a

κ0

(
κ0

κi cotκia− iκ0
− eiκ0a sinκ0a

)
, (1.11)

where κi = ω/ci. For larger spherical scatterers waves are scattered preferen-
tially in the forward direction. When the scatterer (and the curvature of its
surface) are much larger than the wavelength, scattering can be described by
ray theory, which is the acoustic equivalent of geometric optics. Calculating the
scattered field is most difficult when the size of the scatterer is of the order of
the wavelength, the regime where Mie theory has to be applied [23].

When two or more scatterers are embedded in the reference medium the total
wave field is a superposition of the incoming wave and an infinite series of multi-
ply scattered terms. Numerical results can be obtained by numerical integration
of the wave equation. Exact analytic calculations become prohibitively complex
soon, which means that approximation schemes become necessary. The multi-
ply scattered response to an incoming wave depends on the exact configuration
of the inhomogeneities. However, for large systems containing many scatterers,
the responses for different realizations of the impurity configuration show simi-
larities. Because of this ergodicity, statistical methods can be employed to study
transport properties in these systems. Averaging over all the possible impurity
ensembles yields an analytical formalism to study properties like the averaged
amplitude and intensity and it couples the microscopic scattering equations to
the macroscopic wave field properties [24]. A common approximation within
this formalism is the independent scatterer approximation that neglects phase
effects (interference of multiply scattered waves), which is appropriate when the
density of scatterers is sufficiently low [8]. Using this approximation one finds
that the configuration-averaged amplitude drops exponentially with a transport
mean free path, related to the propagation of unscattered and forward scat-
tered waves, or the coherent part of the wave field. The transport mean free
path is the length scale over which all phase information is lost. It is equal to
the scattering mean free path (average distance between successive scatterings)
only when scattering is isotropic [25]. Information about the scattered waves is
obtained from the configuration-averaged intensity using the ladder approxima-
tion to the Bethe-Salpeter equation [24], a topic that is discussed in more detail
in chapter two of this thesis.

14



1. Introduction

Another way to study the intensity of multiply scattered waves is by solving
the radiative transfer equation [23, 26]. It describes the propagation of the
specific intensity I at position r travelling in direction n and is equivalent to
the Boltzmann equation for (elementary) particles. It neglects the phase of the
waves. For time and position dependent problems the RTE becomes [27]

`scn·∇I (r,n, t) + tsc∂tI (r,n, t) =
1
4π

∫
dn′p (n;n′) I (r,n′, t)− I (r,n, t) .

(1.12)
The last term on the right-hand side is the specific intensity leaving a small
volume around r in direction n, whereas the first term on that side describes the
intensity that is scattered from direction n′ into direction n with probability p.
The terms on the left-hand side take the spatial and time variations into account.
`sc is the scattering mean free path and tsc the scattering time. The RTE is
often the basis of Monte-Carlo type simulations of multiply scattered waves, for
example for modelling the seismic coda [5, 9], or imaging with diffuse optical
tomography [19]. Solving the RTE for monochromatic sources (the frequency
domain) is in fact equivalent to solving the Bethe-Salpeter equation in the ladder
approximation [27].

The local intensity I and the local intensity current J are obtained by inte-
grating out the specific direction of propagation

I (r, t) =
∫
dnI (r,n, t) , J (r, t) =

tsc

`sc

∫
dnI (r,n, t)n. (1.13)

When the current is small compared to the density, it can then be derived from
the RTE that processes changing slowly in time are described by Fick’s laws
[27]

J (r, t) = −D∇I (r, t) , (1.14)

and
∂tI (r, t) = D∇2I (r, t) , (1.15)

where only elastic scattering processes are considered. It means that the propa-
gation of intensity becomes a diffusive process, with a diffusion constant D. For
a 3D medium

D =
1
3
ceff`tr, (1.16)

where `tr is the transport mean free path and ceff = `sc/tsc is the effective
transport velocity [25].
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1.3. Some principles of wave propagation

We started this section by describing single scattering events in the frequency
domain. When the RTE is formulated in the time domain like in Eq. (1.12), the
frequency dependence of the scattering mean free path and the scattering time
(and thus of the scattering potential V defined by Eq. (1.5)) are disregarded.
If we think of a time dependent source as a superposition of monochromatic
sources, it is easy to see that such an approximation is only justified when
the source is a narrowband pulse. Disregarding frequency dependence in time-
dependent problems is often the only workable approximation, as it is too diffi-
cult to develop analytical formalisms that treat (broadband) pulse propagation
taking all frequency dependent scattering properties into account.

The formalisms describing multiple scattering briefly reviewed here all rely
on the assumption that interference of multiply scattered waves can be ne-
glected. It is a useful assumption, for example, when one wants to calculate the
average transmitted intensity through a scattering material. However, when one
takes a better look at the scattered intensity, one finds that it consists of darker
and brighter spots, so called speckles [24]. When looking at the backscattered
intensity, it can be shown that constructive interference between reciprocal scat-
tering paths enhances the averaged backscattered intensity around the source by
a factor of two [24]. This has been verified experimentally for light waves [28],
acoustic waves [29], and even seismic waves [10]. Constructive interference is
known to limit the conductance of one-, and two-dimensional electronic conduc-
tors in mesoscopic physics, a prediction made by Anderson [30]. Interestingly
enough, it was his work on the subject of strong (or Anderson) localization in
electron transport that directed the attention of wave physicists to the subject
of localization in the first place. Observing localization of light in 3D (strongly)
scattering systems, has been a hot topic and source of debate during the last
two decades [31]. Neither the properties of speckle patterns, nor localization
effects can be described by formalisms that neglect phase effects. However, it is
an appropriate approximation for most of the topics addressed in this thesis.

1.3.3 Point sources and interfaces

Let us close this section by discussing scattering of spherical and cylindrical
waves at interfaces between semi-infinite homogeneous media. In particular, we
want to introduce the concept of refracted head waves. Consider a point or line
source in a 3D half-space characterized by a wave velocity c1 positioned at a
distance z0 > 0 from an interface with another half-space with wave velocity
c2(> c1) that emits spherical or cylindrical waves as depicted in Fig. 1.8. We
only consider pressure modes. Waves hitting the surface are either reflected back
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c1
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z=0

receiver

(r,z )0

z0
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Fig. 1.8: Schematic representation of the travel paths of the direct waves (Ad), re-
flected waves (Ar) and head waves (Ahw) emitted by a cylindrical (2D) or
spherical (3D) point source in the upper half space of two fluid half spaces
characterized by wave velocities c1 and c2(>c1).

into the upper medium, or refracted into the lower lying medium. When the
wave velocity in the lower lying medium is higher, refracted waves propagating
along the boundary in this medium travel faster than the reflected waves on
the other side. The interaction between the refracted waves and the boundary
creates an upward travelling critically refracted or head wave. When the direct
reflection between the source and the receiver placed at (r, z) has an angle
of incidence less than the critical angle θc = arcsin (c1/c2), only the direct
reflection (labelled by Ar) is observed. For higher angles, refracted head waves
travelling along the path labelled by Ahw in Fig. 1.8 are observed. The speed of
propagation of these waves along the interface is the same as that of the lower
medium. The signal from a pulsed source is therefore observed before the arrival
of the directly reflected waves (Ar), when L is large enough. For very large L
the head wave arrival even precedes the direct arrival (Ad).

The first exact description of these waves was published by Lamb in 1904
[32] and the reflection and refraction of spherical waves is therefore also referred
to as “Lamb’s problem”. When one of the two half-spaces is elastic, i.e. shear
waves are also supported, Rayleigh and Love waves (interface waves with an ex-
ponentially decaying amplitude with the distance from the interface) are present
as well, but we restrict ourself to solutions of the scalar wave equation here.
The starting point for an exact description of head wave propagation is the
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1.3. Some principles of wave propagation

inhomogeneous wave equation [3]. The corresponding Green function equation(
∇2 − c−2 (r) ∂2

t

)
G (r, r′; t) = δ (r− r′) δ (t) , (1.17)

describes the response of the system to a point source in r′, sending out a δ pulse
at time t = 0. In terms of Green functions the response at a receiver at (r, z > 0)
can be written as Gtot = G0 +Gr, where G0 is the solution in the homogeneous
medium and Gr describes both the reflected and the refracted waves. For an
infinitely extended line source, the system is effectively two-dimensional. Gr in
the frequency domain is then given by the integral expression

Gr ((r, z) , (0, z0) ;ω) =
i

2π

∞∫
0

dp
cos (pωr)√
c−2
1 − p2

√
c−2
2 − p2 −

√
c−2
1 − p2√

c−2
2 − p2 +

√
c−2
1 − p2

×eiω
√

c−2
1 −p2(z0+z). (1.18)

The Fourier transform of Eq. (1.17) into the time domain can be carried out
analytically by the Cagniard-De Hoop method [33]

Gr ((r, z) , (0, z0) ; t)

= Im


√
c−2
2 − p2 −

√
c−2
1 − p2√

c−2
1 − p2 +

√
c−2
2 − p2

 Θ(t− thw)−Θ(t−R0/c1)
2π
√
t2 −R2

0/c
2
1

+Re


√
c−2
2 − p2 −

√
c−2
1 − p2√

c−2
1 − p2 +

√
c−2
2 − p2

 Θ(t−R0/c1)
2π
√
t2 −R2

0/c
2
1

, (1.19)

where R2
0 = r2 + (z0 + z)2, Θ is the Heaviside step function and

p =


xt−(z0+z)

√
R2

0/c2
1−t2

R2
0

for t ≤ R0/c1,
xt+i(z0+z)

√
t2−R2

0/c2
1

R2
0

for t ≥ R0/c1.

The first term of Eq. (1.19) vanishes when the source-receiver distance in the
horizontal plane is such that r/R0 ≤ c1/c2. Above a critical distance when
r/R0 > c1/c2 this first term describes headwaves with an arrival time of thw =
r/c2 + cos θc (z + z0) /c1. An example of a response from a narrow angle re-
flection ( θ < θc) is shown in the upper panel of Fig. 1.9 where the reflected
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Fig. 1.9: Plot of the reflected response Gr as a function of time t for a narrow angle
reflection (θ = arctan (5/12), upper panel) and a wide angle reflection (θ =
arctan (9/6), lower panel). The solid line is the response to a delta function
pulse in the time domain, whereas the dashed line shows a response to a
wider pulse. Both source and receiver are positioned 60 unit lengths l from
the interface between the upper medium with wave velocity c1 and the lower
medium with c2 = 2c1.

response Gr is plotted as a function of time in units of l/c1, where l is the unit
length. Both source and receiver are positioned at a distance z0 = z = 60l from
the interface to the second medium with wave velocity c2 = 2c1. When the
source receiver distance is 50l, a reflected pulse is observed (solid line for the
infinite band, dashed line for a band-limited pulse) with an arrival time td, the
travel time of directly reflected waves. In the lower panel of this figure a wide
angle response is plotted when r = 180l. In this case a stretched head wave
with arrival time thw is observed before the arrival of the primary reflection.

For point sources instead of line sources the head waves have the same travel
time thw and their amplitude attenuates with the source receiver distance as
r−1/2L−3/2 [3]. In earthquake data these arrivals can, for example, be traced
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back to the Mohorovičić discontinuity, the interface between the earth’s crust
and mantle. Travel times and amplitudes are used to extract data on the lower
lying medium. However, interface roughness and other inhomogeneities influ-
ence head wave propagation.

1.4 This thesis

In this thesis we study the theory of wave propagation in inhomogeneous media
in search for answers to some questions in the field of waves in complex media,
both on a fundamental level and from the point of view of the imaging appli-
cations discussed in the previous sections. In general, we restrict ourselves to
scalar waves and media that are inhomogeneous in a sense that the constitu-
tive parameters change on length scales much smaller than the wavelength such
as sharp interfaces and small scale impurities. Throughout this thesis we use
scattering theory to describe wave propagation in these systems and disregard
absorption effects. These effects can be included at the cost of more complexity,
but they do not alter the basic physics that we are interested in. Although
much of the work is done with acoustic waves in mind, the results apply to any
type of classical scalar waves. We intend to describe properties of wave prop-
agation in inhomogeneous media in terms of relatively simple physical pictures
and straightforward analytical and numerical models. The results are discussed
in the next four chapters.

In chapter 2 wave propagation in one-, two and three-dimensional homo-
geneously disordered media is described. Here the media are considered to be
infinitely large and filled with many randomly distributed similar scatterers that
have a finite size smaller than the wavelength and a different wave velocity com-
pared to the surrounding medium. The configuration-averaged intensity from a
monochromatic point source in this medium as a function of distance from the
source is calculated analytically, to investigate the transition from coherent to
diffusive wave propagation. Furthermore, energy transport in these systems is
described and the frequency dependence of properties like the mean free path,
diffusion constant and effective energy transport velocity is discussed. We derive
how general properties of the inhomogeneous medium, like the medium-scatterer
wave velocity ratio can be obtained from the properties of the scattered wave-
field.

In chapter 3 we apply the Landauer-Büttiker formalism that was originally
developed to describe electronic currents in mesoscopic structures to classical
waves. We use it to discuss diffuse energy currents through interfaces and yield

20



1. Introduction

a formalism that treats transport through interfaces between diffusive media in
terms of an interface resistance. We show how analogies between different types
of wave propagation can be exploited and apply this formalism to the thermal
boundary resistance and the transport of spin waves (magnons). In chapter 4
we apply the concept of the interface resistance to a diffuse imaging problem,
i.e. locating and characterizing a diffusive object embedded in a diffusive slab.
When a refractive index mismatch between object and medium is present, in-
terfaces affect the imaging process and they can be described by our formalism.
Potentially this description could be applied to medical imaging of biological
tissue.

The fifth and final chapter of this thesis deals with a numerical method, the
recursive Green function technique, to solve the classical wave equation in two-
dimensional layered media with lateral disorder. This method has been used
frequently to calculate electronic transport in (disordered) metals and semi-
conductors and we demonstrate that it can also be applied to classical wave
propagation problems in 2D by studying the influence of interface roughness on
head wave propagation.
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2. DIFFUSION OF MONOCHROMATIC CLASSICAL WAVES

2.1 Introduction

The ongoing interest in the field of classical waves in complex media is caused by
the importance of detection and imaging techniques based on wave propagation
and scattering. This ranges from electromagnetic waves in optical and near in-
frared tomography [1] and microwave radars [2] to acoustic waves in ultrasonics
[3] and geophysics [4]. Complexity is often associated with inhomogeneities that
cause scattering which considerably complicates most imaging processes. How-
ever, when used cleverly, the scattered field can also be used to improve imaging
[5]. Although length scales (with respect to the wavelength) and the degree of
the disorder may vary considerably from field to field, methods and results have
been shown to be interchangeable without much difficulty [6]. Recent topics
of interest include localization of classical waves [7, 8], the transition from bal-
listic to diffusive wave propagation [9, 10], acoustic time-reversal imaging [11],
etc. Direct simulation by the exact solution of a well-known Helmholtz wave
equation for a given realization of the medium is often the method of choice for
given applications. The drawbacks of the brute force computational approach
are the limited system size and statistics that can be achieved with given com-
puter resources as well as the difficulty to distill general principles out from the
plethora of output data. The need for simple models with transparent results
therefore remains.

An analytic theory of wave propagation in disordered media necessarily re-
lies on simple model scatterers, for which point scatterers, i.e. (regularized) δ
functions in real space, are often chosen [12, 13]. Unfortunately, the scatter-
ing response of a single point scatterer can become non causal, a pathological
behavior that can not be solved by a simple momentum cutoff [14]. Especially
for the study of the frequency dependence over a wider range it is therefore
necessary to use more realistic model scatterers.

In this chapter we study a simple but not unrealistic experiment for the
determination of the scattering properties of scalar waves in a disordered bulk
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material. A signal is emitted by a source and detected by a receiver, both
embedded in the medium at sufficiently large distances from the boundaries.
Ultimately, we are interested in the detector signal caused by a pulsed (broad-
band) signal emitted by the source. After a first arrival we then expect the
so-called coda that arrives at later times due to multiple scattering at the ran-
dom scatterers [15]. However, combining both the effects of multiple scattering
and the full frequency dependence of the scattering processes renders an analyt-
ical treatment difficult without additional approximations, such as a complete
neglect of the frequency dependence of the scattering amplitudes when fitting
the diffusive halo. In order to understand how to justify certain approximations
and eventually find better ones, we have carried out a study of the frequency
dependence of the scattering properties of random media. We concentrate on
the steady state in the presence of strictly monochromatic sources, which dis-
tinguishes the present work from related studies of the propagation of narrow
band pulses [16, 17]. As main results we obtain the frequency dependence of
macroscopic effective medium properties such as the mean free path and the
diffusion constant that depend on the microscopic parameters of the random
scatterers.

When the ratio between source-receiver distance and mean free path is small,
wave propagation is predominantly ballistic. When this ratio is large, energy
and intensity propagation is governed by the diffusion equation [13, 16]. Both
these regimes are well understood. However, many imaging applications operate
on length scales where the mean free path and the source-receiver distance are
comparable. This is especially the case in geophysics where mean free paths
range from a few hundred meters up to tens of kilometers [18]. The behavior at
this crossover regime between ballistic and diffuse wave (intensity) propagation
is of considerable interest [9] and also subject of the present study.

In this chapter we present an analytical formalism on monochromatic wave
intensity and energy propagation in one-dimensional, two-dimensional and three-
dimensional (3D) homogeneously disordered media using realistic model scat-
terers. We develop our formalism in real space, using a point source assumption,
instead of incoming plane waves, an approach that is more natural for acoustic
waves, but not often used in this field [19]. We determine the relative contri-
butions of diffusively and coherently propagated waves as the source-receiver
distance increases. We did not find many theoretical studies of wave propaga-
tion in two dimensional random media in the literature [6, 10, 20], although
several experiments on quasi-2D systems have been carried out [10, 16, 21].
Another possible test for our 2D theory is comparison with numerical studies,
which for very large systems are much cheaper than in the 3D case.

26



2. Diffusion of monochromatic classical waves

The remainder of this chapter is organized as follows. In sections 2.2-2.4
we start by defining our model system and the basic equations, addressing the
scattering matrices of single scatterers and discussing the average amplitude
propagators in the frequency domain. The intensity, energy flux, and energy
density are discussed in section 2.5. Results on the frequency dependence of the
diffusion constant and its dependence on the model parameters are discussed
in section 2.6. In section 2.7 (that is not part of Ref. [22]) we discuss how the
time-domain autocorrelator can be obtained from the results in the frequency
domain. Generally, the results for 1D systems are easily obtained, whereas our
results for 3D systems agree with findings previously reported by others. The
mathematics in the 2D case is not trivial, however, and the derivations are
summarized in the Appendix. We end with the conclusions.

2.2 Definitions and basic equations

2.2.1 Microscopic equations

We describe the propagation of (scalar) acoustic waves in a microscopic model
system. Specifically, we consider a 1D, 2D, or 3D acoustic medium with wave
velocity c0 and a mass density ρ0. The medium contains n randomly distributed
scatterers per unit length, area, or volume and we treat the dilute limit in which
the average distance between scatterers is much larger than their radius a. The
internal wave velocity of a scatterer is cint and, for simplicity, the difference
in mass density with the surrounding medium is disregarded. The waves are
emitted by a monochromatic point source oscillating at frequency ω positioned
at the origin. The wave amplitude ψω, related to the pressure by pω = ∂tψω

and to local particle velocity by vω = −ρ−1
0 ∇ψω, then obeys the wave equation(

∇2 − c−2 (r) ∂2
t

)
ψω (r; t) = −Qρ0δ

(d) (r) cos (ωt) . (2.1)

The source term chosen here corresponds to a volume injection term, with δ(d)

the Dirac delta function and d the dimension. The source emits plane waves for
1D, cylindrical waves for 2D and spherical waves for 3D media. In all cases Q is
in units of length per unit time. The wave velocity profile of the entire medium
c (r) contains the information of the positions of the scatterers (in 1D r = x).

The Green function of the Helmholtz equation (2.1) in the real space and
frequency domain reads(

∇2 + κ2
0 − V (r;ω)

)
G (r, r′;ω) = δ(d) (r− r′) , (2.2)
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2.2. Definitions and basic equations

where κ0 = ω/c0, the length of the wave vector in the homogeneous medium.
V (r;ω) is the scattering or impurity potential, a sum over all individual scat-
tering potentials

V (r;ω) = κ2
0

(
1− γ−2

) N∑
i=1

Θ(a− |r− ri|) . (2.3)

Θ is the Heaviside step function, with Θ (x) = 0 when x < 0 and 1 otherwise.
The velocity contrast is defined as γ = cint/c0 so that the single scatterer
potential is “attractive” when γ < 1 and “repulsive” when γ > 1. Eq. (2.3)
describes a spherical potential, however, the precise shape is not relevant when
the scatterers are sufficiently small compared to the wave length.

The amplitude of the wave field is related to the Green function

ψω (r; t) = −Qρ0 Re
{
e−iωtG (r, r′ = 0;ω)

}
. (2.4)

The intensity Iω (r; t) is the square of this expression. Related physical proper-
ties are the energy flux

Fω (r; t) = − 1
ρ0

∂tψω (r; t) ∇ψω (r; t) , (2.5)

and the energy density

Wω (r; t) =
1

2ρ0

(
(∇ψω (r; t))2 + c−2 (r) (∂tψω (r; t))2

)
, (2.6)

recognized as the sum of the potential and kinetic energy contributions respec-
tively. For a monochromatic source with frequency ω these observables contain
a time independent contribution and a second term oscillating with frequency
2ω. We concentrate on the constant part by time averaging over one period.
Expressed in terms of the Green function this yields

Iω (r) =
Q2ρ2

0

2
|G (r, r′ = 0;ω)|2 , (2.7)

Fω (r) = −Q
2ρ0ω

2
Im {G (r, r′ = 0;ω)∇G∗ (r, r′ = 0;ω)} , (2.8)

Wω (r) =
Q2ρ0

4

(
|∇G (r, r′ = 0;ω)|2 +

ω2

c2 (r)
|G (r, r′ = 0;ω)|2

)
. (2.9)
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2. Diffusion of monochromatic classical waves

2.2.2 Macroscopic equations

The properties of the wave field depend, via the Green function, on the exact
configuration of scatterers. However, in large systems, different realizations of
the ensemble give similar responses (ergodicity). The similarities in the response
can be studied by calculating the configurational average. This average is the
connection between the microscopic description and the macroscopic (effective)
medium properties.

The macroscopic (diffusively scattered) intensity of pulsed sources is some-
times described by the diffusion equation

∂t 〈I (r; t)〉 = D∇2 〈I (r; t)〉 , (2.10)

where the brackets denote the configuration average and D is the diffusion con-
stant. In spite of neglecting the frequency dependence of the diffusion constant
in this case, this approximation is known to work well in cases where the source
receiver distance is much larger than the mean free path and the incoming
pulse is a narrowband signal [13, 16]. In the case of a narrowband pulse, one
can also write a transport equation for a wave packet with some inner and outer
frequencies. In this way the frequency dependence of D can be derived [17].

In order to obtain the steady-state diffuse intensity of a monochromatic wave
field, the diffusion equation (2.10) is insufficient. The energy density (and not
the intensity) of the wave field is the conserved property. Eq. (2.10) is therefore
only valid if the intensity is strictly proportional to the energy density. In
general, the averaged energy transport is governed by Fick’s first law

〈Fω (r)〉 = −D (ω)∇〈Wω (r)〉 , (2.11)

accounting for the frequency dependence of the diffusion constant. In the steady-
state problem and outside the monochromatic source the proper Laplace equa-
tion is

∇2 〈Wω (r)〉 = 0. (2.12)

2.3 Scattering matrices

Here we discuss the properties of a single model scatterer in the system (N = 1
in Eq. (2.3)). The response of a system containing a monochromatic source
(in the origin), a receiver (at r) and a single “s-wave” scatterer (at ri) can be
expressed in terms of Green functions of the homogeneous system (V = 0) [23]:

G (r, r′ = 0;ω) = G0 (r;ω) +G0 (|r− ri| ;ω) t0 (ω)G0 (r;ω) . (2.13)
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2.3. Scattering matrices

This expression is valid in the far field limit (r, ri � λ) and when scattering is
isotropic (λ� a), where λ is the wavelength.

The transition (t-) matrix elements for s-wave scattering are related to the
scattering matrix elements by

t0 (ω) =


2iκ0R (ω) (1D),
2i (S0 (ω)− 1) (2D),
2πiκ−1

0 (S0 (ω)− 1) (3D).
(2.14)

In 1D, the s-wave scattering condition corresponds to equivalence of t0 for either
reflection or transmission. R (ω) is the reflection coefficient at a step disconti-
nuity, and can be obtained by imposing flux conservation across the scatterer
boundary. This gives [24]

R (ω) = e−iκ02aR0

(
1− eiκ04a/γ

)
1−R2

0e
iκ04a/γ

, (2.15)

where R0 = (γ − 1) / (γ + 1). By imposing the same condition we can derive an
expression for the scattering matrix element of the s-wave channel S0 (related
to the scattering phase shift δ0 by S0 = exp (i2δ0)). In 2D [25]

S0 (ω) = −γJ0 (κ0a/γ)H
(2)
1 (κ0a)− J1 (κ0a/γ)H

(2)
0 (κ0a)

γJ0 (κ0a/γ)H
(1)
1 (κ0a)− J1 (κ0a/γ)H

(1)
0 (κ0a)

. (2.16)

In 3D the Bessel (Ji) and Hankel (H(j)
i ) functions are replaced by the spherical

Bessel (ji) and Hankel (h(j)
i ) functions. The scattering matrix element then

simplifies to [24]

S0 (ω) = e−i2κ0a cot (κ0a/γ) + iγ

cot (κ0a/γ)− iγ
. (2.17)

In this calculation of the scattering matrices, the difference in mass den-
sity is disregarded. However, including this does not fundamentally alter the
calculation (the scattering matrix is still calculated from flux conservation).
Furthermore, the scattering matrices calculated here describe acoustic wave
scattering where only acoustic modes are allowed inside the scatterers. When
solid scatterers are considered extra mode conversions from acoustic waves to
shear waves back to acoustic waves occur which considerably complicates the
calculation. In principle, this calculation can be done [26] and it is known that
the extra mode conversions cause extra resonances in scattering properties of
the scattering object [27].
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2. Diffusion of monochromatic classical waves

2.4 The configuration-averaged propagator

Now we switch to the case of multiple scattering at the proposed model scatter-
ers. The wave propagator in a disordered medium after configuration averaging
is dressed with a self-energy Σ. In reciprocal space it reads [13]

〈
G
(
k,k′;ω

)〉
=

1
κ2

0 − k2 − Σ (k;ω)
(2π)d

δ(d) (k− k′) . (2.18)

When n, the density of scatterers, is low, interference between multiply scattered
waves by different sites may be disregarded. In this “single site approximation”
the self-energy does not depend on k and it is simply given by [13]

Σ (ω) = nt0 (ω) . (2.19)

This approximation does not restrict the scattering strength since t0 is the
full scattering matrix of the single scatterer. Interference effects from multiple
scattering at different scatterers cause localization known to be important in
1D (where the localization length is of the order of the mean free path) and
in 2D media (where the localization length is a transcendental function of the
mean free path). In 3D, localization can be disregarded except for very strong
scattering media [7]. Here we restrict ourselves to purely non-localized transport
phenomena, bearing in mind that we can always find a region where this type
of transport is dominant.

Fourier transforming Eq. (2.18) with self-energy given by Eq. (2.19) to real
space gives the averaged Green function that depends only on the source-receiver
distance (G (r;ω) = 〈G (r, r′ = 0;ω)〉). In 1D the amplitude propagators are
exponentially damped plane waves

G (|x| ;ω) =
1

2iκe (ω)
eiκe(ω)|x|, (2.20)

in 2D they are cylindrical:

G (r;ω) =

{
− i

4H
(1)
0 (κe (ω) r) if ω > 0,

i
4H

(2)
0 (−κe (ω) r) if ω < 0,

(2.21)

and in 3D spherical

G (r;ω) =
−1
4πr

eiκe(ω)r, (2.22)
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2.5. The configuration-averaged intensity end energy

[6]. In Eqs. (2.20-2.22) κe is the “renormalized” effective wave vector

κe (ω) =
√
κ2

0 − nt0 (ω) ≡ sgn (ω)κr (ω) + i
1

2`f (ω)
. (2.23)

κr (ω) = |Re {κe (ω)}| and `−1
f (ω) = 2 |Im {κe (ω)}|, the mean free path. We

retrieve the Green functions for the homogeneous systems (G0) by letting n or
t0 go to zero. Properties of the averaged response to a pulsed signal can be
studied by calculating the Fourier transform to the time domain, as was done
in Refs. [14] and [28].

2.5 The configuration-averaged intensity end energy

We derive here the configuration averaged intensity, energy flux and energy
density in the frequency domain.

2.5.1 The Bethe-Salpeter equation

Ensemble averaging the intensity of Eq. (2.7) gives us

〈Iω (r)〉 =
Q2ρ2

0

2
Π (r;ω) , (2.24)

where Π (r;ω) =
〈
|G (r, r′ = 0;ω)|2

〉
is the average of the squared Green func-

tion propagator. It is given by

Π (r;ω) = Π0 (r;ω) +
∫
ddr1d

drddr3d
dr4 〈G (r, r1;ω)〉 〈G∗ (r, r2;ω)〉

× Γ (r1, r2, r3, r4;ω) 〈G (r3, r′ = 0;ω)G∗ (r4, r′ = 0;ω)〉 .
(2.25)

This is the Bethe-Salpeter equation in position space, where Π0 is the coherent
intensity (Π0 = |〈G〉|2) and Γ is the irreducible vertex function. The lowest
order approximation that still accounts for multiple scattering is

Γ (r1, r2, r3, r4;ω) = nΓ (ω) δ(d) (r1 − r3) δ(d) (r1 − r2) δ(d) (r3 − r4) , (2.26)

reducing the Bethe-Salpeter equation to

Π (r;ω) = Π0 (r;ω) + nΓ (ω)
∫
ddr1Π0 (|r− r1| ;ω) Π (r1;ω) . (2.27)
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2. Diffusion of monochromatic classical waves

In reciprocal space this integral equation becomes a geometric series that can
be summed as

Π (k;ω) =
Π0 (k;ω)

1− nΓ (ω) Π0 (k;ω)
. (2.28)

In order to be able to calculate the Fourier transform of Π (k;ω), an ex-
pression for Π0 (k;ω) is needed. It is calculated as the Fourier transform of the
coherent intensity and this results in 1D in

Π0 (k;ω) =
2`3f(

(2κr`f )2 + 1
)(

(k`f )2 − 1
) , (2.29)

in 2D in

Π0 (k;ω) =
`2f
π

arcsin
(√

(2κr`f )2−(k`f )2√
1+(2κr`f )2

)
√

1 + (k`f )2
√

(2κr`f )2 − (k`f )2
, (2.30)

and in 3D in [13]

Π0 (k;ω) =
`f
4π

arctan (k`f )
k`f

. (2.31)

The calculation of the vertex function Γ is discussed in the next subsection.

2.5.2 Energy conservation and the Ward identity

It is well known that for a given approximation for the self-energy, the vertex
correction cannot be freely chosen. Here we take advantage of the flux conser-
vation constraint to obtain Γ without additional microscopic calculations. The
energy flux from the monochromatic source (on average) points outwards. In
the steady state case the following condition must hold for the averaged flux in
direction n:

〈n · Fω (r)〉 ∝ 1
rd−1

n · r̂, (2.32)

where r̂ is the unit vector in the radial direction. In 1D this condition reads

〈Fω (x)〉 ∝ sgn (x) . (2.33)

The microscopic expression for the average energy flux is

〈n · Fω (r)〉 = −Q
2ρ0ω

2
Im {〈G (r, r′ = 0;ω)n ·∇G∗ (r, r′ = 0;ω)〉}

= −Q
2ρ0ω

2
Im
{

′
Πn (r;ω)

}
, (2.34)
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which defines the function
′
Πn. The vertex function is the same as for the

intensity, so we can express
′
Πn in reciprocal space as

′
Πn (k;ω) =

′
Πn

0 (k;ω)
1− nΓ (ω)Π0 (k;ω)

. (2.35)

′
Πn

0 (k;ω) is the coherent energy flux in direction n that is given by the Fourier
transform of

′
Πn

0 (r;ω) = G (r;ω)n ·∇G∗ (r;ω) . (2.36)

In 2D and 3D the averaged microscopic expression for the energy flux should
match the macroscopic condition

Im
{

′
Πn (r;ω)

}
= − C

rd−1
n · r̂, (2.37)

which in reciprocal space reads

Re
{

′
Πn (k;ω)

}
= −

(
n · k̂

)
2d−1π

C

k
, (2.38)

where C is real and depends on frequency and the model parameters. Π0 (k;ω)

is an even function of k. We know how
′
Πn

0 (k;ω) depends on k, as the Fourier
transform in 2D reads

′
Πn

0 (k;ω) = −
(
n · k̂

)
2πi

∞∫
0

drJ1 (kr) rG (r;ω) ∂rG
∗ (r;ω) , (2.39)

and in 3D

′
Πn

0 (k;ω) = −
(
n · k̂

)
4πi

∞∫
0

drj1 (kr) r2G (r;ω) ∂rG
∗ (r;ω) . (2.40)

The Taylor series of
′
Πn

0 (k;ω) around k = 0 only contains odd terms. So, in the
limit that k → 0, condition (2.38) can only be fulfilled by Eq. (2.35) when

nΓ (ω) = Π−1
0 (k = 0;ω) . (2.41)
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2. Diffusion of monochromatic classical waves

In 1D showing that condition (2.33) can only be fulfilled when Eq. (2.41) is
fulfilled as well is straightforward. The Ward identities are relations between
self-energy and vertex corrections. We can identify Eq. (2.41) as the Ward
identity for our problem. We now have all the ingredients to calculate the
Fourier transform of Eqs. (2.28) and (2.35) to calculate the averaged intensity
and energy flux respectively.

2.5.3 Flux

Using the Taylor expansions in the limit k → 0, we find an expression for C
(from Eq. (2.37)) in 2D and 3D:

C =

∞∫
0

dr Im {G (r;ω) ∂rG
∗ (r;ω)} rdd−1

1
2Π−1

0 (k = 0;ω) ∂2
kΠ0 (k;ω)|

k=0

. (2.42)

The average flux in 1D is obtained by directly Fourier transforming Eq. (2.35):

〈Fω (x)〉 =
Q2ρ0 |ω|

8
κr

κ2
r + 1/ (2`f )2

sgn (x) . (2.43)

We show how to calculate C in 2D case in the Appendix. With the result, the
projection of the average flux becomes

〈n · Fω (r)〉 =
Q2ρ0 |ω|

8π2

arctan (2κr`f )
r

n · r̂, (2.44)

while in 3D calculating C from Eq. (2.42) is straightforward and the projection
of the average flux then reads

〈n · Fω (r)〉 =
Q2ρ0 |ω|

2
κr

(4π)2 r2
n · r̂. (2.45)

Letting `f →∞ (κr → |κ0|) recovers the flux of a monochromatic source in an
unperturbed medium.

It is interesting to see that, in contrast to the 3D case, in 1D and 2D the
average flux depends on both the mean free path and the real part of the effective
wave vector. So the scattering mean free path limits the energy flux in 1D and
2D, but not in 3D. In a strongly scattering 2D medium, in which the wave energy
is not (yet) localized, the dependence on the arctangent should be observable.
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2.5. The configuration-averaged intensity end energy

2.5.4 Intensity

The total average intensity is proportional to the propagator Π (r;ω), which can
be obtained by calculating the Fourier transform

Π (r;ω) =
∫

ddk

(2π)d

eik·r

Π−1
0 (k;ω)−Π−1

0 (k = 0;ω)
. (2.46)

Π0 (k) is given by Eq. (2.29) in 1D, Eq. (2.30) in 2D, and Eq. (2.31) in the 3D
case. In 1D and 2D this integral diverges because in the steady state case with
a monochromatic source, energy does not escape fast enough to infinity due
to the scatterers. This is analogous to the fact that the Poisson equation (the
diffusion equation in steady state with source term) for a line or planar source
has no well-defined solution.

The gradient of the intensity exists in all cases. In 1D it is constant and the
derivative of Π (x;ω) is given by

∂xΠ (x;ω) = −sgn (x)
1

4`f
1

κ2
r + 1/ (2`f )2

. (2.47)

The gradient of Π in 2D is expressed as an integral by

∇Π (r;ω) = −r̂

∞∫
0

dk

2π
k2J1 (kr)

Π−1
0 (k;ω)−Π−1

0 (k = 0;ω)
≡ r̂f (r;ω) ,

which defines a function f (r;ω), that represents the gradient in the r̂ direction.
We split this up into a coherent (coh) and a “totally diffusive” (td) part and a
crossover correction (cr)

f (r;ω) = fcoh (r;ω) + ftd (r;ω) + fcr (r;ω) . (2.48)

The coherent part is connected to the unscattered intensity, therefore

fcoh (r;ω) = ∂r |G (r;ω)|2

= −1
8

Re
{

(κr + i/2`f )H(1)
1 ((κr + i/2`f ) r)H(2)

0 ((κr − i/2`f ) r)
}

.

(2.49)

In the Appendix it is shown that

ftd (r;ω) = −arctan (2κr`f )
π22κr`f

1
r
g−1 (2κr`f ) , (2.50)
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with
g (2κr`f ) = 1− 1

(2κr`f )2
+

1
2κr`f arctan (2κr`f )

. (2.51)

This part decays as 1/r, much slower than the coherent and crossover contribu-
tions. It is the part that describes the intensity gradient when energy transport
is completely governed by Fick’s first law, so we refer to this term as the “to-
tally diffusive” part. When the total gradient is approximated by the just the
sum of the coherent and the totally diffusive contribution, the gradient first
decays exponentially until the source-receiver distance is approximately two to
three mean free paths and then the 1/r decay is dominant. However, in this
approximation it is neglected that close to the source the diffusive field is dif-
ferent compared to the field far away from the source. The third term of f , the
crossover term, describes this difference. In the appendix it is shown that

ftd (r;ω) + fcr (r;ω) = −
∞∫
0

dk

2π
J1 (kr) k2Πsc (k;ω) , (2.52)

where

Πsc (k;ω) =
Π−1

0 (k = 0;ω)Π0 (k;ω)
Π−1

0 (k;ω)−Π−1
0 (k = 0;ω)

. (2.53)

We did not find an analytical expression for the integral in Eq. (2.52) and thus
we need to evaluate it numerically. The crossover term vanishes for r/`f → 0
or r/`f � 1 and peaks at r/`f ≈ 0.3. Only around this value of r/`f , is the
gradient (in absolute value) overestimated significantly (up to 25%) when we
approximate it by just the sum of coherent and “totally diffusive” terms.

In 3D the Fourier transform (2.46) converges and the intensity is well defined.
We rewrite

Π (r;ω) =
1

16π2r`f

(
`f
r
e−r/`f + 3 + e−r/`fh (r/`f )

)
, (2.54)

where

h (r/`f ) =

∞∫
0

dξ

(
4 (ξ + 1)2

(2 (ξ + 1)− ln (1 + 2/ξ))2 + π2
− 1

)
e−ξr/`f . (2.55)

We were also not able to solve Eq. (2.55) analytically. In the 3D case, the
intensity is a function of `f only (it does not depend on κr). Eq. (2.54) consists
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2.5. The configuration-averaged intensity end energy

Fig. 2.1: r (Πcoh + Πtd) in units of
(
16π2`f

)−1
(dotted line, right axis) and

Πcr/ (Πcoh + Πtd) (solid line, left axis) as a function of r/`f (the source-
receiver distance in number of mean free paths) for the 3D disordered
medium.

of three terms (Π = Πcoh + Πtd + Π cr). The first term is proportional to the
coherent intensity, the second term is the algebraically decaying diffuse term
(the only term that is not exponentially decaying). We plot the sum of the first
and second term multiplied by r (in units of 1/

(
16π2`f

)
) in Fig. 2.1 as a function

of r/`f (on the right axis). The third term is again the crossover correction to
the total intensity if we approximate Π by only the first two terms. A plot of
the crossover correction divided by the sum of the first two terms is shown in
Fig. 2.1 (left axis). The crossover term vanishes for r/`f → 0 or r/`f � 1 and
peaks at r/`f ≈ 0.3. It can thus be concluded that the intensity can very well be
approximated by just the sum of coherently and totally diffusively propagated
intensities, as the total intensity in 3D is never overestimated by more than 5%
using this approximation.

To complete this discussion we show the final results for the gradient of the
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average intensity in 1D and 2D:

∂x 〈Iω (x)〉 = −Q
2ρ2

0

2
sgn (x)

1
4`f |κe|2

, (2.56)

∇〈Iω (r)〉 ≈ r̂
Q2ρ2

0

2
(fcoh (r;ω) + ftd (r;ω)) . (2.57)

where fcoh and ftd are given by Eqs. (2.49) and (2.50), respectively. The average
intensity in 3D is approximated well by

〈Iω (r)〉 ≈ Q2ρ2
0

2
1

16π2r`f

(
`f
r
e−r/`f + 3

)
. (2.58)

We obtain these expressions from our first-principles calculations that enable us
to study not only the ballistic and diffusive limits, but also the crossover regime
when r/`f ≈ 1. From this we observe that we can approximate the average
intensity well by only the coherent and diffusive contributions. Furthermore,
we saw that already at r/`f ≈ 0.3 the diffusive intensity is higher than the
coherent intensity. This does not mean that when a pulsed source is used we
should see signs of the crossover to the diffusive regime at this point because
the diffuse peak is much broader than the coherent peak so this crossover point
is at larger values of r/`f as was previously reported [9]. Obviously, our present
model system has been assumed to be boundless. In a finite slab geometry
boundary scattering, which is beyond the scope of this study, would of course
affect the results.

2.5.5 Energy density

To derive a first-principles expression for the diffusion constant from Fick’s Law
(2.11), we still have to calculate the average energy density given by

〈Wω (r)〉 =
Q2ρ0

4

(〈
|∇G (r, r′ = 0;ω)|2

〉
+
〈
ω2c−2 (r) |G (r, r′ = 0;ω)|2

〉)
.

(2.59)
The first term is the average potential energy density and the second term
corresponds to the kinetic energy.

We start with the potential energy term in 2D and 3D. We define〈
|∇G (r, r′ = 0;ω)|2

〉
=

′′
Π (r;ω) . (2.60)
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2.5. The configuration-averaged intensity end energy

The Fourier transform of
′′
Π0(= |〈∇G〉|2) diverges, which means that we can not

use the same procedure as we used for the intensity and the flux. According to
the Bethe-Salpeter equation

′′
Π (r;ω) =

′′
Π0 (r;ω) + Π−1

0 (k = 0;ω)
∫
ddr1

′′
Π0 (r1;ω) Π (|r− r1| ;ω) . (2.61)

This integral diverges as well because of the strong singularities in
′′
Π0 (also

when the gradient is calculated in the 2D case). When averaging, scatter-
ers are effectively moved around the medium, and for every configuration, the
contribution to the total average response is calculated. However, because of

the stronger singularities in
′′
Π0 (as every scatterer becomes a new source of

spherical waves) this is not possible when the receiver position coincides with a
scatterer position. The reason for this is the point receiver assumption and the
far field scattering approximation. We can circumvent this problem by omitting
a small volume/area around r1 with radius of approximately one wavelength.
This slightly modifies the probability distribution function form “completely
random” to “non-overlapping” (with the receiver) in order to avoid the diver-

gencies. We then find that
′′
Π is given by:

′′
Π (r;ω) = |κe|2 Π (r;ω) . (2.62)

In principle, our original expression for Π should now be multiplied by a factor
exp (−ro/`f ), where ro is the radius of omission so as long as the mean free path
is longer then a few wavelengths omitting this small volume does not influence
the results. Furthermore, even if scattering is strong and the mean free path is
of the order of the wavelength, this factor is not important.

The second term of Eq. (2.59), the kinetic energy, can be split:〈
ω2c−2 (r) |G (r, r′ = 0;ω)|2

〉
= κ2

0Π (r;ω)−
〈
V (r;ω) |G (r, r′ = 0;ω)|2

〉
.

(2.63)
Now the condition that the scatterer position cannot coincide with the receiver
position ensures that the second term vanishes, due to the step function in the
potential (2.3). We can thus just disregard this term.

In 1D proving that

′′
Π (|x| ;ω) = |κe|2 Π (|x| ;ω) , (2.64)
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always holds is straightforward. We have to impose the condition the the re-
ceiver can not coincide with a scatterer to ensure that〈

ω2c−2 (x) |G (x, x′ = 0;ω)|2
〉

= κ2
0Π (|x| ;ω) . (2.65)

Only under the restrictions mentioned here, can the averaged energy density in
1D, 2D, and 3D be expressed as being proportional to the intensity

〈Wω (r)〉 =
1

2ρ0

(
|κe|2 + κ2

0

)
〈Iω (r)〉 . (2.66)

and this thus means that only the gradient of the energy density is well defined
in the 1D and 2D cases.

2.6 The diffusion constant

Using the Bethe-Salpeter equation with the Ward identity we find expressions
for the average energy flux (2.43-2.45), the (gradient of) the average intensity
(2.56-2.58). The average energy density is just proportional to the average
intensity (2.66). When r/`f � 1 we expect (2.11) to hold and, as the gradient
of the average energy density and the average flux are now known, we find
an expression for the diffusion constant from Eq. (2.11). This means that the
diffusion constant can be written as

D (ω) =
1
d
ceff (ω) `f (ω) , (2.67)

where in the 1D and 3D case

ceff (ω) = c0
2κr |κ0|

κ2
r + 1/ (2`f )2 + κ2

0

, (2.68)

and in the 2D case

ceff (ω) = c0
2κr |κ0|

κ2
r + 1/ (2`f )2 + κ2

0

g (2κr`f ) , (2.69)

where g (2κr`f ) is given by Eq. (2.51). The effective transport velocity in 2D
reduces to Eq. (2.68) in the weak scattering limit.

We can now investigate the frequency dependence of the diffusion constant
for a medium with monodisperse scatterers. We relate the scatterer density n
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2.6. The diffusion constant

to the average distance between scatterers (〈ds〉) so that n = 〈ds〉−1 in 1D,
n = 4π−1 〈ds〉−2 in 2D and n = 3 (4π)−1 〈ds〉−3 in 3D. Let us focus on the
diffusion constant of the 2D medium. We write

aκe (aκ0) =

√
(aκ0)

2 − 4
π

(
a

〈ds〉

)2

t0 (aκ0), (2.70)

so that the dimensionless property aκe depends on the dimensionless frequency
κ0a (= ωa/c0) and two dimensionless model parameters, i.e. the velocity con-
trast γ(= cint/c0) and the average distance between scatterers in number of
scatterer radii (〈ds〉 /a). The real and imaginary parts of aκe are needed to
obtain the diffusion constant

aκr (aκ0) = |Re {aκe (aκ0)}| , (2.71)

`f (aκ0)
a

=
1

2 |Im {aκe (aκ0)}|
. (2.72)

The diffusion constant for a 2D medium is plotted in Fig. 2.2. The rele-
vant frequency range is from κ0a(= ωa/c0)= 0 to κ0a ≈ π/2, as for higher
frequencies the isotropic scatterer assumption is no longer valid. For the plot,
the density of scatterers was determined by setting 〈ds〉 /a = 10, increasing this
value shifts the curves up. The shape of the curves is predominantly determined
by the mean free path. The effective transport velocity ceff only deviates con-
siderably from c0 when the scatterer velocity and the frequency are small and
the scatterer density high. For the diffusion constants shown in the plot, this
is only the case when γ = 0.2. This is also the only case that shows resonances
in the relevant frequency range. Further lowering the internal velocity of the
scatterers, would “pull in” more resonances in the relevant frequency range.
These resonances appear because of resonances in the mean free path. When
the scatterer-medium velocity ratio is increased, the mean free path (and thus
the diffusion constant) increases until the ratio is larger than unity and then
it drops again. However, increasing γ above 10, does not change the diffusion
constant much in the frequency range we discuss.

The diffusion constants in 1D and 3D media show the same behavior. Of
course, the resonances at low velocity, are caused by the fact that all scatterers
are assumed to be of equal size. When solid scatterers in a fluid are considered
even more resonances are expected to show up [27]. When scatterer sizes (or
velocities) are allowed to vary, the resonances are averaged out.

When the scatterer velocity is zero we obtain an impenetrable model scat-
terer. This is not a useful model scatterer, as in the low frequency range the
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2. Diffusion of monochromatic classical waves

Fig. 2.2: Diffusion constant of the 2D disordered medium in units of c0a, as a function
of the dimensionless frequency κ0a for four different scatterer-medium veloc-
ity ratios (γ). The scatterer density is determined by setting 〈ds〉 /a = 10.

mean free path (and thus the diffusion constant) differ considerably from the
penetrable scatterer case. The reason for this is that the limits for ω → 0 and
γ → 0 do not commute, as

lim
ω→0

lim
γ→0

`f = const, (2.73)

while

lim
γ→0

lim
ω→0

`f = ∞. (2.74)

The effect of this is that at the longer wavelengths, `f for the impenetrable
scatterer is several orders of magnitude smaller than `f for non zero values of
γ.
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2.7. Time domain correlations in 3D media

2.7 Time domain correlations in 3D media

We are not totally restricted to the frequency domain, as the configuration
averaged intensity in this domain is related to autocorrelator in the time domain
by a Fourier transform. In this section (that is not part of Ref. [22]) we discuss
the properties of this correlator in 3D homogeneously disordered media. When
the source is a delta function the wave equation reads(

∇2 − c−2 (r) ∂2
t

)
ψδ (r; t) = −Qρ0δ

(3) (r) δ (t) , (2.75)

where the subscript δ denotes the impulse response in the time domain. The
configuration averaged autocorrelator 〈χδ〉 of the wave function ψδ is related to
the configuration averaged intensity propagator in the frequency domain by

〈χδ (τ)〉 ≡
∫
dt 〈ψδ (r; t+ τ)ψδ (r; t)〉 =

∫
dω

2π
e−iωτ

〈
|ψδ (r;ω)|2

〉
= ρ2

0Q
2

∫
dω

2π
e−iωτ

〈
|G (r, r′ = 0;ω)|2

〉
= ρ2

0Q
2

∫
dω

2π
e−iωτΠ (r;ω) . (2.76)

The analytical approximation for Π in 3D obtained in section 2.5

Π (r;ω) ' 1
16π2r

(
1
r
e−r/`f (ω) +

3
`f (ω)

)
, (2.77)

is a sum of the coherent and totally diffuse contributions and all frequency
dependence enters in the mean free path defined by Eq. (2.23). If we plot `f in
the relevant frequency range for an average distance of scatterers of 〈ds〉 /a = 10
(see Fig. 2.3) we see that resonances are present in the relevant frequency range
for low wave velocities of the scatterers. As long as the source-receiver distance
r is larger than the minima in `f (here approximately ten times the scattering
radius a), then the diffusive contribution of Π dominates the autocorrelation
function and this reduces to a transform of the inverse mean free path.

The configuration averaged autocorrelator is not expected to have any in-
teresting properties when the inverse mean free path depends smoothly on fre-
quency. However, when resonances are present, for example for velocity ratios
γ between 0 and (approximately) 0.2, this shows up in the autocorrelator. The
minima in the mean free path turn out to contribute most to the autocorrela-
tor. When the density of scatterers is low the inverse mean free path is well
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2. Diffusion of monochromatic classical waves

Fig. 2.3: Plot of the mean free path `f of the 3D homogeneously disordered medium in
units of the scatterer radius a as a function of the dimensionless frequency aκ0

for three different scatterer-medium velocity ratios γ. The scatterer density
was determined by setting 〈ds〉 /a = 10.

approximated by

a`−1
f ' 3

4π
a3

〈ds〉3
1
κ0a

Im {t0 (ω) /a} . (2.78)

In 3D the transition matrix is related to the scattering matrix by

t0 (ω) /a =
2πi
κ0a

(S0 (κ0a)− 1) , (2.79)

and the scattering matrix for the 3D s-wave scatterer from Eq. (2.17) can also
be written as a pole expansion [14]

S0 (κ0a) = e−i2κ0a
∞∏

n=0

(κ0a+ iβ)2 − ((2n+ 1) Ω0)
2

(κ0a− iβ)2 − ((2n+ 1) Ω0)
2 , (2.80)
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where Ω0 = πγ/2 and β = γ log (|(γ − 1) / (γ + 1)|) /2. The poles are located
at the internal resonances of the scatterers, and these are responsible for the
minima in the mean free path. These correspond to the maxima in the inverse
mean free path and when only these are taken into account the dominant term
in the autocorrelator can be approximated by a sum of peaks, so that

a`−1
f ∝ 1

(κ0a)
2

∞∑
n=0

δ (κ0a− (2n+ 1)Ω0) . (2.81)

Using this approximation in Eq. (2.76) yields for the configuration averaged
autocorrelator

〈χδ (τ)〉 ∝
∞∑

n=0

1
((2n+ 1) Ω0)

2 cos ((2n+ 1) Ω0τc0/a) , (2.82)

which are triangular oscillations as a function of the correlation time τ with a
period that is governed by the velocity ratio γ.

When we calculate the configuration averaged autocorrelator numerically
(see Fig. 2.4), we indeed see the triangular oscillations for low scatterer veloci-
ties. For the numerical Fourier transform we limit the bandwidth of the pulse
(smoothly) to the relevant frequency range, which yields a pulse that is approxi-
mately 5a/c0 wide. The oscillations are visible on a much longer time scale than
the correlator of the unscattered pulse or the correlator of the scattered pulse
in a medium with scatterers with a higher wave velocity (see the grey solid line
in Fig. 2.4 for example). We have seen here that the configuration averaged in-
tensity in the frequency domain contains information about the autocorrelation
function of the amplitude response, which helps in distilling information on the
medium from the response.

2.8 Conclusions

We have calculated the transport of energy and intensity in disordered 1D, 2D,
and 3D (infinite) media emitted by a monochromatic source. Using the ladder
approximation to the Bethe-Salpeter equation we explicitly show that the total
intensity is well approximated by the sum of the coherent and the fully developed
diffuse wave field for all source-receiver distances. The results for 3D disordered
systems agree with findings previously reported, except for the expression for
the intensity in the crossover regime, which has not been reported before. We
have obtained more new results studying energy and intensity propagation in
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2. Diffusion of monochromatic classical waves

Fig. 2.4: The configuration averaged autocorrelator as a function of the correlation
time τ for three different values of the velocity ratio γ. The inset shows an
enlargement for 0 < τ < 20a/c0.

2D system in detail. When compared to the 3D case, the 2D disordered system
shows interestingly different behavior: In 2D, the average energy flux depends
on the mean free path and the effective transport velocity depends differently in
terms of the scattering parameters. The (gradient of the) intensity as a function
of the source-receiver distance, on the other hand, behaves similarly in the 2D
and the 3D case. The monochromatic source enables us to investigate the fre-
quency dependence of the macroscopic diffusion constant where we particularly
focused on the influence of the finite size of the scatterers. For a monodisperse
distribution of scatterers shape resonances show up in the relevant frequency
range for low internal scatterer velocities (γ small). In this frequency range
(where scattering is expected to be isotropic) the dependence of the scattering
properties on frequency cannot be neglected. This means that descriptions of
broadband pulse propagation through these media should in principle incorpo-
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rate both frequency dependent and multiple scattering effects. The development
of a workable Ward identity in this case remains a challenge, however. Studying
the autocorrelator in the time domain also yields interesting results for resonant
scatterers, as resonances are responsible for long time-scale triangular oscilla-
tions in the autocorrelator. The period of these oscillations is directly related to
the velocity ratio γ. Finally, we want point out that our model describes trans-
port of scalar acoustic waves but results can be extended and many conclusions
should also apply to vector wave fields random media.

2.9 Appendix: Energy and intensity in 2D

In this appendix we derive the configuration-averaged intensity and energy flux
in a disordered 2D medium. Starting point is the 2D Green function propagator

G (r;ω) =

{
− i

4H
(1)
0 ((κr + i/ (2`f )) r) if ω > 0

i
4H

(2)
0 ((κr − i/ (2`f )) r) if ω < 0

. (2.83)

We use the properties

H
(2)
0 ((κr − i/ (2`f )) r) = H

(1)
0 ((−κr + i/ (2`f )) r) , (2.84)

and

H
(1)
0 ((±κr + i/ (2`f )) r) = −i 2

π
K0 ((∓iκr + 1/ (2`f )) r) , (2.85)

to express the Hankel functions (H(j)
0 ) in terms of modified Bessel function of

the second kind (K0). The Fourier transform of the coherent intensity

Π0 (k;ω) = 2π

∞∫
0

dr |G (r;ω)|2 J0 (kr) , (2.86)

is then obtained from Ref. [29] and using properties of the associated Legendre
polynomials [30] as

Π0 (k;ω) =
`2f
π

1
1 + (2κr`f )2

P
−1/2
−1/2 (u)

P
−1/2
1/2 (u)

, (2.87)

with

u =
1− (2κr`f )2

1 + (2κr`f )2
+

2k`f
1 + (2κr`f )2

. (2.88)
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This is can be rewritten as

Π0 (k;ω) =
`2f
π

arcsin
(√

(2κr`f )2−(k`f )2√
1+(2κr`f )2

)
√

1 + (k`f )2
√

(2κr`f )2 − (k`f )2
. (2.89)

Π0 (k;ω) is real, continuous and differentiable for all (real) k ≥ 0.
The flux in the 2D system is given by

〈n · Fω (r)〉 =
Q2ρ0ω

2
C

r
n · r̂, (2.90)

where C is the constant to be calculated:

C =

∞∫
0

dr Im {G (r;ω) ∂rG
∗ (r;ω)} r2

Π−1
0 (k = 0;ω) ∂2

kΠ0 (k;ω)|
k=0

. (2.91)

The term in the denominator is easily obtained

Π−1
0 (k = 0;ω) ∂2

kΠ0 (k;ω)
∣∣
k=0

= −`2f

(
1− 1

(2κr`f )2
+

1
2κr`f arctan (2κr`f )

)
.

(2.92)
The solution to the integral

∞∫
0

dr Im {G (r;ω) ∂rG
∗ (r;ω)} r2

= −sgn (ω)
4π2`f

∞∫
0

drr2 Im {(iκr + 1/ (2`f ))K0 ((−iκr + 1/ (2`f )) r)

×K1 ((iκr + 1/ (2`f )) r)}

= −sgn (ω)
4π2`2f

Im

{
2
(1 + i2κr`f )2

(1− i2κr`f )4
F

(
2, 2; 3; 1− (1 + i2κr`f )2

(1− i2κr`f )2

)}
, (2.93)

can be found from Ref. [29]. However, the proper solution (on the right Riemann
sheet) needs to be chosen in order to simplify the hypergeometric series F . One
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can check numerically that

∞∫
0

dr Im {G (r;ω) ∂rG
∗ (r;ω)} r2 = −sgn (ω)

4π2`2f
arctan (2κr`f )

×

(
1− 1

(2κr`f )2
+

1
2κr`f arctan (2κr`f )

)
.

(2.94)

Hence, C is given by

C =
sgn (ω)

4π2
arctan (2κr`f ) . (2.95)

The intensity is proportional to the propagator Π (r;ω), expressed in terms
of Π0 (k;ω) by the Fourier transform (2.46). As only the gradient of the intensity
is a well-defined property, we calculate

∇Π (r;ω) = −r̂

∞∫
0

dk

2π
k2J1 (kr)

Π−1
0 (k;ω)−Π−1

0 (k = 0;ω)
. (2.96)

This contains both the coherent and the scattered intensity. As the coherent
intensity is known, we focus on the scattered intensity by calculating

∇Πsc (r;ω) = −r̂

∞∫
0

dk

2π
J1 (kr) k2Πsc (k;ω) , (2.97)

with

Πsc (k;ω) =
Π−1

0 (k = 0;ω) Π0 (k;ω)
Π−1

0 (k;ω)−Π−1
0 (k = 0;ω)

. (2.98)

Eq. (2.97) is the integral to calculate numerically when we need to calculate
the gradient of the multiply scattered intensity. Πsc (k;ω) is a monotonically
decaying function with a maximum at k = 0, that vanishes as k → ∞. As the
Bessel function is also decaying with r, we know that for r/`f � 1

∇Πtd (r;ω) = −r̂
Πsc (k = 0;ω)

2πr
. (2.99)

and

∇Πtd (r) = −r̂
arctan (2κr`f )

π22κr`f

1
r
g−1 (2κr`f ) , (2.100)
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where
g (2κr`f ) = 1− 1

(2κr`f )2
+

1
2κr`f arctan (2κr`f )

. (2.101)

td stands for “totally diffusive”.
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3. DIFFUSE WAVE PROPAGATION AND INTERFACES

3.1 Introduction

Multiple scattering at small inhomogeneities in disordered (complex) media of-
ten limits the applicability of imaging and techniques with classical waves, such
as electromagnetic waves in radar applications and optical tomography [1], or
acoustic waves in ultrasonical imaging and geophysical exploration [2]. When
scattering due to disorder is so weak that a substantial ballistic signal remains,
larger objects with sufficient contrast in the constitutive parameters can be im-
aged by measuring travel times of pulsed sources. When the travel path of the
waves exceeds the transport mean free path, wave energy is propagated diffu-
sively, as explained in the introductory chapter, and this complicates imaging
and detection considerably [3]. A formalism that relates diffuse wave propa-
gation to the material properties in such systems in a simple physical picture
could be useful for quantitative imaging techniques. However, describing sys-
tems that contain both many scatterers (that are small on the wavelength scale)
and macroscopic objects using the diffusion equation requires careful consider-
ation of the boundary conditions at the interfaces [4].

In this chapter, we focus on the influence of (sharp) interfaces between dif-
fusive media on diffuse wave propagation. In a diffuse system it is possible to
define a local energy density on the length scale of the (scattering) mean free
path. This local energy density is position dependent and its gradient is related
to the energy flux. Across (sharp) interfaces between different media, the energy
density drops discontinuously. We develop a microscopic scattering formalism
that relates this drop to the energy density on both sides of the interface by
introducing an interface resistance. We start from a description of a point con-
tact for classical (scalar) waves between large reservoirs where the net energy
current is calculated by summing over propagating modes in a narrow constric-
tion between the reservoirs. In wide and transparent contacts, corrections to
the drift in the energy current become important and need to be quantified.
The results are not just restricted to diffuse classical waves only, but we also



3.2. Classical wave transmission through point contacts

discuss their implications on the description of heat transport across solid-solid
and solid-fluid boundaries. We end this chapter with a discussion on a different
type of wave propagation, i.e. spin waves in ferromagnetic metals and insulators.
We show that in this case the point contact description of spin wave transport
can be extended to interfaces between bulk ferromagnets as well, in order to
describe magnetization (spin) currents carried by spin waves through interfaces
between ferromagnets.

3.2 Classical wave transmission through point contacts

An important formalisms to describe charge transport in mesoscopic systems
such as narrow constrictions called quantum point contacts was developed by
Landauer and Büttiker [5]. It has been successful in describing conduction
quantization in electronic point contacts. Furthermore, the formalism is not
restricted to electronic transport but has been employed to describe photon [6],
phonon [7] and even magnon [8] propagation. Predictions of quantized heat
conduction by phonons and photons have later been confirmed [9, 10].

We consider the propagation of phonon modes in the configuration schemat-
ically drawn in Fig. 3.1, where two large reservoirs are connected through leads
and a narrow constriction (compared to the size of the reservoirs and the phonon
wavelengths). The reservoirs are equipartitioned phonon baths (black bodies),
and the net energy current from the left to the right reservoir flowing through
the leads is given by [7]

J =
1
2π

∫
dω~ω

nL (ω)
∑
α

Tα − nR (ω)
∑

β

Tβ

 . (3.1)

Here ni is the energy distribution function and the index i = L (R) stands for
the left(right) lead. For a bath at a certain temperature Θi, ni is the Planck
distribution function

ni (ω) =
1

exp
(

~ω
kBΘi

)
− 1

, (3.2)

where kB is the Boltzmann constant. When the reservoirs are externally pumped
at a certain frequency ω0 ni0δ (ω − ω0) has to be added to the thermal distri-
bution, where ni0 has units of frequency. The summation in Eq. (3.1) runs
over right(left) going quasi one-dimensional propagating modes in the real or
fictitious leads indexed by α (β) and Tα(β) is the probability that a mode is
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3. Diffuse wave propagation and interfaces

Fig. 3.1: Schematic representation of the reservoir-lead-interface-lead-reservoir config-
uration.

transmitted from left(right) to right(left). At thermal equilibrium with equal
temperatures (nL = nR) in the left and right reservoir the net energy current
vanishes, so that ∑

α

Tα =
∑

β

Tβ . (3.3)

When the coupling of the lead modes is considered to be adiabatic (all lead
modes are totally transmitted from the reservoirs into the leads) and in the
absence of an interface or scattering region (equal lead and reservoir properties
left and right) Tα = 1 and the summation can just be replaced by the number of
lead modes. The adiabatic regime is relevant for various quantized conduction
problems.

As mentioned before, the Landauer-Büttiker formalism is usually applied to
systems in which the number of propagating modes is small (narrow constriction
compared to the wavelength) [11]. Furthermore, the expression for the energy
current contains ~ which suggests that this is in principle a quantum mechanical
problem. In this section we show that we can make a connection between the
classical macroscopic energy transport and the quantum description and that,
in principle, in the classical case an expression for the energy current can be
derived without introducing ~.

Let us take a closer look at the configuration in Fig. 3.1. We start with the
energy density in the three-dimensional (3D) reservoirs of size Lx × Ly × Lz.
For simplicity we disregard the polarization degree of freedom of the vibrational
modes, so the medium under consideration is equivalent to a liquid. In a ho-
mogeneous liquid the acoustic modes are plane waves with frequency ωκ and
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3.2. Classical wave transmission through point contacts

wavevector κ described by

ψκ (r; t) = Aκ cos (κ · r−ωκt) , (3.4)

where the amplitude Aκ depends on the amount of energy carried by the mode.
The unit of Aκ is chosen to be Jsm−3, as ψ is related to pressure by p = ∂tψ and
to local particle velocity by v = −ρ−1

0 ∇ψ, with ρ0 the constant mass density.
In the continuum limit the dispersion ωκ = ωκ = ciκ and in chapter two we
obtained that the time-averaged energy density of the mode is

Wκ =
A2

κ

4ρ0

(
κ2 +

ω2

c2i

)
, (3.5)

where ci is the wave velocity and the index i = L(R) stands for the left(right)
reservoir. In this chapter we concentrate on time-averaged properties and steady
state situations, so for the time being we drop the bar that denotes time-
averaging.

The total energy density in reservoir i from the contributions of all modes is

Wi =
∑
κ

Wκ. (3.6)

When the energy is equipartitioned over degenerate modes, the amplitude does
not depend on the direction of κ. We assume that the volume of the bodies is so
large that the energy exchange does not significantly disturb their equilibrium,
so that they can be considered as baths (black-body radiators). For the moment
we do not specify the energy distribution function A2

κ. Inserting the dispersion
ω = ciκ we can rewrite Eq. (3.6)

Wi =
∑
κ

A2
κ

2ρ0

∫
dωκ2δ (ω − ciκ) , (3.7)

where δ is the Dirac delta function. In the continuum limit∑
κ

→ V

(2π)3
4π
∫
dκκ2, (3.8)

where V is the volume of the bath. This gives

Wi =
1

2π2

∫
dω
ω4

c5i

V A2
ω/ci

2ρ0

. (3.9)
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3. Diffuse wave propagation and interfaces

The energy density is an intensive property which means that A2
ω/ci

∝ 1/V .
When cL = cR = c the energy current from left to right (JL→R) is obtained

by summing over all modes propagating in the positive z-direction in the left
reservoir that propagate into the lead

JL→R =
κz>0∑

κ

Jκ =
κz>0∑

κ

SBathFκ · z. (3.10)

Here Fκ is the time averaged energy flux of a mode with wave vector κ

Fκ =
A2

κ

2ρ0

ωκκ, (3.11)

and SBath = Lx × Ly, the cross section of the reservoir perpendicular to the
transport direction. Again, we assume equipartition of energy over the modes
and we substitute the continuum dispersion relation to obtain

JL→R =
1
Lz

∫
dω

κz>0∑
κ

V A2
κ

2ρ0

κzcκδ (ω − cκ) . (3.12)

Let us assume that many lead modes are available, which is the same when
the wavelengths are much smaller than the width of the constriction. In this
regime the wave vector component parallel to the plane perpendicular to the
propagation direction is the proper “quantum number”, i.e. the mode index
α = κ‖. The integral over κz, with ẑ the transport direction, gives

JL→R =
1
2π

∫
dω
V A2

ω/c

2ρ0

ω2

c2

κ‖≤ω/c∑
κ‖

. (3.13)

The summation is just the number of propagating modes N (ω) in the constric-
tion. Denoting the amplitudes in the right reservoir with Bκ, the net energy
flow from left to right becomes

J = JL→R − JR→L =
1
2π

∫
dω

V

2ρ0

(
A2

ω/c −B2
ω/c

) ω2

c2
N (ω) . (3.14)

Eq. (3.14) relates the energy current to the properties of the reservoirs and
the leads. The energy density in the reservoir

Wi =
1

2π2

∫
dω~

ω3

c3i
ni (ω) . (3.15)
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3.2. Classical wave transmission through point contacts

enables us to relate the intensities of the modes with a certain frequency to the
distribution function

V A2
ω/ci

2ρ0

= ~
c2i
ω
ni (ω) . (3.16)

We are now in a position to compare our classical description with the Landauer-
Büttiker formalism. In the case of a simple wide constriction, the number of
modes depends only on the area, not on the geometrical details of the constric-
tion and N (ω) = SCω

2/
(
4πc2

)
. We can then relate the energy current to the

difference in energy density in the baths as

J =
1
2π

∫
dω~ω

SCω
2

4πc2
(nL (ω)− nR (ω)) =

SCc

4
(WL −WR) . (3.17)

The analogy with charge currents driven by a voltage difference is clear. 4/ (SCc)
is the geometric resistance of the constriction which is a result of the finite
number of modes. In electronic transport this is the Sharvin resistance [12].

When cL 6= cR there is a scattering interface at the position of the constric-
tion. We have to take into account the probability that a right-going mode from
the left reservoir is transmitted into the right lead and vice versa. The total
energy current then becomes

J =
1
2π

∫
dω~ω [nL (ω)− nR (ω)]

κ‖≤ω/ci∑
κ‖

Tij

(
κ‖
)
. (3.18)

The coefficients Tij are now energy transmission coefficients from side i to side
j. Transmission depends only on the modulus of κ‖ and for a Sharvin point
contact we can further simplify

κ‖≤ω/ci∑
κ‖

Tij

(
κ‖
)
→ SC

2π

ω/ci∫
0

dκ‖κ‖Tij

(
κ‖
)

=
SC

4π
ω2

c2i
2

1∫
0

dξξTij (ξ) , (3.19)

so that
κ‖≤ω/ci∑

κ‖

Tij

(
κ‖
)

= Ni (ω)T ij . (3.20)

which defines the average transmission coefficient T ij .
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3. Diffuse wave propagation and interfaces

With Eq. (3.20) the energy current is related to the energy density difference

J =
SCTLR

4c2L

(
c3LWL − c3RWR

)
. (3.21)

Drawing again the analogy with charge currents driven by a voltage difference
we observe that the equivalent of the potential is not the energy density, but
the property c3iWi. Since it is the difference in the energy distribution functions
which drives the current, and in this case this is not equivalent to the differ-
ence in energy density between the reservoirs. Or in other words, a heat flux
between two different materials is driven by a temperature difference and not
by a difference in energy density. The resistance RLR = 4c2L/

(
SCTLR

)
is now

a result from both interfacial scattering and the constriction. When TLR → 1
(which in our discussion comes down to cL → cR) we recover the geometrical
Sharvin resistance.

3.3 Energy transmission coefficients for wide contacts

3.3.1 The specular interface

We consider a constriction with a perfectly flat and sharp interface, i.e. a step
function discontinuity in the wave velocity cL to cR. Interface scattering is then
described by plane wave transmission and reflection at an infinite interface. The
amplitude transmission (tLR) and reflection (rLR) coefficients for the wave am-
plitudes are calculated using the boundary conditions of continuity of pressure,
p = ∂tψ, and continuity of the horizontal component of the particle velocity,
vz = −ρ−1

0 ∂zψ, across the interface. They depend on the angle of incidence, or
κ‖ [13]:

rLR =

√
ω2

c2
L
− κ2

‖ −
√

ω2

c2
R
− κ2

‖√
ω2

c2
L
− κ2

‖ +
√

ω2

c2
R
− κ2

‖

, (3.22)

tLR =
2
√

ω2

c2
L
− κ2

‖√
ω2

c2
L
− κ2

‖ +
√

ω2

c2
R
− κ2

‖

. (3.23)

κ‖ < ω/cL, so these coefficients are always real as long as cL > cR. When
cL < cR the coefficients can become complex. Propagating plane waves on the
left are then connected with evanescent ones for angles of incidence higher than
the critical angle and totally reflected. For the calculation of energy currents
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3.3. Energy transmission coefficients for wide contacts

however, we need to know the energy transmission coefficient. For cL > cR this
is

TLR

(
κ‖
)

= t212

√
ω2

c2
R
− κ2

‖√
ω2

c2
L
− κ2

‖

=
4
√

ω2

c2
L
− κ2

‖

√
ω2

c2
R
− κ2

‖(√
ω2

c2
L
− κ2

‖ +
√

ω2

c2
R
− κ2

‖

)2 . (3.24)

When cL < cR all energy is reflected for κ‖ > ω/cR and the energy transmission
coefficient is given by

TLR

(
κ‖
)

=


4

√
ω2

c2
L

−κ2
‖

√
ω2

c2
R

−κ2
‖(√

ω2

c2
L

−κ2
‖+

√
ω2

c2
R

−κ2
‖

)2 for κ‖ ≤ ω
cR

;

0 for κ‖ > ω
cR

.

(3.25)

The integrated transmission coefficient TLR of the wide point contact is
defined by

TLR = 2

1∫
0

dξξTLR (ξ) , (3.26)

where TLR (ξ) = TLR

(
κ‖ = ξω/cL

)
. We find

TLR =

{
γ 4(2+γ)

3(1+γ)2
for γ < 1

1
γ2

4(1+2γ)

3(1+γ)2
for γ > 1

. (3.27)

In Fig. 3.2 TLR for the specular interface is plotted as a function of the velocity
contrast γ (black line).

3.3.2 The ideally diffuse interface

When an interface is not flat and sharp, for example, due to additional interface
roughness, interface scattering in general becomes complicated and the trans-
mission coefficients are difficult to calculate. On the other hand, for very rough
interfaces, incoming modes are scattered equally into all the outgoing ones and
all information about the history of the original incoming mode is lost. For such
an ideally diffuse interface an energy transmission coefficient can be calculated
analytically again [14].

Let us label the modes not with the parallel wave vector, but with an index
i for incoming modes and j for outgoing modes (either left or right from the
interface). The transmission coefficient T ij

LR then determines the energy that is
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3. Diffuse wave propagation and interfaces

γ

Fig. 3.2: The integrated transmission coefficient T LR as a function of the velocity
contrast γ = cR/cL for the specular (black line) and the diffuse (grey line)
interface.

transmitted from a right going, incoming mode indexed by i into an outgoing
mode with index j. The reflection coefficient Rij

RR determines the energy that
is reflected back into the right reservoir. Defined in this way, the TLR of the
previous section is related to T ij

LR by

TLR =
NR∑
j=1

T ij
LR = T i

LR, (3.28)

and energy conservation gives

NR∑
j=1

T ij
LR +

NL∑
j=1

Rij
LL = T i

LR +Ri
LL = 1, (3.29)
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3.3. Energy transmission coefficients for wide contacts

NL∑
j=1

T ij
RL +

NR∑
j=1

Rij
RR = T i

RL +Ri
RR = 1. (3.30)

When an interface is totally diffuse, the transmission coefficients should not
depend on the direction of the incoming modes at all, so therefore

NL∑
i=1

T i
LR = NLTLR, (3.31)

and TLR = T i
LR. So for the diffuse interface the condition of zero current at

equal temperatures leads to

NLTLR = NRTRL. (3.32)

Every incoming mode (either from the left or the right) that is scattered con-
tributes the same amount of energy to the outgoing mode j. So for an outgoing
right-mover, the condition of equipartitioned modes gives T ij

LR = Rij
RR so that

together with energy conservation one obtains

T i
LR = 1− T i

RL. (3.33)

Combining Eqs. (3.32) and (3.33) then gives

TLR =
NR

NL +NR
. (3.34)

As was mentioned before, for a wide lead we can write Ni (ω) = SCω
2/
(
4πc2i

)
,

so that

TLR =
1

c2R/c
2
L + 1

=
1

γ2 + 1
. (3.35)

In Fig. 3.2 TLR for the diffuse interface is plotted as a function of the velocity
contrast γ (grey line). Note that this expression is by construction not valid for
small velocity contrasts (γ ≈ 1), since the diffuse scattering can not be caused
by other sources than the disorder in the sound velocities. Also, the fact that
TLR = 1 for γ = 0 is an artifact of this simple model. The most important
difference with the specular interface is that diffusive scattering increases the
transmission for large velocity contrasts.
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3. Diffuse wave propagation and interfaces

3.4 Interfaces between diffusive media

Let us now turn to propagation through interfaces between diffusive media. In
this case we are again able to describe wave energy propagation in much the same
way as electronic transport [15, 16]. When two 3D diffusive slabs are in contact
and a current (emitted by a planar source) runs from left to right, a gradient in
diffuse energy density builds up, as is schematically depicted in Fig. 3.3. The
distribution functions inside the slabs now only differ from the distribution in
the reservoirs from the previous sections by a finite drift in the direction of the
energy current. A simple approximation consists of separating the distribution
function into isotropic right- and left going contributions. In this way we can
regard the diffusive slabs as reservoirs and calculate the current through the
interface that is driven by the jump in the distribution function of the right
going states on the left hand side of the interface and the left going states
on the right hand side of the interface. This requires that modes originating
from one side of the interface “thermalize” into the equilibrium distribution on
the other side [17], but this condition is fulfilled automatically at a distance
approximately one transport mean free path from the interface itself [16]. The
Ohmic relation we derive from these principles simply reads

J =
1

RInt
(φL − φR) , (3.36)

where the potential is defined by φi = c3iWi (see Eq. (3.21)).
When the interface is transparent (cL → cR in the specular case), the resis-

tance should vanish (there is no Sharvin resistance). It has been shown by Schep
et al. [15, 16], and rediscovered by Chen [17] that we can take this into account
by subtracting the average of the Sharvin resistances from RLR to obtain the
resistance of the interface between the two layers:

RInt = RLR −RSh =
4
S
c2L

[
T
−1

LR −
1
2
(
1 + γ2

)]
, (3.37)

where S is the surface area of the interface. The integrated transmission coef-
ficient still has to be calculated from the microscopic scattering matrix of the
interface and we showed how to do this for two particular types of interfaces
in the previous section. Fig. 3.4 shows the interface resistances for a specu-
lar (black solid line) and a diffuse (grey solid line) interface as a function of
the velocity contrast γ (left axis). The specular interface resistance vanishes
around γ = 1 and increases rapidly for increasing velocity contrast as (plane
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D , cL L

J

�

z

D , cR R

�L �R

Fig. 3.3: Schematic plot of the diffuse intensity inside two connected diffusing slabs.
The energy current across the interface is driven by the difference in potential
φi = c3

i Wi.

wave) transmission and reflection coefficients at a clean interface drop rapidly
for increasing γ and modes from the side with the lower wave velocity are to-
tally reflected for larger angles of incidence. For the ideally diffuse interface
the resistance does not vanish at γ = 1. This is an artifact of the model. An
ideally diffusive interface implies that TLR = 1/2 when γ = 1; the interface
scattering condition does not vanish with γ → 1 and this makes this model
interface unsuitable for low velocity contrasts. Furthermore, it is clear that the
different interface models yield very different results for large velocity contrasts
(γ � 1 or γ � 1). The reason that the diffuse interface gives a much lower
resistance in this regime, is due to the impossibility of total reflection of modes
in this case. Also plotted in Fig. 3.4 is the difference between the interface re-
sistances RLR of the “point” contact discussion (dashed lines) and the interface
resistance with the correction RInt. It is clear that when the corrections for
the Sharvin resistance are neglected the interface resistance is overestimated.
Specifically, the interface resistance of the specular interface does not vanish for
vanishing velocity contrast. In the diffuse case the resistance is always exactly
100% overestimated, independent of the velocity contrast. This has important
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γ

Fig. 3.4: Plot of the interface resistance RInt between two diffusing slabs for a specular
(black solid line) and a diffuse (grey solid line) interface as a function of the
velocity contrast γ (left axis). Difference between the resistances without the
correction for the Sharvin resistance RLR are plotted with dashed lines (right
axis).

consequences for the thermal boundary resistance that is discussed in the next
section.

It is now straightforward to introduce a series resistor model for the energy
current through multilayers of diffusing slabs. Let us assume a planar source
in a 3D layered structure. The current between any two planes indexed by L
and R in the multilayer structure is related to the driving potential φL − φR

by a total resistance RTot. This resistance is just the sum of bulk and interface
resistances of the layers between L and R, where RInt is given by Eq. (3.37).
Within the bulk layers, energy density and current are related through Fick’s
law J/S = −Di∂zW (see chapter 2) and the resistance of a bulk layer is thus
Lic

3
i / (SDi), where Li is the layer thickness (much larger than the transport

mean free path) and Di the diffusion constant. In the next chapter we discuss
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3.5. The thermal boundary resistance

how this picture can be extended to arbitrary geometries.

3.5 The thermal boundary resistance

In this section we discuss how the interface resistance defined by Eq. (3.37)
can be used for the thermal boundary resistance of solid-solid and solid-fluid
interfaces. When a temperature gradient is applied across such a boundary

the heat flow
·
Q by phonons depends on the properties of the interface and the

thermal boundary resistance is defined by

RBd =
·
Q/(S∆Θ), (3.38)

where S is the surface area and ∆Θ = ΘL − ΘR the temperature difference
between the left and right side of the interface. The thermal boundary resistance
is an important concept in the field of cryogenics, as it influences the cooling
capacity of cryostats. The solid-fluid boundary resistance between liquid helium
and metals is also known as the Kapitza resistance [14].

The heat flow in Eq. (3.38) is the same as the energy current in the previous
section. Several models are used to calculate RBd, and the most widely used
method calculates the net energy flux by summing over the transmission of an
isotropic distribution of phonon modes left and right of the interface [14]. This
method is equivalent to the one we used in section 3.2 to obtain the resistance
RLR, although for phonons in solids two extra transverse modes of polarization
need to be taken into account. It results in an expression for the temperature
dependent RBd, where either the acoustic mismatch model (the specular inter-
face) or the diffuse mismatch model (diffuse interface) is used to describe the
transmission of the phonon modes. However, calculated in this way, the inter-
face resistance does not vanish for a vanishing interface, it yields a non-physical,
finite resistance for an interface between two equal materials.

The problem of the non-zero thermal boundary resistance for vanishing inter-
faces is a point that is recognized and explained to some extent in the literature.
However, improvements of the type of corrections like in Eq. (3.37) are not used
in this field [17]. From our discussion in the previous section it seems straight-
forward that applying the same corrections to the thermal boundary resistance
between two bulk materials is a better way to model interface effects on the
heat flow across interfaces.
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3. Diffuse wave propagation and interfaces

3.6 Spin wave propagation through interfaces

We end this chapter on diffuse waves and interfaces with a totally different type
of wave propagation, namely spin waves in ferromagnets. We discuss a result by
Meier and Loss [8], who describe the magnetization current between two ferro-
magnetic insulators through a spin chain point contact. Then we argue that just
as for electrons, phonons and classical waves, we can generalize the spin con-
ductance derived by Ref. [8] to arbitrary point contacts and interfaces between
bulk ferromagnets and in principle calculate magnetization (spin) currents from
spin wave transport in these systems.

For concreteness consider a system with isotropic ferromagnetic exchange
interaction in a magnetic field B (xi) = Biez, where spins occupy sites xi of a
simple lattice with lattice constant a. The Heisenberg spin Hamiltonian is then
given by

Ĥ = J
∑
〈ij〉

Ŝi · Ŝj + gµB

∑
i

BiŜi,z, (3.39)

with J < 0 (the exchange integral), µB the Bohr magneton, g the g-factor
and the summation runs over nearest neighbour sites. The low energy exci-
tations of the ferromagnetic ground state (excited at low temperatures) are
long-wavelength spin waves, that may be treated in a continuum model. The
motion of the spins is then described by the Landau-Lifschitz equation [19]

∂tS = FS×∇2S +
gµB

~
S×B, (3.40)

where F = Ja2/~ is the spin wave stiffness. For a weakly excited one-dimensional
spin chain, with Sx, Sy � Sz ≈ S, the solutions are running spin waves

Sx (x; t) ∝ cos (±kx− ωkt) , (3.41)

Sy (x; t) ∝ sin (±kx− ωkt) , (3.42)

with dispersion

εk = ~ωk = gµBB + 2JS (1− cos (ka)) ' gµBB + ~FSk2, (3.43)

for ka� 1 (so a quadratic dispersion, like in the electron case). Spin waves carry
angular momentum, just as pressure waves carry linear momentum. Spin wave
excitations are quantized by magnons, and one magnon lowers the total spin
of a ferromagnet with saturation magnetization NS by exactly 1. It carries
a magnetic moment −gµBez [20]. In a large 3D ferromagnetic reservoir at
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3.6. Spin wave propagation through interfaces

temperature Θ magnon states are occupied according to the Planck distribution
function. The non-interacting magnon picture holds as long as Θ � gµBB/kB .

When two large reservoirs at temperatures ΘL (left) and ΘR (right) and with
applied magnetic fields BL and BR are connected through a one-dimensional
spin chain that is adiabatically coupled to the reservoirs, excited magnons prop-
agate through the chain between the reservoirs analogously to the phonons in
a point contact that we discussed earlier. We consider the case ΘL = ΘB = Θ,
the magnetic field gradient is such that BL = B−∆B/2, BR = B+∆B/2 with
∆B � B, and other properties of the reservoirs (like the exchange integral and
the spin wave stiffness) are equal. As the energies in the left(right) reservoir are
shifted down(up) by gµB∆B/2, the net magnetization current can be calculated
by

Im = Im,L→R − Im,R→L

=
−gµB

2π~

 ∞∫
gµB∆B/2

dεn (ε+ gµBB + gµB∆B/2)

−
∞∫

gµB∆B/2

dεn (ε+ gµBB − gµB∆B/2)


=

gµB

2π~

gµB∆B∫
0

dεn (ε+ gµBB) . (3.44)

When B � ∆B the magnetization current can be approximated as

Im ' (gµB)2

2π~
n (gµBB)∆B ≡ 1

Rm
∆B. (3.45)

So, because there is a net magnon current from the right to the left, the magne-
tization current runs from the left to the right reservoir and it is proportional to

the inverse of the “magnetization resistance” Rm ≡ 2π~
[
(gµB)2 n (gµBB)

]−1

.
Completely analogous to the discussion for electrons, phonons and classical

waves in point contacts, this description of the magnon point contact can be
extended towards wider contacts and interfaces. When the contact is wider than
a single atomic chain, the Planck distribution functions Eq. (3.44) should be
multiplied by the number of occupied standing magnon modes N at energy ε
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3. Diffuse wave propagation and interfaces

above gµBB. Using the approximation for wide contacts with cross section SC

� (2π/k)2 this becomes

N (ε) =
SC

4π
1

~FS
ε. (3.46)

Using this in Eq. (3.44) in the limit B � ∆B we find that for a wide contact
the resistance Rm is multiplied by 2π~FS/ (SCgµB∆B).

When magnon transport between two different ferromagnetic materials (with
different spin wave stiffness) is studied, the quadratic dispersion makes the prob-
lem very similar to that of electron transport between two free-electron-like
metals with different effective electron mass. In this case, interface properties
obviously play a role in the transport of magnons and the spin wave transmission
coefficients have to be calculated. Also, the extension towards magnetization
(spin) currents through interfaces between bulk ferromagnets goes along the
same line as discussed earlier. We can therefore conclude that applying the
Landauer-Büttiker formalism for wide interfaces and interfaces between diffu-
sive media (with the proper correction for the Sharvin resistance) is an extension
that is both widely applicable and useful in many types of elementary transport
phenomena.
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4. INTERFACES IN DIFFUSE IMAGING PROBLEMS

4.1 Introduction

As discussed in the introductory chapter of this thesis, an important example
of a diffuse imaging technique is diffuse optical tomography. This technique is
used to image biological tissue, especially in cases where conventional imaging
methods (x-ray, ultrasonic) can not be used or do not give satisfactory results.
Diffuse optical tomography makes use of the fact that in the near infrared win-
dow, the transport mean free path of electromagnetic waves is much longer than
the absorption length [1]. As light is non-ionizing, high intensities can be used
for imaging, either in the form of pulsed (time domain), amplitude modulated
(frequency domain) or continuous sources [1]. One important example is the lo-
cation and characterization of anomalies in tissue, like cancer tumors in breast
tissue (mammography). Solving the inverse problem, i.e. relating the scattered
field to the properties and the location of the anomaly is the main challenge in
this field [2].

Several methods have been developed to solve the inverse problem in diffusive
media. Analytical models are mostly based on the diffusion equation, focussing
on the disturbance in intensity caused by a scattering or absorbing anomaly in a
homogeneous diffusive medium [3]. The methods usually rely on the assumption
that the object is small compared to the medium. Numerical methods are either
based on the diffusion or radiative transfer equations and use both finite element
and Monte Carlo solving schemes [2, 4]. When solving the diffusion equation,
numerically or analytically, boundary conditions need to be considered carefully,
especially at boundaries with non-diffusive regions or abrupt interfaces [5, 6].

4.2 Formulation of the imaging problem

In this section we apply the concept of the interface resistance to an analytical
description of a diffuse imaging problem. We use a formalism developed by



4.2. Formulation of the imaging problem

D , c1 1

D , c2 2

a

x

z

z0

L0

Fig. 4.1: Schematic view of the multiple-scattering system with an embedded spherical
opbject [3].

Den Outer, Nieuwenhuizen and Lagendijk [3] that describes the disturbance in
transmitted and backscattered intensity caused by an object embedded in a
diffusive slab. In the present discussion we focus on scattering only and neglect
absorption effects, although these can in principle be included at the cost of
more complexity. The geometry is schematically depicted in Fig. 4.1. The
diffusive slab is infinitely large in the x- and y-directions, stretches from z = 0
to z = L and is characterized by a wave velocity c1 and a diffusion constant
D1. A spherical object with radius a, wave velocity c2 and diffusion constant
D2 is positioned at r = (0, 0, z0) inside the slab. From the right hand side the
slab is illuminated by a continuous planar source and from the transmitted and
backscattered intensity one would like to be able to characterize and locate the
object.

The intensity distribution inside the slab and the object is obtained from
the stationary diffusion equation with the proper boundary conditions. The
conditions on the boundaries of the slab are I (z = 0) = 0 and I (z = L) = I0.
Solving ∇2I = 0 inside the slab and the object has an electrostatic equivalent,
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4. Interfaces in diffuse imaging problems

namely solving the Poisson equation for the potential in a dielectric slab with
an embedded sphere with a different dielectric constant. Therefore, the concept
of image charge and multipoles may be employed to find the solution [7]. When
absorption is neglected and the object is spherical the “dipolar field” dominates.
The intensity as a function of the position in the slab is then given by a sum
over image dipoles

I (r) = I0
z

L
+ p

∞∑
n=−∞

z − z0 + 2nL[
(z − z0 + 2nL)2 + ρ2

]3/2
+

z + z0 + 2nL[
(z + z0 + 2nL)2 + ρ2

]3/2
,

(4.1)
where ρ2 = x2 + y2. The first part is the unperturbed intensity and the second
part describes the perturbation caused by the object. An expression for p is
obtained from the boundary conditions. Inside the spherical object the intensity
is in leading order a linear solution of the diffusion equation

Iin (r) = A+B (z − z0) . (4.2)

Just outside the object the intensity is described by Eq. (4.1), which in this
region is approximated by

Iout (r) ≈ I0
z

L
+ p

z − z0

|r− r0|3
, (4.3)

where r0 = (0, 0, z0). If we have obtained p then the transmitted intensity T (ρ)
can be obtained by [8]

T (ρ) ≡ `1
I0

∂I

∂z

∣∣∣∣
z=0

=
`1
L

+ 2p`1
∞∑

n=−∞

ρ2 − 2 (z0 + 2nL)2[
(z0 + 2nL)2 + ρ2

]5/2
, (4.4)

where `1 is the transport mean free path of the slab.

4.3 Smooth boundary conditions on the intensity

The picture shown in Fig. 4.1 is not exactly the one used by Den Outer et al. In
their discussion, the difference in wave velocity in the two materials is neglected
and it is assumed that they are characterized by a diffusion constant only. In
order to relate p to the medium properties “smooth” boundary conditions are
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4.3. Smooth boundary conditions on the intensity

imposed on the intensity. This means that the intensity across the interface is
assumed to be continuous

Iin
(
a−
)

= Iout

(
a+
)
, (4.5)

where a− denotes the position in the object close to the boundary and a+ the
position in the medium just outside the boundary. Furthermore, according to
intensity flux conservation

D1
∂Iout

∂n

∣∣∣∣
a+

= D2
∂Iin
∂n

∣∣∣∣
a−

, (4.6)

where the normal derivative is taken on the surface of the object. Applying
these gives

Asm = I0
z0
L

, (4.7)

Bsm = I0
1
L

3D1

2D1 +D2
, (4.8)

and

psm = I0
a3

L

D1 −D2

2D1 +D2
. (4.9)

The subscript sm denotes the smooth boundary conditions on the intensity.
For D1 6= D2 the transmitted and backscattered intensity shows either a dip
or a peak at the position (in ρ) of the anomaly. If D2 > D1 light diffuses
easily into the object and the transmitted intensity is enhanced. For D2 < D1

more light moves away from the object and the transmitted intensity shows
a minimum near the object. The height or depth of the peak in transmitted
(and backscattered) intensity depends both on z0 and on the ratio of diffusion
constants.

Now let us take a closer look at the boundary conditions used to obtain psm.
When a difference in wave velocity (a refractive index mismatch) is taken into
account the continuous intensity assumption is not valid anymore and an inter-
face effect has to be taken into account. Second, the energy, not the intensity
flux, is conserved by default. These two are equivalent only in the absence of a
refractive index mismatch. We use Di = ci`i/3, where `i is the transport mean
free path and the effective energy transport velocity is assumed to be equal to
the wave velocity ci. We rewrite

psm = I0
a3

L

1− γξ

2 + γξ
, (4.10)
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4. Interfaces in diffuse imaging problems

with γ = c2/c1 and ξ = `2/`1. The smooth boundary conditions are only valid
for γ = 1, so only different transport mean free paths are described properly
in this way. In the following section we include an effective index mismatch
and interfacial scattering properly in the boundary conditions and obtain an
expression for p that is also valid for γ 6= 1 as well as interface scattering from
other sources such as a coating of the object.

4.4 Including interface scattering in the boundary conditions

Effective index mismatches and interface scattering modifies the boundary con-
ditions deduced from flux conservation. Although we derived the description
for the interface resistance with acoustic waves in mind, it applies just as well
to diffuse light propagation, or any type of waves, though our study is limited
to a scalar approximation. Let us assume we are dealing with a monochromatic
planar source. When the permeability is constant throughout the whole system
the energy density in a medium (Wi) is related to the intensity by [7]

Wi =
χ

c2i
Ii, (4.11)

where χ is constant throughout the whole multiple scattering system. We can
then relate the flux to the intensity in a diffusive medium as

Fi = −Di∇Wi = −χDi

c2i
∇Ii. (4.12)

So, energy flux conservation left and right from the interface between the medium
and the spherical object now requires that

D1

c21

∂Iout

∂n

∣∣∣∣
a+

=
D2

c22

∂Iin
∂n

∣∣∣∣
a−

. (4.13)

In chapter 3 we described the influence of interface scattering and refractive in-
dex mismatch on the diffuse energy current through interfaces between diffusive
media. We apply this description to the medium-object interface and use the
expressions for the interface resistance obtained in the previous chapter, which
is a valid approximation as long as we can treat the interface as planar, i.e.
a � `i. If this condition is fulfilled the sharp boundary is characterized by an
interface resistance SRInt (in units of velocity squared), and the flux through
the interface between the spherical object and the medium is related to the
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4.4. Including interface scattering in the boundary conditions

potential difference across the interface by

FInt =
1

SRInt

(
c32Win

(
a−
)
− c31Wout

(
a+
))

=
χ

SRInt

(
c2Iin

(
a−
)
− c1Iout

(
a+
))

.

(4.14)
This yields the second boundary condition

1
SRInt

(
c2Iin

(
a−
)
− c1Iout

(
a+
))

= −D1

c21

∂Iout

∂n

∣∣∣∣
a+

. (4.15)

Where SRInt is given by

SRInt = 4c21

[
T
−1

12 −
1
2
(
1 + γ2

)]
, (4.16)

The total transmission coefficient T 12 depends on the surface properties and
for either a specular or a diffuse interface the expressions are given in chapter
3. Boundary conditions for refractive index mismatched problems are also de-
scribed in Ref. [6], where analytical expressions are given for negligible interface
resistance and numerical results for finite interface resistance are described.

With conditions (4.13) and (4.15) we obtain

Ash =
c1
c2
I0
x0

L
, (4.17)

Bsh =
c22D1

c21D2
I0

1
L

3c31D2

2c32D1 + c31D2 + 2SRIntD1D2/a
, (4.18)

and

psh = I0
a3

L

c32D1 − c31D2 + SRIntD1D2/a

2c32D1 + c31D2 + 2SRIntD1D2/a
, (4.19)

where the subscript sh denotes the sharp boundary conditions. The results for
the smooth boundary are recovered if we let c1 → c2 and SRInt → 0, and the
results in Ref. [6] are recovered for SRInt → 0. If we rewrite

psh = I0
a3

L

1
2

1 + SR2
SRInt

− SR1
SRInt

1 + SR2
SRInt

+ 1
2

SR1
SRInt

, (4.20)

then disturbance is expressed in terms of ratios of the interface resistance SRInt

and the bulk resistance of a layer with the width of the object radius a, SRi =
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4. Interfaces in diffuse imaging problems

Fig. 4.2: Plots of the strength of the disturbance p as a function of the velocity ratio
γ = c2/c1 for three different values of the transport mean free path ratio
ξ = `2/`1. Solid line is the result for smooth boundary conditions (psm).
Results for sharp boundary conditions (psh) with a specular interface shown
by dashed line and for the diffuse interface the dotted line. For all plots
a/`1 = 10.

ac3i /Di (see section 3.4). When we fill in Di = ci`i/3 we can write psh in terms
of the ratios ξ = `2/`1 and γ = c2/c1

psh = I0
a3

L

1
2

1 + 3 a
`1

c2
1

SRInt

(
1
ξγ

2 − 1
)

1 + 3 a
`1

c2
1

SRInt

(
1
ξγ

2 + 1
2

) . (4.21)

The property SRInt/c
2
1 is a dimensionless function of γ (see Fig. 3.4) and the

ratio a/`1 needs to be large so that the interface resistance description is valid. In
Fig. 4.2 we plot p as a function of the velocity ratio γ = c2/c1 for three different
values of mean free path ratio ξ = `2/`1 (1.0, 0.2 and 5.0. We set a/`1 = 10 so

81



4.5. Conclusions

that our flat interface formalism is applicable. The results for smooth boundary
conditions (psm) are shown by the solid lines. Dashed lines represent results
for sharp boundary conditions and a specular interface, whereas the results
for sharp boundaries with a diffusive interface are shown by the dotted line.
When the medium and the object are only characterized by a difference in
wave velocity (ξ = 1.0), sharp and smooth boundary conditions give different
signs for p. Of course we argued before that smooth boundary conditions only
are valid only when c1 = c2, and these results clearly show that applying them
to index mismatch problems gives very dissimilar results. Also for smaller (0.2)
and larger (10.0) values of the mean free path ratios different boundaries give
results that are only comparable when γ ≈ 1.0.

The difference between a diffuse and a specular boundary is only significant
for small velocity ratios, due to the fact that the difference between the two
resistances is large here, as can be seen from Fig. 3.4. In other γ regimes (rel-
evant for imaging in biological tissue) the disturbance is quite unsensitive with
respect to the specific interface model, as was previously reported in numerical
studies [6].

The effect of a larger diffusion constant of the object can be cancelled by
interface scattering, so that p = 0 even when the scattering properties of object
and medium are definitely not the same. This means that it is possible that
objects that have distinctly different properties than the surrounding tissue can
not be detected because bulk and interface scattering effects cancel. This can
also be reversed, i.e. adding a particular partially reflecting coating on an object
could change it from being observable to being invisible. These cloaking effects
in diffusive imaging applications have not been reported before.

4.5 Conclusions

From our calculations we conclude that the interface effects can indeed be in-
cluded by an interface resistance in diffuse imaging problems. When the in-
terface is due to a refractive index mismatch between object and medium dif-
ferent boundary conditions are applied and this yields quite different results
for the intensity perturbation, compared to when smooth boundary conditions
are used. With the more widely applicable boundary conditions and the inter-
face resistance analytical expressions for the perturbed intensity are obtained
which not only improve earlier approximations, but also demonstrate that dif-
fusive objects can be cloaked in diffusive media. When combined with the
frequency-dependence of the scattering properties of the object and interface,
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these expressions could be helpful for imaging biological tissue.
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5. RECURSIVE GREEN FUNCTIONS FOR 2D DISORDERED
SYSTEMS

5.1 Introduction

With the ever increasing capacities of computers, both in memory and processor
speed, studying systems numerically has become an important addition to ana-
lytical theories and experiments, both in condensed matter physics as in fields
studying classical wave propagation. Direct solutions of the wave equation are
obtained numerically for relatively clean systems, such as layered media with
possibly some lateral inhomogeneities. For the propagation of waves (and elec-
trons) in strongly disordered systems, numerical work is frequently based on
solving the radiative transfer equation (equivalent to the Boltzmann equation)
or the diffusion equation, since it is often not possible to solve the wave equation
directly in these media. The radiative transfer approach, for example, success-
fully describes the energy decay of coda waves in seismology [1]. However, these
methods neglect the phase of the propagating waves, describing properties of
the average fields only. Under the influence of mesoscopic physics, it has become
clear during the last two decades that phase effects (like interference) play a role
also for waves that are scattered many times [2], even in inhomogeneous systems
like the heterogeneous earth [3]. To study these effects numerically, a technique
is needed that solves the wave equation in very inhomogeneous media.

Solving the wave equation by direct inversion is numerically demanding, as
inversions scale with the third power of the system size. In this case one obtains
the whole propagator, while most of the time, only part of this information
is required. In electronic transport, the propagation of electrons in molecules
or (dirty) metals and semi-conductors has been studied by directly solving the
Schrödinger equation with a recursive Green function technique [4]. In this
technique, large segments of the system are represented by their surface Green
function, which contains the full information about how these segments react
on changes in the part of the system which is studied in detail. In this way,
the inversion of a single large matrix is replaced by many small matrices with a



5.2. Recursive Green functions in 1D

relatively small size. It has been demonstrated that this technique is also useful
to solve the classical wave equation in one-dimensional (1D) structures [5].

The recursive Green function technique for classical waves in 1D can be used
to study plane wave propagation in layered structures with random thickness
of individual layers. Obviously, it would be much more interesting if the prop-
agation of pulsed sources in 3D disordered systems could be studied using this
technique, as results could be directly used for applications like geophysical or
medical imaging. However, even with this efficient solving scheme, treating re-
alistic 3D systems does still seem to be numerically too expensive, especially for
broadband sources. Still, solutions in 2D disordered systems (line sources and
line impurities) bare in many ways much more resemblance with 3D than 1D
inhomogeneous systems (see, for example, chapter 2 of this thesis).

In this chapter, we discuss solving the classical wave equation in 2D by
the recursive Green function method for studying layered structures with many
small lateral inhomogeneities and show that results for these systems can be
translated to equivalent 3D media. We first review the theory in 1D in section
5.2 and explain the differences for 2D in section 5.3. We discuss the bound-
ary conditions and improvements that enable us to study pulse propagation in
disordered layered systems in section 5.4. As a first application we study the
influence of interfacial disorder on head wave propagation (critically refracted
waves). We end with a discussion and conclusions in section 5.6.

5.2 Recursive Green functions in 1D

We start with describing the recursive Green function technique for one-dimensional
(1D) systems [5]. The scalar wave equation in the frequency domain reads

∂2
xψ +

ω2

c20
ψ +

ω2

c20

[
c20

c2 (x)
− 1
]
ψ = 0, (5.1)

where ψ (x;ω) is the wave field amplitude, ω the angular frequency, c (x) is
the position-dependent wave velocity, and c0 is a reference velocity. After dis-
cretization on a grid xi with grid spacing xi+1−xi = ∆ the differential equation
becomes a finite difference equation for the wave field ψi evaluated at xi. In
matrix form this is written as

[H] |ψ] = E |ψ] . (5.2)
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5. Recursive Green functions for 2D disordered systems

where

[H] =


...

εi−1 τ 0
τ εi τ
0 τ εi+1

...

 , (5.3)

|ψ] =

∣∣∣∣∣∣∣∣∣∣
...
ψi−1

ψi

ψi+1

...

 , (5.4)

εi = 1 + Vi∆2/2, τ = −1/2, E = ω2∆2/
(
2c20
)

and

Vi = V (xi) =
(
ω2/c20

) [
1− c20/c

2 (xi)
]
. (5.5)

This eigenvalue equation has the same form as the problem of electrons hopping
on a 1D chain with on-site potentials Vi and hopping rates τ .

As discussed before, the Green function G (x, x′;ω) associated with the clas-
sical wave equation (5.1) describes the propagation of waves emitted by a point
source at x′ to a receiver at position x. The matrix Green function correspond-
ing to Eq. (5.2) is defined by

[G] = (E [I]− [H])−1 , (5.6)

with [I] the identity matrix. This is the discretized form of the Green function
and in the continuum limit G (xk, xi;ω) = −τ [G]i,k, i.e. the propagation from xi

to xk is given by (i, k) of the matrix (E [I]− [H])−1. When we invert the whole
matrix, we obtain all the Green function’s elements, i.e. every source-receiver
combination, while in practice we are only interested in just one or a few of
the matrix elements. The recursive Green function technique exploits this fact
together with the tridiagonal structure and replaces the matrix inversion (of
which the numerical costs scale as N3

x , with Nx the number of grid points) with
a recursive procedure that scales linearly with Nx.

In wave propagation problems one usually uses either hard (hard wall) or
absorbing boundary conditions. We study a system with a finite disordered
region, sandwiched between two semi-infinite homogeneous regions, called leads.
This is in fact equivalent to perfectly absorbing boundary conditions, since waves
that enter the leads from the disordered region never return.
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5.2. Recursive Green functions in 1D

Let us define a disordered region between lattice sites i = 1 and i = Nx with
a source positioned at xL and a receiver at xM (0 < L < M < Nx + 1). When
we decouple the system between the receiver at i = M and the right part of the
medium that starts at i = M + 1 we write

[G]−1 =

 E − εM−1 −τ 0
−τ E − εM 0
0 0 E − εM+1


︸ ︷︷ ︸

[G0]
−1

+

 0 0 0
0 0 −τ
0 −τ 0


︸ ︷︷ ︸

[−V ]

, (5.7)

where the infinite matrix is represented as a 3 × 3 matrix. The matrix [G0]
consists of two semi-infinite matrices that describe the system left from i = M+1
(upper part) and right from i = M (lower part). With the Dyson equation
[G] = [G0] + [G0] [V ] [G] that is derived from Eq. (5.7) one finds that the matrix
element [G]L,M that describes the propagation from source to receiver is given
by [5]

[G]L,M = [G0]L,M + [G0]L,M τ

{(
[G0]M+1,M+1

)−1

− τ [G0]L,M τ

}−1

τ [G0]M,M .

(5.8)
The elements [G0]L,M , [G0]M,M and [G0]M+1,M+1 are elements of the matrix [G0]
that can be treated as two separate semi-infinite matrices, one that describes
the system from x = −∞ to xM and another that describes the other half of
the system.

We can also decouple the system between i = 0 and i = 1 and supposing
that we know [G0]0,0 (the solution of the surface Green function of the left
homogeneous lead) we then add rows and columns to this matrix and use

[G]i+1,i+1 =
{(

[G0]i+1,i+1

)−1

− τ [G0]i,i τ
}−1

, (5.9)

with
(
[G0]i+1,i+1

)−1

= E − εi+1 to calculate the element [G0]L,L of the semi-
infinite matrix that describes the system from x = −∞ to xL. To obtain [G0]L,M

and [G0]M,M , that are both needed to calculate [G]L,M with Eq. (5.8) we again
add rows and columns until we have completed the matrix until i = M by using
the updating recursive relations

[G]i,i+1 = [G0]i,i τ
{(

[G0]i+1,i+1

)−1

− τ [G0]i,i τ
}−1

, (5.10)
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5. Recursive Green functions for 2D disordered systems

and
[G]i,i = [G0]i,i + [G0]i,i τ [G]i,i+1 , (5.11)

(here also
(
[G0]i+1,i+1

)−1

= E − εi+1). [G0]M+1,M+1 is obtained by supposing
that we know [G0]N+1,N+1 (the solution of the surface Green function of the
right homogeneous lead) and applying

[G]i−1,i−1 =
{(

[G0]i−1,i−1

)−1

− τ [G0]i,i τ
}−1

, (5.12)

with
(
[G0]i−1,i−1

)−1

= E − εi−1. Knowing [G0]L,M , [G0]M,M and [G0]M+1,M+1

Eq. (5.8) yields [G]L,M .
This scheme requires the solutions of the surface Green functions of the semi-

infinite leads [G0]0,0 and [G]N+1,N+1. Since in these regions the wave velocity is
constant

[G]i+1,i+1 =
{(

[G0]i+1,i+1

)−1

− τ [G0]i,i τ
}−1

, (5.13)

and this is used iteratively to obtain the surface Green functions, or one obtains
an analytical solution by substituting [G0]i,i = [G]i+1,i+1. The iteration only
converges by adding a (small) imaginary part η to the frequency. From the
Green function G (xM , xL;ω) = −τ [G]L,M for a certain range of frequencies, a
solution in the time domain is obtained by an inverse Fourier transform.

As mentioned before, the recursive solving scheme is often used in electronic
transport problems. The discrete grid points usually coincide with atomic sites
with a certain onsite potential and coupling strength with (nearest) neighbours.
Also the homogeneous lead - scattering region - homogeneous lead configuration
resembles experiments which study transport properties of structures (metals,
semiconductors or molecules) that are connected to low impedance contacts.
The electronic Green function gives an electronic probability amplitude which
is not an observable. However, its modulus squared can be interpreted as the
probability of transmission of travelling lead states at the Fermi level.

5.3 Recursive Green functions in 2D

For 2D systems the scalar wave equation is given by Eq. (5.1) as well, with an
extra y-dependence of the wave function ψ (x, y;ω) and the wave velocity c (x, y),
and ∂2

x is substituted by ∇2 = ∂2
x + ∂2

y . Discretization on a square grid (xi, yj)
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5.3. Recursive Green functions in 2D

with grid spacing xi+1−xi = yj+1− yj = ∆ again yields a matrix equation like
Eq. (5.2). This time the elements of the matrix [H] are the matrices [τ ] and [εi]
with size Ny ×Ny and the elements of the rows |ψ] are row vectors with length
Ny, where Ny is the number of grid points in the y-direction.

We apply periodic boundary conditions on the wave velocity in the y-direction,
c (x, y + nNy∆) = c (x, y) for n ∈ Z. Such a lateral “supercell” is a very effec-
tive method to model random disorder provided the size of this unit cell is
sufficiently large [6]. In the y-direction we define a region from y = −Ny∆/2
to y = Ny∆/2 for which a certain wave velocity profile is defined. We then
repeat this velocity profile for y < −Ny∆/2 and y > Ny∆/2 so that the poten-
tial becomes periodic with a primitive lattice “vector” Ny∆, see Fig. 5.1 for a
schematic picture. From solid state physics we know that in this case Bloch’s
theorem applies to the solutions ψ (y) (omitting the x-dependence). Introducing
the reciprocal lattice number q

ψq (y) = eiqyuq (y) , (5.14)

where the Bloch states uq (y) have the same periodicity as the potential

uq (y + nNy∆) = uq (y) . (5.15)

The states ψq in different supercells are related by

ψq (y + nNy∆) = eiqnNy∆ψq (y) . (5.16)

The “total” solution is a linear combination of the ψqs (as these are the eigen-
functions)

ψ (y) =
π/(Ny∆)∑

q=−π/(Ny∆)

ψq (y) . (5.17)

where the normalization of ψ is determined by an extra condition. The sum-
mation of runs over Nq q-points in the reciprocal lattice, where Nq is chosen
such that the summation converges. The periodicity of the superlattice requires
the first Brillouin zone between q = −π/ (Ny∆) and q = +π/ (Ny∆) to be
considered only.

The solutions ψq for the unbounded periodic system are given by the matrix
equation (5.2) where the elements of the matrix [H] are now submatrices [εi]
and [τ ] with size Ny × Ny. The matrix [τ ] is diagonal with elements [τ ]j,j =
τ = −1/4. [εi] is tridiagonal, except for two elements (1, Ny) and (Ny, 1) that
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left lead scattering region right lead

x

y

Nx

Ny

�

i=Lx i=Mx

j=My

j=Ly

Fig. 5.1: Schematic picture of the lead-scattering region-lead configuration for the 2D
recursive Green functions technique. The scattering region has a length of
Nx grid points and the supercell in the y-direction has width Ny. Two dif-
ferent wave velocities are used in this geometry, represented by the black and
grey dots. The source position (Lx, Ly) and receiver position (Mx, My) are
represented by the black circles. In the y-direction the supercell is repeated
and in the x-direction the leads are assumed to be homogeneous.

are nonzero because of the coupling to the neighbouring supercells, for example,
when Ny = 5

[εi] =


εi1 τ 0 0 τe−iqNy∆

τ εi2 τ 0 0
0 τ εi3 τ 0
0 0 τ εi4 τ

τe+iqNy∆ 0 0 τ εi5

 , (5.18)
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5.3. Recursive Green functions in 2D

with εij = 1 + Vij∆2/4. The Green function matrix is then given by

[G] =
π/(Ny∆)∑

q=−π/(Ny∆)

[Gq] eiqnNy∆ =
π/(Ny∆)∑

q=−π/(Ny∆)

(E [I]− [Hq])
−1 , (5.19)

where n is the number of supercells between the source and the receiver. The el-
ements of [G] are related to the propagation of the point source at

(
xLx , yLy

)
to a

receiver at
(
xMx

, yMy

)
byG

((
xMx

, yMy

)
,
(
xLx

, yLy

)
;ω
)

= −τ [G](Lx,Ly),(Mx,My).
The recursion relations derived for the 1D problem in the previous section

still apply, but the scalar elements are now replaced by matrices of size Ny×Ny.
The input for a calculation is a frequency ω, a grid spacing ∆, a reference wave
velocity c0, the wave velocities for the left and right lead cL and cR, a wave
velocity distribution in the disordered region cij , where i ∈ [1, Nx], with Nx the
number of grid points in the x-direction, and j ∈ [1, Ny], with Ny the size of
the supercell in the y-direction. Furthermore the source and receiver positions(
xLx , yLy

)
and

(
xMx , yMy

)
are supplied (see Fig. 5.1) together with Nq, the

number reciprocal lattice numbers q in the Brillouin zone summation and a
small number η that is added as complex part to the frequency ω. The numerical
procedure for 2D systems then works as follows. The calculation runs over Nq

reciprocal lattice numbers q. For every q the solutions of the surface Green
functions and the source-receiver propagation are calculated with the recursive
relations from the previous section. An important difference now is that in
every recursive step a Ny × Ny matrix is inverted. When [G](Lx,Ly),(Mx,My) is
obtained for every q, the summation over the first Brillouin zone is calculated
and the result [G](Lx,Ly),(Mx,My) for a certain frequency ω is obtained.

The calculations are repeated for a number of frequencies to obtain time
domain results for pulsed sources. As G (−ω) = G∗ (ω) (omitting the position
dependence) the inverse Fourier transform can be written as

G (t) =
1
π

∞∫
0

dωRe
{
G (ω) e−iωt

}
. (5.20)

A sharp high frequency cut-off creates undesired oscillations in the time domain.
We therefore apply a smooth cut-off by multiplying G with a Fermi function
f (ω) = 1/ (exp ((ω − ωc) /s) + 1) so that

G (t) =
1
π

ωm∫
0

dωRe
{
f (ω)G (ω) e−iωt

}
, (5.21)
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5. Recursive Green functions for 2D disordered systems

as “band limited” pulse propagator. For convenience we use this definition G (t)
in the remainder of this chapter. The pulse shape is calculated by

f (t) =
1
2π

ωm∫
0

dω
cos (ωt)

exp
(

ω−ωc

s

)
+ 1

. (5.22)

Obviously we have to chose ωm such that the tail contribution can be neglected.
The cut-off frequency ωc and the “smoothness” parameter s are chosen in such
a way the pulse shape is peaked, but side oscillations are suppressed.

5.4 Optimization and performance

As described in the previous two sections, calculating wave propagation in a
disordered medium with iterative steps requires one matrix inversion in every
step. Although the matrices that are inverted are small compared to the total
system size, the number of steps scales with the system length, and this can be
large. The numerical effort depends on the size of the matrices to be inverted
and on the total number of matrix inversions. The improvements implemented
by us are aimed particularly at decreasing the number of matrix inversions, since
the matrix size itself is already quite small. In this section we discuss two of
those optimizations together with the accuracy and the scaling of the numerical
costs of the recursive Green function technique for 2D disordered systems.

5.4.1 Optimization of the lead surface Green function calculation

The solutions for the surface Green functions can be obtained iteratively, adding
layer by layer, as explained in section 5.2, using the recursive relation (for 1D):

[G]i+1,i+1 =
{(

[G0]i+1,i+1

)−1

− τ [G0]i,i τ
}−1

, (5.23)

until [G]i+1,i+1 = [G0]i,i. The surface Green function can be found more effi-
ciently by making better use of the properties of the semi-infinite matrix that
describes the leads [7]. Let us start with the matrix [G0] that describes the right
lead stretching from i = N + 1 to i = ∞. We re-index the rows and columns
so that the element we are looking for becomes [G0]0,0(= [G0]N+1,N+1 in section
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5.4. Optimization and performance

5.2). We know that [G0] is the inverse of the semi-infinite matrix

[G0]
−1 =


E − εR −τ 0 0 0 ...
−τ E − εR −τ 0 0 ...
0 −τ E − εR −τ 0 ...
0 0 −τ E − εR −τ ...
0 0 0 −τ E − εR ...
... ... ... ... ... ...

 , (5.24)

Since [G0]
−1 [G0] = [I] we find for the first column of [G0]

(E − εR) [G0]0,0 + (−τ) [G0]0,1 = 1,
(−τ) [G0]0,0 + (E − εR) [G0]0,1 + (−τ) [G0]0,2 = 0,

...

(−τ) [G0]0,j−1 + (E − εR) [G0]0,j + (−τ) [G0]0,j+1 = 0. (5.25)

Combining the first and the second equation yields

Γ̃1 [G0]0,0 + β1 [G0]0,2 = 1, (5.26)

with Γ̃1 = (E − εR)− (−τ) (E − εR)−1 (−τ) and β1 = − (−τ) (E − εR)−1 (−τ).
The equations for the second, third, and fourth element of the column combined
give

β1 [G0]0,0 + Γ1 [G0]0,2 + β1 [G0]0,4 = 0, (5.27)

with Γ1 = (E − εR)− 2 (−τ) (E − εR)−1 (−τ), which leads to

Γ̃2 [G0]0,0 + β2 [G0]0,4 = 1, (5.28)

with β2 = −β1 (Γ1)
−1
β1 and Γ̃2 = Γ̃1−β1 (Γ1)

−1
β1. This leads to a recipe for

finding the surface Green function by the iterative relations

βi = −βi−1 (Γi−1)
−1
βi−1, (5.29)

Γi = Γi−1 − 2βi−1 (Γi−1)
−1
βi−1, (5.30)

and
Γ̃i = Γ̃i−1 − βi−1 (Γi−1)

−1
βi−1, (5.31)

where β0 = (−τ) and Γ0 = Γ̃0 = (E − εR). The asymptotic value for βi is zero,
so that when βn = 0

[G0]0,0 = −
(
Γ̃n

)−1

. (5.32)
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5. Recursive Green functions for 2D disordered systems

Fig. 5.2: Re {G0}/
(

Re {G0}|Nq=221

)
as a function of the inverse of the number of

points in the first Brillouin zone, 1/Nq. Convergence of the real part of
the Green function is reached at Nq ≈ 212. Dotted line is the (normalized)
analytical value.

Effectively one adds 2i layers to the semi-infinite matrix in every iteration step,
which makes this procedure exponentially faster compared to the conventional
“layer by layer” approach. We can directly translate this procedure from 1D
systems to 2D problems by substituting the scalar elements by the matrices
defined in the previous section. Both iterative procedures require the calculation
of one matrix inversion in every step, so the number of inversions to be done
is drastically reduced by this optimization. As a result calculating the lead
solutions is reduced to a very small fraction of the numerical costs of the entire
calculation.

5.4.2 Convergence as a function of Nq and η

The summation over reciprocal wave numbers q in the first Brillouin zone (the
BZ integration) is equivalent to calculating an inverse Fourier transform of G
with respect to y. Just as in the analytical transform of the Green function
a small imaginary part has to be added to the frequency to avoid the pole
at q = 0. In the numerical calculations this shows up as a dependence on
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5.4. Optimization and performance

Fig. 5.3: Minimum number of points in the first Brillouin zone needed for convergence
as function of η, the imaginary part added to the frequency. Solid line is a
linear fit.

the number of points Nq needed for a converged BZ integration on the small
imaginary part η. For a certain width ∆Ny of the supercell, a certain η and a
desired accuracy one has to determine the minimum value for Nq. We calculate
the real and imaginary parts of the Green function for a homogeneous 2D system
G0 (|r− r′| ;ω) = −iH(1)

0 (ω |r− r′| /c0)/4 for ω = 0.1c0/∆ and |r− r′| = 60∆,
Ny = 5 and ∆ = 1. In Fig. 5.2 the real part of G is normalized to the value
calculated with the highest number of Nq(= 221) and plotted as a function
1/Nq for η = 10−4. From this figure (and a similar one for the imaginary
part) we conclude that convergence is reached for Nq ≈ 212. If we do the same
calculations for five other values of η (10−6, 10−5, 10−3, 10−2 and 10−1) and
plot the values of Nq where the BZ integration converges then it is clear from
Fig. 5.3 that there is a linear dependence of the optimal Nq on η.

The optimum between calculation speed and accuracy has to be chosen, as
strictly speaking it is G (ω + iη) that is being calculated. However, it is clear
from Fig. 5.3 that the calculation time decreases linearly with increasing η.
When we are looking for the solution in the time domain, we can use contour
integration in the complex plane to use this to our advantage. With the contour
shown in Fig. 5.4 the inverse Fourier transform to the time domain in Eq. (5.21)
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Fig. 5.4: Contour in the complex frequency plane used to calculate the band-limited
pulse propagator G (t).

is rewritten to give

G (t) = Re

eηt 1
π

∞∫
0

dωe−iωtG (ω + iη) f (ω + iη)


+Im

 1
π
e−iωmt

η∫
0

dεeεtG (ωm + iε) f (ωm + iη)

 . (5.33)

This is only allowed if there are no poles inside the contour. Causality requires
that all poles of G lie in the lower part of the complex plane. The poles of the
Fermi function f are given by ω = ωc + isπ (2n+ 1), n ∈ Z, so this expression
can only be used for η < isπ. For calculations it is most convenient if only the
first integral needs to be calculated (because one then can work with a single
η and one Nq) and the second integral can be neglected. This can be done
whenever (ωm − ωc) /s� ηt. This determines up to which frequency we should
calculate the Green function as ωm − ωc � sηt.

5.4.3 Numerical accuracy and scaling of the numerical costs

The code was programmed in Fortran90 and compiled with the Intel ifort com-
piler where standard LAPACK routines were used for the matrix inversions.
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Fig. 5.5: Real (upper panel) and imaginary (lower panel) part of G0 (|r− r′| ; ω) as
a function of ω in units of ∆/c0 with |r− r′| /c0 = 60∆/c0. Solid line is
the numerical, and the dashed line the analytical result. See text for other
relevant parameters.

In Fig. 5.5 the Green function of a homogeneous 2D system is plotted in the
frequency domain. The dashed line is the analytical result (see chapter 1) and
the solid line is the numerical calculation using the 2D recursive Green func-
tions technique. For this calculation source and receiver were positioned 60 grid
points apart and we used ∆ = 1, η = 10−4, c0 = cR = cL = 1.0, Nq = 212 and
Ny = 5 (although in the homogeneous case a supercell of one grid point is suf-
ficient). It is clearly seen from this plot that finite grid size causes a significant
deviation from the analytical result for ω∆/c0 = 0.5. Obviously, the maximum
frequency (or the grid spacing) has to be chosen such that the wavelength is
not too short so that the properties of the discrete grid start to play a role. For
shorter wavelengths ∆ should be decreased. As a rule of thumb we adopt for
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the maximum frequency at which finite grid effects are still small by

ωm = 0.5
cmin

∆
, (5.34)

where cmin is the lowest (bulk) wave velocity in the medium.
The choice of the pulse properties (bandwidth, side oscillations etc.) and

the time interval we want to study differs from case to case. The number of
frequencies to be evaluated and the value of η varies as well. For every frequency
approximately NxNq matrices of size Ny × Ny are inverted, so the numerical
costs scale like NxN

3
yNq ∝ NxN

2
y /∆.

5.5 Results: Head waves and disordered interfaces

By imposing periodic boundary conditions in the y-direction, we restrict the
type of lateral disorder. The most important limitation is the scale of (lateral)
inhomogeneities; they should be small compared to the size of the supercell. In
the perpendicular x-direction we can introduce an arbitrary layered structure,
our method therefore allows us to study layered media with lateral disorder
that consist of many small scatterers. Such a model should quite realistically
represent the earth’s subsurface. In order to test our code and to show that
it can in principle be used for such applications, we investigate the effects of
interface disorder on head wave propagation.

The basic theory for head wave propagation for at interfaces is explained in
the introductory chapter [8, 9]. Head waves are critically refracted waves with
a travel path along the interface between two media. The head wave arrival
time in a pulse propagation experiment depends linearly on the wave velocity
of the lower lying medium and the source-receiver distance. In the case of 2D
media (line sources), analytical expressions can be obtained for the reflected
wave field of a delta pulse. However, non-abrupt interfaces, interface roughness
and other inhomogeneities influence head wave propagation. A few studies treat
head waves at rough interfaces in the far and near field limits [10]. With the
recursive Green functions method we are not restricted to these limits, we can
study frequencies in the far field, the near field as well as in the intermediate
regime. We use our method to study the influence of two types of interfacial
disorder (smooth interfaces and interface roughness) on the head wave amplitude
and arrival times.
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5.5.1 Headwaves and smooth interfaces

As a first step we calculate the reflection of a (band-limited) pulse emitted
at t = 0 by a source in a semi-infinite medium with wave velocity c1 from a
differentiable interface with another semi-infinite medium with wave velocity
2c1. The wave velocity in the interfacial region is parametrized by

cint (x) = c1

(
1 +

1
exp (− (x− x0) /a) + 1

)
, (5.35)

where x0 is the distance from the interface to the source at x = 0, and a is a
parameter that determines the width of the transition of the wave velocity from
c1 to 2c1. The pulse response between the source and a receiver at (xM = 0, yM )
is calculated for four different source-receiver distances yM = x0, yM = 2x0,
yM = 3x0 and yM = 4x0, where x0 = 60l, with l the unit length. Since
there is no lateral disorder, the unit cell size in the y-direction is Ny = 1, and
matrix inversions reduce to scalar divisions. The bandwidth of our pulse is
set by choosing ∆ = 0.1l, so that ωm = 5c1/l. We calculate the response in
the frequency domain for 250 frequencies on a equidistant ω grid, with a small
imaginary part η = 2.5 × 10−3, and for the inverse Fourier transform of Eq.
(5.21) pulse-shape parameters ωc = 2.5 and s = 1/3. One unit length l then
roughly corresponds to the shortest wavelength in the pulse. The pulse is then a
superposition of frequencies in the near field, the far field and the intermediate
regime, with a width in time of approximately 5l/c1.

From the calculated response G (t) we subtract the response of the homoge-
neous medium G0 (t) in order to separate the direct arrival from the reflection
response Gr (t). The results of the calculations are given in Fig. 5.6 where in
every panel the response of a sharp interface (grey solid line) and the response
for three different smooth interfaces (black lines) are plotted. The correspond-
ing interface velocity profile is shown in the inset of the upper left panel, with
cint from Eq. (5.35). The solid line represents a = 0.5, the dashed line a = 1.0
and the dotted line a = 2.0.

The upper left panel shows the response measured at yM = x0. The re-
flection angle is below the critical angle θc = π/6. The width of the reflected
pulse increases with increasing interface width, because of the dispersive inter-
face transmission and reflection. The reflection angles for the configurations
of the other three panels are larger than θc, so almost all energy is reflected.
In the upper right panel, for yM = 2x0, the head wave and directly reflected
arrivals are not clearly separated yet, but for yM = 3x0 and yM = 4x0 the two
separate arrivals are clearly visible. Comparing the reflection response for the
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Fig. 5.6: The reflected broadband pulse response Gr from a smooth interface for four
different source-receiver configurations. The grey solid lines show the re-
sponse for a sharp interface and the black lines represent the response for
interfaces with different widths. In the inset of the upper leftt panel the
sound velocity profile in the interface region is plotted for the four cases.

sharp interface (solid grey line) with the most smoothly varying interface we
observe that the direct reflection arrives earlier. Interestingly, the head wave
arrival is not influenced by the gradual interface with even a slightly enhanced
amplitude in the front of the head wave arrival.

5.5.2 Head waves and rough interfaces

With the recursive Green function method we are able to include fluctuations
of the wave velocity in the y-direction, as long as the lengthscale of these fluc-
tuations is smaller than the width of the lateral supercell. We can simulate the
expected self-averaged results in random systems by averaging properties like
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Fig. 5.7: Schematic representation of the paths of the directly relfected pulse and
the head wave controbution from a rough interface. The size of the lateral
supercell determines the periodicity of the interface roughness.

the amplitude or intensity over several ensemble configurations. To study the
influence of surface roughness on the head wave arrival time and amplitude with
our code, we use a random interface model to simulate the disorder. Here we
vary the height of the (sharp) interface randomly between x = 50 and x = 70
(normalized at x = 60), schematically depicted in Fig. 5.7. Along the interface,
the wave velocity then varies on the length scale of the grid spacing, which
is much less than any wavelength. This interface structure is repeated in the
y-direction with the width of the lateral supercell. We calculate the reflected
response in the time domain for a source emitting a broadband pulse at t = 0,
where we used the same pulse parameters as for the smooth interface.

The time traces of Gr for four different source-receiver distances are plotted
in Fig. 5.8, for one interface configuration (black solid lines). The grey solid
lines represent the response for the sharp interface. The arrivals of the reflected
energy for this configuration are plotted in the four panels of Fig. 5.9 , where
for comparison the reflections from the smooth interface are included (black
dotted lines) as well. For these calculations the width of the supercell is 8l,
or Ny = 80 grid points and the calculation of the reflection response for four
other configurations of the disordered interface yields similar pictures. The weak
dependence on the detailed random configuration indicates that we reached the
self-averaging regime for this width of the unit cell.

We also study the dependence on the size of the lateral supercell, by calcu-
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5. Recursive Green functions for 2D disordered systems

Fig. 5.8: The reflected response Gr for one configuration of the rough interface for four
different source-receiver configurations (black lines). The grey lines represent
the response for the sharp interface.

lating the response for yM = 3x0 for ten different configurations for Ny = 5,
10, 20 and for 5 different configurations for Ny = 40. With the smaller unit
cells, the differences in the response between different configurations increase
as, for example, the fluctuations in the arrival times for the head wave and
direct reflection arrival increases. However, the configuration averaged arrival
times do not depend on the width of the supercell. We attribute this to the
self-averaging effect of our random interface model. We also did not find clear
signs of coherent oscillations in the scattered field, which one might expect to
show up as a signature of a periodic potential when the width of the unit cell
is smaller than some of the wavelengths.

In the plots of Figs. 5.8 and 5.9 we clearly observe that the head wave arrival
is delayed when the interface is rough and that delay seems to be independent
of the detector off-set. Furthermore, for yM = x0 and yM = 2x0 the direct
reflection from the rough interface arrives after the reflected arrivals of the
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Fig. 5.9: The arrival of the reflectioin in the reflection responses Gr for four different
source-receiver configurations. Black solid lines represents the results for a
rough interface, grey solid lines the sharp interface and the black dotted line
the gradual interface.

sharp and smooth interfaces, while for larger source-receiver off-sets this arrival
is accelerated compared to both the smooth and sharp interfaces. Besides the
head wave and direct reflection, some scattered waves are observed after these
arrivals in every panel. The ratio of the amplitude of the scattered waves over
the amplitude of the reflection arrival is largest for the narrow-angle reflection.

The average head wave arrival time is approximately 4l/c1 delayed compared
to the arrivals for the smooth and sharp interfaces, for both yM = 3x0 and
when yM = 4x0. It appears that the head wave velocity is not affected by
the interface roughness. The constant delay indicates that the effective head
wave propagation path is shifted down in the presence of randomness. On the
other hand, the accelerated arrival of the direct reflection can be explained
by a shift of the effective reflecting interface in the opposite direction since at
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higher angles of incidence, the directly reflected waves are primarily affected by
the peaks in the random interface. The time between head wave arrival and
directly reflected arrival therefore becomes shorter when compared to the sharp
and smooth interface studies. The ratio between head wave arrival and primary
reflection as a function of the source-receiver distance differs in the case of a
rough interface. If not taken into account these effects could distort seismic
images. On the other hand, it could possibly be used to image properties of
rough interfaces.

We finish the discussion on the results of our calculations by looking closer at
the scattered field of the response of the disordered interface for the narrow angle
reflection when yM = x0. In Fig. 5.10 the intensity and amplitude averaged over
five different ensemble configurations are plotted. Although this is an average
over a relatively small number of ensembles, and the speckle is not well averaged
out, it is clear that the averaged amplitude of the waves that arrive after the
direct reflection vanishes. The intensity does not, so this part is the averaged
coda that results from (multiple) scattering of waves at the disordered interface.

5.6 Conclusions and discussion

With the head wave calculations in layered 2D media with lateral disorder, we
have demonstrated that the recursive Green function method can indeed be use-
ful to solve the classical wave equation for complex media. The main conclusion
from these calculations is that interface roughness shortens the time between the
head wave arrival and the arrival of the directly reflected waves and that this an
interface effect, i.e. it depends on the interface properties. This effect could lead
to possible errors for seismic imaging when interfaces are rough. When it can be
seen as a signature of the interface, the dependence of the ratio between head
wave arrival and direct reflection arrival as a function of the source-receiver
distance might reveal information about the interface topography and could
possibly be used for imaging interface properties. Our results are obtained for
2D media, but we expect that our conclusions about the arrival times are gen-
eral enough to be applicable to point sources in 3D media as well, although the
shape of the head waves and the dependence of their amplitude on distance will
differ in this case, of course.

The optimizations discussed in this chapter reduce the numerical effort such
that the broadband reflection response for rough interfaces with supercells of
up to 80 grid points can be obtained on a pc. However, other optimization can
make the code even faster. For the head wave calculations, the layers between
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Fig. 5.10: Configuration averaged intensity
〈
G2

r

〉
(black line) and the square of the

configuration averaged amplitude 〈Gr〉2 (grey line) for a narrow angle re-
flection (yM = x0) on a rough interface. Average over five configurations.

x = 0 and x = 50 are presently treated as inhomogeneous, although they are
not. Along the same lines as we optimized the calculation of the surface Green
function it should be possible to find the bulk Green function at x = 50, so that
we can decrease the size of the system in the x-direction by 500(!) grid points.
Furthermore, finding a clever way to sample the second integral in Eq. (5.33),
would allow us to increase η even further, so that even less lattice vectors in the
first Brillouin zone need to be evaluated.

There are other potentially interesting applications for the recursive Green
function method. By including bulk disorder (small scatterers) in the layers we
could directly study the multiple scattered field (or coda) from the propagating
pulse. Relating the properties of these multiple scattered waves to the proper-
ties of the medium, i.e. the inverse problem, is an ongoing scientific challenge.
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5. Recursive Green functions for 2D disordered systems

Another interesting study is the influence of anisotropic scatterers, for exam-
ple needles instead of point scatterers. The anisotropic scattering and diffusive
properties of complex systems containing these impurities has received attention
in the literature lately, both in experimental and theoretical work [11]. Studying
localization effects in these media is also an interesting topic, although one has
to carefully avoid artefacts of the periodicity of the potential in this case.
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SUMMARY

In this thesis we study wave propagation in inhomogeneous media. Examples
of the classical (massless) waves we consider are acoustic waves (sound) and
electromagnetic waves (light, for example). Interaction with inhomogeneities
embedded in a reference medium alter the propagation direction, velocity and
amplitude of waves. We describe the properties of these (multiple) scattering
processes to answer some questions in the field of waves in complex media, both
on a fundamental level and from the point of view of applications.

In the introductory chapter we motivate our research by discussing two ap-
plications for which studying wave propagation in inhomogeneous media is es-
sential, namely seismic exploration to image the earth’s subsurface, and diffuse
optical tomography (DOT) with near infrared (NIR) light for medical imaging
purposes. Both imaging techniques detect waves that are emitted by a source
and scattered by inhomogeneities to obtain information about the medium un-
der study. In seismic exploration and seismology the scientific challenge is to
relate the properties of multiply scattered waves, that form the seismic coda in
seismograms, to the properties of the inhomogeneous subsurface. In DOT, an
alternative method in medical imaging for tumor detection in breast tissue and
brain oxygenation studies, diffuse light is used to image objects embedded in
biological tissue. Here reconstructing the properties of the objects requires quite
some study, as the inverse problem is ill-defined and forward modelling of wave
propagation in diffusive media requires careful consideration of the boundary
conditions. As wave propagation in different fields is described by the same
wave equation, formalisms describing (multiple) scattering that are developed
in a certain field can also be applied to problems in a totally different one.

Chapter 2 discusses propagation of monochromatic waves in one-, two- and
three-dimensional (3D) inhomogeneous media. Here, the complex medium is an
acoustic reference medium with many embedded, similar, spherical scatterers
with a finite radius smaller than the wavelength. The waves from the monochro-
matic point source are scattered by the inhomogeneities, which are characterized
by an acoustic wave velocity contrast with the reference medium. In the fre-



quency domain, we calculate the configuration averaged amplitude, intensity,
energy flux and energy density in the independent scatterer approximation and
the ladder approximation to the Bethe-Salpeter equation. This relates the mi-
croscopic scattering properties of the individual scatterers to the macroscopic
properties of the effective medium. We obtain expressions for the (gradient of
the) averaged intensity in the medium for all source-receiver distances, which
enables us to study the crossover regime between ballistic and diffuse wave prop-
agation. We find that the crossover contribution is small for 2D and 3D media,
and that the intensity everywhere in the medium is well approximated by just
the superposition of the ballistic and totally diffuse contributions. We obtain
expressions for the frequency dependent effective medium properties, such as
the mean free path and the effective transport velocity. Resonances that can be
attributed to the single scatterer resonances become important when the wave
velocity inside the scatterer is much lower than the reference velocity. By Fourier
transforming the configuration averaged intensity in the frequency domain we
obtain the averaged time domain correlator of a short pulse. We show that
the internal scatterer resonances are responsible for long time-scale triangular
oscillations in the averaged correlator.

In chapter 3 we study boundary conditions between scattering objects. We
formulate these by applying the Landauer-Büttiker formalism, that was orig-
inally developed to describe electronic currents in mesoscopic structures, to
classical waves. We focus on acoustic waves, but the results apply to any type
of classical (scalar) waves. We find expressions for the energy current between
two large (black body) reservoirs coupled through leads and a constriction that
is much wider than the wavelength. When the system is homogeneous we find
that the energy current depends on the difference in energy density between the
reservoirs and the resistance of the constriction. In the case that the wave veloc-
ities on the left and the right from the constriction differ, the driving potential
is the energy density times the velocity cubed. Also, the scattering properties
of the interface have to be taken in to account when calculating the resistance.
This resistance is calculated analytically for two cases: the specular (clean)
interface, and the diffuse (dirty) interface. We then extend this discussion to
interfaces between semi-infinite 3D diffusive media. In this case, the diffusive
media become the reservoirs and the interface resistance is obtained by simply
correcting for the absence of the constriction. We show how analogies between
different types of wave propagation can be exploited and apply this formalism
to the thermal boundary resistance and the transport of spin waves (magnons)
through interfaces between ferromagnets.

In chapter 4 we apply the concept of the interface resistance to a diffuse



imaging problem. When a continuous light source illuminates a diffusive slab
of width L, an embedded (diffusive) object with different scattering properties
affects the light propagation. The disturbance to the transmitted and backscat-
tered light can be measured in order to localize and characterize the object. The
properties of the disturbed intensity can be expressed in terms of the position
of the object, its size and diffusion constant by solving the diffusion equation
with the appropriate boundary conditions. With the formalism developed in
chapter 3 we can take into account a refractive index mismatch between object
and medium, and other types of interface scattering in the boundary condi-
tions. We find that in case of a wave velocity mismatch it is essential to take
the interface properties into account in order to be able to characterize the
object correctly. Furthermore, we find that in some cases bulk and interface
scattering effects cancel and the object (with clearly different properties than
the medium) becomes invisible for the imaging technique (cloaking in diffusive
media). Including boundary conditions for interface scattering in a physically
transparent way by introducing an interface resistance is potentially useful for
diffuse imaging techniques like diffuse optical tomography.

The fifth and final chapter of this thesis deals with a numerical method, the
recursive Green function technique, to solve the classical wave equation in 2D
media. Using absorbing boundary conditions in the x-direction and periodic
boundary conditions on the potential in the y-direction, the method can be
used to study the propagation of cylindrical waves in layered media with short-
lengthscale lateral disorder. We discuss the principles of the method and the
optimizations that are needed to study the propagation of pulsed signals. With
this method we look at the influence of interface disorder on the propagation
of (critically) refracted head waves. We compare the head waves from a sharp
interface (jump in wave velocity from c to 2c) to those from smooth interfaces
(gradual change from c to 2c), and from a disordered interface (where the in-
terface roughness is periodic with the width of the supercell in the y-direction).
We find that the interface roughness affects the arrival time of both the head
waves and the directly reflected waves, when compared to the arrivals from the
sharp and smooth interfaces. This effect could possibly cause errors in seismic
imaging when interfaces are rough. It might also be possible to use the shape of
the head wave arrival in a seismogram to image the topography of the interface.





SAMENVATTING

In dit proefschrift bestuderen we golfpropagatie in inhomogene media. Voor-
beelden van de klassieke (massaloze) golven die we beschouwen, zijn akoestische
golven (geluid) en elektromagnetische golven (licht, bijvoorbeeld). Interactie
met inhomogeniteiten in een referentiemedium veranderen de propagatiericht-
ing, snelheid en amplitude van golven. We beschrijven de eigenschappen van
deze (veelvoudig) verstrooiende processen om vragen te beantwoorden op het
gebied van golven in complexe media, zowel van fundamentele als van toepas-
singsgerichte aard.

In het inleidende hoofdstuk motiveren we ons onderzoek door twee toepassin-
gen te bespreken waarvoor het bestuderen van golfpropagatie in inhomogene
media belangrijk is; namelijk seismische exploratie voor beeldvorming van aard-
lagen, én diffuse optische tomografie (DOT) met nabij infrarood (NIR) licht voor
medische beeldvorming. Beide beeldvormingstechnieken detecteren golven, die
uitgezonden zijn door een bron en verstrooid door inhomogeniteiten, om infor-
matie te vergaren over het medium dat wordt onderzocht. De wetenschappelijke
uitdaging in de seismische exploratie en de seismologie is het relateren van de
eigenschappen van de veelvoudig verstrooide golven, die deel uit maken van de
seismische coda in seismogrammen, aan de eigenschappen van de inhomogene
ondergrond. In DOT, een alternatieve methode in de medische beeldvorming om
of tumoren te detecteren in borstweefsel of het zuurstofgehalte in de hersenen
te bepalen, wordt diffuus licht gebruikt om een beeld te vormen van objecten
in biologisch weefsel. Hier vergt het reconstrueren van de eigenschappen van de
objecten veel studie, aangezien het inverse probleem slecht is gedefinieerd. Daar-
naast is voor het modelleren van golfpropagatie in diffuse media een zorgvuldige
behandeling van randvoorwaarden nodig. Daar golfpropagatie in verschillende
gebieden beschreven wordt door dezelfde golfvergelijking, kunnen formalismen
die veelvoudige verstrooiing beschrijven, welke zijn ontwikkeld in een bepaald
gebied, ook toegepast worden op problemen in een totaal ander gebied.

Hoofdstuk twee bespreekt propagatie van monochromatische golven in één-,
twee-, en driedimensionale inhomogene media. Hier is het complexe medium



een akoestisch referentiemedium met daarin veel gelijke, sferische verstrooiers
met een eindige straal kleiner dan de golflengte. De golven van de monochro-
matische puntbron worden verstrooid door de inhomogeniteiten, die door een
contrast in akoestische golfsnelheid met het referentiemedium worden gekarak-
teriseerd. We berekenen de configuratie-gemiddelde amplitude, intensiteit, ener-
gieflux en energiedichtheid in het frequentiedomein met de onafhankelijke ver-
strooierbenadering en de ladderbenadering op de Bethe-Salpeter vergelijking.
Dit relateert de microscopische verstrooiingseigenschappen van de individuele
verstrooiers aan de macroscopische eigenschappen van het effectieve medium.
We vinden uitdrukkingen voor de (gradiënt van de) gemiddelde intensiteit in
het medium voor alle bron-ontvanger afstanden, wat het mogelijk maakt om het
overgangsregime tussen ballistische en diffuse golfpropagatie te bestuderen. We
vinden dat de overgangsbijdrage aan de intensiteit klein is in 2D en 3D media, en
dat de intensiteit overal in het medium goed benaderd kan worden door slechts
de superpositie van de ballistische en de totaal-diffuse bijdrages. We verkrijgen
uitdrukkingen voor de frequentie-afhankelijke effectieve mediumeigenschappen,
zoals de vrije weglengte en de effectieve transportsnelheid. Resonanties, die
toegeschreven kunnen worden aan de resonanties van de individuele verstrooiers,
worden belangrijk wanneer de golfsnelheid in de verstrooier veel lager is dan de
referentiesnelheid. Door Fouriertransformatie van de configuratie-gemiddelde
intensiteit verkrijgen we de gemiddelde tijdsdomeincorrelator voor een korte
puls. We laten zien dat de interne resonanties van de verstrooiers verantwoor-
delijk zijn voor driehoekige oscillaties in de gemiddelde correlator op een veel
langere tijdschaal dan de duur van de puls.

In hoofdstuk 3 bestuderen we randvoorwaarden tussen verstrooiende ob-
jecten. We formuleren deze door het Landauer-Büttikerformalisme, dat oor-
spronkelijk voor het beschrijven van elektronenstromen door mesoscopische struc-
turen is ontwikkeld, toe te passen op klassieke golven. We focussen op akoestis-
che golven, maar de resultaten zijn toepasbaar op elk type klassieke (scalaire)
golven. We vinden uitdrukkingen voor de energiestroom tussen twee grote reser-
voirs die verbonden zijn door een constrictie die veel wijder is dan de golflengte.
Wanneer het systeem homogeen is, vinden we dat de energiestroom afhanke-
lijk is van het verschil in energiedichtheid tussen de reservoirs en de weerstand
van de constrictie. In het geval dat de golfsnelheden rechts en links van de
constrictie verschillen, is de drijvende potentiaal gelijk aan de energiedichtheid
maal de golfsnelheid tot de derde macht. De verstrooiende eigenschappen van
het grensvlak moeten dan in acht genomen worden bij de berekening van de
weerstand. Deze weerstand wordt analytisch berekend voor twee gevallen: het
perfect gladde grensvlak en het diffuse (vuile) grensvlak. Vervolgens breiden



we deze discussie uit naar grensvlakken tussen halfoneindige 3D diffuse media.
In dit geval worden de diffuse media de reservoirs, en de grensvlakweerstand
wordt verkregen door te corrigeren voor de afwezigheid van de constrictie. We
laten zien hoe analogieën tussen verschillende soorten van golfpropagatie benut
kunnen worden door dit formalisme toe te passen op de thermische grensvlak-
weerstand en het transport van spingolven (magnonen) door grensvlakken tussen
ferromagneten.

In hoofdstuk 4 passen we het concept van de grensvlakweerstand toe op
een diffuus beeldvormingsprobleem. Wanneer een continue lichtbron een diffuus
medium met eindige dikte L beschijnt, zal een ingebed (diffuus) object, met
andere verstrooiende eigenschappen, de lichtpropagatie bëınvloeden. De ver-
storing van het getransmitteerde en gereflecteerde licht wordt gemeten om het
object te lokaliseren en te karakteriseren. De eigenschappen van de verstoorde
intensiteit worden uitgedrukt in de positie, de grootte en de diffusieconstante
van het object, door de diffusievergelijking op te lossen met de juiste randvoor-
waarden. Met het formalisme beschreven in hoofdstuk 3, kunnen we een brek-
ingsindexverschil tussen object en medium en andere vormen van grensvlakver-
strooiing meenemen in de randvoorwaarden. We vinden dat in het geval van een
verschil in golfsnelheid het essentieel is om de grensvlakeigenschappen mee te ne-
men, teneinde het object goed te kunnen karakteriseren. Verder vinden we dat in
sommige gevallen bulk-, en grensvlakverstrooiingseffecten elkaar opheffen zodat
het object onzichtbaar wordt voor de beeldvormingstechniek (hoewel de eigen-
schappen van het object wel duidelijk verschillen van die van het medium). Het
meenemen grensvlakverstrooiing in de randvoorwaarden door het introduceren
van een grensvlakweerstand op een fysisch transparante wijze, is een mogelijk
bruikbaar principe voor diffuse beeldvormingstechnieken als diffuse optische to-
mografie.

Het vijfde en laatste hoofdstuk van dit proefschrift gaat over een numerieke
methode, de recursieve Greense functiemethode, om de klassieke golfvergelijking
in 2D media op te lossen. Door gebruik te maken van absorberende randvoor-
waarden in de x-richting en periodieke randvoorwaarden in de y-richting, kan
de methode worden gebruikt om propagatie van cilindrische golven in gelaagde
media met laterale wanorde te bestuderen. We beschrijven de principes van
deze methode en de optimalisaties die nodig zijn om de propagatie van gepulste
signalen te kunnen bestuderen. Met deze methode onderzoeken we de invloed
van grensvlakwanorde op de propagatie van (kritisch) gebroken “head waves”.
We vergelijken de “head waves” van een scherp grensvlak (een sprong in de
golfsnelheid van c naar 2c) met die van geleidelijke grensvlakken (geleidelijke
overgang van c naar 2c), en met die van een wanordelijk grensvlak (waarbij de



grensvlakwanorde periodiek is met de breedte van de supercel in de y-richting).
We vinden dat de grensvlakwanorde de aankomsttijd van zowel de “head waves”
als de direct gereflecteerde golven bëınvloedt, wanneer ze worden vergeleken
met de aankomsttijden voor de scherpe en de geleidelijke grensvlakken. Dit
effect kan mogelijk voor fouten zorgen in seismische beeldvorming wanneer de
grensvlakken wanordelijk zijn. Dit kan mogelijk ook worden gebruikt om de
vorm van de “head waves”-aankomst in een seismogram te gebruiken voor beeld-
vorming van de topografie van het grensvlak.
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