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”Perhaps the most valuable result of all education is the ability to make
yourself do the thing you have to do, when it ought to be done, whether
you like it or not; it is the first lesson that ought to be learned;

and however early a man’s training begins, it 1s probably the last lesson

that he learns thoroughly.”

- Thomas H. Huxley
English biologist (1825 - 1895)
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Introduction

This Master of Science project entails analyzing an UDP/IP stack and implementing
such a stack in a Field Programmable Gate Array (FPGA). The thesis is part of the
Arachne project, started at the faculty of Electrical Engineering at Delft University of
Technology. The Arachne project focuses on novel processor architectures that enable
an ubiquitous and unobtrusive communication environment. The first section of this
chapter starts by motivating the project. Section 1.2 lists the main requirements set for
this project. Section 1.3 lists the main goals and finally the framework of the thesis is
presented in Section 1.4.

1.1 Motivation

In the 1950s networks consisted of a central mainframe connected through leased lines
to several terminals. Those early networks were not interconnected and hardly stan-
dardized. The standardization of networks began with ARPANET, a project initiated
to provide and interconnect different networking systems. The first ARPANET link was
created between the University of California, Los Angeles and the Stanford Research
Institute in 1969 and soon more followed. Later, in 1981 this network had grown to
about 213 hosts. During that time a further unification of network methods was needed
that ultimately resulted in the nowadays well known network protocol stack TCP/IP.
The newly adopted TCP/IP standard was implemented on the ARPANET network and
the Internet was born and its size and use has grown enormously during the last decades.

In October 1990 the RIPE organization, one of five Regional Internet Registries,
started a project to measure the number of hosts on the Internet. The host counting
project began to measure in nineteen countries and summarized the amount of live
hosts [15]. Nowadays the host count runs every month and includes over a hundred top
level domains. A historic graphical representation of the RIPE data set is depicted in
Figure 1.1 [5]. The graph shows a significant increase in the number of hosts and ends
up with approximately 28 million hosts in January 2005.

Not surprisingly, the amount of traffic going through the Internet’s backbone has been
growing accordingly. A trend also supported by a recent study published by Guo-Qing
Zhang, et al. which is based on the routing data of six-month intervals from December
2001 till December 2006. The study states that Moore’s law, often applied to computing
and storage capabilities, also holds for Internet traffic. The Internet traffic is therefore
likely to continue to double each year during the coming decade. Thus, it can be said
that the Internet is growing significantly in both bandwidth and the number of devices.

Expected or not, this increase in Internet penetration is not reflected in the amount
of freely available FPGA IP stacks. A well known site such as www.opencores.org does
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Figure 1.1: The RIPE hostcount

not even list a single implementation. Xess, a major manufacturer of Xilinx prototype
boards, lists an UDP/IP stack implementation in VHDL [22]. Other implementations
exists and are available, but for a price and usually those intellectual property blocks are
pre-compiled. The source code of such an implementation is, as often is the case with
proprietary software, not available to the general public.

A free UDP/IP or TCP/IP stack implemented within an FPGA is a good start, as it
is allows others to adapt and improve the functioning of the stack. This is made possible
due to the fact that the code is published under the GNU GPL license, keeping future
improvements free for all to use and learn according to the philosophy of the GNU GPL.
This to the contrary to the earlier discussed proprietary IP stacks. Therefore, the goal
of this project is to create a small UDP/IP stack, usable in even the smallest of Spartan
3E FPGAs, with enough area remaining on the FPGA to run an application alongside
and publishing it under the GNU GPL.

1.2 Project definition

The aim of this project is to design and implement an Internet Protocol stack, which
supports the UDP protocol on reconfigurable hardware. Most of the stack is imple-
mented in assembly on a small embedded microcontroller, while some compute-intensive
operations are implemented using reconfigurable hardware. Using specialized blocks for
compute-intensive operations does not only improve the overall speed, but also reduces
the amount of assembly code required on the microcontroller, which is important because
the embedded microcontroller’s architecture only allows addressing up to 1024 instruc-
tions. The choice of implementing an UDP/IP stack instead of a full TCP/IP stack is
solely based on the time constraints set for this thesis.
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The requirements of the UDP/IP stack are summarized in the following sentence;
The UDP/IP stack should be completely implemented in reconfigurable hardware and be
capadble of transmitting and receiving valid UDP packets to other hosts, occupying the
least amount of area while aiming at 100Mbit/s throughput.

1.3 Project goals and main contributions

The main goal is to create a small, minimal and freely available core that interacts
with other UDP/IP implementations. This core is targeted towards Xilinx FPGAs, in
particular to the Xilinx Spartan 3E prototype board. The prototype board contains
reconfigurable hardware in the form of an FPGA and has an onboard 10/100 PHY as
one of its many peripherals, more details on the board and the reason of selecting it is
found in Section 3.1.

A part of this research consists of selecting suitable software functions for hardware
speedup. This selection should be based on three factors; the expected increase in
obtainable bandwidth throughout the stack, the expected reduction in the amount of
needed code space for the microcontroller and finally the amount of area that is required
on the FPGA itself. Combining these three factors should result in a fast and small
UDP/IP core.

Reconfigurable hardware is used to create an embedded microcontroller together
with the accelerated hardware modules. Combining an embedded general purpose
microcontroller and several application specific modules is particularly suited for this
project considering the earlier set area requirements, due to the constant size of
the microcontroller and the complex algorithms it can handle. In addition a speed
improvement over a software only solution is expected as a result of the hardware
acceleration.

The main aspects of this project are;
e Researching a comparable stack.
e Providing a base IP platform for future projects with low-cost, small FPGAs.
e Determining the computation intensive parts and parts that need large code space.
e Creation of an UDP/IP stack in Picoblaze assembly.

e Creation of several computation intensive blocks in Hardware Description Lan-
guage (HDL).

e Creation of a demo to show the interaction between a third party application and
the stack.
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1.4 Thesis overview

This thesis is organized in the following manner. Chapter 2 describes the embedded
microcontroller and is preceded by an brief overview of the implemented protocols, such
as ARP, ICMP, IP and UDP. In order to interact with those protocols and their imple-
mentations an interface needs to be defined. A de facto interface standard exists and
is discussed in Chapter 3. Furthermore, that Chapter 3 describes the hardware imple-
mentation of the stack. The demo setup and with it the achieved experimental results
are found in Chapter 4. Finally, Chapter 5 summarizes the work and provides a few
recommendations for further research.



Background

This UDP/IP stack implementation requires two functionalities in order to provide basic
UDP connectivity between two or more systems. First, it requires a programmable
embedded microcontroller that is extended with hardware accelerated modules, second,
several protocols need to be implemented in a combination of hardware or software
modules. Further discussion about the first requirement is found in Section 2.2, whereas
the selected microcontroller is described in Section 2.2.1. The protocols that form the
second requirement are discussed in the second half of this chapter.

Section 2.1 introduces other known studies on IP stacks in combination with reconfig-
urable hardware and/or microcontrollers. Whereas, Section 2.2 describes microcontroller
and the reason behind using a microcontroller in an FPGA. Section 2.3 describes the FEth-
ernet standard, a message format standard used between hosts in a network. Section 2.4
describes the Internet Protocol, a protocol used to send packets from one network to an-
other. Section 2.5 describes the Address Resolution Protocol (ARP) which translates IP
addresses to Ethernet addresses. An error reporting protocol is discussed in Section 2.6.
Finally, the User Datagram Protocol (UDP) is discussed in Section 2.7. The chapter
concludes with a summary.

2.1 Related work

Due to the great success of the Internet, the TCP/IP protocol suite has become the
standard of communication between computer systems. The suite is utilized by many
applications that run on top of the Internet. Application such as; web pages, file trans-
fers, voice over ip calls and emails. Due to the great number of possible applications and
accessible data sources there is interest in running such as protocol suite on microcon-
trollers and embedded processors.

Historically TCP/IP required a relatively large amount of resources on a microcon-
troller in terms of code size and memory usage. A software implementation that functions
well with a very limited set of resources is discussed in [8]. Here two small TCP/IP im-
plementations are introduced that were afterwards ported to many other platforms. The
two implementations are lwIP and ulP. lwIP is a full-scale TCP/IP implementation with
full support for IP, ICMP, UDP and TCP. Whereas, ulP is designed to be a minimal
stack with just the necessary functions to have a microcontroller friendly TCP /IP stack.
Another software based implementation is discussed in Networking and Internetwork-
ing with Microcontrollers written by Eady [9]. His book deals with a more hands-on
approach in writing a stack for a microcontroller. The main difference between these
implementations and this research is that this thesis deals with reconfigurable logic and
the optimization of code blocks in order to achieve a higher throughput.
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Other research focusses on accelerated solutions. The solutions that are described
in this line of research makes use of an FPGA with an on-chip microprocessor, e.g. a
Xilinx FPGA with a PowerPC core, on top of which an operating system runs with a
standard software based TCP/IP stack [14][23][6]. The TCP/IP stack is then accelerated
by implementing some functionalities in reconfigurable hardware. Other configurations
exist where a microprocessor is connected to an FPGA. This is seen in [11] which makes
use of a prototype board developed at the Swiss Federal Institute of Technology Zurich
[16]. In this case there are two FPGAs, one functions as a microprocessor and the
other as stand-alone IP stack. A big difference between this thesis and [11] is that the
achieved throughput is about a fifty fold higher for this implementation and the focus of
this research is to utilize cheap reconfigurable hardware and not high end FPGAs with
on-chip cores.

Yet, other implementations focus on designs contained within a single FPGA. For
instance, the VHDL IP stack designed at the University of Queensland [22]. This design
is quite similar to the design of this thesis, both are targeted towards full duplex networks
and lacking TCP support. Differences are that the implementation of [22] is without an
embedded processor and perhaps due to this fact can not run on high clock frequencies.
As a result the performance of the stack discussed in [22] is limited to 10 Mbit/s. Both
designs are targeted as stand-alone applications although [22] does not include an on chip
interface and therefore has no running demo application on the FPGA itself to prove its
working, but uses software running on a PC to test its functionality.

A high speed design achieving a throughput of 100Mbit/s and a theoretical through-
put of 700Mbit/s is described in [6]. The main difference between that design and the
implementation described in this thesis is the targeted FPGA. [6] uses about 70% of the
total resource available on the largest Spartan 3E FPGA making it unsuitable for low
end FPGAs. These high-end Xilinx FPGAs with an embedded PowerPC has a cost of
$165 USD, while the targeted FPGA for this project costs less then $30 USD!. In case of
[6] the largest Spartan 3E FPGA is used, which has a cost of $68 USD 2. Mainly it does
not make sense to develop an FPGA based product requiring large amount of resource
just for the stack since standard off the shelf network interface cards are bought for a
fraction of the price.

The Request For Comments document RFC1122 - Requirements for internet hosts -
communication layers [3] forms the basis for all previous implementations and provides
a good deal of information about IP stack implementations. The document sets require-
ments to which any stack has to adhere to in order to comply with most, if not all, other
implementations and is used as a guide throughout this design.

'Price sampled at 20-02-2009 on Avnet.com. A PowerPC component is XC4VFX12-10FF668C and
its price is for quantities >100, targeted component is XC3S500E-4FT256C price is for a Prototype
quantity.

2Price sampled at 20-02-2009 on Avnet.com. Price is for component XC3S1600E-4FG320CPROTO
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2.2 The embedded microcontroller

A first attempt at implementing an IP stack in reconfigurable hardware worked without
an embedded microcontroller.> This design had several issues; for one, the area con-
straints could not be met. A big portion of the area was needed to multiplex and route
the data to and from the different interacting modules. Secondly, due to the size of the
multiplexer the design could not achieve a high operating speed. A higher operating
speed could probably be obtained by introducing registers, but since this would increase
the footprint and complexity even more it did not seem like a feasible option.

Another issue that became apparent during the first exercise was that debugging
internal circuits is a difficult and time consuming job. Although most of the design
could be divided up into smaller design blocks which could easily be simulated and
debugged in modeling software, it became more troublesome when it came to debugging
blocks that had interfaces with some external components, such as the network chip.
Significant improvements in debugging were made with the Chipscope software package
developed by Xilinx. With Chipscope one inserts a logical analyzer, a bus analyzer and
virtual I/O directly into the design [28]. Still debugging and correcting a HDL design
was found to be more complex and certainly more time consuming then initially thought.

This guided the design towards the tried solution of implementing a microcontroller
within the reconfigurable logic. One of the biggest benefits is that one uses the already
existing development environments for that particular microcontroller and reuse it in
the design. Another benefit is that the microcontroller’s peripherals are completely
customizable to whatever needs one has. The amount of area occupied on the FPGA can
be reduced by customizing the set of peripherals implemented in reconfigurable hardware.
A lot of excess functionality can potentially be removed from the design. Last but not
least, state machines with many inputs and outputs and complex dependencies between
them are programmed relatively well in a structured fashion in assembly language. This
certainly became an important benefit when the protocols, that are discussed at the end
of this chapter, were implemented. Those protocols often operate on many bytes inside
the packet header and lead to complex and large state machines. Large state machines
are not only difficult to understand and maintain, but also require more resources on the
FPGA.

Using an embedded microprocessor also eradicates microcontroller obsolescence and
preserving legacy code. Although this argument is more applicable in the context of
a production process it is does give this implementation a potential longer shelf life.
Obsolescence of electronic components concerns mostly equipment involved in safety
critical applications, in particular in the automotive, avionics, and military fields. The
desired life time for those systems is many times longer than the obsolescence cycle of the
components used in the systems [1]. A typical solution for this problem is to keep stocks
of components used in the design, or to find parts in the secondary markets. However, a

3Please note that the terms microcontroller and microprocessor are used interchangeably in this text.
Usually the term microcontroller refers to a processor core plus additional components, such as UART's
and RAM blocks, together in one package, while microprocessors refer to just the processor core. The
distinction between the two is almost none existing within an FPGA since a microprocessor implemented
in reconfigurable logic can make use of UARTs and RAM blocks within that same FPGA fabric and thus
also operates within a single chip.
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different and future proof solution is to emulate the components within the FPGA itself.
Instead of using an external microprocessor with a limited availability, a soft core is used
that provides the same functionality. Even though the FPGA itself becomes obsolete,
the implemented design is still available in a Hardware Description Language (HDL)
and retargeted towards future platforms. Now that the core architecture remains the
same there is no further need to port the code running on the microcontroller towards
a different architecture, which could be rather difficult depending on the differences
between the old and new architecture.

2.2.1 The Picoblaze

Currently several parties provide soft core processors; the Altera’s Nios II and Xilinx
Microblaze soft processors are two of the more widely known implementations. Both have
32-bit processor architectures and are geared towards their respective vendors FPGAs.
Open source alternatives are found on the opencores.org web site [2]. The main objective
of the Opencores.org project is to design and publish core designs under the Lesser
General Public License (LGPL). Currently they list more than thirty soft processors
that range from just newly submitted projects to completely finished implementations.
Most of the processors listed on the web site are not primarily designed towards resource
efficiency. As an example, a 8051 8-bit processor available on the opencores.org web site
requires approximately 1500 slices of logic, while it is mentioned that a smaller version
is worked on, occupying around 1000 slices. To put these numbers into perspective one
must compare these numbers to the available resources available in the reconfigurable
logic. In fact, the 8051 processor will use more than half of the available resource in
the second but smallest FPGA of the Xilinx Spartan 3E family, while it will not even
fit in the smallest family member. Considering that the embedded processor is only a
small part of the total design it is easily seen that such a processor does not fulfill the
requirements set in the first chapter.

Resource efficient processors like the Nios II/e ”economy” processor use about 14%
of the resources in the smallest FPGA of Altera’s low cost Cyclone III family. The same
holds for the Xilinx Picoblaze controller, which only needs 96 slices of logic or 12.5% of
an XC3S550 FPGA, the smallest member of the Xilinx low cost Spartan 3E family [26].

Due to vendor lock-in and the focus on area reduction the Picoblaze microcontroller
was chosen for this project as the central processor unit. The Picoblaze microcontroller
is provided as a free, source-level VHDL file with a royalty-free re-use within Xilinx
FPGAs. A big advantage of using an established microcontroller that is supported by a
large company is the excellent documentation that comes along with it. An aspect that
is often lacking in open source software. Even though this particular controller has been
chosen for this design it is generally easy to port the code and design towards a different
eight bit controller.

The Picoblaze microcontroller features sixteen byte-wide general purpose data regis-
ters and allows 1024 instructions out of the box in programmable on-chip program store,
which is automatically loaded during the configuration of the FPGA. It also features an
eight bits ALU and the microcontroller has a 64-byte internal RAM which is used as a
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Figure 2.1: The Picoblaze architecture

scratch pad. Its architecture is depicted in Figure 2.1.

The input and output ports are used to extend the controller and act as an interface
between the controller and the custom made peripherals implemented in reconfigurable
logic. The Picoblaze supports up to 256 eight bits input ports and 256 eight bits output
ports, or a combination thereof depending on the addressing scheme. Two instructions
are used to interface with the outside world. The INPUT instruction reads the data into

a specified register, while an OUTPUT instruction presents the content of a register on
the OUT_PORT.

2.2.2 The KCPSM3 module

The Picoblaze processor is included in the design by instantiating a VHDL module
named KCPSM3. The KCPSM3 module contains the ALU, the register file, and all
other functions with the exception of the instruction store. The complete pin out of the
module is depicted in Figure 2.2. There are several options as to where to store the
instructions; The most effective way is to use one dedicated Block RAM (BRAM) inside
the FPGA. There are twenty of those RAM blocks available inside this projects FPGA.
Fach block has a capacity of 18Kbits and all blocks are configured for dual-port access.

There are several HDL library components defined for the BRAMs. Some components
define the RAM as a single port memory while others configure it as a dual port memory.
The dual-port memory is chosen in the design because it has the advantage of connecting
one port of the instruction store to the Picoblaze, while the other port is connected to
a JTAG module. The JTAG module provides an interface between the BRAM contents
and a PC, enabling the upload of a Picoblaze program directly into the memory during
runtime. Normally, without the use of the JTAG interface, a change in the assembly
code would require a complete recompilation of the entire design, which could take up
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Figure 2.2: The KCPSM3 module

to ten minutes. On the contrary, when the JTAG interface is used, the process is just a
matter of seconds, since only the Picoblaze code needs to be assembled and uploaded.

Various tools exist for the Picoblaze environment. A development tool used in this
project is the free pBlaze IDE [12]. The IDE contains a simulator that allows for easy
debugging of the simulated code with single-stepping, breakpoints, interactive access to
registers, flags and memory values. Another tool used for debugging the Picoblaze, and
for debugging HDL in general, is ModelSim. ModelSim is used as a digital simulator
to simulate the entire environment from network traffic to microcontroller, instead of
only the Picoblaze as is the case with the pBlaze IDE. Finally, the tool of all tools is
Chipscope. With Chipscope certain signals are brought outside the FPGA and monitored
with a software based scope/logic analyzer running on a PC and does so without the
need of expensive hardware solutions.

2.3 The Ethernet standard

Since the beginning of the computer era many people have found ways to network com-
puters together so that they may be able to exchange digital data. Some of these methods
have become very prominent in our current society and have changed the way we live our
daily lives. Nowadays almost every household with an Internet connection makes use of
at least one of these methods, namely the Ethernet standard. The Ethernet standard
describes a network protocol to connect several devices in a Local Area Network (LAN)
together.

Throughout history many efforts have been made to improve the reliability and speed
of networking protocols. These efforts lead to the Ethernet standard that is found in
almost every house where computer devices are networked together as introduced in
Section 2.3.1. Section 2.3.2 explains the data packet format as used in the Ethernet
standard. The final section, Section 2.3.3, discusses the control of those packets.

2.3.1 Introduction to computer networks

A long time ago Bob Metcalfe was working for Xerox’s Palo Alto Research Center
(PARC) when he read a paper about the ALOHA network, or Alohanet, from the
university of Hawaii. ALOHA was a new computer networking system and was first
deployed in 1970. The key idea was to use cheap amateur radio-like systems to create a
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packet-switched radio network linking several geographically dispersed campuses of the
university together. Two distinct frequencies were used as to create a so called hub/star
configuration. A hub/star configuration is a configuration where a hub, placed on the
center of an imaginary star, e.g. *, broadcasts data to all the end-points on the star in
the outbound channel working on a frequency of 413MHz. This while the various client
machines, which formed the end-points, send all their data to the central hub location on
the inbound channel operating on a frequency of 407MHz. The hub, or the base station,
listens to the packets transmitted by the end-nodes and retransmits all incoming packets
to all end-nodes. Clients could check whether their data was correctly transmitted by
simply comparing the broadcasted data sent by the hub, as a response on their own
transmitted packet, and the original data.

One important feature of the ALOHA network is the method called random access.
The ALOHA network is comprised of a shared medium, so it is certainly possible that
several clients send their data simultaneously to the hub. To reduce the occurrence of
this problem the clients had to wait for the confirmation of the hub that the packets were
received, while a new transmission could be started at any time after the confirmation.
When multiple stations simultaneously tried to send data over the shared medium, no
confirmation, or a garbled up message was received and thus a so called collision occurred.
In case of a collision the transmitting stations wait for a random period of time before
retransmitting their data to the hub. The introduction of the random period of time
reduced the occurrence of a new collision, since not every host will try to retransmit at
the same time.

Years later, Bob Metcalfe was given the task by Xerox PARC to design a way to inter-
connect several Xerox Altos machines, which were Xerox workstations with a graphical
interface. He then modified the Alohanet to incorporate the method of varying the ran-
dom access interval time based on the traffic load and he also used cables instead of a
radio link. This first experimental network was named the Alto Aloha Network. Later
the name was changed to ”Ethernet”, a combination of the word ”ether” indicating a
physical medium to carry the data and the word ”net” as in networking, to make it
clear that the system could support not only Altos machines, but in fact any computer
system.

2.3.2 The Ethernet frame

The Ethernet frame, a message on the data link layer, is defined in the TEEE802.3
standard and is the format by which all Ethernet implementations communicate. An
Ethernet frame is depicted in Figure 2.3. It is shown that data is first encapsulated in
a container before it is actually send on the wire. Historically two types of these frame
formats existed; one defined in the 802.3 framing standard, where there is a Length
field used after the source address, and another type named Ethernet II Framing, where
there is a Type field after the source address. Both frame types are now defined and
supported within the IEEE802.3 standard. These two types are used interchangeably by
the convention that values between 64 and 1522 indicate the use of the new 802.3 frame
format, while values higher than 1535 indicate the use of the Ethernet II frame format
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Figure 2.3: The Ethernet frame

in which the identifier refers to an EtherType sub-protocol identifier.

An Ethernet frame varies in size ranging from 64 to 1518 bytes. Every frame starts
with a preamble, a repeating 1010 bit pattern needed to synchronize some PHYs, a
common abbreviation for a device in the physical layer of the OSI model. The preamble
is followed by a Start of Frame Delimiter (SFD) marking the byte boundary for the
MAC, meaning that the information that is received from now on is passed on to the
MAC layer. This is the reason why one would normally not see the preamble and the
SFD in a software based network analyzer, such as Wireshark 4, since it is consumed by
the network interface card.

The first two fields after the preamble are station addresses. Station addresses are
48 bits wide and must be unique on the LAN. This requirement is needed, because
the Ethernet standard uses a flat hierarchy within a shared medium. Normally unique
addresses are guaranteed by the manufacturer during the manufacturing process. Each
manufacturer is assigned a three byte Organization Unique Identifier (OUI) used as
the first three bytes of the address, whereas the lower part is uniquely assigned by the
manufacturer. However in some cases the addresses is locally administered, or even
dynamically changed by the device itself as part of a fail-over feature of a firewall. The
Source Address (SA) in the Ethernet frame is always the address of the transmitting
station. On the contrary, a destination address can also point to an address where the
most significant bit is set to one, refering to a range of addresses used for multicast and
broadcast purposes. For example, multiple stations can receive simultaneously a packet
when it has been broadcasted to multicast address OxFFFFFFFFFFFF.

A padding field is found after the encapsulated data to pad the frame up to a min-
imum frame size of 64 bytes. A CRC-32 checksum is appended to the frame for error
checking and encompasses the entire frame. Between frames there is a minimum idle

“http://www.wireshark.org
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time of 96 bits, a so called interframe gap, used to maintain continuous synchronization
between the NICs at each end of the link.

2.3.3 The Media Access Control layer

Like with the earlier mentioned ALOHA network, there is a need to regulate the trans-
mission and reception of Ethernet frames. This regulation is controlled by a layer called
the Media Access Control (MAC) layer. The IEEE 802.3 standard specifies a common
medium access control layer that provides several high level functions by which it creates
an abstraction layer for the physical medium. In addition, the MAC layer itself does
not need to know about the physical medium as it interacts with a PHY, which in turn
provides an abstraction layer to the physical medium.

The MAC provides a packet-based, connectionless data transfer between devices and
has three main functions. First, it provides data encapsulation; data to be send is
encapsulated within a frame before transmission by adding the earlier discussed fields,
such as the preamble and the start-of-frame delimiter. At the same time it decapsulates
the received frames by passing only the encapsulated data to the a higher level protocol.
Another function is to control the media access, thus initiating frame transmissions and
allowing recovery from transmission failures. The Ethernet MAC operates in either half
or full duplex mode, both are explained in the next section, which is dependent on
support from the physical layer and the desired operating mode. Currently the IEEE
802.3 standard requires that all Ethernet MACs can operate in half-duplex operation,
while full-duplex is an optional feature. The third main function listed here is addressing.
All Ethernet network adapter cards are uniquely identified by a hardware address, also
known as the MAC address, which is pre-assigned by the manufacturer. The concept of
a unique addresses, or universal addressing, is based on the idea that all devices that
are going to network together need a unique identifier when they make use of a shared
medium. The advantage of such a unique address is that any device can be attached to
any LAN in the world with the assurance that the address is unique and communication
is possible. The MAC filters frames received from the shared medium by comparing the
destination address in the Ethernet frame with its own unique address.

2.3.3.1 Half duplex

The media access control layer operates in two modes; a half duplex mode and a full
duplex mode. The Ethernet half duplex mode is derived from the slotted version of
the Aloha protocol. Where the pure Aloha protocol had no slots and stations could
transmit at any given time the slotted version only allows the start of a transmission
on certain moments in time. These time slots were chosen to be at least of the same
duration as it would take a frame to be transmitted. As a result, there is no collision
when two devices send in different time slots. A collision now only occurs when two or
more transmissions collide with one and another on the shared medium resulting in a
corrupted data transmission.

Ethernet uses Carrier Sense Multiple Access (CSMA), with CSMA a device that is
about to start a transmission first ’listens’ to check if there is already another trans-
mission in progress. A device ’listens’ by monitoring, for example, the current flowing
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through the cable. The medium is considered idle when no signal is heard and then the
transmission starts, while all other devices remain listening. Listening alone does not
prevent all collisions, as two devices can still initiate a transmission at the same time, or
within a time period in which the signal is still propagating. To detect this collision the
Ethernet standard defines an Collision Detection mechanism.

A host needs to determine whether its frame is send out without a collision before
it can send out another frame, therefore it needs to be able to detect a collision before
it finishes transmitting the frame. To illustrate; when host A starts transmitting it will
take a certain propagation time before another host, host B, can see this transmission.
Host B determined by listening that the medium is idle. Now assuming that host B
starts transmitting its frame just before host B received the frame of host A, it takes the
same propagation time for host A to see host B his frame. As a result, in order for host
A to determine that there is in fact a collision, while sending its frame, it still needs to
be busy with sending that frame at that moment when it sees the frame of host B on
the medium. In other words it requires a transmission time greater than two times the
propagation time for a host to detect a collision. This time period of approximately two
times the propagation time is also known as the collision window or the slot time.

In case of a collision each transmitting device starts sending out a 32 bit jam sequence.
The jam sequence should have a different value than a valid checksum for the frame; Some
Ethernet cards just send 32 ones while some others use an alternating pattern of ones
and zeros. The reason behind the jam sequence is to prevent devices from starting a
transmission and to ensure that other transmitting devices recognize that a collision has
occurred. Following the jam sequence the transmission is rescheduled for transmission by
a controlled randomization process called ”truncated binary exponential back off” [10].
The delay is an integer multiple of the slot time. The number of slot times to delay
before the n' retransmission attempt is chosen from the range of 0 < r < 2%, where
k = min(n,10). This algorithm greatly reduces the chance on a new collision.

The slot time is directly related to the frame size. Short packets use less time to
be transmitted and thus this transmitting host has less time to discover a collision.
This implicates that there is a minimum frame length for CSMA /CD networks. Longer
minimum frame lengths would lead to longer slot times, which in turn would mean that
a larger distance, or diameter of the network, can be covered. A shorter minimum frame
length corresponds to shorter slot times and therefore to smaller network diameters.
There is a trade-off between the maximum size of the network diameter and the need
to reduce the impact of a collision recovery. In the IEEE802.3 specs this trade off was
settled by allowing an Ethernet network diameter of 2500 meters and the minimum frame
length was set accordingly.

With the development of high speed Ethernets having a data-rate of 100Mbps or
Gigabit Ethernets with a data-rate of 1000Mbps, the time required to transmit a frame
is greatly reduced. In a Fast Ethernet network a frame is transmitted in approximately
one tenth of the time it would require in an Ethernet network. Fast Ethernet was
designed to be backwards compatible to the Ethernet standard and thus this speedup
translated to a reduction of the maximum network diameter by a factor of ten. As a
result the maximum diameter for FastEthernet is 200 meters.

The problem of reducing the maximum diameter even further was addressed by the
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Gigabit Ethernet standard, because a maximum network diameter of around 20 meters is
not practical. Instead of reducing the maximum network diameter the minimum packet
size was altered. The solution was kept backwards compatible by adding a variable
length data field to frames which are shorter than the minimum required size of 520
bytes. The variable length data field is filled with random data and is automatically
removed when the frame is received. Consequently, a Gigabit Ethernet network has the
same maximum network diameter as a Fast Ethernet network. Note that the minimum
frame size is only increased for half duplex links. Full duplex links still allow a minimum
frame size of 64 bytes.

2.3.3.2 Topology

The first Ethernet networks used a shared bus topology, as depicted in Figure 2.4, which
had some obvious problems. A shared bus topology consists out of a continuous coaxial
cable, that is directly connected to all the devices in the network. Both ends of the
cable are terminated by special terminators to prevent signal reflections. A break in
the coaxial cable, a common problem, creates two disjoint networks that are not able to
communicate with each other. A ground fault, another problem, in the cable could even
disrupt all transmissions for every device. Although the most common issue with this
topology is in fact not a problem at all but simply the action of adding and removing
devices within the network, since this would disrupt the entire network too.
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Figure 2.4: A bus topology

Networks started to switch over to a star topology, depicted in Figure 2.5, to reduce
the impact of the cabling issues. A star topology consists out of a central device, called a
hub, and several other devices that are directly connected to the hub. The big advantage
of the star topology is that the cabling now runs only from one single device to the hub.
A faulty cable in this topology will solely impact the device it connects to. A hub works
at OSI layer one and does not need to understand the data it repeats, it simply repeats
the incoming signal to all other ports. Like with a single coaxial cable, there is still only
one collision domain and thus a collision occurs between any of the segments connected
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to its ports.

The maximum network diameter for an Ethernet network is 2500 meters; however,
the maximum cable length is only 200 meters. In order to extend an Ethernet network
several hubs, or repeaters are used together. However, the performance of a network
with one single collision domain suffered as more and more devices started to transmit
large amounts of data. As a response, switches became popular. Even more so because
the cabling used for switches, Unshielded Twisted Pair (UTP) cabling, was cheaper than
coaxial cabling. A switch buffers frames which works since it work on second OSI layer
and thus ’'understands’ the frame formats. A network is divided into several collision
domains by buffering the frames and so increases the performance of large networks.

]
=

Figure 2.5: A star topology

2.3.3.3 Full duplex

In the last decade the dominant topology has evolved from a bus topology to a star topol-
ogy. With a star topology the medium is no longer required to be a shared medium. In
fact even the transmit channel and receive channel are separated with UTP cabling. Un-
like with coax, where simultaneous transmitting and receiving was not possible, a device
now transmits and receives data simultaneously without data corruption. A connection
in which data is transported in both directions at the same time is considered to be full
duplex. A full duplex point-to-point connection does not need CSMA /CD, because each
device transmits on one UTP pair and receives on another. As a result, there is no media
contention, no collisions and thus also no need to schedule retransmissions. Making full
duplex connections much simpler and easier to implement.
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2.4 The Internet Protocol

The Ethernet standard defines messages, so called frames, that are send from one host
to another. Conventionally, two hosts need to be on the same local area network or to
be more precise within the same broadcast domain to receive each other frames. To send
packets to another network a different standard is used. A protocol in the network layer
provides this delivery of data between hosts outside the LAN. This section discusses such
a protocol; the Internet Protocol.

The Internet Protocol provides several functions to the higher OSI layers. The ad-
dressing scheme the protocol provides makes it possible to distinguish one device from
another. All public IP addresses on the Internet are unique. IP addresses are organized
in a hierarchical way, on the contrary to MAC addresses which are organized as a flat
address space. IP addresses were originally directly handed out by the Internet Assigned
Numbers Authority (IANA) to the organizations that needed them. Organizations would
receive Class A, B or C blocks, see Table 2.1, however due to the limited amount of IPv4
addresses and to reduce the growth of routing tables across the Internet the community
has switched over to classless addressing. With Classless Inter-Domain Routing (CIDR)
there are no fixed boundaries that a network needs to adhere to. Instead, arbitrary
length prefixes are allowed where multiple contiguous prefixes are aggregated to a larger
network. Nowadays the TANA does not assign IP addresses themselves but hands them
out to five Regional Internet Registries (RIRs); AfriNIC, APNIC, ARIN, LACNIC and
RIPE NCC. Each RIR administers a range of IP addresses, which in turn is handed out
to National Internet Registers (NIRs) or Local Internet Registries (LIRs). In the end
Internet Service Providers (ISPs) obtain a range of IP address that they allocate to their
customers thus guaranteeing a worldwide unique address.

The main benefit of an hierarchical addressing structure is illustrated with the follow-
ing example; a mailman in country X does not need to know anything about addresses
and places within country Y, he only needs to know the main postal office in Y, which
in turn will distribute the mail within Y. The same holds for computer networks, where
one device does not need to know the exact location of hosts within another network.
It only needs to know one host that knows another host, that knows another host, until
there is a host that is directly connected to the destination host.

The Internet Protocol also provides data encapsulation. Data encapsulation is a di-
rect result of using an architecture that consists out of layers and where data is passed
through the layers. By means of data encapsulation the transport layer protocols utilize
the IP protocol while performing higher level functions themselves; separating the func-
tionality and complexity of the network layer from providing, in case of TCP, a reliable
network connection.

A fragmentation function is defined in IP, because when data is encapsulated and
passed through to the network layer it makes sense that the network layer should take
into account the maximum frame size of the data link layer. This is important when
the IP packet is too large to fit in, for example, one Ethernet frame. In this case the
network layer needs to split up the packet to fit within the constraint set by the data
link layer, thus fragmenting the data. The opposite process of recovering the IP packet



18 CHAPTER 2. BACKGROUND

IP header length is at least 20 bytes
k
3

N

byte offset 14 14 15 16 18 20 20 22 23 24 26 30 34

| I
size in bit 4 8 |16]|16| 3 [13| 8| 8 |16 32 32 n E P

< > &
\)@

Q X < S S &
QQ% S Q/\qﬁo %%z o\\4 ‘@Q \Lf"\» bb&% bb@% ’;}OQ 6&0
& o Y ¥ ot QT
&4 \)‘b‘ Q;& & . &\ C\)Q 8 <
& & e &
<* & ¥
¥ S %;&
Qz

Figure 2.6: The IP packet

out of several frames is named reassembly.

2.4.1 Routing

A host needs to determine wether a packet should be send directly or indirectly before
it delivers it to the data link layer. Directly means that the packet is destined to a host
on the same Ethernet network and means that the packet can just be send down to the
data link layer. In the data link layer the IP address is resolved by the ARP protocol to
a data link layer address after which the packet is send over the Ethernet. In case of an
indirect delivery of a packet the host needs to route the packet to an intermediate host,
this is the case when the hosts belongs to different networks.

In RFC791 Internet Protocol several classes of networks are defined, see Table 2.1. By
using the definition of these classes the host determines the class of an address simply
by matching the high order bits of the class with the high order bits of the address.
After the class is determined the format of the address is known and the network part
is extracted. The network part is matched with the sending host’s network when the
network part is known to see whether routing is necessary.

Table 2.1: Network classes

High order bits Network (bits) Host (bits) Class
0 7 24 A
10 14 16 B
110 21 8 C
111 Escape to extended addressing mode

However soon it became apparent that the classful addressing scheme was not scal-



2.5. THE ARP PROTOCOL 19

able. Medium sized companies had to use class B networks since a class C network only
allows for the allocation of a maximum of 254 IP addresses, or hosts. This led to an ex-
haustion of the class B network address space. A solution was presented in the standard
RFC1519 Classless Inter-Domain Routing (CIDR) where the network and host separa-
tion was no longer fixed to 8, 16 or 24-bit boundaries, but became variable. In CIDR an
IP network is represented by a prefix, which is an IP address and the length of the mask.
The length of the mask can be written as /n where n is the number of network bits. For
example, the network 192.168.1.0 255.255.255.0 can be written as 192.168.1.0/24. CIDR
allows for a further subdivision of larger networks into smaller ones, thus giving ISPs
the tool to hand out an adequately spaced smaller network to companies that want to
be connected to the Internet.

With classless routing a packet needs to be forwarded when the network prefix of
the destination host and sending host do not match. Whether they match or not is
determined by applying a bitmask, which starts out with a number of 1s equal to the
prefix length with the remaining bits set to zero, to an IP address. The so obtained
network part needs to differ with the destination network in order for forwarding to
occur.

Now, although routing became more complex for ISPs for almost every other PC
connected to the Internet routing boils down to sending everything that is not destined
for the local network to the default gateway, which is usually the modem /router located
in the premises.

2.5 The ARP protocol

In the previous section, Section 2.4, it was shown that an IP address consists out of
four octets. However, an Ethernet address consists out of six octets as discussed in
Section 2.3. Obviously some kind of translation is needed between addresses of the
network layer and the data link layer. This is where the Address Resolution Protocol
comes into play. The Address Resolution Protocol is defined in RFC 826 an Ethernet
Address Resolution Protocol and was originally designed for the Ethernet as implied by
its name [17]. The protocol is however general applicable and can be used to resolve any
two addresses in any two lengths.

The need for address resolution stems from the fact that network addresses say
nothing about the physical connection and proximity between devices, but more about
where a device is placed in a hierarchical layer three network. The addresses in the data
link layer are used for data exchange between hosts that are geographically close to each
other, while the network addresses are used to create virtual networks that span the
entire world.
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Figure 2.7: An ARP example

It is important to understand that as devices are communicating on the network
layer all frame transmissions are still done through the data link layer. This is easier to
visualize with Figure 2.7. A packet from host H1 destined for H2 is forwarded first to
S1 before it reaches H2, even though both hosts are directly connected in the network
layer since they are within the same 192.168.2.0/24 network.

ARP header length is 28 bytes
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Figure 2.8: The ARP packet format

An ARP packet used for translating TP addresses to Ethernet addresses is depicted in
Figure 2.8. In the packet four bytes are used for the protocol address fields and six bytes
for the hardware address. The protocol defines two types of messages; a request and a
reply. The message type of a packet is defined by the value set in the opcode field. The
length of both the hardware and protocol addresses is specified in their respective fields
to support addresses of an unfixed length. The length of the protocol address is also
implicitly defined by the protocol type (the protocol address space field). The same holds
for the hardware address length which is derived from the hardware type indicated by
the hardware address space. This redundancy is according to the specifications included
for consistency checking, network monitoring and debugging. The known hardware and
protocol addresses of sender and receiver are found in their respective fields.

A typical ARP sequence is depicted in Figure 2.9 where host H1, see Figure 2.7,
is about to send an IP packet to host H2 by Ethernet, but currently does not yet
know what the hardware address is of host H2. To simplify the situation the switch is
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assumed to be replaced by a direct link.

To conclude the discussion of the address resolution protocol the following list shows
a typical step-by-step interaction between two hosts trying to resolve an address;

1.

2.

10.

Host H1 has queued up an IP packet and passes it on to the data link layer.

Host H1 tries to lookup the IP address in its cache. If the address is cached it is
used and the frame is send out.

. If the address was not cached host H1 will generate an ARP request. The hardware

destination address field is not set since that is what needs to be determined.

. The ARP request is broadcasted on the Ethernet and now host H1 either receives

a reply or the request will time out.

. Host H2 receives the ARP broadcast, as it is in the same broadcast domain, and

determines it is the target for the ARP request by matching the configured IP
address with the destination protocol address field.

. Host H2 generates a reply in which the source address and destination address are

swapped and the MAC address is inserted in the source hardware address field.

It is very likely that in the near future H2 needs to send packets to H1, therefore
host H2 inserts host H1 protocol address and the matching hardware address in
its cache for future use.

. The ARP reply is send to host H1, although this time it is not as broadcast but

send as a unicast frame.

. Host H1 receives the generated ARP reply and inserts the correct destination MAC

address for the IP packet.

Host H1 caches the MAC address for future lookups and to prevent a flood of ARP
request on the network for every IP packet that needs to be transmitted.
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Figure 2.9: A typical ARP sequence

2.6 The ICMP protocol

When a host sends out IP packets there is no guarantee that all or even some of these
packets will eventually arrive at their destination. There can be no guarantees, because
there is neither a prior connection setup nor a confirmation of the arrival of the IP
packet. There are several reasons why a packet does not arrive at its destination. Some
of those reasons might be solvable or preventable by the Internet Protocol, or a higher
level protocol running on top of it, if there would be a mechanism in place that could
notify a transmitting host of errors that happened along the way.

This mechanism exists and is defined in RFC 792 titled Internet Control Message
Protocol [19]. RFCT792 defines the ICMP protocol which is designed to be a general
purpose messaging system and is extendible with other message types. A few other
message types are defined in RFC1256 ICMP Router Discovery Messages, RFC 1393
Traceroute using and IP Option and RFC 1812 Requirements for IP Version 4 routers.
A new version, which is an IPv6 version, of the ICMP protocol is defined in RFC1885
and revised in RFC2463.

ICMP is an integral part of the IP protocol and must be implemented by every
internet protocol stack. ICMP messages can be generated by a fault trigger routine
somewhere along the path of a traveling packet. Such a message is itself an encapsulated
Internet Protocol message and transmitted like any other ordinary IP packet, thus ICMP
does not receive any special treatment from the Internet Protocol.

ICMP does not only define error messages, but also messages that are more infor-
mational in nature. A clear distinction is made for ICMP IPv6 in RFC2463, where
error messages have a message type form 0 to 127 and informational messages have a
message type from 128 to 255. Typically, informational messages are used for testing
purposes. The mechanism to trigger the generation of an informational message is by
specific queries, either by the end user or a device, this in contrast to error messages
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which are triggered by errors.

An ICMP message is classified by the value set in the type field in the ICMP message
format. The type field is eight bits wide and allows for the definition of up to 256 different
message types. Each message type is further divided by a subtype value named code.
Just like the type field the code field is eight bits wide and thus allows for up to 256
subdivisions of the message. The values assigned to the message types and subtypes
are assigned by the Internet Assigned Numbers Authority (IANA) and the currently
assigned numbers for ICMP are found in RFC1700.

The ICMP only defines the message format and the exchange of its messages. The
protocol does not perform any specific action on any of the messages. All ICMP messages,
independent of their purpose, have a few fields in common. There are three of those
common fields; a type field, a code field and a checksum field as depicted in Figure 2.10.
The checksum field is an 16-bit checksum and is calculated over the entire [CMP message
to detect errors. The format and contents of the message body depends on the type of
the ICMP message. Two examples of messages that are supported by this project are
discussed in the following two section.

ICMP Echo or Echo Reply message
I
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size in bit 8 8 16 ].6 16

L ¥ & L P
T EF LS o°
&
R
o@&
N

Figure 2.10: The ICMP message format

2.6.0.1 Destination unreachable

As discussed before, the Internet Protocol does not guarantee the arrival of a packet at
its destination. This is usually not a problem since higher level protocols like TCP run
on top of IP and create a virtual connection with error correction and rate limiting and
by using a handshake protocol they provide a reliable network connection. However,
a situation can occur where it is impossible to reach the destination. Possible reasons
for such an occurrence are routing problems or simply that the destination host is not
connected to the network. In those cases it is more efficient to notify the host about
the fact that the destination is unreachable then to let the transmitting host continue
to send packets which will never arrive.
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The ICMP defines a destination unreachable message type that is used by the IP
protocol to notify a packet sending host of a failure somewhere along the way. When
the sending host receives one of those messages it knows that there is a problem and can
decide to undertake an action. To help the stack to diagnose the problem the destination
unreachable message includes a portion of the original packet that caused the failure, in
particular the IP header and a minimum of eight bytes of the original data datagram.

The Destination unreachable message type is further divided into twelve subtypes
through the code field. For example, when the code field is set to a value of one it
means that the destination host, as defined in the IP header in the message body, is not
reachable. More importantly however it indicates that the intervening communications
infrastructure up to the last host is working correctly. The last router has even send an
ARP request but it simply was unanswered. Possibly, a network administrator needs to
check some cables or perhaps the host is simply not connected or turned on. When the
code field is set to a value of three it means that the destination port is unreachable, the
sending host might decide in this case to take action and contact the destination on a
different port.

2.6.0.2 Echo or Echo Reply Message

A frequently used tool to debug computer networks is the ping utility. The ping utility
is used to test the reachability of a host and can be used to measure the latency between
two hosts. Besides the default values there are a range of other parameters that are set;
for example, the size of the ping message, the source IP address and the amount of ping
messages send. The utility gives a lot of information about the network, for example
the round trip delay of a packet, calculated by measuring the amount of time elapsed
between sending a ping and receiving the echo, or the amount of successful received echo
compared to the amount of send pings.

The ping utility works by transmitting informational ICMP Echo or Echo Reply
messages. The code field in this ICMP packet is set to a value of zero, since there are no
subtypes defined for this specific message type. Three unique fields for this message type
are; an identifier field, a sequence number field and an optional data field. The identifier
and sequence number fields are used by the echo message sender to determine which
echo replies match with which echo requests. A host can determine which of the Echo
messages was successful by matching the identifier and sequence number of the received
packets. This is important to know, since IP itself does not even guarantee that packets
are received in the same order as they were send and usually the first Echo Message is
dropped if the last hop needs to ARP to the destination. On the contrary, a missing
Echo Reply somewhere after the first Echo message might indicate connection problems.

Concluding, the ICMP gives a user or protocol a wealth of information about a failure
or a triggered query. ICMP can be used to notify an end user of connection problems
and can be used to diagnose network problems.
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2.7 The UDP protocol

The User Datagram Protocol (UDP) is defined in a very short request for comments
document named RFC768 - User Datagram Protocol [18]. The User Datagram Protocol
is a best effort datagram service in that it is an unreliable and connectionless protocol.
Although unreliable does not sound like a feature it can actually be one depending on
the requirements set by the application layer.

The unreliability stems from the fact that there is no guarantee that the receiver will
actually receive the datagrams in the right order, or even receive them at all as was the
case with the Internet Protocol. The only guarantee given by the UDP protocol is that
the datagram contents will arrive without any data corruption. This does not mean that
the packets never have any data corruption, but merely that when a cycle redundancy
check fails the datagram is dropped and not send to the UDP layer. Due to the fact
that there is no additional overhead for error-checking above the packet level, as there
is with TCP, UDP data can be much faster than TCP, which becomes apparent when
considering that the minimum transaction time for a UDP request-reply is the round trip
time plus the processing time needed by the server. With TCP however the minimum
transaction time, with assuming that a connection has been setup, is two times the round
trip time plus the processing time needed by the server.

UDP packet
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Figure 2.11: The UDP message format

In multimedia applications, such as Voice over IP, real-time video conferencing and
audio/video streaming there is no need for congestion control and retransmissions. Re-
transmissions are not useful since by the time the lost packet has been resend several
round trip delays have been passed and by the real-time nature of the application there
is no longer need for the packet. In addition, the reliable service that TCP provides can
introduce an unacceptable jitter due to the fact that an application needs to wait for a
retransmitted packet, while the next packets could already have queued up.

The UDP has one function that IP itself does not have, namely its multiplexing
feature. A UDP header consists out of four fields each sixteen bits wide, as depicted in
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Figure 2.11. The source port and checksum fields are optional fields in that they do not
have to be filled in with meaningful data. The port fields are used to distinguish and
multiplex UDP packet flows. Generally, applications request a specific port number or
are assigned one by the operating system.

The source port is used by the destination to determine to which port it needs to
forward its answer. The destination port is usually set to a specific port number of a
well known application. For example, if one wants to use the DNS protocol, which runs
on top of UDP, the destination port is set to 53. Like with ICMP the IANA keeps a
list of officially assigned port numbers and their respective applications. The length field
specifies the length in bytes of the entire datagram; the length of the header and data
combined. As a result the minimum length is eight bytes, since that is what it takes to
send the four fields of the UDP packet.

UDP packet
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Figure 2.12: UDP Checksum header

A value in the checksum field is optional. The field should be filled with zero to
indicate it is empty when not used. To distinguish between a zero value and an empty
value a calculated checksum of zero should be set as a negative zero. The exact method
of calculating the checksum, as specified in the RFC, is the 16-bit one’s complement of
the one’s complement sum of the UDP header, the data which is padded with zero octets
at the end to finish the packet on a word boundary and a pseudo IP header. The pseudo
header, depicted in Figure 2.12, contains the source address, the destination address,
the protocol and the UDP length. Although the pseudo header is used for the checksum
calculation it is not actually transmitted along with the data. The inclusion of an IP
address within the pseudo header is a layer violation and will make it difficult to run
UDP on top of any other protocol then IP. Another implication is that systems, such as
NAT devices, which modify the IP address need to modify the UDP-layer checksum.
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2.8 Conclusions

This chapter presented the basic background knowledge to understand the context of
the overall design. In order to fulfill the requirements set out in Chapter 1 and keep the
design as resource efficient as possible an embedded processor needs to be selected and
implemented. An embedded processor has several advantages over creating a complex
state machine, for instance; it provides an easy debugging interface, makes it possible to
emulate complex state machines in easy to understand assembly language and keeps the
design small, since the complexity of the program does not alter the physical implemen-
tation of the processor.

Several publicly available embedded processors are found on the Internet. A major
drawback of most of these microcontrollers is that they are not designed with resource
efficiency in mind, but are designed to be backwards compatible with some existing mi-
crocontroller. Two alternatives are given which are designed towards resource efficiency;
one made by Xilinx the other by Altera. The development board for this board was
selected before the microcontroller and thus the Xilinx implementation was chosen due
to vendor lock in.

In addition to the microcontroller, this chapter also discussed a number of protocols
that are implemented in the design so that UDP packets can be received from and
transmitted to other hosts. The first standard discussed was the Ethernet standard. A
history of the Ethernet was given to show the natural evolution of the Ethernet towards
full duplex links. For this reason, this project is designed for solely full duplex links,
keeping the design small and simple, since no collision detection or sorts need to be
implemented.

Other protocols discussed in the chapter are the Internet Protocol, the Address Reso-
lution Protocol, the Internet Control Message Protocol and the User Datagram Protocol.
The Internet Protocol provides a basic datagram delivery service. In particular the ad-
dressing scheme is discussed that determines where to forward packets to. The Address
Resolution Protocol provides in essence a lookup table between four byte IP addresses
and six byte Ethernet addresses. A lookup is necessary since the addressing scheme of
higher level protocols, like IP, differ from lower level hardware schemes like MAC ad-
dresses. To support a few well known network diagnostic utilities a small subset of the
Internet Control Message Protocol is discussed and implemented in the design. Finally,
the User Datagram Protocol is discussed, which provides access to the Internet Proto-
col to the application layer and adds a multiplexing feature. By using the multiplexing
feature a great number of applications can run and make concurrent use of the UDP /IP
stack. The UDP protocol is implemented in this design, because it is belongs to the
minimum set of protocols needed to transmit data from an FPGA towards another host
on the Internet or on a local area network.
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Implementation details

This chapter describes the general architecture as well as the specialized hardware blocks.
The first section of this chapter presents the hardware platform together with the relevant
modules on the platform. The second section, Section 3.2, gives a global overview of
the software written for the Picoblaze and the interface presented to the outside world.
Section 3.3 describes the hardware implementation and gives an overview of the resources
required in the reconfigurable logic. Finally, Section 3.4 summarizes the chapter.

3.1 Platform specifications

Many different FPGA demo boards are available. Prices for these boards range from as
high as $70.000 to as low as $50'. The board selected for this project is the Spartan
3E development kit, which is manufactured by Digilent and sold by Xilinx at a price of
$149. The board is positioned by Xilinx as the preferred development kit for the Xilinx
Spartan 3E family. The board is depicted in Figure 3.1.

The development platform is build around a Xilinx Spartan-3E FPGA. The kit is
designed to provide a prototyping platform to a wide range of embedded systems [27].
The Xilinx Webpack software package is used in combination with this platform to
write, compile and upload the HDL to the board and is freely available at the Xilinx
web site [29]. The following list shows a complete overview of the components present
on the board;

e Xilinx XC3S500E Spartan-3E FPGA
e Switches, buttons and a knob

e Clock source

e Character LCD Screen

e VGA Display Port

e RS-232 Serial Ports

e PS/2 Mouse or Keyboard Port

e Digital to Analog Converter

e Analog Capture Circuit

e Intel StrataFlash Parallel Flash PROM

'source: http://www.fpga-faq.com/FPGA Boards.shtm

29
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e SPI Serial Flash
DDR SDRAM

10/100 Ethernet Physical Interface

e Expansion Connectors

The relevant components for this project are the serial ports (Section 3.1.1), the char-
acter LCD screen (Section 3.1.2), the 10/100 Ethernet physical interface (Section 3.1.3
and the FPGA itself (Section 3.1.4). The Ethernet component consists of the physical
layer (PHY) interface and a RJ-45 connector, the Media Access Controller (MAC) is
implemented in the FPGA. An Ethernet connector is used to connect the board and a
PC together in order to form a small computer network. Serial interfaces are used as a
debugging interface between the PC and the UDP/IP stack. The following subsections

give a brief overview of the components, a more detailed description of all components
is found in [27].
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Figure 3.1: The Xilinx Spartan-3E development board
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3.1.1 The serial ports

The board contains two serial ports; a female DB9 DCE connector and a male DTE
connector. The DCE-style port is used for debugging purposes and is connected to a
PC. The DCE-style serial interface consists of a Max3232 line driver connected to a
few of the FPGA pins. The function of the line driver is to transform the low voltage
outputs of the FPGA to the higher voltage levels needed for the RS-232 standard, a
standard used by devices for serial data transmissions. The voltage transformation is
done by charging external capacitors, so called charge-pump capacitors, and using the
stored energy to create the needed higher voltage levels. For this design there are no
handshaking signals and only the Rx and Tx signals are used.

3.1.2 The LCD

The LCD interface on the Spartan-3E Starter Kit board is used for the demo application
provided with this project’s UDP /IP stack. It features a 2-line by 16 character display
that is controlled via the 4-bit data interface with the FPGA. The character LCD has
an internal ST7066U graphics controller. The graphics controller has three internal
memory regions, the Display Data RAM (DDRAM), the Character Generator ROM
(CG ROM) and the Character Generator RAM (CGRAM). The CG RAM and ROM
provide space for 5-dot by 8-line character bitmaps and are referenced by their respective
character codes. The DDRAM stores the character codes to be displayed on the screen,
see Figure 3.2. The demo application only interacts with the DDRAM by writing the
character codes on the character display addresses that are mapped to the display. For
example writing the hexadecimal character code 0x53, which is the character code of the
letter ’S’, to the character display address 0x41 results in the letter 'S’ showing up on
the second position of the second line.

Character Display Addresses U:j(;?gfsﬁid

1400 |01|02)|03)04|05)| 06|07 |08 |09 |OA|OB|OC|OD|OE]| OF g10 . 27
2940 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | A4C | 4D | 4E | 4F | 50 . 67
1 2 3 4 5 6 7 8 9 i0 11 12 13 14 15 16 17 .. 40

DD RAM Hexadecimal Addresses (No Display Shifting)

Figure 3.2: The LCD character display addresses

3.1.3 10/100 Ethernet physical layer

The development board includes a Standard Microsystems LAN83C185 10/100 Ethernet
Physical layer (PHY) interface and a RJ-45 connector [20]. The LAN83C185 is a fully
IEEE 802.3/802.3u compliant analog interface IC and allows embedded Ethernet ap-
plications on the FPGA. It contains a full-duplex 10BASE-T/100BASE-TX transceiver
and supports 10 Mbps (10BASE-T) and 100Mbps operation with unshielded twisted-pair
cables. The FPGA connects to the LAN83C185 using a standard Media Independent
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Interface (MII) and combined with an Ethernet Media Access Controller the board pro-
vides an Ethernet connection to the network.

3.1.4 Xilinx FPGA

Xilinx is the market leader in programmable logic, where the reconfigurable logic is imple-
mented in Field Programmable Gate Arrays. FPGAs are ”off-the-shelf” chips that a de-
veloper programs to perform a specific function, this in contrast to chips ”programmed”
by the manufacturer during the manufacturing process, so called Application-Specific
Integrated Circuits. Where historically FPGA chips were only used as a replacement
for discrete logic chips, they are now more and more used for design integration. The
main reason for this change is that FPGA chip costs are approaching the costs of the
equivalent ASIC. Using readily available FPGAs increases the product design flexibility
and gives a faster time-to-market.

For this project a XC3S500E FPGA is used. This chip is part of the Xilinx Spartan-
3E FPGA family, a low cost series suitable for high volume applications. Densities in
the family range from 100,000 to 1.6 million system gates, which should be big enough
to leave a significant amount of free gates after the UDP /TP stack is implemented. The
Spartan-3E family does not come with an on chip microprocessor making it relatively
easy to retarget the design to a different Xilinx family or to an FPGA of a different
vendor.

3.2 Software implementation

The Berkeley Socket Interface (BSI) was part of the 4.2 release of the original Berkeley
distribution of the UNIX operating system that contained the TCP/IP protocol stack
and was released in 1983 [21]. It was not until 1989 however that the University of Cali-
fornia, Berkeley could release its operating system together with the networking library
completely free from the constraints set by AT&T on its copyright protected UNIX.
Since that time, the Berkeley Socket API forms the de facto standard for abstraction of
network sockets and is implemented in this design.

3.2.1 UDP sockets

Berkeley sockets, also known as the Berkeley Software Distribution (BSD) Socket API,
is an Application Programming Interface (API) that provides a library of functions
for performing inter-process communications through the use of C code. Nowadays
many other programming languages use a similar interface as provided by the C API
and all modern operating systems have some kind of Berkeley based socket interface
implementation. The API provides a high level abstraction of many different kinds of
I/0O devices and their drivers by wrapping them up in an abstraction layer called internet
sockets.

A socket is the BSD method for Inter-Process Communication (IPC), which allows
concurrently running processes to exchange data through sockets. Some IPC mechanisms
only support data exchange between local processes, while others allow data exchange
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between geographically dispersed machines. Sockets are of the latter type, providing
both local and remote data exchange and were designed as a standard way to support
many different kinds of communication protocols and data streams.

Originally, sockets were treated as files. The UNIX system calls open(), read(),
write() and close() are used on both files and sockets. An example of this similarity is
that when a file is being created by calling the open() function an integer is returned.
This integer, referred to as the file descriptor, is then used to change the file. The same
holds for sockets where a socket() call returns a socket descriptor that gives access to the
socket. A socket() call opens a socket and takes two key arguments; a domain parameter
to select the protocol family, and a type parameter to select the protocol.

There are currently about ten supported protocol families. The one used in this im-
plementation is the IP_INET family, which is the Internet family for IPv4. The widely
popular protocols TCP, UDP and IP belong to this domain. Internet sockets provide five
different types of access. The five defined type are SOCK_STREAM, SOCK_DGRAM,
SOCK_RAW, SOCK_SEQPACKET and SOCK_RDM. SOCK_RDM is not yet imple-
mented and SOCK_SEQPACKET is only used for PF_NS. A SOCK_STREAM type pro-
vides sequenced, reliable, two-way connection based byte streams and is implemented
on top of TCP. On the other hand a SOCK_DGRAM socket supports datagrams, which
are connectionless, unreliable messages of a fixed maximum length. Finally, the most
powerful, versatile and low level interface, the raw socket SOCK_RAW, enables a process
to read and write IPv4 datagrams with an IPv4 protocol field that is normally not sup-
ported by the operating system. An example, the Internet Group Management Protocol
(IGMP), a communication protocol used to manage the membership of multicast groups
does not use TCP or UDP but uses the IP layer directly through raw sockets.

’ Socket() ‘ ’ Bind() ‘ ’ RecvFrom() ‘ ’ SendTo() ‘ T,

UDP Server ’
Qy %,

’ Socket () ‘ ’ SendTo() ‘ ’ RecvFrom() ‘ ’ Close() ‘ T.

UDP Client ’

Figure 3.3: An UDP data exchange between client and server

A typical UDP setup looks like Figure 3.3, in which a client tries to exchange data
with a server. The server started by opening up a socket with a socket() call specify-
ing the domain, PF_INET, and the type SOCK_DGRAM and it sets the protocol to
IPPROTO_UDP. Then it binds the socket to an address with a bind() call specifying
the socket descriptor, an address structure and the length of the address structure. The
server calls the function RecvFrom(), which blocks until a datagram is received and re-
turns the length of the received datagram. After receiving the datagram it is likely that
the server wants to send some data back and does so with a SendTo() call. From the
clients perspective it is all quite similar except that it will start by sending the data,
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since it initiated the communication, and will wait for possible data before eventually
closing down the socket with a close() call.

3.2.2 Signals

In UNIX, signals are used to notify running applications that a certain event has oc-
curred. Usually they interrupt the running process and expect to be handled immedi-
ately. Each signal is identified by a unique integer number and a symbolic name. A
signal can have a signal handler, a function that handles the received event. A signal is
in principle similar to a hardware interrupt, except that the operating system sends the
signal instead of a hardware component.

Although in UNIX many different signals are defined only one is used in this imple-
mentation. The SIGIO signal is used in combination with non-blocking socket calls. A
common problem associated with asynchronous IO is that there is no way of knowing
when to expect data. At the same time the default behavior of a socket call is to stop
the program until the requested function is completed. One can expect that a lot of time
is wasted on waiting for data with a RecvFrom() call. An alternative way of retrieving
data is to configure the socket for non-blocking 10 so that all calls made to the socket are
non-blocking. A non-blocking function will return immediately with a value indicating
either a success or a failure. Instead of having to wait for the return of the function,
the function is now polled periodically until the function returns successfully. The CPU
can now used between the polls for more useful work than just idling. An even better
solution is to do no polling at all but instead listen for the SIGIO call with a signal trap.
This frees up the CPU completely from waiting for data and allows other tasks to run,
while it is still ready to receive any data at any time.

3.2.3 Sockets and signals implemented

Concluding, the Berkeley Socket Interface provides an abstraction for network sockets
and allows client/server communication with just five different functions. Combined
with a signal the interface provides an easy access to the UDP/IP stack, where received
data is indicated by an interrupt. This functionality is implemented in order for an easy
access to the UDP/IP stack, without inventing a complete new interface.

The physical interface consists of two sets of register banks. Each bank consisting
out of sixteen eight bits registers, as depicted in Figure 3.4. One register bank, the IN
bank, is only written by the application running alongside the stack, while the other
bank, the OUT bank, is only written by the UDP/IP stack. Both banks are read by
both the application and the stack.

There are three types of registers defined. The first type is Command ID and is
filled with any arbitrary number, as long as it is not the same number as used in the
previous command. The Command ID is used by the UDP/IP stack to check whether
there is a new command present in the registers, while the application reads the OUT
Command ID to check if the command is completed. For both cases this is determined
by checking the current value with the previous value. The stack is busy as long as the
IN and OUT Command IDs differ in value. The second type is Command and dictates
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Figure 3.4: The UDP/IP stack interface

which command is executed on the UDP/IP stack, since only the application can request
actions there is no Command register in the OUT bank. The third and last type is a
Argument type and can have any value and its meaning is determined by the Command
that is to be executed. A list of commands similar to the Berkeley Sockets is shown in
Table 3.1 and a list of additional commands supported by the stack is shown in Table 3.2.

In principle all functions are blocking functions, with the exception of the RecvFrom()
call. The advantage of having a non-blocking RecvFrom() is that it allows multiple
applications to poll the stack and request an incoming packet. With a blocking function
it would not have been reasonably possible to use the stack concurrently, for the simple
reason that one application could block the stack forever by requesting a packet that
might never arrive. Instead of polling the stack one could also use the earlier mentioned
method of signalling the application.

3.2.4 The program flow

A high level program flow for this UDP/IP stack is depicted in Figure 3.5. The pro-
gram starts by initializing several variables, such as the OpenSockets variable and the
LastMessageSize variable. After the initialization of the stack the MAC module is reset-
ted and the first frame is requested. The MAC module will now continuously check if
it has received a valid new frame. If it did, the frame is copied to a separate RX buffer
and a bit in a special function register is set to indicate that the copying is completed.
Periodically the stack will check if there is a new packet present by checking the value
of the just mentioned bit.

If there is no new frame present in the receive buffer, the stack will check the command
registers for a new command, as is discussed in 3.2.3. A change in the Command ID
register indicates an UDP/IP stack function call by one of the applications. The value of
the Command register is loaded and compared in sequence with the constants attached
to the functions, as depicted in the command value column in Table 3.1. The functions
SendTo() and RecvFrom() are positioned at the top of the command list to reduce the
inherent delay of checking each constant.

Figure 3.5 has been simplified by leaving out the handling of the commands and
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Table 3.1: UDP/IP stack commands

Command value Command Arguments IN Arguments OUT
07 Socket() Result (FF=Error, [FF=0k)
Socketld
08 Bind() Socketld Result (FF=Error, [FF=0k)
PortH
PortL
0B RecvFrom() Socketld Result (100=Error 00=0k)
BufferAddressH SourcePortH
Buffer AddressL SourcePortL
SourcelPAddress|[3]
SourceIPAddress|2]
SourceIPAddress|1]
SourceIPAddress|0]
LengthH
LengthLL
0A SendTo() Socketld
LengthH
LengthL
BufferAddressH
Buffer AddressL
UDPDestinationPortH
UDPDestinationPortL

IPDestinationAddress[3
IPDestinationAddress[2
IPDestinationAddress[1
IPDestinationAddress[0

09 Close() SocketId

]
]
]
]

protocols. The handling of the commands such as getIP(), setIP or getNetMask() is
relatively easy. The value of the currently assigned IP address, gateway address and the
netmask are stored in the scratchpad of the Picoblaze microcontroller. The commands
simply call a copy function with a pointer and a length as arguments. The copy function
then copies the contents of the scratchpad to the argument registers in the OUT register
bank, thus returning the requested value.

A more complex command is SendTo(), which is responsible for sending out UDP
traffic. Normally only one packet is placed in the transmit buffer at any given time.
This works well for larger packets where the amount of data is large compared to the
overhead caused by processing the packet. For large packets the achievable throughput
is close to 100% of the theoretical throughput. However small frames with a size of
around 64 bytes suffered heavily of having only one buffer, mainly because a packet can
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Table 3.2: Additional UDP/IP stack commands

Command value Command Arguments IN Arguments OUT
0C GetHardwareAddress() MACAddress[5
MACAddress[4

MACAddress[2
MACAddress|1
MACAddress[0

01 GetIPAddress() CurrentIPAddress[3

CurrentIPAddress|2
CurrentIPAddress[1
[

[

[
MACAddress|3

[

[

]
]
]
CurrentIPAddress|0]
02 SetIPAddress() NewIPAddress[3
NewIPAddress|[2
NewIPAddress|1
[

NewIPAddress[0

03 GetGateway () CurrentGatewayIP|3]
CurrentGatewayIP[2]

[1]

[0]

]
]
]
J

CurrentGatewaylIP|1
CurrentGatewayIP |0

04 SetGateway/() NewGatewaylIP[3]
NewGatewayIP[2]
NewGatewaylIP[1]
NewGatewayIP[0]
05 GetNetMask() CurrentNetMask([3]
CurrentNetMask|[2]
CurrentNetMask|[1]
CurrentNetMask[0]
06 SetNetMask() NewNetMask|[3]
NewNetMask|[2]
NewNetMask|[1]
NewNetMask|[0]

not be copied to the transmit buffer while there is still another packet stored in it. To
improve the throughput the buffer is split up in two equal sized parts. The buffer acts
as a single large buffer for packets with a size larger than 768 bytes, however if there
are two consecutive small packets, then each packet is placed in only one half of the
buffer. In this way one packet stays in the buffer accessible by the MAC module, while
the stack works on the second packet in the other half. After the data is copied from
the application buffer to the internal transmit buffer a pseudo header is placed before
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it, as discussed in Section 2.7. Furthermore an internal checksum calculator build in
reconfigurable logic is activated. The result of the calculation is placed inside the UDP
header and the pseudo header is dropped. Now the UDP packet is encapsulated in an IP
packet and the destination IP address is copied from the IN register bank. After the IP
header is formed the stack calls an internal send function which checks if the destination
IP address is a local address or a remote address, for definitions of local or remot address
see Section 2.4.1. If the address is a local address it is immediately looked up in the
ARP table. However, if it is a remote address, the default gateway is used and looked up
in the ARP table. The MAC address belonging to the IP address is copied directly to
the transmit buffer if the address is found in the table. Alternatively, the address is not
found, which leads to dropping of the packet and the generation of an ARP request in
the transmit buffer. Finally, whatever is currently placed in the transmit buffer is send
away.

Furthermore the stack itself handles all ARP and ICMP traffic. Whenever a packet
is placed inside the RX buffer the stack checks first if the packet is an ARP request. If
so, the stack waits for the complete transmission of an outgoing packet and will then
start building an ARP reply in the transmit buffer with its own IP address and MAC
address filled in. The stack will store the remote host’s MAC and IP address for both the
ARP reply and the ARP request. The stack also builds automatic replies for received
ICMP echo request, where the building entails copying the received frame to the transmit
buffer, change the message type to a reply and adjust the checksum.

3.3 Hardware implementation

This section will discuss the overall system as implemented in reconfigurable logic. Before
the actual implementation, several decisions had to be made in terms of compatibility,
speed and area. Omne such a decision is when to comply with the RFC documents
applicable to this design and when not. For example, it is understandable that half duplex
Ethernet is required for backwards compatibility by the RFC documents. However,
virtually all switches and routers support full duplex nowadays. The tradeoff here is
between adhering to the standard and increasing the size of the design or optimizing the
design and loosing a functionality, that will most likely never be used.

3.3.1 Accelerating modules

The stack needs to perform certain actions and it needs to perform these actions with
a real-time constraint to be able to send out frames at linespeed. The amount of time
that can be spend on all actions combined is the same time as it takes one frame to
be transmitted for a pipelined design. This results in that maximum 275 instructions
can be executed per frame, taking into account the line speed for 64 byte frame and the
frequency that the Picoblaze runs on. Simply fetching the bytes from the application
buffer and placing it in the transmit buffer, as happens when the frame is build, already
takes 80 instructions. A more complicated task as performing an ARP lookup takes
275 instructions by itself. One can only conclude that some of these actions need to be
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Figure 3.5: The program flow

I

accelerated in order to send out frames at linespeed.

One of the main problems while designing the stack was to select the functions that
are implemented in hardware. The following factors are considered when this choice
was made, as illustrated in Figure 3.6. First, while throughput is not set as a hard
requirement it is still a factor that is taken into account, because a stack that sends out
a single byte per minute is not useful for many applications.

Another important factor is the amount, and complexity, of the data that needs
to be exchanged between the module and the software versus the achievable speedup.
If the costs of exchanging the data are for some reason higher then the speedup of
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Figure 3.6: Increase in area and speed vs increase of instructions and decrease of area

the calculation itself then this function is not a good candidate for implementation in
reconfigurable logic. The costs of the data exchange is expressed in the amount of
instructions it costs to perform the data exchange.

The amount of area required on the FPGA by the hardware implementation is an-
other factor. Since one of the requirements for this implementation is that the stack can
be implemented on the smaller versions of the Xilinx Spartan 3E family not every func-
tion would be suitable for hardware implementation. In some cases it might be desirable
to separate a function into smaller functions in order to achieve a partial speedup while
still fulfilling the requirement set for the utilized area.

At the same time not every function is implemented in software too since the Pi-
coblaze architecture supports only up to 1024 instruction out-of-the-box and implement-
ing all functions in software would take more than 1024 instructions. There is not only
a limit to the amount of instructions, but also in the amount of available scratchpad
memory.

Therefore, a good candidate function is a function which requires big chunks of Pi-
coblaze memory and needs a large amount of instructions to be implemented. Combining
all these factors it can be said that in order for a function to be implemented in recon-
figurable hardware it must;

e Use a lot of memory.
e Use a lot of instructions.

e Use a lot of processing time.

Several functions come to mind with these requirements. The first one would be the
ARP function, since every ARP table entry would take up four bytes for the IP address,
six bytes for the MAC address and another byte for the status, adding up to a total
of eleven bytes. Considering that there are only 64 bytes of memory available and one
would want to store several entries in the ARP table it becomes clear that the ARP
function needs a separate memory bank. Another reason to select the ARP function is
the amount of time it would take to perform the function in software. As an example, a
typical implementation would look like the code shown in Listing 3.1. Here it is assumed
that registers R1,R2,R3 and R4 contain the IP address that needs to be searched and
R4 points to the first byte of the ARP table structure. The code tries to match the
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start:
SUB R4, OB
next_entry:
ADD R4, OB
LOAD R5, R4
loop: FETCH R6, (R5)
COMPARE R6, RO
JUMP NZ, next_entry
ADD R5, 01

FETCH R6, (R5)
COMPARE R6, R1

JUMP NZ, next_entry
ADD R5, 01

FETCH R6, (R5)
COMPARE R6, R2

JUMP NZ, next_entry
ADD R5, 01

FETCH R6, (R5)
COMPARE R6, R3

JUMP NZ, next_entry

found:

Listing 3.1: An ARP lookup routine

IP address byte by byte with a specific ARP table entry and if there is a difference the
routine jumps back to try the next entry by adding the eleven bytes to the pointer.

In reconfigurable hardware the lookup is much easier. The ARP table is stored in
a BRAM with a width equal to the combined width of the TP address, MAC address
and status byte. A lookup now entails increasing an address counter and matching the
IP address portion of the BRAM’s output with a comparator. If there is a match then
the MAC address is found immediately at the MAC address portion of the same output.
The maximum speedup of accelerating this function in reconfigurable logic is calculated
as in Equation 3.1. Here it is assumed that it is possible to hold sixteen entries in the
Picoblaze memory, as is the case with the BRAM and that every instruction cost two
clocks cycles to process.

 Teode  entries-instructions - srm _ 16-17-2 _

Sma:v = = -
Taccelerated entries 16

34 (3.1)

Other functions that are selected for implementation in reconfigurable logic are func-
tions that need to perform 16 bit operations and which need to process most, if not
all, of the bytes in a frame. Two functions that have these characteristics are the CRC
function and the copy function. The CRC function calculates the 16 bits CRC over all
bytes in the frame. The copy function copies every byte from the application buffer to
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next_byte:
OUTPUT R1, address_pointer_high
INPUT R5, (RO)
OUTPUT R3, address_pointer_high
OUTPUT R5, (R2)

ADD RO, 01
ADDC R1, 00
ADD R2, 01
ADDC R3, 00
COMPARE RO, R6
JUMP NZ, next_byte
COMPARE R1, R7
JUMP NZ, next_byte

finished:

Listing 3.2: A copy routine in Picoblaze assembly

a temporary buffer and then to the transmit buffer. Listing 3.2 shows a possible imple-
mentation of the copy function as it would be written for the Picoblaze. The function
needs 10 instructions to copy a single byte.

In contrast to the software version, a hardware version can perform at a much higher
speed, completing the task in the equivalent of half an instruction. For instance, with
an 80Mhz clock signal it is possible to do 40 - 10° instructions per second (Equation 3.2),
when this result is combined with the amount of bytes that need to be processed to
achieve a 100Mbit/s throughput (Equation 3.3) it can be seen that a copy action should
take no longer than 1 instruction per byte. This is much less than the 10 instruction per
byte the Picoblaze would require. Implementing the copy function in software would by
itself decrease the maximum throughput from 100Mbit/s to 10Mbit/s.

S80MH z g instructions

——— =40-10 3.2
271”523550" second (3.2)
1008 . bytes

s =12,5-100 21— 3.3
8bits ’ second (3.3)

40 - 108 instruction
l =1 3.4
floor (5455 108 byte (34)

3.3.2 The interface with the reconfigurable logic

Now that the accelerated modules have been chosen, the communication method between
the modules needs to be selected. Several methods are used to interface the processor
with the modules. One of the most important criteria for the method is the additional
overhead it would cost to implement the method. The additional overhead is not only
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expressed in the time it would take to transmit the actual data, but also in terms of
resources required on the FPGA to implement the method.

Several options are explored that could facilitate the communication between the
Picoblaze and the reconfigurable hardware modules. One way is to make use of a Direct
Memory Access (DMA) controller inside the FPGA and use a large external memory.
The benefits of this approach are that several modules can operate independently on the
packets, that are stored in a central memory. Ideally the ARP module could look-up
the IP address, while at the same time a different module concurrently calculates the
checksum of the packet and updates the respective checksum field. This entire process
then works with minimal input from the microcontroller. However, one could envision
many applications that have no need for a large packet buffer and do not utilize a
large memory for their own functioning. For those cases, adding an external memory of
relative large size, compared to the size of the BRAMs, and a DMA controller would be
completely undesirable.

The use of a bus topology is another option. Several bus architectures are readily
available for connecting system-on-chip modules. Xilinx uses IBM’s CoreConnect with
the embedded PowerPC microprocessor. Altera on the other hand uses ARM’s Advanced
Microcontroller Bus Architecture (AMBA) to connect their embedded microprocessor to
the rest of the FPGA. Another initiative is the Wishbone System-on-Chip Interconnect
Architecture which is maintained by Opencores.org and is not copyrighted and in the
public domain.

All these busses operate in more or less the same way. They comprise of some
switching fabric, an arbiter that selects the device that can access the bus and a protocol
for using the bus. Implementing one of these buses greatly benefit the re-usability of the
design when the system is used in a different setup. However, the additional overhead
incurred by a bus topology compared to the next option is significant. Another reason not
to choose this option is that the design would not benefit much of using a standardized
bus within its boundaries, since no external system would access any of its modules
directly.

The simplest option for interfacing with the reconfigurable logic is using LUT look-up
tables in Distributed RAM (DRAM) as register banks [25]. Instead of using one of a
handful BRAMs within the FPGA, a logic block within the FPGA is used as distributed
RAM. The main reason for choosing DRAM over BRAM is the limited amount of BRAM
blocks available in the smaller FPGAs, four in the smallest FPGA of the Spartan-3E
family and . Distributed RAM can be configured as a single-port RAM with synchronous
write and asynchronous read or as dual-port RAM with one synchronous write and two
asynchronous read ports. Coupling the register banks with the input/output ports of
the Picoblaze results in a bus structure where the microcontroller acts as an arbiter and
the switching fabric.

There are several limitations with this option. First, the microcontroller needs to
participate in every communication since it needs to transfer the data between the mod-
ules and second, no direct communication between the modules is possible. Perhaps the
most important drawback is that in this design the data needs to be exchanged byte
wise, since the Picoblaze is an eight bit processor. The main benefits of this option are
however the minimum amount of resources needed on the FPGA to implement it and the
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simplicity of the solution. The microcontroller now accesses a module by just reading or
writing from a register with the input and output commands.

3.3.3 UDP/IP Stack hardware implementation

The general overview of the entire design is depicted in Figure 3.7. The system consists
out of the designed IP module, depicted as the inner block within the figure, and possibly
several application running alongside. The applications interact with the UDP/IP stack
through the host interface, which consists out of several registers and a memory interface.
The general idea is that the applications and the stack share a common buffer and
exchange pointers through the host interface. A function that provides an abstract
interface to the UDP/IP stack, such as read(), write() and open(), is ’called’ by setting
specific registers. The results of those functions is then obtained by either polling or
acting on a generate interrupt.

3.3.3.1 The read() function

When a packet is received it is placed within the receive buffer contained in the MAC
module. Within this buffer several packets are stored before they are processed. However,
if the buffer is full all new frames that arrive are dropped. After the packet is completely
received and stored in the buffer a signal is generated that is read by the Picoblaze. The
Picoblaze polls this signal every time as part of its main loop. The Picoblaze eventually
notices the signal and processes the frame.

The first thing the Picoblaze checks is whether the frame is destined to this system
by comparing the destination MAC address with its own MAC address. If it is a match,
or the frame is broadcasted, then the frame is acted on. In case it is an ARP request,
the Picoblaze will check if the request involves its own IP address. If it does, a reply is
generated and the IP address of the sending host is stored in the ARP table for future
use.

If the packet is an ICMP echo request, the Picoblaze will copy the entire packet di-
rectly towards transmit buffer, swap some fields, change the type to a reply and transmit
the echo reply. The applications connected to the UDP/IP stack are not involved with
handling the ICMP packets.

The packet can also be a non ICMP IP packet, in this case the IP address is checked
to match with the internal IP address. If there is a match, the headers of the packet
are stripped off and the data is copied to the common buffer. A register is set and an
interrupt is created to notify the applications running alongside the stack. Depending
on the protocol that delivered the packet, eg. UDP, several other registers may be set
to indicate the destination and source port.

The receiving buffer is only about 2000 bytes in size. This is large enough to handle
even the largest Ethernet frames of 1518 bytes, excluding jumbo frames. When such a
large frame is received the buffer is not large enough for a second frame. It is therefore
the application’s responsibility to process the incoming packets as fast as possible to
make space for incoming frames by calling the read() function.
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3.3.3.2 The send() function

The transmission of a packet is more complex than the reception of a packet because a
new header must be created, rather than just stripping one. When an application wants
to transmit data, it has already stored the data without any headers in the buffer shared
with the UDP/IP stack. The application exchanged the pointer to this data with the
UDP/IP stack and sets the destination IP address, source port and destination port with
a send() call.

The Picoblaze prepares the required headers in the transmit buffer and copies the data
from the common buffer to the transmit buffer through a dedicated cyclic redundancy
check (CRC) module after a change is noticed in the command register by polling it.
This module will copy the data and calculate the CRC at the same time. A separate
CRC module is necessary, since calculating the CRC within software is certainly possible,
but the obtainable bandwidth will come nowhere near the Ethernet line speed.

Now that the headers are created, the destination IP address of the packet needs to be
looked up in the ARP table. The lookup procedure depends on whether the destination
address is located within the same network as the UDP/IP stack or not. If the IP address
is a local address and thus in the same network, the address is directly looked up in the
ARP table. However, if the address is found to be within a different network, then the
default gateway IP address will be looked up and not the destination address. In both
the local and remote case it so that if the TP address is found in the ARP table, the
MAC address is copied to the destination MAC address field of the Ethernet header.
However, if the address is not found, then the current packet will be dropped. This is
common behavior and accepted by the RFC. Instead of the dropped packet, an ARP
request is send to broadcasted the MAC address belonging to the TP address.

3.3.4 The arp module

The ARP module, depicted in Figure 3.8, provides a fast way to store and lookup MAC
and IP addresses. The interface consists out of a set of registers, which are mapped
onto an address space of sixteen bytes accessible by the Picoblaze. The output of each
register is combined to form a wide bus. The bus presents the value of the IP address
and the MAC address to the BRAM. The BRAM is configured to have two independent
ports, one read and one read/write port. The bus is connected to both the ports.

The program running on the Picoblaze stores an IP address and MAC address com-
bination by first writing their values to the appropriate registers. After the registers
have been set the Picoblaze sets the first bit of the status register, which is assigned the
first address allocated to the ARP module. This triggers the finite statemachine to move
to the write state. The ARP module increases the ARP table’s address counter in the
write state, so that new entries are stored in a circular fashion, and at the same time
writes the values to the current address into the ARP table.

The ARP table is also used for lookups. The procedure to lookup an MAC address
is quite similar to writing an entry. The program will set the IP address registers and
then set the second bit of the status register. A write to second bit triggers the finite
statemachine to move to the read state. In the read state an address counter is increased
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Figure 3.7: UDP/IP IP Core Architecture

step by step. A found signal is generated if the IP address present on the output bus
of the ARP table matches the IP address set in the registers. After the address value
is corrected for the offset created by pipelining the design the found bit in the status
register is updated. If there is no match found in sixteen cycles the statemachine will
set the not-found bit in the status register.

3.3.5 The copy module

The copy module looks quite similar to the ARP module design. The copy module
exists out of a set registers. The registers hold the sixteen bit address of the first bye
to copy, the destination address for the first byte and the amount of bytes to copy. The
program running on the Picoblaze sets directly the addresses and length of the block,
which is possible because the upper and lower halves of the registers are separately
addressable. As with the ARP module, the setting of a bit in the status register triggers
the statemachine. The statemachine starts a pipelined copy process. During the process
both the address counters are increased, while the amount of bytes register is decreased.
The statemachine moves into the finishing states when the amount of bytes to be copied
is down to two. The finishing states copy the last few bytes and finally update a status
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Figure 3.8: High overview of the ARP module

bit to indicate that the process is finished.

3.3.6 Modification of the MAC

This project uses the 10/100/1000 Tri-mode Ethernet MAC module which was published
at opencores.org under the LGPL and written by Jon Gaocitegao. The module’s func-
tionality is part of the OSI Data Link Layer and provides addressing and channel access
control mechanisms to send out and receive Ethernet packets to the physical layer.

Out of the box, the module was not suitable for this project since the data bus used in
the MAC module is 32 bits wide, while the Picoblaze’s data bus is just eight bits wide. A
multiplexer could be used to multiplex the four bytes into the Picoblaze processor and a
de-multiplexer could be used to send out the data back to the MAC, but for this project
a more elegant solution has been chosen. The frames that are transmitted and received
are first buffered in BRAMs. The BRAMs are configured as dual port BRAMs, where
each port is configured independently of the other, while still accessing the same data.
In this way the memory is addressed byte for byte without regard for word boundaries
by the Picoblaze while keeping the interface towards the MAC unchanged.

However decreasing the width of the data bus increases proportionally the width of
the address bus, which is also limited to just eight bits. This problem is solved by dividing
the buffer into segments. The Picoblaze accesses a particular byte by loading the higher
part of the address first into a register that drives the higher part of the address signal.
Secondly, the remaining bits of the address are driven directly by the address port of
the Picoblaze. Using this technique there is hardly any penalty in addressing the buffer
compared to a full width bus, since in this case only one operation out of 128 needs to
update the segment address, if the data is accessed sequentially.
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3.3.7 Placing the design into the FPGA

The UDP/IP stack provides direct access through the JTAG interface to the memory
block where the code executed by the Picoblaze is stored. The JTAG interface is used
to update the code without recompiling and uploading the entire FPGA design [24].
By using this technique an enormous amount of time is saved during debugging, since
recompiling the entire FPGA design takes several minutes, while uploading the new
code to the BRAM only takes seconds. The resource costs for this additional feature are
minimal, but the feature does utilize a rare resource; namely the JTAG interface itself.
If the JTAG module is needed for a different part of the design, or for debugging the
entire design with Xilinx’s Chipscope, it will be necessary to comment out the JTAG
module in the Verilog module that instantiates the memory to store the instructions.

Table 3.3: Timing constraints

: Period Actual Period Timing Errors
Constraint
Requirement Direct Derivative Direct Derivative
CLKIN_IBUFG_.OUT  20.000ns N/A 19.890ns 0 0
CLKFX_BUF 12.500ns 12.431ns N/A 0 0

One Digital Clock Manager (DCM) is used in this design out of the two, four or
eight DCMs that are available in the Spartan 3E FPGA family, depending on the device
size. The DCM is instantiated within the design by using the DCM primitive. The
DCM provides clock-skew elimination, phase shifting and frequency synthesis. The latter
being the reason why the DCM is incorporated in the design, since frequency synthesis
is used to generate the appropriate clocking signals for the stack. The stack runs on two
frequencies, namely at 50MHz for the MAC module and at 80MHz for the remainder of
the stack, as is seen in Table 3.3. The two clock domains are separated by asynchronous
dual-port BRAMs.

The design has been optimized for higher clock frequencies by pipelining the data
path. The most effective strategy for pipelining is to pipeline the port_id output of the
Picoblaze. Decoding the port addresses that are used to select the appropriate registers
in the different modules causes delays since some of the signal may need several layers
of combinatorial logic due to the fact that eight inputs need to be decoded to one bit.
The Picoblaze uses two clock cycles for both the read and writes to the ports. This
means that the first clock cycle is used to register the signal that selects the module. An
additional benefit is that registering the output reduces the fan out of the port_id and
out_port signals reducing even further the delay. Using this technique the design could
be implemented at a clock frequency of 80MHz, increasing the throughput of the initial
design by 60%.

The device utilization of the UDP/IP stack as placed in the Xilinx XC3S500E
Spartan-3E FPGA is presented in Table 3.4. The most interesting numbers of the table
are the ones at the top, the number of slice flip flops and the number of 4 inputs LUTS.
The number of occupied slices is less relevant since the place and route tool does not
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necessarily use up all available logic present in a single slice before using another, in
other words the design is spread out over the FPGA. Summarizing the table it can be
said that the entire design uses 1328 slice flip flops, 1767 4 input LUTSs, which is < 20%
of the available resources in this FPGA.

Table 3.4: Device Utilization Summary

Logic Utilization Used Available Utilization
Number of Slice Flip Flops 1,328 9,312 14%
Number of 4 input LUTSs 1,767 9,312 18%
Logic Distribution

Number of occupied Slices 1,388 4,656 29%
Number of Slices containing only related logic 1,388 1,388 100%
Number of Slices containing unrelated logic 0 1,388 0%
Total Number of 4 input LUTs 1,908 9,312 20%
Number used as logic 1,500

Number used as a route-thru 141

Number used for Dual Port RAMs 208

Number used for 32x1 RAMs 52

Number used as Shift registers 7

Number of bonded IOBs 97 232 41%
Number of RAMBI16s 5 20 25%
Number of BUFGMUXs 5 24 20%
Number of DCMs 2 4 50%

3.4 Conclusions

This chapter presented the implementation details of the UDP /TP stack. The prototype
board was described and the relevant perihperals, such as the serial port, the liquid
crystal display and the 10/100 Ethernet physical interface, were discussed.

The introduction of the BSD Socket API, which forms the de facto interface standard
for the TCP/IP stack, made it possible to provide a standardized way of interacting
with the stack. The supported funcion calls were described as well as the required
arguments and the results they returned. A high overview of the program flow described
the handling of, in particual, the send() and receive() function calls. Using the concept
of signals as a way of supporting non-blocking function calls makes concurrent use of the
stack possible for applications.

Furthermore, the chapter discussed the balance between FPGA area requirements,
throughput and the limited amount of supported instructions by the Picoblaze. Con-
cluding it could be said that functions that either operate on every byte of a frame or
require large amounts of memory should be implemented as a separate modules in recon-
figurable hardware. For this reason, the memory copy function, the arp function as well
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as the crc function were chosen for implementation in HDL, showing a tenfold increase
in throughput over a software only implementation.

In addition to speeding up modules, an effective bus strategy was discussed. The
bus forms the integral component of the interface between the processor and the various
modules spread out over the FPGA. It turned out that a simple shared register bank is
the most resource efficient option, with the drawback of having all data operations going
through the relatively slow Picoblaze.

Finally, the design was implemented in the FPGA. Several timing issues initially lim-
ited the clock frequency to 50MHz. Achieving a higher clock frequency is relevant, since
an increase in clock frequency results in a linear increase in maximum throughput. By
using the Xilinx Timing Analyzer the key problems were identified. Most of the prob-
lems could be solved by pipelining the design and removing an additional clock domain
that was used for the memory components. In the end the design achieved a clock fre-
quency of 80MHz. The amount of resources on the FPGA required by the implemention
is lower than 20% on this FPGA. Unfortunately the number of used BRAMs make the
implementation unsuitable for the smallest Spartan 3E FPGA.



Experimental results

The previous chapter described the platform specifications, the software implementation
and the hardware implementation. This chapter presents the tests performed on the
implementation and the obtained results. Section 4.2 discusses the functionality test
and the results. Section 4.3 shows the performance tests in which the throughput is
measured for several framesizes and in three scenarios; a transmitting stack, a receiving
stack and a back-to-back stack. Section 4.4 summarizes the results and concludes this
chapter.

4.1 Demo application

A demo application was created and connected to the UDP/IP stack as it would be in a
typical situation. Using the stack in a typical situation makes sure that the results are
repeatable and meaningful. The demo application is build on top of another Picoblaze
processor and embedded in the FPGA next to the stack. The demo application and the
UDP/IP stack share a single BRAM block. The BRAM block is configured to have two
independent interfaces; where one interface is connected to the stack, and the other to
the demo application. The complete setup is depicted in Figure 4.1. In addition to the
BRAM, an LCD is attached to the output port of the Picoblaze. The control signals
for the LCD are steered by the demo application. Interaction with demo application is
made possible through the serial port present on the development board.

The demo application provides full access to the UDP /IP stack command and result
register banks through its serial port. The stack supports several functions for debug-
ging purposes in addition to the functions described in Table 3.1 and Table 3.2. These
functions are readPort, writePort, readMem and writeMem. With just these four func-
tions all modules within the stack itself is controlled and the results reported back to
the application. The functions also provide direct access to the scratchpad memory of
the Picoblaze inside the stack. The scratchpad memory stores critical information about
the assigned IP addresses and opened sockets.

4.2 Functionality tests

The demo supports several functions and commands that are used to test the func-
tionality of the design. The demo incorporates a Dynamic Host Configuration Protocol
(DHCP) client. The DHCP provides an automatic network configuration parameters
assignment to network devices and is defined in RFC2131 [7]. DHCP has two parts; a
server that sends host specific parameters and a method for allocating resources. DHCP
is based on a client/server model in which a client requests information from a server.

o1
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Figure 4.1: Both the demo application and the stack implemented within the FPGA

Typical information that is requested is the default gateway, the domain name servers,
the assigned TP address and the subnet mask. The DHCP server maintains a database
of resource pools and the assigned resources together with the lease time, the length of
time the allocation is valid.

Figure 4.2 depicts the steps taken by the client and server when a DHCP client re-
quests network configuration parameters from a DHCP server. The client starts by
broadcasting a DHCPDISCOVER, message to locate DHCP servers on the LAN. A
DHCP server that receives the broadcast will offer the client configuration parame-
ters in a DHCPOFFER message. After receiving the offers from the DHCP servers the
client accepts a single offer by requesting the offered parameters in a DHCPREQUEST
message. Finally, the selected DHCP server confirms the allocation of the resources by
returning a DHCPACK message.

DHCPDISCOVER (broadcast)

DHCPOFFER (unicast)
g DHCPREQUEST (broadcast)

E’ DHCPACK (unicast)

DHCP Client DHCP Server

Figure 4.2: A client requesting parameters from a DHCP server
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The DHCP client implemented in the demo application tests most functions sup-
ported by the stack. The demo is setup by connecting a PC via the serial port to the
application and connecting the board to an Ethernet network with a working DHCP
server. The DHCP client process is started by entering s on the command line. After
the demo obtains an IP address it is pinged by the PC to check the ARP and ICMP
functionality. The demo application will follow the following steps during the DHCP
process;

1. Request a socket from the stack
2. Bind the socket to UDP port 67
3. Generate the DHCP Discover packet
4. Request the stack to transmit the DHCP Discover packet
5. Wait for the stack to notify it has received a new UDP packet on UDP port 67
6. Request the stack to place the packet in the common buffer
7. Check if the received packet is a UDP Offer
8. If so, generate a DHCP Request with the offered IP address
9. Request the stack to transmit the DHCP Request
10. Wait for the stack to notify it has received a new UDP packet on UDP port 67
11. Request the stack to place the packet in the common buffer
12. Check if the received packet is a UDP ACK
13. If so, sets the following parameters

(a) The IP Address
(b) The Subnet Mask
(¢) The default gateway

14. Closes the socket

Figure 4.3 shows a screen capture of a Wireshark window running on the PC that
runs the DHCP server. Wireshark is a software based network protocol analyzer which
offers deep packet inspection and live capturing of frames on off-the-shelf PC hardware
components.[4] The screen capture is taken after the completion of the DHCP process
and includes the ping from the DHCP server towards the demo application.

The screen capture shows that the application successfully obtained an IP address
with the DHCP protocol. The demo application started by sending a DHCP Discover
with a source IP address of 192.168.10.2, shown in the second column of the the first
packet. The DHCP server responded with an DHCP Offer, indicated by the second
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End Option

=
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Figure 4.3: A Wireshark capture

packet. After which the demo requested the IP address by using the DHCP Request
packet. Finally, a DHCP ACK is received and the IP address, subnet and default gateway
are set to their new values.

An ICMP echo request is initiated from the DHCP server by entering the command
ping 192.168.10.111 on the command line interface. The DHCP server does not yet
know which MAC address belongs to this specific IP address, therefore it sends out an
ARP request to discover the link layer address, which is indicated by packet number six
on the screenshot. The stack replies to this discover message by returning its own MAC
address with an ARP reply towards the DHCP server. Now that the MAC address is
known the DHCP server sends out the ICMP echo request as seen as packet seven. The
stack learned the MAC address of the DHCP server when the DHCP server sent out its
ARP request and does not need to send out an ARP request itself. The stack replies by
sending an ICMP echo reply packet, as seen in packet number eight.



4.3. PERFORMANCE TESTS 95

4.3 Performance tests

This section determines how fast the stack can go. It determines the actual usable
throughput of the stack compared to the FastEthernet network link limit. How fast a
stack is is expressed in the amount of packets that it processes each second. The test
is described in RFC2544 Benchmarking Methodology for Network Interconnect Devices,
which lists specific frame sizes and reporting formats that should be used for this test.
The reason behind this is to rule out ”specsmanship” by vendors who could state that
a device processes a certain amount of bandwidth per second, while omitting the frame
size at which those test where conducted. This could lead to unfair comparisons, since
it is much easier to achieve a high bandwidth with big frames than with small frames.

There are several tools available that allow one to perform throughput testing and
that runs on standard personal computers. Three of those tools that are widely used
are [Perf, Netperf and TTCP. IPerf is developed at the National Laboratory for Applied
Network Research (NLANR) and is written in C++4. IPerf supports various parameters
that can be changed or set to test a network. IPerf, as well as the other two tools, has
a client and server. The client and server is used to measure the throughput between
the network, either unidirectionally or bi-directionally. Netperf and TTCP work quite
similar as IPerf. The main differences between the tools are the operating systems that
they support, the presence of a gui and the maximum achievable throughput on a given
system, which is often limited by the CPU.

The NT TTCP tool [13] is selected for these throughput tests after a quick evalua-
tion of the three tools mentioned in the previous paragraph. TTCP is one of the first
throughput testing tools written and was used by Mike Muuss at the Ballistic Research
Lab to compare the performance of TCP stacks for DARPA in order to decide which
TCP version to include in the first BSD Unix release. Later several ports were made
of the software, including NT TTCP, which is used in this project. The main reason
for selecting NT TTCP is the number of frames it can generate at the smallest ethernet
frame size, without utilizing the CPU for 100%, compared to the other implementations.

Figure 4.4(a) depicts the UDP transmission test. For this test the demo application
was setup to continuously transmit the same UDP data to a single destination. The
overhead of transmitting data from the application buffer towards the stack buffer and
the communication overhead between application and stack are included in these num-
bers. The theoretical speed used in the graphs is calculated with Equation 4.1, where
N is the frame size in bytes. It can be seen that the stack creates and transmits 94709
packets per second at the minimum frame size of 64 bytes, which is 64% of the theoret-
ical line speed. The main reason that the design can not fill the line for 100% is that
the overhead of generating the headers and calculating the checksum takes longer than
actually transmitting the frame and thus cannot be compensated wholly by pipelining
the creation of the packets. This does not hold for larger packets, as seen in the graphs
for frames larger than 128 bytes, where the actual throughput comes very close to the
theoretical throughput.

100 - 108
PPS ical = 4.1
theoretical 64+8-N + 96 ( )
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Figure 4.4(b) depicts the UDP reception test. For this test the demo application was
setup to open a socket and listen to incoming packets. The overhead of copying the UDP
data of the packet to the application buffer and the communication overhead between
application and stack are included in these numbers. The first packet that arrives at the
application layer triggers a clock counter that keeps counting until x packets have been
received. After the 2" packet the value of the clock counter is shown on the terminal and
is used to calculate the throughput by using Equation 4.2. The main reason of achieving
a higher throughput than in the previous test case is that it takes far less time to strip
a packet of its headers than it takes to generate them. The result is that the stack can
process frames closes to the theoretical throughput.

counter 1
80-106

Figure 4.4(c) depicts a test in which packets are transmitted by the PC, as was
the case in the previous case, and immediately send them back to the PC, as in the
first case. This test is important because it shows the drawback of having a single low
performance processor handling both the reception and transmission of frames. The
theoretical throughput in this case is calculated by adding the amount of frames that
were send to the amount of frames that were received. As seen in the graph the stack
does not perform at line speed for the smaller frames. The results for the smaller frames
are not simply the addition of the two previous two graphs. The additional overhead
incurred by the application layer and the limit processing power of the Picoblaze limit
the stack to 143866 packets per second for two symmetric bidirectional traffic streams.

PPSreceive = (42)

4.4 Conclusions

The demo application provides a means to do both functional as performance tests. The
functional tests show that the provided interface and functions perform as required. The
DHCP client implemented in the demo’s assembly code request and assigns network
parameters to the stack. A ping is send to the new IP address after the demo applica-
tion assigned it to the stack. An echo reply is received, which proofs furthermore the
functioning of the stack.

Additionally, the stack has undergone a selection of throughput tests. The tests are
performed with several frame sizes, as recommended by RFC2544, in order to rule out
specmanship. The stacks main limitation is the transmitting side of the stack. The
creation of the headers limits the stack and this means it can not perform at line speed
for smaller packets. This is less an issue for larger packets, where the costs of creating
the headers is compensated by the transmission of the actual frame due to the stacks
pipelined design. The stack receives and processes packets close to line speed. Sending
and receiving packets simultaneously is again hindered by the transmission of frames.
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Conclusions

In the introduction it was stated that the main goal of this project is to design and
implement a freely available UDP/IP stack in reconfigurable logic which could achieve
throughput speeds at FastEthernet line speed. These first requirements is met the second
only for the receiving side. Another requirement is the amount of resources used and
having the possibility to implement this stack on even the smallest member of the Spartan
3E FPGA family. This constraint is partially met due to need of additional buffers in
the form of BRAMs.

Section 5.1 summarizes the main conclusions that are drawn from this thesis. The
main contributions of this thesis are stated in Section 5.2. Section 5.3 concludes this
thesis by recommending topics for future research on the UDP /IP stack.

5.1 Summary

Chapter 2 presents the basic background knowledge for understanding the project’s
context. As resource efficiency is one of the main goals a small embedded processor
is selected and implemented, which will function as the CPU within the stack. The
advantage of using an processor is two fold. First, the design size is kept at a constant
state, because the complexity is in the code not in the hardware. Second, assembly
code is far easier to understand and manage than a very complex state machine with
hundreds of states. Most embedded processors that are found on the Internet have the
major drawback that they are not designed with resource efficiency in mind, but rather
target a specific instruction set. Two alternatives are the embedded processor released by
Xilinx and Altera for their respective FPGA brands. Xilinx’s Picoblaze 8-bit processor
is used in this design, because of vendor lock-in and the fact that the development board
was already selected.

Chapter 2 discusses several protocols that are related to the design of the stack.
The Internet Protocol provides a basic datagram delivery service. On top of which the
User Datagram Protocol delivers a multiplexing feature so that multiple applications can
concurrently use the UDP/IP stack. The Address Resolution Protocol is described and is
used for translation of four byte IP address to six byte Ethernet Addresses. Finally, the
Internet Control Message Protocol is discussed which provides a standardized message
format that is used to send error message from one network device to another. The
ICMP protocol is the backbone used by several utilities to diagnose network problems.

Chapter 3 presented the implementation details of the UDP/IP stack. The prototype
board was described and as well as the relevant peripherals, such as the serial port, the
liquid crystal display and the 100/100 Ethernet physical interface. Next, the BSD Socket
API is introduced. The API forms the de facto interface standard for the TCP/IP stack.
By adhering to the standard applications can use standardized function to interact with
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the stack. The supported functions are described together with their respective results.
Using the concept of signals, as a way of supporting non-blocking function calls, makes
concurrent use of the stack possible.

Furthermore, the chapter discusses the balance between FPGA area requirements,
throughput and the limited amount of addressable instructions by the Picoblaze. Con-
cluding, functions that either operate on every byte of a frame or require large amounts
of memory should be implemented as separate modules in reconfigurable hardware. For
this reason, the memory copy function, the arp function as well as the crc function are
implemented in HDL. In addition, an effective bus strategy was discussed. The bus forms
the integral component of the interface between the processor and the various modules
spread out over the FPGA. It turned out that a simple shared register bank is the most
resource efficient option, with the drawback of having all data operations going through
the relatively slow Picoblaze.

Finally, Chapter 3 concludes with implementing the design in the FPGA. Several
timing issues limited the clock frequency to 50MHz. This resulted in poor through-
put performance for small packets. Increasing the clock frequency linearly increases the
maximum throughput. By using the Xilinx Timing Analyzer key problem areas were
identified. Most of the the timing issues are resolved by pipelining the design and remov-
ing an additional clock domain dedicated to a few memory components. In the end the
design achieved a clock frequency of 80MHz and the amount of resources on the FPGA
required is lower than 20% on this FPGA. Unfortunately the number of used BRAMs
make the implementation unsuitable for the smallest Spartan 3E FPGA.

Chapter 4, shows the use of a demo application to provide a means to do both func-
tional as performance testing. The functional tests show that the provided interface and
functions perform as required. The DHCP client implemented in the demo’s assembly
code request and assigns network parameters to the stack. A ping is send to the new IP
address after the demo application assigned it to the stack. An echo reply is received,
which proofs furthermore the functioning of the stack.

Additionally, the stack has undergone a selection of throughput tests. The tests are
performed with several frame sizes, as recommended by RFC2544, in order to rule out
specmanship. The stacks main limitation is the transmitting side of the stack. The
creation of the headers make that the stack can not perform at line speed for smaller
packets. This is less an issue for larger packets, where the costs of creating the headers
is compensated by the transmission of the actual frame due to the stacks pipelined
design. The stack can receive packets close to line speed. Sending and receiving packets
simultaneously is again hindered by the transmission of frames.

5.2 Main contributions

The UDP/IP stack was created with several requirements in mind. These requirements
were a small area footprint on an FPGA, the ability to run at 100Mbit /s and the ability
to send and receive UDP packets. The main contributions of this thesis are;

e A functional UDP/IP stack with a minimal set of requirements has been designed
and created in reconfigurable hardware.
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e The UDP/IP stack has been optimized by deducing the most time-consuming
processes per send and received packet. Candidates for optimization are functions
that operate on almost every byte of a frame and/or that need relatively large
amounts, meaning more than 32 bytes, of memory.

e The design ran first at a global clock frequency of 50MHz, while the memory
operated at 100MHz. Both clocks could be replaced with a single clock running at
80MHz by optimizing the finiste state machines and pipelining. This optimization
lead to a 60% increase in throughput.

e The copy function, which are responsible for moving bytes from one buffer to an-
other, the Address Resolution Protocol and the Cyclic Redundancy Check function
are the most compute-intensive function and are implemented as separate modules
in reconfigurable logic.

e The UDP/IP stack uses 1328 slice flip flops and 1767 four input LUTSs, which is
< 20% of the available resources in the FPGA used in this project.

e A demo application is provided that illustrates the interfacing with the UDP /IP
stack. The demo application includes a functioning Dynamic Host Configuration
Protocol client.

e Both the demo and stack are released under the GNU Lesser General Public Li-
cense, promoting free software and future research.

5.3 Recommendations for future research

This section discusses future opportunities to improve the UDP/IP stack. As future
FPGAs are likely to grow in size the design can also grow, while keeping the design
relatively the same size. With the increase of size new functionalities can be added.
Perhaps the most important and urgent functionality is the addition of the Transmission
Control Protocol to the stack. With TCP support a whole new range of applications
can start to make use of FTP, SMTP and HTTP. Besides TCP, the following directions
are recommended for future research:

e Receive and transmit fragmented packets. The firmware running on the Picoblaze
can be altered to utilize the increased capacity when more memory is readily avail-
able on FPGAs. Adding support for fragmented packets would make it more
compliant to the standards.

e The addition of IPv6 support. IPv6 will become more and more popular now that
the free IPv4 addresses become more scarce. IPv6 support would make the stack
future proof.

e Standard support for popular busses. The usability and retargetability of the
UDP/IP stack can be significantly increased by supporting standard bus interface
standards, such as AMBA, CoreConnect and Wishbone.
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e Improving the throughput towards the Gigabit Ethernet standard. A higher band-
width could relatively easy be achieved by parallelizing, changing the embedded
processor to a 16 bit version and implementing more logic in reconfigurable hard-
ware.

e Add support for multiple Ethernet interfaces. Multiple interfaces would make
routing and/or switching possible, which could be interesting if one would want to
create applications such as routers and firewalls.

e Separate the design in a receive and transmit side, where each side has a dedicated
Picoblaze, for an increase in performance.
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Appendix A: Source code

The following listings are not the complete code. The listings are a part of the code
written for the implementation by the author of this thesis.

Listing 6.1: stack.psm

; Mac ports

; host inteface ports
CONSTANT command_port, 90
CONSTANT command.-id,90

CONSTANT command_arg0, 91
CONSTANT command_argl, 92
CONSTANT command_arg2, 93
CONSTANT command_arg3, 94
CONSTANT command_arg4, 95
CONSTANT command_argh, 96
CONSTANT command_arg6, 97
CONSTANT command-arg7, 98

CONSTANT command-arg8, 99
CONSTANT command-arg9, 9A
CONSTANT command_argA, 9B
CONSTANT command_argB, 9C
CONSTANT command_argC, 9D
CONSTANT command_argD, 9E
CONSTANT command_argE, 9F

CONSTANT result_port , 90
CONSTANT result_id , 90
CONSTANT result_argoO , 91
CONSTANT result_argl , 92
CONSTANT result_arg2 , 93
CONSTANT result_arg3 , 94
CONSTANT result_arg4 , 95
CONSTANT result_argh , 96
CONSTANT result_arg6 , 97
CONSTANT result_arg7 , 98
CONSTANT result_arg8 , 99
CONSTANT result-arg9 , 9A
CONSTANT result-argA , 9B
CONSTANT result_argB , 9C
CONSTANT result_argC , 9D
CONSTANT result_argD , 9E
CONSTANT result_argk , 9F

; mac_status_port

CONSTANT mac_status_port , C8
CONSTANT tx_-mac-packet_ready ,80
CONSTANT tx-mac_-eop-bit ,40
CONSTANT rx._-mac-packet_ready ,01

; rx-mac_-packet_status / rx_mac_get_packet
CONSTANT rx-mac-get_-packet ,DO

;CONSTANT rx_-mac-packet_status , DO
;CONSTANT rx_-mac-eop , 80

;CONSTANT rx-mac-sop , 40

;CONSTANT rx_-mac-get-packet ,20

; module_sfr

CONSTANT module_sfr , B8
CONSTANT module_mac, 00
CONSTANT module_copy , 01
CONSTANT module_crc, 02
CONSTANT module_copy-rx, 03

; crc module
CONSTANT crc-start , BO

CONSTANT crc-address_-1, Bl
CONSTANT crc_address_-h , B2
CONSTANT crc-length_1, B3
CONSTANT crc-length_h , B4
CONSTANT crc-1, Bl

CONSTANT crc-h, B2
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CHAPTER 6. APPENDIX A: SOURCE CODE

; copy module

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

copy-start , CO
copy-from_address_1,
copy-from_address_h ,

C1
Cc2

copy-length_1,
copy-length_h ,
copy-to-addres

C3
C4
s-1, C5

copy-to_address_h , C6

; copy module rx

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

copy-rx._start ,

A0

copy-rx_from_address_l, Al
copy-rx_from_address_h , A2
copy-rx-length_1, A3
copy-rx_-length_h , A4

CONSTANT copy-rx-to_address_l, A5
CONSTANT copy-rx-to_address_h , A6

; mac-sfr

CONSTANT mac-sfr, D8
CONSTANT mac-reset , 80
CONSTANT mac-rx-buffer, 00
CONSTANT mac-tx-buffer , 40
CONSTANT mac-send_-packet , 20
CONSTANT mac_eop, 10
CONSTANT mac_done, 00

; mac_sfr2

CONSTANT mac_sfr2 , F8
CONSTANT mac_up, 01
CONSTANT mac_-down, FE
CONSTANT new._packet , 02
CONSTANT no-new_packet , FD

; Ethernet frame constants
CONSTANT eth_type-h , 0C
CONSTANT eth_type-1, 0D

; Arp packet constant
CONSTANT arp-hdr-opcode, 15
CONSTANT arp-request , 01
CONSTANT arp-reply , 02

; IP packet constants

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

ip-version_ihl ,

0OE

ip-tos , OF
ip-length_h , 10
ip_-length_1, 11
ip-identification_h ,
ip-identification_l ,
ip-flags , 14
ip-offset , 15
ip-ttl, 16
ip-protocol , 17
ip-checksum_h, 18
ip-checksum_1, 19
ip-source , 1A
ip-source3 , 1A
ip_source2 , 1B
ip_sourcel , 1C
ip-source0 , 1D
ip_destination , 1E

CONSTANT ip_destination3 , 1E
CONSTANT ip_destination2 , 1F
CONSTANT ip_-destinationl , 20
CONSTANT ip_-destination0 , 21

; UDP packet constants

12
13

CONSTANT udp-source_port_h , 22
CONSTANT udp-source_port_-l, 23
CONSTANT udp-destination_port_-h , 24
CONSTANT udp-destination_port-1, 25
CONSTANT udp-length_h , 26

CONSTANT
CONSTANT
CONSTANT
CONSTANT

; UDP pse
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

udp-length_1, 27
udp-checksum_h, 28
udp-checksum_1, 29
udp-data, 2A

udoe header constants
udp-pseudo_source_ip ,
udp_-pseudo_source_ip3
udp-pseudo_source_ip2
udp-pseudo_source_ipl
udp-pseudo_source_ip0
udp-pseudo_destinatio

16
,16
,17
,18
,19
n_ip ,1A

udp-pseudo_destination_ip3 , 1A
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CONSTANT udp-pseudo-destination_ip2, 1B
CONSTANT udp-pseudo-destination_ipl, 1C
CONSTANT udp-pseudo-destination_ip0, 1D
CONSTANT udp-pseudo-zero ,1E

CONSTANT udp-pseudo-protocol ,1F
CONSTANT udp-pseudo-length_h ,20
CONSTANT udp-pseudo-length_-1,21

; ICMP packet constant
CONSTANT icmp_type, 22
CONSTANT icmp-echo_reply , 00
CONSTANT icmp-echo_request , 08
CONSTANT icmp-checksum_h, 24
CONSTANT icmp-checksum_1, 25

; Arp table constants

CONSTANT arp-table_status , EO
CONSTANT arp-table_write , 01
CONSTANT arp-table_read , 02
CONSTANT arp-table_found , 04
CONSTANT arp-table_notfound , 08

CONSTANT arp-table_eth0, El
CONSTANT arp-table_-ip0, E7
CONSTANT arp-table_-ipl , ES8
CONSTANT arp-table_ip2 , E9
CONSTANT arp-table_ip3 , EA

; Special Register usage

5
NAMEREG sE, store_pointer
;used to pass location of data in scratch pad memory

5
;Scratch Pad Memory Locations

5

CONSTANT loc-gateway-ip0, OE
CONSTANT loc-gateway-ipl, OF
CONSTANT loc-gateway-ip2, 10
CONSTANT loc-gateway-ip3, 11

CONSTANT loc-ip-identification-h , 12
CONSTANT loc-ip-identification_-1, 13

CONSTANT loc_readstatus , 14
CONSTANT loc_writestatus , 15
CONSTANT loc_prepstatus , 31
CONSTANT last_command_id, 16

; Sockets are stored as two bytes, sourceport_h = socketnumber =
;sourceport_l = socketnumber * 2 4+ socket_start

CONSTANT socket_-random_port_h , 1D

CONSTANT socket_random_port_-1, 1E

CONSTANT socket_alloc , 1F

CONSTANT socket_start , 20

CONSTANT string-start , 30

;Initialise the system

5

cold_start: LOAD sA, mac_reset ; Reset the mac
OUTPUT sA, mac._sfr
LOAD sA, mac_done

OUTPUT sA, mac_sfr
set_get_packet: OUTPUT sA, rx_-mac_get_packet
; Write to register rx_.mac_get_packet to get new packet into buffer
main_loop: FETCH sA, loc_readstatus
; check if the packetbuffer is blocked
COMPARE sA, 00

JUMP NZ, handle_commands
INPUT sA, mac_status_port ; Read status register
TEST sA, rx_-mac_-packet_ready
; Check if there is a packet in the buffer
JUMP NZ, received_packet

handle_.commands: FETCH sB, last_command-id
INPUT sA, command-_port
COMPARE sA, sB
JUMP NZ, command_-menu
JUMP main_loop

received_packet : INPUT sA, eth_type_h
; Read the ethernet type of the packet
INPUT sB, eth_type_l

CALL check_for_arp
; Check if the packet is an arp packet
CALL Z, process_arp

; If it is an arp packet process it
CALL check_for_ip

2 + socket_start ,
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; Check if the packet is an ip packet
JUMP NZ, set_get_packet ; No IP packet so lets drop it
INPUT sA, ip-protocol
COMPARE sA, 01
; Check if the packet is an icmp packet
JUMP NZ, packet_-not_-icmp
handle_icmp: INPUT sA, icmp-type
COMPARE sA, icmp-echo_request
; Check if the packet is an icmp echo request
CALL Z, process_icmp_echo_req
JUMP set_get_packet
packet_not_icmp: COMPARE sA, 11
; check if packet is an udp packet
CALL Z, process_udp
FETCH sA, loc_.readstatus
; if blocked do not request the new packet yet
COMPARE sA, 01
JUMP Z, main_loop
JUMP set_get_packet ; Restart main loop

check_for_arp:
; Subroutine to check

COMPARE sA ,
if the packet

JUMP NZ, check_for_arp_n
COMPARE sB, 06
check_for_arp_-n: RETURN
check_for_ip: COMPARE sA, 08
; Subroutine to check if the packet is an ip packet,
JUMP NZ, check_for_ip_n
COMPARE sB, 00
check_for_ip_-n: RETURN
command_-menu: STORE sA, last_command-id
INPUT sA, command_arg0
COMPARE sA, 0A
JUMP Z, command_sendto
COMPARE sA, 0B
JUMP Z, command-recvfrom
COMPARE sA, 01
JUMP Z, command_get_ip
COMPARE sA, 02
JUMP Z, command_set_ip
COMPARE sA, 03
JUMP Z, command._get_gw
COMPARE sA, 04
JUMP Z, command_set_gw
COMPARE sA, 05
JUMP Z, command_get_nm
COMPARE sA, 06
JUMP Z, command_set_nm
COMPARE sA, 07
JUMP Z, command_socket
COMPARE sA, 08
JUMP Z, command_bind
COMPARE sA, 09
JUMP Z, command_close
COMPARE sA, 0C
JUMP Z, command_get_hw
COMPARE sA, EO
JUMP Z, command_read_port
COMPARE sA, E1
JUMP Z, command_write_port
COMPARE sA, E2
JUMP Z, command_read_mem
COMPARE sA, E3
JUMP Z, command_write_mem
JUMP main_loop
command_write_port: INPUT sA, command.argl
INPUT sB, command_arg?2
OUTPUT sB, (sA)
FETCH sA, last_.command-id
OUTPUT sA, result_id
JUMP main_loop
command_read_port: INPUT sA, command._argl
INPUT sB, (sA)
OUTPUT sB, result_argO
FETCH sA, last_.command_id
OUTPUT sA, result_id
JUMP main_loop
command_write_mem : INPUT sA, command_argl

08

is a arp packet,

if arp packet Z=1

if ip packet Z=1
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command._read_mem :

command_get_hw :

command_recvfrom :

cmd_recv_wait:

INPUT
STORE
FETCH
OUTPUT
JUMP

INPUT
FETCH
OuUTPUT
FETCH
OUTPUT
JUMP

FETCH
OuUTPUT
FETCH
OuUTPUT
FETCH
OuTPUT
FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OUTPUT
JUMP

FETCH
COMPARE
JUMP
INPUT
RL

ADD
FETCH
INPUT
COMPARE
JUMP
ADD
FETCH
INPUT
COMPARE
JUMP

INPUT
OuUTPUT
INPUT
OuTPUT

LOAD
OouTPUT
LOAD
OouTPUT

INPUT
INPUT

SUB
SUBCY

OuUTPUT
OUTPUT
OuUTPUT
OuUTPUT

LOAD
OuUTPUT
OouTPUT

TEST
TEST
TEST
INPUT
COMPARE
JUMP

LOAD
OUTPUT

INPUT
AND
OuUTPUT
LOAD

sB
sB
sA
sA

s

s

s

s

command_arg2
(sA)
last_.command_id
result_id

main_loop

sA
sB
sB
sA
sA

’

’

’

’

’

command_argl
(sA)

result_arg0
last_.command_id
result_id

main_loop

sA
sA
sA
sA
sA
sA
sA
sA
sA
sA
sA
sA
sA
sA

’

s

s

s

s

s

s

s

s

’

’

’

’

’

04
result_arg0
05
result_argl
06
result_arg2
07
result_arg3
08
result_arg4
09
result_argb
last_.command_id
result_id

main_loop

sA, loc_readstatus ; Check if there is a blocked buffer
sA, 00
Z, cmd_rec_nopacket
s9, command_argl
s9
s9, socket_start
sB, (s9)
sC, udp-destination_port-h
sB, sC
NZ, cmd-rec_nosocket
s9, 01
sB, (s9)
sC, udp-destination_port_1
sB, sC
NZ, cmd_rec_nosocket
; there is a packet and it is for this
sA, command_arg?2
sA, copy-rx_to_address_h
sA, command_arg3
sA, copy-rx_-to_address_l
sA, udp-data
sA, copy-rx_-from_address_1
sA, 00
sA, copy-rx-from_address_h
s8, udp-length_h
s9, udp-length_l
s9, 08
s8, 00
s9, copy-rx_length_l
s9, result_arg8
s8, copy-rx_-length_h
s8, result_arg?
sA, module_copy-rx
sA, module_sfr
sA, copy-rx-start
s9,01 ;nop
s9,01
s9,01
sA, copy-rx-start
sA, 00
z, cmd_recv_wait
sA, 00 ; reset the module_sfr
sA, module_sfr
; clear new frame signal
sA, mac_sfr2
sA, no_new_packet
sA, mac_sfr2
sA, 00 ; set the buffer for a new packet

socket ,

lets

co]
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cmd-rec_nopacket:
cmd_rec_nosocket:

command_socket :

c_socket_try:

c_.socket_free:

get_port:

check_duplicate_port:

check_dup-loop-a:
check_-dup-loop:

check_dup_finish:

STORE

OUTPUT

LOAD
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OuUTPUT
INPUT
OuUTPUT
INPUT
OuUTPUT
INPUT
OuUTPUT
FETCH
OUTPUT
JUMP

LOAD
OUTPUT
FETCH
OUTPUT
JUMP

FETCH
LOAD
LOAD
TEST
JUMP
RL

COMPARE
JUMP
LOAD
OuUTPUT
FETCH
OUTPUT
JUMP

OR
STORE
FETCH
FETCH
ADD
ADDCY
STORE
STORE
CALL
COMPARE
JUMP
OuUTPUT
LOAD
RL

ADD
STORE
ADD
STORE
FETCH
OuUTPUT
JUMP

LOAD
SUB

ADD
COMPARE
JUMP
FETCH
COMPARE
JUMP
ADD
FETCH

COMPARE
JUMP
LOAD

LOAD

sA, loc_-readstatus
sA, rx_-mac_get_packet
sA, 00

sA, result_arg0

sA, udp-source_-port-h
sA, result_argl

sA, udp-source_port_l
sA, result_arg2

sA, ip_source3

sA, result_arg3

sA, ip_source2

sA, result_arg4

sA, ip-sourcel

sA, result_argb

sA, ip-source0

sA, result_argé6

sA, last_command-_id
sA, result_id

main_loop

sA, FF

sA, result_argO

sA, last_.command_id
sA, result_id

main_loop

sA, socket_alloc

sB, 01

s9, 00

sA, sB

Z, c_socket_free

sB

s9, 01

s9, 08

NZ, c-socket_try

s9, FF

s9, result_arg0

sA, last_.command_id

sA, result_id

main_loop

sA, sB

sA, socket_alloc

sA, socket_random_port_h
sB, socket_random_port_I
sB, 01

sA, 00

sA, socket_-random_port_h
sB, socket_-random_port_l
check_duplicate_port

sC, 01

z, get_port

s9, result_arg0

s8, socket_start

s9

s8, s9

sA, (s8)

s8, 01

sB, (s8)

sA, last_.command_id

sA, result_id

main_loop

sC, socket_start

sC, 02

sC, 02

sC, string-start

z, check_-dup-finish
sD, (sC)

sA, sD

NZ, check_dup_-loop_a
sC, 01

sD, (sC)

sC, 01

sB, sD

NZ, check_dup-loop
sC, 01

sC, 00

; Write to regi
; return 00 for
; return source

; return source

; return FF for

; Find a free s
; return FF if

; check if the

; if so we found us a free

; no free

; allocate

ster rx_-mac_-get_-packet to get new packet
succesful

port

failure

ocket , return

there

allocate it a source port and
is no available socket
first bit

is zero

socket

socket

buffer

; return port number

; expects port

; oops port in

; not duplicate

sA sB

use set Sc =1

into buff

socket
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command_bind :

command_bind_fail :

command_close:

command_close_1:

command_close_f:

command_set_nm :

command_get_nm :

command_set_gw :

command_get_gw :

INPUT

INPUT
INPUT

CALL
COMPARE
JUMP
RL

ADD
STORE
ADD
STORE
OuTPUT
FETCH
OouTPUT
JUMP

INPUT

LOAD
LOAD
COMPARE
JUMP

RL

ADD
JUMP
FETCH
XOR
STORE

ADD
LOAD
STORE
ADD
STORE
FETCH
OUTPUT
JUMP

INPUT
STORE
INPUT
STORE
INPUT
STORE
INPUT
STORE
FETCH
OuTPUT
JUMP

FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OuUTPUT
JUMP

INPUT
STORE
INPUT
STORE
INPUT
STORE
INPUT
STORE
FETCH
OUTPUT
JUMP

FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OuUTPUT
FETCH
OuUTPUT
FETCH

s9, command_argl
s9, 07

sA, command_arg?2
sB, command_arg3

check_duplicate_port

sC, 01

Z, command_bind_fail
s9

s9, socket_start

sA, (s9)

s9, 01

sB, (s9)

sC, result_arg0

sA, last_command_id
sA, result_id
main_loop

sA, command._argl
sA,07

sB,01

sC,00

sC,sA

Z, command_close_f
sB

sC,01
command_close_l
sC, socket_alloc

sC, sB
sC, socket_alloc
sA

sA, socket_start
sB, 00

sB, (sA)
sA, 01
sB, (sA)

sA, last_command-id
sA, result_id
main_loop

sA, command_argl
sA, O0A

sA, command_arg?2
sA, 0B

sA, command_arg3
sA, 0C

sA, command_arg4
sA, 0D

sA, last_command_id
sA, result_id
main_loop

sA, OA
sA, result_arg0
sA, 0B
sA, result_argl
sA, 0C
sA, result_arg2
sA, 0D

sA, result_arg3

sA, last_.command_id
sA, result_id
main_loop

sA, command_argl
sA, OE

sA, command_arg2
sA, OF

sA, command_arg3
sA, 10

sA, command_arg4
sA, 11

sA, last_.command-id
sA, result-id
main_loop

sA, OE
sA, result_argO
sA, OF
sA, result_argl
sA, 10
sA, result_arg2
sA, 11

sA, result_arg3
sA, last_command_id

3

3
3

3

make sure socket is between 0 and 7

get the socket to close
make sure socket is between 0 and 7
rotate the bit to find the matching bit

position
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OUTPUT sA, result_id
JUMP main_loop
command_set_ip : INPUT sA, command._argl
STORE  sA, 00
INPUT sA, command_arg?2
STORE  sA, 01
INPUT sA, command_arg3
STORE  sA, 02
INPUT sA, command_arg4d
STORE sA, 03
FETCH sA, last_.command_id
OUTPUT sA, result_id
JUMP main_loop
command_get_ip: FETCH sA, 00
OUTPUT sA, result_argO
FETCH sA, 01
OUTPUT sA, result_argl
FETCH sA, 02
OUTPUT sA, result_arg?2
FETCH sA, 03
OUTPUT sA, result_arg3
FETCH sA, last_.command-id
OUTPUT sA, result_id
JUMP main_loop
command_sendto:
no_change: FETCH sA, loc_writestatus
COMPARE sA, 02
JUMP Z, command_sendto_b_empty
; if bottom empty check size and try
COMPARE sA, 01
JUMP Z, command_sendto_t_empty
; if top empty check size and try
COMPARE sA, 00
JUMP Z, command_sendto_empty
; if nothing in the buffer just prep
JUMP check_change
; if bottom and top in use wait for one to be empty

command_sendto_empty : INPUT

COMPARE sA ,

JUMP
LOAD
STORE
JUMP

LOAD
STORE
JUMP

empty_small_packet:

command_sendto_b_empty: INPUT

COMPARE sA ,

sA, command_arg?2
04
C, empty-small_packet
sA, 04
sA, loc_prepstatus
sendto_prep
sA, 01
sA, loc_prepstatus

sendto_prep

sA, command._arg2

04

JUMP NC, check_change
; packet is to big we need to wait for the entire buffer
LOAD sA, 01
STORE sA, loc_prepstatus
JUMP sendto_prep
command_sendto_t_empty: INPUT sA, command_arg2
COMPARE sA, 04
JUMP NC, check_change
; packet is to big we need to wait for the entire buffer
LOAD sA, 02
STORE sA, loc_prepstatus
JUMP sendto_prep
check_change: INPUT sA, mac_status_port
; lets check if we can change the write status
TEST sA, tx_-mac_-packet_ready
JUMP Z, no-change
LOAD sA, 00
STORE sA, loc_writestatus
JUMP command_sendto
sendto_prep: INPUT s7, command_argl
AND s7, 07
INPUT s8, command_arg?2
OUTPUT s8, copy-length_h
INPUT s9, command_arg3
OUTPUT s9, copy-length_l
INPUT sA, command_arg4

5

5

5

get length

prep

prep only

to be empty

5

prep only

to be empty

5

prep only

now we are
prepstatus
prepstatus
prepstatus
store the

of packet

bottom and top

bottom

bottom

top

here we can have the following
= 001 lets prepare the bottom
= 010 lets prepare the top

= 100 lets prepare the bottom
socket id

value
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copy-to_-address_h

build_udp-wait:

length = data length + header

create the udp header —

of udp data assuming

get the source port from the

OUTPUT sA, copy-from_address_h store the addr_h
INPUT sA, command_argh
OUTPUT sA, copy-from_address_l store the addr_l
FETCH sB, loc_prepstatus
to 04 for top half and to 00 for bottom
AND sB, 02
RL sB
OUTPUT sB, copy-to_address_h
LOAD sA, 2A
ip header with no options
OUTPUT sA, copy-to_address_l
LOAD sA, module_copy
OUTPUT sA, module_sfr
OUTPUT sA, copy-start
INPUT sA, copy-start
INPUT sA, copy-start
INPUT sA, copy-start
INPUT sA, copy-start
COMPARE sA, 00
JUMP Z, build_udp-wait
;1 = gelijk , 00 = bezig
LOAD sA, module_mac
OUTPUT sA, module_sfr
FETCH sB, loc_prepstatus
AND sB, 02
RL sB
RL sB
INPUT sA, mac_sfr set mac offset
OR sA, sB
OUTPUT sA, mac_sfr
ADD s9, 08
length
ADDCY s8, 00
LOAD sA, 00
source port, destination port, udp length , checksum

OUTPUT sA, udp-checksum_-h
OUTPUT sA, udp-checksum_l
RL s7

socket
ADD s7, socket_start
FETCH sA, (sT7)
OUTPUT sA, udp-source_port_h
ADD s7, 01
FETCH sA, (s7)
OUTPUT sA, udp-source_port_l
INPUT sA, command_arg6
OUTPUT sA, udp-destination_port_h
INPUT sA, command_arg?
OUTPUT sA, udp-destination_-port-l
OUTPUT s8, udp-length_h
OUTPUT s9, udp-length_l
FETCH sB, 00
OUTPUT sB, udp-pseudo_source_-ip3
FETCH sB, 01
OUTPUT sB, udp-pseudo_source_ip2
FETCH sB, 02
OUTPUT sB, udp-pseudo_source_ipl
FETCH sB, 03
OUTPUT sB, udp-pseudo_source_ip0
INPUT s0, command_arg8
OUTPUT s0, udp-pseudo_-destination_-ip3
INPUT sl, command-arg9
OUTPUT sl1, udp-pseudo-destination_-ip2
INPUT s2, command-argA
OUTPUT s2, udp-pseudo._destination_ipl
INPUT s3, command_argB
OUTPUT s3, udp-pseudo_destination_ip0
LOAD sA, 00 zero
OUTPUT sA, udp-pseudo_zero
LOAD sA, 11 protocol
OUTPUT sA udp-pseudo_protocol

s
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>

build-udp-crc_w:

create the

build_ip :
ip header,

OuUTPUT
OouTPUT

LOAD
OUTPUT
FETCH

OuUTPUT

ADD
ADDCY
OUTPUT
OuUTPUT
SUB
SUBCY
LOAD
OuUTPUT
OouTPUT

INPUT
INPUT
INPUT

INPUT
COMPARE
JUMP

LOAD
OUTPUT

INPUT
OuUTPUT
INPUT
OuTPUT

LOAD

CALL

OuUTPUT
OuUTPUT
FETCH
OUTPUT
JUMP

length

LOAD

OuTPUT
LOAD

OuTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

ADD
ADDCY
OUTPUT
OuUTPUT

FETCH
FETCH
OuUTPUT
OuUTPUT
ADD
ADDCY
STORE
STORE

LOAD
OUTPUT

FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OuUTPUT
FETCH
OuTPUT

s8, udp-pseudo_length_h
s9, udp-pseudo-length_l
sA, udp-pseudo_source_ip ; calculate udp checksum
sA, crc_-address_-l

sB, loc_prepstatus

sB, 02

sB

sB, crc_address_h

s9, 0C ; length for crc = pseudo 4+ header + data
s8&, 00

s9, crc_length_1

s8, crc_length_h

s9, 0C

s9, 00

sA, module_crc

sA, module_sfr

sA, crc_start

sA, crc_start

sA, crc_start

sA, crc_start

sA, crc_start

sA, 00

Z, build_udp_-crc_w

sA, module_mac

sA, module_sfr

sA, crc_l

sA, udp-checksum_l

sA, crc-h

sA, udp-checksum_h

s7, 11 ; protocol udp
build_ip

s8, result_arg0

s9, result_argl

sA, last_.command_id
sA, result_id

main_loop

in s8 s9, protocol in s7, s0—s3 ip address

sA
sA
sA
sA
sA
sA
sA
sA
s7

s9
s8
s9
s8

sA
sB
sA
sB
sB
sA
sA
sB

sA
sA

sB
sB
sB
sB
sB
sB
sB
sB

s

s

s

s

s

s

s

’

’

s

s

s

s

s

s

s

s

’

’

’

’

>

’

’

s

s

s

45
ip-version_ihl
00

ip-tos
ip-flags
ip-offset
ip-checksum_h
ip-checksum-_1
ip-protocol

14
00
ip-length_1
ip_-length_h

loc_ip-identification_h ; fetch the identifcation counter, use it , update it , and
loc_ip_-identification_1

ip-identification_h

ip-identification_1

01

00

loc_ip-identification_h

loc-ip-identification_1

80
ip-ttl

00
ip_source3
01
ip_source?2
02
ip_sourcel
03
ip-source0
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OUTPUT s0, ip-destination3
OUTPUT sl1, ip-destination2

OUTPUT s2 ip-destinationl
OUTPUT s3 ip-destinationO

; calculate ip header checksum
LOAD sA, ip-version-ihl

OUTPUT sA, crc_address_l
FETCH sA, loc_prepstatus

AND sA, 02

RL sA

OUTPUT sA, crc_address_h
LOAD sA, 14

OUTPUT sA, crc-length_l

LOAD sA, 00

OUTPUT sA, crc_length_h

LOAD sA, module_crc

OUTPUT sA, module_sfr
OUTPUT sA, crc-start

INPUT sA, crc_start
INPUT sA, crc_start
INPUT sA, crc_start

build_ip_crc_w: INPUT sA, crc_start
COMPARE sA, 00
JUMP Z, build_.ip_crc_w

LOAD sA, module_mac
OUTPUT sA, module_sfr

INPUT sA, crc-l
OUTPUT sA, ip-checksum_1
INPUT sA, crc-h
OUTPUT sA, ip-checksum_h

LOAD sA, 08
LOAD sB, 00
CALL build_ethernet
RETURN
build_ethernet: OUTPUT sB, 0D ; build the ethernet frame, ethertype in sA, SI

OUTPUT sA, 0C
FETCH sB, 04
OUTPUT sB, 06
FETCH sB, 05
OUTPUT sB, 07
FETCH sB, 06
OUTPUT sB, 08
FETCH sB, 07
OUTPUT sB, 09
FETCH sB, 08
OUTPUT sB, 0A
FETCH sB, 09
OUTPUT sB, OB

CALL set_destination_mac
CALL send_packet
RETURN

send_packet : INPUT sA, mac_status_port
; before sending we need to wait the packet to be send completely
TEST sA, tx_mac_packet_ready
JUMP z, send_packet

INPUT sA, mac_sfr
AND sA, DF
OUTPUT sA, mac_sfr

FETCH sA, loc_prepstatus
STORE sA, loc_writestatus

COMPARE sA, 02
; if we send the top half we need to reset the send counter to top

JUMP NZ, send_now
INPUT sA, mac_sfr2
OR sA, mac_up

OUTPUT sA, mac._sfr2
LOAD sA, 00 ; reset prepstatus
STORE sA, loc_prepstatus

send_now: INPUT sA, mac_sfr
; set the tx bit high so that the mac starts sending
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3

3

make_arp :
Sends an arp request

process_udp:

process_udp_-no_bc:
check if packet is

OR
OouTPUT

INPUT

OUTPUT

LOAD

for the

OUTPUT
OuUTPUT
LOAD
OuUTPUT
OuUTPUT
OuUTPUT
OouTPUT
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL

LOAD

LOAD

LOAD

LOAD

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OuTPUT
OuUTPUT
LOAD

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
LOAD

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OuTPUT

; CALL
RETURN

INPUT
COMPARE
JUMP
INPUT
COMPARE
JUMP
INPUT
COMPARE
JUMP
INPUT
COMPARE
JUMP
JUMP

INPUT

really for

FETCH
COMPARE
RETURN
INPUT
FETCH
COMPARE
RETURN

sA, mac_send_packet
sA, mac_sfr

sA, mac_sfr2
sA, mac_down
sA, mac_sfr2

s9, 10
ip address in
s9, mac_sfr

sA,sB,sC,sD

sD, 29
s9, 00
s9, mac_sfr
sA, 26
sB, 27
sC, 28
sB, 00
sC, 1C
sA, 04

copy-scratch2buffer
sB, 04
sC, 16
sA, 06
copy-scratch2buffer
sB, 04

sC, 06
sA, 06
copy-scratch2buffer
sA, 00
sB, 01
sC, 08
sD, 06
sA, 20
sA, 21
sA, 22
sA, 23
sA, 24
sA, 25
sA, 14
sB, 15
s9, 04
s9, 13
sD, 12
sA, 11
sC, 10
sB, OF
sA, OE
sD, 0D
sC, 0C
sA, FF
sA, 00
sA, 01
sA, 02
sA, 03
sA, 04
sA, 05

send_packet KAAS

sA, ip_-destination3
sA, FF

NZ, process_udp-no_bc
sA, ip-destination?2
sA, FF

NZ, process_udp-no_bc
sA, ip-destinationl
sA, FF

NZ, process_udp-no_-bc
sA, ip-destinationO
sA, FF

NZ, process_udp-no_-bc
process_udp-check_p

sA, ip_-destination3

our ip
sB, 00
sA, sB
NZ

sA, ip-destination?2
sB, 01

sA, sB

Nz

5

5

3

5

5

5

reset mac-sfr2 to down

write our ip

write our mac

from now sA = 00 sB = 01,

set protocol size

check if it is a broadcast



994

996

998

1000

1002

1004

1006

1008

1010
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1016

1018

1020

1022

1024

1026

1028

1030

1032

1034

1036

1038

1040

1042

1044

1046

1048

1050

1052

1054

1056

1058

1060

1062

1064

1066

1068

1070

1072
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process_udp-check_p:
; check if there is

INPUT
FETCH
COMPARE
RETURN
INPUT
FETCH
COMPARE
RETURN

INPUT

a socket open with this

sA, ip-destinationl

sB, 02

sA, sB

Nz

sA, ip-destinationO

sB, 03

sA, sB

Nz

sA, udp-destination_port_h

port

INPUT sB, udp-destination_port_1
CALL check_duplicate_port
COMPARE sC, 00
RETURN Z
; it is a valid packet so now
; all other incoming traffic i
; until a process requests thi
LOAD sA, 01
STORE sA, loc_-readstatus
; lets create a signal for the
INPUT sA, mac_sfr2
OR sA, new_packet
OUTPUT sA, mac-sfr2
RETURN
process_icmp_echo_req: INPUT sA, ip-length_h
; get length of original echo request
INPUT sB, ip-length_l
ADD sB, OE
; add length of ethernet to get total packet length in sA, sB
ADDCY sA, 00
LOAD sC, 00
; create address sC, sD , where sD < 128
LOAD sD, 00
copy-icmp-packet: LOAD s7, sC
LOAD s8, sD
SLO s8
SLA s7
SRO s8
AND s7, OF
OUTPUT s7, mac._sfr
INPUT s9, (s8) ; read byte from rx buffer
OUTPUT s9, (s8) ; write it back to tx buffer
ADD sD, 01 ; increase pointer
ADDCY sC, 00
COMPARE sB, sD
JUMP NZ, copy-icmp_packet
COMPARE sA, sC
JUMP NZ, copy-icmp_packet ; copy remaining bytes
make_icmp_req: OR s7, 10 ; last byte lets set eop
OUTPUT s7, mac_sfr
OUTPUT s9, (s8)
LOAD sA, 00 ; reset mac-_sfr
OUTPUT sA, mac-sfr
LOAD sA, icmp-echo_reply ; set type to reply
OUTPUT sA, icmp-type
INPUT sA, icmp_checksum_h
; make checksum with cheating, just add 8 since only type field changes
INPUT sB, icmp_checksum_l
ADD sA, 08
ADDCY sB, 00
OUTPUT sA, icmp-checksum_h
OUTPUT sB, icmp_checksum_l
LOAD sB, 1A
; swap source ip and destination ip in ip
LOAD sC, 1E
LOAD sA, 04
CALL copy-buffer
LOAD sB, 1E
LOAD sC, 1A
LOAD sA, 04
CALL copy-buffer
LOAD sB, 00
; swap source arp and destination arp in ethernet
LOAD sC, 06
LOAD sA, 06
CALL copy-buffer
LOAD sB, 06
LOAD sC, 00
LOAD sA, 06
CALL copy-buffer
CALL send_packet
RETURN

we need to block
buffer

nto this
s data

applications
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1074 process_arp:
LOAD sA, 26
; Check if the incoming arp packet has our ip in it
1076 LOAD sB, 00
LOAD sC, 04

1078| process_arp-check_ip: INPUT s9, (sA)
FETCH s8, (sB)

1080 COMPARE s9, s8 ; if not return
RETURN NZ
1082 ADD sA, 01
ADD sB, 01
1084 SUB sC, 01
JUMP NZ, process_arp_check_ip
1086 ; ok the arp packet is for us

INPUT sA, arp-hdr_opcode
; two options now, either it is a request or a reply

1088 COMPARE sA, arp-request
JUMP Z, process_arp-request
1090 process_arp-reply: JUMP save_in_arp
; if it is a reply we only need to store the result in the table
process_arp-request: LOAD sB, 00
; copy 64 bytes of the received packet buffer to the tx buffer
1092 LOAD sC, 00
LOAD sA, 40
1094 CALL copy-buffer
LOAD sA, arp-_reply
; change packet from request to reply
1096 OUTPUT sA, arp-hdr_opcode
LOAD sB, 06
; copy the source mac address to the destination mac address
1098 LOAD sC, 00
LOAD sA, 06
1100 CALL copy-buffer
LOAD sB, 16
; copy the source mac address to the destination mac address in arp
1102 LOAD sC, 20
LOAD sA, OA
1104 CALL copy-buffer
LOAD sB, 04
; copy the mac address to the source mac address
1106 LOAD sC, 06
LOAD sA, 06
1108 CALL copy-scratch2buffer

LOAD sB, 04

; copy the mac address to the sender mac address in arp

1110 LOAD sC, 16
LOAD sA, 06
1112 CALL copy-scratch2buffer
LOAD sB, 00
; copy the ip address to the sender ip address in arp
1114 LOAD sC, 1C
LOAD sA, 04
1116 CALL copy-scratch2buffer
LOAD sA, mac_eop ; set the end of the packet
1118 OUTPUT sA, mac_sfr
LOAD sA, 00
1120 OUTPUT sA, 30
OUTPUT sA, mac-_sfr
1122 CALL send_packet
save_in_arp: LOAD sB, 16
; save in arp table, copy arp + ip to arp registers
1124 LOAD sC, arp_-table_ethO
LOAD sA, O0A
1126 CALL copy-buffer
LOAD sA, arp-table_write ; store in arp table
1128 OUTPUT sA, arp-table_status
LOAD sA, 00
1130 OUTPUT sA, arp-table_status
RETURN
1132
set_destination_-mac: LOAD sA, 1E
; assumes that the packet is already in tx buffer on le — 21
1134 LOAD sB, 00
; sA pointer to tx buffer destination ip, sB point to own ip, sC to mask
LOAD sC, 0A
; s6 points to the arp table, lets fill in the fields already assuming it is a local transfer
1136 LOAD s6, arp_-table_ipO0
LOAD sD, 04
1138 INPUT s9, mac_sfr
OR s9, mac_tx_buffer
1140 OUTPUT s9, mac_sfr
; set mac_sfr so we can read from tx buffer
set_destination_mac_1: INPUT s7, (sA) ; current ip byte in tx buffer
1142 OUTPUT s7, (s6)

; put current ip in lookup for arp table
FETCH s8, (sB)
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; current

FETCH s9, (sC) ; current mask byte
AND s7, s9
AND s8, s9
COMPARE s7, s8
; after anding the bytes they should be similar for local address
JUMP NZ, set-destination_-not-loc
; if they do not match it is a non local address
ADD sA, 01
ADD sB, 01
ADD sC, 01
ADD s6, 01
SUB sD, 01
JUMP NZ, set_destination_mac-_l
JUMP set_destination_loc ; address is local
set_destination_not_loc:
INPUT sA, 1E ; check if it is
COMPARE sA, FF
JUMP NZ, set_-dest_-no_bc
INPUT sA, 1F
COMPARE sA, FF
JUMP NZ, set_-dest-no_bc
INPUT sA, 20
COMPARE sA, FF
JUMP NZ, set_dest_no_bc
INPUT sA, 21
JUMP NZ, set_dest_no_bc
LOAD sA, FF ; it is a broadcast
OUTPUT sA, 00
OUTPUT sA, 01
OUTPUT sA, 02
OUTPUT sA, 03
OUTPUT sA, 04
OUTPUT sA, 05
JUMP set_dest_finish
set-dest_no_-bc: FETCH sA, loc_gateway-ip0
; get the ip of the gateway and fill it in arp table lookup
OUTPUT sA, arp-table_-ip0O
FETCH sB, loc_gateway_ipl
OUTPUT sB, arp-table_ipl
FETCH sC, loc_gateway_ip2
OUTPUT sC, arp-table_ip2
FETCH sD, loc_gateway_ip3
OUTPUT sD, arp-table_ip3
CALL arp-lookup
JUMP Z, set_dest_not_loc_arp
LOAD sB, arp_table_ethO
LOAD sC, 00
LOAD sA, 06
CALL copy-buffer
set_dest_finish: LOAD s9, mac_rx_-buffer
OUTPUT s9, mac-sfr
RETURN
set_-dest-not-loc_arp: CALL make_arp
RETURN
set_destination_loc: CALL arp-lookup
JUMP Z, set_dest_loc_arp
; if not lets go to set_destination_nf
LOAD sB, arp_table_ethO
; we found the address so lets copy the mac address to the packet
LOAD sC, 00
LOAD sA, 06
CALL copy-buffer
LOAD s9, mac_rx_-buffer
OUTPUT s9, mac-sfr
RETURN
set-dest_-loc_arp: INPUT sA, 1E
; We did not find the address so we need to request it with arp and drop the current
INPUT sB, 1F
INPUT sC, 20
INPUT sD, 21
CALL make_arp
RETURN
arp-lookup: LOAD s9, arp_table_read
OUTPUT s9, arp-table_status
LOAD s9, 00
OUTPUT s9, arp-table_status

ip byte of own address

a broadcast

packet
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1224 arp-lookup_-wait: INPUT s9, arp-table_status
AND s9, 0C
1226 JUMP Z, arp-lookup-wait
INPUT s9, arp-table_status
1228 TEST s9, arp-table_found
RETURN
1230
1232
copy-buffer: COMPARE sA, 00
; copies sA bytes from sB —> sC
1234 RETURN Z
INPUT sD, (sB)
1236 OUTPUT sD, (sC)
ADD sB, 01
1238 ADD sC, 01
SUB sA, 01
1240 JUMP copy-buffer
1242 ; copy-buffer2scratch: COMPARE sA, 00 ; copies sA bytes from sB —> scratch (sC)
;RETURN  Z
1244 ;INPUT sD, (sB)
; STORE sD, (sC)
1246 ; ADD sB, 01
; ADD sC, 01
1248 ;SUB sA, 01
; JUMP copy-buffer2scratch
1250
1252 copy-scratch2buffer: COMPARE sA, 00
; copies sA bytes from Scratch(sB) —> sC
RETURN Z
1254 FETCH sD, (sB)
OUTPUT sD, (sC)
1256 ADD sB, 01
ADD sC, 01
1258 SUB sA, 01
JUMP copy-scratch2buffer
Listing 6.2: demo.psm
; uart
2 CONSTANT UART_read_port, EO ;UART Rx data input
CONSTANT UART _write_port, EO ; UART Tx data output
4 CONSTANT UART_status_port, CO ;UART status input
CONSTANT tx-half_full , 01 H Transmitter
half full — bit0
6 CONSTANT tx_full , 02 H FIFO
full — bitl
CONSTANT rx-half_full , 04 ; Receiver
half full — bit2
8 CONSTANT rx-_full , 08 ; FIFO
full — bit3
CONSTANT rx_data_present , 10 ;
data present — bit4
10
CONSTANT status_port , CO
12 CONSTANT new._packet , 20
14
; counter
16 CONSTANT counter_write_port , FO
CONSTANT counter_read_-0, FO
18 CONSTANT counter_read-1, F1
CONSTANT counter_read-2, F2
20 CONSTANT counter_-read-3 , F3
CONSTANT counter_reset , 01
22 CONSTANT counter_start , 02
CONSTANT counter-stop , 00
24
;LCD interface ports
26 H
;The master enable signal is not used by the LCD display itself
28 ;but may be required to confirm that LCD communication is active.
; This is required on the Spartan—3E Starter Kit if the StrataFLASH
30 ;is used because it shares the same data pins and conflicts must be avoided.
5
32 CONSTANT LCD_output_port, AO ;LCD character module output data and control
CONSTANT LCD_E, 01 H active High Enable
E — bito
34 CONSTANT LCDRW, 02 5 Read=1 Write=0
RW — bitl
CONSTANT LCD_RS, 04 H Instruction=0 Data=1
RS — bit2
36 CONSTANT LCD_drive, 08 5
Master enable (active High) — bit3
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40

42

44

46

48

50

54

56

58

60
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64
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68

70
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76

78

80

82

84

86

88

90

92

94

96
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100
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104

106

108

81

Data DB4

Data DBS5

Data DB6

Data DB7

— bit0

— bitl

— bit2

— bit3

Data DB4

Data DB5

Data DB6

Data DB7

bit4

bith

bit6

bit7

bit4

bith

bit6

bit7

CONSTANT LCD_DB4, 10 H 4—Dbit
CONSTANT LCD_DB5, 20 5 interface
CONSTANT LCD_DB6, 40 ;

CONSTANT LCD_DB7, 80 ;

5
CONSTANT LCD_input_port, A0 ;LCD character module input data

CONSTANT LCD_read_spare0, 01 H Spare bits
CONSTANT LCD_read_sparel, 02 H are zero

CONSTANT LCD_read_spare2, 04 5

CONSTANT LCD_read_spare3, 08 5

CONSTANT LCD_read_-DB4, 10 H 4—Dbit
CONSTANT LCD.read-DB5, 20 5 interface
CONSTANT LCD.read-DB6, 40 ;

CONSTANT LCD_read_DB7, 80 ;

CONSTANT command_id, 80
CONSTANT command_arg0, 81

CONSTANT command_argl, 82
CONSTANT command_arg?2 83
CONSTANT command_arg3, 84

,
,
,
CONSTANT command_arg4, 85

CONSTANT command_argh, 86
CONSTANT command_arg6, 87
CONSTANT command_arg7, 88

CONSTANT command_arg8, 89
CONSTANT command-arg9, 8A
CONSTANT command-argA, 8B
CONSTANT command-argB, 8C
CONSTANT command_argC, 8D
CONSTANT command_argD, 8E
CONSTANT command_argE, 8F
CONSTANT result_id , 80

CONSTANT result_arg0O , 81
CONSTANT result_argl , 82
CONSTANT result_arg2 , 83
CONSTANT result_arg3 , 84
CONSTANT result_arg4 , 85
CONSTANT result_argh , 86
CONSTANT result_arg6 , 87
CONSTANT result_arg7 , 88
CONSTANT result_arg8 , 89
CONSTANT result_arg9 , 8A
CONSTANT result-argA , 8B
CONSTANT result_-argB , 8C
CONSTANT result-argC , 8D
CONSTANT result_argD , 8E
CONSTANT result_argE , 8F

;
; The main operation of the program uses 1lms delays to set the shift rate
;of the LCD display. A 16—bit value determines how many milliseconds
;there are between shifts

5
; Tests indicate that the fastest shift rate that the LCD display supports is
;500ms. Faster than this and the display becomes less clear to read.

CONSTANT shift_delay_msb , 01 ;delay is 500ms (01F4 hex)
CONSTANT shift_delay-lsb , F4

5
5
5
5

; Constant to define a software delay of lus. This must be adjusted to reflect the
;clock applied to KCPSM3. Every instruction executes in 2 clock cycles making the
;calculation highly predictable. The 6’ in the following equation even allows for
; 7CALL delay_lus’ instruction in the initiating code.

5

; delay_lus_constant = (clock_rate — 6)/4

Where ’clock_rate’ is in MHz

(0B Hex).

;
; Example: For a 50MHz clock the constant value is (10-—6)/4 = 11
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rates
than

;For clock
;become lower

CONSTANT delay-lus

5
5

5

; Special Register

intended .

-constant , 12

usage

NAMEREG sF, UART_data

;used to pass data to and from the UART

5
NAMEREG sE, store_
location of data in scratch
NAMEREG sD, socket

;used to pass

pointer
pad memory

5
;Scratch Pad Memory Locations

5
;UART character st

rings will be stored in scratch pad memory ending in

below 10MHz the value of 1 must be used and the operation will

carriage

return .

;A string can be up to 16 characters with the start location defined by this constant.

CONSTANT
CONSTANT
CONSTANT
CONSTANT

xid3 ,
xid2 ,
xid1 ,
xid0 ,

10
11
12
13

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

loc_serve
loc_serve
loc_serve
loc_serve
loc_mask3
loc_mask2
loc_mask1l
loc_maskO0
loc_gw3 ,
loc_gw2 ,
loc_gwl ,
loc_gwO ,

CONSTANT
CONSTANT
CONSTANT
CONSTANT

ip-addres
ip_addres
ip_addres
ip_addres

CONSTANT
CONSTANT

CONSTANT

5

string_st

H
;Initialise the sy

5

LOAD

last_command_id ,

socket_echo ,

r_id3
r_id2
r_idl
r_ido
, 18
, 19
, 1A
1B

14
15
16
17

)
1C
1D
1E
1F

s3 ,
s2
sl ,
s0 ,

20
21
22
23
25
26

art , 30

stem

sA, 01
STORE sA, last_.command-id
CALL LCD_reset
LOAD s5, 10 ;Line 1 position 0
CALL LCD_cursor
CALL disp_uipdemo
CALL dhcp_init
CALL echo_init
main_loop: INPUT sA, UART_status_port ; Check uart for bytes
TEST sA, rx_data_present
JUMP NZ, prompt_input ; Goto debugging
CALL start_echo
JUMP main_loop ; Restart main loop
prompt_input: CALL send_prompt ; Prompt ’Demo>’
CALL receive_string

;obtain input string and maintain the time
LOAD s1,

CALL

COMPARE
JUMP Z,
COMPARE
JUMP Z,
COMPARE
JUMP z ,
COMPARE
JUMP z ,
COMPARE

s0 ,
read_comma
s0, charac
write_comm
s0O, charac
dumppacket
s0 ,
main_loop
s0 ,

string_start
fetch_char_from_memory

character_R

nd

ter W
and
ter_.D
—command

character_-X

character_F



194

196

198

200

202

204

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

240

242

244

246

248

250

252

254

256

258

262

264

266

268

270

272

274

278

280
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do_receive_test:

wait_for_first_packet:

receive_next_packet:

receive_process:

start_echo:

JUMP z, commandd_fill
COMPARE s0, character_S
JUMP z start_-dhcp
COMPARE s0, character-M
JUMP z, dumpmem
COMPARE s0, character-L
CALL Z, parse-options
COMPARE s0, character_G
CALL z clearscratch
COMPARE s0, character_T
JUMP z, send_test
COMPARE s0, character_U
JUMP z, dump_pip-mem
COMPARE s0, character_I
JUMP z, dump_pip-port_tx
COMPARE s0, character_O
JUMP z, write_pip-port
COMPARE s0, character_P
JUMP z dump_-pip-port_rx
COMPARE s0, character_Y
JUMP z, do_-receive_test

JUMP prompt_input

LOAD s2, 00

LOAD sl, counter_reset
OUTPUT sl, counter_write_port
LOAD sA, 07

OUTPUT sA, command_arg0

CALL set_command_id

CALL get_result

INPUT s3, result_arg0

LOAD sA, 08

OuTPUT sA, command_arg0
OuUTPUT s3, command.argl

LOAD sA, 09

OUTPUT sA, command_arg2

LOAD sA, C4

OUTPUT sA, command_arg3

CALL set_command_-id

CALL get_-result

INPUT sl, status_port

TEST sl, new_packet

JUMP Z, wait_for_first_packet
LOAD sl, counter_start
OuUTPUT sl, counter_write_port
JUMP receive_process

INPUT sl, status_port

TEST sl, new_packet

JUMP Z, receive_next_packet
LOAD sA, 0B

OUTPUT sA, command_arg0
OUTPUT s3, command.argl

LOAD sA, 00

OUTPUT sA, command_arg2
OUTPUT sA, command_arg3

CALL set_command-id

CALL get_result

ADD s2, 01

JUMP NZ, receive_next_packet
LOAD sl, counter_stop
OUTPUT sl, counter_write_port
LOAD sA, 09

OUTPUT sA, command_arg0
OuUTPUT s3, command_argl

CALL set_command_id

CALL get_result

LOAD sl, counter_stop
OuTPUT sl, counter_write_port
LOAD sl, counter_stop

LOAD sl, counter_stop
INPUT sl, counter_read-3
CALL value2ser

INPUT sl, counter_read_2
CALL value2ser

INPUT sl, counter_read._1
CALL value2ser

INPUT sl, counter_read_0
CALL value2ser

JUMP prompt_input

INPUT sl, status_-port

TEST sl, new_packet

; packet counter

socket

; get

; keep socket in

; bind socket to

;start timer

; stop timer

; close socket

; get packet

; wait for signal

in s2

socket

port 2500
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284

286

288

292

294

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

330

332

334

336

338

340

342
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346

348

350
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write_pip-port:

set_command_id :

dump_pip-port_tx:

dump_pip-outer:

dump-pip-inner:

RETURN
LOAD
OouTPUT
FETCH
OuTPUT
LOAD
OuUTPUT
OUTPUT
CALL
CALL

LOAD
OUTPUT
OuUTPUT
INPUT
OuUTPUT
INPUT
OuUTPUT
LOAD
OUTPUT
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OuUTPUT
INPUT
OuUTPUT
CALL
CALL
RETURN

LOAD
OuTPUT
LOAD
OuUTPUT
CALL
OUTPUT
CALL
CALL
CALL
OUTPUT
CALL
OuUTPUT
CALL
CALL
JUMP

FETCH
ADD
STORE
OUTPUT

sA,
sA,
sA,
sA,

LOAD
LOAD

LOAD
OuUTPUT
LOAD
OuUTPUT
OR
OuTPUT
CALL
CALL
LOAD
OuUTPUT
OuUTPUT
CALL
CALL
INPUT
CALL
ADD
COMPARE
JUMP

COMPARE

Z

sA, 0B

sA, command_arg0
sC, socket_echo
sC, command.argl
sA, 00

sA, command_arg?2
sA, command_arg3

set_command_id
get_result

sA, OA

sA, command_arg0
sC, command_argl
sA, result_arg?
sA, command_arg?2
sA, result_arg8
sA, command_arg3
sA, 00

sA, command_arg4
sA, command_argh
sA, result_argl
sA, command_arg6
sA, result-arg?2
sA, command_arg?7
sA, result_arg3
sA, command_arg8
sA, result_arg4
sA, command_arg9
sA, result_argh
sA, command_argA
sA, result_arg6
sA, command_argB

set_.command_id
get_result

sA, El1
sA, command_arg0
sA, D8
sA, command-argl
hex2value ; re

s3, command_arg2
set_command_id
get_result
hex2value

s3, command_argl
hex2value

s3, command_arg?2
set_command_id
get_result
prompt_input

last_.command_id
01
last_.command_id
command_id

s8, 00
s9, 00
sC, E1l1
sC, command_arg0
sC, D8
sC, command._argl
s8, 40
s8 , command_arg?2

set_command_id
get_result

sC, EO

sC, command_arg0
s9, command-argl
set_command_id
get_result

sl, result_arg0
value2ser

s9, 01

s9, 80

NZ, dump_pip-inn
s8, OF

s8, 01

s8, 10

sult

3

i

er

in

sAsB

s3

H

3

get next packet

return packet

1111 01111111
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370

372

374

376

378

380

382

384

386

388

390

392

394

396

398

400

402

404

406

408

410

412

414

416

418

420

422

424

426

428

430

432

434

436

438

440

442

444

446

448

452

454
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dump_-pip-port_tx_f:

dump_pip-port_rx:

dump_pip-outer_rx:

dump-pip-inner_rx:

dump-pip-port_rx_f:

dump_pip-mem :

dump-pip-mem-_1:

send_test:

JUMP
LOAD
JUMP
LOAD
OuTPUT
LOAD
OuUTPUT
LOAD
OuUTPUT
CALL
CALL
JUMP

LOAD
LOAD

LOAD
OuUTPUT
LOAD
OuTPUT
OouTPUT
CALL
CALL
LOAD
OuUTPUT
OuUTPUT
CALL
CALL
INPUT
CALL
ADD
COMPARE
JUMP

ADD
COMPARE
JUMP
LOAD
JUMP
LOAD
OuUTPUT
LOAD
OuUTPUT
LOAD
OUTPUT
CALL
CALL
JUMP

LOAD
LOAD
OouTPUT
COMPARE
JUMP
OuTPUT
CALL
CALL
INPUT
CALL
ADD
JUMP

CALL
LOAD
CALL
LOAD
LOAD
LOAD
OuTPUT
LOAD
OUTPUT

OuTPUT
OuUTPUT
OuUTPUT
LOAD
OUTPUT
OUTPUT
LOAD
OUTPUT
LOAD
OuUTPUT
LOAD
OuUTPUT
LOAD

Z, dump_pip-port_tx_f
s9, 00
dump-pip-outer

sC, E1
sC, command_arg0
sC, D8
sC, command-argl
sC, 00

sC, command_arg2
set_command_id
get_result
prompt_input

s8, 00 ; sAsB
s9, 00
; 1111 01111111
sC, E1l1
sC, command_arg0
sC, D8

sC, command_argl
s8 , command_arg?2
set_command_id
get_-result

sC, EO

sC, command_arg0
s9, command_argl
set_command_id
get_result

sl, result_arg0
value2ser

s9, 01

s9, 80

NZ, dump_pip-inner_rx
s8, OF

s8, 01

s8, 10

Z, dump_-pip-port_rx_f
s9, 00
dump_pip-outer_rx

sC, E1
sC, command_arg0
sC, D8
sC, command._argl
sC, 00

sC, command_arg2
set_command_id
get_result
prompt_input

s8, 00
sA, E2
sA, command_arg0
s8, 40

Z, prompt_input
s8 , command-argl
set_command_-id

get_-result

sl, result_arg0

value2ser

s8, 01

dump_pip_-mem-_]

hex2value ; result in s3

s6, s3

hex2value

s8, s3

s7, 00 ; send 255 packets
sA, 00

sA, CO

sA, OA ; send packet
sA, command_arg0

sA, 00

sA, command-argl ; send socket
s6 , command-arg2 ; length

s8, command_arg3

sB, 00

sB, command_arg4 ; address
sB, command_argh

sA, 00 ; port

sA, command_arg6

sA, 43

sA, command_arg7

sA, CO ; broadcast

sA, command_arg8
sA, A8



456

458

460

462

464

466

468

472

474

476

478

480

482

484

488

490

492

494

496

498

500

502

504

506

508

510

512

514

516

518

520

522

524

526

528

530

532

534

536

538
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loop_test:

clearscratch:

clearsc:

dumpmem :
dumpmem_]:

start_dhcp:

try-again:

; if no dhcp offer is

wait_for_ack:

; if no dhcp offer is

OuUTPUT sA, command_arg9
LOAD sA, OA

OUTPUT sA, command_argA
LOAD sA, 01

OUTPUT sA, command-argB
OUTPUT s7, 07

CALL set_command_id
CALL get_result

ADD s7, 01

COMPARE s7, 00

JUMP Z, main_loop
JUMP loop_-test

LOAD s8, 00
LOAD sA, 00
STORE sA, (s8)
ADD  s8, 01
COMPARE s8, 40

JUMP NZ, clearsc
RETURN

LOAD 58,00
FETCH sl, (s8)
CALL value2ser
ADD s8, 01

COMPARE s8, 40

JUMP NZ, dumpmem_l
JUMP prompt_input

CALL send_discover
CALL delay_1s

LOAD sA, 0B

OUTPUT sA, command_arg0
OUTPUT socket , command_argl
LOAD sA, 00

OUTPUT sA, command_arg2
OUTPUT sA, command_arg3
CALL set_command_id
CALL get_result
INPUT sA, result_arg0
COMPARE sA, 00

JUMP NZ, try-again
received try again

CALL parse_options
LOAD sA, 00

OuUTPUT sA, CO

INPUT sA, 10

STORE sA, ip-address3
INPUT sA, 11

STORE sA, ip-address?2
INPUT sA, 12

STORE sA, ip-addressl
INPUT sA, 13

STORE sA, ip-addressO
CALL send_request
LOAD s9, 00

COMPARE s9, OA

JUMP Z, try_again
ADD s9, 01

CALL delay_1s

LOAD sA, OB

OuUTPUT sA, command_arg0
OuUTPUT socket , command_argl
LOAD sA, 00

OUTPUT sA, command_arg?2
OUTPUT sA, command_arg3
CALL set_command_id
CALL get_result
INPUT sA, result-argO
COMPARE sA, 00

JUMP NZ, wait_-for-ack

received try again

CALL parse_options
LOAD sA, 04

OUTPUT sA, command_arg0
FETCH sA, loc_gw3
OUTPUT sA, command_argl
FETCH sA, loc_gw2
OuUTPUT sA, command_arg?2
FETCH sA, loc_gwl
OuTPUT sA, command._arg3

wait

for packet

; check every second for

; get result

save yiaddress

; if after ten

; check every second for

; get result

to be send and consume

packet

seconds no reply then

packet

length of packet

retry



540

542

544

546

548

550

552

554

556

558

560

562

564

566

568

570

572

574

576

578

580

582

586

588

590

592

594

596

598

600

602

604

606

608

610

612

614

616

618

620

622

624

626
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send_request :

FETCH
OuTPUT
CALL
CALL
LOAD
OUTPUT
FETCH
OuUTPUT
FETCH
OUTPUT
FETCH
OuUTPUT
FETCH
OuUTPUT
CALL
CALL
LOAD
OuUTPUT
FETCH
OuUTPUT
FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OuUTPUT
CALL
CALL
LOAD
CALL
CALL
JUMP

CALL
LOAD
OuTPUT
LOAD
OuUTPUT
LOAD
OuUTPUT
LOAD
OuUTPUT
LOAD
OUTPUT

OUTPUT
FETCH
OuUTPUT
FETCH
OuTPUT
FETCH
OuUTPUT
FETCH
OUTPUT
LOAD
OUTPUT

OuUTPUT
FETCH
OuUTPUT
FETCH
OUTPUT
FETCH
OUTPUT
FETCH
OuUTPUT
LOAD
OuUTPUT
LOAD
OouTPUT
OuTPUT
LOAD
OuTPUT
LOAD
OuUTPUT
LOAD
OuUTPUT
OUTPUT

OuUTPUT
LOAD

OuUTPUT
LOAD

OuUTPUT
OuUTPUT
OuTPUT

sA, loc_gwO

sA, command_arg4
set_command_id
get_result

sA, 06 ; set mask
sA, command_arg0
sA, loc_mask3
sA, command._argl
sA, loc_mask?2
sA, command_arg2
sA, loc_maskl
sA, command_arg3
sA, loc_mask2
sA, command_arg4
set_command_id
get_result

sA, 02 ; set ip
sA, command_arg0
sA, ip-address3
sA, command_argl
sA, ip-address?2
sA, command_arg?2
sA, ip-addressl
sA, command_arg3
sA, ip-addressO
sA, command_arg4d
set_command_id
get_result

s5, 20 ;Line 2 position
LCD_cursor
disp_-ip
prompt_input

dhcp.create_msg

sA, 01

sA, CO ; add options
sA, 35 ; dhcp request
sA, 70

sA, 01

sA, 71

sA, 03

sA, T2

sA, 32 ; add option 50
sA, 73

sA, 04

sA, 74

sA, ip-address3

sA, 75

sA, ip-address?2

sA, 76

sA, ip-addressl

sA, 77

sA, ip-addressO

sA, 78

sA, 36 ; add option 54
sA, 79

sA, 04

sA, TA

sA, loc_server_id3

sA, 7B

sA, loc_server_id2

sA, 7C

sA, loc_server_idl

sA, 7D

sA, loc_server_idO

sA, TE

sA, FF

sA, TF

sA, OA ; send packet
sA, command_arg0

socket , command_argl ; send socket
sA, 01 ; length
sA, command_arg?2

sA, 00

sA, command_arg3

sB, 00

sB, command_arg4 ; address
sB, command_argh

sA, 00 ; port

sA, command_arg6

sA, 43

sA, command_arg7

sA, FF ; broadcast

sA, command_arg8
sA, command_arg9
sA, command_argA
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630

632

634

636

638

640

642

644

646

648

650

652

656

658

660

662

664

666

668

670

672

674

676

678

680

682

684

686

688

690

692

694

696

698

700

702

704

706

708

710

712

OuUTPUT sA, command_argB
CALL set_command_id
CALL get_result ; consume length of packet and wait for the packet to be send
LOAD sA, 00
OUTPUT sA, CO
RETURN
parse_options: LOAD sC, 01
OuUTPUT sC, Co
LOAD sB, 70
parse_op-l: COMPARE sC, 03
RETURN Z
INPUT sA, (sB) ; get the option at pointer
COMPARE sA, 35 ; check if option 53
JUMP NZ, not-op53
LOAD s9, 02
CALL inc_address
INPUT s8, (sB) ; return type in s8
LOAD s9, 01
CALL inc_address
JUMP parse_op-1
not-op53: COMPARE sA, 36
JUMP NZ, not_opb54
LOAD s9, 02
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_server_id3
LOAD s9, 01
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_server_id2
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_server_idl
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_server_-idO
CALL inc_address
JUMP parse_op-1
not_op54: COMPARE sA, FF
JUMP NZ, not_op256
RETURN
not_op256 : COMPARE sA, 01
JUMP NZ, not_opO01
LOAD s9, 02
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_mask3
LOAD s9, 01
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_mask?2
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_maskl
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_maskO
CALL inc_address
JUMP parse_op-_1
not_op01: COMPARE sA, 03
JUMP NZ, not_op03
LOAD s9, 02
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_gw3
LOAD s9, 01
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_gw2
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_gwl
CALL inc_address
INPUT sA, (sB)
STORE sA, loc_gwO
CALL inc_address
JUMP parse_op-1
not_op03: CALL inc_address
INPUT s9, (sB)
CALL inc_address
LOAD s9, 01



714

716

718

720

722

724

726

728

730

732

734

736

738

740

742

744

746

748

750

752

754

756

760

762

764

766

768

770

772

774

776

778

780

782

784

786

788

790

792

794

796

798

800

89

inc_address:

dhcp_init:

echo_init:

get_result:
get_result_1:

dhcp-create_msg:

CALL
JUMP

LOAD
OuUTPUT
CALL
CALL
INPUT

LOAD
OouTPUT
OuTPUT
LOAD
OuUTPUT
LOAD
OuUTPUT
CALL
CALL

LOAD
OuUTPUT
CALL
CALL
INPUT
STORE
LOAD
OUTPUT
OUTPUT
LOAD
OUTPUT
LOAD
OuUTPUT
CALL
CALL

FETCH
INPUT
COMPARE
JUMP

LOAD

OouTPUT
LOAD

OuTPUT
OuUTPUT
LOAD

OUTPUT
LOAD

OUTPUT
LOAD

OuUTPUT
OUTPUT
OuUTPUT
OuUTPUT
LOAD

OuUTPUT
OouTPUT
LOAD

OuTPUT
LOAD

OuTPUT
LOAD

OuUTPUT
OuUTPUT
OuUTPUT
OUTPUT
OUTPUT
OuUTPUT
OUTPUT
OuUTPUT
OuUTPUT
OuUTPUT
OuUTPUT
OuTPUT

inc_address
parse_op-l

sB, s9
sB, 80
C

sC, 01
sC, CO
sB, 80
sA, 07

; sD is step size to increase

; get socket

sA, command_arg0

set_.command_id
get_result
socket , result

sA, 08

—arg0 ; keep socket

; bind socket to port

sA, command_arg0
socket , command_argl

sA, 00

sA, command_arg2

sA, 44

sA, command_arg3

set_command_id
get_result

sA, 07

; get socket

sA, command_arg0

set_command_id
get_result

sB, result_arg
sB, socket_ech
sA, 08

0 ; keep socket in
o
; bind socket to

sA, command_arg0
sB, command_argl

sA, 00

sA, command_arg2

sA, 07

sA, command_arg3

set_command_id
get_result

sB, last_command_id

sA, result_id
sA, sB

NZ, get_result_l

sA, 00
sA, CO ;
sA, 01
sA, 00 ;
sA, 01 ;
sA, 06
sA, 02 ;
sA, 00
sA, 03 H
sA, 0D H
sA, 04
sA, 05
sA, 06
sA, 07
sA, 00 ;
sA, 08
sA, 09
sA, 80 H
sA, OA
sA, 00
sA, 0B
sA, 00 ;
sA, 0C
sA, 0D
sA, OE
sA, OF
sA, 10 H
sA, 11
sA, 12
sA, 13
sA, 14 H
sA, 15
sA, 16
sA, 17

set to first page

DHCP_-REQUEST
HType = Ethernet
HLEN = 6

HOPS = 0

in socket

68

socket

port 07

set static xid to 0DODODOD

set secs = 0

set broadcast flag

set ciaddr to zero

set yiaddr to zero

set siaddr to zero



802

804

806

808

810

812

814

816

818

820

822

824

826

828

830

834

836

838

840

842

844

846

848

850

852

854

856

858

860

862

864

866

868

870

872

874

876

878

880

882

884

886
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sname_loop:

sfile_loop :

sfile_loop2:

send_discover:

OuUTPUT
OouTPUT
OouTPUT
OouTPUT

LOAD
OUTPUT
CALL
CALL

INPUT
OuUTPUT
INPUT
OuUTPUT
INPUT
OuUTPUT
INPUT
OuUTPUT
INPUT
OUTPUT
INPUT
OUTPUT

LOAD
LOAD
OUTPUT

COMPARE
JUMP

LOAD
LOAD
OuUTPUT

COMPARE
JUMP

CALL

LOAD
OuUTPUT
LOAD
OuUTPUT
LOAD
OuUTPUT
OuUTPUT

LOAD
OuTPUT
LOAD
OuTPUT
LOAD
OuUTPUT

OuUTPUT

LOAD
OuUTPUT
LOAD
OuUTPUT

LOAD
OuTPUT

sA, 18 ; set giaddr to zero
sA, 19

sA, 1A

sA, 1B

sA, 0C ; get and set the chaddr

sA, command_arg0
set_command_id
get_result

sA, result_arg0

sA, 1C

sA, result_argl
sA, 1D

sA, result_arg?2
sA, 1E

sA, result_arg3
sA, 1F

sA, result_arg4
sA, 20

sA, result_argh
sA, 21

sA, 00 ; set sname to blank
sB, 22

sA, (sB)

sB, 01

sB, 62

NZ, sname_loop
sA, 00 ; set file to blank, first part till
sB, 62

sA, (sB)

sB, 01

sB, 80

NZ, sfile_loop

sA, 01

sA, CO ; set address to 80—>
sA, 00

sB, 00

sA, (sB)

sB, 01

sB, 6F

NZ, sfile_loop2

sA, 63 ; set magic cookie
sA, 6C

sA, 82

sA, 6D

sA, 53

sA, 6E

sA, 63

sA, 6F

sA, 00

sA, CO ; reset address preset

dhcp_create_msg

sA, 01

sA, CO ; add options
sA, 35 ; dhcp discover
sA, 70

sA, 01

sA, 71

sA, 72

sA, 37

sA, 73

sA, 02

sA, 74

sA, 01

sA, 75

sA, 03

sA, 76

sA, FF

sA, 77

sA, 00

sA, 78

sA, OA ; send packet

sA, command_arg0

80



888

890

892

894

896

898

900

902

904

906

908

910

912

914

916

918

920

922

924

926

928

930

932

934

936

938

940

942

944

946

948

950

952

954

956

958

960

962

964

966

968

970

972

974
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command_fill:

fill_loop :

dumppacket_command :

dp-loop:

read_command :

write_.command :

send_prompt :

send_greater_than:

ouTPUT socket , command_argl ; send socket
LOAD sB, 00

OUTPUT sB, command_arg2 ; length
LOAD sA, F9

OUTPUT sA, command_arg3

OUTPUT sB, command_arg4 ; address
OUTPUT sB, command_argh

OUTPUT sB, command_arg6 ; port
LOAD sA, 43

OUTPUT sA, command_arg7

LOAD sA, FF ; broadcast

OUTPUT sA, command_arg8

OUTPUT sA, command_arg9

OuUTPUT sA, command_argA

OuUTPUT sA, command_argB

CALL set_command_id

CALL get_result ; consume length of packet
LOAD sA, 00

OUTPUT sA, CO

RETURN

LOAD sA, FF

LOAD sB, 00
OUTPUT sA, (sB)

ADD sB, 01
COMPARE sB, 80

JUMP NZ, fill_loop
JUMP prompt_input
LOAD s7,00

LOAD s8,00
OuUTPUT s7,CO

INPUT sl,(s8)
CALL value2ser
ADD s8,01
COMPARE s8 ,80

JUMP NZ, dp-loop
ADD s7,01

AND s8,7F
COMPARE s7, 03

JUMP NZ, dp-loop
LOAD s7, 00

OuTPUT s7, CO
JUMP prompt_input

CALL hex2value ; result in s3

INPUT s2,(s3)

LOAD s1,s2

CALL value2ser ; value2ser input in sl

JUMP prompt-input

CALL hex2value ; result in s3
LOAD s4,s3

CALL hex2value

OUTPUT s3,(s4)

JUMP prompt_input

;Send ’'Demo>’ prompt to the UART

CALL send_-CR

LOAD UART_data, character_D
CALL send_to_.UART

LOAD UART_data, character_e
CALL send_to_.UART

LOAD UART_data, character_-m
CALL send_to.UART

LOAD UART._data, character-o
CALL send_-to.UART

;start new line

;Send >’ character to the UART

LOAD UART_data, character_greater_than
CALL send_-to_.UART
RETURN

5

5
; Receive ASCII string from UART

5
;An ASCII string will be read from the UART and stored in scratch pad memory

;commencing at the location specified by a constant named ’string_start ’.
;The string will will have a maximum length of 16 characters including a
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;carriage return (0D) denoting the end of the string.
976 H
;As each character is read, it is echoed to the UART transmitter.
978 ;Some minor editing is supported using backspace (BS=08) which is wused
;to adjust what is stored in scratch pad memory and adjust the display
980 ;on the terminal screen using characters sent to the UART transmitter.
982 ;A test is made for the receiver FIFO becoming full. A full status is treated as
;a potential error situation and will result in a ’Overflow Error’ message being
984 ;transmitted to the UART, the receiver FIFO being purged of all data and an
;empty string being stored (carriage return at first location).
986 H
; Registers used sO0, sl1, s2 and ’'UART._data’.
988 H
receive_string: LOAD sl1, string_start ;locate start of string
990 LOAD s2, sl ;compute 16 character address
ADD s2, 10
992 receive_full_test: INPUT sO0O, UART_status_port ;test Rx_.FIFO buffer for full
TEST sO0, rx_full
994 JUMP NZ, read-error
CALL read_from_UART ;obtain and echo character
996 STORE UART_data, (sl) ;write to memory
COMPARE UART_data, character-CR ;test for end of string
998 RETURN Z
COMPARE UART_data, character-BS ;test for back space
1000 JUMP Z, BS_edit
ADD s1, 01 ;increment memory pointer
1002 COMPARE s1, s2
;test for pointer exceeding 16 characters
JUMP NZ, receive_full_test ;next character
1004 CALL send_backspace
;hold end of string position on terminal display
BS_edit: SUB sl1, 01 ;memory pointer back one
1006 COMPARE sl1, string-start ;test for under flow
JUMP C, string_start_again
1008 CALL send_space
;clear character at current position
CALL send_backspace ; position cursor
1010 JUMP receive_full_test ;next character
string_-start_-again: CALL send_-greater_than ;restore >’ at prompt
1012 JUMP receive_string ;begin again
; Receiver buffer overflow condition
1014 read_error: CALL send_CR ; Transmit error message
STORE UART_data, string._start
;empty string in memory (start with CR)
1016 CALL send_-CR
clear _.UART_Rx_loop: INPUT sO0, UART_status_port ;test Rx_ FIFO buffer for data
1018 TEST sO0, rx_data_present
RETURN Z ;finish when buffer is empty
1020 INPUT UART_data, UART_read_port ;read from FIFO and ignore
JUMP clear _ UART_Rx_loop
1022 ;
;
1024 H
;Read one character from the UART
1026 H
; Character read will be returned in a register called ’'UART.-data’ and will be
1028 ;echoed to the UART transmitter.
1030 ;The routine first tests the receiver FIFO buffer to see if data is present.
; If the FIFO is empty, the routine waits until there is a character to read.
1032 ;As this could take any amount of time the wait loop includes a call to the
;subroutine which updates the real time clock.
1034 H
; Registers used s0 and UART_data
1036 H
read_from_UART: INPUT s0, UART_status_port ;test Rx_FIFO buffer
1038 TEST s0, rx_-data_present
JUMP NZ, read_character
1040 JUMP read_from_UART
read_character: INPUT UART_data, UART_read_port ;read from FIFO
1042 CALL send_to_.UART ;echo received character
RETURN
1044 ;
1046 ;
; Transmit one character to the UART
1048 ;
; Character supplied in register called 'UART_data’.
1050 H
;The routine first tests the transmit FIFO buffer to see if it is full.
1052 ; If the FIFO is full, the routine waits until there is space which could
;be as long as it takes to transmit one complete character.
1054 H
; Baud Rate Time per Character (10 bits)
1056 H 9600 1,024 us
; 19200 521us
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fetch_char_from_memory: FETCH sO, (sl) ;read character
CALL upper_case ;convert to upper case
ADD s1, 01 ;increment memory pointer
RETURN

H

H

H

)

;reject
;carry
;reject

;carry

H 38400 260us
; 57600 174 us
; 115200 87 us
;Since this is a relatively long duration, the

;call to the subroutine which updates the real
; Registers used sO

send_to_,UART : INPUT sO0, UART_status_port ;test
TEST s0, tx-full
JUMP Z, UART_write
JUMP send_to_.UART
UART _write: OUTPUT UART_data, UART_write_port
RETURN

5

5
;Fetch character from memory, convert to upper
;and increment memory pointer.

5
; The memory pointer is provided in register sl.
;The character obtained is returned in register

; Registers used s0 and sl.

;Send Carriage Return to the UART
send-CR: LOAD UART_data, character_CR

CALL send_to.UART

RETURN

;Send a space to the UART
send_space: LOAD UART_data, character_space

CALL send_-to_.UART

RETURN

5
;Send a back space to the UART

5

send_backspace: LOAD UART_data, character_BS
CALL send_to_.UART
RETURN

; input in sO

hex2value: CALL serhex2value
LOAD s2, sO

SLO s2
SLO s2
SLO s2
SLO s2

CALL serhex2value
OR s2,s0

LOAD s3,s2

RETURN

serhex2value: CALL fetch_char_from_memory

ADD s0, C6

character codes above ’9’ (39 hex)
JUMP C, serhex2valuegt9

flag is set
SUB s0, F6

character codes below ’0’ (30 hex)
RETURN

is set if value not in range

serhex2valuegt9: ADD s0O ,03
RETURN

; Convert byte to ascii hex
;IN @ S1 byte waarde
;OUT: Serial hex ascii

5

value2ser: LOAD s2, sl
SRO s2
SRO s2

wait loop includes
time clock.

Tx_FIFO buffer

case

s0 .



1142

1144

1146

1148

1152

1154

1156

1158

1160

1162

1164

1166

1168

1170

1172

1174

1176

1178

1180

1182

1184

1186

1188

1190

1192

1194

1196

1198

1200

1202

1204

1206

1208

1210

1212

1214

1216

1218

1220

1222

1224

94

CHAPTER 6. APPENDIX A: SOURCE CODE

;eliminate

;eliminate

;mask bith

RETURN
disp-ip: LOAD s5, 10
CALL LCD_cursor
LOAD sA, 01
OUTPUT sA, command_arg0
CALL set_.command_id
CALL get_result
INPUT sA, result_arg0
CALL display_number
LOAD s5, character_dot
CALL LCD_write_data
INPUT sA, result_argl
CALL display_number
LOAD s5, character_dot
CALL LCD_write_data
INPUT sA, result_arg2
CALL display_number
LOAD s5, character_dot
CALL LCD_write_data
INPUT sA, result_arg3
CALL display_-number
RETURN
display-number: LOAD sB, 64 ; displays

CALL times
JUMP Z, hundred_is_zero
ADD s5, 30
CALL LCD_write_data

hundred_is_not_zero: LOAD sB, OA
CALL times
ADD s5, 30
CALL LCD_write_data
JUMP do_one

SRO s2

SRO s2

CALL nibble2hex
LOAD UART_data, s2
CALL send_-to.UART
LOAD s2,s1

AND 2 ,0F

CALL nibble2hex
LOAD UART_data, s2
CALL send_-to_.UART
RETURN

5

; Convert a nibble in register s2 into an ASCII character,

; The value provided must be in the range of 0 to 15 and will
5

5

one ASCII character

COMPARE s2,0A
JUMP NC, niblebt9
ADD s2,30

RETURN

ADD s2,37

RETURN

nibble2hex :

niblebt9:

H
; Convert character to upper case

5
;The character supplied in register sO.
; If the character is in the range ’a’ to
;to the equivalent upper case character

; All other characters remain unchanged.
5
; Registers used sO.

5
upper_case: COMPARE s0O, 61
character codes below ’a’ (61 hex)
RETURN C
COMPARE s0, 7B
character codes above 'z’ (7A hex)
RETURN NC
AND s0, DF
to convert to upper case
RETURN

5
; Display a space on LCD at current cursor position

5

5
LOAD s5, character_space
CALL LCD_write_data

disp_space:

;Line 1 position

converted
A

to

0

in sA,

0—-9 A-F

be converted

changes sB and

into

s5



95

hundred_-is_zero: LOAD sB, 0A
1226 CALL times
JUMP Z, do_one
1228 ADD s5, 30
CALL LCD_write_data
1230
do-one: LOAD sB, 01
1232 CALL times
ADD s5, 30
1234 CALL LCD_write_data
RETURN
1236
times: LOAD s5, 00 ; input sA, input sB, output s5
1238 times_l: ADD s5, 01
SUB sA, sB
1240 JUMP NC, times_1
ADD sA, sB
1242 SUB s5, 01
RETURN
1244
1246 H
1248 ;

;
3% 3k 3k ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke
1250 ; Software delay routines

3% 3k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ks
1252 5

5

1254 5

; Delay of 1lus.
1256 H

; Constant value defines reflects the clock applied to KCPSM3. Every instruction

1258 ;executes in 2 clock cycles making the calculation highly predictable. The 6’ in
;the following equation even allows for ’'CALL delay_-lus’ instruction in the initiating

1260 H
; delay_lus_constant = (clock_rate — 6)/4
Where ’clock_rate’ is in MHz
1262 ;
; Registers used sO
1264 H
delay-lus: LOAD s0, delay-lus_constant
1266 wait_lus: SUB s0, 01
JUMP NZ, wait_lus
1268 SUB s0, 00 ; needed to compensate clock
RETURN
1270 H
; Delay of 40us.
1272 5
; Registers used s0, sl
1274 5
delay_40us: LOAD sl1, 28 ;40 x lus = 40us
1276 wait_-40us: CALL delay_-lus
SUB s1, 01
1278 JUMP NZ, wait_40us
RETURN
1280 H
1282 ;Delay of 1ms.
1284 ; Registers used s0, sl, s2
5
1286 delay_1ms: LOAD s2, 19 ;25 x 40us = 1lms
wait_-1ms: CALL delay_40us
1288 SUB s2, 01
JUMP NZ, wait_1lms
1290 RETURN
5
1292 ; Delay of 20ms.
5
1294 ; Delay of 20ms used during initialisation .
1296 ; Registers used sO, sl, s2, s3
1298 delay-20ms: LOAD s3, 14 ;20 x 1lms = 20ms
wait-20ms: CALL delay-lms
1300 SUB s3, 01
JUMP NZ, wait_20ms
1302 RETURN
5
1304 ;Delay of approximately 1 second.
5
1306 ; Registers used sO, sl, s2, s3, s4
5
1308 delay_1s: LOAD s4, 32 ;50 x 20ms = 1000ms

wait_1s: CALL delay_-20ms
1310 SUB s4, 01
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LCD_pulse_E:

LCD_write_inst4 :

LCD_write_inst8:

LCD_write_data:

JUMP NZ, wait_-1s

RETURN

5

5

5

3K 3k ok sk oK Kk K Kk K oKk K oK R K oK K K oK K K K K K K K K KK K ok K K ok K K ok K K ok K oK kK sk kK sk kK sk koK sk koK sk koK sk koK sk koK sk kK sk koK oKk K K K K K R K kK
;LCD Character Module Routines

5 3% ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok

5
;LCD module is a 16 character by 2 line display but all displays are very similar
;The 4—wire data interface will be used (DB4 to DBT7).

;
;The LCD modules are relatively slow and software delay loops are used to slow down
;KCPSM3 adequately for the LCD to communicate. The delay routines are provided in
;a different section (see above in this case).

5

;Pulse LCD enable signal ’E’ high for greater than 230ns (lus is used).
il’{egister s4 should define the current state of the LCD output port.
:Registers used s0, s4

);(OR s4, LCD.-E ;E=1

OUTPUT s4, LCD_output-port
CALL delay_lus

XOR s4, LCD_E ;E=0
OUTPUT s4, LCD_output_port
RETURN

5
; Write 4—bit instruction to LCD display .

5

;The 4—bit instruction should be provided in the upper 4—bits of register s4.
;Note that this routine does not release the master enable but as it is only
;used during initialisation and as part of the 8—bit instruction write it
;should be acceptable.

5
; Registers used s4

AND s4, F8 ; Enable=1 RS=0 Instruction , RW=0 Write, E=0
OUTPUT s4, LCD_output-port ;set up RS and RW >40ns before enable pulse
CALL LCD_pulse_E

RETURN

5
5
; Write 8—bit instruction to LCD display.

;
;The 8—bit instruction should be provided in register s5.
;Instructions are written using the following sequence

; Upper nibble

wait >1lus

Lower nibble

wait >40us

5
5
5
5

; Registers used sO, sl, s4, sb

LOAD s4, sb

AND s4, FO ;Enable=0 RS=0 Instruction , RW=0 Write, E=0
OR s4, LCD._drive ; Enable=1

CALL LCD_write_inst4 ;write upper nibble

CALL delay_lus ;wait >1lus

LOAD s4, sb5 ;select lower nibble with

SL1 s4 ; Enable=1

SLO s4 ;RS=0 Instruction

SLO s4 sRW=0 Write

SLO s4 ; E=0

CALL LCD_write_inst4 ;write lower nibble

CALL delay_40us ;wait >40us

LOAD s4, FO ; Enable=0 RS=0 Instruction , RW=0 Write, E=0
OUTPUT s4, LCD_output_port ; Release master enable

RETURN

; Write 8—bit data to LCD display.
;The 8—bit data should be provided in register s5.
;Data bytes are written using the following sequence
; Upper nibble

wait >lus

5
;

; Lower nibble
; wait >40us
;
;
;

; Registers used sO, sl, s4, sb5

AND s4, FO ; Enable=0 RS=0 Instruction , RW=0 Write, E=0
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LCD_read_-data8:

LCD_reset :

OR s4, 0C

OUTPUT s4, LCD_output_port
CALL LCD_pulse_E

CALL delay-lus

LOAD s4, sb

SL1 s4

SL1 s4

SLO s4

SLO s4

OUTPUT s4, LCD_output_port
CALL LCD_pulse_E

CALL delay_40us

LOAD s4, FO

OUTPUT s4, LCD_output_port
RETURN

5
5
5
5

;Read 8—bit data from LCD display.

; Enable=1 RS=1 Data, RW=0 Write, E=0

;set up RS and RW >40ns before enable pulse
;write upper nibble

;wait >lus

;select lower nibble with

; Enable=1

;RS=1 Data

sRW=0 Write

;E=0

;set up RS and RW >40ns before enable pulse
;write lower nibble

;wait >40us

;Enable=0 RS=0 Instruction , RW=0 Write, E=0
; Release master enable

;The 8—bit data will be read from the current LCD memory address

;and will be returned in register

s5.

;It is advisable to set the LCD address (cursor position) before

;using the data read for the first

time otherwise the display may

;generate invalid data on the first read.

5
;Data bytes are read using the following sequence

; Upper nibble
; wait >lus

; Lower nibble
; wait >40us
5

; Registers used sO, sl, s4, sb

;

LOAD s4, OE

OUTPUT s4, LCD_output_port
XOR s4, LCD.E

OUTPUT s4, LCD_output-port
CALL delay-lus

INPUT s5, LCD.input-port
XOR s4, LCD_E

OUTPUT s4, LCD_output_port
CALL delay_1lus

XOR s4, LCD.E

OUTPUT s4, LCD_output_port
CALL delay_1lus

INPUT sO, LCD_input_port
XOR s4, LCD.E

OUTPUT s4, LCD_output_port
AND s5, FO

SRO sO

SRO sO

SRO sO

SRO sO

OR s5, s0

LOAD s4, 04

OUTPUT s4, LCD_output-port
CALL delay-40us

RETURN

5

; Enable=1 RS=1 Data, RW=1 Read, E=0

;set up RS and RW >40ns before enable pulse
;E=1

;wait >260ns to access data

;read upper nibble

;E=0

;wait >1lus

;E=1

;wait >260ns to access data
;read lower nibble

;E=0

;merge upper and lower nibbles

; Enable=0 RS=1 Data, RW=0 Write, E=0

;Stop reading 5V device and release master enable

;wait >40us

5
;Reset and initialise display to communicate using 4—bit data mode
;Includes routine to clear the display.

5
; Requires the 4—bit instructions 3,3,3,2 to be sent with suitable delays

;following by the 8—bit instructions

5

to set up the display.

H 28 = ’001’ Function set, ’'0’ 4—bit mode, ’'1’ 2—line, ’0’ 5x7 dot matrix, ’'xx’
H 06 = 000001’ Entry mode, ’1’ increment, ’0’ no display shift
; 0C = ’00001’ Display control, ’1’ display on, ’0’ cursor off, ’0’ cursor blink

H 01 = ’00000001’ Display clear
; Registers used sO0, sl, s2, s3, s4

CALL delay-20ms
LOAD s4, 30

CALL LCD_write_inst4
CALL delay_-20ms
CALL LCD_write_inst4
CALL delay_-1ms

CALL LCD_write_inst4
CALL delay_40us
LOAD s4, 20

CALL LCD_write_inst4
CALL delay_40us
LOAD s5, 28

;wait more that 15ms for display to be ready

;send 37
wait >4.1ms
send '3’
wait >100us
send '3’
wait >40us

;send 27
;wait >40us
;Function set

off
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LCD_clear:

LCD_cursor:

set_line2:

LCD_shift_left:

disp-uipdemo:

CALL LCD_write_inst8
LOAD s5, 06 ; Entry mode
CALL LCD_write_inst8
LOAD s5, 0C ; Display control
CALL LCD_write_inst8
LOAD s5, 01 ; Display clear
CALL LCD_write_inst8
CALL delay_-lms ;wait >1.64ms for display to clear
CALL delay_-lms
RETURN
;
; Position the cursor ready for characters to be written.
;The display is formed of 2 lines of 16 characters and each
;position has a corresponding address as indicated below.
;
Character position
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

;
;
5
; Line 1 — 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

; Line 2 — CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

; This routine will set the cursor position using the value provided
;in register s5. The upper nibble will define the line and the lower
;nibble the character position on the line.

; Example s5 = 2B will position the cursor on line 2 position 11

5
; Registers used sO0, sl, s2, s3, s4

5
TEST s5, 10 ;test for line 1

JUMP Z, set_line2

AND s5, OF ;make address in range 80 to 8F for line
OR s5, 80

CALL LCD_write_inst8 ;instruction write to set cursor

RETURN

AND s5, OF ;make address in range CO to CF for line
OR s5, CO

CALL LCD_write_inst8 ;instruction write to set cursor

RETURN

; This routine will shift the complete display one position to the left.
;The cursor position and LCD memory contents will not change.

5

;Registers used sO, sl, s2, s3, s4, sb5

;
LOAD s5, 18 ;shift display left
CALL LCD_write_inst8

RETURN

5

LOAD s5, character_u
CALL LCD_write_data
LOAD s5, character_I
CALL LCD_write_data
LOAD s5, character_P
CALL LCD_write_data
CALL disp-space
LOAD s5, character_D
CALL LCD._write_-data
LOAD s5, character-E
CALL LCD_write_data
LOAD s5, character-M
CALL LCD_write_data
LOAD s5, character_O
CALL LCD_write_data
RETURN

5
; Useful constants

; ASCII table

éONSTANT character_a 61

CONSTANT character-b , 62
CONSTANT character-c, 63
CONSTANT character-d , 64
CONSTANT character-e , 65
CONSTANT character_f, 66
CONSTANT character_-g , 67
CONSTANT character_h , 68
CONSTANT character_i, 69
CONSTANT character_j , 6A
CONSTANT character_k , 6B
CONSTANT character_1, 6C
CONSTANT character_-m , 6D
CONSTANT character_-n , 6E
CONSTANT character_-o , 6F

1

2
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CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

5

character_p, 70
character_q, 71
character_r, 72
character_-s , 73
character_-t , 74
character-u, 75
character-v , 76
character.w , 77
character_x , 78
character_y , 79
character_z , TA
character_A , 41
character_B , 42
character_.C , 43
character_.D , 44
character_E , 45
character_.F , 46
character.G , 47
character_H , 48
character_I, 49
character_-J , 4A
character-K , 4B
character-L , 4C
character-M , 4D
character-N ;| 4E
character_O , 4F
character_.P , 50
character_.Q , 51
character_.R, 52
character_S , 53
character.T , 54
character_. U, 55
character_V , 56
character.W , 57
character_X , 58
character.Y , 59
character-Z , 5A
character-0, 30
character-1, 31
character-2, 32
character-3, 33
character-4 , 34
character_5, 35
character_6 , 36
character_7 , 37
character_8 , 38
character_9 , 39

character_colon , 3A
character_semi_colon, 3B
character_less_than , 3C
character_greater_than ,
character_equals , 3D
character_space , 20
character_.CR, 0D
character_question ,
character_dollar , 24
character-BS , 08
character-dot , 2E

3E

;carriage return

3F ;070

;Back Space command character

Listing 6.3: app-interface.v

‘timescale 1ns 1

/ 1lps
VA A A A A N A A A A N A A A A A A N A A A A A A A A A A

ompany :
Engineer :

Create Date:
Design Name:
Module Name:
Project Name:
Target Dewvices:
Tool wversions:
Description :

app-interface

Dependencies :

Rewvision :
Rewvision 0.01 — File
Additional Comments:

Created

20:44:38 03/30/2009

A A v a

module app-interface
input
input

clk ,
[7:0]

input_data,
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input [7:0] port_id,
input write_enable ,
input read_enable ,
output [7:0] output_data,
output empty
)3
reg [7:0] fifo [15:0];
reg [7:0] output_-data_int = 8’b00000000;
reg [3:0] write_address = 4’b0000;
reg [3:0] read_-address = 4’b0000;
assign empty = (read_-address == write_address) ? 1’bl : 1’b0;
assign output_data = (" port_id[0]) ? output_data_int : {7’b0000000, empty};
always Q(posedge clk)
if (write_enable)
write_address <= write_address + 1;
always @(posedge clk)
if (read_enable & “empty)
read_-address <= read-address + 1;
always @(posedge clk)
if (write_enable)
fifo[write_address] <= input_data;
always Q(posedge clk)
output_-data_int <= fifo [read_address];
endmodule
Listing 6.4: app_interface_tf.v
‘timescale 1lns / 1ps

%//////////////////////////////////////////////////////////////////////////////

Company :
// Engineer:
//
// Create Date: 21:29:24 03/30/2009
// Design Name: app-interface
// Module Name: C:/NoSpace/final_from_scratch/thesis/app_-interface_tf.v

// Project Name: thesis
// Target Device:
// Tool wersions:

// Description :

//

// Verilog Test Fizture created by ISE for module: app-interface
Vs

// Dependencies :

//

// Revision :
// Revision 0.01 — File Created
// Additional Comments:

//
VA A N A S A A A A A A A e

module app_-interface_tf;

// Inputs
reg clk;
reg [7:0] input_data;

reg write_enable;
reg read-enable;

// Outputs
wire [7:0] output_-data;
wire empty;

// Instantiate the Unit Under Test (UUT)
app-interface uut (
.clk(clk),
.input_data (input_-data),
.write_enable(write_enable),
.read_enable(read_enable),
.output_-data(output_data),
.empty (empty)

)5

initial begin
clk = 1’b0;
forever #10 clk = “clk;
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end

initial begin
// Initialize Inputs
input-data = 0;
write_enable = 0;
read_enable = 0;

// Wait 100 ns for global reset to finish

#110;
input_data =
write_enable 1;
read_enable = 0;
#20
input_-data =
write_enable 1;
read_enable = 0;
#20

write_enable = 0;
read_enable = 1;
#20

write_enable = 0;
read-enable = 1;
#20

input_data = 3;
read_enable = 0;
write_enable = 1;
#20

input_data = 4;
write_enable = 1;
read_enable = 1;
#20;

write_enable = 0;
read_enable = 1;
#100;

input_-data = 5;
write_enable = 1;
#20;

write_enable = 0;

1;

2;

end

endmodule

Listing 6.5: copy.v

/é////////////////////////////////////////////////////////////////////////////////

Copyright 2009 Michel Bieleveld
This file is part of the UDP/IP stack.

The UDP/IP stack is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either wversion 8 of the License, or

(at your option) any later wversion.

The UDP/IP stack is distributed in the hope that it will be wuseful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the UDP/IP stack. If mnot, see <http://www.gnu.org/licenses/>.

Y A A s

‘timescale 1ns / 1ps
module copy (

input clk ,

// from

output reg [15:0] copy-from_address = 16’b0000000000000000 ,
input [7:0] copy-from_data ,

// to

output reg [15:0] copy-to_address = 16’b0000000000000000 ,
output reg copy-to-we = 1’b0,

output reg [7:0] copy-to_-data = 8’b00000000 ,

output reg last-byte = 1’b0,
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102 CHAPTER 6. APPENDIX A: SOURCE CODE
// registers
input [7:0] reg_address ,
input reg-we ,
input [7:0] reg-data_in ,
output [7:0] reg-data_out
)3

reg last_byte_d = 1’b0;

// address write read
// 0 start_copy status
// 1 from_address_l status
// 2 from_address_h status
// 3 length_1 status
// 4 length_h status
// 5 to_address_l status
// 6 to_address_h status
reg ready = 1’bl;

reg start_copy = 1’b0;

reg [15:0] length 16°b0000000000000000 ;

reg last-one = 1’b0;
reg length_ce = 1’b0;
reg to_address_-ce = 1’b0;
reg from_address_ce= 1’b0;
assign reg_data_out = {7°b0000000, ready};

always Q(posedge clk)
copy-to_data <= copy-from_data;

always Q(posedge clk)
start_copy <= (reg-address[2:0] == 3’b000 & reg_-we);

always Q(posedge clk)
if (from_address_ce)
copy-from_address <= copy-from_address + 1;
else if (reg-address[2:0] == 3’b010 & reg_we)
copy-from_address [15:8] <= reg-data_in;
else if (reg-address[2:0] == 3’b001 & reg_-we)
copy-from_address [7:0] <= reg-data_in;

always Q(posedge clk)
if (to_address_ce)
copy-to_address <= copy-to_address + 1;
else if (reg-address[2:0] == 3’b101 & reg_we)
copy-to_address [7:0] <= reg_data_in;
else if (reg_address[2:0] == 3’b110 & reg_we)
copy-to_address [15:8] <= reg_data_in;

always @Q(posedge clk)
if (length_ce)
length <= length — 1;
else if (reg-address[2:0] == 3’b011 & reg_we)
length [7:0] <= reg-data_in;
else if (reg-address[2:0] == 3’b100 & reg_-we)
length [15:8] <= reg-data-in;

always Q(posedge clk)

if (length == 16’b0000000000000010)
last_one <= 1’bl;
else

last_one <= 1’b0;

always Q(posedge clk)
last_byte_d <= last_one;

always Q@Q(posedge clk)
last_byte <= last_byte_d;

parameter st_idle = 6’b000001;
parameter st_offset = 6’b000010;
parameter st_offset2 = 6’b000100;
parameter st_copy = 6’b001000;
parameter st_finish = 6’b010000;
parameter st_finish2 = 6’b100000;

(* FSM_ENCODING="ONE-HOT” , SAFEIMPLEMENTATION="NO” x) reg

always@ (posedge clk)
(* FULL.CASE, PARALLEL.CASE %) case (state)
st_idle : begin
if (start_copy)
state <= st_offset;

[5:0]

state

st_idle;
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else
state <= st_idle;
length_ce <= 1’b0;
to_address_ce <= 1’b0;
from_address_ce <= 1’b0;
copy-to.we <= 1’b0;
ready <= 1’bl;
end
st_offset : begin
state <= st_offset2;
length_ce <= 1’bl;
to_address_ce <= 1’b0;
from_address_ce <= 1’bl;
copy-to_we <= 1’b0;
ready <= 1’b0;
end
st_offset2 : begin
state <= st_copy;
length_ce <= 1’bl;
to_address_ce <= 1’b0;
from_address_ce <= 1’bl;
copy-to.we <= 1’b0;
ready <= 1’b0;
end
st_copy : begin
if (last_one)
state <= st_finish;
else
state <= st_copy;
length_ce <= 1’bl;
to_address_ce <= 1’bl;
from_address_ce <= 1’bl;
copy-to_-we <= 1’bl;
ready <= 1’b0;
end
st-finish : begin
state <= st_-idle;
length_ce <= 1’b0;
to_address_ce <= 1’bl;
from_address_ce <= 1’b0;
copy-to.we <= 1’bl;
ready <= 1’b0;
end
st_finish2 : begin
state <= st_idle;
length_ce <= 1’b0;
to_address_ce <= 1’bl;
from_address_ce <= 1’b0;
copy-to_-we <= 1’bl;
ready <= 1’b0;
end

endcase

endmodule

Listing 6.6: copy.rx.v

N A A A s

// Copyright 2009 Michel Bieleveld

//

// This file is part of the UDP/IP stack.
Vs

// The UDP/IP stack is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by

// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later wversion.
//

// The UDP/IP stack is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU Lesser General Public License for more details.

// You should have received a copy of the GNU Lesser General Public License
// along with the UDP/IP stack. If mnot, see <http://www.gnu.org/licenses/>.

//
Vv a

‘timescale 1lns / 1ps
module copy-rx (

input clk ,

// from
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27 output reg [15:0] copy-from_address = 16’b0000000000000000 ,
input [7:0] copy-from_data ,
29
// to
31 output reg [15:0] copy-to_address = 16’b0000000000000000 ,
output reg copy-to-we = 1’b0,
33 output reg [7:0] copy-to_-data = 8’b00000000 ,
output reg last_byte = 1’b0,
35
// registers
37 input [7:0] reg_address ,
input reg_we ,
39 input [7:0] reg_data_in ,
output [7:0] reg_data_out
41 )3
43 reg last_byte_.d = 1’b0;
// address write read
45 // 0 start_copy status
/) 1 from_address_l status
47 // 2 from_address_h status
// 3 length_l status
49 // 4 length_h status
// 5 to_address_1 status
51 // 6 to_address_h status
53 reg ready = 1’b1l;
reg start_copy = 1’b0;
55 reg [15:0] length = 16’b0000000000000000 ;
57 reg last_one = 1’b0;
reg length_ce = 1’b0;
59 reg to_address_ce = 1’b0;
reg from_address_ce= 1’b0;
61
assign reg_data_out = {7’°b0000000, ready};
63
65
always Q(posedge clk)
67 copy-to_-data <= copy-from_data;
69
always Q(posedge clk)
71 start_copy <= (reg-address [2:0] == 3’b000 & reg_-we);
73 always Q(posedge clk)
if (from_address_ce)
75 copy-from_address <= copy-from_address + 1;
else if (reg_address[2:0] == 3’b010 & reg_we)
77 copy-from_address [15:8] <= reg_-data_in;
else if (reg_address[2:0] == 3’b001 & reg_we)
79 copy-from_address [7:0] <= reg_data_in;
81 always Q@Q(posedge clk)
if (to_-address_ce)
83 copy-to_address <= copy-to_address + 1;
else if (reg-address[2:0] == 3’b101 & reg_we)
85 copy-to_-address [7:0] <= reg-data_in;
else if (reg_address[2:0] == 3’b110 & reg_we)
87 copy-to_address [15:8] <= reg_data_in;
89 always Q(posedge clk)
if (length_ce)
91 length <= length — 1;
else if (reg-address[2:0] == 3’b011 & reg_we)
93 length [7:0] <= reg_-data_in;
else if (reg_address[2:0] == 3’b100 & reg_we)
95 length [15:8] <= reg_data_in;
97
always Q@Q(posedge clk)
99 if (length == 16°b0000000000000010)
last-one <= 1’bl;
101 else
last_-one <= 1’b0;
103
always Q(posedge clk)
105 last_byte_d <= last_one;
107 always Q(posedge clk)
last_byte <= last_byte_d;
109
111 parameter st_idle = 8’b00000001;
parameter st_offset = 8’b00000010;
113 parameter st_offset2 = 8’b00000100;
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parameter st_copy = 8’b00001000;
parameter st_finish = 8’b00010000;
parameter st_finish2 = 8’b00100000;
parameter st_offset3 = 8’b01000000;
parameter st_offset4 = 8’b10000000;

(* FSM_ENCODING="ONE-HOT” , SAFEIMPLEMENTATION="NO” x) reg [7:0] state = st_idle;

always@ (posedge clk)

//state <= st_copy;

endmodule

(* FULL_.CASE, PARALLEL.CASE %) case (state)

st_idle begin
if (start_copy)
state <= st_offset;
else
state <= st_idle;
length_ce <= 1’b0;
to_address_ce <= 1’b0;
from_address_ce <= 1’b0;
copy-to_-we <= 1’b0;
ready <= 1’bl;
end
st-offset begin
state <= st-offset2;
length_ce <= 1’bl;
to_address_ce <= 1’b0;
from_address_ce <= 1’bl;
copy-to_we <= 1’b0;
ready <= 1’b0;
end
st_offset2 begin

state <= st_offset3;
length_ce <= 1’bl;
to_address_ce <= 1’b0;
from_address_ce <= 1’bl;
copy-to_-we <= 1’b0;
ready <= 1’b0;

end

st-offset3 begin
//state <= st_copy;
state <= st-copy;
length_ce <= 1’bl;
to_address_ce <= 1’bl;
from_address_ce <= 1’bl;
copy-to_we <= 1’bl;
ready <= 1’b0;

end

st_copy begin
if (last_one)

state <= st_finish;
else
state <= st_copy;

length_ce <= 1’bl;
to_address_ce <= 1’bl;
from_address_ce <= 1’bl;
copy-to_-we <= 1’bl;
ready <= 1’b0;

end

st_finish begin
state <= st_finish2;
length_ce <= 1’b0;
to_address_ce <= 1’bl;
from_address_ce <= 1’b0;
copy-to_we <= 1’bl;
ready <= 1’b0;

end

st_finish2 begin
state <= st_-idle;
length_ce <= 1’b0;
to_address_ce <= 1’blj;
from_address_ce <= 1’b0;
copy-to_-we <= 1’blj;
ready <= 1’b0;

end

endcase

Listing 6.7: crc_8bit.v

[/777777777/77777777777777777777777777777777777777777777777777777777777777777777777
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Copyright 2009 Michel Bieleveld
This file s part of the UDP/IP stack.

The UDP/IP stack is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation , either version 8 of the License, or

(at your option) any later version.

The UDP/IP stack is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the UDP/IP stack . If mnot, see <http://www.gnu.org/licenses/>.

//
N A v a

‘timescale 1lns / 1lps
module crc_8bit (

input clk ,
output reg [15:0] address = 16’b0000000000000000 ,
input [7:0] data_in ,
input [7:0] reg-address ,
input [7:0] reg_data_in ,
input reg_we ,
output reg [7:0] reg_data_out
reg [15:0] length = 16’b0000000000000000 ;
reg [15:0] CRC = {16{1°'b0}};
reg start_crc = 1’b0;
reg start_crc_d;
reg start_crc.d_d;
reg last_one_d;
reg last_one_-d_-d;
reg last-one_d_d-d;
reg last_-one_-d_-d_-d-d;
reg last-one = 1’b0;
reg odd = 1’b0;
reg crc.ready = 1’bl;
reg [7:0] data_h;
reg [7:0] data_l;
reg CRC_Carry;
reg crc_reset ;
// address write read
// 0 start_cre status
// 1 address_1 cre-0
// 2 address_h cre-1
// 3 length_l 0
// 4 length_h 0
always @Q(posedge clk)
if (reg-address[2:0] == 3’b000 & reg_-we)
crc_ready <= 1’b0;
else if (last_omne_d_d_d)
crc_ready <= 1’bl;
always Q(posedge clk)
if (last_one) begin
start_crc <= 1’b0;
crc_reset <= 1’b0;
end else if (reg_address[2:0] == 3’b000 & reg_we) begin
start_crc <= 1’bl;
odd <= length [0];

crc_reset <= 1’bl;
end else begin

crc-reset <= 1’b0;
end

always @(reg-address , crc-ready , CRC)
case (reg-address[1:0])
2’b00: reg_-data_out
2’b01: reg_data_out
2’b10: reg_data_out
2’bll: reg_-data_out
endcase

{7°b0000000, crc_ready };
"CRC[7:0];

"CRC[15:8];

8’b10101010;

always Q(posedge clk)
last_.one <= (length == 16’b0000000000000010);

always @Q(posedge clk)
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if (start_crc)
length <= length —1;
//length <= length ;

else if (reg-address[2:0] == 3’b011 & reg_-we)
length [7:0] <= reg-data-in;
else if (reg-address|[2:0] == 3’b100 & reg-we)

length [15:8] <= reg-data-in;

always Q(posedge clk)
if (start_crc)
address <= address +1;

else if (reg-address[2:0] == 3’b001 & reg_we)
address [7:0] <= reg_-data_in;
else if (reg-address[2:0] == 3’b010 & reg_we)

address [15:8] <= reg_data_in;

always Q(posedge clk) begin
start_crc.d <= start_crc;
start_crc.d.d <= start_crc.d;
last_one_d <= last_one;
last_one_d_-d <= last_-one._d;
last_one_d-d-d <= last_-one_d_d;
last-one-d-d-d-d <= last_one_d_-d.d;

end

always Q(posedge clk)
if ("start_crc_.d | odd & last_one._d)
data_l <= 8’b00000000;
else if (" address[0])
data_l <= data_in;

always Q@Q(posedge clk)
if (“start_crc_d)
data_-h <= 8’b00000000;
else if (address[0])
data-h <= data_.in;

always @(posedge clk)
if (crc-reset) begin
CRC <= {16{1°b0}};
CRC_Carry <= 1’b0;
end else if (address|[0] & start_crc_.d.d | last_one.d & odd | last_one_d_d
last_one_d_-d_-d | last_one_d_-d_d_d)
{CRC_Carry, CRC } <= CRC + {data_-h, data_-1} 4+ CRC_Carry;

endmodule

Listing 6.8: dem.v
N A N A A A A A A
// Copyright 2009 Michel Bieleveld
//
// This file is part of the UDP/IP stack.
//
// The UDP/IP stack is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either wversion 3 of the License, or
// (at your option) any later wversion.
//
// The UDP/IP stack is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the UDP/IP stack. If not, see <http://www.gnu.org/licenses/>.
//
VA A A A A A A A A A A

‘timescale 1ns / 1ps

module dcma (CLKIN_IN,

RST.IN,
CLKFX_OUT,
CLKIN_IBUFG_OUT,
CLKO0_OUT,
CLK2X_OUT,
LOCKED_OUT) ;

input CLKIN_IN;
input RST.IN;
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output CLKFX_ OUT;
output CLKIN_IBUFG.OUT;
output CLKO-OUT;

output CLK2X_OUT;
output LOCKED.-OUT;

wire CLKFB.IN;
wire CLKFX_BUF;
wire CLKIN_IBUFG;
wire CLKOBUF;
wire CLK2X_BUF;
wire GND_BIT;

assign GND_BIT = 0;
assign CLKIN_.IBUFG.OUT = CLKIN_IBUFG;
assign CLKO0.OUT = CLKFB.IN;
BUFG CLKFX_BUFG.INST (.I(CLKFXBUF),
.O(CLKFX_OUT) ) ;
IBUFG CLKIN_IBUFG_INST (.I(CLKIN.IN),
.O(CLKIN_IBUFG) ) ;
BUFG CLKO-BUFG_INST (.I(CLKO-BUF),
.O(CLKFB.IN) );
BUFG CLK2X_BUFG.NST (.I(CLK2X_-BUF),
.O(CLK2X-OUT) );
DCM-SP DCM_SP.INST (.CLKFB(CLKFB.IN),
.CLKIN (CLKIN_IBUFG) ,
.DSSEN(GND_BIT) ,
.PSCLK (GND_BIT) ,
.PSEN (GND_BIT) ,
.PSINCDEC (GND_BIT) ,
.RST(RST.IN) ,
.CLKDV () ,
.CLKFX(CLKFX_BUF) ,
.CLKFX180() ,
.CLKO(CLKO-BUF) ,
.CLK2X (CLK2X_BUF) ,
.CLK2X180() ,
.CLK90 () ,
.CLK180() ,
.CLK270() ,
.LOCKED (LOCKED_OUT) ,
.PSDONE() ,
.STATUS());
defparam DCM_SP_INST .CLK_FEEDBACK 71X
defparam DCM_SP_INST.CLKDV_DIVIDE 2.0;
defparam DCM_SP_INST.CLKFX_DIVIDE = 5;
defparam DCM_SP_INST.CLKFX MULTIPLY = 8§;
defparam DCM_SP_INST.CLKIN_ DIVIDE BY_2 = "FALSE” ;
defparam DCM_SP_INST.CLKIN_PERIOD = 20.000;
defparam DCM_SP_INST.CLKOUT_PHASE_SHIFT = ”"NONE” ;
defparam DCM_SP_INST.DESKEW_ADJUST = ”SYSTEM_SYNCHRONOUS”
defparam DCM_SP_INST .DFSFREQUENCY_MODE = "LOW” ;
defparam DCM_SP_INST .DLLFREQUENCY MODE = "LOW” ;
defparam DCM_SP_INST.DUTY_CYCLE_.CORRECTION = ”TRUE” ;
defparam DCM_SP_INST.FACTORY.JF = 16’hC080;
defparam DCM_SP_INST.PHASE_SHIFT = 0;
defparam DCM_SP_INST.STARTUP_.WAIT = ”FALSE” ;

endmodule

Listing 6.9: module_arp.v

//////////////////////////////////////////////////////////////////////////////////

N A A v a

Copyright 2009 Michel Bieleveld

This file 4s part of the UDP/IP stack.

The UDP/IP stack is free software: you can redistribute it and/or

it under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation , either version 8 of the License, or

(at your option) any later version.
The UDP/IP stack is distributed in the hope that it will

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General

modify

be wuseful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of

the

Public

License

along with the UDP/IP stack . If not, see <http://www.gnu.org/licenses/>.

‘timescale 1lns / 1lps
module module_arp (

input clk ,
input [7:0] port-id,
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input [7:0] in_port,
input write_strobe
output reg [7:0] out_port

3

N A A s

Instantiate registers

//
N A A s

reg [7:0] ip-.0 = 8’b00000001;
reg [7:0] ip-1 = 8’b00000000;
reg [7:0] ip-2 = 8’b00000000;
reg [7:0] ip-3 = 8’b00000000;
reg [7:0] eth_0 = 8’b00000001;
reg [7:0] eth_1 = 8’b00000000;
reg [7:0] eth_2 = 8’b00000000;
reg [7:0] eth_3 = 8’b00000000;
reg [7:0] eth_4 = 8’b00000000;
reg [7:0] eth_5 = 8’b00000000;
reg [1:0] status-r = 4’b00;

reg [1:0 status_-r_int = 4’b00;
reg [1:0 status.w = 4’b00;

reg status_w_reset = 1’b0;

wire status_write;
wire status_read;

assign status_write =
assign status_.read =
always Q(posedge clk)

if (status_write |

status_w [0];
status_w [1];

status_.r <= 4’b00;

end else begin

status_.r <= status_r_in

end

always Q(posedge clk)
if (status_w_reset)

begin

status.w <= 2’b00;

end else if (port_id [3:0]
status.w <= in_port [1:0];

end

always @(posedge clk)
if (port_id [3:0] ==

eth_0 <= in_port;

always Q(posedge clk)
if (port_-id [3:0] ==

eth_.1 <= in_port;

always Q(posedge clk)
if (port-id [3:0] ==

eth_.2 <= in_port;

always Q(posedge clk)
if (port.id[3:0] ==

eth_3 <= in_port;

always @Q(posedge clk)
if (port.id [3:0] ==

eth_4 <= in_port;

always Q(posedge clk)
if (port.id[3:0] ==

eth_5 <= in_port;

always Q(posedge clk)
if (port-id [3:0] ==
ip-0 <= in_port;

always Q(posedge clk)
if (port_-id [3:0] ==
ip-1 <= in_port;

always @Q(posedge clk)
if (port.id[3:0] ==
ip-2 <= in_port;

always @(posedge clk)
if (port_id [3:0] ==
ip-3 <= in_port;

3

;

;

;

3

;

4’b0001

4’b0010

4°b0011

4°b0100

4’b0101

4’b0110

4°b0111

4°b1000

4°b1001

4’b1010

t

status_read ) begin

== 4’b0000 & write_strobe) begin

write_strobe)

write_strobe)

write_strobe)

write_strobe)

write_strobe)

write_strobe)

write_strobe)

write_strobe)

write_strobe)

write_strobe)
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CHAPTER 6. APPENDIX A: SOURCE CODE

//////////////////////////////////////////////////////////////////////////////////

Instantiate

address counters

N A A v a

reg [3:0] read-address_counter = 4°b0000;
reg read_address_counter_ce = 1’b0;

reg write_address_counter_ce = 1’b0;

reg read_address_counter_loop = 1’b0;
reg read_address_counter_reset = 1’b0;
reg read_address_counter_up = 1’bl;

reg [3:0] compensate = 4’b0000;

always Q(posedge clk)

if (read_address_counter_reset |

compensate <= 4’b0000;

else if (read_address_counter_ce & read_address_counter_up &

compensate <= compensate + 1;

always @(posedge clk)
if (read_-address_counter_reset) begin

read_address_counter

<= 0;

read_-address_counter_loop <= 0;
end else if (read_address_counter_ce & read_address_counter_up)

{read_address_counter_loop ,read_address_counter} <= read_address_counter + 1;

else if (read_address_counter_ce)
read_address_counter <= read_address_counter — compensate;

reg [3:0]

always Q(posedge clk)
if (write_address_counter_ce)
write_address_counter <= write_address_counter + 1;

write_address_counter =

4°b0000;

(read_address_counter_ce &

N A A A v da

Instantiate

distributed ram

/////////{//ﬁégé{/////////////////////////////////////////////////////////////////
arameter
I;arameter RAM_ADDR_BITS = 4;

reg [RAM_WIDTH—1:0]

wire [RAM_WIDTH—1:0]
wire [RAM_WIDTH—1:0]

reg

assign arp_table_input [RAM_WIDTH—1:0] =

arp_table

[(2**RAM_ADDR_BITS) —1:0];

arp_-table_output;
arp_-table_input;

arp_-table_we;

always Q(posedge clk)
if (arp-table_we)

arp_-table [write_address_counter] <= arp_-table_input;

assign arp-table_output = arp_-table[read_address_counter];

{eth_5 ,eth_4 ,eth_3 ,eth_2 ,eth_1,eth_0,ip_3

?/////////////////////////////////////////////////////////////////////////////////

out_port

Y A A A s

// always @(posedge clk)

// case (port_id [2:0])

// 8’b000: out_port =

// 8’b001: out_port = arp_t
// 8’b010: out_port = arp_t
// 8°b011: out_port = arp-t
// 8°b100: out-port = arp-t
// 8’°b101: out-port = arp-t
// 8’b110: out-port = arp-t
// 8’b111: out_port = 8’b10
// endcase

// always @(port_id [2:0], status_r
// arp-table_output [565:48],
// case (port-id [2:0])

// 8°b000: out_port =

// 8°b001: out-port = arp-t
// 8°b010: out_port = arp-t
// 8’b011: out_port = arp_t
// 8’b100: out_port = arp_t
// 8’b101: out_port = arp_t
// 8’b110: out_port = arp_t
// 83’b111: out_port = 8’b01
// endcase

always Q(posedge clk)

case

(port_id [2:0])

{4°b0000, status_r

,status_w};
able_output [39:32];
able_output [47:40];
able_output [65:48];
able_output [63:56];
able_output [71:64];
able_output [79:72];
101010 ;

[1:0], status_w[1:0],

able_output [39:32];
able_output [47:40];
able_output [65:48];
able_output [63:56];
able_output [7T1:64];
able_output [79:72];
010101 ;

arp_-table_output [39:82],
arp_-table_output [63:56],

arp_-table_output [7T1:64],

{4°b60000, status_r [1:0], status-w [1:0]};

“read_address_counter_up))

“(compensate [0] & compensate[1]))

,ip-2 ,ip-1,ip-0};

arp_-table_output [47:40],

arp_-table_output [79:72])
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3’b000: out_port
3’b001: out_port
3’b010: out_port
3’b011: out_port
3’b100: out-port
3’b101: out-port
3’b110: out-port
3’b111l: out_port
endcase

N A A AV A

Instantiate signals

/
//////////////////////////////////////////////////////////////////////////////////

{4°b0000, status_r [1:0] ,status,w [1:0]};
arp-table_output [39 32
arp-table_output |
arp-table_output |
arp-table_output [63 56
arp-table_output |
arp-table_output [
8’b01010101;

reg matching_ip = 1’b0;
always Q(posedge clk)
if (arp-table_output[31:0] == {ip-3,ip-2,ip-1,ip-0})
matching_ip <= 1’bl;
else

matching_ip <= 1’b0;

///////////////éé/////////////////////////////////////////////////////////////////

// Instantiate

/////////{///////////////////6666/////////////////////////////////////////////////
parameter - =
parameter st_write 9’b000000010;
parameter st_read 9’b000000100;
parameter st_lookup 9’b000001000;
parameter st_found 9’b000010000;
parameter st_nfound 9’b000100000 ;
parameter st_nop 9’b001000000 ;
parameter st_nop2 9’b010000000 ;
parameter st_nop3 9’b100000000;

(* FSM_ENCODING="ONE-HOT” , SAFEIMPLEMENTATION="NO” x) reg [8:0] state = st_idle;

always@ (posedge clk)
(* FULL_.CASE, PARALLEL.CASE x) case (state)
st-idle : begin
if (status_write)
state <= st_write;
else if (status_read)
state <= st_read;
else
state <= st_idle;
status_w_reset <= 1’b0;
arp-table_we <= 1’b0;
write_address_counter_ce <= 1’b0;
read_address_counter_ce <= 1’b0;
read_address_counter_reset <= 1’b0;
read_address_counter_up <= 1’bl;
end
st_-write : begin
status_-w_reset <= 1’bl;
arp-table_we <= 1’bl;
write_address_counter_ce <= 1’bl;
read_address_counter_-ce <= 1’b0;
read-address_counter_reset <= 1’b0;
//read_address_counter_up <= 1°bl;
read_address_counter_up <= 1’b0;
status_r_int <= 2’b00;
state <= st_nop;
end
st_.read : begin
if (read_address_counter_loop)
state <= st_read;
else
//state <= st_lookup ;
state <= st_nop2;
status_w_reset <= 1’bl;
arp-table_we <= 1’b0;
write_address_counter_ce <= 1’b0;
read_address_counter_-ce <= 1’b0;
read_address_counter_reset <= 1’bl;
read_-address_counter-up <= 1’bl;
status_r_int <= 2’b00;
end
st_lookup : begin
if (matching_ip)
state <= st_found;
else if (read_address_counter_loop)
state <= st_nfound;
else
state <= st_lookup;
status_w_reset <= 1’bl;
arp-table_we <= 1’b0;
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write_address_counter_ce <= 1’b0;
read_address_counter_ce <= 1’bl;
read_address_counter_reset <= 1’b0;
read_address_counter_up <= 1’bl;
status_r_int <= 2’b00;

end

st_found begin
status_w_reset <= 1’b0;
arp-table_we <= 1’b0;
write_address_counter_ce <= 1’b0;
read_address_counter_ce <= 1’bl;
read_address_counter_reset <= 1’b0;
read_address_counter_up <= 1’b0;
status_r_int <= 2’b01;
state <= st_idle;

end

st_nfound begin
status_-w_reset <= 1’b0;
arp-table_we <= 1’b0;
write_address_counter_ce <= 1’b0;
read_address_counter_-ce <= 1’b0;
read_address_counter_reset <= 1’b0;
read_-address_counter_-up <= 1’blj;
status_r_int <= 2’bl0;
state <= st_idle;

end

st_nop begin
status_w_reset <= 1’b0;
arp-table_we <= 1’b0;
write_address_counter_ce <= 1’b0;
read_address_counter_ce <= 1’b0;
read_address_counter_reset <= 1’b0;
//read_address_counter_up <= 1°bl;
read_address_counter_up <= 1’b0;
state <= st_idle;

end

st-nop2 begin
status_-w_reset <= 1’b0;
arp-table_we <= 1’b0;
write_address_counter_ce <= 1’b0;
read_address_counter_-ce <= 1’b0;
read_address_counter_reset <= 1’b0;
read_address_counter_up <= 1’b0;
status_r_int <= 2’b00;
state <= st_nop3;

end

st_nop3 begin
status_w_reset <= 1’b0;
arp-table_we <= 1’b0;
write_address_counter_ce <= 1’b0;
read_address_counter_ce <= 1’b0;
read_address_counter_reset <= 1’b0;
read_address_counter_up <= 1’b0;
status_r_int <= 2’b00;
state <= st-lookup;

end

endcase
endmodule

Listing 6.10: pip.v

/?////////////////////////////////////////////////////////////////////////////////

11

13

15

17

19

21

// Copyright 2009 Michel Bieleveld

//

// This file is part of the UDP/IP stack.

//

// The UDP/IP stack is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or

// (at your option) any later wversion.

//

// The UDP/IP stack is distributed in the hope that it will be useful ,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General Public License
// along with the UDP/IP stack . If not, see <http://www.gnu.org/licenses/>.
//

N A A v a

‘timescale 1lns / 1lps
module pip (
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input clk_50mhz ,
input LOCKED.OUT,
input E_RX_CLK,
input E_TX_CLK,
output E_TX_ERR,
output E_TX_EN,
output [7:0] E_TXD,
input E_RX_ERR,
input ERXDV,
input [7:0] E_RXD,
input E_CRS,
input E_COL,
inout E_MDIO,
output E_MDC,

// DCM

output reset ,
input reset_app ,

// Application Interface tx
output [15:0] pip-tx_-address ,

pip-tx-data ,

output [15:0] pip-rx-address ,

input [7:0]
output [7:0]
output
output

input [7:0]
input [7:0]
input

input
input [7:0]
output reg

pip-rx_-data ,
pip-rx_-we ,

pip-new_frame ,
pip-command_data ,
pip-command_address ,
pip-command_wr_en ,
pip-result_rd_en ,

pip-result_address ,
[7:0] pip-result_data

out_port;

)

// wires for picoblaze
reg [7:0]

reg [7:0]

wire [17:0]
wire [9:0]
wire [7:0]
wire [7:0]

]

reg [7:0
wire

wire

wire

reg [7:0]
reg [7:0]
/) copy

wire [7:0]
wire [15:0]
wire
wire

wire [7:0]
wire [15:0]

// cre
wire [7:0]
wire [15:0]
wire

reg

// arp
reg
wire
reg
wire

port_id;

instruction ;
address;

port_id_int;
out_port_int;

in_port = 8’b00000000;
proc_reset ;
read_strobe;
write_strobe;

input_mac;
input_registers;

copy-data_out;
copy-to_address;
copy-to-we;
copy-last_byte;

copy-data_out_rx;
copy-from_address_rx;

crc_data_out ;
crc_address;
wr_crc;
cs_crc;

cs_copy;
WI_COpYy ;
CS_COpYy-TX;
WI_COPY-TX;

// command interface

reg [7:0]
wire

reg

reg

pip-command_data_out;
pip-command_rd_en;
pip_-command_cs;
pip-result_cs;

// wires for arp module

reg
wire
wire [7:0]

cs_arp;
wr_arp ;
arp-out_port;
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// rTeset for picoblaze when dem is ready and/or jtag memory is programmed
assign proc_reset = reset | !LOCKEDOUT | reset_app;

// mac signals

// mac_sfr
// 7 Mac reset

// 6 READBUFFER (0 = Read RX buffer, 1 = Read TX buffer)
// 5 Send (sends packet)

// 4 EOP (End of packet)

// 8 addr[10]

// 2 addr[9]

// 1 addr[8]

// 0 addr[7]

reg [10:0] mac_address ;

wire [7:0] mac_status_port;

reg [7:0] tx_mac_data;

wire [7:0] copy-to_data;

wire [7:0] Tx_-mac_data_rd;

wire [7:0] Rx-mac_data;

wire [7:0] Rx_-mac_packet_status;

wire Rx_-mac_packet_-ready;

wire Tx_-mac-packet_ready;

wire Tx_mac_top_half;

wire Tx_mac_eop-_bit;

wire mac_reset ;

wire Tx_mac_send;

reg Tx_mac_write;

wire MAC_Host_-CSB;

reg Tx_mac_eop_-bit_d;

reg [7:0] mac_sfr = 8’b00000000;

reg [7:0] mac._sfr2 = 8’b00000000 ;

reg [7:0] module_sfr = 8’b00000000;
reg cs_rx_mac ;

assign Tx-mac-top-half = mac_sfr2[0];
assign pip-new_frame = mac_sfr2 [1];
assign mac_reset = mac_sfr [7];
assign Tx_mac_send = mac_sfr [5];
assign Tx_mac_is_last_byte = mac_sfr[4] | copy-last_byte;

wire [35:0] CONTROLO;

scope instance_scope (
.CONTROLO(CONTROLO)

)

scope_ila instance_ila (
. CONTROL(CONTROLO) ,
.CLK(clk_-50mhz),

.TRIGO(address)

)i

always @Q(posedge clk_50mhz)
if (read_strobe & !port_id_int [7])
Tx_mac_eop_bit_.d <= Tx_mac_eop_bit;

assign MAC_Host_-CSB = 1’bl;
assign mac_status_port = {Tx_mac_packet_-ready, Tx_mac_eop_bit_d ,5’b00000,Rx_mac_packet_ready };
always @(module_sfr, port_id_int [7], write_strobe, copy-to_we)

case (module_sfr[1:0])
2’b00: Tx_mac_-write
2’b01: Tx_mac_write
2’b10: Tx_mac_write
2’bll: Tx_mac_write
endcase

copy-to_we;
1’'b0;
1’'b0;

(!'port_id_int [7] & write_strobe);

always @(module_sfr, out_port_int, copy-to_data)

case (module_sfr[1:0])
2’b00: tx-mac-data
2’b01: tx_mac_data
2’b10: tx_mac_data
2’bll: tx_mac_data
endcase

out_port_int;
copy-to_data;
out_port_int;
out_port_int;

always @(module_sfr, mac_sfr[3:0], port_id_-int [6:0], copy-to_address ,crc_address ,copy-from_address_rx)

case (module_sfr[1:0])

2’b00: mac_address {mac_sfr [3:0],

port_id_int [6:0]};

2’b01: mac_address = copy-to_address [10:0];

2’b10: mac-address

crc_.address [10:

0];
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2’bll: mac_address = copy-from_address_rx[10:0];
endcase

MAC_top instance_mac (

.Reset (mac_reset), //

. Clk-125M () ,

. Clk_user (clk_-50mhz), //

.Clk_reg (clk_-50mhz), //

.Clk.mem (clk_50mhz), //

.Speed (Speed),

.Rx_mac_packet_ready (Rx_mac_packet_ready), //
.Rx_mac_get_packet (Rx_mac_get_packet),
.Rx_mac_addr (mac_address), //
.Rx_mac_data(Rx_-mac_data), //
.Rx_mac_packet_status (Rx_-mac_packet_status), //
.Tx-mac_addr (mac_address), //
.Tx_mac_-data(tx-mac_-data), //

.Tx_mac_data_rd (Tx_-mac_data_rd), //
.Tx_mac_write ( Tx_mac_write), //

.Tx_mac_send (Tx_mac_send), //
.Tx_-mac_is_last_byte(Tx_-mac_-is_last_byte), //
.Tx-mac_-top-half(Tx_mac_-top-half),
.Tx_-mac_packet_ready (Tx-mac_packet_ready), //
.TX_mac_eop-bit (Tx-mac_eop-bit), //

.Gtx_clk (Gtx_clk),

.Rx.-clk (ELRX.CLK), //

. Tx_clk (E.TX_.CLK), //

.Tx_er (E.TX_ERR), //

.Tx_en(E.-TX_EN), //

.Txd (E_TXD), //

.Rx_er (ERX_ERR), //

.Rx_dv(E_RX.DV), //

.Rxd (ERXD), //

.Crs(E.CRS), //

.Col(E-COL), //

.CSB(MAC_Host_CSB), //

WRB(), //

.CD.in(), //

.CD_out (), //

.CAQ), //

.Mdio (E.MDIO) , //

.Mdc(EMDC) //

)

reg [7:0] command_arguments [15:0];

always @Q(posedge clk_50mhz)
if (pip-command_wr_en)
command_arguments [ pip-.command_address [3:0]] <= pip.command_data;

//assign pip_command_data_out = command_arguments[port_id_int [3:0]];
always Q(posedge clk_50mhz)
pip-command_data_out <= command_arguments|[port_id_int [3:0]];

reg [7:0] result_arguments [15:0];

always Q(posedge clk_50mhz)
if (write_strobe & (port-id_int [7:4] == 4°b1001))
result_arguments|[port_id_int [3:0]] <= out_port_int;

always @Q(posedge clk_50mhz)
pip-result_data <= result_arguments|[pip-result_address [3:0]];

//assign pip_-result_data = result_arguments[pip-result_address [3:0]];

app picoblaze_rom (
.address (address),
.instruction (instruction),
//.proc_reset(reset ),

.clk (clk_-50mhz)

3

module_arp instance_arp (
.clk (clk_50mhz) ,
.port_id(port_id_int),
.in_port (out_port_int),
.write_strobe(wr_arp),
.out_port(arp_out_port)

)5

copy instance_copy-tx (
.clk (clk_50mhz) ,
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.copy-from_address (pip-tx_address),
.copy-from_data(pip-tx_-data),

.copy-to_address (copy-to_address),
.copy-to_-we (copy-to_we) ,
.copy-to_-data(copy-to_data),
.last_byte(copy-last_byte),
.reg-address (port_id_-int),
.reg_we (wr_copy),
.reg_data_in(out_port_int),
.reg_data_out (copy-data_out)
)
copy-rx instance_copy-rx (
.clk (clk_50mhz) ,
.copy-from_address (copy-from_address_rx ),
.copy-from_data (Rx_mac_data),
.copy-to_address(pip-rx-address),
.copy-to_we(pip-rx_we),
.copy-to_data(pip-rx_-data),
.last_byte (),
.reg-address (port_id_-int),
.reg_-we (wr_copy-rx),
.reg_-data_in(out_port_-int),
.reg-data_out (copy-data_out_rx)
)
crc_8bit inst_crc_tx (
.clk (clk_50mhz) ,
.address(crc_address),
.data_in(Tx_mac_data_rd),
.reg_address (port_id), // port_id_int
.reg_data_in(out_port_int),
.reg_we(wr_crc),
.reg_-data_out (crc_data_out)
)
/%
address write read
0 XXXXXXX rz_buffer tz_buffer mac-sfr[6] = 0
0 XXXXXXX tz_buffer tz_buffer mac-sfr[6] = 1
1 0010 000 90 result_data command_data
1 0010 001 91 result_arg command_arg
1 0010 010 92 result_arg command_arg
1 0011 111 9F result_arg command_arg
1 0100 000 A0 start_copy-rx status
1 0100 001 Al from_address_-l status
1 0100 010 A2 from_address_h status
1 0100 011 A3 length_l status
1 0100 100 A4 length_h status
1 0100 101 A5 to_address_l status
1 0100 110 A6 to_address_h status
1 0110 000 BO start_crc status
1 0110 001 B1 address_l cre-l
1 0110 010 B2 address_h crc_h
1 0110 011 B3 length_l 0
1 0110 100 B4 length_h 0
1 0111 000 B8 module_sfr module_sfr
0 mac
1 copy
2 crc
1 1000 000 CO start_-copy status
1 1000 001 C1 from_address_-l status
1 1000 010 C2 from_address_-h status
1 1000 011 C3 length_l status
1 1000 100 CY length_h status
1 1000 101 C5 to_address_l status
1 1000 110 C6 to-address_h status
1 1001 000 C8 mac_status_port
1 1010 000 DO Rxz_mac_packet_status Rxz_mac_get_packet
// Rz_mac_packet_status = {Rz_-mac_eop, Rz_mac_sop, Rz_mac_get_packet , Rz_mac_ra, state [8:0]};
1 1011 000 D8 mac_sfr mac-sfr
1 110 0000 EO arp-status arp_-status
1 110 0001 E1 arp_eth0 arp-eth0
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110
110
110
110
110
110
110
110
110

[ O R A O A N

~

1110
1 1111

*/

kcpsm3 picoblaze

0010
0011
0100
0101
0110
0111
1000
1001
1010

000
000

E2
E3
E4
E5
E6
E7
E8
E9
EA

Fo
F8

arp-ethl
arp_-eth2
arp-eth3
arp-ethy
arp-eths

mac_sfr2

(

.address (address),

.instruction (instruction),

.port_id(port-id_-int),

.write_strobe (write_strobe),
.out_-port(out-port_int),
.read_strobe(read_strobe),

.in_port(in_port),

.interrupt (Tx_mac_packet_ready),
.interrupt_ack (interrupt_ack),

.reset (proc_reset),
.clk (clk-50mhz)

)5

// pipeline

always @Q(posedge clk_50mhz) begin

output

out_port <=
port_-id

end

// for
if

end
end

copy
always @Q(posedge clk_50mhz) begin
(port_id_int [7:3]
cs_copy <=
end else begin
cs_copy <=

<=

assign wr_copy

// for

always @(posedge clk_50mhz) begin
if (port_id_-int [7:3]

end else begin

end
end

assign wr_copy-rx

// for

always Q(posedge clk_50mhz) begin

if (port_id_int [7:3]
cs_crc <=
end else begin
cs_crc <=

end
end

assign wr_crc

// for

end
end

copy-rx

out_port_int;
port_-id_int;

1°b1;

1'b0;

decoding

arp-ethl
arp_-eth?2
arp-eth8
arp-ethy
arp-eths
arp-ip0
arp-ipl
arp_ip2
arp_ip8

mac-sfr2

== 5’b11000) begin

cs_copy & write_strobe;

cs_copy-rx <= 1’bl;

cs_copy-rx <= 1’b0;

cre

result

= cs_copy-rx & write_strobe;

1’bl;

1’b0;

interface
always @Q(posedge clk_50mhz) begin
if (port-id-int [7:4]
pip-result_cs <=

end else begin
pip-result_cs <=

assign pip-result_wr_en =

// for command

interface
always @Q(posedge clk_50mhz) begin

1°b0;

5°b10100) begin

== 5’b10110) begin

cs_crc & write_strobe;

= 4°b1001) begin
1°bl;

pip-result_cs & write_strobe;
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if (port_id_int [7:4] == 4’b1001) begin
459 pip-command_cs <= 1’bl;
end else begin
461 pip-command-cs <= 1’b0;
end
463 end
465 assign pip_.command_.rd_en = pip_.command_cs & read_strobe;
467 // for arp
always Q(posedge clk_50mhz) begin
469 if (port_id_int [7:4] == 4’b1110) begin
cs_arp <= 1’bl;
471 end else begin
cs_arp <= 1’b0;
473 end
end
475
assign wr_arp = cs_arp & write_strobe;
477
// for mac_sfr
479 always @Q(posedge clk_50mhz) begin
if ((port-id-int [7:3] == 5’b11011) & write_strobe) begin
481 mac.-sfr <= out_-port;
end
483 end
485 // for mac_sfr2
always Q(posedge clk_50mhz) begin
487 if ((port_id_int [7:3] == 5°b11111) & write_strobe) begin
mac_sfr2 <= out_port;
489 end
end
491
493 // for module_sfr
always @Q(posedge clk_50mhz) begin
495 if ((port-id-int [7:3] == 5’b10111) & write_strobe) begin
module_sfr <= out_port;
497 end
end
499
501 // to get mnexzt packet
always Q(posedge clk_50mhz) begin
503 if (port_id_int [7:3] == 5’b11010) begin
cs.rx_mac <= 1’bl;
505 end else begin
cs.rx_-mac <= 1’b0;
507 end
end
509
assign Rx_mac_get_packet = cs-rx-mac & write_strobe;
511
// pipeline input decoding logic
513
//always @(posedge clk_-50mhz)
515 //always @(port_-id_int [7],mac_sfr [6], Re_mac_-data, Tz_-mac_-data_-rd, input_-registers)
// case ({port_-id_int[7],mac_sfr[6]})
517 always @Q(port_id [7], mac_sfr [6] , Rx_mac_data, Tx_mac_data_rd, input_registers)
case ({port_id[7],mac_sfr[6]})
519 2’b00: in_port = Rx_mac_data;
2’b01: in_port = Tx_mac_data_rd;
521 2’b10: in_port = input_registers;
2’b1ll: in_port = input_registers;
523 endcase
525
//always @(port_id_int [6:8], mac_status_port , Re_mac_packet_status , mac_sfr, arp_out_port, module_sfr ,crc_data_out ,copy._
527 // case (port_id_int [6:8])
always @(port_id [6:3], mac_status_port , Rx_mac_packet_status ,mac_sfr, arp_out_port, module_sfr ,crc_data_out ,copy-data_o
529 case (port_id [6:3])
4°b0000: input-registers = 8’b00000000;
531 4°b0001: input-registers = 8’b00000000;
4°b0010: input-registers = pip-command-data_-out;
533 4°b0011: input-registers = pip-command-data_-out;
4’b0100: input_-registers = copy-data_out_rx;
535 4’b0101: input_registers = 8’b00000000;
4’b0110: input_registers = crc_data_out;
537 4°b0111: input_registers = module_sfr;
4°b1000: input_registers = copy-data_out;
539 4’b1001: input_registers = mac_status_port;
4’b1010: input_registers = Rx_mac_packet_status;
541 4’b1011: input_registers = mac_sfr;
4’b1100: input_registers = arp-out_port;
543 4’b1101: input_registers = arp-out_port;

4°b1110: input_registers = 8’b00000000;
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4°b1111: input_registers = mac-sfr2;
endcase

endmodule

Listing 6.11: rx_packet.v

‘timescale 1ns

/ 1lps
??////////////////////////////////////////////////////////////////////////////////

ompany :
// Engineer:

//

// Create Date: 10:33:28 06/14/2007
// Design Name:

// Module Name: rz_packet

// Project Name:
// Target Devices:
// Tool wersions:
// Description :

// Dependencies :
// Revision :

// Rewvision 0.01 — File Created
// Additional Comments:

//
A s

module rx_packet

input clk ,
input Clk-mem,
input reset ,
// Internal interface
input Rx_mac_ra s
output reg Rx_mac_rd s
input [31:0] Rx_mac_data_32 s
input [1:0] Rx_mac_BE s
input Rx_mac_pa s
input Rx_mac_sop s
input Rx_mac_eop s
// User interface
output reg Rx_mac_packet_ready s
output [7:0] Rx_mac_packet_status s
input Rx_mac_get_packet s
input [10:0] Rx_mac_addr s
output [7:0] Rx_mac_data

)s

// Counter for addrb

reg [8:0] counter_addrb = 0;
wire counter_addrb_reset ;
wire counter_addrb_ce;
wire [31:0] Rx_mac_data_32_c;

assign Rx_mac.data_32_c = {Rx_mac_data_32[7:0],Rx_mac_.data_32[15:8],Rx_mac_data_32[23:16] ,Rx_mac_data_32[31:24

// RAMB16.59.5S36: Virtex—II/II—Pro, Spartan—3/3E 2k/512 = 8/82 + 1/4 Parity bits Parity bits Dual—Port RAM
// Xilinz HDL Language Template, wversion 9.11

RAMB16_S9.536 #(

JINIT_A(9°h000), // Value of output RAM registers on Port A at startup
JINIT_B (36 °h000000000), // Value of output RAM registers on Port B at startup
.SRVAL_A(9°h000) , // Port A output value upon SSR assertion

.SRVAL_B (36’ h000000000), // Port B output value upon SSR assertion

.WRITEMODE_A ("WRITE_FIRST” ), // WRITE_FIRST, READ_FIRST or NO.CHANGE
.WRITE.MODE B (”WRITE_FIRST” ), // WRITE_FIRST, READ_FIRST or NO.CHANGE
.SIM_COLLISION_CHECK (”ALL” ) , // 7NONE”, ”"WARNING.ONLY”, *GENERATE_X_ONLY”, ”ALL”

// The following INIT_zxz declarations specify the initial contents of the RAM
// Port A Address 0 to 511, Port B Address 0 to 127

.INIT_00(256’h000000000000000000000000000000000000000000000000000000000000BBAA ),
.INIT_01(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_02(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_03(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_04(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_05(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_06(256°h0000000000000000000000000000000000000000000000000000000000000000 )
JINIT_-07(256°h0000000000000000000000000000000000000000000000000000000000000000 )
.INIT_08(256’h0000000000000000000000000000000000000000000000000000000000000000 )
.INIT-09(256°h0000000000000000000000000000000000000000000000000000000000000000 )
.INIT_0A (256 °h0000000000000000000000000000000000000000000000000000000000000000 )

)
)
B
3
3
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JINIT_0B(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
79 JINIT_0C (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_0D (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
81 .INIT_0E (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_OF (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
83 // Port A Address 512 to 1028, Port B Address 128 to 255
.INIT-10(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
85 JINIT_11(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_12(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
87 .INIT_13(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_14(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
89 JINIT_15(256°h0000000000000000000000000000000000000000000000000000000000000000) ,
JINIT_16 (256 ’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
91 JINIT_17(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_18(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
93 .INIT_19(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_1A (256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
95 JINIT_1B (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_1C (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
97 JINIT_1D (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_1E (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
99 JINIT_1F (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
// Port A Address 1024 to 15835, Port B Address 255 to 383
101 .INIT-20(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT-21(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
103 .INIT_22(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_23 (256 h0000000000000000000000000000000000000000000000000000000000000000) ,
105 .INIT_24(256°h0000000000000000000000000000000000000000000000000000000000000000) ,
JINIT_25(256°h0000000000000000000000000000000000000000000000000000000000000000) ,
107 .INIT_26(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_27(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
109 JINIT_28(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_29(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
111 JINIT_2A (256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_2B (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
113 JINIT_2C (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_2D (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
115 JINIT_2E (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_2F (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
117 // Port A Address 1536 to 2047, Port B Address 884 to 511
.INIT-30(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
119 .INIT-31(256’h0000000000000000000000000000000000000000000000000000000000000000 ),
.INIT_32(256°h0000000000000000000000000000000000000000000000000000000000000000 ),
121 .INIT_33 (256 h0000000000000000000000000000000000000000000000000000000000000000) ,
.INIT_34(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
123 .INIT_35(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_36(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
125 JINIT_37(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_38(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
127 .INIT_39(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_3A (256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
129 JINIT_3B (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_3C(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
131 JINIT_3D (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_3E (256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
133 JINIT_3F (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
135 // The next set of INITP_zz are for the parity bits
// Port A Address 0 to 511, Port B Address 0 to 127
137 JINITP_00(256>h0000000000000000000000000000000000000000000000000000000000000000) ,
JINITP_01(256°h0000000000000000000000000000000000000000000000000000000000000000) ,
139 // Port A Address 512 to 1028, Port B Address 128 to 255
. INITP_02 (256 >h0000000000000000000000000000000000000000000000000000000000000000) ,
141 .INITP_03(256’h0000000000000000000000000000000000000000000000000000000000000000) ,
// Port A Address 1024 to 1535, Port B Address 256 to 383
143 .INITP_04 (256 >h0000000000000000000000000000000000000000000000000000000000000000) ,
JINITP_05(256°h0000000000000000000000000000000000000000000000000000000000000000) ,
145 // Port A Address 1536 to 2047, Port B Address 884 to 511
JINITP_06 (256 °h0000000000000000000000000000000000000000000000000000000000000000) ,
147 JINITP_07(256°h0000000000000000000000000000000000000000000000000000000000000000)
) packet_buffer_inst (
149 .DOA(Rx-mac_data), // Port A 8—bit Data Output
.DOB(), // Port B 32— bit Data Output
151 .DOPA() , // Port A 1—bit Parity Output
.DOPB() , // Port B 4—bit Parity Output
153 .ADDRA(Rx_-mac-addr) , // Port A 11—bit Address Input
.ADDRB( counter_-addrb), // Port B 9—bit Address Input
155 .CLKA(clk), // Port A Clock
.CLKB( clk), // Port B Clock
157 .DIA(8’b00000000) , // Port A 8—bit Data Input
.DIB(Rx_-mac.data_32_c), // Port B 82— bit Data Input
159 .DIPA(1’b0), // Port A 1—bit parity Input
.DIPB(4°’b0000), // Port—B 4—bit parity Input
161 .ENA(1’b1), // Port A RAM Enable Input
.ENB(1’bl), // Port B RAM Enable Input
163 .SSRA(1’b0), // Port A Synchronous Set/Reset Input
.SSRB(1’b0), // Port B Synchronous Set/Reset Input
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.WEA(1°’b0), // Port A Write Enable Input
.WEB(web) // Port B Write Enable Input
)3

// End of RAMB16_.5S9_S386_inst instantiation

always Q(posedge clk)
if (counter_addrb_reset)
counter_addrb <= 0;
else if (counter_addrb_ce)
counter_addrb <= counter_addrb 4+ 1;

//

assign web = Rx_mac_pa;
assign counter_addrb_ce = Rx_mac_pa;
assign counter_addrb_reset = Rx_mac_eop;
parameter st_wait = 6’b000001;
parameter st_startup = 6’b000010;
parameter st_read = 6’b000100;
parameter st_fetch = 6’b001000;
parameter st_finished = 6’b010000;
parameter st_newpacket = 6’b100000;

(* FSM_ENCODING="ONE-HOT” , SAFEIMPLEMENTATION="NO” x) reg

assign Rx_mac_packet_status = {Rx_mac_eop, Rx_mac_sop, Rx_mac_get_packet ,Rx_mac_ra,state[3:0]};

always@ (posedge clk)
(* FULL_.CASE, PARALLEL_.CASE x) case (state)
st-wait : begin
if (Rx-mac_get_packet)
state <= st_startup;
else
state <= st_wait;
Rx_-mac_-packet_-ready <= 1’b0;
Rx_-mac-rd <= 1’b0;
end
st_startup : begin
if (Rx_mac_ra)
state <= st_read;
else
state <= st_startup;
Rx_mac_packet_ready <= 1’b0;
Rx_mac_rd <= 1’b0;
end
st_read : begin
if (Rx._mac_eop)
state <= st_finished;
else if (!Rx_-mac_ra)
state <= st_startup;
else
state <= st-read;
Rx_-mac_-packet_-ready <= 1’b0;
Rx_-mac-rd <= 1’bl;
end
st_finished : begin
if (Rx_-mac_get_packet & Rx_mac_eop)
state <= st_newpacket;
else if (Rx_mac_get_packet)
state <= st_startup;
else
state <= st_finished;
Rx_mac_packet_ready <= 1’bl;
Rx_mac_rd <= 1’b0;
end
st-newpacket : begin
if (!Rx-mac_ra)
state <= st_startup;
else
state <= st-read;
Rx_-mac_-packet_-ready <= 1’b0;
Rx_-mac_rd <= 1’bl;
end
endcase

endmodule
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Listing 6.12: top.v

N N R N A v a

// Copyright 2009 Michel Bieleveld (michel@zifnab.com)
//

// This file is part of the UDP/IP stack.

//

// The UDP/IP stack is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either wersion 8 of the License, or

// (at your option) any later wversion.

// The UDP/IP stack is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU Lesser General Public License for more details.

// You should have received a copy of the GNU Lesser General Public License
// along with the UDP/IP stack. If mnot, see <http://www.gnu.org/licenses/>.

//
N A AV A a

‘timescale 1ns / 1ps
module top (

input clk_50mhz_outside ,
output RS232_.DTE_TXD,
input RS232_DTE_RXD,
input E_RX_CLK,

input E_-TX_CLK,
output E_TX_ERR,
output E_TX_EN,

output [7:0] E_TXD,

input E_RX_ERR,

input E_RX_DV,

input [7:0] E_RXD,

input E_CRS,

input E_COL,

inout E_MDIO,

output E_MDC,

output strataflash_oe ,
output strataflash_ce ,
output strataflash_we ,
output led_rs ,

output led_orw ,

output lcd_e ,

inout [7:4] led-d

)3

assign strataflash_oe = 1’bl;
assign strataflash_ce = 1’bl;

assign strataflash_-we 1’bl;

wire [3:0] lcd_output_-data, lcd_input_data;
wire lcd_rw_control , lcd_drive;

assign lcd_d [7:4] (Tlecd-rw_control & lcd_drive) ? lcd_output_data : 4’hz;
assign lcd_rw (led-rw_control & lcd_drive);
assign lcd_input_data = lcd_d [7:4];

// global clocks

wire clk_50mhz;
wire LOCKED-OUT;
wire reset ;

// pip interface

wire [15:0] pip-tx-address;

wire [7:0] pip_-tx_data;

wire [15:0] pip-rx_address;

wire [7:0] pip-rx_data;

wire [7:0] pip-command_data;
wire [7:0] pip-command_address;
wire [7:0] pip-result_address;
wire [7:0] pip-result_data;

dcma instance_-dcm (
.CLKIN_IN(clk_50mhz_outside),
.RST_IN(reset ),
.CLKFX_OUT(clk_-50mhz) ,
.CLKIN_IBUFG_OUT (CLKIN.IBUFG_OUT) ,
.CLKO_OUT () ,
.CLK2X_OUT() ,
.LOCKED_OUT (LOCKED_OUT)
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)3

// Instantiate the module
pip instance_pip (
.clk_50mhz (clk_-50mhz),
.LOCKED.OUT (LOCKED.OUT) ,
.E-RX.CLK (E_.RX_-CLK) ,
.E_-TX_CLK (E_-TX_.CLK) ,
.E_-TX_ERR (E_.TX_ERR) ,
.E_-TX_EN (E.TX_EN),
.E_TXD (E-TXD) ,
.E_RX_ERR(E_.RX_ERR) ,
.E_RX_DV(E_RX.DV),
.E_RXD (E_RXD) ,
.E_CRS(E_CRS),
.E_COL(E_COL) ,
.E_MDIO (E_.MDIO) ,
.E.MDC(EMDC) ,

// DCM
.reset (reset ),
.reset_app (reset_app),

// Application Interface
.pip-new_frame (pip-new_frame) ,
.pip-tx_address(pip-tx_address),
.pip-tx_data(pip-tx_-data),
.pip-rx_address(pip-rx_address),
.pip-rx_-data (pip-rx_-data),
.pip-rx_we (pip-rx_we),

.pip-command_data (pip-command_data) ,
.pip-command_wr_en (pip-command_wr_en) ,
.pip-command_-address (pip-command_address),

.pip-result_rd_en(pip-result_-rd_en),
.pip-result_address (pip-result_address),
.pip-result_data (pip-result_data)

3

application instance_app (

.pip-address (pip-tx-address [10:0]) ,
.pip-data(pip-tx_-data),

.pip-address_rx (pip-rx_address [10:0]) ,
.pip-data_rx(pip-rx_-data),

.pip-wr_rx (pip-rx_-we),
.pip-enable(pip-tx_address [15]),
.pip-new_frame (pip-new_frame),
.pip-command_data (pip-command_data) ,
.pip-command_wr_en (pip-command_wr_en) ,
.pip-command_-address (pip-command_address),
.pip-result_rd_en(pip-result_rd_en),
.pip-result_address (pip-result_address),
.pip-result_data (pip-result_data),
.clk_50mhz (clk_50mhz),

.RS232_.DTE_TXD (RS232.DTE_TXD) ,
.RS232_.DTE_RXD (RS232_.DTE_RXD) ,

.reset (reset ),

.reset_app (reset_app),
.lcd_rw_control(lcd_-rw_control),
.led_drive (lcd_drive),
.lcd_output_data(lcd_output_data),
.lcd_input_data(lcd_input_data),
.lecd_rs(lecd-rs),

.lcd_e(lcd_.e)

)

endmodule

Listing 6.13: top_tf.v

‘timescale 1ns / 1ps

??//////////////////////////////////////////////////////////////////////////////

Company :
// Engineer:
//
// Create Date: 15:58:84 02/15/2009
// Design Name: top
// Module Name: C:/NoSpace/final_from_scratch/thesis/top_tf.v

// Project Name: thesis
// Target Device:

// Tool wersions:

// Description :
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//

// Verilog Test Fizture created by ISE for module: top
//

// Dependencies :

//

// Revision:
// Revision 0.01 — File Created
// Additional Comments:

//
A S N N Ve

module top_tf;

// Inputs
reg clk_50mhz_outside;

reg RS232_.DCE_RXD;
reg RS232_.DTE_RXD;

// Outputs
wire RS232_DCE_TXD;
wire RS232_.DTE_TXD;

// Instantiate the Unit Under Test (UUT)

top uut (
.clk_-50mhz_outside (clk_-50mhz_outside),
.RS232_DCE_TXD (RS232.DCE_TXD) ,
.RS232_.DCE_RXD (RS232.DCE_RXD) ,

RS232_DTE_TXD (RS232.DTE_TXD) ,

.RS232_.DTE_RXD (RS232_.DTE_RXD)

)

initial begin

clk_50mhz_outside = 0;

forever #20 clk_50mhz_outside = “clk_50mhz_outside;
end

initial begin
// Initialize Inputs

RS232_.DCE_RXD
RS232_.DTE_RXD

0;
0;

// Wait 100 ns for global reset to finish
#100;

// Add stimulus here
end

endmodule

Listing 6.14: tx_packet.v

‘timescale 1ns

??/é//////////////////////////////////////////////////////////////////////////////
ompany

// Engineer:

//

// Create Date: 10:45:06 07/16/2007
// Design Name:

// Module Name: tz_packet

// Project Name:
// Target Devices:
// Tool wersions:
// Description :

// Dependencies :
// Revision:

// Revision 0.01 — File Created
// Additional Comments:

//
//////////////////////////////////////////////////////////////////////////////////

module tx_packet

input clk
input clk,mem s
input reset ,

//user interface
input [10:0] Tx.mac_addr,

input [7:0] Tx_mac_data ,
output [7:0] Tx-mac_-data_rd ,
output TX_mac-eop-bit ,
input Tx_-mac-write ,
input Tx_-mac-send ,

input Tx-mac-is_-last_byte ,
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input Tx_-mac_-top-half,

output reg Tx-mac_-packet_ready ,
//internal interface

input Tx_-mac_wa ,

output reg Tx_mac_-wr ,

output reg [31:0] Tx-mac-data-int,

output reg [1:0] Tx-mac-BE,

output Tx_mac_sop ,

output reg Tx_mac_eop

)s

wire [3:0] eop-byte;

wire [31:0] Dout;

reg Tx_mac_sop_-delay [2:0];

reg Tx_mac_sop-delay_in = 0;

reg [8:0] mem_addr = 0;

reg mem_addr_reset = 0;

reg mem_addr_count = 0;

reg Tx_mac_-wr_ = 0;

reg top-half_internal = 0;

always Q(posedge clk)
if (eop-byte[3] | eop-byte[2] | eop-byte[l] | eop-byte[0])
top-half_internal <= 1’b0;
else if (Tx_mac_top_half)
top-half_internal <= 1’bl;

always @(posedge clk)
if (mem_addr_reset)
mem_addr <= {top_-half_internal , 8’b00000000 };
//mem_addr <= 0;
else if (mem_addr_count)
mem_addr <= mem_addr + 1;

always Q(posedge clk)
Tx_mac_eop <= eop-byte[3] | eop_-byte[2] | eop-byte[l] | eop-byte[O0];

always Q(posedge clk)

case (eop-byte)
4’b0001: Tx-mac.BE <= 2’b01; // 01
4°b0010: Tx-mac.BE <= 2’'b10; // 10
4’b0100: Tx.mac.BE <= 2’bll; // 11
4°b1000: Tx_mac.BE <= 2’b00; // 00
default: Tx_mac.BE <= 2’b00;

endcase

always @(posedge clk)
Tx_mac_.data_int <= {Dout[7:0] ,Dout[15:8] ,Dout[23:16],Dout[31:24]};

SRL16 #(
JINIT (16 h0000)

) SRL16_inst (
.Q(Tx_-mac_sop),
LA0(1°b0),
LA1(1°b0),
JA2(1°b1),
.A3(1°b0),
.CLK(clk),
.D(Tx_-mac_sop-delay_in)

)

parameter st_finish
parameter st_startup
parameter st_initmem
parameter st_send
parameter st_wait

8’b00000001 ;
8’b00000010;
8’b00000100;
8’b00001000;
8’b00010000 ;

(* FSM_ENCODING="ONE-HOT” , SAFEIMPLEMENTATION="NO” x) reg [7:0] state = st_finish;

always@ (posedge clk)
(* FULL_-CASE, PARALLEL.CASE %) case (state)
st_finish : begin
if (Tx_-mac_send)
state <= st_startup;

else
state <= st_finish;
Tx_mac_wr <= 1’b0;

Tx_-mac_.sop-delay_in <= 1’bl;
Tx_mac_packet_ready <= 1’bl;
mem_addr_reset <= 1’bl;
mem_addr_count <= 1’b0;
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end

st_startup: begin
state <= st_-initmem;
Tx_-mac_-wr <= 1’b0;

Tx-mac-sop-delay_in <= 1’b0;
Tx-mac-packet_-ready <= 1’b0;

mem-_addr_reset <= 1’b0;
mem_addr_count <= 1’b0;
end
st_initmem: begin
state <= st_send;
Tx_mac_wr <= 1’b0;

Tx_mac_sop-delay_in <= 1’b0;
Tx_mac_packet_ready <= 1’b0;

mem_addr_reset <= 1’b0;
mem_addr_count <= 1’b0;
end
st_.send: begin
if (eop-byte[0] | eop-byte[l] | eop-byte[2] | eop-byte[3])

state <= st_finish;
else if (!Tx_mac_-wa)
state <= st_wait;

else
state <= st_startup;
Tx-mac-wr <= 1’bl;

Tx_mac_sop-delay_in <= 1’b0;
Tx_mac_packet_ready <= 1’b0;
mem_addr_reset <= 1’b0;
mem_addr_count <= 1’bl;
end
st_wait: begin
if (Tx_mac_wa)
state <= st_startup;
else
state <= st_wait;
Tx_mac_-wr <= 1’b0;
Tx-mac-sop-delay_in <= 1’b0;
Tx_-mac-packet_-ready <= 1’b0;

mem_addr_reset <= 1’b0;
mem_addr_count <= 1’b0;
end
endcase

// RAMB16.S9.536: Virtex—II/II—Pro, Spartan—8/3E 2k/512 x 8/82 + 1/4 Parity bits Parity bits
// Xilinz HDL Language Template, wversion 9.11

RAMB16_S9_S36 #(

VINIT_-A (9°h000), // Value of output RAM registers on Port A at startup
JINIT_B (36 °h000000000), // Value of output RAM registers on Port B at startup
.SRVAL_A (9 ’h000), // Port A output wvalue upon SSR assertion

.SRVAL_B (36 h000000000), // Port B output wvalue upon SSR assertion

.WRITEMODE_A ("WRITE_FIRST” ), // WRITE_FIRST, READ_FIRST or NO.CHANGE
.WRITE.MODEB(”WRITE_FIRST” ), // WRITE_.FIRST, READ_FIRST or NO.CHANGE
.SIM_COLLISION_.CHECK (”ALL"” ), // ”NONE”, "WARNING-ONLY”, ”"GENERATE_X_ONLY”, ”ALL”

// The following INIT_zz declarations specify the initial contents of the RAM
// Port A Address 0 to 511, Port B Address 0 to 127
.INIT-00(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT-01(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_02(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_03(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_04 (256 >h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_05(256>h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_06 (256 >h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_07(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_08(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_09(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_0A (256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_0B (256 ’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_0C (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_0D (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_0OE (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_OF (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
// Port A Address 512 to 1023, Port B Address 128 to 255
JINIT-10(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT-11(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT-12(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_13(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_.14 (256 >h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT.15(256>h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT.16 (256 >h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_17(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_18(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_19(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_1A (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_1B (256 ’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_1C (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,

Dual—Port RAM
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JINIT_1D (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_1E (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_1F (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
// Port A Address 1024 to 1535, Port B Address 255 to 383

.INIT-20(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT-21(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT-22(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_23(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_24 (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_25(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT.26 (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT.27(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
CINIT_28 (256 h0000000000000000000000000000000000000000000000000000000000000000) ,
CINIT-29 (256 h0000000000000000000000000000000000000000000000000000000000000000) ,
JINIT_2A (256 >h0000000000000000000000000000000000000000000000000000000000000000) ,
JINIT_2B (256 °h0000000000000000000000000000000000000000000000000000000000000000) ,
JINIT_2C (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_2D (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_2E (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_2F (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
// Port A Address 1536 to 2047, Port B Address 884 to 511

.INIT-30(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT-31(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT-32(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT-33(256’h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_34(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT.35(256>h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT.36 (256 >h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_37 (256 >h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_38(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
.INIT_39(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
CINIT_3A (256 h0000000000000000000000000000000000000000000000000000000000000000) ,
JINIT_3B (256 °h0000000000000000000000000000000000000000000000000000000000000000) ,
JINIT_3C(256°h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_3D (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_3E (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,
JINIT_3F (256 °h0000000000000000000000000000000000000000000000000000000000000000 ) ,

// The next set of INITP_zxz are for the parity bits

// Port A Address 0 to 511, Port B Address 0 to 127
.INITP_00(256°>h0000000000000000000000000000000000000000000000008000000000000000) ,
.INITP_01(256°>h0000000000000000000000000000000000000000000000000000000000000000) ,
// Port A Address 512 to 1023, Port B Address 128 to 255
.INITP_02(256°h0000000000000000000000000000000000000000000000000000000000000000) ,
.INITP_03(256°h0000000000000000000000000000000000000000000000000000000000000000) ,
// Port A Address 1024 to 1535, Port B Address 256 to 3883
.INITP_04(256>h0000000000000000000000000000000000000000000000000000000000000000) ,
.INITP_05(256>h0000000000000000000000000000000000000000000000000000000000000000) ,
// Port A Address 1536 to 2047, Port B Address 384 to 511

.INITP_06 (256 >h0000000000000000000000000000000000000000000000000000000000000000) ,
INITP_07 (256 h0000000000000000000000000000000000000000000000000000000000000000 )

) RAMB16_S9_S36_inst (

.DOA(Tx_mac_data_rd), // Port A 8—bit Data Output
.DOB(Dout) , / Port B 32— bit Data Output
.DOPA(TX_mac-eop-bit), // Port A 1—bit Parity Output
.DOPB(eop-byte), // Port B 4—bit Parity Output

.ADDRA( Tx-mac-addr) , // Port A 11—bit Address Input
.ADDRB(mem_addr) , // Port B 9—bit Address Input
.CLKA(clk), // Port A Clock

.CLKB(clk), // Port B Clock

.DIA(Tx-mac_data), // Port A 8—bit Data Input
.DIB(32’h00000000), // Port B 32— bit Data Input
.DIPA(Tx_-mac_is_last_byte), // Port A 1—bit parity Input
.DIPB(4'h0), // Port—B 4—bit parity Input
.ENA(1’bl), // Port A RAM Enable Input
.ENB(1’bl), // Port B RAM Enable Input
.SSRA(1’b0), // Port A Synchronous Set/Reset Input
.SSRB(1°’b0), // Port B Synchronous Set/Reset Input
.WEA(Tx_mac_write) , // Port A Write Enable Input
.WEB(1’b0) // Port B Write Enable Input

)5

endmodule



