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ABSTRACT

W
hat does it mean to be Reactive? The concept of Reactive Programming has gained much

traction in the last few years as a paradigm well-suited for the development of asynchronous

event-driven applications. Unfortunately, Reactive Programming has been at the center of

much discussion, if not confusion, with regards to its definition, properties and identifying principles.

In this work we are going to wield the most powerful tool available to software engineers, mathematics,

in order to formally derive the reactive types and bring clarity to this much opinionated topic.

Author: EDDY BERTOLUZZO
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INTRODUCTION

"Lasciate ogne speranza, voi

ch’intrate."

— Dante Alighieri,

Divina Commedia

With the evolution of technologies brought in by the new millennium and the exponential growth

of Internet-based services targeting millions of users all over the world, the Software Engineer-

ing community has been continuously tested by an ever growing number of challenges related to

management of increasingly large amounts of user data [18].

This phenomena is commonly referred to as Big Data. A very popular 2001 research report [29] by

analyst Doug Laney, proposes a definition of big data based on its three defining characteristics:

• Volume: the quantity of data applications have to deal with, ranging from small - e.g. locally

maintained Databases - to large - e.g. distributed File Systems replicated among data centers.

• Variety: the type and structure of data, ranging from classic SQL-structured data sets to more

diversified and unstructured ones such as text, images, audio and video.

• Velocity: the speed at which data is generated, establishing the difference between pull-based

systems, where data is synchronously pulled by the consumer, and push-based systems, more

suited for handling real-time data by asynchronously pushing it to its clients.

Each of these traits directly influences the way programming languages, APIs and databases are

designed today. The increasing volume calls for a declarative approach to data handling as opposed

to an imperative one, resulting in the developer’s focus shifting from how to compute something

to what it is to be computed in the first place [17]. The diversification of data, on the other hand, is

the main drive for the research and development of noSQL approaches to data storage. Lastly, the

increase in velocity fuels the need for event-driven, push-based models of computation that can

better manage the high throughput of incoming data [31].
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INTRODUCTION

In this context, the concept of reactive programming has gained much traction in the developer’s

community as a paradigm well-suited for the development of asynchronous event-driven appli-

cations [7]. Unfortunately, reactive programming has been at the center of much discussion, if not

confusion, with regards to its definition, properties and principles that identify it [33].

The goal of our work is to use mathematics as a tool to formalize the concept of reactive programming

from a theoretical perspective. We are going to do so by utilizing constructs and ideas from functional

programming and category theory with the purpose of formally deriving a set of types and interfaces

embedding the essence of reactive programming. We will then continue with the development of a

reference reactive library which builds upon the previously derived theoretical foundations.

Motivation

As we mentioned above, reactive programming’s steep increase in popularity in the last few years [7]

has come with a number of issues with regards to it’s defining properties. Individual people, as well as

industries, have been trying to push their own definition of reactive programming to the community,

often placing their own interests before objectivity [33].

We find the current state of things to be unacceptable as it undermines the scientific foundations and

reputation of our community and field. This lack of a scientific and formal analysis of the concepts

involved in reactive programming gives motivation to the work and research presented in this report.

To the best of our knowledge, we are not aware of any previous work which analyses reactive program-

ming from a theoretical standpoint or derives its types and interfaces though the use of mathematics.

Our research will take a strictly formal and mathematical approach to the derivation of a theory

around reactive programming, reinstating objectivity as the main protagonist in this much opinion-

ated field.

Goals & Contributions

The goal of this work is to provide types and interfaces that describe the real essence of the reactive

paradigm, aiding engineers that wish to use or develop reactive libraries in understanding and taking

more informed decisions on the matter.

This goal is achieved by providing a mathematical derivation of the reactive types, starting from their

interactive counterparts and making use of theoretical concepts from category theory. These derived

types are then used in the implementation of a formal reactive library where the purpose is showing

how the theoretical definitions given to the various components can effectively be translated into

working code.

2



Together with the formal definition of the paradigm, this work contributes to the the field of reactive

programming with a reference implementation for a production level reactive library, as well as an

highlight of the issues and challenges encountered when bridging from the theoretical foundations

of reactive programming to a concrete implementation of a reactive API.

With the help of this report and the associated code repository, any software engineer interested in

the topic should be able to understand the theoretical foundations behind the reactive paradigm and

develop a reactive library in any language of choice.

Research Questions

The work presented in this report will focus on answering the following research questions:

• Which class of problems does reactive programming solve? How does this relate to the real

world libraries that claim to be reactive?

Before any attempts at a formalization can be carried out, we need to clearly identify the

class of problems the reactive paradigm is fit for solving, understanding what are the issues

and concerns such problems present, thus setting the basis for a formalization to be defined.

Additionally, we are going to analyze the current libraries and APIs that claim to be reactive,

and see how they relate to our definition.

• How can we use existing mathematical and computer science theory in order to formally

derive a definition for reactive programming?

Once we have a clear definition of the meaning of reactive programming and the class of

problems it solves, we are going to look at existing theories in mathematics and computer

science that would allow us to derive a set of types/interfaces representing the essence of

reactive programming. In order to make our work sound, we will then need to prove the

connection between the derived types and the definition resulting from the first research

question.

• How can we bridge from the derived theoretical foundations of reactive programming to a

concrete API that, whilst maintaining its mathematical roots, is fit for use in a production

environment?

Although appealing under multiple aspects, a set of interfaces is not concrete enough to have

an impact in our daily lives as software engineers. The last step of our work will focus on

building a reactive API directly from the theory discussed in the previous point, providing a

reference point and set of good practices applicable to the implementation of a reactive library

in any language of choice.

3



INTRODUCTION

Related Work

This work mainly builds on top of the 2010 paper Subject/Observer is Dual to Iterator by Erik Meijer [30].

In his work, the author introduces the Observable interfaces and informally provides its derivation

starting from the IEnumerable interface in C# . Together with a small number of related recorded

talks and presentations [32–34], this paper is the only source that discusses the theoretical aspects tight

to reactive programming.

Nevertheless, much related work and theories was found on the formalization of the semantics of

a program, language or API that has aided in the development of the research presented in this

thesis. The most popular approaches to formalizing computations are known as Operational and

Denotational Semantics and were introduced by Christopher Strachey and Dana Scott in the late

1960s [39]. Operational semantics describes a program in terms of the computational steps needed in

order to interpret the program, whereas a denotational semantics attaches a mathematical meaning

to the components of the programs and abstracts away from any operational concern. Although

mainly used to formalize the semantics of programming languages, these techniques have been

proposed and employed in the development of programming libraries as well; Conal Elliott, promotor

of the denotational design approach [13], makes use of denotational semantics in order to provide a

precise definition of theory of Functional Reactive Programming [16].

Process Calculus and in particular ACP [9] - Algebra of Communicating Processes - is an algebraic

approach to describing concurrent systems in term of communicating processes and their com-

position. This theory contains interesting aspects and properties that helped reasoning about the

formalization of operators in this work. Inspiration for this task was also found in Kowalski and

Sergot’s Event Calculus [40], different from ACP in that the focus shifts from reasoning in terms of

processes to reasoning in terms of events.

Alongside the mentioned theories and calculi, much inspiration for the research and methodology

presented in this report was gained though work focused on the formal description of interactive

libraries and constructs. To this end, it is worth mentioning Gibbons and Oliveira’s formalization

of the essence of the Iterator pattern [20], Kiselyov’s work on Iteratees [28], Gonzale’s work on the

Pipes [21] library for the Haskell programming language, with a particular focus on a theory driven

development, Capriotti’s attempt to a Continuation monad based implementation of FRP [10], as

well as the great amount of material on functional programming, Continuation monad, Free monad,

monad transformers and so on found on HaskellWiki [24].

Overview

Chapter 1 introduces the scope of our research, providing a definition of reactive programming, the

motivation and reasoning behind our research and an overview of the current technologies and APIs

4



that claim to belong to the world of reactive programming. Chapter 2 presents the mathematical

derivation of the reactive types and interfaces, starting from the definition of Iterable and ending

with that of Observable . Chapter 3 builds the bridge between the formal definition of the reactive

types and a production level implementation of the paradigm, highlighting the technical issues as

well as analyzing the relations with the previously discussed formal definitions. Chapter 4 concludes

with final thought and future work.

Notation & Conventions

In the exposition of our work we will make use of Haskell as the reference programming language.

This decision is motivated by the language’s strong connection with mathematics and category theory,

as well as it’s clean syntax. These features will make the code both easy to read and explicit in the

side effects that come into play in the various definitions. A minimal knowledge of Haskell’s syntax -

type declaration, lambda abstraction and IO monad - is assumed to be known by the reader in the

exposition of this report.

All the code presented in this report, a minimal complete theoretical implementation and a reference

implementation of a reactive library can be found at the associated code repository on Github -

https://github.com/Widar91/Thesis.
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1
REACTIVE PROGRAMMING

The cold winds are rising in the

North... Brace yourselves, winter is

coming.

— George R.R. Martin,

A Game of Thrones

In this chapter we are going to introduce the concept of reactive programming and motivate it’s

importance and relevance with regards to modern applications and the type of problems developers

have to face nowadays. We are then going to introduce the most popular commercial libraries that

claim to solve the reactive problem, with the purpose of giving the reader some context for our

discussion and motivating the need for a mathematical formalization that abstracts over the class of

problems these implementations set out to address.

1.1 The Essence of Reactive Programs

The use of the term reactive program in scientific literature is dated back to the mid-sixties [38]. A

relevant and insightful definition was given by G. Berry in 1991 [8] as he describes reactive programs

in relation to their dual counterparts, interactive programs:

“Interactive programs interact at their own speed with users or with other programs;

from a user point of view, a time-sharing system is interactive. Reactive programs also

7



CHAPTER 1. REACTIVE PROGRAMMING

maintain a continuous interaction with their environment, but at a speed which is

determined by the environment, not by the program itself.”

Interactive programs concretize the idea of a pull-based model of computation, where the program -

the consumer in this case - has control over the speed at which data will be requested and handled.

A perfect example of an interactive program is a control-flow structure such as a for-loop iterating

over a collection of data: the program is in control of the speed at which data is retrieved from the

containing collection and will request the next element only after it is done handling the current one.

Reactive programs, on the contrary, embody the idea of a push-based - or event-driven - model of

computation, where the speed at which the program interacts with the environment is determined

by the environment rather than the program itself. In other words, it is now the producer of the data -

i.e. the environment - who determines the speed at which events will occur whilst the program’s role

reduces to that of a silent observer that will react upon receiving events. Standard example of such

systems are GUI applications dealing with various events originating from user input - e.g. mouse

clicks, keyboard button presses - and programs dealing with stock markets, social media or any other

kind of asynchronous updates.

1.2 Why Reactive Programming Matters

Considering the definition and examples of reactive programs we analyzed in the previous section,

let’s now try to formalize the class of problems the reactive programming paradigm is specifically

well-suited for.

The table below provides a collection of types offered by common programming languages for

handling data, parameterized over two variables: the size of the data, either one or multiple values,

and the way data is handled, either by synchronous or asynchronous computations [35].

One Many

Sync a Iterable a

Async Future a Reactive Programming

The first row shows that synchronous functions come in two flavors: classic functions that return

a single value of type a and functions that produce a collection of results of type a , abstracted

through the Iterable a interface (See section 2.1). These types of functions embody the standard

imperative, pull-based approach to programming, where a call to a function/method synchronously

blocks until a result is produced.

8



1.3. REACTIVE PROGRAMMING IRL

Moving on to the second row, we encounter Future a , an interface representing an asynchronous

computation that, at a certain point in the future, will result in a value of type a . Futures are generally

created by supplying two callbacks together with the asynchronous computation, one to be executed

in case of success and the other one in case of error.

Programming languages, however, are not as well equipped when it comes to handling asynchronous

computations resulting in multiple values - i.e. push-based collections. The issue lies in the fact

that the program’s control flow is dictated by the environment rather than the program itself - i.e.

inversion of control -, making it very hard to model such problems with commonly known control

structures, which are optimized for sequential models of computation. Traditional solutions typically

involve developers manually trying to compose callbacks by explicitly writing CPS (continuation

passing style) code [35], resulting in what it’s commonly referred to as Callback Hell [12].

The aforementioned class of problems reflects the definition of reactive programs we analyzed

in the previous section, where the environment asynchronously - i.e. at its own speed - pushes

multiple events to the program. The reactive programming paradigm sets out to provide interfaces

and abstractions to facilitate the modeling of such problems as push-based collections.

1.3 Reactive Programming IRL

Interfaces are only as good as the implementations that back them up. In this section we are going to

discuss and analyze the most commonly known APIs and libraries that claim to embody the reactive

paradigm, motivating our need for a mathematical formalization to aid in unifying these different

approaches under a single set of interfaces.

1.3.1 Reactive Extensions

Reactive Extensions - also known as Rx - is the standard library for programming in a reactive way.

Originally published by Microsoft as an API for the C# and Javascript languages, it was later ported to

the JVM world by Netflix as an open source project, gaining much traction in the developers commu-

nity and resulting in various implementations for the currently most commonly used programming

languages [2].

The intuition and theory on which Reactive Extensions are built originated from the mind of Erik

Meijer [30] and will be at the basis of the work developed in this thesis, where we will use mathematical

constructs and derivations in order to prove the correspondence between the interfaces exposed by

this library and the essence of reactive programming we will derive.

Although originally based on theoretically sound concepts, this polyglot family of libraries diverged

from a purely reactive implementation, mainly due to their open source nature, independent de-
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CHAPTER 1. REACTIVE PROGRAMMING

velopment and, most importantly, to the lack of a unifying reference formalization of the reactive

paradigm. This last aspect further motivates the need for our research.

Rx defines itself as a a library for composing asynchronous and event based (reactive) programs by

using observable sequences [3]. At its core, it expose two interfaces, Observable and Observer .

An Observable is the producer of a sequence of events which are pushed to an Observer , who

will act upon them and produce side effects. Furthermore, the library offers a number of additional

constructs such as Subscription , Scheduler and operators, that facilitate programming with

asynchronous events and make the API more appealing for use in a production environment.

1.3.2 Reactive Streams

Reactive Streams is an initiative to provide a standard for asynchronous stream processing with

non-blocking back pressure [1]. As both the name and the description on the website [1] suggest,

this API sets out to provide a standard set of interfaces addressing the class of problems identified

previously as reactive.

The set of interface exposed by Reactive Streams is nearly identical to the Reactive Extensions’ ones,

the difference being an additional form of control over the producer of data, non-blocking back

pressure. With this term, the promoters of Reactive Streams refer to a way for the consumer of the

data to control the speed at which the producer will push its elements downstream.

As great as this sounds on paper, mathematics unfortunately proves it impossible: Reactive Streams

are not reactive and back pressure is not applicable to the class of programming problems defined as

reactive.

As Erik Meijer proves in his talk "Let Me Calculate That For You" at Lambda Jam 2014 [33], the interfaces

exposed by the Reactive Streams initiative are equivalent - modulo naming conventions - to the more

familiar AsyncIterable , a special version of Iterable that returns it’s element to the caller in an

asynchronous fashion. This allows for the implementation of back pressure, as the underlying model

of computation is still pull-based, i.e. interactive.

A last point worth discussing before moving on is the claim that back pressure is not applicable to the

class of problems we previously identified as reactive. As the reader might remember from Berry’s

definition, reactive programs interact with the environment at a speed at which determined by the

environment and not by the program itself [8]; this definition makes the two concepts of reactive

programs and back pressure incompatible.

From an informal perspective, it is easy to understand why: the speed at which events originated from

reactive sources - such as mouse movements, stock ticks, GUI components and hardware sensors -

occur is fully determined by the producer of such events - i.e. the environment. It would make no

10



1.3. REACTIVE PROGRAMMING IRL

sense - and would be effectively impossible - for a program to ask a user to stop producing mouse

movements or the stock market to slow down in producing stock ticks, because it cannot process its

events fast enough. In such a context, a program is forced to to handle the overflow on its end, by

taking actions such as buffering or dropping events.

The fact that Reactive Streams are ultimately not reactive does not make the API useless, yet it

contributes to a general confusion and pollution in the terminology among the field of reactive

programming.

1.3.3 Functional Reactive Programming

Functional Reactive Programming - also known as FRP - is a general paradigm for describing dynamic,

time-varying information. Introduced by Conal Elliott in 1997 [16], it is precisely defined by a simple

set of data types and associated denotational semantics.

As criticized by the author himself, the term has recently been used incorrectly to describe systems

like Elm, Bacon, and Reactive Extensions [15]. Albeit the similar names, Functional Reactive Program-

ming and Reactive Programming are two separate theories and differ from each other in certain

fundamental aspects: where the former models time-varying values over continuous time, the latter

is focused on asynchronous data streams and completely abstracts over the concept of time. For

these reasons, we are not going to further discuss FRP in this report.

1.3.4 Reactive Manifesto

Whilst not being an API in and of itself, the Reactive Manifesto is worth a mention in our discussion,

as it is often wrongly associated to the context of reactive programming.

The Reactive Manifesto [26] is a document that aims at providing a definition of reactive systems. With

this term, the document refers to a set of architectural design principles for building modern systems

that are prepared to meet the technical demands that applications face today. [27].

Due to overlapping terminology, the principles outlined by the Manifesto are often mixed or confused

with those defining reactive programming, with the former focusing on the higher level of abstraction

of architecture and design principles of application - targeting a more management-focused audience

and lacking any type of scientificity - and the latter defining a set of interfaces aimed at solving a

precisely defined class of problems.
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2
INTO THE RABBIT HOLE:

Deriving the Observable

"It was much pleasanter at

home," thought poor Alice, "when

one wasn’t always growing larger

and smaller, and being ordered

about by mice and rabbits. I almost

wish I hadn’t gone down the

rabbit-hole – and yet – and yet – ..."

— Lewis Carol,

Alice in Wonderland

As we saw in Chapter 1, the Iterable interface embodies the idea of a pull-based model of compu-

tation and is the commonly adopted solution to dealing with synchronous computations resulting

in multiple values. In this chapter we are going to formalize the intuition that there exists a duality

relation between interactive and reactive programs [30], as well as between pull and push models of

computations, by deriving the Observable interface - introduced in Section 1.3.1 - starting from its

dual counterpart, the Iterable .

The derivation that follows will require the use of a number mathematical concepts such as categorical

duality, (co)products, (un)currying, functors and continuations. We suggest the reader to get familiar

with these topics before diving into the derivation. An accessible introduction to each can be found

in Appendix A.
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CHAPTER 2. INTO THE RABBIT HOLE: DERIVING THE OBSERVABLE

2.1 Iterables

An Iterable is a programming interface which enables the user to traverse a collection of data,

abstracting over the underlying implementation [19].

The interface and semantics of Iterable s were first introduced by the Gang of Four though their

Iterable/Iterator pattern [19]; today’s most used programming languages introduce the Iterable as

the root interface for standard pull collections APIs - exposing concrete implementations such as

maps, sets, indexed sequences and so on.

The Iterable interface is generally fixed across programming languages, with the exception of

naming conventions - e.g. IEnumerable (C# ), Iterable (Java), Iterator/Generator (Python) - and slight

differences in the types. Below we show two example definitions of these interfaces and their types.

1 -- Java Iterable

2 newtype Iterable a = Iterable

3 { getIterator :: () -> IO (Iterator a)

4 }

5

6 data Iterator a = Iterator

7 { hasNext :: () -> Bool

8 , next :: () -> IO a

9 }

10

11 ---------------------------------------------

12

13 -- C# IEnumerable

14 newtype IEnumerable a = IEnumerable

15 { getEnumerator :: () -> IO (IEnumerator a)

16 }

17

18 data IEnumerator a = IEnumerator

19 { moveNext :: () -> IO Bool

20 , current :: () -> a

21 }

Although the essence of the pattern is preserved by both definitions, we claim that the C# version

14
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more clearly and accurately reflects the way side effects play a role in the usage of the interface:

moveNext contains all the side effects of traversing the underlying collection and retrieving the next

value while current can inspect the retrieved value multiple times in a pure way. The Java version,

on the other hand, embeds the side effect in the next function, making it impossible to inspect the

current value multiple times. For this reason we will make use of the C# definition - modulo naming

conventions - in the reminder of the discussion:

1 newtype Iterable a = Iterable

2 { getIterator :: () -> IO (Iterator a)

3 }

4

5 data Iterator a = Iterator

6 { moveNext :: () -> IO Bool

7 , current :: () -> a

8 }

2.2 The Essence of Iterables

The first step in deriving the Observable is to simplify our Iterable definition to a type that

reflects its very essence; we are gonna do this by stripping the interface presented in the previous

section of all the unnecessary operational features that only clutter our definition.

Let’s start by taking a closer look at the Iterator interface; we can observe that the definition of the

functions moveNext and current is equivalent to a single function which returns either a value -

analogous to a moveNext call returning true and a subsequent invocation to current - or nothing

- analogous to a call to moveNext returning false.

Before we formalize this observation with a proper type, let us notice another effect that is hidden

in the current definition of moveNext and not made explicit by the its type: the possibility for an

exception to be thrown by the function’s body.

By merging these considerations with the notion of coproducts and Haskell’s Either and Maybe

type, we obtain the following definition.

1 newtype Iterable a = Iterable

2 { getIterator :: () -> IO (Iterator a)
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3 }

4 newtype Iterator a = Iterator

5 { moveNext :: () -> IO (Either SomeException (Maybe a))

6 }

Note how, theoretically, getIterator could also throw an exception, as it operates within the

IO monad. We assume in the remainder of the discussion that this will never happen and a call

to the function will always return an Iterator instance. The reason for this assumption is that

getIterator is nothing more than a factory method for Iterator . The only way it could possibly

throw an exception is if it fails instantiating the object, which could only happen in extreme cases -

e.g. when the runtime does not have any memory left for allocation - hence the omission of Either

in the type. Note that, even if the underlying collection does not exist, getIterator would still

correctly return an Iterator , which would then throw once moveNext is called and access to a

non-existing collection is attempted.

The next step is to forget about data types and express our interfaces as simple types. This is a simple

simplification of Haskell’s syntax which allows us to eliminate the type constructors introduced by

the newtype and reason about Iterable/Iterator without any syntactic clutter.

1 type Iterable a = () -> IO (Iterator a)

2 type Iterator a = () -> IO (Either SomeException (Maybe a))

At this point, we want to put aside the operational concerns regarding exceptions and termination

and assume the Iterator function will always return a value of type a . The purpose of this

simplification is to make the discussion that follows easier to read and it’s justified by the fact that

the exceptions and termination play no role in the properties of Iterable we are going to analyze

next. Note that setting these concerns aside is only temporary, they will be reintroduced once we

have derived Observable later in the chapter.

4 type Iterable a = () -> IO (() -> IO a)

5 type Iterator a = () -> IO a
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We have now reached a point where no simplification is possible anymore. The obtained types reflect

the essence of the Iterator patter: an Iterable is, theoretically, a function which, when invoked,

produces an Iterator and an Iterator is itself a function producing a value of type a as a side

effect.

When looking at the Iterator type from an object oriented perspective, the reader should notice a

strict similarity to a getter function - i.e. a lazy producer of values: iterators are, in fact, nothing more

than getters of values of type a . The Iterable , on the other hand, is a function that enables the

user to get an Iterator , i.e. a getter of a getter of a .

This correspondence will turn out to be very insightful later on in our discussion, where we will

observe that Observable is nothing more that a setter of setters, another instance of duality in our

formalization.

When looking at the relation between the Iterator type and its base component, a , we can

observe how they are bound by a covariant relation:

1 A <: B

2 ----------------------------------

3 () -> IO A <: () -> IO B

The intuition can be easily understood when we think of an iterator as a drink vending machine, i.e.

a function which, whenever called, will give back a drink:

1 Coke <: Drink

2 ---------------------------------

3 VendingM Coke <: VendingM Drink

If coke is a subtype - denoted by the operator <: - of drink, then whenever I am asked for a drink

vending machine, I can hand out a coke vending machine without incurring in any troubles with the

person who asked, as that machine will correctly provide drinks - even though they will always be

coke - whenever prompted for one.

With Iterator being a getter itself, it should be clear how covariance plays the same role as with

Iterable .
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To formally prove the intuition of a covariant relation, we instantiate the Iterable / Iterator

types to a covariant Functor . A proof of the associated Functor laws can be found in Appendix C

4 newtype Iterator a = Iterator

5 { moveNext :: () -> IO a

6 }

7

8 instance Functor Iterator where

9 fmap f ia = Iterator $ \() -> liftM f (moveNext ia ())

10

11

12 newtype Iterable a = Iterable

13 { getIterator :: () -> IO (Iterator a)

14 }

15

16 instance Functor Iterable where

17 fmap f iia = Iterable $ \() -> liftM (fmap f) (getIterator iia ())

For the sake of completeness, it is worth mentioning that Iterable is, among others, also an

instance of Applicative Functor and Monad. Although certainly interesting from a theoretical per-

spective, showing these instances and proving the associated laws goes beyond the scope of this

work. Nontheless, we will see in the next section how these concepts are relevant in expressing and

motivating the duality between Iterables and Observables.

2.3 Applying Duality

By now, the reader should be somehow familiar with the concept of duality, as it has appeared many

times throughout our discussion in concepts such as pull and push models of computation or interac-

tive and reactive programs. Duality is, in fact, a very important general theme that has manifestations

in almost every area of mathematics [22] (See Appendix A for an introductory discussion on the topic).

Starting from the fact that the Iterable interface embodies the idea of interactive programming,

let’s use the principle of duality to derive the Observable interface and see how it relates to the

concept of reactive programming. In practice, this translates to the simple task of flipping the function

arrows in the Iterable interface, taking us from a function resulting in a value of type a to one

accepting an a .
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1 {-

2 () -> (() -> a) -- iterable

3 () <- (() <- a) -- apply duality

4 (a -> ()) -> () -- observable

5 -}

6

7 type Iterator a = () -> IO a

8 -- = () IO <- a

9 type Observer a = a -> IO ()

10

11 type Iterable a = () -> IO (() -> IO a)

12 -- = () IO <- (() IO <- a)

13 type Observable a = (a -> IO ()) -> IO ()

Note how the side effects are bound to function application rather than values, hence their flipped

position in the Observable type.

The newly derived types are relatively easy to read and understand: Observer is simply a function

that, given a value of type a will handle it somehow, producing side effects; the Observable , on the

other hand, is responsible for producing such values of type a and feeding them to the Observer

it has been given as an argument.

In the previous section we have discussed many properties associated with Iterable s. Let’s analyze

now how these properties translate under dualisation and how they affect our new derived interface,

the Observable .

First, moving from the observation that an Iterable is a getter of a getter, we can observe that the

Observable plays exactly the opposite role, that is, a setter of a setter. The type Observer :: a -> IO ()

represents, in fact, the essence of a setter function, whereas the Observable consists in nothing

more than the simple task of applying the observer function to itself, producing a setter of setters.

While the discussion about Iterable ’s covariance was quite intuitive, things get a little bit more

complicated when analyzing Observable s. Referring back to our previous example involving cokes

and drinks, we can now think of the Observer as a a recycling machine:
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1 Coke <: Drink

2 -----------------------------------

3 RecyclingM Drink <: RecyclingM Coke

Our intuition tells us that this time, a recycling machine that can only handle coke cannot be used in

place of one that needs to handle any type of drinks, as it would fail at its task whenever a drink that

is not a coke is fed into it. On the other hand, a recycling machine that works for any type of drink

can be safely used in place of one that needs to handle cokes. This intuition bounds Observer and

its base type a by a contravariant relation:

1 A <: B

2 ----------------------------------

3 A -> IO () <: B -> IO ()

A more theoretical take on the matter involves the notion of type’s positivity and negativity: we can

interpret a function of type f :: a -> b as a way for us to produce a value of type b . In this

context, b is considered to be positive with respect to the type a -> b . On the other hand, in

order to apply the function, we are going to need a value of type a , which we will need to get from

somewhere else; a is therefore considered to be negative w.r.t. the function type, as the function

introduces a need for this value in order to produce a result. The point of this distinction is that

positive type variables introduce a covariant relation between base and function type whereas

negative type variables introduce a contravariant relation.

Analyzing Iterable within this framework is easy, the Iterator function contains a single type pa-

rameter found in a positive position, therefore resulting in a covariant relation; being the Iterable

the result of applying the Iterator function to itself, we again result in a covariant relation w.r.t.

the type parameter a .

The Observer function, on the contrary, introduces a need for a value of type a , resulting in a con-

travariant relation w.r.t. a . Again, the Observable function is the result of applying Observer to

itself; surprisingly, this results in a being in a positive position. The intuition is easily understood by

thinking about the rules of arithmetic multiplication: a is in negative position w.r.t. the Observer

function, whereas the Observer is in negative position w.r.t. the Observable . This leads to a

being negated twice, ultimately resulting in a positive position within the Observable function.
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1 f :: a -> b

2 = -a -> +b

3

4 g :: ( a -> b) -> c

5 = -(-a -> +b) -> +c

6 = (+a -> -b) -> +c

7

8 observer

9 :: a -> ()

10 = -a -> ()

11

12 observable

13 :: ( a -> ()) -> ()

14 = -(-a -> ()) -> ()

15 = (+a -> ()) -> ()

Before we formalize this claim, let’s convince ourselves that Observable s effectively produces a

value of type a by looking at an example:

19 randomValueObs :: Observable Int

20 randomValueObs = Observable $ \observer -> do

21 int <- randomRIO (1, 10)

22 observer int

It is clear from this implementation that randomValueObs indeed produces a value of type Int ,

whereas the Observer introduces a need for such value in order to be applied. For more details on

the positivity and negativity of functions and type variables, see [41] [23].

Just as we did with Iterable/Iterator , we can formally prove the covariant and contravariant

relations between Observable/Observer and their base type a by instantiating them to Functor

and Contravariant (Functor) respectively. Once again, a proof of the associated laws can be

found in Appendix C.
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4 newtype Observer a = Observer

5 { onNext :: a -> IO ()

6 }

7

8 instance Contravariant Observer where

9 contramap f ob = Observer $ onNext ob . f

10

11

12 newtype Observable a = Observable

13 { subscribe :: Observer a -> IO ()

14 }

15

16 instance Functor Observable where

17 fmap f ooa = Observable $ subscribe ooa . contramap f

The reader acquainted with functional programming will easily see the resemblance between the

Observable type and a CPS function (See Appendix A).

1 cont :: (a -> r ) -> r

2 observable :: (a -> IO ()) -> IO ()

The above code shows how Observable is nothing more than a special case of a CPS function where

the result type r is instantiated to IO () . To convince ourselves of this equivalence, let’s think

about the definition of a CPS function, i.e. a suspended computation which, given another function -

the continuation - as argument, will produce its final result. This definition suits perfectly the idea

behind Observable discussed in Section 1.3.1: a function which will do nothing - i.e. is suspended -

until it is subscribed to by an Observer .

A continuation, on the other hand, represents the future of the computation, a function from an

intermediate result to the final result [36]; in the context of Observable s, the continuation represents

the Observer , a function specifying what will happen to a value produced by the Observable ,

whenever it will become available, that is, whenever it will be pushed into the Observer . Since a

continuation can be called multiple times within the surrounding CPS context, it is easy to see how

this mathematical concept allows us to deal with multiple values produced at different times in the

future.
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We can prove our claim by implementing the Observable interface using Haskell’s Continuation

Monad Transformer and observing how the unwrapping function runContT effectively hands us

back our original type:

1 newtype ContT r m a :: * -> (* -> *) -> * -> *

2 runContT :: ContT r m a -> (a -> m r) -> m r

3

4 type Observable a = ContT () IO a

5 runContT :: ContT () IO a -> (a -> IO ()) -> IO ()

This equivalence is very important as it allows us to claim an instance of Applicative Functor and

Monad for our derived type, Observable . These instances are inherited for free from the continua-

tion monad, sparing us the burden of implementing them and proving all related laws.

1 instance Applicative (ContT r m) where

2 pure x = ContT ($ x)

3 f <*> v = ContT $ \c -> runContT f $ \g -> runContT v (c . g)

4

5 instance Monad (ContT r m) where

6 return x = ContT ($ x)

7 m >>= k = ContT $ \c -> runContT m (\x -> runContT (k x) c)

2.4 Termination and Error Handling

We began this chapter by progressively simplifying the Iterable ’s interface in order to derive a

type that would theoretically represent its very essence. One of the most important steps was setting

aside concerns regarding termination an error handling of a collection. We are now going to reshape

our reactive interfaces in order to address these concerns and appropriately describe the potential

side effects directly in the types.

Informally, an Observable stream might not only produce one or more values, but it might grace-

fully terminate at a certain point in time or throw an exception and abruptly terminate whilst

processing values. A more appropriate type for Observer is then the following:
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1 newtype Observer a = Observer

2 { onNext :: Either SomeException (Maybe a) -> IO ()

3 }

Just as with Iterable , the introduction of Either SomeException allows us to express that the

Observer can handle unexpected exceptions, while the Maybe reflects the possibility for a stream

to end and propagate no more values.

Unfortunately, this type is very hard to read as well as understand for someone new to the topic.

Looking at the matter from a functionality point of view, what we would like is for our CPS function -

i.e. the Observer - to be able to accept three continuations, one dealing with a proper value, one

with completion and one with exceptions, as these are the three possible effects at play. We can

achieve this by first noticing that our type is nothing more than a coproduct - the same that we

introduced previously for Iterable - of three base types: a + SomeException + () . By utilizing

the notion of product - the dual of coproduct - we can split the function handling the initial type

into three different ones. This brings us to the final version of our reactive interfaces for push-base

collections1

1 newtype Observable a = Observable

2 { subscribe :: Observer a -> IO ()

3 }

4

5 data Observer a = Observer

6 { onNext :: a -> IO ()

7 , onError :: SomeException -> IO ()

8 , onCompleted :: IO ()

9 }

The Observable is now a special version of a CPS function accepting three continuation functions

- embedded inside the Observer -, one for each effect an Observable can propagate: value,

termination or exception.

1The two definitions are equivalent also from an implementation point of view, the first simulating the second though
the use of pattern matching.
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2.5 Formalizing Observables

In section 2.3 we have shown how the essential type for Observable is effectively nothing more

than a particular instance of the continuation monad. In this section we are going to explore this

relation in further detail, introducing a notation which will help us keep track of the changes we will

make to the original Observable type, ultimately showing how the resulting interface - that will be

used in our final library - will consist in nothing more than a modified version of a CPS function.

We are going to start from the notion that Observable is, at its essence, nothing more than a setter

of setters, the result of applying the Observer function to itself. We can than express the Observer

as a function (!) 2 that negates its type argument and results in a side-effectful computation.

1 !a :: a -> IO ()

When we apply the function to itself - i.e. substitute a for !a - we obtain our first definition of

Observable , a CPS function that instantiates the result to IO () .

1 !!a :: (a -> IO ()) -> IO ()

As we have seen in the previous section, this definition is not expressive enough when we want to

make explicit all the effects that are involved when dealing with push-base collections. It is therefore

necessary to deviate from the standard definition of continuation and replace the inner application

of (!) with a new function (?) , whose type embed the involved effects:

1 ?a :: Either Error (Maybe a) -> IO () -- termiantion and error handling

2 !?a :: (Either Error (Maybe a) -> IO ()) -> IO ()

Note how this definition is equivalent to the one used in the previous section, where we used the

notion of products to unwrap the (?) function into three different continuation, each addressing

one of the possible effects.

2Regard the code used in this explaination as pseudo-Haskell.
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In the next chapter we are going to further modify this definition with the inclusion of a cancellation

mechanism.

This newer version of Observable is still implementable as an instance of the continuation monad,

as the code below shows.

5 -- Event a = Either SomeException (Maybe a)

6 data Event a = OnNext a | OnError SomeException | OnCompleted

7 deriving Show

8

9 type Observer a = Event a -> IO ()

10 type Observable a = ContT () IO (Event a)

11

12 newObservable :: (Observer a -> IO ()) -> Observable a

13 newObservable = ContT

14

15 subscribe :: Observable a -> Observer a -> IO ()

16 subscribe = runContT

The code above uses a slightly different approach to expressing the three types of side effects an

Observer has to deal with. Insead of using Either and Maybe from Haskell’s libraries, we uti-

lize our own custom datatype Event , a coproduct of values of type a + SomeException + () ;

although the two definitions are equivalent in every aspect, the adopted one offers more clarity in

terms of code readability.

At this point we have all the necessary tools to create and run an Observable .

18 obs = newObservable $ \observer ->

19 do observer (OnNext 1)

20 observer (OnNext 2)

21 observer OnCompleted

22

23 main :: IO ()

24 main = subscribe obs print

25
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26 {-

27 output>

28 OnNext 1

29 OnNext 1

30 OnCompleted

31 -}

Notice how, being a CPS function, an Observable only pushes values once subscribed to and acts

as a suspended computation otherwise.

The code above, being a toy example, fails to show some fundamental properties associated with this

new interface; in particular, it fails to show how Observable s can actually handle asynchronous

sources of data. The following snippet of code contains a more realistic and meaningful example

of an Observable handling keyboard presses, asynchronous events by nature: whenever the user

presses a key, an event containing the corresponding character is propagated to the Observer and

will eventually be printed on the command line. It is worth noticing how our basic implementation

of Observable based on continuations works just as well as a full blown one in terms of its core

capability of handling asynchronous data.

17 obs :: Observable Char

18 obs = newObservable $ \observer -> do

19 keyboardCallback $= Just (\c p -> observer (OnNext c))

20

21 display :: DisplayCallback

22 display = do

23 clear [ ColorBuffer ]

24 flush

25

26 main :: IO ()

27 main = do

28 (_progName, _args) <- getArgsAndInitialize

29 _window <- createWindow "Observable Keyboard"

30 subscribe obs (print . show)

31 displayCallback $= display

32 mainLoop
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This example brings us to the following observation: Observable s are capable of handling asyn-

chronous data sources, yet the means by which the data is handled are not asynchronous by de-

fault. This is a common misconception and source of much confusion among the community: the

Observable interface is not opinionated w.r.t. concurrency and therefore, by default, synchronously

handles it’s incoming data, blocking the next incoming events whilst processing the current one. This

behavior is not fixed though: as we will see in Chapter 3, it is possible to make use of Scheduler s

to orthogonally introduce concurrency in our reactive systems, altering the control flow of the data

processing allowing the user to dispatch the work to other threads.

At this point in the discussion we have arrived to a working implementation of a push based col-

lection purely derived from mathematical and categorical concepts such as duality and continua-

tions. In spite of being very insightful for theoretical discussions on the properties and relations of

Observable and the continuation monad, this implementation of the reactive types is impractical

in the context of a full fledged API. In the next Chapter we will take the necessary steps to build the

bridge between theory and practice, providing a reference implementation of Observable more

adapt to be utilized in real world applications.

For a reference implementation of a Reactive Library based on the ideas presented in this section,

aimed at highlighting the strong connection between Observable and other already existing func-

tional structures from which it composes, see Appendix B.
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3
OUT OF THE RABBIT HOLE:

Towards a usable API

”In theory there is no difference

between theory and practice; in

practice there is.”

— Nassim Nicholas Taleb,

Antifragile - Things that Gain From

Disorder

So far we focused our analysis on the essence of the Observable interface, setting aside the many

operational concerns that would come up when trying to implement these concepts into a usable,

commercial API. In this chapter we are going to build the bridge between our theoretical definition

of Observable and a concrete and usable implementation of a reactive library, to which we will

refer to as Rx.

The goal of this chapter is to provide the reader with a reference implementation of a reactive library

as well as to highlight the challenges and issues that emerge when trying to build the bridge between

theory and practice. The implementation choices presented below are in no way prescriptive, instead,

they aim to describe the problem in the most clear way, in order to stimulate awareness rather than

blindly guide the reader to a solution.

In the remainder of the discussion, we are going to introduce the Reactive Contract, a set of assump-

tions on the reactive types our library is going to build upon, Schedulers, which will allow us to

bring concurrency into our reactive equation, Subscriptions, used to implement a mechanism for
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premature stream cancellation and finally, Operators, the means with which we will make our reactive

streams composable.

For the sake of clarity and completeness, the following set of interfaces represents the starting point

for our discussion:1

1 newtype Observable a = Observable

2 { _subscribe :: Observer a -> IO ()

3 }

4 data Observer a = Observer

5 { onNext :: a -> IO ()

6 , onError :: SomeException -> IO ()

7 , onCompleted :: IO ()

8 }

It is worth noting that even though the Observable ’s theoretical foundations lie in the realm of

functional programming, the road to making it usable is full of obstacles that are often better tackled

using imperative programming features, such as state. As much as I personally prefer a functional

and pure approach to programming, I will favor, in the rest of the discussion, the solution that most

clearly and easily solves the problem, be that functional or imperative. As mentioned previously,

Appendix B contains a reference implementation of a Reactive Library which implements the features

presented in this chapter utilizing existing constructs from functional programming.

3.1 The Reactive Contract

The Observable and Observer interfaces are somewhat limited, in their expressive power, to only

argument and return types of they functions. The reactive library we are going to build is going to

make more assumptions than the ones expressible by the type system. Although limiting, in a sense,

the freedom with which the reactive interfaces can be utilized, this set of assumptions - the Contract -

greatly facilitates reasoning about and proving correctness of reactive programs [5].

In later sections, we will refer back to these assumptions when discussing the actual implementation

of our reactive library.

1 subscribe has been renamed to _subscribe in order to avoid naming conflicts later on in the discussion and
reflect the fact that it should not be used directly by the user.
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3.1.1 Reactive Grammar

The first assumption we are going to introduce involves restrictions on the emission protocol of

an Observable . Events propagated to the Observer continuation will obey the following regular

expression:

onNext* (onError | onCompleted)?

This grammar allows streams to propagate any number - 0 or more - of events through the onNext

function, optionally followed by a message indicating termination, be that natural - through onCompleted

- or due to a failure - through onError . Note how the optional nature of a termination message

allows for the existence of infinite streams.

This assumption is of paramount importance as it guarantees that no events can follow a termination

message, allowing the consumer to effectively determine when it is safe to perform resource cleanup

operations.

3.1.2 Serialized Messages

Later in this chapter we will see how we can introduce concurrency in our reactive library through

the use of the Scheduler interface. From a practical point of view, this means that it will be possible

for different messages, to arrive to an Observer from different execution contexts. If all Observer

instances would have to deal with this scenario, the code in our library would soon become cluttered

with concurrency-related housekeeping, making it harder to maintain and reason about.

For this reason, we assume that messages will always arrive in a serialized fashion. As a consequence,

operators that deal with events from different execution contexts - e.g. combiner operators - are

required to internally perform serialization.

3.1.3 Best Effort Cancellation

The next assumption involves premature stream cancellation via Subscription s and the function

unsubscribe , used in order to stop the observation of events from an Observable ; we are going

to assume that whenever unsubscribe is invoked, the library will make a best effort attempt to

stop all the ongoing work happening in the background. The reason is simple: it is not always safe to

abort work that is being processed - e.g. database writes. Although the library might still complete

the execution of pending work, its results are guaranteed not to be propagated to any Observer

that was previously unsubscribed.
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3.1.4 Resource Cleanup After Termination

As we mentioned in assumption 3.1.1, the guarantee that no events will occur after the first termina-

tion message makes it possible to determine when resource cleanup operations are safe to perform.

We will now make one step further and assume that resources will be cleaned up immediately after

termination. This will make sure that any related side-effect will occur in a predictable manner.

3.2 Concurrency with Schedulers

At the end of Section 2.5 we discussed how Observable s, by default, handle data by means of a

synchronous pipeline, blocking the processing of successive elements via the call stack. It is worth

mentioning again how this synchronous processing does not affect the ability of Observable s to

handle asynchronous data.

However, this synchronous behavior might not always be the best solution, especially in real world

applications, where we might want to have a thread dedicated to listening to incoming events

and one which processes them. Enter the Scheduler interface, an orthogonal [37] structure w.r.t.

Observable which allows us to introduce concurrency into our reactive equation.

Scheduler s allow us to to alter the control flow of the data processing within an observable expres-

sion, introducing a way to dispatch the work of any number of operators to be executed within the

specified context, e.g. a new thread.

The Scheduler interface looks like the following 2.

31 data Scheduler = Scheduler

32 { _schedule :: IO () -> IO ()

33 , _scheduleDelay :: IO () -> TimeInterval -> IO ()

34 }

Scheduler s expose two functions which are essentially equal, modulo arbitrary delays in time.

Both of these functions take an IO action as input and dispatch it to the appropriate execution

context, producing a side effect.

To better understand Scheduler s, let us present the implementation of one of them, the newThread

scheduler, which allows us to dispatch actions to a new, dedicated thread.
2The interface presented in this section is the result of a simplification of the actual one, which involves

Subscription s. We will discuss the impact of Subscription s on Schedulers in the next section; suffices to know

that the version presented here has no negative effects w.r.t the generality of our discussion.
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36 newThread :: IO Scheduler

37 newThread = do

38 ch <- newTChanIO

39 tid <- forkIO $ forever $ do

40 join $ atomically $ readTChan ch

41 yield

42 return $ Scheduler (schedule ch) (scheduleD ch)

43 where

44 schedule ch io =

45 atomically $ writeTChan ch io

46 scheduleD ch io d = do

47 threadDelay $ toMicroSeconds d

48 schedule ch io

The newThread function gives us a side effectful way of creating a Scheduler by generating a new

execution context - i.e. a new thread - and setting up the necessary tools for safe communication

with it. The Scheduler functions we are provided, on the other hand, simply write the input IO

action to the channel and return, effectively dispatching the execution of those actions to the new

thread.

Up to this point we haven’t mentioned Observable s at all. This is the reason why we previously

claimed that Scheduler and Observable are connected by an orthogonal relationship: the two in-

terfaces are independent from one another, yet, when used together within an observable expression,

they provide the user with greater expressive power w.r.t. concurrency.

The only thing missing now is a way for us to combine the functionality of these two interfaces:

observeOn and subscribeOn are the operators that will aid us on this task. The former will allow

us to dispatch any call to an observer continuation on to the specified execution context, whereas

the latter will allow us to control the concurrency of the Observable subscribe function.

For the sake of completeness and understandability, the following snippet contains a simple imple-

mentation of the observeOn operator together with a sample usage.

50 observeOn :: Observable a -> IO Scheduler -> Observable a

51 observeOn o sched = Observable $ \obr -> do

52 s <- sched
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53 subscribe o (f s obr)

54 where

55 f s downstream = Observer

56 { onNext = void . _schedule s . onNext downstream

57 , onError = void . _schedule s . onError downstream

58 , onCompleted = void . _schedule s $ onCompleted downstream

59 }

60

61 obs = Observable $ \obr ->

62 do onNext obr 1

63 onNext obr 2

64 onNext obr 3

65 onCompleted obr

66

67 obr :: Observer Int

68 obr = Observer on oe oc

69 where

70 on v = do

71 tid <- myThreadId

72 print (show tid ++ ": " ++ show v)

73 oe = print . show

74 oc = print "Completed"

75

76 main :: IO ()

77 main = do

78 hSetBuffering stdout LineBuffering

79 subscribe obs’ obr

80 tid <- myThreadId

81 putStrLn $ "MainThreadId: " ++ show tid

82 where

83 obs’ = obs ‘rxmap‘ (+1) ‘observeOn‘ newThread ‘rxmap‘ (+10)

84 rxmap = flip fmap

85

86 {-

87 output>

88 ThreadId 2: 12

89 ThreadId 2: 13

90 ThreadId 2: 14
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91 Completed

92 MainThreadId: 1

93 -}

3.2.1 A Note on the Concept of Time

Our discussion on push-based collections so far has not once mentioned the concept of time. This

might appear strange, especially to the reader familiar with Functional Reactive Programming, where

functions over continuous time are at the foundations of the theory. This dependency on continuous

time comes at a great cost: commercial FRP libraries fail to successfully implement the concepts

found in the theory [14] as they cannot avoid simulating continuous time and approximating functions

operating over it, being this concept inherently discrete in the context of computers.

Rx, on the other hand, completely sheds the notion of time from the notion of reactivity [30], shifting

its focus, with the help of Scheduler s, to concurrency instead. Time still plays a role, although

indirect, within the library: events are processed in the order they happen, and operators make sure

such order is maintained, ultimately handing over to the user a stream of time-ordered events.

3.2.2 A Note on Orthogonality

Previously we discussed how concurrency is an orthogonal concept w.r.t. Rx - i.e. introducing con-

currency does not affect or pollute the definition of our reactive interfaces. This statement is only

true from a abstract point of view, falling short of its promises when looking from an implementation

perspective, in particular, when dealing with combiner operators (see Section 3.4) such as (»=) or

combineLatest . These operators will not work at their full potential in a synchronous setting, due

to the fact that subscribing to a stream will consume it entirely - or forever process, in the case of

an infinite stream - before allowing the operator to subscribe to a different one, effectively making

interleaving of events impossible.

The problem is gracefully solved with the introduction of Scheduler s, which, by allowing for

Observable s to be executed on different contexts, indirectly make it possible for interleaving to

happen and for combiner operators to work at their full potential. This comes at a cost: combiners

operators are required to perform message serialization (see assumption 3.1.2) as well as internal

state synchronization as, with the introduction of concurrency, messages and state changes can now

originate from different execution contexts.

3.3 Subscriptions

With schedulers, we are now able to handle observable streams from different execution contexts.

The next step in making Rx ready for a production environment is to add a mechanism that will allow
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us to stop a stream from anywhere in our program, whenever we don’t require it’s data anymore - i.e. a

mechanism that will allow the user to communicate to the Observable that one of it’s Observer s

is no longer interested in receiving its events.

We discussed in the previous section how schedulers effectively boost the expressive power of our

reactive expressions by introducing concurrency and interleaving among events originating from

different streams. Introducing a cancellation mechanism, on the other hand, is a purely practical

concern: although very useful from a practical perspective, especially in the context of resource

management, it doesn’t impact expressive power from a reactive point of view.

The means by which we are going to introduce a cancellation mechanism inside our reactive equation

is though the Subscription datatype. From a functionality point of view, what we are aiming for

is for the _subscribe function to hand back a Subscription whenever invoked; users will later

be able to use this Subscription in order to prematurely cease the observation of a stream. This

design is closely related to Dispose pattern utilized in the .NET framework [11].

The first step in designing a new feature is to understand how the already existing interfaces will

be affected by the newly introduced one; starting from our informal definition of Observable

from section 2.5, let’s now define a new function (%) , which incorporates the notion of returning a

Subscription and see how this is going to affect our types:

1 %a :: a -> IO Subscription

2 %?a :: (Either SomeException (Maybe a) -> IO ()) -> IO Subscription

With this change, each execution of the Observable function now returns a Subscription , a

means for the user to prematurely terminate the processing of the stream.

The next question is the following: to whom does a Subscription belong to? The key observation

in addressing this question is that an Observable can be subscribed to by multiple Observer s;

our goal is to provide a mechanism that will allow for a fine-grained control over which Observer is

supposed to stop receiving events. The answer is then straightforward: the notion of subscription is

tight to that of observer. The following snippet reflects this observation:

1 $a :: (Subscription, Either SomeException (Maybe a) -> IO ())

2 %$a :: (Subscription, Either SomeException (Maybe a) -> IO ())

3 -> IO Subscription
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Let’s quickly summarize what we have discussed so far: a subscription is some object which will

allow us to prematurely stop observing a specific stream; since any stream can be subscribed to by

multiple observers, we need to associate subscriptions to observers as opposed to observables. Lastly,

a subscription is returned every time an observer is subscribed to a stream through the _subscribe

function. The following modifications to our reactive interfaces reflect these ideas:

13 newtype Observable a = Observable

14 { _subscribe :: Observer a -> IO Subscription

15 }

16 data Observer a = Observer

17 { onNext :: a -> IO ()

18 , onError :: SomeException -> IO ()

19 , onCompleted :: IO ()

20 , subscription :: Subscription

21 }

So far we have talked a lot about Subscription s, yet we haven’t clarified what the type really

looks like. The general idea is to have Subscription record the state of the Observer w.r.t. the

Observable it is subscribed to - be that subscribed or unsubscribed. This can be easily achieved

with a variable _isUnsubscribed :: IORef Bool initialized to False , indicating that the asso-

ciated Observer is initially not unsubscribed.

From a practical point of view, it is useful to augment Subscription with some additional func-

tionality. The following code shows a definition of Subscription which incorporates an IO ()

action to be executed at unsubscription time. This is particularly useful when we want to associate

resource cleanup actions to the termination - be that forced or natural - of a stream observation.

Additionally, it is useful to make the type recursive, allowing Subscription s to contain other val-

ues of the same type. This will be extremely useful for internal coordination of operators such as

(»=) :: Monad m => m a -> (a -> m b) -> m b , where each input value will spawn and sub-

scribe a new Observable , whose subscription should be linked to the original one. Section 3.4 will

extensively discuss this matter.
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1 data Subscription = Subscription

2 { _isUnsubscribed :: IORef Bool

3 , onUnsubscribe :: IO ()

4 , subscriptions :: IORef [Subscription]

5 }

It’s now time to introduce the two functions at the hearth of the whole cancellation mechanism:

unsubscribe will take care of modifying the state carried by the Subscription - i.e. setting

_isUnsubscribed to True - as well as execute the associated IO () action, whereas subscribe

will simply act as a proxy for the original _subscribe function from the Observable interface.

71

72 subscribe :: Observable a -> Observer a -> IO Subscription

73 subscribe obs obr = _subscribe obs safeObserver

74 where

75 safeObserver = Observer safeOn safeOe safeOc s

76 s = subscription obr

77 safeOn a = ifSubscribed $ onNext obr a

78 safeOe e = ifSubscribed $ finally (onError obr e) (unsubscribe s)

79 safeOc = ifSubscribed $ onCompleted obr >> unsubscribe s

80 ifSubscribed = (>>=) (isUnsubscribed s) . flip unless

81

82 unsubscribe :: Subscription -> IO ()

83 unsubscribe s = do

84 writeIORef (_isUnsubscribed s) True

The safeObserver utilized by the subscribe function is of crucial importance to the function-

ality of our library and its the reason why we need to proxy the original _subscribe function: its

implementation, in fact, embeds two of the reactive contract assumptions introduced previously. The

safe onNext/onError/onCompleted functions implement the subscription mechanism, preventing,

through the ifSubscribed function, events from propagating to the underlying Observer , once

the related Subscription has been unsubscribed. By doing so, it is easy to see how assumption

3.1.3 is satisfied: unsubscribing from a stream does not force the stop of any outstanding work, yet it

is made sure that any result produced after unsubscribing, if any, will not be delivered to the down-

stream Observer - i.e. the Observer supplied by the user. Additionally, safeObserver allows the
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enforcement of the reactive grammar seen in assumption 3.1.1; this is done by calling unsubscribe

as soon as the first termination message - be that onError or onCompleted - arrives, effectively

preventing any additional event from being propagated.

Note that, with the current implementation of the subscription mechanism, an Observer can only

be subscribed once and only to a single Observable , as, once its Subscription is unsubscribed,

the _isUnsubscribed field is never reset to False . This convention is shared by many already

existing implementations of reactive libraries such as the onces under the ReactiveX umbrella [4].

Now that we have a clear idea of how the subscription mechanism is supposed to work and how it is

integrated into our library, let’s take a look at a few observations and concerns that involve it.

3.3.1 Impact on Schedulers

In the previous sections we discussed a simplified version of the Scheduler interface that was

glossing, without loss of generality, over details regarding Subscription s. In practice, it is useful to

associate Subscription s not only to Observer s but to Scheduler s as well.

95 data Scheduler = Scheduler

96 { _schedule :: IO () -> IO Subscription

97 , _scheduleDelay :: IO () -> TimeInterval -> IO Subscription

98 , subscription :: Subscription

99 }

With this version of the interface, each scheduled action returns a Subscription , offering fine

grained control over the actions to be executed; at the same time, a Subscription is also associated

to the Scheduler as a whole, allowing the user to perform cleanup actions on the Scheduler

itself once unsubscribe is called. This is best shown with a new example implementation of the

newThread scheduler and observeOn operator:

101 newThread :: IO Scheduler

102 newThread = do

103 ch <- newTChanIO

104 tid <- forkIO $ forever $ do

105 join $ atomically $ readTChan ch

106 yield
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107 sub <- createSubscription (killThread tid)

108

109 return $ Scheduler (schedule ch) (scheduleD ch) sub

110 where

111 schedule ch io =

112 atomically $ writeTChan ch io

113 emptySubscription

114 scheduleD ch io d = do

115 threadDelay $ toMicroSeconds d

116 schedule_ ch io

117

118 observeOn :: Observable a -> IO Scheduler -> Observable a

119 observeOn o schedIO = Observable $ \obr -> do

120 sched <- schedIO

121 sub <- subscription obr

122 liftIO $ addSubscription sub (subscription sched)

123 _subscribe o (f s obr)

124 where

125 f s downstream = Observer

126 { onNext = void . _schedule sched . onNext downstream

127 , onError = void . _schedule sched . onError downstream

128 , onCompleted = void . _schedule sched $ onCompleted downstream

129 , subscription = subscription downstream

130 }

The code is mostly equal to the one presented in section 3.2. The most relevant change can be found

at line 107, where we create a subscription for the newThread scheduler with an action that simply

kills the thread3. On line 122 we then add this subscription to the one carried by the downstream

observer. In this way, unsubscribing from the downstream subscription will trigger a waterfall effect

that will eventually unsubscribing the scheduler’s one as well, effectively killing the thread associated

to it.

On a last note regarding the relationship between schedulers and subscriptions, it is worth mention-

ing how the subscription mechanism only works in the presence of schedulers. As we mentioned

before, in fact, Rx is synchronous by default in the processing of its data. This means that the program

would return from the invocation of the subscribe function only after it has fully processed the

stream, effectively rendering the subscription mechanism ineffective, as it would not be possible

3Absolutely not safe, but it’s good enough for the sake of our example.
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to invoke unsubscribe whilst the Observable is active. With the introduction of schedules and

different execution contexts, this problem disappears and the mechanism works as intended.

3.3.2 Formalizing Subscriptions

In Section 2.5 we saw how an Observable , at its essence, is nothing more than an instance of the

Continuation Monad, where the three types of events that can occur are materialized into a single

datatype, Event a , as opposed to being handled by three different continuations.

In the discussion that follows we are going to try and understand what the essence of the subscription

mechanism is and how it relates to our formal definition of observable as a continuation.

As we mentioned before, a subscription is strongly tight to the notion of observer, as an observable

can be subscribed-to multiple times. Although, we can be more specific than this and notice that a

subscription is actually tight to the execution of an observable. These two takes on subscriptions are

effectively the same thing: an observer can only be subscribed a single time to a single observable,

creating the unique link between the subscription and a single execution of the observable function.

This perspective is very insightful, as it hints to the fact that a subscription should be immutable

within the context of an observable execution. Another observation is that the subscription needs to

be retrievable from an observable for a number of reasons, the most important of which being to

check whether the subscriber is unsubscribed before pushing any additional events.

The properties of subscription that we just discussed are very similar to the idea of environment

variables, shared by computations yet immutable in their nature. The Haskell programming language

exposes a monad construct for such computations, the Reader - Environment - Monad: in the

remained of this section, we are going to model the subscription mechanism as a Reader monad

transformer on top of our previous definition of observable as a continuation.

1 type Observer a = Event a -> IO ()

2 type Observable a = ReaderT Subscription (ContT () IO) (Event a)

3

4 subscribe :: Observable a -> Observer a -> IO Subscription

5 subscribe obs obr = do

6 subscription <- emptySubscription

7 safeObserver = enforceContract obr

8 runContT (runReaderT obs s) safeObserver

9 return s

10

41



CHAPTER 3. OUT OF THE RABBIT HOLE: TOWARDS A USABLE API

11 enforceContract :: Observer a -> Observer a

12 enforceContract obr = ...

This formalization is very insightful under many points of view: first of all, in the same way as

schedulers, it is completely orthogonal to the definition of observable we previously had: the original

definition did not change, yet the mechanism was, in a way, glued on top of it. This observation

becomes very clear when looking at line 8 in the above snippet: the subscribe function first runs

the reader transformer, resulting in continuation monad that will have the environment variable

available within its context. Notice how each call to subscribe will effectively create a new subscription

and pair it to the execution of the observable.

A natural question now is: why didn’t we use this technique for implementing subscriptions in the

"real world" implementation from the previous paragraph? There, we had to change the definitions

of our interfaces, losing orthogonality as a consequence. The reason is simply clarity, the interfaces

look more clear than reading readerT, especially if we want to use that implementation as a reference

for other languages. On the other hand, the goal of this paragraph is focusing on the essence of the

subscription mechanism, hence the use of theory-related constructs such as monads.

Notice how this formalization only focuses on augmenting the definition of observables with sub-

scriptions. The actual logic of the mechanism remains unchanged and is abstracted away through

the enforceContract function.

As a final point, it is worth noting that what we presented so far is obviously not the only way we

can formalize the subscription mechanism. Many other definitions have been tried out during the

course of this work, yet all of the others ended up granting too much or too less power to the resulting

mechanism and were therefore discarded. Examples include:

1 type Observable a = StateT Subscription (ContT () IO) (Event a)

2 type Observable a = Cont () (StateT Subscription IO) (Event a)

3.4 Operators

With schedulers and subscriptions we can handle asynchronous streams of data from different

execution context and cease our observation at any point in time. The last feature before we can

consider our reactive library ready for use by developers is the introduction of a set of higher order

functions that, given one or more Observable s, will allow access to its underlying elements -
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providing ways to transform, compose and filter them - while abstracting over the enclosing data

structure. These higher order functions, also referred to as operators, are a common technique when

it comes to abstractions over data structures; examples can be found in many commonly known

programming languages, where data structures such as iterables, lists, trees, sets, ..., offer a wide

range of functions - map, filter, flatmap, concat, etc - that allow the user to operate on its internal

elements without requiring any knowledge of the structure that contains them.

3.4.1 Functor, Applicative, Monad

Back in section 2.3, we defined the Functor instance for the Observable type, effectively augmenting

our reactive type with our first operator, map :: (a -> b) -> Observable a -> Observable b ,

allowing the user to transform streams of elements of type a into streams of elements of type b by

applying the input function of type a -> b to each incoming element in the input stream.

The next operator we are going to introduce is lift . This operator takes a function defined on

the Observer level and lifts it to a more general context, that of Observable [25]. This pattern is

very common in the field of Functional Programming, and it is often used in order to provide an

abstraction that facilitates accessing values nested inside container structures such as Functors,

Applicatives or Monads. In the context of Observables, this function will result very useful as we will

be able to define operators on the Observer level and later make them accessible in the context of

Observables simply by lifting the operation.

23 lift :: (Observer b -> Observer a) -> Observable a -> Observable b

24 lift f ooa = Observable $ \ob -> _subscribe ooa (f ob)

As an example, we re-propose here the implementation of the Functor instance for Observable, this

time using the lift function:

26 instance Contravariant Observer where

27 contramap f ob =

28 Observer (onNext ob . f) (onError ob) (onCompleted ob) (subscription ob)

29

30 instance Functor Observable where

31 fmap f = lift (contramap f)
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As we discussed in section 2.3, the Observable type, at its essence, is an instance of Applicative

Functor and Monad from a cathegory theory perspective. This observation motivates our next effort

of trying and defining such instances on the latest version of our interface. We will not bother

anymore with proving the associated laws, as it would be a very difficult task, given the complicated

nature of the implementation of such functions which now needs to handle subscriptions as well as

synchronized state due to schedulers.

139 instance Applicative Observable where

140 pure x = Observable $ \obr -> do

141 onNext obr x

142 onCompleted obr

143 return $ subscription obr

144 (<*>) = combineLatest ($)

145

146 combineLatest :: (a -> b -> r) -> Observable a -> Observable b -> Observable r

147 combineLatest combiner oa ob = Observable $ \downstream ->

148 let

149 onNext_ :: TMVar t -> TMVar s -> (t -> s -> IO ()) -> t -> IO ()

150 onNext_ refT refS onNextFunc valT = join . atomically $ do

151 _ <- tryTakeTMVar refT

152 putTMVar refT valT

153 maybeS <- tryReadTMVar refS

154 return . when (isJust maybeS) $ onNextFunc valT (fromJust maybeS)

155

156 onError_ :: TMVar Bool -> SomeException -> IO ()

157 onError_ hasError e = join . atomically $ do

158 hasE <- takeTMVar hasError

159 putTMVar hasError True

160 return . when (not hasE) $ onError downstream e

161

162 onCompleted_ :: TMVar t -> TMVar Bool -> TMVar Int-> IO ()

163 onCompleted_ refT hasCompleted hasActive = join . atomically $ do

164 emptyT <- isEmptyTMVar refT

165 hasC <- takeTMVar hasCompleted

166 active <- takeTMVar hasActive

167 putTMVar hasCompleted True

168 putTMVar hasActive (active - 1)
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169 return . when (emptyT && not hasC || active - 1 == 0) $

170 onCompleted downstream

171 in do

172 active <- newTMVarIO 2

173 refA <- newEmptyTMVarIO

174 refB <- newEmptyTMVarIO

175 hasError <- newTMVarIO False

176 hasCompleted <- newTMVarIO False

177 let obrA = Observer (onNext_ refA refB (fa downstream))

178 (onError_ hasError)

179 (onCompleted_ refA hasCompleted active)

180 (subscription downstream)

181 let obrB = Observer (onNext_ refB refA (fb downstream))

182 (onError_ hasError)

183 (onCompleted_ refB hasCompleted active)

184 (subscription downstream)

185 _subscribe ob obrB

186 _subscribe oa obrA

187 where

188 fa downstream = (\a b -> onNext downstream (combiner a b))

189 fb downstream = (\b a -> onNext downstream (combiner a b))

The function pure does nothing more than wrapping a value into an Observable whereas (<*>)

applies the most recent function emitted by the first Observable to the most recent element

emitted by the second one. The implementation utilizes the more general combineLatest operator,

which allows to combine two streams into one by emitting an item whenever either of the two emits

one - provided that each of them has emitted at least one.

Last but not least comes the Monad instance for our Observable type:

191 instance Monad Observable where

192 return = pure

193 (>>=) = flatMap

194

195 flatMap :: Observable a -> (a -> Observable b) -> Observable b

196 flatMap obs f = Observable $ \downstream ->
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197 let

198 onNext_ gate activeRef hasError hasCompleted val = do

199 atomically $ modifyTVar activeRef (+1)

200 s <- emptySubscription

201 let inner = Observer (innerOnNext_)

202 (onError_ hasError)

203 (innerOnCompleted_ s)

204 (s)

205 addSubscription (subscription downstream) (subscription inner)

206 handle (onError_ hasError) . void $ _subscribe (f val) inner

207 where

208 innerOnNext_ v = do

209 withMVar gate $ \_ -> onNext downstream v

210

211 innerOnCompleted_ s = do

212 cond <- atomically $ do

213 c <- readTVar hasCompleted

214 modifyTVar activeRef (subtract 1)

215 a <- readTVar activeRef

216 return (c && a == 0)

217 if cond

218 then onCompleted downstream

219 else removeSubscription (subscription downstream) s

220

221 onError_ hasError e = do

222 cond <- atomically $ do

223 e <- swapTVar hasError True

224 return (not e)

225 when cond $ onError downstream e

226

227 onCompleted_ activeRef hasCompleted = do

228 cond <- atomically $ do

229 c <- swapTVar hasCompleted True

230 a <- readTVar activeRef

231 return (not c && a == 0)

232 when cond $ onCompleted downstream

233

234 in do
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235 gate <- newMVar ()

236 activeRef <- newTVarIO (0 :: Int)

237 hasError <- newTVarIO False

238 hasCompleted <- newTVarIO False

239

240 _subscribe obs $ Observer (onNext_ gate activeRef hasError hasCompleted)

241 (onError_ hasError)

242 (onCompleted_ activeRef hasCompleted)

243 (subscription downstream)

Note how this implementation if (»=) shows the need for the introduction of children subscrip-

tions that we discussed in section 3.3: whenever the outer observable is unsubscribed, we want to

automatically unsubscribe any observable that has previously been created by the function passed

to (»=) .

3.4.2 The Essential Operators

Operators can theoretically be infinite in number, as infinite are the transformations that can be

done to elements of an observable stream. Practice shows, though, that a relatively small subset of

operators and the composition of these, suffices to express the majority of the use cases encountered

by users. Leveraging the power of composability of operators is advantageous towards the design of a

simple yet powerful API.

Operators can be grouped into categories by looking at their characteristics; it is not the purpose of

this work to list every possible operator and its semantics, yet, for the sake of completeness, table 3.1

presents the most important categories4 and the associated operators:

3.4.3 Formalizing Operators

So far we have seen which are the most useful operators and how they aid in making our reactive

library more useful from a user perspective. Things get more complicated when we try to analyze

them from a theoretical point of view: operators can be viewed as state machines, containing an

internal state which is modified whenever an event occurs, following the semantics of the specific

operator.

For this reason, trying to formalize them as a functional and pure structure becomes very difficult,

resulting in more confusion than clarity. This outcome should not come as a surprise: operators

4An implementation of these operators can be found at the repository associated with this work.
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Table 3.1: The essential operators

Transformation

buffer
bufferWithSkip
groupBy
fmap
scan
scanLeft
sample
throttle
window
a

Filtering & Conditional

filter
distinctUntilChanged
skip
skipUntil
skipWhile
take
takeUntil
untilTake
a

Combining

(»=)
(<*>)
concat
startsWith
withLatestFrom
zip
zipWithBuffer
a

Error Handling
catchOnError
onErrorResumeNext
retry
a

Utility

observeOn
subscribeOn
publish
share
ofType
doOnNext
doOnError
doOnCompleted
toIterable
toList
a
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defined on other more common data structures such as lists or trees are state machines as well,

usually hiding their state using function parameters:

1 take :: Int -> [a] -> [a]

2 take _ [] = []

3 take 0 _ = []

4 take n (x:xs) = x : take (n-1) xs

As we can see from this example implementation of take on lists, the internal state of the operator -

i.e. the number of elements to be taken, n - is wired in the definition of the function, eliminating the

need for an internal variable as a result.

This type of operator definition works very neatly for any pull-based data structure, where we can

define the operators recursively on the structure of the collection. For Observable things become a

little more complicated since we are dealing with a push-based collection, were elements are never

gathered as a concrete collection in memory, not allowing, as a consequence, any type of structural

recursion.

We will discuss in section 3.4.3, Future Work, how Event Calculus might be used as a technique to

better define the semantics of operators for push-based collections.
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”... and the mystery clears

gradually away as each new

discovery furnishes a step which

leads on to the complete truth.”

— Sir Arthur Conan Doyle,

Sherlock Holmes - The Adventure of

the Engineer’s Thumb

The main research goal of this work was to analyze and formalize what is commonly referred to as

the reactive programming paradigm by means of a theoretical and mathematical approach.

We broke down our approach into three research questions, which were answered throughout the

discussion presented in this report.

• Which class of problems does reactive programming solve? How does this relate to the real

world libraries that claim to be reactive?

Starting from Berry’s definition of reactive programs [8], we identified the class of problems

reactive programming sets out to solve as those dealing with asynchronous, event based data

sources. After showing how such problems require a push based model of computation in order

to be solved, we analyzed the most famous libraries and APIs that claim to embody the reactive

philosophy and showed how, more often than not, this claim is not true from a theoretical

perspective.

• How can we use existing mathematical and computer science theory in order to formally

derive a definition for reactive programming?

Starting from the intuition that the definitions and properties of interactive and reactive

programs are the opposite of one another, we used the categorical concept of duality, as

well as other useful constructs borrowed from mathematics - see Appendix A -, in order

to simplify the definition of Iterable to its essential type and use this to formally derive

the Observable type, thus proving our intuition correct. We later proved the connection
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between the previously mentioned definition of reactive programming and the Observable

by showing its correspondence with the definition of a special kind of a Continuation Monad,

where the result type is IO () and the side effects of its inner workings are made explicit in

the type itself.

• How can we bridge from the derived theoretical foundations of reactive programming to a

concrete API that, whilst maintaining its mathematical roots, is fit for use in a production

environment?

The last part of this research focused on building a reference implementation of a reactive

library starting from the derived theoretical definition of Observable . In this section of the

work, we augmented the Observable with features - subscriptions, schedulers, operators

- that would make the type both useful and usable in a production environment, effectively

resulting in a reactive library. We analyze each of the proposed additional features under both

a theoretical - their meaning and impact on the previously derived formal types - and practical

- implementation details and related challenges - point of view, with the purpose of stimulating

awareness and discussion w.r.t. these features and their related challenges, rather than being

prescriptive and forcing a specific solution upon the reader.

To conclude, this research contributes to the field of reactive programming by providing a formal

derivation and analysis of the reactive types, a theory-biased implementation of these formal con-

cepts and a production ready reactive library meant as a reference for software engineers interested

in implementing a version of the library in their language of choice.

Limitations & Future Work

The work presented in this report does not come without limitations. The main one can be pinpointed

to the development of our reference implementation. If the first section of our research is made

precise by the use of mathematics and category theory, the bridging between theory and practice,

realized by augmenting the reactive interfaces with additional features, cannot be justified in a

scientific fashion. Whether a certain feature might or might not result useful for a software engineer

in a production environment is not easily quantifiable. In this work, we relied on both common sense

and the fact that the introduced features can already be found in wildly used reactive libraries such as

the Reactive Extensions family. From this point of view, we have contributed to better understanding

these features by providing a theoretical analysis, as well as a discussion on the practical advantages

and challenges that would follow from their inclusion in a production reactive API.

Another limitation is represented by the Reactive Contract. Once again, its introduction is justified by

wildly spread acceptance and commons sense, yet these reasons are not strong enough to preclude
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from the formulation of a different contract that would eventually result in an API with different

semantics from the one developed in this report.

These limitations sparkle motivation for further research: with regards to the introduction of new

features such as subscriptions, schedulers and operators, additional work could focus on better

defining such concepts from a theoretical perspective, finding an abstract model to represent their

behavior and semantics, which could more easily act as a reference for implementors. To this end,

Event Calculus [40] seems to be a promising mathematical language to reason about events and their

effects, making it interesting for modeling the behavior of operators.

Moreover, further research could investigate a different set of rules that would constitute the Reactive

Contract, analyzing the ways these could affect the resulting reactive library and the use cases where

one set could be more useful than another. As an example, we could imagine a set of rules which lifts

the constraint that a stream must terminate after an error is produced. This contract could be useful

for certain types of applications where errors in the processing of a single element are tolerated.

We hope, with this work, to have sparkled interest towards the field of reactive programming, removing

any doubt as to what its definition and properties are, and giving it its right place within the computer

science’s scientific community.
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In the following sections we are going to dive deeper in the theoretical notions that have powered

the derivation in this thesis. A special mention of Steve Awodey’s book "Category Theory" [6] and the

HaskellWiki [24] for providing much inspiration in the exposition of these topics is in order.

A.1 Duality - Category Theory

Duality is an element of paramount importance in research we presented. Up until this moment

we have only dealt with an informal definition of duality but its roots go very deep in the field of

mathematics and category theory in particular.

Given the formal definition of a category, composed of objects

A, B , C , ...

and arrows

f , g , h, ...

and operations

dom( f ) cod( f ) i d(A) g ◦ f

Given any sentence Σ, we can create its dual Σop by interchanging

dom → cod

and the order of composition

g ◦ f → f ◦ g
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It is clear how Σop is a well formed sentence in the language of category theory C T .

The principle of - formal - duality then tells us that for any sentence Σ in the language of category

theory, if Σ follows from the axioms defined for categories, then so does Σop .

C T `Σ =⇒ C T `Σop

From a visual perspective, this definition boils down to reversing the order of composition of the

arrows.

A B

C

f

g ◦ f
g

A B

C

f

f ◦ g
g

A.2 Products & Coproducts

In category theory, the product of two objects in a category is the most general object which admits a

morphism to each of the ones that compose it. The notion of product aims at capturing the essence

of more specialized definitions found in various categories and areas of mathematics. The easiest

way understand this construct is to start from the cartesian products in the category of sets.

Given sets A and B , let us define the cartesian product as the set

A×B = { (a,b) | a ∈ A, b ∈ B }

There are two coordinate projections

A A×B B
f st snd

where

f st (a,b) = a snd (a,b) = b

It follows that given any element c ∈ A×B

c = ( f st (c), snd (c) )

The following diagram captures the essence of cartesian products.
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1

A A×B B

a b(a,b)

f st snd

The definition of categorical products can be derived from generalizing the elements in the previous

definition.

Coproducts are the dual notion of categorical products, representing the least general object to

which the objects in the family admit a morphism. Within the context of set theory, the represent the

disjoint union of sets.

Given sets A and B , let us define their disjoint union as the set

A+B = { (a,1) | a ∈ A}∪ (b,2) | b ∈ B}

There are two injection functions

A A+B B
le f t r i g ht

where

le f t (a) = (a, 1) r i g ht (b) = (b, 2)

The essence is captured by the following diagram, where we have simply reversed the arrows.

1

A A+B B

f g[ f , g ]

le f t r i g ht

where

[ f , g ](x,δ) =
 f (x), δ= 1

g (x), δ= 2
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Withing the context of our research and the Haskell programming language, tuples represent products

and the Either monad represents coproducts.

A.3 Curry & Uncurry

Currying is the technique of transforming a function taking multiple arguments as input in one

taking only the first argument and returning a function that takes the remainder of the arguments

and returns the result of the initial function. Uncurrying is the opposite of currying, taking a curried

function into one that accepts multiple arguments as input.

1 curry :: ((a, b) -> c) -> (a -> b -> c)

2 uncurry :: (a -> b -> c) -> (a, b) -> c

3

4 f :: a -> b -> c

5 g :: (a, b) -> c

6

7 f = curry g

8 g = uncurry f

9

10 -- f x y = g (x, y)

11 -- curry . uncurry = id

A.4 Functors

In category theory a functor is a mapping from one category to another or a homomorphism of

categories where certain laws hold.

Functors span a large number of categories and are more and more common in modern programming

languages. In Haskell the Functor class and its laws are defined as follows.

1 class Functor f where

2 fmap :: (a -> b) -> f a -> f b

3

4 -- fmap id = id

5 -- fmap (p . q) = (fmap p) . (fmap q)
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A.5 Continuation Passing Style

Continuation Passing Style (CPS), is a style of programming where functions do not return their result

type directly but forward it to an extra function called continuation, which will specify what will

happen next in the control flow of the program.

In CPS, functions take the role of suspended computations and effectively do nothing until a contin-

uation is passed in as an argument.

The main advantage of this programming style is the power of controlling and altering the control

flow of a program to such a great extent that it is possible, with continuations, to implement features

such as exceptions and concurrency.

The Haskell programming language exposes continuations through the Continuation Monad, also

known as the mother of all monads, as its definition makes it possible to implement any other monad.

1 newtype Cont r a = Cont { runCont :: ((a -> r) -> r) }

2

3 instance Monad (Cont r) where

4 return a = Cont $ \k -> k a

5 (Cont c) >>= f = Cont $ \k -> c (\a -> runCont (f a) k)
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B.1 Formal Rx Implementation

The following code presents a continuation based reference Reactive Library where each additional

feature is implemented as discussed in the respective formalization section in Chapter 3 .

1 {-# LANGUAGE ScopedTypeVariables #-}

2

3 module Main where

4

5 import System.IO

6 import Control.Arrow

7 import Control.Monad

8 import Control.Monad.Cont

9 import Control.Concurrent.MVar

10 import Control.Concurrent.STM

11 import Control.Monad.Reader

12 import Control.Exception

13 import Data.IORef

14 import Data.List

15 import Data.Maybe

16 import Control.Concurrent (ThreadId, forkIO, forkOS, killThread, yield, myThreadId)

17 import Control.Concurrent.STM.TChan
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18

19

20 type Observable a = ReaderT Subscription (ContT () IO) (Event a)

21 type Observer a = Event a -> IO ()

22

23 data Event a =

24 OnNext a

25 | OnError SomeException

26 | OnCompleted

27

28 subscribe :: Observable a -> Observer a -> IO Subscription

29 subscribe obs obr = do

30 s <- emptySubscription

31 let

32 safeObr = observer safeOnNext safeOnError safeOnCompleted

33 safeOnNext a = do

34 b <- isUnsubscribed s

35 unless b $ obr (OnNext a)

36 safeOnError e = do

37 b <- isUnsubscribed s

38 unless b $ finally (obr $ OnError e) (unsubscribe s)

39 safeOnCompleted = do

40 b <- isUnsubscribed s

41 unless b $ obr OnCompleted >> unsubscribe s

42 runContT (runReaderT obs s) safeObr

43 return s

44

45 observable :: (Observer a -> IO ()) -> Observable a

46 observable os = do

47 s <- ask

48 lift . ContT $ \downstream ->

49 let

50 -- subscription check not necessary but useful

51 on a = do

52 b <- isUnsubscribed s

53 unless b $ handle oe (downstream $ OnNext a)

54 oe e = do

55 b <- isUnsubscribed s
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56 unless b $ downstream (OnError e)

57 oc = do

58 b <- isUnsubscribed s

59 unless b $ handle oe (downstream OnCompleted)

60 in

61 os $ observer on oe oc

62

63 observer :: (a -> IO ()) -> (SomeException -> IO ()) -> IO () -> Observer a

64 observer on oe oc ev = case ev of

65 OnNext v -> on v

66 OnError e -> oe e

67 OnCompleted -> oc

68

69 rxmap :: Observable a -> (a -> b) -> Observable b

70 rxmap o f = o >>= mapCont

71 where

72 mapCont ev = observable $ \downstream -> case ev of

73 OnNext v -> downstream (OnNext (f v))

74 OnError e -> downstream (OnError e)

75 OnCompleted -> downstream OnCompleted

76

77 rxtake :: Observable a -> Int -> Observable a

78 rxtake o n = do

79 nRef <- liftIO $ newIORef n

80 o >>= takeFunc nRef

81 where

82 takeFunc nRef ev = observable $ \downstream -> case ev of

83 OnNext v -> do

84 n’ <- atomicModifyIORef nRef $ pred &&& pred

85 when (n’ >= 0) $ downstream (OnNext v)

86 when (n’ == 0) $ downstream OnCompleted

87 OnError e -> downstream (OnError e)

88 OnCompleted -> downstream OnCompleted

89

90 rxflatmap :: Observable a -> (a -> Observable b) -> Observable b

91 rxflatmap o f = do

92 s <- ask

93 gate <- liftIO $ newMVar ()

63



APPENDIX B. APPENDIX B

94 active <- liftIO $ newTVarIO (0 :: Int)

95 err <- liftIO $ newTVarIO False

96 compl <- liftIO $ newTVarIO False

97 let

98 flatmapCont ev = observable $ \downstream ->

99 let

100 onNext v = do

101 atomically $ modifyTVar active (+1)

102 s_ <- emptySubscription

103 addSubscription s s_

104 let

105 inner = observer onNext_ onError onCompleted_

106 onNext_ v_ = withMVar gate $ \_ -> downstream (OnNext v_)

107 onCompleted_ = do

108 cond <- atomically $ do

109 c <- readTVar compl

110 modifyTVar active (subtract 1)

111 a <- readTVar active

112 return (c && a == 0)

113 if cond

114 then downstream OnCompleted

115 else removeSubscription s s_

116 handle onError $ runContT (runReaderT (f v) s_) inner

117 onError e = do

118 cond <- atomically $ do

119 e <- swapTVar err True

120 return (not e)

121 when cond $ downstream (OnError e)

122 onCompleted = do

123 cond <- atomically $ do

124 c <- swapTVar compl True

125 a <- readTVar active

126 return (not c && a == 0)

127 when cond $ downstream OnCompleted

128 in case ev of

129 OnNext v -> onNext v

130 OnError e -> onError e

131 OnCompleted -> onCompleted
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132 o >>= flatmapCont

133

134

135 ------------------------------------------------------------------------------------

136 -- Subscriptions

137 ------------------------------------------------------------------------------------

138

139 data Subscription = Subscription

140 { onUnsubscribe :: IO ()

141 , isUnsubscribed_ :: IORef Bool

142 , subscriptions :: IORef [Subscription]

143 }

144

145 instance Eq Subscription where

146 s == t = subscriptions s == subscriptions t

147

148 createSubscription :: IO () -> IO Subscription

149 createSubscription a = do

150 b <- newIORef False

151 ss <- newIORef []

152 return $ Subscription a b ss

153

154 emptySubscription :: IO Subscription

155 emptySubscription = createSubscription (return ())

156

157 isUnsubscribed :: Subscription -> IO Bool

158 isUnsubscribed s = readIORef $ isUnsubscribed_ s

159

160 unsubscribe :: Subscription -> IO ()

161 unsubscribe s = do

162 b <- isUnsubscribed s

163 unless b $ do

164 writeIORef (isUnsubscribed_ s) True

165 onUnsubscribe s

166 subs <- readIORef $ subscriptions s

167 mapM_ unsubscribe subs

168

169 addSubscription :: Subscription -> Subscription -> IO ()
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170 addSubscription s s’ = modifyIORef’ (subscriptions s) $ \ss -> s’:ss

171

172 removeSubscription :: Subscription -> Subscription -> IO ()

173 removeSubscription s s’ = modifyIORef’ (subscriptions s) $ \ss -> delete s’ ss

174

175

176 ------------------------------------------------------------------------------------

177 -- Schedulers

178 ------------------------------------------------------------------------------------

179

180 type Scheduler = IO Worker

181 data Worker = Worker

182 { _schedule :: IO () -> IO Subscription

183 , _subscription :: Subscription

184 }

185

186 newThread :: Scheduler

187 newThread = do

188 reqChan <- newTChanIO

189 tid <- forkIO $ forever $ do

190 join $ atomically $ readTChan reqChan

191 yield

192 subscription <- createSubscription $ killThread tid

193

194 return Worker

195 { _schedule = \action -> do

196 atomically (writeTChan reqChan action)

197 emptySubscription

198 , _subscription = subscription

199 }

200

201 observeOn :: Observable a -> Scheduler -> Observable a

202 observeOn o sched = do

203 s <- ask

204 w <- liftIO sched

205 liftIO $ addSubscription s (_subscription w)

206

207 let observeOnCont ev = observable $ \downstream -> case ev of
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208 OnNext v -> void . _schedule w $ downstream (OnNext v)

209 OnError e -> void . _schedule w $ downstream (OnError e)

210 OnCompleted -> void . _schedule w $ downstream OnCompleted

211

212 o >>= observeOnCont
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C.1 Proving Functor laws for Iterable

The following snippet presents a proof of the Functor laws for the Iterator and Iterable type.

20 -- Using a type synonym instead of Haskell’s newtypes,

21 -- in order to avoid clutter in our proofs:

22

23 type Iterator a = () -> IO a

24

25 fmap :: (a -> b) -> Iterator a -> Iterator b

26 fmap f ia = \() -> ia () >>= return . f

27

28 -- identity:

29 fmap id

30 -- eta abstraction

31 = \ia -> fmap id ia

32 -- definition of fmap

33 = \ia -> \() -> ia () >>= return . id

34 -- application of id

35 = \ia -> \() -> ia () >>= return

36 -- IO monad right identity*

69



APPENDIX C. APPENDIX C

37 = \ia -> \() -> ia ()

38 -- eta reduction

39 = \ia -> ia

40 -- definition of

41 = id

42

43 -- composition:

44 (fmap p) . (fmap q)

45 -- eta abstraction

46 = \ia -> ((fmap p) . (fmap q)) ia

47 -- definition of (.)*

48 = \ia -> fmap p (fmap q ia)

49 -- definition of fmap q

50 = \ia -> fmap p (\() -> ia () >>= return . q)

51 -- definition of fmap p

52 = \ia -> \() -> (\() -> ia () >>= return . q) () >>= return . p

53 -- eta reduction inner lambda

54 = \ia -> \() -> ia () >>= return . q >>= return . p

55 -- eta abstraction

56 = \ia -> \() -> ia () >>= \a -> (return . q) a >>= return . p

57 -- definition of (.)

58 = \ia -> \() -> ia () >>= \a -> return (q a) >>= return . p

59 -- IO monad left identity*

60 = \ia -> \() -> ia () >>= \a -> (return . p) (q a)

61 -- definition of (.)

62 = \ia -> \() -> ia () >>= \a -> (return . p . q) a

63 -- definition of (.)

64 = \ia -> \() -> ia () >>= \a -> return ((p . q) a)

65 -- definition of fmap

66 = \ia -> fmap (p . q) ia

67 -- eta reduction

68 = fmap (p . q)

69

70 -- * monad right identity:

71 m >>= return = m

72

73 -- monad left identity:

74 return a >>= f = f a
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75

76 -- defintion of (.):

77 (.) :: (b -> c) -> (a -> b) -> a -> c

78 (f . g) a = f (g a)

79

80 ---------------------------------------------------------------------------

81

82 type Iterable a = () -> IO (Iterator a)

83

84 fmap :: (a -> b) -> Iterable a -> Iterable b

85 fmap f iia = \() -> iia () >>= return . fmap f

86

87 -- identity:

88 fmap id

89 -- eta abstraction

90 = \iia -> fmap id iia

91 -- definition of fmap

92 = \iia -> \() -> iia () >>= return . fmap id

93 -- Iterator identity law

94 = \iia -> \() -> iia () >>= return . id

95 -- application of id

96 = \iia -> \() -> iia () >>= return

97 -- IO monad right identity

98 = \iia -> \() -> iia ()

99 -- eta reduction

100 = \iia -> iia

101 -- definition of id

102 = id

103

104 -- composition:

105 (fmap p) . (fmap q)

106 -- eta abstraction

107 = \iia -> ((fmap p) . (fmap q)) iia

108 -- definition of (.)

109 = \iia -> fmap p (fmap q iia)

110 -- definition of fmap

111 = \iia -> fmap p (\() -> iia () >>= return . fmap q)

112 -- definition of fmap
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113 = \iia -> \() -> (\() -> iia () >>= return . fmap q) () >>= return . fmap p

114 -- eta reduction

115 = \iia -> \() -> iia () >>= return . fmap q >>= return . fmap p

116 -- eta abstraction

117 = \iia -> \() -> iia () >>= \ia -> (return . fmap q) ia >>= return . fmap p

118 -- definition of (.)

119 = \iia -> \() -> iia () >>= \ia -> return (fmap q ia) >>= return . fmap p

120 -- IO monad left identity

121 = \iia -> \() -> iia () >>= \ia -> (return . fmap p) (fmap q ia)

122 -- definition of (.)

123 = \iia -> \() -> iia () >>= \ia -> (return . fmap p . fmap q) ia

124 -- eta reduction

125 = \iia -> \() -> iia () >>= return . fmap p . fmap q

126 -- Iterator composition law

127 = \iia -> \() -> iia () >>= return . fmap (p . q)

128 -- definiton of fmap

129 = \iia -> fmap (p . q) iia

130 -- eta reduction

131 = fmap (p . q)

C.2 Proving Contravariant laws for Observable

The following snippet presents a proof of the Contravariant and Functor laws for the Observer

and Observable type respectively.

20 type Observer a = a -> IO ()

21

22 contramap :: (a -> b) -> Observer b -> Observer a

23 contramap f ob = ob . f

24

25 -- identity:

26 contramap id

27 = \ob -> contramap id ob

28 = \ob -> ob . id

29 = \ob -> ob

30 = id
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31

32 -- composition:

33 (contramap p) . (contramap q)

34 = \ob -> ((contramap p) . (contramap q)) ob

35 = \ob -> contramap p (contramap q ob)

36 = \ob -> contramap p (ob . q)

37 = \ob -> (ob . q) . p

38 = \ob -> ob . (q . p)

39 = \ob -> contramap (q . p) ob

40 = contramap (q . p)

41

42 ---------------------------------------------------------------------------

43

44 type Observable a = Observer a -> IO ()

45

46 fmap :: (a -> b) -> Observable a -> Observable b

47 fmap f ooa = \ob -> ooa (contramap f ob)

48

49 -- identity:

50 fmap id

51 = \ooa -> fmap id ooa

52 = \ooa -> \ob -> ooa (contramap id ob)

53 = \ooa -> \ob -> ooa ob

54 = \ooa -> ooa

55 = id

56

57 -- composition:

58 fmap p . fmap q

59 = \ooa -> (fmap p . fmap q) ooa

60 = \ooa -> fmap p (fmap q ooa)

61 = \ooa -> fmap p (\ob -> ooa (contramap q ob))

62 = \ooa -> \oc -> (\ob -> ooa (contramap q ob)) (contramap p oc)

63 = \ooa -> \oc -> ooa (contramap q (contramap p oc))

64 = \ooa -> \oc -> ooa ((contramap q . contramap p) oc)

65 = \ooa -> \oc -> ooa (contramap (p . q) oc)

66 = \ooa -> fmap (p . q) ooa
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