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ABSTRACT 

We derive expressions for computing the gravitational field (potential and its radial 
derivative) generated by an arbitrary homogeneous or laterally varying density contrast 
layer with a variable depth and thickness based on methods for a spherical harmonic 
analysis and synthesis of gravity field. The newly derived expressions are utilised in the 
gravimetric forward modelling of major known density structures within the Earth’s crust 
(excluding the ocean density contrast) beneath the geoid surface. The gravitational field 
quantities due to the sediments and crust components density contrasts, shown in 
numerical examples, are computed using the 2 × 2 arc-deg discrete data from the global 
crustal model CRUST2.0. These density contrasts are defined relative to the adopted 
value of the reference crustal density of 2670 kgm−3. All computations are realised 
globally on a 1 × 1 arc-deg geographical grid at the Earth’s surface. The maxima of the 
gravitational signal due to the sediments density contrast are mainly along continental 
shelf regions with the largest sedimentary deposits. The corresponding maxima due to the 
consolidated crust components density contrast are over areas of the largest continental 
crustal thickness with variable geological structure. 

 
Ke y wo rd s :  density, Earth’s crust, forward modelling, gravity, spherical harmonics 

1. INTRODUCTION 

In geophysical studies investigating the lithosphere structure the gravitational effect of 
the known subsurface mass density distribution is modelled and subsequently removed 
from observed gravity in order to reveal the remaining gravitational signal of the unknown 
anomalous subsurface density distribution or the density interface. The strongest signal to 
be subtracted from observed gravity is due to the topography (onshore) and the 
bathymetry (offshore). The currently available global geopotential models and the global 
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elevation and bathymetry data allow modelling the topography-corrected and bathymetry-
stripped gravity field quantities to a very high spectral resolution (up to spherical 
harmonic degree 2160) using methods for a spherical harmonic analysis and synthesis of 
gravitational field. The next strongest signal in gravity data is due to the 
crustal/lithospheric thickness and density composition as a result of the combination of its 
isostatic and tectono-physical states (Tenzer et al., 2009). An isostatic compensation 
scheme may be adopted to compute the isostatic correction to gravity data, or a crustal 
model is used to compute the crustal components stripping corrections. In this latter step 
various methods have been applied depending on the purpose of the study (for the 
literature overview of global and regional studies we refer readers to Tenzer et al., 2009). 
In regional studies the stripped gravity data are typically interpreted by an integrated 
forward modelling with the use of all possible geophysical constraints. For global studies 
the best currently available global crustal model is CRUST2.0 (Bassin et al., 2000), which 
is an upgrade of CRUST5.1 (Mooney et al., 1998). The publically available CRUST2.0 
model contains information on the crustal thickness and the subsurface spatial distribution 
and density of the following global components: ice; ocean; soft and hard sediments; 
upper, middle, and lower (consolidated) crust. Čadek and Martinec (1991) were first who 
computed globally the Earth’s crustal thickness model complete to the spherical harmonic 
degree 30. It is worth noting that the information about the crustal structure is not 
incorporated in the global models of the crust thickness CUB2 (Shapiro and Ritzwoller, 
2002) and MDN (Meier et al., 2007), both compiled based on the seismic data analysis. 

Various expressions in terms of spherical harmonics were derived and applied to 
compute the topographic and crust density contrast stripping gravity corrections assuming 
the homogeneous mass density distribution. A change of atmospheric density with 
elevation was assumed in computing the atmospheric gravitational effects, for instance, by 
Sjöberg and Nahavandchi (2000). Tenzer et al. (2011) facilitated a depth-depended 
seawater density model in computing the bathymetric stripping gravity corrections. Tenzer 
et al. (2010) derived expressions for computing the ice density contrast stripping 
corrections to gravity field in terms of spherical harmonics. A more generalised form of 
spectral expressions which takes into account the lateral density distribution was 
presented by Sjöberg (1998) and others; see also a more recent study by Eshagh (2009). In 
this study, we derive the expressions for computing the gravitational field generated by 
the laterally varying or homogeneous mass density contrast layer with a variable depth 
and thickness in terms of spherical harmonics. Disregarding depth-dependent density 
variations (for instance in sedimentary basins due to compaction, cf. Artemjev et al., 
1994), these expressions allow the fast and effective gravimetric forward modelling of 
density contrasts within the Earth’s solid crust (i.e., excluding the ocean density contrast) 
based on currently available global crustal models. These expressions are derived in 
Section 2. The numerical examples are presented and discussed in Section 3. The 
summary and conclusions are given in Section 4. 
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2. GRAVITATIONAL FIELD OF AN ARBITRARY LATERALLY 
VARYING DENSITY CONTRAST LAYER 

In spherical approximation, the gravitational potential V generated by the laterally 
varying density contrast layer with a variable depth and thickness computed at a position 
( ),r Ω  is defined by the following spatial representation of Newton’s volume integral 

 ( ) ( ) ( )
( )

( )
1 2, , , d

U

L

R D

R D
V r G r r r r dρ ψ

′− Ω
−

′Φ − Ω

′ ′ ′ ′ ′Ω = Δ Ω Ω∫∫ ∫  , (1) 

where G = 6.674 × 10−11 m3kg−1s−2 is Newton’s gravitational constant; R = 6371 × 103 m 
is the Earth’s mean radius (which approximates the geocentric radius of the geoid 
surface); DU and DL are the depths (reckoned relative to the sphere of radius R) of the 
upper and lower bounds of the volumetric layer, respectively;   is the Euclidean spatial 
distance between positions of the computation point ( ),r Ω  and the integration (running) 

point ( ),r′ ′Ω , and ψ is the respective spherical distance; sind d dφ φ λ′ ′ ′ ′Ω =  is the 
infinitesimal surface element of the unit sphere; and the full spatial angle is denoted as 

( ) [ ] ){ }, : π 2,π 2 0,2πφ λ φ λ′ ′ ′ ′ ′Φ = Ω = ∈ − ∧ ∈⎡⎣ . The 3D position is defined in geocentric 

spherical coordinates ( ), ,r φ λ , where r is the geocentric radius and ( ),φ λΩ =  denotes 
the geocentric direction with the geocentric spherical latitude φ and longitude λ. The 
laterally varying density contrast Δρ in Eq.(1) is defined as the difference between the 
reference (constant) density of the Earth’s crust crustρ  and the laterally varying density ρ 
within the volumetric layer, i.e. 

 ( ) ( )crustρ ρ ρ′ ′Δ Ω = − Ω ,     ( ) ( ) :U LR D r R D′ ′ ′ ′− Ω ≥ ≥ − Ω Ω ∈Φ⎡ ⎤⎣ ⎦ . (2) 

To derive the expression for the gravitational potential V in the spectral representation, 
Eq.(1) is first rewritten as 
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 (3) 

The first constituent on the right-hand side of Eq.(3) is the gravitational contribution 
generated by the volumetric mass of laterally varying density contrast enclosed between 
the lower bound ( ){ }:LD ′ ′Ω Ω ∈Φ  and the reference sphere of radius R. The second 
constituent represents the gravitational contribution generated by the volumetric mass of 
laterally varying density contrast enclosed between the upper bound ( ){ }:UD ′ ′Ω Ω ∈Φ  
and the reference sphere of radius R. 
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The spectral representation of the reciprocal spatial distance 1−  for the external 
convergence domain r r′≥  ( )r R r R′≥ ∧ ≤  is given by (e.g., Hobson, 1931) 
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where Pn are the Legendre polynomials of degree n for the argument of cosine of the 
spherical distance ψ. The series in Eq.(4) is uniformly convergent for r r′≥ . Substituting 
the fundamental harmonic function in Eq.(4) to Eq.(3), we arrive at 
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Since the expansion of Newton’s integral kernel converges uniformly when computed 
at locations outside the gravitating masses, the interchange of summation and integration 
in Eq.(5) is permissible (cf. Moritz, 1980). The application of the binomial theorem to the 
term 2nr +′  in Eq.(5) yields 
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From Eq.(6), the solution to the radial integral in the first constituent on the right-hand 
side of Eq.(5) is found to be 
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By analogy with Eq.(7), the radial integral in the second constituent on the right-hand 
side of Eq.(5) is defined as 
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 (8) 

Our numerical analysis of the convergence domain revealed that the first five terms of 
the binomial series multiplied by 3nR +  approximate the radial integrals on the left-hand 
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side of Eqs.(7) and (8) with a relative accuracy better than 0.3% (for maximum depths of 
the Moho density interface less than 100 × 103 m, and the spectral resolution complete to 
degree 180n =

 

of spherical harmonics), which is below the relative inaccuracy due to the 
spherical approximation. When increasing the maximum degree of spherical harmonics 
above this limit, the series eventually becomes divergent. The analysis of the convergence 
domain is thus essential for finding an optimal truncation degree depending on the 
required numerical accuracy. The convergence and optimal truncation of binomial series 
were studied in detail by Rummel et al. (1988) and Sun and Sjöberg (2001). The 
substitution from Eqs.(7) and (8) to Eq.(5) yields 
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We now introduce the spherical lower-bound and upper-bound lateral density 
functions nlΓ  and nuΓ  of degree n as 

 
( )
( ) ( ) ( ) ( )

( ) ( ) ,
,

,

2 1 cos ,
4

n n mn L
n n m

n mn U m n

ll Dn P d Y
uu D

ρ ψ
=−Φ

Γ′Γ Ω ⎫ ⎧ Ω ⎧+⎪ ⎪ ⎪′ ′= Δ Ω Ω = Ω⎬ ⎨ ⎨Γ′Γ Ω Ωπ ⎪⎪ ⎪ ⎩⎭ ⎩
∑∫∫  (10) 

where ,n mY  are the (fully normalised) surface spherical harmonic functions. The higher-

order terms ( ) ( ){ }, : 2,3, 4,i i
n nl u iΓ Γ =   read 
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The coefficients ,n mlΓ  and ,n muΓ  combine information on the geometry and lateral 
density distribution of a volumetric layer. Limiting the series up to the maximum degree 
of spherical harmonics n  and inserting from Eqs.(10) and (11) to Eq.(9), we get 
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where ,
l

n mFΓ  and ,
u

n mFΓ  are defined as follows 
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and 
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The gravitational attraction g

 

generated by the laterally varying density contrast layer 
with a variable depth and thickness is approximately defined as a negative radial 
derivative of the respective potential V. Hence 
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By analogy with Eq.(12), the spectral representation of g is defined in the following form 
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For a homogeneous density contrast layer with a variable depth and thickness, the 
density contrast Δρ is defined as the difference of the constant density values of the 
reference crust crustρ  and the constant density ρ within the volumetric layer, i.e. 

 crustρ ρ ρΔ = − ,     ( )U LR D r R D′− ≥ ≥ − . (17) 

The gravitational potential V and attraction g of an arbitrary homogeneous density 
contrast layer with a variable depth and thickness are then given by 
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The numerical coefficients ,
L

n mF  and ,
U
n mF  in Eqs.(18) and (19) are defined as follows 
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where the coefficients ,n mL  and ,n mU  describe the geometry of the lower and upper 

bound of the homogeneous volumetric mass layer. The terms , ,
n

n m n mm n L Y=−∑  and 

, ,
n

n m n mm nU Y=−∑  define the spherical lower-bound and upper-bound functions Ln and Un 

of degree n. They read 
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The higher-order terms ( ) ( ){ }, : 2,3, 4,i i
n nL U i =   are given by 

 
( ) ( )
( ) ( )

( ) ( )
( )

( )
( )

( )
,

,
,

2 1 cos
4

ii i n n mn L
n n mi ii m nU n mn

LL Dn P d Y
D UU

ψ
=−Φ

⎧⎫ ⎧ ′Ω Ω+⎪ ⎪ ⎪′= Ω = Ω⎬ ⎨ ⎨
π ′Ω⎪ ⎪ ⎪Ω ⎩⎭ ⎩

∑∫∫ . (22) 

3. NUMERICAL EXAMPLES 

The expressions derived in Section 2 were utilised to calculate the gravitational field 
generated by the major known density contrast structures within the Earth’s crust 
(excluding the ocean density contrast) beneath the geoid surface. The 2 × 2 arc-deg 
discrete data of thickness, depth, and density of the (soft and hard) sediments and the 
(upper, middle, and lower) consolidated crust components from CRUST2.0 were used to 
generate the sets of coefficients ,n mlΓ  and ,n muΓ  which describe the spatial distribution 
of crustal density. The computation of ,n mlΓ  and ,n muΓ  was done according to Eqs.(10) 
and (11) by applying the spherical harmonic analysis of thickness, depth, and lateral 
density data. 

The coefficients ,n mlΓ  and ,n muΓ  with a spectral resolution complete to degree 90 of 
spherical harmonics were used to compute the gravitational potential and attraction 
generated by the sediments and consolidated crust components density contrasts (by 
applying methods for a spherical harmonic synthesis). All computations were realised 
globally on a 1 × 1 arc-deg geographical grid at the Earth’s surface. The density contrast 
was defined relative to the reference crustal density of 2670 kgm−3 (cf. Hinze, 2003). We 
note here that the choice of the reference crustal density is optional depending on 
a particular purpose of the numerical study. Moreover, when the objective is to study the 
sub-crustal density distribution anomalies, then the density contrast of the crustal 
components is usually taken relative to the average density of the lithospheric mantle 
(upper mantle). 
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The gravitational field quantities generated by the sediments density contrast are 
shown in Figs. 1 and 2. The potential is everywhere positive and globally varies between 
1629 and 3138 m2s−2 with the mean of 2249 m2s−2, and the standard deviation is 
377 m2s−2. The corresponding attraction varies from 12 to 122 mGal, with the mean of 
34 mGal, and the standard deviation is 19 mGal. The maxima of computed gravitational 

 
Fig. 1. The gravitational potential due to the sediments density contrast computed globally with 
a spectral resolution complete to spherical harmonic degree 90. 

 
Fig. 2. The gravitational attraction due to the sediments density contrast computed globally with 
a spectral resolution complete to spherical harmonic degree 90. 
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field quantities were found along continental shelf regions with the largest sediment 
deposits. The positive gravitational field values are due to the fact that the range of the 
CRUST2.0 sediment densities is between 1700 and 2600 kgm−3. The sediment density is 
thus below the adopted reference crustal density of 2670 kgm−3, and the respective 
sediments density contrast is always positive. 

 
Fig. 3. The gravitational potential due to the consolidated crust density contrast computed 
globally with a spectral resolution complete to spherical harmonic degree 90. 

 
Fig. 4. The gravitational attraction due to the consolidated crust density contrast computed 
globally with a spectral resolution complete to spherical harmonic degree 90. 
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The gravitational field quantities generated by the consolidated crust density contrast 
were computed individually for the CRUST2.0 upper, middle, and lower crustal 
components. Their complete gravitational contributions are shown in Figs. 3 and 4. The 
potential is everywhere negative and globally varies from −27986 to −16381 m2s−2 with 
the mean of −21126 m2s−2, and the standard deviation is 2925 m2s−2. The corresponding 
attraction varies from −824 to −184 mGal with the mean of −338 mGal, and the standard 
deviation is 137 mGal. The crust components density contrast is mostly negative for the 
range of crust densities between 2600 and 3100 kgm−3. 

4. CONCLUSIONS 

We have derived the expressions for computing the gravitational potential and its 
radial derivative generated by the homogeneous and laterally varying mass density 
contrast layers with a variable depth and thickness using the spherical harmonic analysis 
and synthesis of gravity field. The expressions for the homogeneous mass density contrast 
layer utilise the spherical lower-bound and upper-bound spherical functions Ln and Un 
which describe the geometry of a particular volumetric mass layer of homogeneous 
density. The corresponding expressions for the laterally varying mass density contrast 
layer utilise the spherical lower-bound and upper-bound lateral density functions nlΓ  and 

nuΓ . These functions combine the information on the geometry and lateral density 
distribution of the volumetric mass layer. 

In numerical examples, we have used the CRUST2.0 density, thickness, and depth 
data of sediments and consolidated crust components to generate the coefficients ,n mlΓ  
and ,n muΓ  for representing the global crust density structures beneath the geoid surface in 
the spectral domain. These coefficients were then used for computing the corresponding 
gravitational field quantities with a low spectral resolution complete to degree 90 of 
spherical harmonics. The results revealed that the largest gravitational signal is due to the 
variable geological structures within the continental crust with large thickness. The largest 
gravitational signal due to the sediments density contrast was found mostly along the 
continental shelf regions. The absolute maxima of the gravitational field quantities 
generated by the sediments density contrast are several times smaller than the maxima of 
the gravitational field quantities generated by the remaining crust density contrast 
structures. 

We anticipate large errors in the computed gravitational field. These errors are 
attributed mainly to the heterogeneities of the consolidated crust (especially over 
continental crust) and the Moho uncertainty (especially under significant orogens). 
A realistic assessment of these errors is not simple. Kaban et al. (2003) estimated, for 
instance, that the errors in computed values of the gravitational attraction can reach as 
much as 100 mGal over continental regions, while about 40 mGal over the oceanic areas. 
It corresponds to a relative inaccuracy of about 10%. Similar relative errors are expected 
in computed values of the gravitational potential. 
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