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Abstract

Microtubules are long cylindrical polymers, assembled from tubulin proteins. Microtubule
ends can be visualized using fluorescence and confocal microscopy. This allows for the study
of microtubule dynamics. However, the manual annotation of microtubules is laborious,
which is why automated tracking methods are used.

In this project we have investigated the automation of both microtubule detection and
segmentation using deep convolutional neural networks. To this end, we have adapted the
ISOODL network introduced by Böhm et al. [1]. This network not only detects, but also
segments microtubules. Microtubule locations are represented as reference points at their
center of mass. Separation between microtubules is introduced by predicting both xz- and
yz-sheared masks. At every predicted reference point, post-processing operations revert the
shearing operation. This results in microtubule detections and their corresponding segmen-
tations. We have concluded that the ISOODL network is able to detect and segment micro-
tubules.

In an attempt to further improve the segmentation of overlapping microtubules, we de-
veloped a new network to be used exclusively on overlapping microtubules. This network
predicts the segmentation mask of every microtubule in a different channel of the output.
However, the developed ’overlap network’ was unable to produce satisfactory segmentation
results. Consequently, this data structure does not facilitate separation between overlapping
microtubule.
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Chapter1
Introduction

The architecture of cells is governed by a multitude of subcellular structures that orchestrate
various biological processes. One of these structures are microtubules, long cylindrical poly-
mers assembled from tubulin proteins. A large dynamic array of microtubules, called the
mitotic spindle, separates chromosomes and forms the plane of cleavage during cell division.
Microtubules act together with actin filaments and intermediate filaments to provide shape
and strength to the cytoplasm. Although microtubules play a structural role in the cell, they
are highly dynamic in nature. They polymerize, depolymerize and move through the cyto-
plasm within seconds to minutes [2].

Several proteins have been identified that bind to the ends of growing microtubules. By
fusing these proteins with green fluorescent protein, the dynamics of microtubule ends can
be studied. Using fluorescence and confocal microscopy, visualizations of this growth can be
made in time [3, 4]. However, the manual annotation of microtubule ends is laborious, which
is why automated tracking methods are an attractive solution. One advantage of automated
tracking methods is the ability to process large volumes of data, resulting in identification
of more complex patterns. On top of that automated tracking is reproducible and objective,
which allows for standardization of methods between researchers [5].

1.1. Project goal
The majority of automated particle tracking methods follow two steps:

1. Detection: Coordinates of microtubules are estimated for every frame in the image se-
quence.

2. Linking: In order to follow microtubules in time, the correspondence between the points
across different frames should be established.

In this project we will focus on the detection step of automated particle tracking using
deep convolutional neural networks. We will also attempt to segment individual micro-
tubules, which could be useful in the development of a more effective linker. Moreover,
segmentation of microtubule ends allows for the analysis of their intensity profiles [6].

1.2. Prior work
Computer vision has improved massively in the past few years, largely due to the success
of deep neural networks. In this project, we are interested in instance segmentation. Instance
segmentation is the classification of individual pixels and assigning them to specific instances
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of a class. Not only do we want to know where microtubules are, we also want to know which
pixels belong to a single microtubule. This is a common task in biomedical imaging, and a lot
of work has been done on using deep convolutional neural networks in object detection and
segmentation. One example of this is Mask R-CNN, which combines object detection with
segmentation of said object [7]. The main network we used, ISOODL takes a similar region
based approach as Mask R-CNN but focuses on overlapping objects [1]. To our knowledge
there is no application of deep convolutional neural networks for instance segmentation of
microtubules.

1.3. Data
In order to train the networks in this project, a synthetic data generator was used [8]. This
generator creates noisy microtubule images, together with their accompanying labels. These
labels differ between the networks used, and they are described in the corresponding sections.
All synthetic data used in this project has a signal to noise ratio of 5.

In the exploratory phase of this project, we used real annotated microscopy images from
Niels Galjart for the training of our networks (see figure 1.1). However, due to the limited
amount of data we opted to use the synthetic data to perform our experiments.

Figure 1.1: An example of how real microscopy images are annotated by biologists.

1.4. Challenges
When tracking microtubule tips, traditional methods such as model fitting and heuristic ap-
proaches often encounter common challenges. In this section we go over the challenges that
were addressed in this project.

1.4.1. Overlapping microtubules
A problem arises when microtubules are overlapping. Figure 1.2 illustrates how traditional
detection methods might struggle with overlapping microtubules. Since the microscope im-
ages are limited to 2 dimensions, there is no available information regarding the depth of
microtubules. One might expect that some estimate of depth could be made based on the
intensity of the microtubule tips: a tip with a higher intensity might lie on top of a tip with a
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lower intensity. It is important to note that in real data, microtubule tips are sometimes sat-
urated to the highest intensity. This means that if two microtubules overlap, there is almost
no change in intensity between the overlapping parts. Not only does this pose a problem for
the detection of microtubules but also for instance segmentation. In order for the network to
learn this, the microtubules have to be separated in the data. Finding a way to separate mi-
crotubules in the data together with a corresponding network that can learn this separation
was the main problem faced in this project.

Input image
Ground truth
detections

Predicted
detections

Figure 1.2: An example of how traditional microtubule detection methods might make an incorrect detection in
the case of overlapping microtubules.

To achieve these goals, the following experiments were conducted:

1.5. Overview
This project revolved around answering the following research questions:

1. Can we use a deep learning model to automate the detection and segmentation of mi-
crotubles?

(a) Can we detect both isolated and overlapping microtubules?
(b) Can we also segment isolated and overlapping microtubules?

2. Can we improve the segmentation of microtubules using a different network structure?

1.5.1. Experiment 1
The first experiment revolves around the ISOODL network structure proposed by Böhm et al.
[1]. This network can detect and segment overlapping objects. This network was compared
against a regular U-net architecture. Because the amount of real data was limited, a synthetic
data generator was used for the training of both networks. The performance of detection and
segmentation was evaluated using ROC and FROC curves, as described in section 2.3.

1.5.2. Experiment 2
The second experiment builds upon the results of the first experiment. A second network
was trained that aims to improve the segmentation of overlapping microtubules. This net-
work does not have to analyze an entire image but only sections of the image where the
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ISOODL network detects overlap. This network was also trained on synthetic data and aims
to segment each microtubule separately in different channels of the output as described in
section 2.2.3. The performance of this network was evaluated qualitatively. We have trained
the network with 4 different sets of parameters, and will show the resulting segmentations.

1.6. DeepImageJ
The field of deep learning in biomedical image analysis is advancing at a rapid pace. How-
ever, it is important to keep in mind that accessibility to these new and improved models is
often limited for users with marginal programming experience. Therefore, we have also ex-
plored the implementation of neural networks using the deepImageJ environment [9]. The
deepImageJ environment allows for easy implementation of neural networks into ImageJ
[10]. Members of the bioimaging community tend to have large familiarity with open-source
softwares such as ImageJ, which should lead to a more user-friendly experience [11]. The
deepImageJ environment is also compatible with using patches instead of full images, and
can thus be used on a variety of image sizes. However, the deepImageJ environment is only
compatible with pytorch [12] version 1.9.1, while version 2 is already available.

Furthermore, deepImageJ formatted models can be uploaded to the bioimage model zoo
[13], a model repository where pre-trained models can be shared between users.



Chapter2
Method

In this chapter we introduce some basic concepts in deep learning. Additionally, we explore
the structures of the networks used in this project. Afterwards we explain the performance
metrics used in chapter 3.

2.1. Deep Learning
Deep learning has rapidly become a prominent technique in the field of Artificial Intelligence
due to its remarkable ability to learn and model complex relationships within large datasets.
Before the advent of deep learning, researchers had to provide their machine learning models
with several predefined pieces of information. Each piece of information included in the
representation of the data is called a feature. The model would take these features and learn
which combination of features lead to the desired outcome. The manual selection of features
is incredibly time consuming and also difficult. To illustrate this, imagine we would like to
detect a face in a photograph. It is highly challenging to describe what a face should look like
in terms of pixel values, as there may be shadows falling on the face, or the eyes might be
closed. Therefore, newer machine learning models not only learn how to produce an output
from features, but they learn to make the features themselves. In this section we will go over
some basic concepts in deep learning. For a more extensive overview please refer to [14].

2.1.1. Artificial Neural Networks
The simplest type of artificial neural network (ANN) is a perceptron. A perceptron combines
multiple inputs xi, their weights wi, and bias b to form output y:

y = A(b + ∑
i

wixi), (2.1)

where A is called the activation function. Activation functions are usually non-linear, which
enables the network to learn complex non-linear relationships between input and output.
More complicated ANNs are made by combining multiple perceptrons and letting the output
of one perceptron serve as the input of another perceptron. Neural networks tend to consist
of multiple layers, with each layer functioning as a set of perceptrons operating in parallel.
An additional layer of perceptrons receives input from the previous layer of perceptrons. A
network has an input layer, hidden layers and an output layer (see figure 2.1).

2.1.2. Gradient descent
By manipulating the parameters of the network, we can alter its output for a given input. The
optimization of these parameters is what we refer to as the training of the network.

5
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b

x1

x2

x3

∑ A y

w1

w2

w2

1

Figure 2.1: A simple perceptron.

The parameters that are modified during the training process are the weights wi and bi-
ases b of the perceptrons. In order to change the values of these parameters a measure of
performance is required. Let

x =

 x1
...

xM

 , y =

 y1
...

yN

 , Y =

Y1
...

YN

 (2.2)

be the input, output and expected output of an ANN for one training example, respectively.
A loss function f (y, Y) : RN × RN → R is defined which is small when our output is close to
the expected output and vice versa. During training we present the network with a dataset of
input and with expected output. Let

θ =



w1
...

wk
b1
...
bl


(2.3)

be a column vector of all trainable parameters in the perceptrons. In order to get a more robust
measure of performance for the network we define the cost function C(θ) as the average loss
of all the loss functions for each yj and the corresponding Yj. During each iteration of training
the cost of the network is computed using the aforementioned cost function. By attempting to
minimize this cost the performance can be increased. This optimization is done using gradient
descent [15].

Given the cost function C(θ), gradient descent iteratively updates the parameters by sub-
tracting the gradient of C(θ) with respect to the parameters θ, multiplied by a learning rate α.
Mathematically, the update rule for gradient descent can be expressed as:

ut = −α∇C(θt), (2.4)

θt+1 = θt − ut. (2.5)
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Here, θt represents the parameters at iteration t, and ∇C(θt) is the gradient of the function
evaluated at θt. The vector ut is called the update vector. The learning rate α controls the
step size taken at each iteration. Conceptually this can be understood better by reducing the
dimensionality of the cost function to a 3 dimensional surface. The parameters are updated
so that the direction of the step is towards the steepest descent in that parameter space. If the
step size is too small it will take many iterations to reach a minimum in the parameter space.
If the step size is too large the minimum can be overshot. Finding ∇C(θ) can be done using
the backpropagation algorithm [14].

Calculating the gradient for every single training example during each training iteration
takes a lot of time. Therefore, it is more common to randomly divide the training examples
into smaller batches. The cost and subsequently the gradient of this batch is calculated, and
the weights and biases of the model are updated according to this batch. Although this means
that the step that is taken in the parameter-space might not be the most efficient, it allows for
many more steps to be taken in the same amount of time. The reduction in calculations per
batch also allows for using the parallel processing capabilities of GPUs, which speeds up
training even more. This method of calculation gradients using a subset of training examples
is called mini-batch gradient descent.

2.1.3. Optimizers
The traversal of the hyperparameter space is not trivial. Local minima, and more importantly
saddle points, pose a problem to gradient descent [16]. Saddle points tend to be surrounded
by regions with a near-zero gradient. Therefore, they take a very long time to traverse, or
they can be seen as a minimum and the training is stopped. In order to traverse the hyper-
parameter space more efficiently, it is common to use optimizer algorithms. Optimizers play
a crucial role in training neural networks via gradient descent by efficiently navigating the
high-dimensional parameter space and guiding the model towards convergence. The opti-
mizer used in this thesis is Adaptive Moment Estimation (Adam) [17]. Adam combines ideas
from both momentum-based optimization and adaptive learning rate methods. Momentum-
based optimization is a method that increases the gradient vector in the direction of previous
gradient vectors (see figure 2.2):

ut = γut−1 + (1 − γ)∇C(θt), (2.6)

θt+1 = θt − ut. (2.7)

The hyperparameter γ ∈ [0, 1) is the momentum term that determines how much influence
previous update vectors have on the new update vector. Adam took inspiration from the
adaptive learning rate algorithm Root Mean Square Propagation (RMSProp) [18]. It changes the
accumulation of gradient to the exponentially moving average of the squared gradient:

vt = κvt−1 + (1 − κ)∇C(θt)
2, (2.8)

with κ ∈ [0, 1). Now the update vector ut is defined as:

ut = ut−1 −
α√

vt + ε0
∇C(θt), (2.9)

where ε0 is set as 10−8 to prevent division by 0. The idea of RMSProp is that the size of the
update vector in one dimension is reduced if it is very large and increased if it is very small.
This leads to a straighter path in the hyperparameter space, which helps with convergence.

The Adam optimizer changes the update vector based on the exponential moving aver-
ages of the gradient and of the squared gradient, mt and vt respectively:
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Without momentum With momentum

Figure 2.2: Gradient descent with momentum increases the gradient vector in direction of previously taken steps

mt = β1mt−1 + (1 − β1)∇C(θt), (2.10)

vt = β2vt−1 + (1 − β2)∇C(θt)
2, (2.11)

where β1, β2 ∈ [0, 1) are the hyperparameters governing the exponential decay rates of these
moving averages. Commonly β1 and β2 are set to 0.9 and 0.999, respectively. mt and vt are
both initialized to 0, and since β1 and β2 are almost 1, mt and vt have a bias towards 0. The
bias-corrected versions of mt and vt are defined as follows:

m̂t =
mt

1 − β1
, (2.12)

v̂t =
vt

1 − β2
. (2.13)

The update vector of the Adam algorithm thus becomes:

ut = α
m̂t
ˆ√

vt + ε0
. (2.14)

2.1.4. Regularizers
The main objective of a trained neural network is to perform well on data it has not seen be-
fore. Therefore, the performance of the network on unseen data is measured during training.
In order to achieve this the labeled data is split into two parts: the training set and the vali-
dation set. During each epoch of training, the training set will be used to adjust the trainable
parameters of the network. The validation set will be used to see if the network is not over-
fitting. An overfitted neural network has a very high performance on the training set but a
low performance on the test set. This happens because the network is not able to generalize
concepts from the training set and apply these concepts on the validation sets.

Early stopping
One way to prevent overfitting is by implementing early stopping. Early stopping finishes the
training of the network as soon as the performance on the validation set does not increase
anymore. The amount of training iterations the performance on the validation set is allowed
to decrease before stopping training is called the patience. After the early stopping has run
out of patience, it will revert back to the iteration where the performance on the validation set
was the highest (see figure 2.3).
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Cost

Epochs

Training

Validation

Patience

Best model Early stopping activated

Figure 2.3: Early stopping activates when the cost of the validation set increases.

Batch normalization
Batch normalization is a technique commonly used in deep neural networks to improve train-
ing efficiency and generalization performance. It also regularizes the network reducing the
need for other regularization techniques such as dropout [19]. It involves normalizing the
activations of previous layers by adjusting and scaling them to have zero mean and unit vari-
ance. This normalization is applied to mini-batches of training examples during the training
process.

One mini-batch B of size m has activation vectors x1, ..., xm. Let

xi =


x(1)i

...
x(d)i

 (2.15)

be a vector of d activations for sample i of mini-batch B. The batch normalization transform
BNγ,β(x) is computed for each of the scalar activations x(k)i of xi. The mini-batch mean µ

(k)
B

and mini-batch variance v(k)B are defined as:

µ
(k)
B =

1
m

m

∑
i=0

x(k)i , (2.16)

v(k)B =
1
m

m

∑
i=0

(x(k)i − µ
(k)
B )2, (2.17)
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µ
(k)
B and v(k)B are used to calculate the normalized activation x̂(k)i via

x̂(k)i =
x(k)i − µ

(k)
B√

v(k)b + ε
, (2.18)

where ε is a small positive constant to prevent division by 0. In order to scale and shift the
normalized activation a linear transform is applied:

y(k)i = γ(k) x̂(k)i + β(k), (2.19)

where γ(k) and β(k) are learnable parameters. The batch normalization transform can now be
written as:

BNγ,β(xi) =


y(1)i

...
y(d)d

 . (2.20)

It is still unclear how batch normalization helps the training of artificial neural networks.
At first it was hypothesized by Ioffe and Szegedy that batch normalization reduces internal
covariate shift [19]. Internal covariate shift refers to the change in the distribution of network
activations that occurs during the training of neural networks. Due to changes in the param-
eters of earlier layers, the distribution of inputs to subsequent layers also changes. This is
problematic because a neural network is essentially learning a mapping from the input dis-
tribution to the target distribution. By changing the distribution of earlier layers, the network
constantly has to adapt which makes training more difficult. This can be more troublesome
for deep neural networks since small changes in earlier layers get amplified as they propa-
gate. Santurkar et al. have argued that batch normalization smoothens the hyperparameter
space, allowing for more efficient traversal using an optimizer [20].

2.1.5. Convolutional Neural Networks
Images can also be used as an input for ANNs. Pixel intensities are represented as numbers
in a matrix. Each number serves as an input to one neuron in the network. Since weights
and biases are needed for every neuron in each layer, this is computationally very expensive.
Therefore, it is more common to use a convolutional neural network (CNN) when working with
images. As the name suggests CNNs rely on convolutions. In image analysis convolutions
produce an output image from an input image using a kernel. The kernel is a matrix with
weights that slides over the input image. Overlapping parts of the kernel and the input image
are multiplied elementwise. That value is assigned to a new image at the location of the
kernel. Dealing with boundaries of images can be done with padding. The parts of the kernel
where there is no overlap with the image are taken to be zero. One kernel produces one image
or feature map. In practice convolutional layers use multiple kernels to produce multiple
feature maps. These feature maps serve as input to the next convolutional layer.

In a traditional ANN each neuron has a connection to each input pixel. In a CNN each
neuron only has a connection to each input pixel within the kernel. Since the size of the kernel
is way smaller than the image size, fewer computations have to be done. Furthermore, the
kernel weights are shared between the neurons. This means less parameters have to be stored
as well. This massive reduction in trainable parameters allows for more layers to be used in
the network.

Convolutional layers typically contain a pooling layer. The pooling layer reduces the spa-
tial dimensions of the image while retaining the most important features. This is done by
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dividing the input image in non overlapping square boxes. In max pooling [21] the maximum
of each of these boxes is the output pixel at the location of that box. This reduction in spatial
dimensions not only helps with the computational load, but it also makes the network some-
what translation invariant. If one pixel within the box has a high value, all other pixels in that
box will not have an influence on the output of the max pooling layer.

If an image has gone through multiple convolutional layers with max pooling, the spatial
dimensions are a lot smaller than the input image. If the output of the network should be
a pixel-wise classification, the spatial dimensions of the output should be the same as the
input image. Therefore, layers with transposed convolutions or deconvolutions are added after
the final convolutional layer. Transposed convolutions consist of two steps: upsampling and
convolution. During the upsampling step zeros are added in between each pixel to increase
the image size. Then, a regular convolution is applied to this upsampled image. The stride
of this convolution is 1, so the output of the layer has the same spatial dimensions as the
upsampled image. These convolutions also have trainable parameters and are thus learned
during training. Networks that only contain convolutions and no fully connected layers are
called fully convolutional networks.

2.2. Models
2.2.1. U-net
U-net is a very popular network architecture used in image segmentation, due to its ability to
combine fine details and high-level semantic information. The U-Net architecture derives its
name from its U-shaped structure, which consists of a contraction and an expansion path. The
contraction path reduces the spatial dimensions of the input image while extracting features
via convolutions and max-pooling layers. In the expansion path a series of transposed convo-
lutions and upsampling layers increase the spatial dimensions of the output of the contraction
path. Furthermore, concatenations between features from the contraction and expansion path
are incorporated in multiple layers. This facilitates the integration of lower level, highly de-
tailed features with higher level, more abstract features [22].

The activation function used for the networks in this thesis is the LeakyRelu [23]. It is
defined as follows:

LeakyRelu(x) =

{
x, if x ≥ 0,
α · x, otherwise,

(2.21)

where α is 0.01 for all experiments.
The amount of background pixels is larger than the amount of pixels belonging to mi-

crotubules, which makes learning more difficult for the network. In order to account for
this class-imbalance and to force the network to learn separation between touching objects, a
weight map is introduced. This weight map is computed as:

w(x) = wc(x) + w0 · exp− (d1(x) + d2(x))2

2σ2 , (2.22)

with wc : Ω → R is the weight map that accounts for the class-imbalance. d1 : Ω → R is the
distance to the border of the nearest object and d2 : Ω → R the distance to the border of the
second nearest object. The second term in equation 2.22 will be large if an object is near other
objects. This increases the importance of microtubules in close proximity.

The U-net architecture will serve as a backbone to all the other networks that are used
in this thesis. Furthermore, the U-net architecture as shown in figure 2.4 will be used as a
comparison to the ISOODL network described in section 2.2.2.
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Figure 2.4: U-net structure used in this project. The numbers in the colored blocks correspond to the amount of
feature maps at that position. The numbers on the side of the blocks correspond to the width and height of the
feature maps at that position

Training
This section provides an overview of the paramater settings used during training of the U-net
network. 90 synthetically generated images with a signal to noise ratio of 5 were used to train
the network. These images were rotated and flipped to create 360 images in total. 250 of these
images were used for training, and 90 for the validation during training. Please refer to table
2.1 for the other parameters used.

Table 2.1: Parameter Settings for the U-net network

Parameter Value

Epochs 500 (early stopping reverted back to epoch 24)
Adam β1 0.9
Adam β2 0.999
learning rate 0.0001
Early Stopping Patience 10

2.2.2. ISOODL
Conventional convolutional neural networks, like U-net, have been shown to be a drastic
improvement to pixel-wise semantic segmentation [24]. However, these networks are not
capable of instance detection, and rely on the classification of pixels. This means that if two
objects are overlapping, adjacent pixels from two different objects will have the same class.
These objects will be merged in the segmentation mask.

In an attempt to improve the separation of objects in the segmentation mask the ISOODL
(Instance Segmentation of Overlapping biological Objects) network structure was adapted
[1].

The proposed ISOODL network structure simultaneously solves two tasks of our problem:
object detection and instance segmentation. It is based on the U-Net architecture with two
independent expansion paths to solve detection and segmentation.

We define one object, in our case a microtubule, as Ok := (mk, ck, bk, pk, yk) where mk :
Ω → {0, 1} is the binary mask of the object with Ω ⊂ N2. ck ∈ R2 is the center of the
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Input Binary mask Reference points

Figure 2.5: Object reference points are the centers of mass of the binary object masks

bounding box encompassing the object, bk = (wk, hk)
⊤ ∈ R2 are the width and height of

the bounding box, pk ∈ R2 is the reference point of the object. Since some objects in the im-
age are overlapping, their binary masks will be connected. Therefore, the location of the
reference point of a microtubule is defined as the center of mass of that microtubule (figure
2.5). However, due to class imbalance the prediction of small reference points can become
quite challenging. Therefore a dynamic reference point size was used, as proposed by Böhm,
Tatarchenko, and Falk in [25]. Instead of fixing the size of reference points, we allow them to
shrink if they are in close proximity to another reference point. Instead of a single pixel, we
can now use disks with a maximum size of rmax to show where reference points are. To do this
we compute the euclidean distance. To determine how large a disk should be, we compute
the euclidean distance to the nearest reference point of another object

dk = min(
dk

d
− 2, rmax). (2.23)

Furthermore, we also introduce per pixel loss weights based on the size of the disks, to
account for the impact of varying disk size on the loss:

ωk := min(π(r2
max − r̂2

k), 10). (2.24)

Additionally, weights as described in 2.22 are added. The value of d2 was set to 0 because
it decreased performance of the network. ω0 was set to 0.3 and σ was set to 25.

yk ∈ {1, . . . , C} is the class label of the pixel. The set of all objects is O = {O1, . . . , Ok}.
Predicted variables are indicated with a hat, and primed variables indicate 3D representa-
tions. x = (x, y)⊤ ∈ Ω are the 2D coordinates of the image. x′ = (x⊤, x)⊤ ∈ Ω × Z are the
corresponding 3D coordinates.

Object detection
The object detection path has two outputs: object location and object size. The network is
trained to classify each pixel as either background or reference point. Furthermore, the net-
work also predicts the size of a bounding box that encompasses an object. If the network is
given an input image, the object location output will produce a score map of real positive val-
ues. These values represent the likelihood of a pixel belonging to either the background or an
object reference point. Since we need a binary classification of pixels, a threshold is applied.
The centers of mass of the connected components in this binarized output are used as object
centers. The prediction of bounding box width and height was unsuccessful in our experi-
ments, and therefore the size was fixed to 20x20 pixels. This bounding box approximation
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encompasses microtubules fully, which is important to successfully extract all information
out of the predicted sheared object masks described in section 2.2.2.2.

Object segmentation
In the case of overlapping objects we are dealing with multiple labels per location. In order
to teach the model that these are separate objects we lift the domain of the labels from 2D to
3D. This lifting is done via

m′
k(x′) =

{
mk(x) z = 0,
0 otherwise.

Then a shearing is applied to all coordinates within a bounding box corresponding to an
object. The sheared bounding box centers c′k = (c⊤k , 0)⊤ remain at z = 0. All masks of the
separate objects are described in one function m′x : Ω × Z → (0, 1) where

m′x(x′) := max
k∈1,...,K

(m′
k ◦ (Tx

k )
−1)(x′),

Tx
k : R3 → R3 is the object specific shear transformation. Superscripts .x and .y indicate shear-

ing in xz direction or yz direction respectively. The shear transformation Tx
k can be described

as follows:
Tx

k = (Tck)
−1 ◦ Tx

s ◦ Tck .

Tck shifts the object bounding box center ck to the origin. Tx
s shears the pixels inside the

bounding box with a fixed angle of 45 degrees. In order to prevent the size of the transformed
data to become prohibitively large a maximum size is set at 23 slices in the z dimension.
Should a bounding box have a size that is larger than 23 pixels, the outer pixels will be lifted to
the highest or lowest z-slice depending on the shearing direction. Ty

k is constructed similarly
but with Ty

s shearing in yz direction.
Lifting the objects in xz-direction solves the problem of separation in the y direction. In

order to separate the objects in x direction they are also lifted in yz-direction. Combining
these two outputs will lead to full separation in 3D space. The last output of the network is
a semantic segmentation. This segmentation is not used in the post-processing steps but it
stabilizes the training.

All outputs of the network were trained using a weighted binary cross entropy (BCE) as a
loss function. The weighted BCE is defined as follows:

BCE(y, ŷ) = ω · (−y log (ŷ)− (1 − y) log (1 − ŷ)), (2.25)

where ŷ is the predicted probability of output y. For the reference point predictions, ω is as de-
scribed in section 2.2.2. For the segmentation outputs ω increases the weights of the positive
class, such that the contribution of the positive class on the loss is equal to the contribution of
the negative class.

For an overview of the object segmentation path see figure 2.6

Post-processing
The object detection path of the network predicts the location of objects in the input image.
For each of these predicted objects the shearing transformation has to be undone by using the
object specific Tx

k and Ty
k . This maps the probabilities back to the z = 0 plane:

px
k (x′) = (m̂′x ◦ Tx

k )(x′),

and
py

k(x′) = (m̂′y ◦ Ty
k )(x′).
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Figure 2.6: Expansion paths of the ISOODL network. The numbers in the rectangles correspond to the amount of
channels in that point of the network.

In order to obtain 2D probability maps the average joint probability px
k (x′)+py

k (y
′)

2 is pro-
jected along the z-axis weighted by a Gaussian N0,σ, with σ equal to 1.

The gaussian is applied to account for any localization inaccuracies. Then Otsu threshold-
ing [26] is applied per predicted map to get the final binary masks.

Overlap
We also added an extra output for the ISOODL network that predicts the amount of overlap
that is present at each pixel. If a pixel belongs to two microtubule segmentations, then the
overlap at that pixel is also 2. The overlap output of the network has N + 1 channels, where
N is the maximum amount of overlap present in the data. For this project, N was set to 4. The
loss function used on this output was also a binary cross-entropy. The final predicted amount
of overlap is determined by taking the index of the highest predicted class across the channel
dimension.



2.2. Models 16

Training
This section provides an overview of the parameter settings used during training of the
ISOODL network. 90 synthetically generated images with a signal to noise ratio of 5 were
used to train the network. 81 of these images were used for training, and 9 for the validation
during training. We refer to table 2.2 for the other parameters used.

Table 2.2: Parameter settings for the ISOODL network

Parameter Value

rmax 3
Epochs 500 (early stopping reverted back to epoch 101)
Adam β1 0.9
Adam β2 0.999
learning rate 0.00001
Early Stopping Patience 10

2.2.3. Overlap network
Since the ISOODL network is able to predict where microtubules are overlapping, another net-
work trained on overlapping microtubules is proposed. This network can be used to further
improve segmentation of overlapping microtubules. Unfortunately there is very little anno-
tated data of exclusively overlapping microtubules. Therefore, a synthetic data generator was
used to generate data with overlapping microtubules. Since the lifting and shearing of mi-
crotubules in the ISOODL network did not produce satisfactory results, a different separation
was used. The segmentation map of each individual microtubule is put in a different layer.

This does mean that the network can only predict segmentation maps of N different mi-
crotubules, as the output has N different layers. If there are less than N microtubules in the
image, some layers will contain no segmentation in the form of a black image.

N

48 x 48

Figure 2.7: The individual microtubule segmentation masks are put in different channels.

Due to the fact that the size of the images is smaller than in the ISOODL network, the net-
work structure has to be adapted. The max pooling operations used in the contraction path
reduce the spatial dimensions of the image. If no modifications would have been made, the
image would be one pixel at the deepest part of the network. The upsampling and deconvo-
lutions would not be able to extract much relevant information out of this pixel. The input
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images have a size of 48x48 pixels, and at the end of the contraction path the size is 12x12
pixels. The input of this network is the amount of overlap predicted by the ISOODL network
concatenated with the raw input image. The network also predicts a regular segmentation
with a BCE as loss function, which aids in training. In order to further improve the perfor-
mance of this network and to account for the change in data structure, some additional loss
functions were added.

Loss functions
The primary loss function used for the segmentation output, was a cross-entropy loss. The
activation function of this prediction is a softmax, which ensures that the probabilities of
belonging to each class sum up to 1:

softmax(xi) =
exi

∑n
j=1 exj

, (2.26)

where j is the amount of classes.
The cross-entropy loss (CEL) is defined as:

CEL = −
N

∑
i=1

yi · log ŷi, (2.27)

where N is the amount of pixels, yi and ŷi are the ground truth and predicted probabilities
respectively. Furthermore we also added a weight map, which consisted of weighing all
pixels that belong to microtubules other than the one of the current class.

The dice loss was used as an additional loss function for the segmentation of separated
microtubules. It originates from the Sørensen-Dice coefficient [27, 28] and was introduced
to computer vision by Milletari, Navab, and Ahmadi [29]. The Sørensen-Dice coefficient is
defined as:

D =
2 ∑N

i pigi

∑N
i p2

i + ∑N
i g2

i

, (2.28)

where pi is the predicted binary mask and gi is the ground truth. Cross-entropy loss is calcu-
lated per pixel without knowing the values of adjacent pixels. Therefore, cross-entropy loss
does not consider global information of the image, which dice loss is able to do.

We also tried applying a sensitivity-specificity loss (SLL), which uses the sensitivity and
specificity of the segmentation predictions.

SSL = ω · sensitivity + (1 − ω) · specificity, (2.29)

where the sensitivity and specificity are defined as:

sensitivity =
TP

TP + FN
, (2.30)

specificity =
TN

TN + FP
. (2.31)

The variable ω was set to 0.3.
Additionally, we also use focal tversky loss (FTL). This loss function down-weights easy

samples and thus focuses more on hard cases using the γ coefficient.

FTL = ∑
c
(1 − TIc)

γ, (2.32)
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where TI is the tversky index:

TI(β) =
TP

TP + βFN + (1 − β)FP
, (2.33)

where TP, FN and FP are defined in section 2.3.1. For this project, β was set to 0.7 and γ
was set to 2.

Furthermore, we also want to ensure that the predicted microtubule segmentations sum
up to the amount of overlap. Therefore, we compute the mean squared error between the sum
of the predicted microtubule segmentations and the amount of overlap per pixel. The mean
squared error is defined as:

MSE =
1
N

N

∑
i
(pi − gi)

2. (2.34)

On top of that we also applied a binary cross entropy to the maximum projection of the
N microtubule segmentations. This ensures that there are no pixels that should belong to a
microtubule that are not predicted by the network.

The network also predicts the overlap that was used as one of the input images. The
activation function of this prediction is a softmax, and the loss a regular cross-entropy loss.
The loss used for this output was a regular cross-entropy loss.

Post-processing
The final segmentation output is produced by applying a softmax to the predicted segmen-
tations. Due to the fact that all probabilities now add up to 1, we have to do some post-
processing to assign pixels that should belong to more than 1 microtubule. First we assign
pixels to the class of highest probability. However, if the predicted probability is relatively
low, for example 0.4, that means that there is some uncertainty as to which class a pixel be-
longs to. That is why we also assign pixels to the classes where the predicted probability
is between 0.2 and 0.5. These values were picked, because in the data of this project the
maximum amount of microtubules N was set to 3. If a microtubule belongs to 2 classes, the
highest possible non-maximum probability is 0.5. If a microtubule belongs to 3 classes, all
probabilities will be somewhere around 0.33. In order to account for some variation between
probabilities we have set the lower bound to 0.2.

2.3. Performance evaluation
Various metrics are utilized to asses the performance of the ISOODL network. The network
produces both locations of microtubules and segmentation of microtubules, and both will be
evaluated separately.

2.3.1. Evaluation segmentation
The quantification of the performance on the segmentation task can be done using a receiver
operating charactersistic (ROC) curve. A ROC curve requires the computation of true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN). In the case of semantic
segmentation they are defined as follows:

1. True positives (TP): The number of pixels that are correctly predicted as positive.

2. False positives (FP): The number of pixels that are incorrectly predicted as positive,
while they belong to the negative class.

3. True negatives (TN): The number of pixels that are correctly predicted as negative.
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4. False negatives (FN): The number of instances that are incorrectly predicted as negative,
while they belong to the positive class.

In our case the positive class is a pixel belonging to a microtubule and the negative class
is a background pixel. Using these numbers we can calculate the true positive rate (TPR) and
false positive rate (FPR):

TPR =
TP

TP + FN
, (2.35)

FPR =
FP

FP + TN
. (2.36)

In the ideal situation, a model has TPR = 1 and FPR = 0 figure (2.8). The different
points on the ROC curve are obtained by varying the parameters of the model, in our case the
threshold that is applied to the network outputs. This threshold changes the classification of
pixels and thus the TPR and FPR.

Figure 2.8: A perfect and more typical ROC curve, the perfect ROC curve has TPR = 1 and FPR = 1.

In order to quantify the detection performance of microtubules we also want to compute
the TP, FP, TN and FN. However, this is not a straightforward task for the locations of micro-
tubules. Therefore, we first discuss how predictions of microtubules are assigned to ground
truth locations.

2.3.2. Assigning locations
The network does not perform a pixelwise classification for the detection of microtubules,
but produces a set of coordinates. These coordinates will not be at the exact location of the
ground truth coordinates, and therefore the performance would seem very low. This is why
the predicted coordinates have to be assigned to ground truth coordinates, given they are in
close proximity to the ground truth coordinates. The problem at hand can be seen as a variant
of the assignment problem, which can be effectively solved by applying the Kuhn-Munkres
algorithm [30]. An adjacency matrix is computed for the combinations of detections with
ground truths, with a weight corresponding to the distance between the predicted detection
and ground truth. If the distance between detection and ground truth is larger than 4 pixels,
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the weight is set to infinity. One the adjacency matrix has been established, the Kuhn-Munkres
algorithm will assign each predicted detection to a ground truth location while minimizing
the sum of the weights of chosen assignments (figure 2.9).

A

B

1

2

predicted microtubule locations

ground truth microtubule locations

Figure 2.9: An example of non-trivial location assignment. Both predictions are within the boundaries of the
microtubule. Therefore, the Kuhn-Munkres algorithm is used to assign the predicted locations to the ground
truth locations.

Using this information we can compute the TP, FP, TN and FN:

1. True positive (TP): A true positive is defined as a detection made at the location of the
microtubule tip.

2. False positive (FP): A false positive is a detection that is incorrectly predicted as posi-
tive. This means that the detection is made too far away from the actual location of the
microtubule tip.

3. True negative (TN): Since the network only predicts locations of microtubule tips, and
not of background pixels, there is no good way to define true negatives.

4. False negative (FN): A false negative means that a ground truth location was not as-
signed a predicted location by the Kuhn-Munkres algorithm.

2.3.3. Free-response Receiver Operator Characteristic
Since there is no way to define true negatives of detections, an adjustment has to be made
to the ROC curve. Therefore, we use the Free-response Receiver Operator Characteristic (FROC),
which uses a modified false positive ratio FPR∗:

FPR∗ = FP. (2.37)

This FPR* is the mean number of FP locations per image. In contrast to the FPR used in a
ROC curve, FPR* can exceed a value of 1.
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2.3.4. Jaccard similarity coefficient
We are also going to evaluate the segmentation results based on the Jaccard similarity coef-
ficient (JSC). This quantifies the overlap between ground truth segmentation and predicted
segmentation:

JSC =
TP

TP + FP + FN
. (2.38)

The JSC only focuses on the predicted and ground truth positive class, and is thus more
robust to class imbalance. We will use the JSC to find the optimal segmentation threshold.
Furthermore, we can also make a curve out of JSC values using different segmentation thresh-
olds.

2.3.5. Detection localization
In order to compare the quality of TP detections, we are also going to asses the inaccuracy of
detections. This will be done by calculating the mean squared error between the ground truth
detections, and their assigned predicted detections.

2.3.6. Evaluation segmentation bounding boxes
One further adjustment has to be made in order to evaluate the models accurately. Since
the ISOODL model computes segmentation maps for each bounding box, it makes sense to
also look at segmentation of individual bounding boxes. This ensures that we quantify seg-
mentation of only the instances. However, this only looks at detections that are made by the
network and compares the segmentations resulting from these detections with the assigned
ground truth segmentations. This segmentation is still a pixelwise classification and thus a
normal ROC curve can be made in the same way as in 2.3.1.



Chapter3
Results

In this chapter we showcase the outcomes of the experiments introduced in subsections 1.5.1
and 1.5.2. First we explain the reasoning behind experiment 1, as we have to evaluate many
aspects of the ISOODL network separately. Subsequently we present both the qualitative and
quantitative results of our first experiment. We also present the results from experiment 2.

3.1. Experiment 1
In this section we explain the reasoning behind the results of experiment 1. In section 4.1 we
interpret the presented results.

In order to compare the performance of microtubule detection, we made a FROC curve of
the U-net network and the ISOODL network. We made a curve of the MSE between ground
truth detections and their assigned predicted detections at different detection thresholds (fig-
ure 3.6).

In figure 3.4 we can see the ROC curves for the segmentation of an entire image with
microtubules. In the case of the U-net network this is a comparison between the segmenta-
tion prediction and ground truth segmentation. In the case of the ISOODL network this is
a comparison between the segmentation prediction after all post-processing steps have been
applied and the ground truth segmentation. Figure 3.1 illustrates how the ROC curves for the
segmentation of a full image of the ISOODL network are made.

segmentation
threshold

segmentation
threshold

ROC curve
full image

Figure 3.1: The ROC curves of the full image are made by comparing the segmentation of the entire image against
the ground truth.

All pixels in the image are either negatively classified as background, or positively classi-
fied as microtubule. However, the ISOODL network only segments the pixels in a bounding

22



3.1. Experiment 1 23

box surrounding a predicted detection location. This means that if we decrease the segmen-
tation threshold we will only see more positively classified pixels in these boxes. Outside of
these boxes, all pixels are negatively classified. If our amount of detected microtubule loca-
tions is unequal to the ground truth or in wrong locations, we can never reach a TPR and FPR
of 1. An illustration of this is made in figure 3.2. We can look at this as an analog of the FROC
curve, where the TPs are not reaching 1.

low detection
threshold

threshold
high detection

low detection threshold
normal ROC curve

high detection threshold

Figure 3.2: At low detection thresholds, the ISOODL network produces many detections and thus more pixels are
influenced by changing the segmentation threshold. At high detection thresholds, only few detections are made.
At low segmentation thresholds, only the pixels within the boxes will be classified as positive. This means that we
will never be able to positively classify pixels that are not inside of the bounding boxes. Therefore, the maximum
achievable TPR and FPR at low detection thresholds are higher than at high detection thresholds. In order to get
a normal ROC curve, that reaches a TPR of 1 and a FPR of 1, we would have to detect every microtubule, and also
encapsulate every pixel of that microtubule inside the bounding box.

On top of that, the ISOODL network is able to assign pixels where microtubules are over-
lapping to two different instances. This is not taken into account in the ROC curves of the full
image.

Therefore, we are also going to look at ROC curves of the segmentation of individual
bounding boxes. Now we are comparing the segmentation of individual microtubules, to the
ground truth microtubule segmentation that was assigned by the Kuhn-Munkres algorithm.
This does mean we are only able to compare TP microtubule detections. These curves are able
to reach a TPR and FPR of 1, because the entire image is affected by changing the segmentation
threshold. Figure 3.3 shows how the ROC curves of the detected bounding boxes are made.

Furthermore, we have also made multiple curves of the JSC at different segmentation
thresholds. The points within one curve are JSC values of the predicted segmentation of
individual bounding boxes compared to the ground truth segmentations. Different curves
have different thresholds for microtubule detection predictions. This allows us to compare
the shape of curves at different detection thresholds.

In order to determine the influence of the weighing in the post-processing steps, we will
make ROC and JSC curves using a Gaussian with σ set to 0.5.
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ROC curve only
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segmentation
threshold

segmentation
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Figure 3.3: The ROC curves of only the detected boxes are made by comparing the detected boxes against their
assigned ground truth boxes. The assignment in done using the Kuhn-Munkres algorithm.

3.1.1. Quantitative results experiment 1

Figure 3.4: ROC and JSC curves of the ISOODL and U-net network of the segmentation of 8 128x128 synthetic
images. Furthermore, there is also a curve of the ground truth detections with the predicted segmentations.
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Figure 3.5: ROC and JSC curves of the ISOODL and U-net network of the segmentation of only the bounding
boxes of 8 128x128 synthetic images. Furthermore, there is also a curve of the ground truth detections with the
predicted segmentations.

Figure 3.6: FROC and MSE curves of the ISOODL and U-net network.
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Figure 3.7: ROC and JSC curves of the ISOODL and U-net network of the segmentation of 8 128x128 synthetic
images. The σ of the Gaussian in the post-processing operations was set to 0.5.

Figure 3.8: ROC and JSC curves of the ISOODL and U-net network of the segmentation of only the bounding boxes
of 8 128x128 synthetic images. The σ of the Gaussian in the post-processing operations was set to 0.5.
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Figure 3.9: Qualitative results of the ISOODL network, the detection threshold is 0.95 and the segmentation thresh-
old is 0.4.

3.1.2. Qualitative results experiment 1

Figure 3.10: Qualitative results of the U-net network, the detection threshold is 0.9999 and the segmentation
threshold is 0.995.
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Figure 3.11: Qualitative results of the ISOODL network. a: detection threshold is 0.001, b: detection threshold is
0.3, c: detection threshold is 0.95. The segmentation threshold is 0.4 for all images.
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3.2. Experiment 2
In this section we present the results of experiment 2. Figures 3.12, 3.13, 3.14 and 3.15 show
the segmentation results of the networks. Tables 3.1, 3.2, 3.3 and 3.4 list the weighing of the
different loss functions. These networks were trained on 80 images, with 20 images used as
validation. We also trained the best performing network on 800 images, with 200 images used
as validation. The resulting segmentations are shown in figure 3.16.

Input image Object 1 Object 2 Object 3

a)

b)

c)

d)

Figure 3.12: Qualitative results of the overlap network. The three objects represent the three classes that are
predicted by the network. If the network would work perfectly, every microtubule segmentation would occupy a
single image. The loss weights can be found in 3.1.
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Table 3.1: Loss weights and learning rate for the overlap network in figure 3.12

Loss Value

learning rate 0.001
Dice loss 100
Weighted CEL 1
MSE sum 100
CEL overlap 100
SensSpec 10
FTL 10
Maximum projection 100
BCE semantic 60

Input image Object 1 Object 2 Object 3

a)

b)

c)

d)

Figure 3.13: Qualitative results of the overlap network. The three objects represent the three classes that are
predicted by the network. If the network would work perfectly, every microtubule segmentation would occupy a
single image. The loss weights can be found in 3.2.
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Table 3.2: Loss weights and learning rate for the overlap network in figure 3.13

Loss Value

learning rate 0.001
Dice loss 1000
Weighted CEL 1
MSE sum 1000
CEL overlap 1
SensSpec 0
FTL 0
Maximum projection 0
BCE semantic 0

Input image Object 1 Object 2 Object 3

a)

b)

c)

d)

Figure 3.14: Qualitative results of the overlap network. The three objects represent the three classes that are
predicted by the network. If the network would work perfectly, every microtubule segmentation would occupy a
single image. The loss weights can be found in 3.3.
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Table 3.3: Loss weights and learning rate for the overlap network in figure 3.14

Loss Value

learning rate 0.001
Dice loss 0
Weighted CEL 1
MSE sum 100
CEL overlap 10
SensSpec 10
FTL 100
Maximum projection 20
BCE semantic 30

Input image Object 1 Object 2 Object 3

a)

b)

c)

d)

Figure 3.15: Qualitative results of the overlap network. The three objects represent the three classes that are
predicted by the network. If the network would work perfectly, every microtubule segmentation would occupy a
single image. The loss weights can be found in 3.4.
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Table 3.4: Loss weights and learning rate for the overlap network in figure 3.15

Loss Value

learning rate 0.001
Dice loss 0
Weighted CEL 5
MSE sum 500
CEL overlap 10
SensSpec 100
FTL 1000
Maximum projection 100
BCE semantic 100

Input image Object 1 Object 2 Object 3

a)

b)

c)

d)

Figure 3.16: Qualitative results of the overlap network with the same weights as in figure 3.13, but trained on 1000
images.



Chapter4
Discussion

In this chapter we discuss the results from chapter 3. We start by analyzing the outcomes
of experiment 1 and experiment 2. Furthermore, we shed light on some limitations of the
performed experiments. Following that, we explore the implications of these findings in the
context of future research possibilities related to the topics addressed in this project.

4.1. Experiment 1
In figure 3.6 we can see the FROC curves and MSE of detections of both the U-net and ISOODL
network. In the FROC curve we can see that the ISOODL network is able to outperform the
U-net network. We also see that the ISOODL network is able to reach a much higher FPR*
than the U-net network. This is probably due to the fact that at low detection thresholds, all
microtubule segmentations start to merge. This renders the network unable to produce many
different detections, as the centers of mass of the segmentations are detections. Here we can
see why it is useful to use reference points to produce detections. The ISOODL network can
produce more detections at low detection thresholds, because the reference points merge less
quickly. However, the MSE of detections is lower for the U-net network.

The ROC curves for the segmentation of full images can be seen in figure 3.4. Here we
can see that the U-net network outperforms the ISOODL network. If we look at the JSC curve
in figure 3.4. we can see that higher detection thresholds have higher JSC values than lower
detection thresholds. Furthermore, we also see that U-net outperforms the ISOODL network
at all segmentation thresholds. We also see a difference between the shape of the U-net and
ISOODL JSC curves. The U-net curve is very broad and there is little fluctuation in JSC val-
ues. No matter what segmentation threshold is used, the JSC will not change that much.
This means that the unthresholded segmentation output has a very sigmoidal characteristic,
pixel values are either very close to 0 or very close to 1. In contrast to the U-net JSC curves,
the ISOODL JSC curves are less broad, and have a more gradual drop-off at higher threshold
values. This means that the unthresholded segmentation output has a less sigmoidal charac-
teristic, and pixel values are spread out more evenly between 0 and 1.

This behaviour could be explained by the weighing with a Gaussian in the post-processing
steps of the ISOODL network. To illustrate this, imagine we have a near perfect prediction of
sheared masks. After applying our deshearing operation, we will get a prediction of almost 1
in the shape of a microtubule at the z=11 plane. All other pixels will be 0. By weighing with
a Gaussian along the z-dimension, we are effectively reducing the contribution of the z=11
plane on the final segmentation. In our case, the z=11 plane will be weighed with a value of
around 0.4. In the JSC curves of the detected boxes we can see that the optimal segmentation
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threshold is also around 0.4 (see figure 3.5). Therefore, we repeated our experiments with
the σ of the Gaussian set to 0.5. Since the weight of the z=11 plane would now be 0.8, we
expect the optimal threshold to shift to around 0.8. In figures 3.7 and 3.8 we can see the
results of this experiment. Although we do see a change in the width of the JSC curve, the
optimal segmentation threshold has not shifted to 0.8. This change in width can be explained
due to the higher weighing of the z=11 plane. This plane should have the largest predicted
values, and we are weighing those values with 0.8 instead of 0.4. This means that at higher
segmentation thresholds, more pixels will be positively classified. However, as there is no
shift in optimal segmentation threshold, the predicted values at z=11 will be lower than 1.
This shows us that the desheared but unweighted masks have a less sigmoidal characteristic.
It would be very interesting to examine if a different Gaussian could lead to more a sigmoidal
characteristic and perhaps better segmentation performance.

Furthermore, we can also see that there is a shift in optimal segmentation threshold value
for different detection thresholds. At higher detection thresholds, the optimal segmentation
threshold is also higher. One explanation for this is that at lower detection thresholds pre-
dicted reference points in close proximity will merge. This will lead to detections that have
a relatively high MSE, which is also something that we see in figure 3.6. Furthermore, there
will also be more detections in locations that are not near reference points, which we can
see in figure 3.11. This will also increase the MSE. The post-processing steps applied to the
sheared network outputs rely on the location of detections. This means that even if the pre-
dicted sheared masks are correct, application of post-processing steps in the wrong location
still leads to poor segmentation and thus a shift in optimal segmentation threshold.

Therefore, we also made ROC curves and JSC curves using the ground truth locations and
the predicted sheared masks. Here we can see that although the ground truth detections lead
to better performance compared to the predicted detections, the performance is still worse
than U-net on a full image (figure 3.4). One might expect the ground truth detections to be
able to reach a FPR of 1. However, in order to get a FPR of 1 all background pixels in the
image have to be positively classified. As the bounding boxes still do not cover the entire
image, an FPR of 1 is not achievable. We also see that the shape of the JSC curve is still less
broad than U-net, suggesting that this is something inherent to the predicted sheared masks
(figure 3.4). We see the same behaviour in the JSC curve of only the detected boxes (figure
3.5), which further reinforces our theory that the predicted sheared masks are less sigmoidal
in nature. However, as discussed above this could also be partially attributed to the Gaussian
weighing in the post-processing operations. Furthermore, we see little improvement in the
ROC curve of only the detected boxes (figure 3.5). This curve is unable to account for any
FN detection made. Since the ROC curve of the full image using ground truth detection does
show an improvement, we can conclude that the ISOODL network makes too few detections.
This also explains why the maximum achievable TPR and FPR of the ISOODL network are
lower.

The exact reason why this shift occurs would require more experiments. However, these
results do show us that if the detection threshold is changed, the segmentation threshold
should also change for optimal results.

Although it might seem from these results that the ISOODL network is only a better de-
tector of microtubules than the U-net network, the assignment of segmentations to specific
instances is invaluable information. In figure 3.9 we can see that the ISOODL network is able
to segment overlapping instances of microtubules in some cases, and also mark these as sep-
arate segmentations. In figure 3.10 we can see that even though U-net is able to detect that
multiple instances of microtubules are present, it is unable to assign segmentations. There-
fore, the ISOODL is already a big improvement compared to the U-net network, even though
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the segmentation results are worse.

4.2. Experiment 2
Figures 3.12, 3.13, 3.14, and 3.15 display the predicted segmentation results of four images
using the overlap network. Although the network structure remains consistent across all
figures, the weighing of losses were varied. The loss weights can be found in tables 3.1, 3.2,
3.3 and 3.4.

As we can see, the separation of microtubules along the 3 channels has proven to be
very challenging. It is clear that the network is able to detect which pixels should belong
to the background class, but the microtubule segmentations are fragmented across the differ-
ent channels. One explanation for this could be that the weights used for the loss functions
were not correct. Given the small difference in behaviour between the different figures we
believe that the problem lies in the data. In the ISOODL data all pixels that belong to a mi-
crotubule should be put in a class. If you are looking at the xz-sheared predictions, the pixels
of a microtubule with low x values should be in the bottom most class, and pixels with high
x values should be in the topmost class. This way of structuring the data is independent of
the amount of microtubules in the input image, and also independent of where other micro-
tubules are classified. In contrast, the data for the overlap network does have dependencies
between different microtubules. If one microtubule is assigned to one channel, then the other
microtubules should be in other channels. However, there is no information in the input data
that reveals in which channel a microtubule segmentation should be. Not only does the net-
work have to correctly segment individual microtubules, it also has to assign the complete
segmentation to a single channel.

Furthermore, we also see that the network is unable to assign microtubules to the third
channel. One might argue that this is due to lack of exposure to three microtubules in the
input image. However, we also trained the network on larger datasets (1000 images) and got
worse results 3.16. We can see that at the network performs a semantic segmentation in the
first channels of the output, and is unable to separate the microtubules. There seems to be an
inability for all networks to predict anything in the third channel.

4.3. Future work
Based on the findings in this project there are quite a few ways in which this problem could be
explored further. Therefore, this section will explore the potential avenues for further research
beyond the scope of the present study.

4.3.1. Modifications to experiments
As was also discussed in 4.1 more experiments could be done to uncover why the ISOODL
network produces

More experiments could be done to further optimize both detection and segmentation
of the ISOODL network. As was discussed in 4.1 the segmentation of microtubules is still
not optimal. Further experiments examine the effect of the post-processing operations on
segmentation results, in particular the Gaussian weighing of desheared masks. Furthermore,
the experiments could also be replicated for different SNR values, to see how our networks
perform in less optimal situations. On top of that our network was trained and evaluated on
synthetic data. In contrast to real data, synthetic data is less saturated to the highest intensity.
This means that it is easier to detect overlap between microtubules, and thus our findings
may not accurately reflect real-world applications. For a more realistic perspective, it would
be ideal to replicate our experiments using real annotated data.

Additionally, it would be interesting to compare the ISOODL network to other region
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based networks, like Mask R-CNN or a modified YOLO. This would give us more insight
regarding both the detection and segmentation performance.

4.3.2. DeepImageJ
Although the ISOODL network still has more room for improvement, it would be useful to cre-
ate an implementation using the deepImageJ environment. This would allow researchers to
set thresholds for both detection and segmentation themselves, to suit their specific datasets.
Therefore, it would also be nice to determine what combination of threshold values leads to
optimal detection and segmentation results for more a more detailed range of values than
was done in our experiments.

4.3.3. Variational Autoencoders
The main problem that we faced in this project was how to represent the data in such a way
that the microtubules are separated, and that the network is able to reproduce this separation.
The approach we have taken is based upon a pixel-wise classification of the input image. An-
other way to represent the microtubules would be via a small set of numbers that represent
the location, shape and orientation of microtubules. This set of numbers could be predefined,
but these can also be learned using a Variational Autoencoder (VAE). A VAE is an autoencoder
with an encoding and decoding pathway. The distribution in the encoding pathway are regu-
larised, which means that the are restricted in some way. In our case this regularization would
mean that the encoder produces the small set of numbers that describe the microtubule men-
tioned previously. The decoder tries to reproduce the input image using this small set of
numbers. The decoder of the VAE can now be used to interpret small sets of numbers created
by other networks as well. Therefore, another network can be created that takes an image of
overlapping microtubules, and produces multiple sets that describe these microtubules. By
feeding these sets one by one through the decoder of the VAE, multiple images with only one
microtubule in each will be created. On top of that the VAE does not take the set of number
from the encoder, but it draws numbers from a distribution based on this set of numbers. This
introduces some variance into the encoder. We hope that this leads to the ability to change
one characteristic of a microtubule by changing one of the numbers in the set.

4.3.4. Discriminator
Another way to increase performance of the proposed networks in this thesis could be using
concepts from Generative Adverserial Networks (GANs). A GAN network structure has two
main tasks: generation and discrimination. The first part of the network is a data generator
that tries to emulate the data distribution of the input data. The discriminator takes samples
from the generator and ’true’ data and tries to classify them. The main idea of a GAN network
is that you try to fool the discriminator by training the generator. We could take this concept
and apply it to one of the networks we trained in this thesis. One problem we faced with
the overlap network in section 2.2.3 is that it produces fragmented microtubules in each of
the output channels. It is very difficult to define a loss function that is able to penalize this
fragmentation. However, a discriminator is a trained network, and the loss function would
not have to be predefined. A discriminator could thus be used as an additional loss during
the training of the network.



Chapter5
Conclusion

The primary objective of this project was to automate the detection and segmentation of mi-
crotubules using deep learning models. In section 1.5 we outlined a set of research questions,
which we will attempt to answer in this section.

The ISOODL network consists of a fully convolutional neural network, in combination
with some post-processing steps. This network predicts reference points, defined as small disks
at the center of mass of microtubules. These reference points are smaller than microtubules,
and are allowed to shrink if in the vicinity of other reference points. Therefore, overlapping
microtubules will still have separated reference points. After post-processing operations, the
predicted reference points can be converted to coordinates. Furthermore, the network pre-
dicts sheared segmentation masks in both the xz and yz direction. In this 3 dimensional
space, all microtubules are separated. A small bounding box is placed at every predicted co-
ordinate, and deshearing operations are applied. This results in a unique segmentation mask
for every detected microtubule.

We have shown that the ISOODL network is able to detect and segment microtubules.
Although the detection of microtubules is better than a regular U-net structure, the segmen-
tation is still an area for improvement. We saw that the maximum TPR changes depending on
the detection threshold. The maximum TPR using ground truth detections was significantly
better, which tells us that improving the detection of microtubules also leads to better seg-
mentation results. From the shape of the JSC curve, we could deduct that the predicted seg-
mentations do not have a very sigmoidal characteristic. This can partially be attributed to the
post-processing operations. Further experiments could shed light on how the post-processing
operations can be optimized, to increase segmentation performance. We have also seen that
the optimal segmentation threshold changes depending on the detection threshold. By vi-
sually inspecting the predicted segmentations, we could see that overlapping microtubules
were more challenging to segment.

In hopes of further improving segmentation of overlapping microtubules, we proposed a
new network. We found that the ISOODL network was able to predict the amount of overlap
present in an image. Therefore, we used the amount of overlap together with the raw data as
inputs to this ’overlap network’. This network attempts to place microtubule segmentations
in three separate channels of the output. Unfortunately, we found that this way of data sep-
aration was unsuccessful. This is probably because there is no information in the input data
regarding which microtubule should be placed in what channel.

In conclusion, we can detect and segment isolated microtubules. However, the detection
of overlapping microtubules is more challenging. Additionally, the segmentation of overlap-
ping microtubules still requires further research. Nevertheless, we have shown that segmen-
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tation of overlapping microtubules is to a limited extent possible using the ISOODL network.
Other network structures could result in further segmentation improvements.
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