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In this paper we calculate the interfacial resistances to heat and mass transfer through a liquid–vapor
interface in a binary mixture. We use two methods, the direct calculation from the actual nonequi-
librium solution and integral relations, derived earlier. We verify, that integral relations, being a
relatively faster and cheaper method, indeed gives the same results as the direct processing of a
nonequilibrium solution. Furthermore we compare the absolute values of the interfacial resistances
with the ones obtained from kinetic theory. Matching the diagonal resistances for the binary mixture
we find that kinetic theory underestimates the cross coefficients. The heat of transfer is, as a conse-
quence, correspondingly larger. © 2010 American Institute of Physics. [doi:10.1063/1.3518368]

I. INTRODUCTION

A number of different methods have been used to obtain
the surface transfer coefficients for one-component systems:
experiments,1–4 molecular dynamic simulations,5–9 and ki-
netic theory.10–13 In a paper co-authored by one of us,14 the in-
terfacial transfer coefficients were calculated with the square
gradient theory for a one-component system, and compared
to the data in the above references. Even for one-component
systems the database of interfacial transfer coefficients is poor
and these data are pretty scattered. The situation is even worse
for mixtures. There are only a few experiments available3, 4

at a very restrictive range of conditions, i.e., at infinite di-
lution. No molecular dynamic simulations are available yet.
The only source of values of interfacial coefficients is ki-
netic theory.12, 13 This theory is most appropriate for short
range potentials and low density gases. There is evidence
from molecular dynamic simulations for one-component sys-
tems for longer range potentials9 that the coupling transfer
resistivities for liquid–vapor interfaces of real fluids are sub-
stantially larger than those predicted by kinetic theory.

It is the aim of this article to determine the heat and
mass transfer resistances of the interfacial region. The values
of these transfer coefficients, or even their order of magni-
tude, are extremely important for industrial processes which
involve evaporation and/or condensation of mixtures. Among
these processes is, for instance, distillation, when one needs
to separate components with different volatilities. As this
involves evaporation and/or condensation repeatedly many
times, it is very important to know the exact effect of the
surface. Some values of the interfacial transfer coefficients
may favor transport of a component, while other values may
not. Of particular interest are the values of the cross coeffi-
cients, which contribute to reversible transport, and which are
in most descriptions neglected.15

We will verify that integral relations, derived in Ref. 16
give the same values of resistances, obtained directly from a
nonequilibrium numerical solution. The numerical solution is

obtained using the nonequilibrium square gradient model.17 It
is desirable to compare our predictions with other methods, in
particular molecular simulations and experiments. Such data
are not available yet, however, and we will therefore use the
predictions of kinetic theory to compare.

In our approach we use the local resistivity profiles. The
values of the local resistivities in the liquid and the vapor
phases are chosen on the basis of experimental values. In the
interfacial region there are small peaks in these resistivities.
The results of molecular dynamics simulations8 support the
existence of such peaks in the local resistivities in the inter-
facial region. The amplitudes, being the adjustable parame-
ters, control the magnitude of these peaks. The square gra-
dient approach gives a natural tool to incorporate these peak
in the theory. Possible values of these amplitudes are found
by matching the diagonal transfer coefficients to values pre-
dicted by kinetic theory. Using these amplitudes we find that
the value of the cross resistivities is 1–2 orders of magnitude
higher then the one from kinetic theory. The results indicate
that kinetic theory underestimates the interfacial transfer co-
efficients in real fluids. One of them even has a different sign.

The paper is organized as follows: In Sec. II we discuss
the different forms of the excess entropy production of the in-
terface and introduce interfacial resistances. Section III gives
the overview of the expressions for these coefficients pre-
dicted from kinetic theory. We further build a procedure to
determine the actual values of these resistances directly from
a nonequilibrium numerical solution in Sec. IV and from inte-
gral relations, which use only equilibrium profiles in Sec. V.
We compare the predictions of all three methods in Sec. VI
and discuss the results in Sec. VII.

II. EXCESS ENTROPY PRODUCTION

Consider a planar interface between a liquid and a vapor
of a mixture through which there is evaporation or condensa-
tion. The mixture is in a box with gravity g directed along the
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x-axis from left to right. The gas phase is therefore in the left
part of the box and the liquid is in the right part. Due to evap-
oration or condensation there exists a mass flux Jξi of compo-
nent i , which is equal to the mass of component i transferred
through a unit surface area per unit of time. Furthermore, there
exists the total energy flux Je, which is defined similarly. In
stationary conditions these fluxes are constants (independent
of x).

A surface can be described by Gibbs excess proper-
ties. We refer to Refs. 16 and 17 for an explanation how
these quantities can be introduced in nonequilibrium. Due to
nonequilibrium conditions the temperature and the chemical
potentials of the components are not the same in the liquid
and in the gas phases. Let T � and T g be the extrapolated tem-
peratures of these phases at the surface. The exact position
of the dividing surface is irrelevant for the following analy-
sis. Furthermore, let μ�

i and μ
g
i similarly be the extrapolated

chemical potentials of the i th component at the surface.
In a previous paper16 we have obtained the following re-

lation for the excess entropy production for the Gibbs surface
in case of transport through the interface (In Ref. 16 we have
used the notation E [σs] for the excess entropy production to
distinguish it from the local entropy production σs . Here we
do not use the local entropy production and therefore will
denote the excess entropy production by σs to simplify the
notation.)

σs = Je

(
1

T �
− 1

T g

)
−

n∑
i=1

Jξi

(
μ̃�

i

T �
− μ̃

g
i

T g

)
, (2.1)

where μ̃i ≡ μi + v2/2 − gxs , with v the barycentric velocity
and xs the position of the dividing surface. We introduce the
measurable heat flux J ′

q by

J ′
q = Je −

n∑
i=1

h̃i Jξi , (2.2)

where h̃i ≡ hi + v2/2 − gxs = μ̃i + T si , with si the partial
entropy and hi the partial enthalpy. Using the measurable heat
flux on the vapor side, the excess entropy production can then
be written as16

σs = J ′, g
q

(
1

T �
− 1

T g

)

−
n∑

i=1

Jξi

[(
μ̃�

i

T �
− μ̃

g
i

T g

)
− h̃g

i

(
1

T �
− 1

T g

)]
. (2.3)

An alternative form of this expression is

σs = J ′, g
q

(
1

T �
− 1

T g

)

−
n∑

i=1

Jξi

1

T �

[
μ̃�

i − μ̃
g
i + sg

i (T � − T g)
]
. (2.4)

It is important to realize that Eqs. (2.4), (2.3), and (2.1) are
exactly equivalent. It is common to do these transformations
neglecting third and higher order contributions in the devia-
tion from equilibrium. Such approximations were not needed
here. If one neglects such higher order terms one may write

Eq. (2.4) in the form

σs = J ′, g
q

(
1

T �
− 1

T g

)
−

n∑
i=1

Jξi

1

T �

[
μ̃�

i − μ̃
g
i (T �)

]
. (2.5)

This expression is convenient if one wants to write the chemi-
cal forces in terms of the natural logarithm of the partial pres-
sure divided by the partial vapor pressure of the liquid. (These
partial pressures are defined as the molar concentrations times
the total pressure.) We refer to Ref. 15 for a discussion of this.

Equation (2.5) has the form of the entropy production for
the surface used in Ref. 15. It was obtained there using the lo-
cal equilibrium hypothesis, which we have proven to be valid
in Ref. 17. In Ref. 16 we have derived Eq. (2.4) independently,
by calculating the excess of the continuous entropy produc-
tion.

We now consider a binary mixture. The excess entropy
production can be written as

σs = J ′, g
q Xq + Jξ1 X g

1 + Jξ2 X g
2 , (2.6)

where

Xq ≡ 1

T �
− 1

T g
,

(2.7)

X g
j ≡ − 1

T �

(
μ̃�

j − μ̃
g
j + sg

j (T � − T g)
)
, j = 1, 2.

(We use a resistance formulation of the force-flux rela-
tions rather then a conductance formulation. This follows the
framework developed in Ref. 15 and 16. The main reason for
this is that for the case of transport across the surface the
resistivities add up throughout the interfacial region, while
conductivities do not. Therefore the resistance formulation is
more appropriate.) The resulting linear force-flux relations are

Xq = Rg
qq J ′, g

q + Rg
q1 Jξ1 + Rg

q2 Jξ2 ,

X g
1 = Rg

1q J ′, g
q + Rg

11 Jξ1 + Rg
12 Jξ2 , (2.8)

X g
2 = Rg

2q J ′, g
q + Rg

21 Jξi + Rg
22 Jξ2 ,

or in the matrix notation

Xg ≡

⎛
⎜⎝

Xq

X g
1

X g
2

⎞
⎟⎠, Rg ≡

⎛
⎜⎝

Rg
qq Rg

q1 Rg
q2

Rg
1q Rg

11 Rg
12

Rg
2q Rg

21 Rg
22

⎞
⎟⎠, Jg ≡

⎛
⎜⎝

J ′, g
q

Jξ1

Jξ2

⎞
⎟⎠

(2.9)

we have

Xg = Rg ·Jg. (2.10)

The resistance matrix Rg satisfies the Onsager reciprocal re-
lations, i.e., Rg

q1 = Rg
1q , Rg

q2 = Rg
2q , and Rg

21 = Rg
12.

In the above expressions for the entropy productions we
used the measurable heat flux Eq. (2.2) on the vapor side of
the surface J ′, g

q . One can similarly use the measurable heat
flux on the liquid side of the surface J ′, �

q . The resulting resis-
tance matrix R� differs from Rg . We refer to Ref. 15 for the
details of the alternative procedure.

Downloaded 21 Dec 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



234501-3 Interfacial resistances J. Chem. Phys. 133, 234501 (2010)

III. KINETIC THEORY

According to Ref. 15, (p. 180) kinetic theory gives the
following expressions for the surface transport coefficients for
a two component mixture:

Rg
qq = 4A

{
1 + 104

25π

(
w2

1

ς1
+ w2

2

ς2

)}
,

Rg
qi = Rg

iq = 2RT A

{
1 + 16

5π

wi

ςi

}
M−1

i , (3.1)

Rg
i j = (RT )2 A

{
1 + 32δi j

1

ςi

(
1

σi
+ 1

π
− 3

4

)}
M−1

i M−1
j ,

where

A ≡ 2−9/2 √
π R (RT )−5/2

(
cg

1

/√
M1 + cg

2

/√
M2

)−1
,

ςi ≡ (
cg

i

/
4
√

Mi
)/(

cg
1

/
4
√

M1 + cg
2

/
4
√

M2
)
, (3.2)

wi ≡ λi/(λ1 + λ2),

where R is the universal gas constant, λi and cg
i are the ther-

mal conductivity and the gas coexistence concentration of the
i th component respectively. σi is the condensation coefficient
of the i th component, which are parameters in this theory,
and δi j is the Kroneker symbol. Furthermore, Mi , the molar
mass of component i , appears in Eq. (3.2) to adopt the mo-
lar transfer coefficients used in Ref. 15 to the mass transfer
coefficients used in this paper. All these quantities and as a
consequence the resistances are calculated for a liquid and
a vapor in coexistence at the temperature T and the chem-
ical potential difference μ12 ≡ μ1 − μ2 of the surface, see
Ref. 15 (p. 180) in this context.

IV. NONEQUILIBRIUM CONTINUOUS SOLUTION

Assume we have the numerical solution for a particular
nonequilibrium stationary state. That is we know all the fluxes
Jg and forces Xg used in Eq. (2.10): the constant fluxes are ob-
tained directly from the nonequilibrium solution and the ex-
trapolated bulk profiles are obtained using the procedure de-
scribed in Ref. 17. We now consider the following problem:
to determine the transport coefficients for the whole surface
having the nonequilibrium solution. This problem is, in a way,
inverse to the common one, where one knows the resistances
and, say, forces, and needs to determine the fluxes. As one can
see, Eq. (2.8) has 9 unknown resistances (Solving the inverse
problem we have to ensure the validity of the Onsager recip-
rocal relations. This is one of the criteria to limit the size of
the perturbation. This means that we have 9 independent re-
sistances, but not 6.) and only 3 equations. It is therefore not
possible to determine all the transport coefficients uniquely
having only one stationary state solution. In order to incorpo-
rate more equations we need to consider other nonequilibrium
stationary solutions which are independent of the previous.
An important observation should be made here.

In Ref. 17 we have verified the validity of the hypothe-
sis of local equilibrium of the surface. This implies, that the
resistance matrix Rg is a function of thermodynamic parame-
ters, say the temperature T and the chemical potential differ-
ence μ12, of the surface, Rg = Rg(T s, μs

12). In Ref. 17 we saw

that the temperature of the surface and the chemical poten-
tial difference of the surface depend on both the equilibrium
temperature and the chemical potential difference, as well as
on the size of the perturbation. Let ß indicate the size of a
nonequilibrium perturbation, so that (Note, that a nonequilib-
rium state can be achieved by perturbing several independent
quantities simultaneously. In this case we have several pertur-
bation parameters β1, . . . , βp. A measure ß is a norm of this
p-dimensional vector of perturbations. The exact expression
for this norm is irrelevant, as long as it goes to zero if and only
if all β1, . . . , βp go to zero.)

T s = T s(Teq, μ12,eq; ß),

μs
12 = μs

12(Teq, μ12,eq; ß).
(4.1)

Furthermore, Xg = Xg(ß) and Jg = Jg(ß). In order to be able
to use several independent perturbations as a source for the re-
sistance coefficients, we must ensure that for all perturbations
the temperature of the surface and the chemical potential of
the surface are the same. The simplest way to ensure this is
to assume that T s ≈ Teq and μs

12 ≈ μ12,eq. As is clear from
Eq. (4.1), this can be considered true if the perturbation rate
ß is small enough. As we decrease ß, the accuracy of this as-
sumption increases and in the limit ß → 0 it becomes exact.
It follows that

Rg ≡ Rg(Teq, μ12,eq) = lim
ß→0

Rg(Teq, μ12,eq; ß). (4.2)

In practice there exists a particular size ßeq of a perturbation,
such that for all ß < ßeq, T s ≈ Teq and μs

12 ≈ μ12,eq with a
satisfactory accuracy.

One should also note that the accuracy of a particu-
lar numerical procedure may impose a lower bound for the
size of the the perturbation ß as well. All the nonequilib-
rium profiles and therefore forces and fluxes are calculated
by solving the system of differential equations numerically
with some particular accuracy. If a perturbation rate ß is lower
than this accuracy, say ßnum, then the data obtained from the
numerical procedure are not reliable. We may therefore use
Eq. (2.10) only if the perturbation rate ß is in the range
ßnum < ß < ßeq. The boundaries of this range should be es-
tablished empirically.

We determine the transport coefficients from two dif-
ferent methods: a “perturbation cell” method (This method
was first used by Johannessen et al. in (Ref. 14) for one-
component system. Here we discuss the grounds for the le-
gitimacy of this procedure and generalize it to mixtures.) and
an experimental-like procedure. For ease of notation we will
suppress the superscript g in the rest of this section, as the
procedure is the same for vapor and liquid interfacial resis-
tances.

A. Perturbation cell

Consider a stationary state which is perturbed from equi-
librium by setting the temperature of the liquid [One should
not confuse T (x�) with T �. The former is the actual tem-
perature at x = x�, i.e., at the box boundary on the liq-
uid side. The latter is the temperature extrapolated from
the liquid phase to the interfacial region and calculated at
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x = xs , i.e., at the dividing surface.] T (x�) = (1 + βT )Teq,
the pressure of the gas p(xg) = (1 + βp)peq and the mole
fraction of the liquid ζ �(x�) = (1 + βζ )ζ �

eq independently. The
resulting nonequilibrium state is therefore a function of the
parameters β,

X(βT , βp, βζ ) = R(Teq, μ12,eq)·J(βT , βp, βζ ), (4.3)

where X, J and R are given by Eq. (2.9). Consider the follow-
ing set of 8 independent nonequilibrium perturbations,

X(β, β, β) = R(Teq, μ12,eq)·J(β, β, β),

X(β,−β, β) = R(Teq, μ12,eq)·J(β,−β, β),

X(−β, β, β) = R(Teq, μ12,eq)·J(−β, β, β),

X(−β,−β, β) = R(Teq, μ12,eq)·J(−β,−β, β),

X(β, β,−β) = R(Teq, μ12,eq)·J(β, β,−β),

X(β,−β,−β) = R(Teq, μ12,eq)·J(β,−β,−β),

X(−β, β,−β) = R(Teq, μ12,eq)·J(−β, β,−β),

X(−β,−β,−β) = R(Teq, μ12,eq)·J(−β,−β,−β).

(4.4)

Consider now the 3×8 matrices X and J which contain 8
column vectors X and J, respectively, for each nonequilib-
rium perturbation specified above. For these perturbations
X = X(β) and J = J(β) are functions only of one parameter
β. It follows from Eq. (4.4) that

X(β) = R(Teq, μ12,eq)·J(β), (4.5)

where β should be in the appropriate range, as discussed
above. In Appendix A we discuss the method to obtain this
range. From Eq. (4.5) we obtain

R(Teq, μ12,eq) = [X(β)·JT (β)] · [J(β)·JT (β)]−1, (4.6)

where superscript T means the matrix transpose and −1
means the inverted matrix.

We note, that in order to obtain the resistance matrix R
uniquely, it is sufficient in principle to impose any 3 nonequi-
librium perturbations which have sufficiently small perturba-
tion parameters βT , βp, and βζ . This would give us 3×3 = 9

independent equations. The method presented above makes
the resistance matrix converge to R(Teq, μ12,eq) as fast as β2

goes to zero, however. This is achieved by using 8 symmetric
perturbations at the “corners” of a three-dimensional “pertur-
bation cell,” so changing β to −β does not change the “per-
turbation cell” and the resulting R.

Because of using 8 perturbations instead of 3, there
are 5 superfluous perturbations which make the system of
Eq. (4.5) to be overdetermined. Contracting both sides of Eq.
(4.5) with JT we actually average all the perturbations which
are spread around Teq and μ12,eq in the least square sense.
As the components of J matrix are linearly independent, this
guaranteers the matrix J·JT to be invertible. Thus, the in-
verse matrix (J·JT )−1 exists and Eq. (4.6) is mathematically
legitimate. In the numerical procedure the expression on the
right-hand side of Eq. (4.6) is obtained using Matlab matrix
division.

B. Experimentlike procedure

In experiments it is convenient to measure the corre-
sponding coefficients by keeping zero mass fluxes through
the system. It is also convenient to work with the total mass
flux Jm = Jξ1 + Jξ2 and the flux of one of the components
Jξ ≡ Jξ1 , rather than with fluxes of each component sepa-
rately, Jξ1 and Jξ2 (One of the reasons for this is that it is hard
to make only Jξ1 = 0, keeping Jξ2 finite.). The excess entropy
production Eq. (2.6) can be therefore written as

σs = J ′
q Xq + Jξ Xξ + Jm Xm, (4.7)

where Xξ ≡ X1 − X2 and Xm ≡ X2. The resulting force-flux
relations (2.10) have the following terms:

X ≡

⎛
⎜⎝

Xq

Xξ

Xm

⎞
⎟⎠ , R ≡

⎛
⎜⎝

Rqq Rqξ Rqm

Rξq Rξξ Rξm

Rmq Rmξ Rmm

⎞
⎟⎠ , J ≡

⎛
⎜⎝

J ′
q

Jξ

Jm

⎞
⎟⎠ ,

(4.8)

where the resistances for different force definitions are related
as

⎛
⎜⎝

Rqq Rq1 Rq2

R1q R11 R12

R2q R21 R22

⎞
⎟⎠ =

⎛
⎜⎝

Rqq Rqξ + Rqm Rqm

Rξq + Rmq Rmm + Rξξ − Rmξ − Rξm Rmm − Rξm

Rmq Rmm − Rmξ Rmm

⎞
⎟⎠. (4.9)

Consider a stationary state which is perturbed from
equilibrium by setting the temperature of the liquid T (x�)
= (1 + β)Teq. The perturbation parameter β is a small num-
ber. The second perturbation constraint we impose is either
Jξ = 0 or ζ �(x�) = ζ �

eq and we introduce the perturbation pa-
rameter νξ which is 0 in the former case and 1 in the latter one,
which will be used as a subscript. The third perturbation con-
dition is either Jm = 0 or p(xg) = peq and the corresponding

perturbation parameter νm is 0 or 1 respectively, which will
be used as a subscript. The resulting nonequilibrium state is
therefore a function of 3 parameters,

Xνξ ,νm (β) = R(Teq, μ12,eq)·Jνξ ,νm (β), (4.10)

where X, J, and R are given by Eq. (4.8).
Consider the following set of 3 independent nonequilib-

rium perturbations,
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FIG. 1. Dependence of Rqq on αqq obtained by “perturbation cell” method
at Teq = 330 and μ12,eq = 700 for α1q = 0 and α11 = 1. Rqq,kin is drawn as
a constant line.

X00(β) = R(Teq, μ12,eq)·J00(β),

X10(β) = R(Teq, μ12,eq)·J10(β), (4.11)

X11(β) = R(Teq, μ12,eq)·J11(β).

Further on, for simplicity we will suppress arguments β and
(Teq, μ12,eq).

From the first of Eq. (4.11) we find

Rqq = Xq, 00/J ′
q,00,

Rξq = Xξ, 00/J ′
q,00, (4.12a)

Rmq = Xm,00/J ′
q,00.

From the second of Eq. (4.11) we find

Rqξ = (Xq, 10 − Rqq J ′
q,10)/Jξ,10,

Rξξ = (Xξ, 10 − Rξq J ′
q,10)/Jξ,10, (4.12b)

Rmξ = (Xm,10 − Rmq J ′
q,10)/Jξ,10.

The values X10 and J10 are found directly from the calcula-
tions, and the values of Rqq , Rξq , and Rmq are those which
are found in Eq. (IV.12a), given that the perturbation rate β is
small enough. From the third of Eq. (4.11) we find

Rqm = (Xq, 11 − Rqq J ′
q,11 − Rqξ Jξ,11)/Jm,11,

Rξm = (Xξ, 11 − Rξq J ′
q,11 − Rξξ Jξ,11)/Jm,11, (4.12c)

Rmm = (Xm,11 − Rmq J ′
q,11 − Rmξ Jξ,11)/Jm,11.

Again, all the quantities on the right-hand side of Eq. (IV.12c)
are known and we therefore can find the remaining
resistivities.

V. INTEGRAL RELATIONS

In Ref. 16 we have established the general approach to
derive integral relations between the surface resistances and
local resistivity profiles. In this section we apply it to find the
relations between the resistances R used in Eqs. (2.10) and
(2.9) and local resistivities r . Using the method described in
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FIG. 2. Dependence of R11,pc and R22,pc on α11 (dots, bottom axes) and
R11,kin and R22,kin on σ1 and σ2 (curve, top axes), respectively. Data are ob-
tained at Teq = 330 and μ12,eq = 700 for αqq = 9 and α1q = 0.

Ref. 16 we find

R ′ g
qq = E {rqq},

R ′ g
q1 = E

{
rqq

(
h − hg

1

) + rq1 ξ2
}
,

R ′ g
q2 = E

{
rqq

(
h − hg

2

) − rq1 ξ1
}
,

R ′ g
11 = E

{
rqq

(
h − hg

1

)2 + 2rq1 ξ2
(
h − hg

1

) + r11 ξ 2
2

}
, (5.1)

R ′ g
12 = E

{
rqq

(
h − hg

1

)(
h − hg

2

) + rq1
(
ξ2

(
h − hg

2

)
− ξ1

(
h − hg

1

)) − r11 ξ1 ξ2
}
,

R ′ g
22 = E

{
rqq

(
h − hg

2

)2 − 2rq1 ξ1
(
h − hg

2

) + r11 ξ 2
1

}
,

where the operator E is defined as

E{φ}(xs) ≡
∫ x�,s

xg,s
dx[φ(x) − φg(x) �(xs − x)

−φ�(s) �(x − xs)], (5.2)

Downloaded 21 Dec 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



234501-6 K. S. Glavatskiy and D. Bedeaux J. Chem. Phys. 133, 234501 (2010)

TABLE I. Gas-side transport coefficients obtained from kinetic theory and by the “perturbation cell” method at Teq = 330 and μ12,eq = 700 for β = 0.0002.

Parameters Rqq R11 R22 Rq1 Rq2 R12

σ1 = 0.54 2.96792e-011 1.11091 1.09136 3.82826e-007 4.41483e-007 0.0130511
σ2 = 0.62

αqq = 9 3.01874e-011 1.12461 1.13991 2.31477e-006 2.27003e-006 −0.816559
α1q = 0
α11 = 3

where φg and φ� are extrapolated from the gas and liquid,
respectively, profiles of φ, while xg,s and x�,s are the surface
boundaries. Here φ is a profile of any variable.

This method requires the equilibrium profiles for the en-
thalpy h(x) and the mass fraction ξ (x) across the interface.
Both of them could be easily obtained from the equilibrium
square gradient model, see Ref. 17 for details. In contrast to
the methods in Sec. IV, this requires calculating only the equi-
librium profiles, but not the nonequilibrium ones, which is a
much easier calculation.

The integral relations also require the local resistivity
profiles rqq (x), rq1(x), and r11(x) across the interface, which
were modeled in the square gradient theory as

rqq (x) = r g
qq + (

r �
qq − r g

qq

)
q0(x) + αqq

(
r �

qq + r g
qq

)
q1(x),

rq1(x) = r g
q1 + (

r �
q1 − r g

q1

)
q0(x) + αq1

(
r �

q1 + r g
q1

)
q1(x),

r11(x) = r g
11 + (

r �
11 − r g

11

)
q0(x) + α11

(
r �

11 + r g
11

)
q1(x),

(5.3)

where q0(x) and q1(x) are modulatory curves for resistiv-
ity profiles which depend only on density profiles and their
first derivatives. We refer to the details in Ref. 17. q0(x) is
a smooth arctan-like function which changes its value from
0 to 1 within the range [xg,s ; x�,s] and q1(x) is zero on the
boundaries of the [xg,s ; x�,s] interval and has a peak propor-
tional to the square gradient of the density inside this interval.
Thus, the first two terms in each expression for the resistivity
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FIG. 3. Dependence of Rqq on T and μ12 obtained from kinetic theory
for σ1 = 0.54 and σ2 = 0.62 (plane) and by “perturbation cell” method for
αqq = 9, α1q = 0 and α11 = 3 (points).

represents a smooth transitions from the gas bulk resistivity
to the liquid bulk resistivity, while the third term represents a
peak in the resistivity proportional to the square gradient of
the density. For each resistivity profile r g and r � are the equi-
librium coexistence resistivities of the gas and liquid phase,
respectively. They are related to the measurable transport co-
efficients such as heat conductivity, the diffusion coefficient,
and the Soret coefficient.

The square gradient model used 3 adjustable parameters
αqq , αq1, α11 which control the size of the peak in the re-
sistivity profiles in the interfacial region. The interfacial re-
sistance coefficients R will therefore depend on these coeffi-
cients, R = R(αqq , αq1, α11), which we will investigate.

VI. RESULTS

We consider a binary mixture of cyclohexane and n-
hexane, as we did in Ref. 17.

We find in Appendix A that β = 2·10−4 is an opti-
mum perturbation rate both in the “perturbation cell” and
“experimental-like” methods, see Sec. IV. We have verified
that both these methods lead to essentially the same values
of the resistance coefficients. The numbers given below are
taken from the “perturbation cell” method.

Furthermore in Appendix B, we find the range of ad-
justable amplitudes αqq , α1q , and α11, for which the descrip-
tion is thermodynamically consistent. We find that αqq ∼ 10,
α11 ∼ 1. The value of α1q is found to be irrelevant.
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FIG. 4. Dependence of Rq1 on T and μ12 obtained from kinetic theory
for σ1 = 0.54 and σ2 = 0.62 (plane) and by “perturbation cell” method for
αqq = 9, α1q = 0 and α11 = 3 (points).
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FIG. 5. Dependence of R11 on T and μ12 obtained from kinetic theory
for σ1 = 0.54 and σ2 = 0.62 (plane) and by “perturbation cell” method for
αqq = 9, α1q = 0 and α11 = 3 (points).

In this section we suppress the superscript g for the resis-
tances for ease of notation.

A. Comparison to kinetic theory

In this subsection we investigate the values of parame-
ters αqq , α1q , α11 which makes the coefficients agree with
the kinetic theory coefficients. We do it for β = 2e-4 as
this perturbation rate gives the most accurate results. Fur-
thermore we use the temperature Teq = 330 K and chem-
ical potential difference μ12,eq = 700 J/mol. The values of
parameters, used for kinetic theory are the same, as we use
in our calculations. Particularly, the heat conductivities of
cyclohexane and n-hexane are λ1 = 0.0140 W/(m K) and
λ2 = 0.0157 W/(m K),21 and the molar masses are M1 =
84.162 g/mol and M2 = 86.178 g/mol, respectively.

We found that a variation of α1q from 0 to 10 makes the
diagonal coefficients vary about 1% and the cross coefficients
vary not more than 5%. As the variation of α1q is quite sub-
stantial, the variation in the coefficients which it induces is
negligible. We therefore take α1q = 0 in all further analysis.

Let us use subscript pc for the resistivity matrix obtained
from the “perturbation cell” method and subscript kin for
the resistivity matrix obtained from kinetic theory. For the
above parameters we calculated Rqq,pc = 2.967 92 × 10−11.
We found that Rqq,kin is practically independent on α11 while
it depends linearly on αqq , see Fig. 1. One can see from the
plot, that they are the same for αqq ≈ 9.

The diagonal coefficients R11,pc and R22,pc depend both
on αqq and α11. Since we have found the value of αqq al-
ready, we will further investigate the dependence of R11,pc

and R22,pc using this value of αqq and varying only α11. The
diagonal coefficients R11,kin and R22,kin depend, in their turn,
on the condensation coefficients σ1 and σ2, respectively. We
plot this dependence in the same plot with the dependency of
Rii,pc (i = 1; 2) on α11, see Fig. 2. The dependence of Rii,pc

on α11 is given by the dotted line with the values of α11 drawn

on the bottom x-axes. The dependence of Rii,kin on σi is given
by the solid line with the values σi drawn on the top x-axes.

Consider a particular value Rii,0 of the diagonal coeffi-
cient Rii , where i is either 1 or 2, which is indicated by a hor-
izontal dashed line in the figure. To find the value of α11 for
which Rii,pc = Rii,0 we draw a perpendicular from the point
where it crosses the dotted line to the bottom axes. To find the
value of σi for which Rii,kin = Rii,0 we draw a perpendicular
from the point where the horizontal dashed line crosses the
solid line to the top axes. For instance, the value R22,0 = 1.1
corresponds to α11 = 3 and σ2 = 0.62. The value α11 = 3, in
its turn, gives R11,0 = 1.1 which corresponds to σ1 = 0.54.

One may start by specifying α11, rather than Rii,0, to find
σ1 and σ2. Then we draw a perpendicular from the bottom
axes until it crosses the dotted line, which gives the value
of Rii,pc. Given the value of Rii,kin to be the same, we find
the value of σi as described above. For the above example
α11 = 3 corresponds to σ1 = 0.54 and σ2 = 0.62. We see, that
we may not specify both σ1 and σ2 independently: they must
have the values which both correspond to the same α11. For
similar components, like those we are interested in, σ1 and σ2

should not differ much from each other, and therefore α11, a
coefficient which is related to the diffusion of one component
through the other, should reflect this difference.

Having the diagonal coefficient mapped we have the pa-
rameters αqq and α11 defined uniquely (and taking into ac-
count that α1q has negligible effect), as well as σ1 and σ2

for kinetic theory. We now compare the values of the cross
coefficients given by “perturbation cell” method and kinetic
theory. One can see from Table I that while the diagonal co-
efficients are the same, the cross coefficients we find are an
order of magnitude larger than those found by kinetic the-
ory. (One should not expect exact compatibility between ki-
netic theory, which is most appropriate for gases with short
range potentials, and the gradient theory, which is most ap-
propriate for fluids with long range potentials. The purpose
of this comparison in not to determine the exact values of ad-
justable parameters, but to show that it is possible to match
coefficients in the two theories and to show the typical values
of the parameters.) R12 even has a different sign.

B. Temperature and chemical potential difference
dependence

In this subsection we investigate the dependence of the
resistivity coefficients on the temperature and the chemical
potential difference. In Figs. 3–5 we plot the these depen-
dencies for Rqq , Rq1, and R11 coefficients obtained from ki-
netic theory and “perturbation cell” method for the range of

TABLE II. Relative error in percent between the gas- and liquid-side co-
efficients obtained by the “perturbation cell” and “integral relations” meth-
ods at Teq = 330 and μ12,eq = 700 for β = 0.0002 and αqq = 9, α1q = 0,
α11 = 3.

Phase Rqq R11 R22 Rq1 Rq2 R12

Gas 0.019090 0.064642 0.058851 0.020649 0.020680 0.097096
Liquid 0.019090 0.006266 0.000432 0.036270 0.034886 6.233983
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TABLE III. Relative error in percent for gas-side cross-coefficients ob-
tained by the “perturbation cell” method at Teq = 330 and μ12,eq = 700 for
different β and for αqq = 0, α1q = 0, α11 = 0.

β Rq1 Rq2 R12

2.0e-002 8.963066 35.863259 34.908631
2.0e-003 0.273286 0.369082 19.683274
2.0e-004 0.011726 0.007231 1.909391
2.0e-005 0.066375 0.071266 2.336652
2.0e-006 4.963895 8.128243 5.843913

temperatures [325, . . . , 335] and for the range of chemical
potential differences [400, . . . , 1000].

The domain of T and μ12 is not big, so the dependence
on them is linear, as expected.

C. Validity of integral relations

We compare the resistances found from numerical proce-
dure to the values obtained from Eq. (5.1). The relative dif-
ference between them is almost the same within the range of
temperatures and chemical potential differences considered:
T = {325, . . . , 335} and μ12 = {400, . . . , 1000}. In Table II
we give the relative errors for the resistances both for the case
that we use the measurable heat fluxes on the vapor and on
the liquid side. We refer to Ref. 15 for details of the definition
of the resistances using the measurable heat flux on the liquid
side.

The relative differences are not more then a few promille.
It is larger only for R�

12 which is discussed below.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have studied stationary transport of heat
and mass through the liquid–vapor interface in a mixture. We
used the expression for the excess entropy production of a sur-
face derived from the continuous description,16 which is iden-
tical to the one derived directly for the discrete description us-
ing the property of local equilibrium.15 This makes it possible
to give the linear force-flux relations for this case. These rela-
tions involve the interfacial resistances, which were the main
focus of interest in this paper. Given the numerical solutions
of the nonequilibrium square gradient model we were able to
calculate these coefficients directly for a two-component mix-
ture. Furthermore, we calculated these coefficients using inte-

TABLE IV. Relative error in percent for gas-side cross-coefficients obtained
by the “experiment-like” method at Teq = 330 and μ12,eq = 700 for different
β and for αqq = 0, α1q = 0, α11 = 0.

β Rq1 Rq2 R12

2.0e-002 1.275105 0.828600 754.982200
2.0e-003 0.038759 0.363715 38.708981
2.0e-004 0.131868 0.238584 6.247648
2.0e-005 1.301483 2.056102 20.984734
2.0e-006 13.282959 20.788752 632.124504

TABLE V. Relative error in percent for gas-side cross-coefficients obtained
by the “perturbation cell” method at Teq = 330 and μ12,eq = 700 for different
β and for αqq = 10, α1q = 10, α11 = 10.

β Rq1 Rq2 R12

2.0e-002 71.515410 78.166809 23.572836
2.0e-003 0.745604 0.896547 0.317348
2.0e-004 0.012358 0.012650 0.001919
2.0e-005 0.012078 0.007485 0.005290
2.0e-006 0.713969 1.124994 0.022121

gral relations, derived in Ref. 16. This gives an independent
way to determine the interfacial resistances.

The main input parameters of the model are the local
resistivity profiles used to calculate the continuous solution.
There is not much theoretical information about the numer-
ical value of these resistivities. In the vapor phase one can
use kinetic theory. In the liquid phase it is most appropriate
to use experimental values. There is no experimental infor-
mation about the local resistivities in the interfacial region.
As the local resistivities change in the surface from one bulk
value to the other, it is natural to assume that they contain
a contribution similar to the profile of the order parameter.
There is also evidence from molecular dynamics simulations
for one-component systems18 that there is a peak in the local
resistivity in the surface. This is a very important ingredient
in our description. As we are in the framework of the gradi-
ent theory, it is natural to assume that such peaks are caused
by a square gradient term, which is similar to the gradient
contribution to the Helmholtz energy density in the interfacial
region, namely |∇ρ|2. The amplitudes of these peaks are not
given by any theory and were used as parameters. We there-
fore get that the three local resistivities for a two-component
mixture have the form given in Eq. (5.3). Thus we get three
adjustable amplitudes, αqq , α1q , and α11, two of which were
found to contribute significantly to the value of the transfer
coefficients.

In order to determine the typical values of the α’s we need
to compare our results with independently obtained resistivi-
ties. Unfortunately, not much experimental data are available
for multicomponent resistivities and, to the best of our knowl-
edge, no data are available for our system. Furthermore, no
molecular dynamic simulations of these properties are avail-
able for mixtures. The only available source of comparison
is kinetic theory, which gives the expressions for the inter-
facial resistivities or transfer coefficients given in Eq. (3.2).

TABLE VI. Relative error in percent for gas-side cross-coefficients ob-
tained by the “experiment-like” method at Teq = 330 and μ12,eq = 700 for
different β and for αqq = 10, α1q = 10, α11 = 10.

β Rq1 Rq2 R12

2.0e-002 4.225362 2.559393 12.259260
2.0e-003 0.443944 0.256804 1.091842
2.0e-004 0.068621 0.019788 0.093041
2.0e-005 0.269764 0.407090 0.008844
2.0e-006 2.717575 4.149484 2.025054
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TABLE VII. Second law consistency for gas-side coefficients. The diagonal coefficients and the quantities defined by Eq. (B4). Data are obtained by the
“perturbation cell” method at Teq = 330 and μ12,eq = 700 for different αqq and for β = 0.0002, α1q = 0, α11 = 0.

αqq Rqq R11 R22 DRq1 DRq2 DR12

0 7.05644e-015 0.0754717 −0.0919278 2.13025e-015 −2.59473e-015 −0.0277518
1 3.36047e-012 0.0937784 −0.0741586 1.26056e-012 −9.9683e-013 −0.0278179

10 3.35408e-011 0.259425 0.0851534 3.48053e-011 1.14244e-011 0.0874467

We therefore compare our results to kinetic theory. As dis-
cussed in the Results, the kinetic theory values were repro-
duced using αqq 	 9, αq1 	 0, and α11 	 3. This also gave as
condensation coefficients 0.54 and 0.62 for cyclohexane and
n-hexane, respectively. An important conclusion is that finite
α’s are needed to reproduce the kinetic theory values. Kinetic
theory therefore confirmers the existence of peaks in the di-
agonal resistivity profiles.

We found that the values of the cross coefficients, ob-
tained by our method are an order of magnitude larger than
those found from kinetic theory. This confirms results from
molecular dynamics simulations9 for a one-component sys-
tem, where it was found that increasing the range of the attrac-
tive potential increased in particular the cross coefficients sub-
stantially above the values predicted by kinetic theory. This is
an interesting result, indicating that kinetic theory underesti-
mates the transfer coefficients for real fluids. This also indi-
cates, that the effect of coupling will be important in the in-
terfacial region. Experiments also confirm the importance of
the cross coefficients.3, 4

The effect of cross coefficients can be related to the mea-
surable quantities, such as measurable heat of transfer q∗

i
≡ −Rqi/Rqq . This quantity can be associated both with
gas and liquid phases in accordance to the corresponding
heat fluxes. The difference q∗,g

i − q∗,�
i = −(Rg

qi − R�
qi )/Rqq

= −(hg
i,eq − h�

i,eq) is equal to the difference of partial en-
thalpies between gas and liquid in equilibrium. (We note that
Rg

qq = R�
qq ≡ Rqq .) This quantity is substantial, which im-

plies that q∗,g
i − q∗,�

i is also substantial. This, in turn, makes
the difference between the cross coefficients on the vapor and
the liquid side appear substantial. This gives a theoretical
ground for the importance of coupling in the interfacial re-
gion. Experiments3, 4 confirm the size and importance of the
heat of transfer on the vapor side.

We did the comparison for one value of the temperature
and chemical potential only. If one extends the analysis to a
larger domain, one finds that the α’s depend on the tempera-
ture and the chemical potential difference; we refer to Ref. 14
in this context. The results of kinetic theory10–13 and molecu-
lar dynamics8 both support the existence of a peak in the di-

agonal local resistivities and therefore the use of finite values
for αqq and α11.

Furthermore, it was found, that the data obtained directly
from nonequilibrium numerical solution agree with the ones
obtained using integral relations, as is expected. This gives
an alternative and easier way to determine nonequilibrium
properties of the interfacial region, needing only equilibrium
information about the system. In fact, as we speak of lin-
ear nonequilibrium thermodynamics, this is the way it should
be. The interfacial resistances are determined from equilib-
rium properties, just like Green–Kubo relations involve only
equilibrium information in order to determine the transport
coefficients.

APPENDIX A: DETERMINING AN OPTIMAL
PERTURBATION RATE

The value of the resistance R(Teq, μ12,eq) does not de-
pend on the perturbation, given the perturbation is small
enough. However, the magnitude ß of the perturbation which
may be considered sufficiently small, has to be determined
empirically. This would require considering perturbations
where ß is beyond the appropriate range and will make the
empirical resistances R(Teq, μ12,eq) to be dependent on ß.

In order to determine the appropriate range of perturba-
tions, that is when ß is small enough to consider them lin-
ear, and at the same time, large enough, to not interfere with
the accuracy of the numerical solution, we check the obtained
resistances for the thermodynamic consistency. We have the
following constraints, which they must obey for each T and
μ12:

(i) the cross coefficients of each R matrix must satisfy On-
sager relations;

(ii) the second law consistency;
(iii) coefficients obtained on the gas and the liquid side of

the surface must be related.

We will use the first condition to determine the range of
ß, while the two remaining will be used for the verification of
the results obtained in the paper.

TABLE VIII. Second law consistency for gas-side coefficients. The diagonal coefficients and the quantities defined by Eq. (B4). Data are obtained by the
“perturbation cell” method at Teq = 330 and μ12,eq = 700 for different α1q and for β = 0.0002, αqq = 0, α11 = 0.

α1q Rqq R11 R22 DRq1 DRq2 DR12

0 7.05644e-015 0.0754717 −0.0919278 2.13025e-015 −2.59473e-015 −0.0277518
1 7.05608e-015 0.0746391 −0.0910331 2.10664e-015 −2.56935e-015 −0.0271785

10 7.05304e-015 0.0670813 −0.0828915 1.89251e-015 −2.33855e-015 −0.0222419
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TABLE IX. Second law consistency for gas-side coefficients. The diagonal coefficients and the quantities defined by Eq. (B4). Data are obtained by the
“perturbation cell” method at Teq = 330 and μ12,eq = 700 for different α11 and for β = 0.0002, αqq = 0, α1q = 0.

α11 Rqq R11 R22 DRq1 DRq2 DR12

0 7.05644e-015 0.0754717 −0.0919278 2.13025e-015 −2.59473e-015 −0.0277518
1 7.05717e-015 0.370078 0.265626 1.04468e-014 7.49827e-015 0.381226

10 7.10378e-015 3.02063 3.48284 8.58316e-014 9.89654e-014 −69.2846

1. Onsager reciprocal relations

As shown by Onsager,19 the cross coefficients must be
the same. We therefore have Rqi = Riq and R ji = Ri j .

We calculate the coefficients at the values of equilibrium
temperature and chemical potential difference Teq = 330 K
and μ12,eq = 700 J/mol for different values of the adjustable
amplitudes αqq , α1q , and α11.

In Tables III and IV we give the relative error in percent
for the gas-side cross coefficients |(Rg

i j − Rg
ji )/Rg

i j |·100% as
a function of β for αqq = 0, α1q = 0, α11 = 0 obtained by dif-
ferent methods. As one can see, β = 0.02 is really an extreme
perturbation and the difference is rather large. When we de-
crease β to 2e-4 the differences become small. As we further
decrease β to 2e-6 the inaccuracy of the numerical solution
become comparable to the size of the perturbation. We con-
clude that the values for β to 2e-4 are closest to the converged
values and use them as such.

In Tables V and VI we give the same data for the higher
continuous resistivities with rather substantial peak, when
αqq = 10, α1q = 10 and α11 = 10. As one can see, the On-
sager relations are fulfilled there again best for β = 2e-4.

We may notice that the behavior of the resistivities with
respect to β is independent on the behavior of the resistivi-
ties with respect to αqq , α1q , and α11. This is natural, as these
parameters control the different aspects of the system: β con-
trols the perturbation rate, while α’s are adjustable param-
eters, which control the size of the peak in the continuous
resistivities.

APPENDIX B: CONSISTENCY OF THE
NONEQUILIBRIUM SOLUTION

1. Second law consistency

In this subsection we investigate the values of parameters
αqq , α1q , α11 for which the second law of thermodynamics is
fulfilled. That is that the excess entropy production is positive
and therefore the matrix of the resistivity coefficients is pos-
itive definite. This requires that the diagonal coefficients are
positive and for each pair q1, q2, and 12 of the cross coeffi-
cients the expression

DRik ≡ Rii Rkk − 1
4 (Rik + Rki )2 > 0 (B1)

must be positive.

In Table VII we give the diagonal coefficients and expres-
sion (B4) for each pair of the cross coefficients as a function
of αqq for α1q = 0, α11 = 0, and β = 2 × 10−4 obtained by
the “perturbation cell” method. In Tables VIII and IX we give
the same quantities for other choices of α.

We see, that the required quantities become positive for
rather big values of αqq . They almost do not depend on the
value of α1q and they are positive for moderate values of pa-
rameter α11. It is clear that finite values of αqq and α11 are
needed to have a positive excess entropy production.

All the above quantities almost do not depend on the
value of β in the range [1e-5, 1e-3]. The “experimental-like”
procedure leads to almost the same values of all the quantities.
The liquid-side coefficients reveal a similar behavior.

2. Gas and liquid coefficients

One can use the measurable flux J ′
q extrapolated from the

liquid side of the surface, rather then from the gas side, using
Eq. (2.2). In this case one should use not the enthalpy of the
gas bulk hg , but enthalpy of the liquid bulk h� extrapolated to
the diving surface. The two measurable fluxes are related as

J ′,g
q − J ′, �

q =
n∑

i=1

Jξi

(
h̃�

i,eq − h̃g
i,eq

)
. (B2)

Identifying the forces and fluxes and writing the linear force-
flux relations for the measurable heat flux on the liquid side,
one introduces the interfacial resistances measured on the liq-
uid side in the same way as it was done in Sec. II for the inter-
facial resistances measured on the gas side. These resistances
are related as follows:

R�
qq = Rg

qq

R�
qi + h�

i,eq R�
qq = Rg

qi + hg
i,eq Rg

qq ,

R�
iq + h�

i,eq R�
qq = Rg

iq + hg
i,eq Rg

qq ,

R�
j i + h�

i,eq R�
jq + h�

j,eq R�
qi + h�

i,eq h�
j,eq R�

qq

= Rg
ji + hg

i,eq Rg
jq + hg

j,eq Rg
qi + hg

i,eq hg
j,eq Rg

qq .

(B3)

These coefficients can be calculated independently from a
nonequilibrium numerical solution. Given that, the validity of
Eq. (B3) would indicate the internal consistency of the model.
In this subsection we verify these relations.

TABLE X. Relative error in percent for invariant expressions in Eq. (B3) obtained by the “perturbation cell” method at Teq = 330 and μ12,eq = 700 for
β = 0.0002 and αqq = 1, α1q = 1, α11 = 1.

qq 11 22 q1 1q q2 2q 12 21

0.000000 0.000002 0.000085 0.000001 0.000389 0.000001 0.000389 0.000060 0.000003
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TABLE XI. Relative error in percent between the left- and right-hand side of Eq. (B4) for coefficients obtained by the “perturbation cell” and “integral
relations” methods at Teq = 330 and μ12,eq = 700 for β = 0.0002 and αqq = 9, α1q = 0, α11 = 3.

Integral relations Perturbation cell

Phase Xq X1 X2 Xq X1 X2

Gas 0.059489 0.037918 0.296959 0.046965 0.087411 0.867098
Liquid 0.059489 0.172608 0.027275 0.046851 0.216819 0.014248

In Table X we give the relative error in percent between
the left-hand side and the right-hand side of Eq. (B3). For
instance, the q1 quantity is equal to |(R�

q1 − h�
1,eq R�

qq )
− (Rg

q1 − hg
1,eq Rg

qq )|/|R�
q1 − h�

1,eq R�
qq |·100%. The other

quantities are defined in the same way. These errors almost
do not depend neither on the value of β in the range [1e-5, 1e-
3] nor on the values of αqq , α1q , α11. The “experimental-like”
procedure leads to almost the same results.

3. Integral relations

For two component mixture the force-flux equations have
a form

Xq = R ′
qq J ′

q − R ′
q1 Jξ1 − R ′

q2 Jξ2 ,

X1 = R ′
1q J ′

q − R ′
11 Jξ1 − R ′

12 Jξ2 , (B4)

X2 = R ′
2q J ′

q − R ′
21 Jξ1 − R ′

22 Jξ2 .

The left-hand side of each equation must be equal to the right-
hand side. The difference therefore reflects the error. We give
the relative error between the left- and the right-hand side of
Eq. (B4) in percent in Table XI. As a testing perturbation we
used one of those used in the perturbation cell method. Again,
the relative difference is not more than a few promille. Given
that this is the case even for a few percent difference in one
of the coefficients, we may conclude that the values of the
forces are insensitive to the precise value of this resistivity
coefficient. This also indicates that the value of this coefficient

obtained in Ref. 20 has a 6% error. This does not necessarily
affect, however, the accuracy of the integral relations.
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