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Wrist-to-Wrist Bioimpedance Can Reliably Detect
Discrete Self-Touch

Maria-Paola Forte™, Graduate Student Member, IEEE, Yasemin Vardar~, Member, IEEE,
Bernard Javot™, Member, IEEE, and Katherine J. Kuchenbecker™, Fellow, IEEE

Abstract— Self-touch is crucial in human communication,
psychology, and disease transmission, yet existing methods for
detecting self-touch are often invasive or limited in scope. This
study systematically investigates the feasibility of using nonin-
vasive electrical bioimpedance for detecting discrete self-touch
poses across individuals. While previous research has focused
on classifying defined self-touch poses, our work explores how
various poses cause bioimpedance changes, providing insights
into the underlying physiological mechanisms. We thus created
a dataset of 27 genuine self-touch poses, including skin-to-skin
contact between the hands and face and skin-to-clothing contact
between the hands and chest, alongside six adversarial mid-air
gestures. We then measured the wrist-to-wrist bioimpedance of
30 adults (15 females and 15 males) across these poses, with
each measurement preceded by a no-touch pose serving as a
baseline. Statistical analysis of the measurements showed that
skin-to-skin contacts cause significant changes in bioimpedance
magnitude between 237.8 kHz and 4.1 MHz, while adversarial
gestures do not; skin-to-clothing contacts cause less-significant
changes due to the influence and variability of the clothing
material. Furthermore, our analysis highlights the sensitivity of
bioimpedance to the body parts involved, skin contact area, and
individual’s characteristics. Our contributions are twofold: 1) we
demonstrate that bioimpedance offers a practical, noninvasive
solution for detecting self-touch poses involving skin-to-skin
contact, and 2) researchers can leverage insights from our study
to determine whether a pose can be detected without extensive
testing.

Index Terms— Contact detection, electrical bioimpedance
spectroscopy (EBIS), human biocimpedance, human—computer
interaction, self-touch poses.

I. INTRODUCTION

ELF-TOUCH occurs when an individual uses their hand(s)
Sto make physical contact with another body part, either
directly on their skin or through clothing. These actions are
often performed with little or no awareness [1], especially
when self-touch is the manifestation of a psychological state,
such as stress or task concentration [2]. Facial self-touch
is a particularly prevalent human behavior, with individuals
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unconsciously touching their face approximately 50 times
per hour [3], usually with their nondominant hand [4]. Self-
touch also serves communicative purposes, such as partially
covering the eyes to express dismay or covering both ears
to indicate noise sensitivity, especially in individuals with
autism [5]. In addition, self-touch is integral to sign languages,
where many signs involve contact between the left and right
hands or between one or both hands and the signer’s face
or chest [6].

While the human sense of touch can reliably detect the
occurrence of a self-touch event, the body parts involved,
and the surface area of the skin contact, replicating this level
of reconstruction remains challenging for sensing devices.
Nonetheless, being able to reconstruct self-touch with sensors
could positively impact several fields. For example, it could
provide insights into human psychological states and behav-
ior [2], monitor hygiene and virus transmission [7], and enrich
wearable or on-skin interfaces [8].

Self-touch can be detected by measuring the user’s
brain activity with functional magnetic resonance imaging
(fMRD) [9]. This method allows scientists to investigate the
brain activity related to self-touch but is unsuitable for other
applications because of the size, cost, and complexity of
fMRI machines. Alternatively, self-touch can be sensed using
electronic skin (e-skin) technologies, which can detect the
exact location and force of touch. However, e-skin must cover
large areas of the body with the sensing device, reducing
comfort and practicality for long-term use [10].

Without direct instrumentation, self-touch can be estimated
by having a human observer manually annotate each individual
event [7], which is time-consuming, error-prone, expensive,
and difficult to scale. Vision-based methodologies, in which
the hand pose and self-contacts are reconstructed from RGB
or RGB-D videos [11], [12], [13], [14], [15], face challenges
when distinguishing contact from close proximity, especially
from arbitrary viewing angles. In addition, continuous video
capture in good lighting conditions is not realistic for everyday
situations.

Many of the limitations identified for observer-based and
vision-based approaches can be overcome by using small
wearable sensors that detect the user’s wrist accelerations [1],
muscular activation [1], ultrasound propagation [8], [16],
conductivity [17], electrical bioimpedance [18], or hand
proximity [19]. Among these modalities, we chose to investi-
gate bioimpedance using electrical bioimpedance spectroscopy
(EBIS). Bioimpedance sensing has been widely used to assess
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body composition [20] and more recently as a noninvasive
approach for several medical applications, such as pulmonary
nodule identification [21], edema supervision for heart fail-
ure [22], health assessment of cerebral blood flow [23], blood
pressure monitoring [24], and insulin measurement [25]. Ben-
eficially, a bioimpedance-based system: 1) does not encumber
the user’s hands or face, 2) has the potential to quickly detect
very small changes in the contact [26], and 3) could be
embedded in a wearable device. So far, previous work has
largely focused on developing algorithms for detecting contact
at specific body locations and classifying defined gestures.
Furthermore, key factors such as sex, ethnicity, and body mass
index (BMI), which significantly affect bioimpedance [27],
[28], have not been explicitly considered.

To address this gap and enable scalable self-touch detection,
our research focuses on a fundamental question: Which fypes
of discrete self-touch poses, if any, can bioimpedance-based
systems reliably detect across diverse individuals? To answer
this question, we created a dataset consisting of 27 genuine
self-touch poses and six adversarial mid-air gestures collected
from 30 participants. We then measured the participants’
bioimpedance across a wide range of frequencies by con-
necting two conductive wristbands to an impedance analyzer,
replicating the setup used by Touché [18] to classify five poses.
We finally conducted a detailed analysis of how the 33 poses of
our dataset affect bioimpedance compared to the individual’s
baseline. This makes our study the first to systematically
link self-touch poses to changes in bioimpedance. We also
examined the sensitivity of bioimpedance changes to factors
such as the body parts involved, the surface area of skin
contact, individual characteristics, and external conditions.

Our results show that bioimpedance-based sensing systems
hold great promise for reliably detecting skin-to-skin self-
touch poses. We identified the specific range of bioimpedance
frequencies that are most informative for detecting gen-
uine self-touch only, showing that just the magnitude of
bioimpedance at high frequencies needs to be observed to
accurately infer these events. Furthermore, we found that
bioimpedance changes are strongly influenced by key proper-
ties of the contact, such as the body parts involved and the skin
contact area. These insights lay the foundation for developing
more effective and scalable touch-detection systems that use
bioimpedance as the sensing modality, helping researchers
determine whether a pose can be detected with bioimpedance
without extensive additional testing.

II. SENSING PRINCIPLE: BIOIMPEDANCE

The chosen sensing principle leverages the electrical con-
ductivity of the human body to detect a self-touch pose.
In general, the impedance (Z) between two points shows
how strongly the intervening circuit opposes the flow of an
alternating current (Z = V/I). Impedance is a complex num-
ber that combines resistance (R, real part) and reactance (X,
imaginary part). It thus consists of two frequency-dependent
components: magnitude (|Z| = (R>+ X?)'/?) and phase angle
(LZ =tan"'(X/R)) [29].

Bioimpedance, in turn, is the impedance of a biological
medium. Here, the resistance is caused by the total body
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Fig. 1. Bioimpedance of the user’s body can be measured from wrist to wrist
(Z,). Forming a new electrical pathway between the wrists, such as when the
hands contact each other, can be modeled by an additional bioimpedance
component in parallel with the original one (Z.), as shown on the right.
We define both impedance values as functions of time (Z(¢)) because the
bioimpedance of a person changes continuously.

water, which is moderately conductive, and the reactance is
caused mainly by the organism’s cell membranes, which act
like capacitors [30].

The bioimpedance measured between two anatomical loca-
tions (such as the wrists) varies significantly between people
because it depends on the shape and composition of their
bodies [31]. It even varies within one person because of,
for example, changes in skin temperature, core temperature,
body position, muscle contraction, exercise, hydration, and
fasting state [32], [33], [34], [35], [36]. Importantly for self-
touch, bringing two distinct body parts into contact creates
a new pathway through which current can flow in parallel
with the default pathway through the body, as shown at right
in Fig. 1. This new pathway leads to a decrease in the total
bioimpedance following the formula:

Ziotal = ! + Ly™ D
total =— Zu ZL-

where Z, is the bioimpedance of the upper body measured
between the wrists, and Z. is the bioimpedance of the path
formed by the new contact.

IIT. MATERIALS AND METHODS

We conducted an exploratory study to understand how self-
touch affects the electrical bioimpedance measured between
the left and right wrists in different individuals.

A. Experimental Setup

Two conductive wristbands and a high-quality impedance
analyzer (MFIA, Zurich Instruments) were used to pre-
cisely measure the participants’ bioimpedance, as shown in
Fig. 2. Specifically, we used a setup similar to the one
employed for conducting segmental bioelectrical impedance
analysis (BIA) of the upper body, in which alternating current
is transmitted from hand to hand through the chest [37].
Mathews and Jovanov [38] recently also identified this wrist-
to-wrist configuration as promising for enabling new wearable
bioimpedance applications. As the grounding and source elec-
trodes, we explored wet electrodes as well as more practical
dry solutions (with different geometries and materials). Since
we found consistent results for both wet and dry electrodes
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Fig. 2. Experimental setup. The participant wears the wristbands on their
left and right wrists. The electrodes in the wristbands are connected to
the impedance analyzer through BNC cables. The screen shows the name
and a mirrored image of the pose to be mimicked, a message that states
whether the participant needs to hold the pose, and their own mirrored video
stream captured with an external camera placed above the screen. The laptop
computer records the data. The inset shows a top view of both wristbands.

as long as good contact was maintained with the skin,
we used commercial anti-static wristbands (ESD Grounding
Wrist Strap, 10 mm Stud) with a conductive circumference
of 14 cm (when not stretched) to achieve a skin-to-electrode
contact area that is both large and stable. The wristbands were
connected to the impedance analyzer through shielded cables
to reduce noise.

The impedance analyzer was set to operate in four-terminal
measurement mode to remove the resistive effect of the wires.
We used a parallel resistance and capacitance as the equiva-
lent circuit and a high-accuracy sweep [39]. We used EBIS
to measure the wrist-to-wrist impedance of the participant
from 100 Hz to 5.1 MHz over 100 logarithmically spaced
frequencies. The selected frequency range was chosen to
include and extend beyond all frequencies commonly used
for BIA. Single-frequency BIA typically measures the phase
angle of the bioimpedance at only 50 kHz [20]. Multifrequency
BIA, the most widespread and well-known application of
EBIS [40], instead sweeps from 5 to 200 kHz because this
range has the highest reproducibility, even though day-to-
day coefficients of variation increase for frequencies below
50 kHz [20]. Nonetheless, our goal is different from estimating
body composition, and we thus measured the bioimpedance
across the full range offered by our impedance analyzer.

The experiments were conducted in a temperature-
controlled research laboratory. During the experiment, the
participant sat in front of a screen displaying a MATLAB
graphical user interface (GUI) with a mirrored image of the
pose to mimic, their mirrored video stream to check whether
they were performing the pose correctly, and a message that
told them whether to hold or release the pose. The experi-
menter used a nearby laptop computer to record the impedance
measurements and the participant’s screen.

B. Experimental Protocol

We recruited a total of 30 participants, aged 31.2 £ 6.4 years
(mean =+ standard deviation). Of these, 15 self-reported to
be male and 15 to be female, with six participants being
left-handed and the remainder right-handed. The participants
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represented diverse ethnic backgrounds, including Asian,
White, and Hispanic, and had a BMI of 22.9 + 3.0 kg/mz.
None of them had current or past sensory-motor disabilities.
Approval of the experimental procedure for this study was
granted by the Ethics Council of the Max Planck Society under
the Haptic Intelligence Department’s framework agreement
(protocol number FO13C). All participants provided informed
consent to participate in the study before data collection.
People not employed by our organization were offered a
nominal hourly payment.

At the start of the study, the experimenter introduced the
33 poses and the baseline no-touch pose depicted in Fig. 3.
As previously stated, self-touch refers to using one’s hand(s)
to contact another body part, either on the skin or through
clothing, with discrete facial self-touches being particularly
common. We thus chose 27 poses (rows 1-5) that involve
various levels of skin-to-skin contact (rows 1-4) and skin-to-
clothing contact (row 5). Finally, we added three variations of
two mid-air hand gestures (rows 6-7) that are commonly used
in human—computer-interaction applications [41]: pinching the
thumb and index fingers together and clenching all of the
fingers into a fist. These adversarial gestures can be performed
with either one or both hands. Since they involve within-hand
skin-to-skin contact, they might be erroneously detected as
self-touch poses by bioimpedance-based self-touch systems.
The 34th pose is the no-touch pose, which gives us the baseline
for the user’s wrist-to-wrist bioimpedance (N; row 8). To better
understand the underlying physiological mechanisms, we pur-
posefully selected some poses that have electrical topologies
similar to one another (e.g., performing the same action with
the left or right hand or with a different number of fingers).
For conciseness, the actions of touch, pinch, and clench are
labeled with lowercase letters (t, p, and c). Capital letters
denote the body parts in contact, i.e., left hand, right hand,
face, and chest (L, R, F, and C). A numeral at the end of a
touch label indicates the number of fingertips in contact (1, 2,
3, 4, or 5). We standardized the fingers used: 1 means only
the index finger; 2 means index and middle; 3 means index,
middle, and ring; 4 means index, middle, ring, and pinky; and
5 means all five fingers. When there is no number, the entire
hand makes contact, including the full fingers and the palm.

After the experimenter’s introduction, the participant prac-
ticed the poses to ensure comprehension. They then completed
a short training to become familiar with the experimental
procedure before data collection. The experiment required
the participant to complete three measurement cycles; within
each cycle, the GUI presented the 33 poses in random
order, and each pose was preceded by the no-touch baseline
pose. Recording the baseline bioimpedance before each pose,
instead of only once within each cycle, is fundamental to our
approach, since the user’s bioimpedance changes continuously
over time due to internal [34] and external factors (such
as changes in room humidity, temperature, and wristband
position). Each sweep took about 10 s, and the participant
held the pose slightly before and after the sweep. After each
pair of bioimpedance measurements, i.e., baseline and pose,
the participant could take a short break, and they had a longer
break between cycles.
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Fig. 3. Poses performed during the experiment. Each row shows a group of related poses, as labeled at the left. The first five rows show self-touch poses; they
involve touch interactions between the left and right hands {tLR}, contact with the face by either both hands {tFLR}, the left hand {tFL}, or the right hand
{tFR}, and touching the chest with one or both hands {tC}. Skin-to-skin and skin-to-clothing self-touch poses are highlighted in pink and blue, respectively.
Rows six and seven show adversarial mid-air gestures: pinching {p} and clenching {c}, performed with either one or both hands. The last row depicts the

no-touch condition N.

C. Dataset

The raw dataset includes 1188000 data points, which
correspond to the magnitude and phase measurements at the
100 frequencies for the 198 trials of each of the 30 participants.
In addition, the dataset contains the participants’ individual
characteristics (i.e., sex, handedness, ethnicity, and BMI), the
material of the clothing touched during the chest contacts, and
their chosen starting position for the poses (i.e., elbows on
the table or in the air). We did not include the age of the
participants in the dataset due to its low variability.

The variable indicating the performed pose, i.e., PoselD, has
33 levels (24 skin-to-skin contacts, three skin-to-clothing con-
tacts, and six adversarial mid-air gestures). We refer to all other
variables as attributes. Among the attributes, sex, handedness,
and starting position have only two levels each. In the case of
double ethnicity, we considered the primary one; this choice
led to three ethnicity levels: Asian (14 participants), White
(14 participants), and Hispanic (two participants). We used the
WHO categorization [42] to label the BMI as underweight,
normal weight, pre-obesity, and obesity (grouping the three
obesity classes together); our participants’ BMlIs span this
full spectrum: one underweight, 21 normal weight, seven pre-
obesity, and one obese. Finally, we categorized the clothing
materials into three groups. The clothing of six participants

did not have any label, so we classified their materials as
Unknown. The other two groups were formed based on the
clothing conductivity [43]: low-conductivity synthetic poly-
mers, cotton, and linen (24 participants combined) were
separated from clothing containing wool (two participants),
which is generally more conductive.

After collecting the dataset, we created the new variable
ABioimpedance that represents the difference between each
baseline measurement (the no-touch pose N) and the pose that
immediately followed it (i.e., ABioimpedance = Baseline —
Pose). Over all experimental sessions, ten bioimpedance mea-
surements lacked either the magnitude or the phase at the
highest frequency of 5.1 MHz, presumably due to a data-
saving error. These ten incomplete data points were thus
removed from the dataset, leaving 593 990 magnitude values
and 593 990 phase values.

D. Statistical Analysis

We conducted two sets of statistical analyses to understand
which types of discrete self-touch poses, if any, bioimpedance-
based systems can reliably detect across diverse individuals.

1) Detection of Self-Touch Poses: First, to understand
the link between genuine self-touch poses and variations in
bioimpedance across individuals, we analyzed the collected
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data using the following mixed-effects model:

ABioimpedance ~ —1 4 PoselD + Sex 4 Handedness
+ Ethnicity + BMI + ClothingMaterial
+ StartPosition + (1|ParticipantID)

where ABioimpedance is the dependent variable, and PoseID
is the independent variable. The impact of individual char-
acteristics (i.e., sex, handedness, ethnicity, and BMI) and
external factors (i.e., clothing material and starting position)
is analyzed by including them as fixed effects. The ID of
the participant is modeled as a random effect to account for
within-subject variability, as each participant performed the
same poses three times. The model was separately fit for
the magnitude and the phase using the “Ime4” package in R.
Concerns about any potential violations of model assumptions
should be alleviated by the robustness of mixed-effects models
[44]. After confirming the overall significance of each fixed
effect with a Type II Wald chi-square test, we performed a false
discovery rate post-hoc correction; this particular correction
was chosen due to the exploratory nature of this analysis [45].

We deepened our understanding of the influencing factors
through a follow-up sensitivity analysis using a leave-one-
variable-out approach. In this analysis, we systematically
removed one fixed effect at a time, refit the model, and
evaluated how the exclusion of each variable impacted the
model’s performance by examining changes in the conditional
and marginal R’ value, root mean square error (RMSE),
Akaike information criterion (AIC), and Bayesian information
criterion (BIC).

2) Influence of Body Parts and Skin Contact Area on Skin-
to-Skin Bioimpedance Changes: Due to their prevalence and
relevance for several application fields, our second analysis
focused on the skin-to-skin self-touch poses (rows 1-4 in
Fig. 3), aiming to understand how the body parts and skin
contact area involved in these contacts influence bioimpedance
changes. The 24 poses tested can be divided into either four
groups based on the body parts (each group is a row from
rows 1-4 in Fig. 3) or six groups based on the contact size
(each group is a column from rows 1-4 in Fig. 3). We thus
introduced the respective discrete variables TopologyID and
ContactArealD and separately fit the following mixed-effects
model to the magnitude and phase of the bioimpedance:

ABioimpedance ~ —1 + TopologyID % ContactArealD
+ TopologyID + ContactArealD + Sex
+ Handedness + Ethnicity + BMI
+ ClothingMaterial 4 StartPosition
+ (1|ParticipantID).

We then used a Type II Wald chi-square test to check the
significance of the interaction effect of TopologyID and Con-
tactArealD. When the interaction effect was not significant,
we analyzed TopologyID and ContactArealD independently.
When significant, we explored the simple effects of each of the
two variables at the different levels of the other variable. After
confirming the overall significance of each fixed effect with
a Type II Wald chi-square test, we corrected the significance
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Fig. 4. Mirrored illustrations of current pathways for six sample poses. The
red pathway through the user’s arms and across their shoulders is always
present. Touching the hands together or to the face gives the current a second
way to flow from wrist to wrist. Performing a hand gesture like clenching does
not alter the circuit topology but might have a somewhat different impedance,
shown in yellow.

using Tukey’s HSD for the pairwise comparisons of Topolo-
gyID and ContactArealD and Bonferroni for the attributes.

IV. RESULTS

Fig. 4 shows schematics for the baseline no-touch pose
(N) and five other selected poses to illustrate their different
conductivity topologies. This set includes four skin-to-skin
self-touch poses, i.e., four fingertips of both the left and right
hands touching each other (tLR4), the entire hands touching
each other (tLR), four fingertips of both the left and right
hands touching the face (tFLR4), and four fingertips of only
the right hand touching the face (tFR4), as well as one mid-air
gesture, i.e., clenching both hands (cLR). For all six of these
poses, the three wrist-to-wrist bioimpedance measurements
(magnitude and phase across frequencies) from a sample
participant are depicted in Fig. 5. The other poses follow
similar trends but are omitted for presentation clarity. Both
the magnitude and the phase of the measured bioimpedance
show systematic differences as a function of frequency. The
magnitude decreases with increasing frequency until a change
in trend occurs at the highest frequencies, where it rises due
to the dominant influence of the parasitic inductance from the
cables. In general, it is possible to notice substantial differ-
ences between the bioimpedance magnitudes across poses at
high frequencies (200 kHz—4.5 MHz, see insets in Fig. 5).
The baselines are also relatively stable in this range, hinting
that ABioimpedance will depend mainly on the pose itself.
The bioimpedance phase, instead, seems to differ across poses
mainly at the low and middle frequencies, though the baselines
also fluctuate greatly in this range.

A. Detection of Self-Touch Poses

Fig. 6 reports the number of fixed effects that caused a
significant change in magnitude (see Fig. 6(a)) or phase (see
Fig. 6(b)) from the preceding baseline. The PoseID variable
is represented by the bars in pink, blue, and yellow (skin-
to-skin contacts, skin-to-clothing contacts, and adversarial
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Wrist-to-wrist bioimpedance of the three cycles of participant 1 for five selected poses (solid lines), i.e., tLR4, tLR, tFLR4, tFR4, cLR, and their

respective baselines (dashed lines). The magnitude (left) and phase (right) were measured for (a) Cycle 1, (b) Cycle 2, and (c) Cycle 3 from 100 Hz to
5.1 MHz. The insets in the magnitude plots show the zoomed-in responses from 200 kHz to 4.5 MHz, which are relatively stable across cycles.

mid-air gestures, respectively). The gray bars represent instead
the attributes of sex, handedness, ethnicity, BMI, clothing
material, and starting position. Lighter color shades indicate
significance levels of p < 0.05, while darker shades mark
p < 0.001. We start by analyzing the variable PoseID and
then focus on the attributes. This section concludes with the
results of the associated sensitivity analysis.

It is important to note that when referring to our results,
we use the term “detection” in a statistical sense rather than
in the context of machine-learning classification: we refer to
significant deviations in bioimpedance from the baseline level.

1) PoselD: As seen in Fig. 6(a), starting at frequency 58
(51.3 kHz), all skin-to-skin poses exhibited a bioimpedance
magnitude that significantly differed from the preceding
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Fig. 6. Stacked bar chart illustrating the number of significant effects on either (a) magnitude or (b) phase of the measured bioimpedance change. Pink refers
to the skin-to-skin contacts (maximum 24), blue to the skin-to-clothing contacts (maximum three), and yellow to the mid-air gestures (maximum six). Gray
combines all the other fixed effects, i.e., the attributes of sex, handedness, ethnicity, BMI, clothing material, and starting position. The lighter colors show

significant differences at p < 0.05, and the darker colors mark p < 0.001.

baseline (p < 0.05). In particular, from approximately
137.5 kHz to 4.1 MHz (from frequency 67 to frequency
98), they were all detected with p < 0.001. Starting from
frequency 80 (570.9 kHz), all skin-to-clothing contacts also
caused significant changes in the bioimpedance (p < 0.05),
and the significance was p < 0.001 at many frequencies
for touches performed with two hands (tCLR). When only
one hand was used, we observed more detections for the
left hand (tCL) than for the right hand (tCR). Among the
adversarial mid-air gestures, clenching significantly differed
from N (p < 0.05) from 100 Hz to 213.1 kHz. Notably,
when performed with both hands (cLR) or with the left hand
alone (cL), clenching demonstrated substantial significance
(p < 0.001) across multiple frequencies, with a higher rate of
significance observed in the two-hand condition. No pinching
pose was detected at any frequency.

In Fig. 6(b), it can be seen that most poses showed a sig-
nificant deviation in the bioimpedance phase around 50 kHz.
In this region, the only skin-to-skin contact that exhibited
no significant difference from the baseline was the use of a
single fingertip to touch the face (tFR1). All skin-to-clothing
poses were detected (p < 0.001) starting from 1.4 MHz.
Similar to before, among the adversarial mid-air gestures, only
a few clench poses were detected (cLR, followed by cR and
cL) at low and medium frequencies. Starting from frequency
95 (2.9 MHz), the results became less consistent due to the
increased impact of the parasitic inductance on the phase.

2) Attributes: Sex emerged as the only significant attribute
(p < 0.05) at some low and moderately high frequencies in
the magnitude, and had a significant impact (p < 0.05) also at
low frequencies in the phase. Ethnicity and clothing material
significantly affected the bioimpedance phase (p < 0.05) in
the medium frequencies. Handedness, BMI, and the starting
position did not influence the measurements.

3) Sensitivity Analysis: Based on these results, we con-
ducted a sensitivity analysis on only the magnitude and
averaged the results within three frequency clusters: low (from
100 Hz to 7.2 kHz), medium (from 8.0 to 213.1 kHz), and
high (from 237.8 kHz to 5.1 MHz). Overall, the model with

all fixed effects consistently performed best across all metrics,
in particular at high frequencies. As expected, PoseID was the
most critical predictor; removing it caused dramatic decreases
in both conditional and marginal R? values (89%-97%) and
substantial increases in RMSE, AIC, and BIC. In contrast,
removing the other variables led to minor (ethnicity, BMI,
and clothing material) or minimal (sex, handedness, and start
position) changes in the metrics.

B. Influence of Body Parts and Skin Contact Area on
Skin-to-Skin Bioimpedance Changes

We streamline the presentation of our second analysis by
reporting results only for p < 0.05. We first report the impact
of TopologyID and ContactArealD on the dependent variable
ABioimpedance and then conclude the section focusing on the
attributes (gray bars).

1) TopologyID and ContactArealD: There was no sig-
nificant interaction effect between TopologyID and Con-
tactArealD in the magnitude from frequency 1 (100 Hz) to
frequency 51 (23.9 kHz), and in the phase from frequency 1
(100 Hz) until frequency 26 (1.5 kHz), as well as at frequen-
cies 96 (3.3 MHz) and 99 (4.6 MHz).

Fig. 7 shows the results of TopologyID. Until frequency
48 (17.2 kHz), none of the six pairwise comparisons between
the four touch topologies ({tFR}, {tFL}, {tFLR}, and {tLR})
showed significant differences in how they changed the
bioimpedance magnitude (see Fig. 7(a)). From this frequency
to frequency 51 (23.9 kHz), most pairwise comparisons were
significant, except for the left- versus right-hand face touch
({tFL} versus {tFR}), which was not significant throughout
this range, and between the hands touching directly or through
the face ({tFL} versus {tFLR}), which was nonsignificant only
at frequency 48. Starting at frequency 52, overall, the pairs
comparing the use of one hand with two hands ({tFL} or
{tFR} versus {tLR} or {tFLR}) showed significant differences
for most frequencies and contact sizes; the less-significant
pairwise comparisons were again {tFL} versus {tFR} followed
by {tLR} versus {tFLR}. Furthermore, the contact area with
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Fig. 7. Stacked bar chart illustrating the number of significant (p < 0.05) TopologyID pairwise comparisons and effects for either (a) magnitude or (b) phase
of the bioimpedance change (maximum six for each label). The green bars (no interaction) mark the pairwise comparisons that are independent of the
ContactArealD, i.e., when the interaction effect between ContactArealD and TopologyID is not significant. The other six labels refer to each of the six levels
of ContactArealD, i.e., when the interaction effect between ContactArealD and TopologyID is significant. Gray combines all the other fixed effects, i.e., the
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the highest number of significant pairwise comparisons was
the full hand.

Regarding the phase, as shown in Fig. 7(b), until frequency
24 (1.2 kHz) and at frequency 99 (4.6 MHz), none of the
six pairwise comparisons was significant. From frequency 24
(1.2 kHz) to frequency 26 (1.5 kHz), the only nonsignificant
comparisons were again {tFL} versus {tFR} and {tLR} versus
{tFLR}, with the latter being the only nonsignificant com-
parison at frequency 96 (3.3 MHz). Starting from frequency
27 (1.7 kHz), overall, the number of significant pairwise
comparisons increased proportionally with the frequency and
the contact size. At a few high frequencies, all pairwise
comparisons were significant when either four or five fingertips
were used. With the full hand(s), all comparisons were signifi-
cant for most of the high frequencies. Starting with frequency
95 (2.9 MHz), the results became less consistent, similar to
the behavior witnessed in the first analysis.

Fig. 8 shows the results of ContactArealD. As the fre-
quency increases, so does the difference in the changes in
bioimpedance magnitude between contact sizes. At lower fre-
quencies, only a few pairs with large contact-area differences,
e.g., one fingertip versus the full hand, were significantly
different. However, at high frequencies all 15 pairwise com-
parisons were significant when both hands were used, i.e.,
{tLR} and {tFLR}, and the large majority when only one
hand was used, i.e., {tFL} and {tFR}, with some frequencies
where all comparisons were significant. The phase followed
a similar trend but resulted in fewer significant comparisons,
with the number of significant comparisons reducing by about
50% when only one hand was used.

2) Attributes: In the magnitude, only one attribute emerged
as significant, and it affected only one frequency: sex at
884.6 kHz. For the phase, the starting position had a significant
impact at some very low frequencies, while ethnicity, either
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alone or with clothing, had a significant impact at the medium
frequencies.

V. DISCUSSION

This study explored the feasibility of using wrist-to-wrist
bioimpedance to detect discrete self-touch poses, focusing
on both skin-to-skin and skin-to-clothing interactions. Our
findings indicated that skin-to-skin self-touch poses caused
significant changes in bioimpedance magnitude at high fre-
quencies (between 237.8 kHz and 4.1 MHz), making them
consistently detectable across different individuals. Skin-to-
clothing contacts, while discernible, presented more challenges
due to the low conductivity and high variability of cloth-
ing. Importantly, adversarial mid-air gestures did not cause
significant deviations in the bioimpedance magnitude at
high frequencies, which is crucial for distinguishing genuine
self-touches from nontouch poses.

We attribute our measurement method’s higher success at
detecting self-touch poses, in particular skin-to-skin contact,
and its lower responsiveness to mid-air hand gestures to these
poses’ different circuit topologies. As visible in Figs. 1 and 4,
contact between the hands (or with the face or clothing) creates
an additional current pathway parallel to the baseline circuit,
which decreases the point-to-point bioimpedance magnitude
(compare dashed and solid lines at high frequencies in Fig. 5).
Conversely, mid-air hand gestures, such as clenching or pinch-
ing the fingers, do not create a new current pathway between
the wrists, therefore showing bioimpedance magnitude values
more similar to the baseline. Between these mid-air gestures,
clenching was more detectable due to its increased muscle
contraction and skin stretching, two mechanisms that influence
bioimpedance measurements [36], [46]. The phase of the
bioimpedance detected the highest number of poses with the
lowest p-values around 50 kHz (in line with prior work on
BIA). However, in this range of frequencies, all clenching
poses were also detected, and the clothing material had a
significant impact. These results make phase less appealing
than magnitude for use in detecting self-touch.

Moreover, we showed that the body parts and the contact
area involved in skin-to-skin contacts played a critical role
in the bioimpedance magnitude response. The use of one or
two hands showed significant differences: in one-handed self-
touches, the current has to travel through a longer parallel
electrical pathway, which goes from the fingers down through
the neck and out the arm, whereas in two-handed self-
touches, the shortest parallel pathway goes from one hand
to the other either directly or through the face (see Fig. 4).
Furthermore, touching the hands directly or through the face
differed significantly at some frequencies, despite the similar
pathway lengths and contact areas of these two topologies
(see Fig. 4). The variability across frequencies is likely due
to the softer nature of the cheeks, which led to higher
variations in the contact area and applied force compared to
the hand-to-hand contacts. Finally, when considering the one-
handed self-touches, touching the face with the right or left
hand creates a mirrored circuit topology, which could explain
their very similar bioimpedance changes. Interestingly, at high
frequencies and with large contact areas, the phase showed
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differences between the usage of the left or right hand, with
the right hand showing higher phase values independent of the
handedness of the participant.

For the contact size, we observed a systematic decrease
in the bioimpedance magnitude with increasing contact size
(compare tLR4 and tLR in Fig. 5), as larger contact areas
facilitate electrical flow. Furthermore, at high frequencies, the
only nonsignificant pairs were in the one-handed facial self-
touch poses. Besides the variations due to the softness of
the cheeks, the longer path of these poses, compared to the
two-handed ones, results in a higher total impedance and,
consequently, a smaller deviation from the baseline impedance
(see the pink and green lines in Fig. 5), which in turn decreases
the relative differences between contact areas. In this phase,
the difference between the presence or absence of the face
and the use of one or two hands was emphasized even more.
Given these results, we believe that subtle differences, such
as the use of one or two fingers during one-handed facial
contact, may become distinguishable when analyzing the full
bioimpedance spectrum rather than examining each frequency
independently, closer to the approach used in Touché for
classifying poses [18].

Regarding the attributes, our analyses showed that handed-
ness and BMI did not have any significant impact. Instead, sex,
ethnicity, clothing, and starting position showed frequency-
dependent effects: sex influenced magnitude at low and high
frequencies and phase at low frequencies; men are generally
larger than women, which will tend to give them higher wrist-
to-wrist bioimpedance. Ethnicity and clothing had an impact
on the phase at medium frequencies. The phase was also sen-
sitive to the starting position. We believe that the impact of sex
at high frequencies, which emerged as the best range to detect
only self-touch poses, does not undermine the generalizability
of the tested approach. First, our sensitivity analysis indicated
that the impact of the sex attribute is minor. Second, this
information could easily be provided as an input to the sensing
system and is constant for a user, unlike clothing and starting
position, whose influence on the phase makes phase even less
attractive than magnitude for detecting self-touch.

VI. LIMITATIONS AND CONCLUSION

We observed that one of the primary limitations of this
sensing method is its lower sensitivity (i.e., lower significance
level) in detecting skin-to-clothing contacts compared to skin-
to-skin contacts. Unlike skin-to-skin contacts, which create
direct conductive pathways, skin-to-clothing interactions intro-
duce complex electrical interfaces, increasing variability in
bioimpedance readings. In addition, the diversity of fabrics
affects conductivity, leading to inconsistent deviations from
the baseline pose. Based on our findings, we believe that
other sensing modalities may be more effective for skin-
to-clothing detection. However, since our dataset included
only three skin-to-clothing poses, a more thorough analysis
is necessary before discarding the use of bioimpedance for
these contacts. Furthermore, our experiments were conducted
under controlled laboratory conditions, allowing us to sys-
tematically explore the capabilities of bioimpedance sensing.
However, this controlled environment does not reflect the
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complexities of dynamic real-world conditions, where exter-
nal factors, such as drastic temperature fluctuations, may
influence both the fabric’s conductivity and the changes in
the user’s bioimpedance. Therefore, future research should
focus on testing the studied measurement approach in more
naturalistic settings. Additionally, future studies should include
participants from a broader range of age groups to better
understand the potential influence of age on bioimpedance
changes. While our focus was on assessing bioimpedance as a
sensing method for self-touch detection, future efforts should
prioritize portability and wearability to develop a system that
can be used in real-time applications. For example, the sensing
unit can be miniaturized [18], and a simpler two-terminal
connection could be used (due to the low wire impedance).

We envision this technology playing a crucial role in
healthcare, where it could monitor face-touching behaviors
in hospitals to mitigate infection risks, especially during
outbreaks like COVID-19. In behavioral and psychological
research, it could track stress-induced self-touch patterns,
providing valuable data for emotional assessments and ther-
apeutic interventions. Such a system could also enhance
human—computer interaction by distinguishing between hov-
ering and actual contact in virtual-reality environments.

In  conclusion, our findings demonstrate  that
bioimpedance-based sensing systems can effectively detect
skin-to-skin self-touch poses across a diverse range of
individuals. This approach performs particularly well when
both hands are in contact (whether directly or through
another body part) and is especially effective with larger
contact areas. Based on our understanding of the underlying
physiological mechanisms, we believe this method’s ability
to detect self-touch is independent of factors like hand
shape, contact location, and the specific fingers involved,
meaning bioimpedance magnitude at high frequencies
can be used to detect skin-to-skin self-touch beyond the
chosen set of poses. Our research also opens up exciting
possibilities for differentiating between poses involving
various body parts and contact sizes. By leveraging these
insights, researchers can significantly advance the design and
application of bioimpedance technology, paving the way for
innovative solutions in health monitoring, human—computer
interaction, and beyond. We publicly share the dataset and
code associated with this article to allow further investigations
of these fascinating phenomena [47].

ACKNOWLEDGMENT

The authors thank Giulia Raimondi for insightful discus-
sions on impedance measurement, Hyosang Lee for input
on circuits, Miquel Bosch Bruguera and Philipp Spitzer for
recommendations on statistics, and Giulia Ballardini for con-
structive discussions on various aspects of the project. They
also thank the Max Planck Research School for Intelligent
Systems (IMPRS-IS) for supporting Maria-Paola Forte.

REFERENCES

[1] S. M. Mueller, S. Martin, and M. Grunwald, “Self-touch: Contact
durations and point of touch of spontaneous facial self-touches differ
depending on cognitive and emotional load,” PLoS ONE, vol. 14, no. 3,
Mar. 2019, Art. no. ¢0213677.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 74, 2025

[2] A. Kronrod and J. M. Ackerman, “I’m so touched! Self-touch increases
attitude extremity via self-focused attention,” Acta Psychol., vol. 195,
pp- 12-21, Apr. 2019.

[3] J. Rahman, J. Mumin, and B. Fakhruddin, “How frequently do we touch
facial T-zone: A systematic review,” Ann. Global Health, vol. 86, no. 1,
p- 75, Jul. 2020.

[4] N. Zhang, W. Jia, P. Wang, M.-F. King, P-T. Chan, and Y. Li, “Most
self-touches are with the nondominant hand,” Sci. Rep., vol. 10, no. 1,
pp. 1-13, Jun. 2020.

[5]1 S. M. Kanakri, M. Shepley, J. W. Varni, and L. G. Tassinary, “Noise
and autism spectrum disorder in children: An exploratory survey,” Res.
Develop. Disabilities, vol. 63, pp. 85-94, Apr. 2017.

[6] E. van der Kooij, “Contact: A phonological or a phonetic feature of
signs?” Linguistics Netherlands, vol. 14, pp. 109-122, Aug. 1997.

[71 Y. L. A. Kwok, J. Gralton, and M.-L. McLaws, “Face touching: A
frequent habit that has implications for hand hygiene,” Amer. J. Infection
Control, vol. 43, no. 2, pp. 112-114, Feb. 2015.

[8] C. Harrison, D. Tan, and D. Morris, “Skinput: Appropriating the body as
an input surface,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,
Atlanta, Georgia. ACM, Apr. 2010, pp. 453-462.

[9]1 R. Boehme, S. Hauser, G. J. Gerling, M. Heilig, and H. Olausson, “Dis-
tinction of self-produced touch and social touch at cortical and spinal
cord levels,” Proc. Nat. Acad. Sci. USA, vol. 116, no. 6, pp. 2290-2299,
Feb. 2019.

[10] C. Xu, S. A. Solomon, and W. Gao, “Artificial intelligence-powered
electronic skin,” Nature Mach. Intell., vol. 5, no. 12, pp. 1344-1355,
Dec. 2023.

[11] C. Harrison, H. Benko, and A. D. Wilson, “OmniTouch: Wearable mul-
titouch interaction everywhere,” in Proc. 24th Annu. ACM Symp. User
Interface Software Technol., 2011, pp. 441-450.

[12] N. Dezfuli, M. Khalilbeigi, J. Huber, F. Miiller, and M. Miihlhduser,
“PalmRC: Imaginary palm-based remote control for eyes-free televi-
sion interaction,” in Proc. 10th Eur. Conf. Interact. TV Video, Berlin,
Germany, Jul. 2012, pp. 27-34.

[13] G. Laput, R. Xiao, X. Chen, S. E. Hudson, and C. Harrison, “Skin
buttons: Cheap, small, low-powered and clickable fixed-icon laser pro-
jectors,” in Proc. 27th Annu. ACM Symp. User Interface Softw. Technol.,
Honolulu, Hawaii, Oct. 2014, pp. 389-394.

[14] M. Fieraru, M. Zanfir, E. Oneata, A.-1. Popa, V. Olaru, and C. Sminchis-
escu, “Learning complex 3D human self-contact,” in Proc. AAAI Conf.
Artif. Intell. (AAAI), vol. 35, May 2021, pp. 1343-1351.

[15] L. Miiller, A. A. A. Osman, S. Tang, C.-H. P. Huang, and M. J. Black,
“On self-contact and human pose,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2021, pp. 9990-9999.

[16] A. Mujibiya, X. Cao, D. S. Tan, D. Morris, S. N. Patel, and J. Rekimoto,
“The sound of touch: On-body touch and gesture sensing based on
transdermal ultrasound propagation,” in Proc. ACM Int. Conf. Interact.
Tabletops Surf. St. Andrews, U.K.: ACM, Oct. 2013, pp. 189-198.

[17] Y. Zhang, J. Zhou, G. Laput, and C. Harrison, “SkinTrack: Using the
body as an electrical waveguide for continuous finger tracking on the
skin,” in Proc. CHI Conf. Hum. Factors Comput. Syst., San Jose, CA,
USA, May 2016, pp. 1491-1503.

[18] M. Sato, I. Poupyrev, and C. Harrison, “Touché: Enhancing touch
interaction on humans, screens, liquids, and everyday objects,” in
Proc. SIGCHI Conf. Hum. Factors Comput. Syst., Austin, TX, USA,
May 2012, pp. 483-492.

[19] R. Hajika et al., “RadarHand: A wrist-worn radar for on-skin touch-
based proprioceptive gestures,” ACM Trans. Comput.-Hum. Interact.,
vol. 31, no. 2, pp. 1-36, Apr. 2024.

[20] U. G. Kyle et al., “Bioelectrical impedance analysis—Part I: Review of
principles and methods,” Clin. Nutrition, vol. 23, no. 5, pp. 1226-1243,
Oct. 2004.

[21] R. Baghbani, M. B. Shadmehr, M. Ashoorirad, S. F. Molaeezadeh,
and M. H. Moradi, “Bioimpedance spectroscopy measurement and
classification of lung tissue to identify pulmonary nodules,” IEEE Trans.
Instrum. Meas., vol. 70, pp. 1-7, 2021.

[22] S.F. Scagliusi et al., “Bioimpedance spectroscopy-based edema supervi-
sion wearable system for noninvasive monitoring of heart failure,” IEEE
Trans. Instrum. Meas., vol. 72, pp. 1-8, 2023.

[23] J. Chen, L. Ke, Q. Du, Y. Zheng, and Y. Liu, “Cerebral blood flow
autoregulation measurement via bioimpedance technology,” IEEE Trans.
Instrum. Meas., vol. 71, pp. 1-8, 2022.

[24] T.-W. Wang, W.-X. Chen, H.-W. Chu, and S.-F. Lin, “Single-channel
bioimpedance measurement for wearable continuous blood pressure
monitoring,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1-9, 2021.



FORTE et al.: WRIST-TO-WRIST BIOIMPEDANCE CAN RELIABLY DETECT DISCRETE SELF-TOUCH

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

P. Arpaia, F. Mancino, and N. Moccaldi, “A reproducible bioimpedance
transducer for insulin noninvasive measurement,” IEEE Trans. Instrum.
Meas., vol. 72, pp. 1-11, 2023.

Y. Vardar and K. J. Kuchenbecker, “Finger motion and contact by a
second finger influence the tactile perception of electrovibration,” J. Roy.
Soc. Interface, vol. 18, no. 176, Mar. 2021, Art. no. 20200783.

B. Jensen et al., “Ethnic differences in fat and muscle mass and their
implication for interpretation of bioelectrical impedance vector analysis,”
Appl. Physiol., Nutrition, Metabolism, vol. 44, no. 6, pp. 619-626,
Jun. 2019.

M. Dittmar, “Reliability and variability of bioimpedance measures in
normal adults: Effects of age, gender, and body mass,” Amer. J. Phys.
Anthropol., vol. 122, no. 4, pp. 361-370, Dec. 2003.

S. F. Khalil, M. S. Mohktar, and F. Ibrahim, “The theory and fun-
damentals of bioimpedance analysis in clinical status monitoring and
diagnosis of diseases,” Sensors, vol. 14, no. 6, pp. 10895-10928,
2014.

D. Naranjo-Herndndez, J. Reina-Tosina, and M. Min, “Funda-
mentals, recent advances, and future challenges in bioimpedance
devices for healthcare applications,” J. Sensors, vol. 2019, pp. 1-42,
Jul. 2019.

L. C. Ward, “Bioelectrical impedance analysis for body composition
assessment: Reflections on accuracy, clinical utility, and standardisation,”
Eur. J. Clin. Nutrition, vol. 73, no. 2, pp. 194-199, Feb. 2019.

P. Deurenberg, J. A. Weststrate, I. Paymans, and K. Van der
Kooy, “Factors affecting bioelectrical impedance measurements in
humans,” Eur. J. Clin. Nutrition, vol. 42, no. 12, pp. 1017-1022,
Dec. 1988.

W. D. Evans, H. McClagish, and C. Trudgett, “Factors affecting the in
vivo precision of bioelectrical impedance analysis,” Appl. Radiat. Isot.,
vol. 49, nos. 5-6, pp. 485-487, May 1998.

E. Gualdi-Russo and S. Toselli, “Influence of various factors on the
measurement of multifrequency bioimpedance,” HOMO, vol. 53, no. 1,
pp. 1-16, 2002.

J. R. Matthie, “Bioimpedance measurements of human body composi-
tion: Critical analysis and outlook,” Expert Rev. Med. Devices, vol. 5,
no. 2, pp. 239-261, Mar. 2008.

E. M. Bartels, E. R. Sgrensen, and A. P. Harrison, “Multi-frequency
bioimpedance in human muscle assessment,” Physiological Rep., vol. 3,
no. 4, Apr. 2015, Art. no. e12354.

F. Campa, S. Toselli, M. Mazzilli, L. A. Gobbo, and G. Coratella,
“Assessment of body composition in athletes: A narrative review of
available methods with special reference to quantitative and qualitative
bioimpedance analysis,” Nutrients, vol. 13, no. 5, p. 1620, May 2021.
R. J. Mathews and E. Jovanov, “Enabling complex impedance spec-
troscopy for cardio-respiratory monitoring with wearable biosensors: A
case study,” Electrochem, vol. 4, no. 3, pp. 389-410, Aug. 2023.
Zurich Instrum. AG. (2022). ziMFIA User Manual. Accessed:
Sep. 30, 2024. [Online]. Available: https://docs.zhinst.com/pdf/ziMFIA_
UserManual.pdf

R. Buendia, R. Gil-Pita, and Y. F. Seoane, “Cole parameter esti-
mation from total right side electrical bioimpedance spectroscopy
measurements—Influence of the number of frequencies and the upper
limit,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS),
Aug. 2011, pp. 1843-1846.

M. Hosseini, T. Thmels, Z. Chen, M. Koelle, H. Miiller, and S. Boll,
“Towards a consensus gesture set: A survey of mid-air gestures in HCI
for maximized agreement across domains,” in Proc. CHI Conf. Hum.
Factors Comput. Syst., Apr. 2023, pp. 1-24.

World Health Org. (2010). A Healthy Lifestyle-WHO Recommenda-
tions. [Online]. Available: https://www.who.int/europe/news-room/fact-
sheets/item/a-healthy-lifestyle---who-recommendations

J. W. S. Hearle, “The electrical resistance of textile materials: A review
of the literature,” J. Textile Inst. Proc., vol. 43, no. 4, pp. P194-P223,
Apr. 1952.

H. Schielzeth et al., “Robustness of linear mixed-effects models to
violations of distributional assumptions,” Methods Ecol. Evol., vol. 11,
no. 9, pp. 1141-1152, Jun. 2020.

M. E. Glickman, S. R. Rao, and M. R. Schultz, “False discovery rate
control is a recommended alternative to Bonferroni-type adjustments
in health studies,” J. Clin. Epidemiol., vol. 67, no. 8, pp. 850-857,
Aug. 2014.

H. D. Talhouet and J. G. Webster, “The origin of skin-stretch-caused
motion artifacts under electrodes,” Physiol. Meas., vol. 17, no. 2,
pp. 81-93, May 1996.

4006511

[47] M.-P. Forte, Y. Vardar, B. Javot, and K. J. Kuchenbecker,
“Dataset and code for ‘wrist-to-wrist bioimpedance can reliably
detect discrete self-touch,”” Edmond, V1, 2025. [Online]. Available:
https://doi.org/10.17617/3.PONEOF

Maria-Paola Forte (Graduate Student Member,
IEEE) received the B.Sc. degree in biomedical engi-
neering from the University of Genova, Genoa,
Italy, in 2015, and the M.Sc. degree in biomedical
engineering from Politecnico di Milano, Milan, Italy,
in 2018, with a focus on electronic technologies. She
is currently pursuing the Ph.D. degree in computer
science with the Max Planck Institute for Intelligent
Systems, Stuttgart, Germany.

Since 2017, she has been with the Max Planck
Institute for Intelligent Systems, where she initially
worked as a Research Engineer. Her research focuses on developing tech-
nologies to assist individuals with sensory or motor impairments and to
enhance human performance in highly specialized tasks, such as robotic
surgery. Her work integrates vision-based and sensor-based methods across
the reality—virtuality continuum.

Yasemin Vardar (Member, IEEE) received the
B.Sc. degree in mechatronics engineering from
Sabanci  University, Istanbul, Turkey, in 2010,
the M.Sc. degree in systems and control from
Eindhoven University of Technology, Eindhoven,
The Netherlands, in 2012, and the Ph.D. degree
in mechanical engineering from Ko¢ University,
Istanbul, in 2018.

She is an Assistant Professor at Delft University of
Technology, Delft, The Netherlands. Before joining
Delft, she was a Post-Doctoral Researcher at the
Max Planck Institute for Intelligent Systems, Stuttgart, Germany. Her research
interests focus on understanding how tactile information translates into human
perception and how these sensory experiences can be effectively simulated in
digital environments.

Dr. Vardar has been recognized with several prestigious awards, including
the NWO VENI Award in 2021 and the Eurohaptics Best Ph.D. Thesis Award
in 2018. She serves as the Chair for the Technical Committee on Haptics.

Bernard Javot (Member, IEEE) received the mas-
ter’s degree in robotics and the Ph.D. degree in
haptics from Université Pierre et Marie Curie, Paris,
France, in 2011 and 2016, respectively.

He joined the Max Planck Institute for Intelli-
gent Systems, Stuttgart, Germany, where he works
as a Senior Research Engineer. He earned the
Highest-Level Teaching Accreditation, in France,
in 2005 and worked as a Manufacturing Teacher,
in Paris, for ten years. His research interests include
inventing actuators and sensors for haptics.

Katherine J. Kuchenbecker (Fellow, IEEE)
received the B.S., M.S., and Ph.D. degrees in
mechanical engineering from Stanford University,
Stanford, CA, USA, in 2000, 2002, and 2006,
respectively.

She was a Post-Doctoral Researcher in the
Johns Hopkins University, Baltimore, MD, USA,
and an Assistant Professor and an Associate
Professor in the GRASP Laboratory, Univer-
sity of Pennsylvania, Philadelphia, PA, USA,
from 2007 to 2016. Since 2017, she has been a
Director at the Max Planck Institute for Intelligent Systems, Stuttgart,
Germany. Her research blends robotics and human—computer interaction,
including work in haptics, teleoperation, physical human—robot interaction,
tactile sensing, and medical applications.

Dr. Kuchenbecker has been honored with the 2009 NSF CAREER Award,
the 2012 IEEE RAS Academic Early Career Award, and a 2014 Penn
Lindback Award for Distinguished Teaching.



