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Abstract

Debugging is a fundamental part of software development, yet adding debugger
support to new programming languages remains a complex and underexplored chal-
lenge. This report presents the design and implementation of source-level debugging
for Hylo, a new systems programming language that emphasises generic programming
and mutable value semantics. To achieve this, we extend the Hylo compiler to emit
DWARF debug information, enabling seamless integration with the LLDB debugger.
Our approach is incremental and guided by the behaviour of the Clang C++ com-
piler, allowing us to support Hylo core language features, such as variables, functions,
user-defined types, and generics. We also identify and analyse key limitations, includ-
ing challenges in representing Hylo’s fine-grained variable lifetimes and projections,
enabling evaluation of complex expressions in LLDB, and supporting Hylo’s dynamic
types (i.e., existentials). Beyond Hylo, this work aims to outline a general, reusable
methodology for equipping new programming languages with modern debugging capa-
bilities, improving their usability and adoption.

1 Introduction
Debugging is a fundamental yet time-consuming part of a software engineer’s workflow, with
studies indicating that developers spend roughly half of their programming time debugging
software [1]. Given this importance, the development of reliable debugging tools is crucial
to enhance developer productivity and ensure software correctness.

While modern, production-ready programming languages typically offer robust debug-
ging support, extending similar capabilities to new languages remains a complex task. This
process demands a deep understanding of systems programming, compiler internals, lan-
guage semantics, and the debugging infrastructure. Prior work has explored the debug-
ger internals [2, 3] and documented standards for debugging metadata [4]. Additionally,
frameworks such as LLVM [5] facilitate the generation of debug information in a platform-
independent manner. Nevertheless, there remains a lack of practical guidance on using these
tools to implement effective debugging support for emerging languages.

Our work explores the process of adding source-level debugging to Hylo, a new systems
programming language that emphasises generic programming [6] and a novel discipline called
mutable value semantics [7]. As Hylo moves towards production readiness, the absence
of debugging infrastructure presents a significant barrier to adoption and practical use.
As such, we investigate the following research question: How can modern debugging
infrastructure be used to support source-level debugging of Hylo code?

To address this question, this technical report makes the following contributions:

• The first systematic study of Hylo source-level constructs (e.g., variables, functions,
types) and how they can be encoded into debug information. (Section 4)

• We identify challenging debugging and Hylo language features and suggest ways to
support them in the future. (Section 5)

• The first Hylo compiler capable of emitting accurate debug information, enabling
meaningful source-level debugging for a significant subset of the language.

Our approach is to extend the Hylo compiler to emit DWARF debug information [4],
which can be interpreted by the LLDB debugger [8]. Using insights from the Clang com-
piler [9], we incrementally enhance Hylo’s compilation pipeline to emit accurate metadata for
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a significant language subset. Section 4 outlines this design, while Section 5 discusses our
approach’s limitations. In particular, we describe how complex variable lifetimes (Section
5.1) and existential types (Section 5.3) pose a challenge for the debugging process. Fur-
thermore, we discuss the limitations of relying on Clang for expression evaluation in LLDB
and describe how the Hylo compiler could be used instead (Section 5.2).

2 Background
Although debuggers come in a variety of flavours, we can describe their core capabilities in
an abstract manner. The debugger attaches to the debugee (i.e., the process one wants to
debug) and controls its execution. For instance, the debugger can start or stop the execution
of the debugee or inspect memory addresses while the debugee is running. More specifically,
most debuggers provide the following basic features: breakpoints, which halt the execu-
tion of the debugee at a specific location; line/instruction stepping, which advance the
execution of the debugee with one source code line/instruction; and memory/variable in-
spection, allowing the debugger to read the value present at a specific memory address or the
value of a variable. Most often, the user (i.e., the programmer) interacts with the debugger
through a command-line interface (CLI) or an integrated development environment (IDE).

2.1 The Anatomy of a Debugger
Three components form the essential pillars that sustain the debugger’s functionality: the
operating system, the hardware and the compiler. The first is the operating system,
which provides a debugging API. For example, the Linux operating system [10] exposes a
series of system calls (syscalls) that allow the debugger to control the execution of the
debugee. More specifically, syscalls such as fork [11], exec [12], and waitpid [13] are used
by the debugger to run the debugee and to regain control when the debugee halts (e.g. when
it hits a breakpoint). Perhaps the most useful syscall is ptrace [14], which is crucial for
handling the core debugger features outlined above. By using ptrace, the debugger can:
attach to the debugee, read/write register values set by the debugee, execute the debugee’s
next instruction, etc. In contrast, the Windows operating system debugging API is higher-
level and more straightforward, though this comes at the cost of reduced granularity [2].

Generally, the operating system API provides user-space programs with an abstraction
over the underlying hardware. However, this is not the case for debuggers, which need to be
aware of the CPU’s instruction set architecture (ISA). For example, reading a register value
with ptrace requires passing a pointer to a platform-specific struct, which holds ISA-defined
register fields. Additionally, CPUs offer specific support for some of the debugging features.
For instance, the x64 Intel ISA provides the special int3 instruction, which causes a software
interrupt when executed [15]. The debugger inserts this instruction in the debugee’s code
when the user requests to set a breakpoint. Sy Brand [3] provides a detailed design of a
debugger for the x64 ISA.

Using the concepts described above, we can already build a debugger targeting a spe-
cific operating system and ISA. In addition to being platform dependent, such a debugger
would only support machine code-based debugging, such as setting breakpoints on spe-
cific instructions or reading CPU registers. In contrast, users typically expect to debug
code written in a high-level language (i.e., set breakpoints on source lines, read variable
values). To enable these features, debuggers require support from the high-level language’s
compiler, which constitutes the third pillar of a debugger. A compiler’s primary role is to
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translate the source code written in a high-level language into machine code. During this
process, compilers can choose to preserve certain metadata, called debugging informa-
tion, which they make available to the debugger. This metadata should provide enough
context to enable the debugger to operate at the source language’s level.

2.2 The DWARF Debug Information Format
Oftentimes, compilers emit debugging information that adheres to a well-known format.
DWARF is one such open-source debugging information format that aims to be language
and platform-independent [4]. DWARF information is structured in multiple sections, each
aiding the debugger in reconstructing details about the source code.

One of these sections is debug_info, which contains the list of debugging information
entries (DIEs). These DIEs provide details regarding the source code symbols (e.g., vari-
ables, functions, parameters). In particular, a language’s type system can be encoded in
the DIEs, allowing a debugger to infer how to present the data to the user. Additionally,
DWARF assumes a language’s symbols are tied to specific lexical scopes. To encode this
scoping structure, the sequence of DIEs is represented as a tree, where the parent of a node
indicates its scope. Another section of the DWARF information is the debug_line, which
contains the line table, a data structure which maps machine-code instructions to their
corresponding source code locations. As we shall see in Section 4.2, the line table is crucial,
allowing a debugger to enable source-level breakpoints and line stepping. We will describe
the various aspects of the DWARF format more thoroughly in Section 4, when we detail the
required information to enable certain debugging features at the source code level.

2.3 The LLDB Debugger
From the previous discussion, one can notice that debuggers are inherently platform-dependent.
Building a new debugger with support for multiple operating systems and ISAs is a monu-
mental engineering task. Fortunately, there exist well-established debuggers that can bridge
the gap between the various platforms.

One such debugger is LLDB [8], which is part of the LLVM [5] project. It was designed
to provide a modern, high-performance debugging experience that aligns with LLVM’s mod-
ular architecture and reusable component philosophy. Unlike traditional debuggers, LLDB
is structured as a set of libraries, making it suitable not only for use via its command-
line interface but also as a programmable backend through Python scripting or integration
with other tools and IDEs. Although LLDB’s architecture was originally designed to al-
low adding support for new programming languages [16], there is still an ongoing effort to
transform LLDB into a more versatile "debugger toolkit" rather than one primarily tailored
for Clang-based languages (e.g., C, C++, Objective-C) [17]. Nevertheless, several LLVM-
based programming languages actively address these limitations to improve their debugging
experience with LLDB [18].

2.4 The Hylo Programming Language
Hylo is a modern systems programming language that aims to balance efficiency, safety, and
conceptual simplicity [19]. Hylo supports these goals with its strong emphasis on generic
programming [6] and a novel discipline called mutable value semantics [7].

Put simply, mutable value semantics imply that references are treated as second-class
citizens in Hylo. This means the programmer cannot explicitly manipulate or store refer-
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ences, since reference types are not part of Hylo’s type system. Consequently, variables in
Hylo do not share mutable state, eliminating a broad class of bugs related to aliasing and
unintended side effects.

Hylo is an ahead-of-time, natively compiled programming language. Hylo’s compiler can
be split into three components: a front end, a middle end and a back end. Hylo’s front
end performs lexing, parsing, type checking, and lowering to Hylo intermediate represen-
tation (IR). The middle end performs checks and optimisations on the Hylo IR. Lastly,
Hylo’s backend transpiles Hylo IR to LLVM IR, which is then compiled to machine code by
LLVM [5]. As such, Hylo is an LLVM-based language, leveraging LLVM’s mature infras-
tructure and optimisation capabilities. Figure 1 illustrates the compiler’s architecture.

Figure 1: Architecture of the Hylo compiler.

Currently, Hylo offers limited tooling support. Notably, its compiler does not emit
debugging information, which prevents Hylo programs from being debugged. However,
some source-level metadata is preserved through phases of the compilation pipeline, up to
the Hylo IR (e.g., to report accurate error diagnostics). As we will see throughout this
report, enabling debugging support primarily involves modifying the transpilation phase
of the compiler, where Hylo IR is translated to LLVM IR. Specifically, we use LLVM’s debug
API [20] to generate the necessary DWARF information.

3 Methodology
This report presents the design and implementation of source-level debugging support for
the Hylo programming language. Our approach is to modify the Hylo compiler to emit
DWARF metadata, allowing Hylo programs to be debugged using LLDB. We selected the
DWARF standard because it is open-source [4], platform and language-independent, and
well-supported within the LLVM ecosystem. Likewise, we chose LLDB for its tight integra-
tion with LLVM, modern architecture, and its growing support for source-level debugging
across various programming languages [18].

In Section 4, we explore a few fundamental debugging features: source listing, break-
points and line stepping and variable inspection. Our decision to focus on these
features is not based on their commonality or usefulness, although both might be true. In-
stead, these features lie at the foundation of a debugger, meaning they serve as building
blocks to enable more complex debugging features. Additionally, we show that providing
debugging support to a programming language can be incremental, as each core feature al-
lows us to focus on a different subset of DWARF information. Our ordering of these features
reflects their complexity and the required engineering work.
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We add source-level debugging support to Hylo by studying how Clang emits DWARF in-
formation for C++, one of the few languages with built-in support in LLDB. By representing
Hylo constructs in DWARF similarly to how Clang encodes analogous C++ constructs, we
allow LLDB to work out-of-the-box for a substantial subset of the language. This approach
avoids the considerable effort of developing and maintaining Hylo-specific LLDB plugins or
a custom fork, and helps us precisely identify where this deeper integration with LLDB is
required. We discuss such scenarios in Sections 5.2 and 5.3, allowing the Hylo team to assess
whether the additional engineering effort is worthwhile.

Throughout the report, we use the examples shown in Figure 2 to illustrate our design
choices. The code snippets showcase the same 2D vector translation algorithm written in
both C++ and Hylo. The Hylo example highlights the language features for which we
emit accurate debug information, including variables, functions, built-in and generic
types, user-defined types and member functions. Unless otherwise specified, we imply
that the C++ example is compiled using Clang with full debug information (-g) and no
optimisations (-O0) and that the Hylo code is compiled without any LLVM optimisations.

1 #include <iostream>
2
3 template <class T>
4 T add(T n, T m) {
5 return n + m;
6 }
7
8 struct Vector2 {
9 int x;

10 int y;
11
12 void offset(const Vector2& delta) {
13 x = add(x, delta.x);
14 y = add(y, delta.y);
15 }
16 };
17
18 int main() {
19 Vector2 v{1, 1}, delta{1, 1};
20 v.offset(delta);
21 std::cout << v.x << '\n';
22 }

(a) C++ example

1 fun add<T: AdditiveArithmetic>(_ n: T, _ m: T) -> T {
2 return n + m
3 }
4
5 type Vector2: Deinitializable {
6 public var x: Int32
7 public var y: Int32
8 public memberwise init
9

10 public fun offset(_ delta: let Vector2) inout {
11 &x = add(x, delta.x)
12 &y = add(y, delta.y)
13 }
14 }
15
16 public fun main() {
17 var v = Vector2(x: 1, y: 1)
18 let delta = Vector2(x: 1, y: 1)
19 &v.offset(delta)
20 print(v.x)
21 }
22

(b) Hylo example

Figure 2: Vector translation example in both: a) C++ and b) Hylo

Beyond design, we implement these ideas in a fork of the Hylo compiler. This represents
the first Hylo compiler capable of emitting accurate DWARF debugging information, a
milestone that marks a significant step toward making Hylo a production-ready language.

4 Design of Debugging Support for Hylo
This section outlines our design for source-level debugging in Hylo. Each subsection focuses
on a core debugging feature, detailing the required DWARF metadata and how LLDB uses
it. We examine how Clang emits this information for C++ and describe the corresponding
modifications to the Hylo compiler.
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Figure 3: The Subprogram DIEs corresponding to the main (on the left) and add (on the
right) functions defined in the C++ code in Figure 2.

4.1 Source Listing
The source list command in LLDB is a powerful tool for viewing code directly within the
debugger. With a search query, users can display relevant sections of the codebase. This
command is invaluable not only for navigating code during a debugging session but also as a
preliminary step before setting a breakpoint. This section analyses the scenario in which the
source code is listed by a given function name. The specific LLDB command is: source
list -n <function_name>.

When available, LLDB uses the DWARF information to search for a function given its
name. More specifically, LLDB searches through the debug_info section of the metadata,
which contains the tree of debug information entries (DIEs). In particular, LLDB parses
the DW_TAG_subprogram DIEs, which contain information regarding the functions defined
in the source code.

Figure 3 illustrates the structure of a DW_TAG_subprogram DIE. As we’ll also see in the
following sections, each DIE consists of a list of attributes. Common ones like DW_AT_name,
DW_AT_decl_file, and DW_AT_decl_line appear across many DIE types and capture source-
level details, such as the symbol’s name (in this case, the function name) and its location in
the source code. The attribute DW_AT_linkage_name is specific to subprogram DIEs, and
encodes the function’s actual name in the binary. Since languages like C++ and Hylo sup-
port function overloading, compilers use name mangling to avoid symbol conflicts in the
compiled machine code. Most other attributes (e.g., DW_AT_low_pc) contain machine-level
details about the function and are synthesised by the LLVM debug API, meaning they do
not concern our implementation.

We briefly discuss how the value of the DW_AT_name attribute varies with the type of
function. Figure 3 shows examples of global (e.g., main) and template (e.g., add) functions.
Clang records global function names as they appear in the source code, while template
function names include their template arguments (e.g., add<int>). This is because C++
template functions are monomorphised (i.e., a specialised instance for each set of type
arguments is compiled [21]), so encoding the template arguments in DW_AT_name helps LLDB
distinguish between specialisations. Member functions (e.g., offset) are also recorded as
they appear in the source code. Them being member functions is indicated by their parent
DIE being a structure type DIE (see Section 4.3.1 for details on types).

In Hylo, each non-generic function (e.g., main, offset) is compiled into a single Hylo IR
function. Member functions are compiled similarly to global functions, with an additional
parameter for the self pointer. Generic functions (e.g., add<T>) are monomorphized in a
dedicated Hylo IR pass, meaning a separate Hylo IR function is created for each specialisa-
tion. Afterwards, Hylo IR functions are translated one-to-one to LLVM IR functions.
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To enable source listing for Hylo code, we use the LLVM debug API to annotate each
LLVM IR function definition with debug metadata during the compiler’s transpilation
phase. To generate the subprogram DIE, LLVM requires details such as the function name,
declaration file and line, and mangled name. We propagate the first three from Hylo IR and
compute the latter using Hylo’s mangling algorithm. We populate the DW_AT_name attribute
following the previously discussed Clang conventions.

4.2 Breakpoints and Line Stepping
Breakpoints and line stepping are fundamental to the debugging workflow. Breakpoints
pause the execution of the debugee at a specified point, allowing the user to inspect or alter
the program state. Execution can then be resumed incrementally, using one of the flavours
of stepping: step into, step over, step out. Without debug information, these features
operate at the instruction level, which is undesirable for high-level code. With debug info,
users can interact at the source line level instead, by setting breakpoints on specific lines
or stepping through lines of code.

To support this higher-level view, LLDB uses the debug_line section of DWARF, which
contains the line table, a mapping from machine instructions to their corresponding source
locations. If the compiler generates an accurate DWARF line table, LLDB can offer source-
level stepping and breakpoints, by using similar algorithms to those covered in Chapter 14
of Sy Brand’s work [3].

LLVM can generate a line table if the LLVM IR instructions are annotated with source-
level metadata. This metadata includes the original line number, column number, and
lexical scope of the corresponding Hylo source code. In our work, we assume the scope of a
source code line is the enclosing DW_AT_subprogram DIE representing the function it belongs
to, a limitation we discuss in Section 5.1. Since Hylo IR already carries source metadata,
we update the compiler’s transpilation phase to propagate it to LLVM IR.

Figure 4 illustrates the similarities between Hylo IR and LLVM IR. Both are linear, static
single-assignment (SSA) intermediate representations. The fundamental unit of execution is
a basic block, a sequence of instructions with no internal control flow (e.g., b0 in Figure 4a
and prologue in Figure 4b). Functions in both IRs consist of basic blocks forming a control
flow graph. During the transpilation phase, each Hylo IR instruction is translated into
zero or more LLVM IR instructions. Basic blocks are mapped one-to-one, except that stack
allocations are moved to a dedicated prologue block.

As such, we identify a general heuristic for metadata propagation: we copy source-level
information from each Hylo IR instruction to its corresponding LLVM IR instructions. While
effective in most cases, this causes misleading debugger behaviour in two scenarios, which
we cover below: stack allocations and default argument construction.

As previously described, stack allocations in Hylo IR are relocated to a dedicated prologue
block in LLVM IR. Each LLVM IR alloca instruction corresponds to a Hylo IR alloca_stack
instruction. However, the latter might originate from non-consecutive lines in the source
code. Applying our heuristic in this case causes LLDB to display non-linear stepping be-
haviour, appearing to jump unpredictably across the function. To address this, we omit
source-level annotations in the prologue block. This ensures that when LLDB enters a
function (e.g., by hitting a function-level breakpoint), it executes the prologue, halting only
at the first instruction with source-level metadata.

Hylo supports default function arguments. For example, while only one argument is ex-
plicitly passed to the print function called in Figure 2b (i.e., v.x), it accepts two optional
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1 external fun main() -> {} {
2 b0(%b0#0 : &{}):
3 %i0.0: &Vector2 = alloc_stack Vector2
4 %i0.2: &word = subfield_view %i0.0, 0, 0
5 %i0.3: &word = access [set] %i0.2
6 store i64(0x1), %i0.3
7 end_access %i0.3
8 %i0.6: &word = subfield_view %i0.0, 1, 0
9 %i0.7: &word = access [set] %i0.6

10 store i64(0x1), %i0.7
11 end_access %i0.7

(a) Hylo IR

1 define private void @main(ptr noalias nocapture nofree %0) {
2 prologue:
3 %4 = alloca %Vector2, align 8
4 br label %b0
5
6 b0: ; preds = %prologue
7 %5 = getelementptr %Vector2, ptr %4, i32 0, i32 0, i32 0
8 store i64 1, ptr %5, align 8
9 %6 = getelementptr %Vector2, ptr %4, i32 0, i32 1, i32 0

10 store i64 1, ptr %6, align 8

(b) LLVM IR

Figure 4: A section of the main function from Figure 2b compiled to Hylo IR (on the left)
and LLVM IR (on the right). More specifically, this section corresponds to the Vector2
instantiation on line 17.

arguments, which are constructed in the caller’s (i.e., main’s) stack frame. However, the
corresponding Hylo IR instructions carry source-level metadata pointing to the source lo-
cation of print’s definition (i.e., Print.hylo). To avoid this issue, we annotate the LLVM
IR instructions that create default arguments with the same metadata as the function call
itself, ensuring they appear as part of the same source line to the debugger.

4.3 Variable Inspection
Another core capability of debuggers is their ability to inspect the debugee’s memory during
execution. Without debug information, the debugger can only inspect registers or memory
addresses. Instead, users would prefer to inspect high-level constructs, such as variables.
If debug information is available, LLDB enables variable inspection via commands such as
print <variable-name>.

This section presents the necessary modifications to the Hylo compiler to enable variable
inspection. First, we explore how Hylo’s type system can be encoded in DWARF (Section
4.3.1). Second, we use the type information to encode individual variables, namely function
parameters and local variables (Section 4.3.2).

4.3.1 DWARF Type DIEs

Type information is crucial for debuggers like LLDB because it describes how variables are
laid out in memory, enabling raw memory to be interpreted and displayed as readable vari-
able values. In DWARF, types are represented through DIEs, which are flexible enough to
encode a broad range of type systems. DWARF includes built-in support for common fun-
damental types (e.g., int, float, char) and mechanisms to construct more complex types
(e.g., structs, arrays, classes). To illustrate how Hylo’s types can be mapped to DWARF
DIEs, we focus on built-in types and user-defined structures (e.g., the Vector2 type
shown in Figure 2b). In our version of the Hylo compiler, the emission of DWARF type
information is handled by a dedicated subroutine which is invoked whenever the type of a
variable must be described. This subroutine determines the corresponding Hylo type and
constructs the appropriate DIE.

Figure 5 shows how the C++ types int and float are represented in DWARF. Although
both DIEs have tags DW_TAG_base_type, we differentiate them by the DW_AT_encoding
attribute: DW_ATE_float denotes a floating-point number, while DW_ATE_signed represents
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Figure 5: Type DIEs corresponding to a floating-point number (on the left), a four-byte
signed integer (in the middle), and a pointer to an integer type (on the right).

a signed integer. Additionally, the DW_AT_byte_size attribute records the type’s size in
bytes, and DW_AT_name specifies its name.

DWARF also provides DIEs for encoding C++’s compound types, such as pointers,
references or const-qualified types. For example, Figure 5 also displays the encoding of an
int*. We notice it consists of a DW_TAG_pointer_type DIE, which includes a DW_AT_type
attribute pointing to the int base type. More complex types, such as const Vector&&, are
expressed by chaining multiple DIEs, with each representing a layer of the compound type.

Hylo exposes three main classes of primitive types: integers (e.g., Builtin.i32), floating-
point numbers (e.g., Builtin.float32), and opaque pointers (i.e., Builtin.ptr). Hylo
defines built-in operations for these primitives (e.g., Builtin.add_i32 for integer addition).
Note that these primitives and operations are available only within Hylo’s Standard Library.
Instead, the programmer should use types such as Int32 referenced in Figure 2, which are
structures defined in the Standard Library that serve as abstractions over built-in types.

In our implementation, we encode Hylo’s primitive types similarly to the examples
shown in Figure 5. For integers and floats, we infer the size from the type name (e.g.,
Builtin.i64 implies 8 bytes) and assign the corresponding DW_AT_encoding. Since Hylo’s
pointers are opaque (i.e., they hide the type of the pointer), we encode them as integers.
Their DW_AT_byte_size is platform-dependent, but we retrieve it using the LLVM API,
which exposes platform-specific details.

(a) Top-level struct DIE (b) Member variable DIE

Figure 6: Encoding of the Vector2 type and its member x from Figure 2.

Figure 6 illustrates how a C++ user-defined structure like Vector2 is encoded using
DWARF DIEs. The encoding is split into two parts: a top-level DIE representing the struct
itself (Figure 6a) and a set of child DIEs, each corresponding to a member field (Figure 6b).
Both of these types of DIEs provide source-level information, such as the symbol name
(DW_AT_name) and source location (DW_AT_decl_file and DW_AT_decl_line).

These DIEs also encode the memory layout. The struct DIE includes a DW_AT_byte_size
attribute for the struct’s size. Each member DIE contains a DW_AT_data_member_location
indicating the offset of the field within the struct. Usually, encoding these details is chal-
lenging, since the struct’s layout is platform-dependent (e.g., see the System V ABI for
AMD64 [22]). Fortunately, LLVM exposes target-specific size and layout information, al-
lowing us to query a struct’s layout directly from its LLVM IR representation. Lastly, each
member DIE contains a DW_AT_type attribute pointing to the field’s type.
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In our implementation of the Hylo compiler, each time a new Hylo IR struct type is
transpiled to an LLVM IR type, we generate its struct DIE. We achieve this by recursively
constructing the DIEs for its member fields before creating the top-level struct DIE. We
cache these DIEs once computed to improve efficiency and prevent redundant metadata
generation. Importantly, this approach supports Hylo’s generic struct types as well. Since
generic types in Hylo are monomorphized similarly to generic functions, they are already
specialised by the time we reach the LLVM IR level. This means that we don’t need to
adapt our DWARF emission process to support generic types.

4.3.2 DWARF Variable DIEs

Having encoded types as DWARF DIEs, we now focus on representing Hylo source-code
variables.

(a) Function Parameter DIE (b) Local Variable DIE

Figure 7: The DWARF encoding of the delta function parameter and local variable v from
the example in Figure 2a.

Figure 7 shows two kinds of variable DIEs: parameters (a) and local variables (b). Similar
to before, these encode source-level information via the DW_AT_name, DW_AT_decl_line,
and DW_AT_decl_file attributes. Additionally, each variable DIE includes a DW_AT_type
attribute, the construction of which we described in Section 4.3.1. The variable’s scope is
determined by the DIE’s parent. For now, we assume that a variable’s scope is the scope of
the function in which it is declared. We explore this limitation in Section 5.1.

A key attribute is DW_AT_location, which links variables to their memory locations. As
previously discussed, type DIEs describe how to interpret a region of raw memory. Together
with the location information, this enables LLDB to correctly display a variable’s value.
The DWARF standard [4] describes several methods for encoding variable locations. In the
examples shown in Figure 7, both variables are stored on the stack, and their locations are
represented as offsets from the stack base pointer.

Fortunately, since LLVM performs DIE generation, we don’t need to handle the low-level
details of the DW_AT_location attribute directly. Instead, we use LLVM’s debug information
API, which exposes debug records to track source-level variable values within LLVM
IR [20]. Among the three types of debug records, we identify dbg_declare as the most
suitable for use by compiler frontends, such as Clang or the Hylo compiler. In contrast,
the remaining debug records are primarily intended for LLVM’s internal use, enabling the
preservation of variable information during optimisation passes [23].

Therefore, to represent source-level variables, the compiler should emit a dbg_declare
record for each variable. This record includes metadata such as the variable’s name, its
DWARF type, and its source-code location. Crucially, it also contains a pointer to a stable
memory address where the variable is allocated by the LLVM IR. In most cases, this is a
pointer to the stack slot where the variable resides.
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1 define void @offset(ptr %0, ptr %1) !dbg !885 {
2 %3 = alloca ptr, align 8
3 %4 = alloca ptr, align 8
4 store ptr %0, ptr %3, align 8
5 #dbg_declare(ptr %3, !886, !DIExpression(), !888)
6 store ptr %1, ptr %4, align 8
7 #dbg_declare(ptr %4, !889, !DIExpression(), !890)

(a) IR Generated by Clang

1 define private void @offset(ptr %0, ptr %1, ptr %2) !dbg !20 {
2 prologue:
3 %debug.0 = alloca ptr, align 8
4 #dbg_declare(ptr %debug.0, !21, !DIExpression(), !31)
5 store ptr %0, ptr %debug.0, align 8
6 %debug.1 = alloca ptr, align 8
7 #dbg_declare(ptr %debug.1, !32, !DIExpression(), !31)
8 store ptr %1, ptr %debug.1, align 8

(b) IR Generated by our Hylo Compiler

Figure 8: Examples of LLVM IR generated by both Clang and our version of the Hylo
compiler for the offset function from Figure 2. The snippets have been simplified for
clarity and only illustrate the stack allocations of the function parameters.

Let us first examine how parameter DIEs are emitted. Figure 8a shows part of the
Clang-generated IR for the offset function. The function takes two pointers: the implicit
this pointer and the delta argument (originally a const Vector2&). At the start of the
function, Clang allocates two stack slots and stores the parameters there. Each slot is then
referenced by a dbg_declare, along with type and source location metadata.

From this and similar examples, we infer that Clang lowers C++ pointer and reference
parameter types to opaque pointers in LLVM IR, allocates them on the stack at function
entry (we assume optimisations are disabled), and emits a corresponding dbg_declare tied
to each stack slot.

A crucial insight is that Hylo’s function parameters are compiled as pass-by-reference.
While Hylo’s type system doesn’t expose reference types, the compiler lowers parameters to
LLVM IR as opaque pointers, effectively treating them as references. This is consistent with
one of Hylo’s core principles: copies are explicit by default [24]. Correctness properties,
such as the law of exclusivity[7], are enforced statically by the compiler before lowering to
LLVM IR. Consequently, parameters can be safely passed by reference in the generated IR.

However, unlike Clang, Hylo does not emit redundant stack allocations for function
parameters. Instead, parameters are used directly from the SSA registers. While this is
efficient, it poses a challenge for debug info, as we require stable memory addresses to use
dbg_declare. Our approach is to synthesise stack slots using alloca for each parameter at
function entry, store the incoming value, and emit a corresponding dbg_declare referencing
the allocated address, the parameter’s type DIE, and source information. We apply this
transformation to all but the last parameter, which is reserved for the function’s return
value. Figure 8b shows the result of our approach for the offset function. Note that in
Hylo’s member functions, the first parameter always represents the self object.

Although function parameters are compiled as pass-by-reference, Hylo defines several
parameter passing conventions that carry semantic meaning describing how a parameter
is passed to the callee. We aim to preserve this meaning in DWARF by mapping each Hylo
convention to a C++ reference type with similar semantics (see Table 1a). These semantic
similarities between Hylo’s parameter conventions and C++’s reference types are explored
in Hylo’s official language tour [24]. We encode these reference types (i.e., compound types)
following the same strategies discussed earlier in Section 4.3.1. Lastly, since LLVM IR uses
opaque pointers, we recover the underlying type (e.g., Vector2) from the Hylo IR.

For local variables, we encode them as value types instead. The Hylo compiler al-
locates them on the stack with alloca LLVM IR instructions. We identify source-level
variables by checking whether a given allocation corresponds to a user-defined variable (as
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opposed to, say, a constant). Hylo also defines several bindings for local variables (e.g.,
mutable/immutable), which we capture as shown in Table 1b. In short, variables introduced
with let are treated as const-qualified, while others are not. A limitation of our approach
occurs when variables share stack slots, which we discuss further in Section 5.1.

Table 1: Mappings between Hylo parameter passing conventions and local variable bindings
to corresponding C++ constructs with similar semantics for the Vector2 type.

(a) Parameter Convention Mappings

Hylo Convention C++ Encoding
let const Vector2&

inout Vector2&
sink Vector2&&
set Vector2&

(b) Local Variable Binding Mappings

Hylo Binding C++ Encoding
let const Vector2

var Vector2

inout Vector2

5 Limitations of our Design
In the previous section, we detailed how we extended the Hylo compiler to emit DWARF
information. The example in Figure 2 is representative of the features we emit accurate
debug info for: variables, function types (global, member, generic), and both built-in and
user-defined types, including generics. Though we focus on core functionality, our implemen-
tation already emits sufficient DWARF metadata to enable advanced debugging features,
such as watchpoints, stack trace visualisation and variable assignments.

In this section, we outline key limitations of our current design and suggest directions
for future improvements, focusing on improving local variable debugging (Section 5.1), Hylo
expression evaluation in LLDB (Section 5.2), and support for existential types (Section 5.3).

5.1 Limitations in Variable Emission and Lifetime Tracking
In Section 4.3.2, we noted two limitations of our design: local variables may share memory,
and variable scope is assumed to be function-level. We now discuss these in more detail.

When handling local variable DIEs, we rely on detecting stack allocations in LLVM IR
that correspond to local variables. However, variables declared with let or inout bindings
don’t always create new stack allocations. In cases where they project existing values
(e.g., let a = b, or inout c = d.e), the compiler may reuse the original memory instead,
after statically enforcing code correctness. A potential improvement would be to detect
these projections and introduce redundant stack allocations when possible, similar to our
approach for parameters.

Additionally, we assumed that a variable’s scope spans the entire function in which it is
declared. However, this assumption fails when we declare variables inside nested scopes (e.g.,
within if statements). Instead, variable DIEs can be nested within DW_TAG_lexical_block
DIEs, which indicate that their visibility is limited to a lexical scope.

This approach is generally sufficient for C++, where most local variables have auto-
matic storage duration, meaning they are deallocated at the end of their lexical scope [21].
However, Hylo’s variable lifetimes are more fine-grained. A local variable’s lifetime begins
after initialisation and ends either after consumption or after its last usage [25]. These
lifetimes often do not align with lexical scopes. To more precisely reflect such semantics in
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DWARF, one idea is to emit one artificial DW_TAG_lexical_block DIE for each variable,
corresponding to the variable’s actual lifetime rather than its lexical scope.

5.2 Unsafe Expression Evaluation
Section 4.3 discussed how we extended the Hylo compiler to emit variable DIEs, enabling
variable inspection within LLDB. Beyond basic inspection, these DIEs enable simple ex-
pression evaluation, such as modifying variables at runtime, or performing arithmetic op-
erations on Hylo variables of built-in types (e.g., int, float). By default, LLDB evaluates
expressions using Clang, which parses user-provided code, resolves symbols from DWARF
information, and compiles the expression to LLVM IR, which is then just-in-time compiled
using LLVM and executed within the debugee’s address space.

While powerful, this Clang-based evaluation has key limitations for Hylo. First, complex
operations such as function calls may fail due to ABI mismatches between C++ and Hylo.
Second, Clang does not enforce Hylo’s semantics, potentially leading to unsafe behaviour.
Finally, it requires C-like syntax, which might be unfamiliar to some users.

An idea for enabling Hylo expression evaluation in LLDB is to adopt an approach sim-
ilar to Clang’s. Specifically, the Hylo compiler could be reused to compile user-provided
expressions. Additionally, it should provide a mechanism to resolve external symbols (e.g.,
those defined in DWARF DIEs). This approach could be extended further by implementing
an LLDB plugin [16] for Hylo. In particular, the plugin could handle a custom extension
of DWARF, which would be more tailored to represent Hylo-specific constructs, instead of
relying on C++ constructs. However, the process of adding a plugin for a new programming
language in LLDB is particularly challenging, as seen in the Rust community’s effort [26].

5.3 Debugging Dynamic Types in Hylo
Our design supports debugging Hylo’s built-in, structure and generic types. If Hylo were
limited to these, variable types could be fully resolved at compile time. However, providing
dynamic types increases expressiveness, even in a language focused on generics. Hylo
supports dynamic types through existentials, a feature inspired heavily from Swift.

We first introduce traits, which define constraints that user-defined structures must
satisfy. For example, in Figure 2b, the generic type T in the function add must conform to
the AdditiveArithmetic trait, which ensures that addition is supported for the parameters
n and m. Although our current compiler design does not encode traits into the DWARF
DIEs, debugging support works properly in code containing traits. That is because traits
are resolved before LLVM IR generation, as they are only used for constraint checking.

An existential type is a runtime container for any type conforming to specific traits.
Such types are denoted with the any keyword. For example, any AdditiveArithmetic may
hold an Int32 at runtime. Existentials allow constructs like trait-constrained heterogeneous
lists, at the cost of runtime indirection due to dynamic dispatch.

In Clang-generated DWARF information, we noticed that each variable’s type DIE re-
flects its static type, even in the case of polymorphic classes. Still, LLDB can determine
the dynamic type of a variable by using a LanguageRuntime plugin [16], which inspects
a variable’s metadata (e.g., vpointer/vtable if the C++ program conforms to the Itanium
ABI [27]). Swift’s LLDB fork [18] uses a similar plugin to inspect the witness table for ex-
istential types, a mechanism that could also be adapted to Hylo. To enable this, traits must
also be encoded into DWARF, to be given as type DIEs for existential container variables.
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6 Responsible Research
This section outlines the practices we followed to ensure our research was conducted respon-
sibly. In particular, we focus on three areas we believe are most relevant for our work.

6.1 Reproducibility of Our Approach
Our methodology, described in Section 3, is observation-driven, guided by how Clang emits
debug information. While the DWARF format is standardized [4], debug information emis-
sion remains implementation-dependent. Throughout this work, we used Clang 17.0.0. Al-
though behaviour may vary in future versions, we ensured the emitted debug info for the
example in Figure 2a aligns with the DWARF specification.

We manually tested our prototype using a recent version of LLDB (47addd4), and used
llvm-dwarfdump from LLVM 14 to extract DWARF entries, such as the one from Figure 7.
Although these figures illustrate some platform-dependent values of DIE attributes, they
do not influence our approach, as they are emitted by LLVM in a platform-independent
manner. For completeness, we compiled all programs on an x64 Ubuntu system.

The specific Hylo compiler version we extended is (0951941). Additionally, our imple-
mentation, which adds DWARF emission to the Hylo compiler, is made publicly available.1

6.2 Transparency of Scope and Limitations
Throughout this report, we explicitly state the Hylo features that our design targets (e.g., see
Section 3), and our explanation in Section 4 aims to cover each of them in a comprehensive
manner. In practice, our implementation correctly handles additional features beyond this
set, but we chose to be conservative in our claim, limiting our scope to those we studied in
detail. As such, the reader can assume our scope is limited to the explicitly listed features.

Additionally, we dedicate an entire section to limitations (i.e., Section 5). In particular,
we chose to discuss cases that go beyond minor extensions but require substantial engineering
effort. Moreover, it is important to emphasise that our implementation is a prototype,
intended to demonstrate the feasibility of our approach, not to serve as a production-ready
implementation. Debug information is complex, and even mature compilers do not always
emit fully correct metadata. Instead, our goal was to lay a solid foundation, which could be
extended with additional engineering effort.

6.3 Use of Generative AI Tools
We used generative AI tools in limited, well-defined contexts. Importantly, we did not use
these tools to generate research ideas, validate technical solutions, write code, or produce
full sections of this report. Their use was restricted to two specific cases:

1. Polishing parts of the report: We used generative models to refine existing text,
such as rephrasing small sections for clarity, or checking grammar and spelling. Ad-
ditionally, we also used them for LaTeX-related tasks, including table formatting and
figure alignment.

1Our version of the Hylo compiler capable of emitting DWARF information is available
at: https://gitlab.tudelft.nl/jsreinders/pl-tooling-for-hylo/-/tree/debugging-hylo/debuggers?
ref_type=heads
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2. Navigating complex codebases: When analysing large codebases like LLVM, Clang,
or LLDB, we occasionally used generative models to suggest where certain functional-
ity might be implemented (e.g., relevant files or classes). We then manually inspected
the source code in these locations and critically assessed whether they matched what
we were looking for.

In all cases, outputs from generative models were treated as unverified suggestions,
meaning that every suggestion we took into account was manually reviewed and validated.

7 Conclusions and Future Work
This work explored the process of adding debugging support for Hylo, an emerging systems
programming language focused on efficiency, simplicity and safety. We designed and im-
plemented a version of the Hylo compiler capable of emitting DWARF debug information,
enabling source-level debugging in LLDB.

Our approach was incremental and observation-driven. By studying how Clang emits
DWARF metadata for C++, we adapted similar strategies for Hylo, adjusting for its seman-
tics and compiler architecture. We demonstrated that a significant subset of Hylo features
(e.g., variables, functions, user-defined types, and generics) can be debugged effectively
without extending the DWARF standard or LLDB.

We also examined the limitations of our approach and outlined directions for future work.
In particular, we highlighted the complexity of accurately representing Hylo’s projections
and fine-grained variable lifetimes in DWARF, as well as the challenges of supporting rich
expression evaluation in LLDB and debugging Hylo’s dynamic types (i.e., existentials), which
require custom LLDB plugins or even a dedicated LLDB fork.

Looking forward, several engineering and research directions can extend this work. Our
current design could be refined and upstreamed into the main Hylo compiler, making debug-
ging accessible to all users. Integration with IDEs via protocols such as the Debug Adapter
Protocol [28] would improve usability for developers unfamiliar with command-line tools.
Additional opportunities include supporting other debuggers (e.g., GDB[29], CDB [30]) and
investigating how Hylo’s concurrency model interacts with debugging concurrent programs.

Beyond Hylo, this work illustrates a general and practical methodology for incrementally
adding debugging support to new LLVM-based programming languages. We believe our
approach lays the foundation for making emerging systems languages more approachable,
debuggable, and ready for adoption in real-world software development.
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