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The physical behavior of open-cell foams depends on their microscopic structure. An open-cell

geometrical model is proposed, which can serve as the basis for a future macroscopic analysis. The

strut geometry is of particular interest, as it is reported to have substantial influence on

the occurring thermo-hydraulic and mechanical phenomena. Axial strut size variation, as well as

the porosity dependence of shape is quantified and included in a geometrical model. The foam is

generated by placing the struts on an elongated tetrakaidecahedron. The required input parameters

for the model are two cell dimensions, corresponding to the mean transverse and conjugate

diameters of the ellipse encompassing a cell, and the strut cross-sectional surface area at its

midpoint between two nodes. The foam geometry is generated iteratively, as porosity is used as

validation. A high resolution micro-computed tomography scan is performed to measure the three

parameters, the resulting porosity and surface-to-volume ratio. This allows to validate the model.

The predictions are found to be within measurement accuracy. A numerical implementation of the

model in the preprocessor of a commercial CFD package is demonstrated. VC 2011 American
Institute of Physics. [doi:10.1063/1.3587159]

I. INTRODUCTION

Open-cell foams consists of a finite number of polyhe-

dral cells where the void space is interconnected through the

pores. The borders around a pore are termed struts or liga-
ments and interconnect the nodes, forming a solid matrix

which spans the entire porous domain. The nodes are formed

where four struts meet, resulting in local metal agglomera-

tion. Open-cell foams are known to exhibit interesting struc-

tural and functional properties; the latter due to the open

structure:1

• High porosity (>90% when uncompressed)
• High specific surface area
• Relatively high strength and toughness, giving them the

ability to bear loads
• Good impact energy absorption
• Excellent noise attenuation
• Excellent fluid mixing due to tortuous flow paths
• High gas permeability

The interesting combination of a very light-weight struc-

ture with promising functional properties, offers great poten-

tial for various applications, such as electro-magnetic

radiation shielding,2 crash energy absorption,3 rocket jacket

cooling,4 flow conditioner between burner and turbine in jet

engines,5 heat exchangers,6,7 diesel exhaust cooling,8 direct

tube cooling,9 biodiesel reactor,10 hydrogen storage,11 effi-

ciency enhancement in phase change materials,12 small-scale

refrigerator,13 high heat flux cooling,14 electronics heat

sinks,15 LED cooling in automotives,16 etc. In such applica-

tions, foam volumes typically span a vast number of cells.

On the other hand, the sub-cell scale phenomena, e.g., fluid

flow through the solid matrix or strut buckling during me-

chanical loading, determine the macroscopic physical

response of the material. Due to the complex internal archi-

tecture and computational limitations, a microscopic analysis

is currently only possible for a limited volume.

For porous media in general, this multi-scale problem

can be dealt with by up-scaling the conventional physical

laws. The result is that macroscopic properties are introduced,

which consider the foam as a superficial material. These

physical properties depend on the geometrical characteristics

and morphology of the solid matrix. Understanding this de-

pendency requires a detailed definition and measurement of

the geometrical parameters, which then can serve to construct

a model of the solid matrix. Furthermore, it is desirable to

define and use parameters which are controllable during foam

manufacturing. This results in feasible optimizations.

The foams studied in this paper are manufactured in

house, by replicating a template in aluminum via investment

casting.17 The first step is the preparation of the template by

controlling the thickness of a polyurethane preform with a

wax layer. The thickening is done by dipping the preform in a

molten wax bath and subsequently removing any wax excess.

The template is then filled with ceramics and heated. This

hardens the ceramic mold and sublimates the template, leav-

ing the negative form of the template in the ceramics. Next

the desired metal is cast in this mold under vacuum condi-

tions. After solidification, the mold is removed chemically
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and/or by high pressure spray and leaves a metal replicate of

the template.18

The process allows for control of the foam geometry.

Cell diameters depend on the choice of polyurethane foam

preform, while the thickening procedure alters strut dimen-

sions. This is demonstrated in Fig. 1, where both foams are

based on preforms with comparable cell diameters. Thicken-

ing with a controlled wax layer has changed porosity from

0.967 to 0.913.

Five foam types were manufactured, which will be dis-

cussed in this paper. Note that the employed investment cast-

ing process resembles the production method for Duocell
VR

aluminum foam from ERG Materials and Aerospace Corpo-

ration. The in-house cast foams have similar features, mak-

ing the available literature data on ERG foams applicable.

To indicate the type of foam, manufacturers commonly

count the number of pores per linear inch (PPI), combined

with porosity / or relative density qr.
19 A third important

property is the interfacial surface area Asf ½m2� between both

phases. Expressing this number per unit volume of porous

medium yields the so-called surface-to-volume ratio r0

½m�1�. These parameters (PPI, /, and r0) alone, have been

reported to be inadequate to capture the microscopic behav-

ior of the foam structure. In T’Joen et al.,9 this was experi-

mentally demonstrated by evaluating the thermo-hydraulic

performance of screens consisting of round tubes covered

with foams of different porosities. Porosity on its own was

found to be insufficient to quantify the foam structure; rather

the pore diameter and strut diameter should be used. Bonnet

et al.20 concluded the same in their study of flow laws in

metal foams. Pressure drop related macroscopic properties

were found to correlate better with pore diameter than with

porosity. The importance of strut cross-sectional area and

shape in fluid dynamics is endorsed by the study of Hutter et
al.21 By performing a large eddy simulation on isotropic

foam models for varying thicknesses and two shapes of the

struts, they conclude that the strut shape and thickness seems

to be a key parameter to quantify the ability of foam to act as

static mixing element, revealing the existence of an opti-

mum. Kanaun and Tkachenko22 analyzed the influence of

strut size variation on effective thermal conductivity. For

this macroscopic property, the strut cross-sectional area in

the middle between two nodes was found to be a critical pa-

rameter. Also, during tension and compression tests, a more

detailed characterization of the foam’s geometry is required

to understand bending, elongation, buckling, and final

collapse.23

Probably the most accurate foam model can be obtained

via microcomputed tomography scan (lCT). However, com-

putational restrictions only allow for limited volumes to be

analyzed. These volumes are not sufficient for an analysis of

a complete application, but are adequate to derive bulk prop-

erties for a macroscopic analysis (see, e.g., Ref. 24). The

drawback is that both the lCT and numerical solution techni-

ques are time consuming, limiting the ability to perform

parametric studies or optimizations.

The other approach is generating a model, based on the

characteristic dimensions of both the solid and liquid phase.

For the latter, pore or cell diameters can be used. The pore

diameter is easily derived from the PPI count and can be

used to approximate a strut length in a cubic cell representa-

tion of the solid matrix. However, it is clear that this simplifi-

cation of the cell structure requires a high degree of

empiricism, to correlate derived bulk parameters to experi-

mental data.25–27 The found results still can deviate substan-

tially from experimental data (see, e.g., Dharmasena and

Wadley28). A more detailed approach is required.

The objective of this paper is to construct a geometrical

model of the foam structure, which can serve in future stud-

ies for parametric analysis, optimization, and derivation of

macroscopic properties. It is not the intention to capture the

microscopic heterogeneous behavior inside the solid matrix.

II. GEOMETRY DESCRIPTION

A. Characterization

Because the structure of the foam is three-dimensional,

the pores are not aligned along a single spatial coordinate.

Consequently, PPIs are more suited for classifying foam,

instead of serving as a geometrical parameter.29 Porosity is

the ratio of the fluid phase to the total foam volume, com-

monly indirectly determined by measuring the foam’s weight

and the specific density of the bulk material. Porosity can be

measured relatively easy and with great accuracy, with an

uncertainty of typically less than 0.2%. It is a macroscopic

property which depends on the cell structure and associated

dimensions. This makes porosity a suitable parameter to vali-

date potential geometrical models, based on cell and strut

dimensions.

Expressing the interfacial surface area per unit mass

defines the specific surface area (SSA). SSA can be measured

via the Brunauer, Emmet, and Teller (BET) principle, i.e., a

technique based on gas adsorption/desorption at the interfacial

surface area. The surface-to-volume ratio r0 ½m�1� is easily

FIG. 1. Microcomputed tomography scan reconstruction of two 20 PPI

foams, obtained with 8:5 lm voxel size. Both foams are in-house manufac-

tured and based on the same preform with (a) and without (b) strut

thickening.
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derived from a SSA measurement, via the solid’s density.

However, the BET method takes the entire surface area in

account, down to the nanometer scale.30 Care should be taken,

as not all physical laws are valid at such small scales. For

example, fluid flow is based on continuum mechanics,

described by the Navier-Stokes equations and no-slip bound-

ary conditions at the fluid-solid interface. For gas flows, this

means that the ratio of the mean free path to a characteristic

dimension of the solid geometry, i.e., the Knudsen number, is

below 0.01.31 Air, for instance, has a mean free path in the

order of 50 nm, meaning that geometrical features below 5

lm should be averaged. As a consequence, surface areas too

large for the intended analysis can be obtained via the BET

method.30

Another method to determine both bulk properties is

micro-computed tomography scanning (lCT scan). A virtual,

fully three-dimensional model of the foam’s structure is

reconstructed.32 The reconstruction of a 20 PPI foam is

depicted in Fig. 2. The main difficulty of lCT is image seg-

mentation; i.e., separating between solid and fluid phase. The

voxels (3D pixels), which represent the solid matrix bound-

ary, generally consist of both phases. This results in voxels

spanning a large range of gray values. Segmentation is about

setting the limit to categorize a gray value either as solid (1)

or fluid (0). This is done by combining a so-called dual

threshold with a labeling operation. Voxels belonging to an

interval of gray values are not directly segmented. Instead,

they are further processed by identifying subsets of intercon-

nected voxels, which are subsequently assigned to a phase.

This is implemented in a code called Morphoþ (see Vlassen-

broeck et al.32) and used in this work. However, it still can

lead to significant differences, which can be seen by decreas-

ing the voxel size. The difference between a relatively low

and high resolution scan is shown in Fig. 2. The low resolu-

tion is a smoothed version of the high resolution scan because

the former acts as a low pass filter. The fast changing geomet-

rical features, i.e., spatially high frequency components, are

not captured while the high resolution scan clearly shows

more detail. This inevitably affects the surface-to-volume ra-

tio. For the low and high resolution scan of Fig. 2, r0

increased from 720 to 860 m�1, respectively. This consider-

able difference of nearly 20% makes voxel size a major pa-

rameter when lCT scan data is used. Schmierer and Razani29

used voxel sizes of 115, 84, 73, and 58 lm, revealing that sur-

face-to-volume ratio converged asymptotically with decreas-

ing voxel size. With the earlier introduced restriction on

minimal voxel size, for the continuum assumption to be valid,

it is obvious that the high resolution scan can be considered

most accurate. The drawback, however, is that it can only be

applied to a limited volume due to computer hardware restric-

tions. To ensure scan volume independence, i.e., that a repre-

sentative elementary volume (REV) is used, two different

volume sizes were analyzed. Notice the surface roughness in

the high resolution scan, resulting from the ceramics during

manufacturing of the foam.

It is worth mentioning that geometrical analysis also can

be done via scanning electron microscopy (SEM).23,33 In this

method, foam samples are prepared by filling them with a

resin, i.e., cold mounting, and are subsequently polished.

The polished side is reviewed under SEM, allowing for the

performance of image analysis. The results are in excellent

agreement with those obtained via lCT scan.

Surface-to-volume ratio data of five samples, obtained via

a high resolution lCT scan with 8:5lm voxel size, is added to

lCT scan data obtained with voxel sizes of 58 lm29 and 21.8

lm,35 and the SEM data.33 Relatively good agreement is

found between these data sets. The result is depicted in Fig. 3,

clearly showing a systematically higher r0 for the data

obtained via the BET method,34 as is expected. In order for

the continuum assumption to be valid for air saturated foams,

i.e., geometrical features below 5 lm have to be averaged, it is

clear that the 8.5 lm voxel size resolution results in relevant

data. As can be expected, surface-to-volume ratio increases

with decreasing porosity and decreasing PPI number.

B. Cell representation and characteristic dimensions

Models based on spatial tessellation techniques take the

inherently stochastic nature of foams into account. Most

commonly applied is a random Voronoi tessellation of space

(Poisson Voronoi, hard core point process Voronoi, etc.). In

principle, it allows for a set of randomly distributed seeds to

FIG. 2. lCT scan reconstruction of a 20 PPI foam, from (a) a low resolution

scan with 40 lm voxel size and (b) a high resolution scan with 8:5 lm voxel

size.

FIG. 3. Surface-to-volume ratio data for 10 and 20 PPI foams, measured via

BET,34 SEM,33 and lCT scan from literature,29,35 and of the in-house manu-

factured 10 PPI (�) and 20PPI (D) foams.
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grow simultaneously at controlled rates, until neighboring

cells meet. However, the resulting Voronoi tessellations do

not show the high degree of regularity that is found in the

foam’s cell structure; nor does it show the tendency to form

pentagonal faces.36 For these reasons, a weighted generaliza-

tion of the Voronoi model, i.e., the Laguerre tessellation, is

required.37 Indeed, foams tend to be microscopically hetero-

geneous, but homogeneous on a macroscopic scale. A quan-

tification of the latter is possible by expressing the standard

deviation of characteristic cell dimensions, for a statistical

relevant number of cells, as a coefficient of variation (CV).

Based on lCT scan analysis, CV values as low as 3.29% and

5.83% for 6 cells of a 10 PPI foam and 5 cells of 20 PPI

foam are reported, respectively.35 This suggests the possibil-

ity of representing the foam structure as a periodic reproduc-

tion of a unit cell; at least when a macroscopic analysis is

intended, or for the derivation of macroscopically averaged

properties. Note that analyzing a periodic unit cell (PUC)

representation has the advantage that the up-scaled physical

equations can be derived from the averaged values of a sin-

gle unit cell.38 For stochastic structures, on the other hand, a

sufficient number of cells is required, which demands sub-

stantial computational capacity.

A deterministic approach to obtain a PUC is based on

minimizing the total film energy of the surface between solid

and fluid phase. The result is a relaxed version, i.e.,

smoothed to obtain minimized energy, of a given structure.

The SURFACE EVOLVER program39,53 is developed to tackle this

minimization problem, under a given set of constraints (e.g.,

equal cell volume, fixed nodes in space). The result is an

equilibrium foam.40 This approach can be used to study the

well-known Kelvin problem, described as,”finding the mini-

mal surface area partition of three-dimensional space into

cells of equal volume.” Sir William Thomson41, Lord Kel-

vin, proposed a tiling by truncated octahedra with slightly

curved faces, i.e. a tetrakaidecahedron formally known as

the Kelvin cell. With more modern techniques, it is found

that relaxing a Voronoi tessellation, with the seeds placed on

a bcc lattice, yields cells which are identical to the Kelvin

cell. A 0.03% more efficient unit cell, referred to as WP cell,

was found by Weaire and Phelan,42 after relaxing a space

partition with seeds placed on an A15 lattice.

For a foam generated with WP cells, the averaged cell

volume and diameter is found to be in close agreement with

the values of the original structure,36 despite not showing the

natural tendency to mainly form pentagonal faces.43 This, and

the discussed macroscopic homogeneity of foams, validates a

PUC representation of foam for macroscopic analysis. For the

investigation of micro-structural effects on elastic properties,

the Kelvin model is found to predict the elastic moduli with

good accuracy; within 7% on average.44 The same holds for

fluid flow, where periodic single-cell representations allow

prediction of pressure drop and even turbulence levels within

5% accuracy.21 Aiming at a computationally efficient model,

previous analysis motivates the selection of a single-unit cell,

and more particularly a tetrakaidecahedron, for a PUC repre-

sentation of the foam structure.

Another aspect which should be considered is the typical

unidirectional cell elongation observed in foams. This

requires two cell diameters, corresponding to the mean conju-

gate d1½m� and transverse d2½m� diameters of the ellipse (illus-

trated in Fig. 4). To characterize the cell diameters via the

earlier introduced Morphoþ software, the individual cells

need to be identified. After labeling the void space, a Euclid-

ean distance map is calculated which determines for each

point the closest distance to a strut. This allows for separation

of the void space in different cells, using a watershed separa-

tion algorithm on the distance map. To determine the cell

diameters, the largest inscribed sphere in a cell results in the

conjugate diameter, while the smallest sphere encompassing

the cell allows determination of the transverse diameter. Zhou

et al.23 and Perrot et al.35 measured both cell diameters with

SEM and lCT scans, respectively, providing consistent data.

The ratio of the reported diameters (d2=d1) is termed spheric-

ity and measures 1.46 on average. Perrot et al.35 investigated

the influence of this orthotropicity on the thermal characteris-

tic length, i.e., a bulk property which is a generalization of

the hydraulic radius and is calculated as twice the fluid-phase

volume divided by the phase interfacial surface area. It was

shown that the thermal characteristic length of an orthotropic

cell model is 630% lower than of an isotropic cell represen-

tation. However, their data is still systematically more than

30% higher than the experimental data obtained via lCT

scan. Their comparison of tetrakaidecahedra models with dif-

ferent strut and node representations suggests another major

influence. Indeed, the difference between cylindrical and

equilateral-triangular struts is reported to be in the same order

as the earlier mentioned deviations. A more detailed represen-

tation of the struts is required.

C. Strut representation and characteristic dimensions

The cell structures discussed above are those of so-

called dry foams, i.e., extremely thin cell walls and no strut

FIG. 4. Geometrical parameter definitions on a lCT scan reconstructed ver-

sion of the in-house manufactured 20 PPI foam with / ¼ 0:967. Note the

elongated cell structure.
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volumes are considered. A wire-frame representation of

these dry foam models is often used to position an equilat-

eral-triangular rod or a cylindrical representation of struts;

see, e.g. Ref. 45, resulting in a wet foam. On the other hand,

the Surface Evolver is capable of generating wet foams

directly. However, its applicability for investment-cast open-

cell metal foams is limited as the thickening process does

not obey the surface minimization principles. Thickening

has the effect of rounding the sharp cross-sectional strut

shape of the polyurethane preform, which was also observed

by Jang et al.44 Strut cross-sectional shape is known to

depend on porosity27 and clearly is not an equilateral triangle

or a circle. This porosity dependency can be quantified via

the Heywood circularity factor (HW), defined as the ratio of

the strut cross-section perimeter to the equivalent perimeter

of a circle with the same surface area. This factor is deter-

mined for 10 strut cross sections of the five foams manufac-

tured in house, as well as its uncertainty. Twice the standard

deviation was used as the uncertainty for all the experimental

data discussed in this paper, as suggested by Moffat.46 The

measurement is done in the middle between the two nodes

connected by the strut. The obtained HW factors are added

to the available data from the literature.29 A power function

is found to correlate this factor and porosity, as depicted in

Fig. 5. This allows quantification of the shape of the strut

cross-section.

Strut cross-sectional area also varies along the axial

position between the two nodes it connects. Kanaun and

Tkachenko22 took this in account by positioning struts with a

parabolic axial shape on an isotropic dry foam. A more

detailed study of this axial variation was carried out by Jang

et al.44 Three aluminum foams with nearly equal porosity

were analyzed by means of lCT scan, with appropriate voxel

size (10 lm). It is observed that the averaged and normalized

axial cross-sectional area variation, f ðnÞ ¼ AðnÞ=A0, seems

independent of the foam type and exhibits quartic behavior.

A generalized expression for this behavior is given by:

f ðnÞ ¼ a2n
4 þ n2 þ 1; with n ¼ x

l
and� l

2
< x <

l

2
; (1)

and where l is the strut length taken between the two nodes it

connects. The cross-sectional surface area at the center

between these nodes and at the dimensionless axial position n
are A0 and AðnÞ, respectively. The axial position is represented

by the x coordinate and a2 is the axial shape factor.

Jang et al.44 also characterized the axial variation of pol-

yurethane foams (/ ¼ 0:975 6 0:0047). Recalling the man-

ufacturing process, polyurethane preforms are

quasireplicated when no thickening is applied. A confirma-

tion is given for the foam depicted in Fig. 1b, where preform

and aluminum foam porosity respectively measured 0.972

and 0.967. The axial shape factor for this foam is 96, which

is significantly different than that for the aluminum foam

(a2 ¼ 36). To further investigate this, 10 struts of each of the

five in-house manufactured open-cell aluminum foams are

characterized. The resulting averaged axial shape factors are

added to both discussed cases from literature44 and depicted

in Fig. 6, as well as their uncertainty. For the two data points

from literature, uncertainty is based on a conservative esti-

mate which allows for covering the range of dimensionless

surface areas in the reported figures.

Recognizing that the shape factor is independent of cell

dimensions, a second-order polynomial seems acceptable to

correlate the shape factor a2 with the foam’s porosity /; at

least in the case of / > 0:91. For less porous foams, how-

ever, no data is available. When restricting to porosities

above 0.88, a constant axial shape factor of 34.72 is

assumed, which is the value obtained for / ¼ 0:913. The

resulting correlation is given by:

a2 /ð Þ¼ 34:72

17342/2�31809/þ14622 for

for 0:88�/�0:91

/>0:91

�
:

(2)

To quantify the size of a strut, various definitions have

been used: the average length of an edge,23 the height of a tri-

angle best fitting the cross section,35 the height of an equilat-

eral triangle,47 the equivalent diameter of a circle yielding the

same surface area, or the hydraulic diameter.29 Furthermore,

measuring a length scale of a rounded triangle, which varies

in the axial direction, is prone to erroneous readings up to a

FIG. 5. The porosity-dependent Heywood circularity factor (HW) of the

five in-house manufactured foams (�) is added to the available data from lit-

erature (�).29 A power law is proposed as correlation.

FIG. 6. Axial strut shape factor, correlated with porosity. Data from the five

in-house manufactured foams (�) are added to the two data points from liter-

ature,44 i.e., for a polyurethane and one aluminum foam (�).
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factor of two.48 It is found more convenient to measure the

strut cross-sectional surface area and this is also applied in

this paper. Measuring at the middle between two nodes gives

the least axial variation, making this the favorable location.

With the earlier discussed axial strut size and the strut shape

dependencies on porosity, it suffices to quantify this surface

area A0 of the strut cross-section at the middle between two

nodes.

Now that the appropriate foam parameters are defined,

the lCT data of the five in-house manufactured foams can be

presented, as well as the data published by Perrot et al.35 The

latter is found to be most convenient, because the statistical

data of both cell diameters and strut thicknesses is given in

detail for 5, 10, 20, and 40 PPI foams. Furthermore, it is

found to be in close agreement with the data of Schmierer

and Razani29 and Zhou et al.23 This yields nine open-cell

aluminum foam samples, presented in Table I, allowing vali-

dation of a geometrical model. The PPI number of the

in-house manufactured foams is taken from the polyurethane

preform. Notice the spread on the cell diameters for a given

PPI number, illustrating their restrictive usefulness.

III. GEOMETRICAL MODEL

The objective is to construct a periodic unit cell represen-

tation of the foam structure, based on the three discussed struc-

tural characteristics (d1, d2, and A0). Extensive use will be

made of both the Heywood circularity factor and axial strut

shape factor correlations, in order to grasp the strut’s geometry.

A. Cell geometry

As discussed earlier, a tetrakaidecahedron provides suf-

ficient accuracy for the intended macroscopic analysis. An

orthotropic wire-frame representation is shown in Fig. 7. The

longest struts (l2) make an angle a with a horizontal plane,

which is given by:

tga ¼ 2l2 sin a

d1 �
ffiffiffi
2
p

l1

: (3)

Considering a hypothetical isotropic structure allows us to

relate l1 with cell diameter d1. Indeed, in this hypothetical

case, l1 and l2 are equally sized and a ¼ p=4. Putting these

conditions in equation (3) yields:

l1 ¼
d1

2
ffiffiffi
2
p : (4)

Consequently, Eq. (3) for the real geometry becomes

tga ¼ d2=d1. This allows finding an expression for the longer

strut in the orthotropic structure, reading:

l2 ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 þ d2
2

q
: (5)

Both strut lengths are derived from the two characteristic

cell diameters, implying that no measurement data of these

lengths is required to construct a model. For this reason, strut

length is not considered as a foam parameter. Note that the

earlier discussed sphericity relates both cell diameters, mak-

ing only one diameter strictly necessary to generate a wire-

frame model of the foam.

B. Strut geometry

The boundary of the strut cross section, in Cartesian

coordinates, is given by:22

yðx;/Þ ¼ RðxÞ cosð/Þ þ cosð2/Þ
a1

� �

zðx;/Þ ¼ RðxÞ � sinð/Þ þ sinð2/Þ
a1

� �
; (6)

with the angular coordinate varying between 0 � / < 2p and

where the factor a1 > 2 determines the strut shape. The func-

tion R(x) defines the changing strut dimension in the axial x
direction. The middle of the strut is at x¼ 0. A node is situated

at x ¼ l
2

or � l
2
, with l one of the earlier derived strut lengths.

On the basis of Eqs. (6), both the surface area and perime-

ter of a strut cross section can be derived. These are required

TABLE I. Geometrical data of nine foam samples.

Foam d1 d2 A0 / r0

PPI [mm] [mm] [10�1 mm2] � [m�1] Ref. �

10 4.22 6 0.18 6.23 6 0.18 0.998 6 0.08 0.932 440 lCT data

10 4.28 6 0.13 6.42 6 0.13 0.615 6 0.13 0.951 380 lCT data

20 2.52 6 0.06 3.78 6 0.06 0.463 6 0.04 0.913 860 lCT data

20 2.77 6 0.05 4.15 6 0.05 0.377 6 0.05 0.937 720 lCT data

20 2.6 6 0.05 3.67 6 0.05 0.126 6 0.02 0.967 580 lCT data

5 5.2 6 0.4 6.54 6 0.55 1.708 6 0.281 0.918 431 Perrot et al.35

10 4.1 6 0.14 6.58 6 0.50 1.212 6 0.161 0.918 478 Perrot et al.35

20 3.26 6 0.19 4.64 6 0.41 0.710 6 0.161 0.917 624 Perrot et al.35

40 2.78 6 0.1 3.94 6 0.31 0.460 6 0.051 0.923 700 Perrot et al.35

1Values deduced from the published strut thickness distributions.

FIG. 7. (Color online) Orthotropic Kelvin cell with straight edges, placed in

a REV.
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to compute the theoretical Heywood circularity factor, which

eventually allows determination of the shape factor a1.

By applying Green’s theorem, i.e., A ¼ 1
2

Ð 2p
0

zdy
d/� y dz

d/

� �
d/, the cross-sectional surface area of the strut is given by:

AðxÞ ¼ p
a2

1 � 2

a2
1

RðxÞ2: (7)

Note that the strut cross-sectional surface area is less than or

equal (in case of a1 !1) to the area of a circle with radius

R(x) and, therefore, should not be mistaken for an equivalent

radius, which is defined as the radius of a circle yielding the

same surface area.

The perimeter is derived by integrating along the con-

tour, after expressing an infinitesimal piece of the contour as

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dy
d/

� �2

þ dz
d/

� �2
r

d/, and yields:

SðxÞ ¼ 4RðxÞ a1 � 2

a1

EðmÞ; (8)

where the function E(m), with m ¼ � 8a1

ða1� 2Þ2 is the complete

elliptic integral of the second kind, given by:

EðmÞ �
ðp=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2 sin2 /

q
d/: (9)

Apart from numerical evaluation, this integral can also be

developed in a series:

EðmÞ ¼ p
2

1�
X1
n¼1

ð2n� 1Þ!!
ð2nÞ!!

� 	2 m2n

2n� 1

 !
;

allowing an approximation of the perimeter. With this the

Heywood circularity factor can be computed, which was

earlier correlated with porosity and given by Hð/Þ
¼ 0:971ð1� /Þ�0:09

. The result is an expression, relating the

shape factor a1 with porosity /:

Hð/Þ ¼ 2

p
a1 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1 � 2

p EðmÞ: (10)

This is a transcendental equation, requiring a numerical solu-

tion. A simple least-squares minimization algorithm suffices

and converges within 10 iterations for a relative residue less

than 10�6. The result obtained for three strut shapes is illus-

trated in Fig. 8 (with R¼ 1), together with the calculated

Heywood factor via the rhs of Eq. (10).

Next, an expression of the axial variation function R(x)

is required. Equating the generalized shape expression (1)

with the normalized strut surface area, given by dividing

Eq. (7) with A0, yields the following expression for the func-

tion RðnÞ:

RðnÞ ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0

pða2
1 � 2Þ f ðnÞ

s
; (11)

where f ðnÞ is the earlier discussed shape function, which is

correlated to the foam’s porosity via the axial shape factor a2

[see Eq. (2)].

C. Porosity and surface-to-volume ratio

To obtain the porosity of the generated structure, the

solid content in a representative volume needs to be com-

puted. The first step is integrating the strut cross-sectional

surface area along its axial coordinate. The integration limits,

however, are not the start and end point of the strut. The strut

length needs to be truncated to account for the aluminum

accumulation at the nodes. Therefore, it is assumed that a

characteristic dimension of a node is given by the axial shape

function f ðnÞ, evaluated in the node (n ¼ �1=2 or 1=2). A

constant fraction g of the resulting radius is proposed, more

particularly: g
lRð1=2Þ. The integration limits are subsequently

given by i1 ¼ �1
2
þ gR 1=2ð Þ

l , and i2 ¼ 1
2
� gR 1=2ð Þ

l . The strut

volume is determined by integrating:

Vstrut ¼
ði2

i1

f ðnÞdn; (12)

where f ðnÞ is given by the quartic polynomial of Eq. (1). The

truncation fraction is set to g ¼ 1=16 and is kept constant

during the later discussed model validation in Sec. IV.

It is known that, according Plateau’s rules, four struts

have to meet in a node. For this reason, it is valid to assume

that at each strut-end, a strut contributes a quarter of the

node volume. Representing this quarter as a tetrahedron

allows computation of its volume as:

Vnode ¼
ffiffiffi
2
p

3
R 1=2ð Þ2; (13)

FIG. 8. Three strut cross sections, generated for different shape factors and

R¼ 1; with resulting Heywood factor H computed via rhs of Eq. (10).
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assuming that twice the radius at the node position is a valid

measure for an edge of the tetrahedron. The advantage of this

representation is that it allows the quasifit of four struts into

one another, although they can have different node-tetrahedra.

This is an improved representation, compared to the cubic45

and spherical29 node models encountered in literature.

As was noted in Sec II B, it suffices to use the volume of

a unit cell as the REV. For the PUC structure, as shown in

Fig. 7, this resembles a rectangular box with dimensions d1,

xd1, xd2. By determining the total strut volume inside the

REV, it is possible to compute the solid content and derive

porosity. Recalling that the centerline of a strut is placed

along an edge of the wireframe representation, it is clear that

not all struts are fully positioned inside the REV. For exam-

ple, only the upper/lower halves of the eight short struts, i.e.,

with length l1, at the bottom/top faces contribute to the solid

content in the REV. The 4 other short struts do not coincide

with a REV face and therefore are accounted for in full, mak-

ing a total of 8 short struts with volume Vstrutl1
active in the

REV. Concerning the long struts with length l2, 16 of them

coincide with a REV face and thus only half of them are

active. The 8 remaining struts again are fully placed inside

the REV, totaling a contribution of 16 long struts with vol-

ume Vstrutl2
. The nodes all are positioned half inside the

REV. Recalling that the volume of a node is made dependent

on the strut size, i.e., Vnodel1
and Vnodel2

for struts with length

l1 and l2, 12 and 24 nodes respectively contribute to the solid

content in the REV. The calculated porosity consequently is:

/ ¼ 1�
8Vstrutl1

þ 16Vstrutl2
þ 12Vnodel1

þ 24Vnodel2

VREV

: (14)

This allows alteration of the strut shape factors iteratively,

until porosity is converged. The implemented algorithm is

depicted in Fig. 9. Applying it for the nine cases resulted in a

maximum of 12 iterations, to obtain a relative porosity dif-

ference between the last two iterations of less than 10�5.

Note that it is also possible to generate the foam from a

known porosity and iterate until the parameter A0 is

converged.

Besides porosity, the surface-to-volume ratio also is of

interest. It is obtained by dividing the interfacial surface area

with the total REV volume. This surface area is determined

by integrating the strut perimeter along the x-coordinate,

from i1 to i2. The result is given by:

Asf ¼ 4
a1 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 2
p

ffiffiffiffiffi
A0

p

r ði2

i1

ffiffiffiffiffiffiffiffiffi
f ðnÞ

p
dn; (15)

which contains a transcendental integral and has to be treated

numerically.

IV. MODEL VALIDATION

To validate the proposed model, calculated and experi-

mental data are compared for the nine cases listed in Table I.

Concerning the data of Perrot et al.,35 A0 had to be deduced

from the published distribution of the associated strut thick-

ness. An equilateral-triangular cross-section is assumed,

which allows determination of its surface area. A conserva-

tive estimate of the uncertainty was made, based on the max-

imum reported values. This data allows validation of various

cell dimensions with nearly constant porosity. For the five

lCT data samples, on the other hand, measurement data and

uncertainties are directly obtained from the image processing

software. Data validity is investigated by analyzing a repre-

sentative volume, as discussed in Sec. II A. In order to be

able to indicate the quality of the calculated results, a thor-

ough uncertainty analysis was performed in accordance with

Moffat et al.49 The uncertainties were determined with the

root-sum-square method, unless otherwise stated. These five

samples have a wider porosity range and thus can be

regarded as complementary to the data from literature.

A comparison of the measured and calculated porosity is

depicted in Fig. 10, with the obtained uncertainty of both data

sets. It is obvious that the calculated porosity and experimen-

tal values are in good agreement. A surface-to-volume ratio

comparison is shown in Fig. 11, also with calculated and

measured results well within their respective uncertainties.

Comparison with the available PUC representations

from literature indicates a substantial accuracy improvement.

FIG. 9. Iterative procedure to calculate porosity and surface-to-volume ratio

for the three given microscopic parameters.
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Indeed, Edouard et al.48 reports in a review that available

models for foams with porosity above 0.9 yield surface-to-

volume ratios with significant deviation. This is verified by

depicting in Fig. 11 the surface-to-volume ratio results of the

nine foams, obtained with the discussed model and three

models from literature.50–52 The model of Calmidi and

Mahajan51 is based on a cubic cell representation with cylin-

drical struts and yields results that are systematically too

high. Although applying a different modeling approach, both

other models overestimate surface-to-volume ratios for ex-

perimental values below 550 m�1, find a correct value

around r0 ¼ 580 m�1, and underestimate for values above

600 m�1. The main reason for these large spreads is believed

to be a combination of measurement accuracy issues and

over-simplification of the strut geometry.

The feasibility of using the model for numerical analysis

is also investigated. This allows analysis of the averaged mi-

croscopic behavior in foam cells. As the Cartesian coordinates

are well defined, it is possible to draw a sequence of vertices,

which defines the strut boundary. By rigorously drawing the

associated edges and faces, it is possible to construct the strut

volume via a bottom-up approach. Placing these struts on a

wire-frame representation allows for constructing the unit cell.

This is implemented in a commercial computational fluid dy-

namics (CFD) preprocessor, namely Gambit
VR

. The resulting

geometry for the first 10 PPI foam, defined in Table I, is

shown in Fig. 12. Calculated porosity and surface-to-volume

ratio are 0.9326 and 454 m�1, respectively.

V. CONCLUSION

Studying the influence of structural parameters on physi-

cal behavior starts with a sufficiently accurate description of

the geometry, which has to be validated experimentally. As

currently available models only allow an order of magnitude

estimation, more particularly of surface-to-volume ratio, a

more detailed approach is derived. To study open-cell alumi-

num foams on a macroscopic level, a unit cell representation

is appropriate, as it is known that the foam structure bears a

high degree of regularity on the macroscopic scale.

The model is validated for cast open-cell aluminum

foams with porosity higher than 0.88. As both shape factor

correlations are derived for these conditions, the model’s va-

lidity cannot be guaranteed for other manufacturing methods

or lower porosities.

The discussed model allows calculation of porosity and

surface-to-volume ratio, and generation of a three-dimen-

sional foam geometry, based on three parameters: (i) trans-

verse cell diameters of the elongated cells, (ii) conjugate cell

diameters of the elongated cells, and (iii) strut cross-sec-

tional surface area at the middle between two nodes. The

advantage is that all three parameters are well-defined and

can be obtained with acceptable accuracy, either with SEM

or lCT scan analysis. The parameters are furthermore linked

to the manufacturing process of the foam, in order to allow

optimization of the structure for a given application.

FIG. 10. Model validation: Calculated versus measured porosity for the

given geometrical parameters of Table I.

FIG. 11. Model validation: Calculated (�) versus measured surface-to-vol-

ume ratio for the given geometrical parameters of Table I, as well as results

obtained with the models of Fourie and Du Plessis50 (h), Calmidi and

Mahajan51 (þ), Giani et al.52 (*).

FIG. 12. An orthotropic 10 PPI foam model, with porosity-dependent strut

shape and the encompassing rectangular box which forms the REV.
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Five foams are analyzed with a lCT scan analysis. The

importance of scan resolution is demonstrated. Higher reso-

lution results in more accurate measurements, with signifi-

cant differences. However, when further analysis is based on

the continuum assumption, an appropriate resolution upper

limit needs to be respected.

Strut cross-sectional surface area alone is not sufficient

to describe the strut geometry. Two additional shape factors

are required. The first allows alteration of the strut’s cross-

sectional shape, and is correlated with porosity. The second

factor is a measure of the axial strut size variation, which is

also found to depend on porosity. Note that it also allows

generation of a foam structure when porosity is given instead

of strut cross-sectional surface area. The latter is then

derived.

An iterative procedure is implemented to generate the

foam structure. The outcome is validated with experimental

data, obtained via lCT scan and literature. Good agreement

is found, allowing prediction of porosity and surface-to-vol-

ume ratio within measurement accuracy, for a given set of

parameters.
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