
Preserving Performance in
Anomaly Detection Models for
Real-Time Univariate Streams

Master Thesis

Natalia Karpova

Preserving Performance in Anomaly Detection
Models for Real-Time Univariate Streams

Master Thesis
by

Natalia Karpova
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday July 4, 2022 at 11:30 AM.

Student number: 5243424
Project duration: September 1, 2021 – July 4, 2022
Thesis committee: Associate Prof. dr. ir. J. A. Pouwelse, TU Delft, (Chair)

Prof. Dr. J. S. Rellermeyer, Leibniz University Hannover and TU Delft, (Supervisor)
Assistant Prof. dr. L. M. da Cruz, TU Delft
Msc. L. Poenaru-Olaru, TU Delft, (Supervisor)

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

This thesis research was conducted in collaboration with ING Netherlands and concluded my two-year expe-
rience as a master’s student at TU Delft. I would like to sincerely thank my supervisors, Prof. J. S. Rellermeyer
and L. Poenaru-Olaru, for providing immeasurable support and teaching me to structure my research ap-
proach during the project span. I wish to thank my ING team leads, Pinar Kahraman and Evert Van Doorn,
as well as the whole AIOps I3 team for helping me throughout the year with shaping my research ideas, col-
lecting relevant data, and for providing an amazing working environment. I would also love to thank all my
friends and family for their constant moral support and encouragement.

iii

Abstract

Anomaly detection has gathered plenty of attention in the previous years. However, there is little evidence
of the fact that existing anomaly detection models could show similar performance on different streaming
datasets.

Within this study, we research the applicability of existing anomaly detectors to a wide range of univariate
streams. We identify main dependent factors with time series that might influence the difference in perfor-
mances of popular anomaly detection models across different streams, namely, time series features, data
drifts, and disorder. We explore the effects that each of the dependent factors has on the performance of
selected anomaly detectors. Based on our findings, we propose an adaptive threshold technique that moni-
tors time series disorder. This technique can be integrated into built-in threshold of various anomaly detec-
tors. We show the usability of the proposed method in improving the performance of the models on selected
datasets.

v

Contents

Acknowledgements iii

Abstract v

List of Figures ix

List of Tables xi

I Preliminaries 1

1 Introduction 3
1.1 Problem Description . 3
1.2 Research Questions . 4
1.3 Contributions . 4
1.4 Objectives and Constraints . 4

2 Background 5
2.1 Time series . 5
2.2 Time Series Features . 5
2.3 Univariate Streaming Data . 6
2.4 Anomalous Data . 6
2.5 Anomaly Detection . 7
2.6 Monitoring Services. 9

3 Related Work 11
3.1 Time Series Feature Extraction . 11

3.1.1 FFORMA Approach . 11
3.1.2 Catch22 Approach . 11

3.2 Machine Learning Techniques for Anomaly Detection in Time Series 12
3.2.1 Grouping of Machine Learning Methods for Anomaly Detection. 12
3.2.2 Novel methods . 13

3.3 Selected Models. 13
3.3.1 SARIMA . 13
3.3.2 Long Short-Term Memory Auto-Encoder . 14
3.3.3 Spectral Residuals . 15
3.3.4 Particle Swarm Optimization of Extreme Learning Machines 17

3.4 Drift Detection in Time Series. 18
3.4.1 Drifted Data . 18
3.4.2 Drift Detectors . 19

3.5 Time series disorder. 20
3.5.1 Selected Entropy: Singular Value Decomposition . 20

II Experiments 23

4 Data 25
4.1 Publicly Available Data . 25

5 Experiments and Analysis 27
5.1 Model Evaluation . 27
5.2 Statistical Testing for Significance . 27
5.3 Base Models’ Performance . 28
5.4 Data Analysis . 30
5.5 Drift Adaptation. 32

vii

viii Contents

5.6 Entropy analysis . 33
5.7 Comparison to state-of-the-art models . 38
5.8 Evaluation of online models . 39

III Discussion and Conclusions 41
5.9 Discussion . 43
5.10 Future Work. 44
5.11 Conclusion . 44

Bibliography 47

List of Figures

2.1 Different types of time-series. [72] . 6
2.2 Three main types of anomalies: point (global) anomaly (left), collective anomaly (middle), con-

textual anomaly (right) [51] . 7
2.3 Contextual anomaly t2 in a temperature time series. Temperature at time t1 is same as that at

time t2 but occurs in a different context and hence is not considered as an anomaly. [27] 8
2.4 Screenshot of a layout of Grafana service. 8

3.1 Auto-Encoder representation (from TowardsDataScience). 14
3.2 LSTM cell visualization (from [9]) . 15
3.3 Fourier transform of cosine summation function

∑5
i=1 ncos(nw t) (from Wikipedia) 16

3.4 Example of SR model results (from [72]) . 17
3.5 Graphical representation of particle swarm optimization algorithm (from Medium) 18
3.6 An example of concept drift in time series data caused by COVID’19. Normal old behavior is

plotted by black dashed line with red line representing true drifted behavior. 19
3.7 Singular Value Decomposition of matrix A (from Medium). Diagonal entries (dark blue) in Σ are

singular values of A. 20

5.1 Schematic representation of training/testing procedure. All labels from test batches are col-
lected and recorded and then used all together for the final F1-score calculation. 28

5.2 Schematic representation of evaluation of change in base model performance on time series
data via per-batch hamming distance. 33

5.3 Example of how entropy model pops out anomalous batches. Accepted boundaries are shown
with dashed grey lines, blue color of a batch indicates 0 anomalies whereas red color indicates
presence of anomalies within a batch. 34

5.4 An examples of dynamic threshold adaptation for LSTM AE. Threshold is shown by the red line
and is applied on LSTM AE forecasting loss. 35

5.5 Colormap of entropy model performance on public datasets (Yahoo, NAB, KPI) with varying
window sizes and factor values. Colorbar indicates F1-score performed in batched fashion with
the corresponding window size. 36

5.6 Per-batch F1-score of PSO-ELM model with various thresholding techniques on a KPI time series. 40

ix

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://en.wikipedia.org/wiki/Fast_Fourier_transform####/media/File:FFT_of_Cosine_Summation_Function.svg
https://medium.com/@iamterryclark/swarm-intelli-eb5e46eda0c3
https://medium.com/@mukesh.mithrakumar/singular-value-decomposition-with-tensorflow-2-0-af36fa31c772

List of Tables

5.1 Candidate base detectors with corresponding classes from Section 3.2.1. 28
5.2 Base models’ F1-scores on Yahoo A1 dataset. 29
5.3 Overall performance of top base models on public data. 29
5.4 Overall performance of top base models on public data with and without optimization. -optim

column corresponds to the tuned model. 29
5.5 Selected types of measures for distances between probability density functions from each of

base classes from [26] . 31
5.6 Distance measures between the datasets via 8 different distance measures between pdfs of their

features. 31
5.7 Similarities in ranking via 8 different distance measures among Yahoo, KPI and NAB datasets. . 32
5.8 Average change of per-batch Hamming loss before first and after the last anomaly encounters

in time series. 32
5.9 F1-score on test set for models with and without drift adaptation, where DA = drift adaptation . 33
5.10 Drift detectors that yield highest performance in combination with anomaly detector on se-

lected datset. Drift detectors in bold improve performance in relation to anomaly detector
without drift adaptation. 33

5.11 Analysis of anomaly detection per-batch performance of various entropy measures from Sec-
tion 3.5. 35

5.12 Per-batch performance analysis of toy entropy model versus 3 best-performing baseline models
from Section 5.3. 35

5.13 Performance of tuned models with built-in (BT) and entropy (ET) threshold strategies on pub-
licly available data. 37

5.14 Performance of raw models with built-in (BT) and entropy (ET) threshold strategies on publicly
available data. 37

5.15 Performance of raw models with built-in (BT) and entropy (ET) threshold and with the most
applicable drift detector from Table 5.10 (if any) on publicly available data. "-" indicates that
drift adaptation did not improve model performance (see Table 5.10) and, therefore, entropy
threshold has not been tested in such settings. 37

5.16 P-values of Wilcoxon Signed Rank Test performed on F1-score distributions (with and without
entropy threshold) of raw and optimized models per dataset. 37

5.17 Average F-measure values obtained for Numenta Anomaly Benchmark stream data using the
unsupervised anomaly detectors (marked with *) presented in [56] and using proposed PSO-
ELM-ET detector. The results in bold are the best for each data files category. The results for the
detectors marked with * were reported in [56]. 39

18 Full set of time series features used for correlation analysis. 45

xi

I
Preliminaries

1

1
Introduction

1.1. Problem Description
Anomaly detection is a process of finding outliers or abnormalities within data. Since many modern services
work with big data and rely on (semi)automatic techniques for data processing, automated anomaly detec-
tion has become a hot topic in the IT community in recent years. Modern services, as banks, often work
with big data streams that require real-time processing and monitoring of the performance metrics or other
relevant indicators. As the consequence of the above, one of the booming branches of anomaly detection
services is incident analysis in real-time data streams.

Many research efforts have been done in the direction of analyzing online data streams and real-time in-
cident detection. LinkedIn [2], Yahoo [48], Microsoft [72], and Facebook [4] - all these industries conduct own
research projects in online anomaly detection and proposed own detective models. Usually it is extremely
resource-consuming to obtain anomaly labels of data streams[72], and the above mentioned frameworks
prioritize the usage of so-called unsupervised methods in which machine learning algorithms do not require
any ground truth labels for training. In this work we as well concentrate our attention on unsupervised meth-
ods for anomaly detection in streaming data due to its particular importance in monitoring automation.

Albeit there has been a high interest to online anomaly detection in recent years with the continuous
appearing of newer incident detectors in scientific literature, studies in this area suffer from several issues,
from our point of view:

First of all, newly proposed models are not always evaluated in streaming scenario (sliding window sce-
nario) [62], [48], [80] and there exists little to no consensus in the community on the exact evaluation setup
for real-time streams.

There is little agreement on what test settings should qualify for near real-time processing: some of the
works develop their detectors to predict one-point-ahead anomalies [72], [97] and, therefore, can be consid-
ered as real-time detectors. Nonetheless, other works [22] detect anomalies in per-batch scenario, where the
detector waits until time points fill in the batch of a certain size, and only then makes anomaly prediction on
the whole batch.

Lastly, we found a lack of clarity about the generalizability of the proposed models. Generalizability refers
to the ability of anomaly detectors to exhibit a comparable performance over different set of streams. Even
though there exists only limited amount of publicly accessible data of univariate time series with anomaly
labels, many research papers do not test their models on all of the dataset or they rather pick only certain
time series from those datasets [39], [72], [97], [56], [62]. As the result, models proposed by different research
projects can not be compared over full set of available data.

All of the above issues add obstacles to creating an organized overview of the existing methods, and their
applicability across different streaming settings. Our study attempts to tackle this problem by performing a
generalizabiltiy study in which we have structured and tested a wide range of unsupervised online anomaly
detectors on a large set of public time series data. We researched how well different models adapt to various
time series data, and what time series factors might influence generalizability of the detective models. Based
on the observations collected during our generalizabiltiy study, we exploited our findings by identifying the
obstacles in time series nature that prevent model generalization to different streams. We proposed the ways
to tackle identified problems as well as we exploited our findings by suggesting a new adaptive threshold

3

4 1. Introduction

technique for near real-time anomaly detection applicable to a range of models and data streams. We test our
thresholding technique in combination with the best-performing anomaly detectors on three public bench-
marks which include a total of 12 datasets. Based on our exploratory analysis, we select a single final online
anomaly detector, and we compare the performance of our final model against state-of-the-art alternatives.

1.2. Research Questions
1. Is the anomaly detectors’ performance preserved across different streaming scenarios?

2. Which time series factors influence the performance differences?

3. How can we diminish the effects of these factors?

1.3. Contributions
The contribution of this work consists of several parts:

1. This work starts by structuring conventional models for unsupervised anomaly detection in univari-
ate streams into own groupings, and researches their applicability into various online scenarios. We
compare performance of anomaly detectors over wide range of datasets in order to identify their gen-
eralizability.

2. We analyze possible influences of behaviors and factors found within time series data on the predictive
performance of anomaly detectors. We structure possible series factors into 3 main categories, and we
research each category separately.

3. By exploiting the results of our analysis, we propose a thresholding technique that can be combined
with existing anomaly detectors. We research how the addition of such thresholding technique in-
fluence the performance of existing base detectors. We also report the results in comparison to the
state-of-the-art predictive models.

4. Finally, we discuss the applicability of conventional evaluation techniques in the domain of online
streaming data, and discuss the alternatives.

1.4. Objectives and Constraints
Here we discuss the concrete requirements and constraints in our work:

1. Our work looks solely into univarite type of time series with one dependent variable changing over the
flow of time.

2. We work only with completely unsupervised anomaly detectors since this class of machine learning
techniques requires minimal human intervention into training process and, therefore, more resource-
optimal. This also means we do not perform any hyperparameter tuning.

3. In our experiments we test our models in online settings by emulating sliding window scenario over a
stream. We test both: single point anomaly detection as well as batch (interval) anomaly detection of
the incoming data.

4. Since we are working with online scenario, we strive to keep anomaly predictions as near real-time case,
meaning we allow maximum delay of our models to be below 100 timestamps in future. Depending on
the dataset granularity, exact window size may vary per case.

5. We are interested by not limiting our research to the use-case of machine metrics. Since anomaly la-
beling by experts is resource-consuming exercises, there exists only limited amount of publicly avail-
able datasets with such types of data, and the true nature of time series is not always known for such
datasets. Completely limiting ourselves to only one type metrics would mean that we need to exclude
large parts of available data and, therefore, weaken our analysis.

2
Background

2.1. Time series
Time series are series of data points measured over time. These points are indexed over certain periods of
time, or lags. Lag is a fixed but not necessarily minimal amount of passing time between time series points.

Univariate time series are represented by a single observation or variable that changes over time, whereas
multivariate time series keep track of several time-dependent variables varying over time. This study looks in
the case of univarite time series only.

Mathematically, univariate time series can be represented as a collection of observations over period of
time. One of the notation that is used for time series analysis is shown in equation 2.1 and represents a time
series X that is indexed by natural numbers.

X = (X 1, X 2, ...) (2.1)

Another widely used notation is shown in equation 2.2 with T represents time set.

Y = (Yt : t ∈ T), (2.2)

2.2. Time Series Features
Time series differ in their shapes and sizes, and such differences can be quantified via time series features. In
general, time series data has core components as seasonality, trend, and cycle. By seasonality, the variation
in time series behavior with a period less than a year is referred, whereas more long-lasting variations in
behavior are called cycle. Trend represents a moving (increasing or decreasing) pattern in time series.

Below, we describe examples of some well-known time series features.

1. Autocorrelation is the similarity between observations as a function of the time lag between them. Au-
tocorrelations shows how different lagged versions of the same time series correlate to each other.

2. Seasonality refers to the periodic fluctuations that fit below one year interval. For instance, time series
of electricity consumption will be higher over colder months of the year showing seasonal pattern.

3. Stationarity, on its turn, refers to the case when characteristics of time series do not change over time
but stay fixed. Stationarity is usually determined by measuring mean, variance and covariance of a time
series over some period: if these values stay steady, then time series is said to be stationary.

4. Trend represents general incline of data over higher or lower values. Often, trend is associated with
slope of data that is not disrupted by seasonal behavior.

Graphical example of time series with various properties are shown in Figure 2.3.
Furthermore, as many as thousands of different metrics can be extracted from time series data with the

newer properties appearing over time [32]. Such features may include some base properties as kurtosis, or
more novel metrics as, for instance, Wang periodicity measure. [92]

5

6 2. Background

Figure 2.1: Different types of time-series. [72]

2.3. Univariate Streaming Data
Data streams are the flows of data points (single point per timestamp in case of univariate streams) with new
observations appearing gradually over time usually (but not always) with fixed time intervals. Distance be-
tween adjacent time series points is called time series granularity. Time series granularity is use-case specific
and can vary from milliseconds to days, month or years. For instance, when talking about data streams in
medical equipment such as cardiology monitoring software [5] or machine metrics monitoring tools such as
CloudWatch [1], time series granularity usually falls below 1 hour interval since it is crucial for these systems
to get prompt observations and react timely. On the other hand, for tracking trends such as admissions of
patients to intensive care [8] or stock market analysis on a long distance [6], granularity of days, weeks or
month might be used.

The main challenges in working with such kind of data is that new observations appear gradually over
time and it is impossible to have a look in future to collect missing data. In addition, since the process happen
in real time, software tools must be fast enough to perform given task within time interval before getting new
observation. Lastly, data might change its behaviour or its structure over time, consequently, arising the need
for software tools that work with this data to be capable of adjusting themselves to the incoming flow changes
in real time.

2.4. Anomalous Data
Generally, anomalies are considered to be the parts of data that do not fit into expected or accepted behavior
as judged by the previously collected instances. Due to complexity of identifying what does and what does
not fall under normal behavior of data, in many cases anomaly identification is subjected to human expertise.

On a higher level, it is widely accepted to classify anomalies (including time series anomalies) into three
major groups [79] that are sketched in Figure 2.2 and explained below:

1. Point or Global Anomalies: anomaly is represented by a single point within a time interval which be-
haves differently in relation to the rest of time series points.

2. Collective Anomalies: anomaly is represented by a group of consecutive points with unexpected behav-
ior in relation to the rest of time series.

3. Contextual Anomalies: anomaly can be a combination of single-point and group anomalies that have
similar behavior to the rest of the time series but considered to be abnormal under specific circum-
stances or in a particular context.

Point or global anomalies represent the simplest type of anomalies [45] and they are researched more
broadly in a scientific society. Contextual anomalies are more complex types of anomalies due to the fact
that their normality depends upon underlying data knowledge or context. For example, a fluctuation of daily
temperature around 30◦C is not considered to be abnormal in the world unless such temperature is recorded
in Canada in winter period. An example of contextual anomaly within time series is shown in Figure 2.3.

2.5. Anomaly Detection 7

Figure 2.2: Three main types of anomalies: point (global) anomaly (left), collective anomaly (middle), contextual anomaly (right) [51]

Contextual anomaly behavior is induced by the structure of time series that has been observed before. Such
structure can be define via the attributes of 2 types [27]:

Point and collective anomalies are determined using the values of behavioral attributes whereas, in order
to identify contextual anomalies, contextual attributes are used. There is a rising interest to the detection of
contextual anomalies, especially in the time series data [14], [56], [62].

1. Contextual Attributes are described as the context or neighbourhood of a time series point: it is time
coordinate that determines the position of corresponding point in a time series.

2. Behavioral Attributes are non-contextual characteristics of a time point. For example, monthly temper-
ature in winter in Amsterdam, Netherlands describes normal behavior of temperature data.

Anomaly classifications in time series are not limited to the three categories from [79]. More recent studies
proposed to distinguish between dependent time series variable type (categorical or numerical) as well as to
classify anomaly based on how its behavior corresponds to the rest of time series [31]. Nevertheless, such
classification rely heavily on human expertise and, to the best of our knowledge, has little applicability into
unsupervised use case.

2.5. Anomaly Detection
The process of anomaly detection strives to identify unexpected and undesired behavior in data. It can be
defined as below [72]:

Given a sequence of time series real-valued points x=(x1, x2, ...), the aim of time series anomaly detection is
to produce the output y=(y1, y2, ...) of equal length in which yi denotes the anomaly label for time series point
xi at time i with yi ∈ 1, 0.

Generally, automated methods for anomaly detection rely on statistical or machine learning techniques.
Depending on availability of labels in data, anomaly detection methods can be classified into the following
categories:

1. Supervised Anomaly Detection makes full use of anomaly labels in data. Supervised methods are both
trained and evaluated using anomaly labels. Both classes of labeled instance, normal and anomalous,
must be provided within the training data in order for supervised methods to be reliably trained. The
main challenges of supervised methods are related to the fact that anomalies are far fewer compared
to normal points which leads to imbalanced class distribution problems [66]. Secondly, there is a big
challenge in obtaining representative labels for abnormal points [27]. Several techniques are present
that tackle this problem by injecting artificial anomalies into the normal data streams, yet it is still not
known how representative artificial anomalies are of a class of real-world anomalies in a particular time
series.

2. Semi-supervised Anomaly Detection. Semi-supervised methods require only normal instances to have a
label leaving anomalous points out. In addition, there exists only limited set of semi-supervised meth-

8 2. Background

Figure 2.3: Contextual anomaly t2 in a temperature time series. Temperature at time t1 is same as that at time t2 but occurs in a
different context and hence is not considered as an anomaly. [27]

ods that requires anomalous instances to be labeled for training [28]. Due to smaller amounts of label-
ing labour required for creating such models, they are generally more widely applicable in industry.

3. Unsupervised Anomaly Detection. This class of techniques do not require anomaly labels and, hence, is
the most broadly applicable method out of all 3.

Depending under which category an anomaly detection method falls, different techniques for training
and anomaly labeling are used. In case of supervised anomaly detection, a typical approach is to build a pre-
dictive model that oppose normal and anomalous classes represented by the labeled instances in a training
data. Anomaly detector then learns the inner representation of this classes which differs depending on the
exact technique that is chosen.

Semi-supervised methods, similarly to supervised methods, construct class representation but only of a
single (normal) class. Then such methods are trying to find anomalies in test date basing their predictions on
normal class only.

Lastly, many unsupervised methods make an implicit assumption that anomalous data is far less frequent
than normal instances and try to distinguish fewer anomalous points based on the characteristics that pop
out. If the implicit assumption of the quantity of anomaly points within data is wrong, unsupervised methods
typically suffer from high false positive rate. [27].

It is hard to generalize the set of all existing anomaly detection techniques under limited set of categories
- the above overview is a general outline of the most widely used base methods in the field. More detailed
description and classification of anomaly detectors is given in Section 3.2.

Figure 2.4: Screenshot of a layout of Grafana service.

2.6. Monitoring Services 9

2.6. Monitoring Services
Streaming data is used in monitoring frameworks that are programmed to track incoming streaming values
and perform desired operations in real time on the input values before sending it to an end user. Many au-
tomated services require own monitoring routines in order to track performance or health indicators [72].
Monitoring services can simply visualize incoming streams to an end-user, calculate some performance met-
rics and aggregate values in time, or detect and alert once the behavior of the interest has been encountered.
An example layout of monitoring service application is shown in Figure 2.4.

There are several challenges in designing and deploying monitoring services which are currently con-
fronted by the research community, and the solutions are in active research.

1. Lack of labels. Anomaly detection requires domain expert to define the notion of anomaly as well as
to label example metrics in order to obtain validation data for service creation, tuning and evaluation.
Since anomalies are considered to be rare events within data, in order to get reliable evaluation of an
end product, it is necessary to have many time points labeled by human experts. This puts an import
constraint on monitoring service development in production scenario.

2. Generalization. Streaming metrics of various nature and type can be of an interest to an end-user.
Building a tailor-made monitoring services per every stream is extremely inefficient and time consum-
ing. In addition, it would require data labels to be provided by human experts per a stream of interest.
Therefore, there is a huge demand for generalizable monitoring models that can be applied into various
streaming scenarios with no prior optimization.

3. Efficiency. Monitoring system should be capable of processing of thousands of different streams in a
real time. When the granularity of time series is small (in order of seconds or minutes), what is usually
the case with monitoring of business or health metrics, it puts important challenges and constraints to
the development of the monitoring model which should be fast enough to perform all this tasks.

Due to the Lack of Labels constraint, unsupervised anomaly detection methods are being studied more
broadly. However, the research focus is not limited by unsupervised machine learning techniques due to the
complexity of the problem. Yet, in this work we focus on unsupervised methods due to their wider applica-
bility.

3
Related Work

In this chapter we introduce previous works and findings that are relevant to our research domain. We start by
explaining modern extraction techniques for time series feature, that we later use in our generalizability anal-
ysis (Section 3.1). We then proceed by defining the main categories of machine learning models for anomaly
detection: we introduce own groupings of such models based on literature survey, and we provide examples
of the most popular methods in each category in Section 3.2.1. In Section 3.2.2, we explain state-of-the-art
machine learning methods for anomaly detection. In the last Section 3.3, we give in-depth overview of the
inner workings of our base models. We test and define our base models during the first stage of experiments
described in Section 5.3.

3.1. Time Series Feature Extraction
As many as several thousands different time series features can be extracted from time series data. There
exists many publicly available services and libraries for time series feature extraction and analysis, with hctsa
[32] being one of the most well-known. hctsa is tailored for Matlab and provides more than 7000 proper-
ties for time series extraction. Extracting such amounts of features from lengthy time series and performing
exploratory analysis upon them is resource-consuming. Therefore, attempts has been made to overcome
the necessity of analyzing whole set of features by identifying the most influential and representative ones.
Several studies provide reduced sets of time series features for faster and less-expensive time series analy-
sis [48], [93], [60]. Not rarely, studies then analyse correlations between extracted time series properties and
the performances of anomaly detectors on the corresponding time series. For instance, Wang et. al. made
an attempt to induce rules for selecting the most optimal time series forecasting model based on time se-
ries features such as trend, seasonality, periodicity, serial correlation, skewness, kurtosis, non-linearity, self-
similarity, and chaos [93]. Lately, Yahoo research group based their EGADS systems for anomaly detection
within time series [48] on the features derived in Wang et. al. research.

Usually, extraction of a subset of representative features is done manually and is based on one’s own ex-
pertise [61], [91]. Yet, there exist sets of prominent features extracted in alternative ways [54]. In this study, we
decided to focus on feature sets proposed by 2 different extraction approaches, namely, FFORMA approach
and Catch22 approach that are described in depth below.

3.1.1. FFORMA Approach
FFORMA is a complete system for anomaly detection that make use of time series features. Features are
extracted as a preprocessing step and then they are exploited during prediction phase [60]. FFORMA includes
ensemble of meta learners to predict anomalies and uses their weighted combination based on extracted
features. We use only preprocessing part of the system to compute time series features. The total amount
of FFORMA features is 42 and listed in Appendix 18. These features are subjective to manual selection and
derived from the lists proposed by Hyndman et. al. in 2015 [41] and Talaga et. al. in 2018 [86].

3.1.2. Catch22 Approach
Catch22 approach starts by analyzing all dynamic time series properties present in hctsa package [54]. It
then finds principal components, or the most representative groups of features, among the complete set of

11

12 3. Related Work

hctsa features. The reduced set of time series features is extracted by analyzing performance of classification
models on a large set of time series classification tasks. In such settings, the most representative features tend
to exhibit strong correlation to classification performance across the given collection of time series problems.
The final list of features is present in Appendix 18. Later study confirms that Catch22 extracts features with
the lowest redundancy as compared to other available feature extraction packages on a different classification
task [36]. The total amount of Catch22 features is 22, and they are listed Appendix 18.

3.2. Machine Learning Techniques for Anomaly Detection in Time Series
Several previous studies [87], [57], [64] have proposed classifications of machine learning models for anomaly
detection into definitive groups. Usually such classifications share many categories in common, as for in-
stance, deep learning methods or ETS methods. However, different taxonomies do not completely agree on
the final set of classifications or they instantiate same machine learning methods under different categories.
In addition, such classifications do not always include more recent state-of-the-art techniques. For this rea-
son, we decided to create own grouping of machine learning methods for anomaly detection in univariate
time series. Our grouping still shares many similarities with already available ones.

3.2.1. Grouping of Machine Learning Methods for Anomaly Detection
1. Distance-based methods - are machine learning methods that evaluate data points based on other

data points that surround them. Anomaly is detected based on dissimilarity to majority of data points
in the surrounding. Some well-known methods include:

(a) Local Outlier Factor makes use of local density deviation (local reachability density) of a given
data point with respect to its surrounding. [23] [88]

(b) kNN density estimation is based on distance between a given data point and its neighbouring
points. [100] [88]

2. Clustering methods - are methods for grouping similar data points. Clustering algorithms strives to
keep points with the similar properties within the same cluster while maximizing distance between
individual clusters. Data points that are left unassigned are treated as anomalies. Some well-known
methods include:

(a) One-class SVM is a classifier that identifies normal class of data points by finding a function that
is positive for the regions with high density of normal points, and negative otherwise. Any data
point falling into the ’negative’ region is considered to be an anomaly. [46]

3. ETS methods analyze time series’ error, trend, and seasonality to build statistical representation of it
and detect anomalies based on own forecast of time series behavior.

(a) ARIMA a model applicable for time-series analysis in order to model / predict time series points
and is based on previously recorded time-series values. An example use of ARIMA for anomaly
detection can be found in [59].

4. Isolation methods relies on the fact that anomalies are easier to separate from the rest of the data and,
hence, attempts to identify and isolate outliers from real points instead of learning the behavior of the
normal data. Generally, outliers are found by data partitioning: the main assumption of such methods
is that outliers needs less data partitioning in order to be isolated from the normal data points. The first
and the most well-known method is:

(a) Isolation Forest explicitly isolates anomalies by recursively generating data partitions with binary
trees and a randomly selected attribute [52] [70]

5. Saliency methods are based on log-amplitude spectrum of input data. Various methods include tweak-
ing saliency methods by ,for example, taking only phase spectrum of data for efficiency reasons [38].

(a) Spectral Residuals analyzes log-amplitude spectrum of the incoming stream. For every input data
point, its spectrum is compared against average log-amplitude spectrum of the normal data. Con-
sequently, anomalies are inferred based on high deviation from mean spectrum values. [72]

3.3. Selected Models 13

6. Deep learning methods include various deep neural architecture to tackle anomaly detection prob-
lems. Different models can be based, for instance, on deep feature extraction, learned signal represen-
tation, or end-to-end anomaly score learning [65].

(a) Autoencoder is a neural network that reconstructs incoming signal through several hidden layers.
Therefore, its output signal is a reconstruction of the most important features of the true input
signal. Data points that do not fit into the Auto-Encoder output are treated as outliers [50].

(b) Replicator Neural Networks (RNN) is a neural network that compresses incoming data and calcu-
lates average reconstruction error over all data features (outlying factor of the data). The outlying
factor acts as a measure for detecting anomalies. [85].

7. Combinations of methods and ensembles - anomaly detection methods that combine several different
approaches for anomaly detection in sequential or joint fashion.

(a) FFORMA is an ensemble of various machine learning methods where the final label is based on
the weighted labels produced by the FFORMA ensemble. Weights of the weak learners within the
ensemble are assigned based on the properties of the input data and their relation to predictive
models in the ensemble. [60]

3.2.2. Novel methods
In recent years there has been created numerous novel unsupervised methods for performing anomaly detec-
tion in time series, yet many of them either not directly applicable or needs modifications in the algorithm in
order to be performed in online scenario. The most widely-known methods with direct integration into data
flows are ETS-based methods as (S)ARIMA [99] or Exponential Smoothing [71]. More recent academia meth-
ods often make use of neural-network approaches such as Long Short-Term Memory Auto-Encoders (LSTM
AE), Variational Auto-Encoders (VAE), and Convolutional Neural Networks (CNN). For example, Donut model
[97] is based on VAE, and Spectrual Residuals model from Microsoft uses CNN to automatically set anomaly
threshold [72]. The most recent CNN-based method for incident detection is DeepAnt [62] which uses CNN
as a core of its time series predictor module. Additionally, LSTM layers can also be used as a core of DeepAnt
architecture. The main drawback of using such models is related to their computational complexity and time
required for retraining.

On the other side, recent anomaly detection libraries and tools proposed by the industry research often
includes variety of methods for joint use as an ensemble. Not rarely, such collections include ETS-based or
Neural Networks methods, nevertheless, they are not limited just by ETS and NN methods. For example,
EGADS from Yahoo [48] make use of ensemble in its core. EGADS was proposed in 2015 and includes ETS
weak learners (ARIMA and Exponential Smoothing) in its setup as well as other techniques as Moving Average
Model.

Other recent anomaly detection models include POT/DSPOT methods that are based on Extreme Value
Theory [80]. Less-known methods with direct application to data streams and a neural methods in its core
include Extreme Learning Machines approaches [10]. Extreme Learning Machines may be combined with
other techniques in order to improve their performance: for example, Particle Swarm Optimization is used in
[63] or Grey Wolf Optimization [10] for model tuning.

Lastly, in 2021 Evolving Spiking Neural Networks were applied to the domain of anomaly detection in
streaming data [56]. This methods uses time series encoding into evolving spikes representation in order to
detect anomalies.

3.3. Selected Models
In this section we describe in-depth the heuristics behind the anomaly detection process of the four different
anomaly detectors. These detectors were selected after initial part of experiment reported in Section 5.3 and
are used in all of our tests.

3.3.1. SARIMA
Seasonal Autoregressive Integrated Moving Average, or SARIMA, is a widely used as statistical method for
model forecasting. SARIMA is an ARIMA model with seasonal component. ARIMA captures different stan-
dard temporal structures in time series data. ARIMA model has three parameters, namely, p,d , q :

14 3. Related Work

ARI M A(p,d , q) (3.1)

p refers to autoregressive component that makes use of the dependent relationship between observation
and some number of lagged observations. It is represented by lag order, or the number of lag observations
included in the model.

d reflect integrated part. It reflects the number of times a raw observation is differenced. Differencing is
the way of making time series stationary by subtracting an observation from a lagged observation (observa-
tion at an earlier timestamp).

q is the size of the moving average window. Moving average window moves through time series and
calculates average within itself hence smoothing the data.

SARIMA, in addition to ARIMA, has seasonal factor m - the number of timestamps for a seasonal period.
As well, it adds three new hyperparameters to specify autoregression (AR), differencing (I) and moving aver-
age (MA) for the seasonal component of the series shown in equation 3.2.

S ARI M A(p,d , q)(P,D,Q)m (3.2)

Once SARIMA model is built, it is used to forecast and consume incoming observations. Anomaly is de-
tected based on the extent at which new real-world observation deviates from the forecasted one.

Figure 3.1: Auto-Encoder representation (from TowardsDataScience).

3.3.2. Long Short-Term Memory Auto-Encoder
Auto-Encoder-based neural networks try to learn data representations of its input by encoding them. They
strive to learn optimal encoding of the data by using minimal number of parameters. Thereafter, it is possible
to reconstruct data by decoding dumped values within the encoded representation. Therefore, anomaly de-
tection technique in this model is based on the assumption that anomalies do not constitute inner or optimal
description of the input data and will be lost during encode-decode process. Auto-Encoders are trained on
some input signal and learn its behavior, after they are used to forecast time series value based on learned
representation. If the forecast deviates significantly from actual observed value in time series, such value is
considered to be anomalous since it does not correspond to the learned data encoding.

Auoencoders consist of two main parts: encoder layer that maps the input into code, and decoder that
decodes it back (shown in Figure 3.1).

Long Short-Term Memory (LSTM) refers to the design of neural network structure. It is a subcategory of
recurrent neural networks (RNN) class which have a feedback connection from the last network layer to the

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

3.3. Selected Models 15

first network layer. A common LSTM unit is composed of a cell, an input gate, an output gate and a forget
gate and is shown in Figure 3.2.

Figure 3.2: LSTM cell visualization (from [9])

RNNs are trying to keep track of arbitrary long input sequences. For this reason, they are profitable to be
used within time series forecasting context since they remember previous, periodical time series structure
and forecast new values based on their memory.

Input xt from timestamp t arrives into LSTM memory cell and gets gated via input, output and forget
gates with previous values. ht−1 represents hidden state learned by LSTM from the previous timestamp,
whereas ct−1 defines previous cell state. Input values get concatenated with the previous hidden state in order
to generate relevant values at particular time point and nullify irrelevant ones. LSTM network specifically
trained to learn such hidden representations ht−1 to represent relevant-irrelevant values at each step.

The outputted values then are multiplied point-vise with the previous cell state. This action nullifies
irrelevant components from previous state cell and the process is called forget gate.

The same outputted values from previous step ate tanh-activated to generate new memory vector that
represents the extent of the updates each component of LSTM cell needs given newly incoming data. In
addition, sigmoid-activated network represents input gate where it identifies which parts of new memory
vector worth updating at all.

Lastly, output gate determines the new hidden state which will be fed to the next iteration by multiplying
point-wise learned tanh-activated ct−1 state after input and forget gates with combined input and hidden
values from the step.

The steps above are repeated many times and, as the very last step, linear layer is applied in order to
convert hidden state from the previous step into actual forecast.

LSTM Auto-Encoders use LSTM layers to encode-decode incoming data.

3.3.3. Spectral Residuals
Spectral Residuals algorithm is a novel method that has been proposed by Microsoft in 2019 and relies on
Fourier Transformation of incoming signal [72].

Fourier Transform is a mathematical transformation that decomposes function depending on space and
time variables [21]. It transforms periodical signal from time domain to frequency domain and gives an in-
sight into what frequencies occur within a signal. An example of Fourier transformation from time domain
to its frequencies from [7] is shown Figure 3.3.

Mathematically, Fourier transform of a function is given in the below equation 3.3. Here, X (ω) is a func-
tion of frequency, x(t) is original input function, and ω denotes root of unity.

X (ω) =
∫
−

x(t)e− jωt d t (3.3)

16 3. Related Work

Figure 3.3: Fourier transform of cosine summation function
∑5

i=1 ncos(nw t) (from Wikipedia)

The three main steps of Spectral Residuals algorithm for anomaly detection are shown below:

1. Fourier Transform to get a log amplitude spectrum.

2. Calculation of spectral residuals of the transformed signal.

3. Inverse Fourier transform to revert sequence back to spatial domain.

Given a time series sequence x, mathematical representation of the above algorithm is shown in equations
3.4 to 3.11, with F denoting Fourier transform and F−1 denoting inverse Fourier transform.

A(f) is the amplitude spectrum of the input signal x shown in Equation 3.4:

A(f) = Ampl i tude((F (x))) (3.4)

P(f) is the phase spectrum of the input signal x shown in Equation 3.5:

P (f) = Phase((F (x))) (3.5)

L(f) is the Log representation of the amplitude spectrum A(f) shown in Equation 3.6:

L(f) = log (A(f)) (3.6)

With AL(f) being the average spectrum of L(f) calculated via convolution on input log representation L(f)
and convolution matrix hq (f) shown in Equation 3.7:

AL(f) = hq (f)∗ l (f) (3.7)

R(f) represents the spectral residuals, or the log spectrum L(f) subtracting the averaged log spectrum AL(f)
shown in Equation 3.8. It serves as a compressed representation of the initial input signal

R(f) = L(f)− AL(f) (3.8)

https://en.wikipedia.org/wiki/Fast_Fourier_transform##/media/File:FFT_of_Cosine_Summation_Function.svg

3.3. Selected Models 17

Lastly, sequence is transformed back to spatial domain and a saliency map of the input signal is produced
(example shown in Equation 3.11):

S(x) = ∣∣∣∣F−1(exp(R(f)+ i P (f)))
∣∣∣∣ (3.9)

After generating a saliency map, the threshold on the allowed values with the map can be set in or-
der to obtain anomaly labels: everything with a saliency value falling below this threshold is considered to
be within normal deviation of a signal whereas everything exceeding this threshold is considered to be an
anomaly. Graphical representation of saliency map generation and consequent anomaly detection of a time-
dependent signal is shown in Figure 3.4.

Figure 3.4: Example of SR model results (from [72])

In order to obtain real-time predictions, the above process is applied in sliding window scenario with only
limited set of newly incoming time series points being labeled at particular step. According to [72], optimal
window size is subjected to input data and may vary from 64 to 1440 based.

3.3.4. Particle Swarm Optimization of Extreme Learning Machines

Extreme Learning Machines
Extreme Learning Machines (ELM) are feed-forward neural networks that usually contain one hidden layer.
Feed-forward neural networks are networks of consequent layers where the data gets fed into the initial layer
and passes then through every next layer until it reaches very last, output layer. Parameters of hidden layers
of extreme learning machines do not need to be tuned such that the hidden nodes are assigned with some
values randomly in the beginning and never change these values afterwards [40]. Due to this, ELM does not
work with gradient-based backpropagation to update hidden layers, but rather use Moore–Penrose inverse
[77] for updating weights of the output layer. The purpose of such architecture lies in generalization and
speed of the performance.

Particle Swarm Optimization
Particle Swarm Optimization (PSO) is an optimization technique that provides approximate solution for a
given problem of finding global minimum/maximum [69]. It works by choosing randomly fixed set of par-
ticles on a search grid and then approximating the best solution on a grid by moving every particle within a
swarm towards the most promising direction. Such direction is tailored per particle and is based on a combi-
nation of general best-seen solution so far by a swarm all together and by particular particle on its own.

PSO algorithm starts with initializing the set of particles at a certain position each with a certain velocity.
Position as the velocity variable changes over time per particle. If we have N particle in our algorithm then
one iteration of this algorithm will update position of some particle i via the following formula:

Xi (t +1) = Xi (t)+Vi (t +1) (3.10)

as well as its speed as shown below:

Vi (t +1) = wVi (t)+ c1r1(par t_besti −Xi (t))+ c2r2(g en_best −Xi (t)) (3.11)

18 3. Related Work

Here, Xi (t i me) denotes the position of particle i at time t i me, and Vi (t i me) denotes velocity of particle i
at time t i me. r1 and r2 are two random numbers ∈ [0.0, 1.0]; w , c1 and c2 are the hyperparameters of the PSO
algorithm; par t_besti is the best found position by current particle i , whereas g en_best is the best found
position by all particles in the swarm. Graphical representation of overall idea behind particle swarm opti-
mization is pictured in Figure 3.5

The combined model of PSO with ELM uses swarm optimization in order to find the weights of ELM con-
nections between the input and the first hidden layer [63] (the weights that remains fixed during ELM train-
ing routine). In addition, PSO-ELM model relies on the assumption that if particle swarm has converged on a
particular solution than it has learned the concept of the problem. Therefore, when the new concept gets in-
troduced into input data, the average error of PSO-ELM will change [33]. Thus, drift adaptation is introduced
into the model by monitoring average errors of the particles and their distribution. In addition, average error
values over time are smoothed via the Exponentially Weighted Moving Average (EWMA) [55]. Once particle
errors deviates significantly from the distribution observed in the training part, the drift is detected and the
adaptation/retraining happens.

Figure 3.5: Graphical representation of particle swarm optimization algorithm (from Medium)

3.4. Drift Detection in Time Series

3.4.1. Drifted Data
Generally, data drifts are referred as changes in input data that leads to models’ performance degradation.
Such changes is one of the top reasons to why model accuracies decrease over time. Target concept of data
streams may change making anomalous labels distinct to what have been learned by the initial anomaly de-
tector. Changes in data concepts can emerge for many different reasons including external influence. For ex-
ample, COVID’19 lockdowns over the world had influence on sale volumes of various items. These lockdowns
represent external influence that provokes drifts in consumer buying behavior. Graphical representation of
data drift in time series in the described scenario is given in Figure 3.6.

Drifts in data represent normal data behavior that is distinct from the previously observed one. There-
fore, generally, drifts would be considered as anomalies by incident detectors which will lead to performance
deterioration. Due to this, there is a rising need for model adaptation in online streaming scenarios with
some studies already incorporating drift detectors into anomaly detectors [89], [43]. Unfortunately, testing
such joint models is challenging since the set of benchmarks of time series with labeled anomalies and the
set of benchmarks with labeled drifts are disjoint. However, previous study [95] has marked NAB dataset as
having unrealistic densities of anomalies in some of their time series: in NAB some time series have many
continuous regions of anomalies or anomalies located too close to each other. This might be an indication of
reoccurring concepts within time series that has been labeled as group anomaly. We decided to research the
applicability of drift detectors into streaming incident analysis by researching joint performance of anomaly
detectors with drift detectors applied to public data.

https://medium.com/@iamterryclark/swarm-intelli-eb5e46eda0c3

3.4. Drift Detection in Time Series 19

Figure 3.6: An example of concept drift in time series data caused by COVID’19. Normal old behavior is plotted by black dashed line
with red line representing true drifted behavior.

3.4.2. Drift Detectors
Drift detectors are methods for identifying drifts in data. Such methods base their judgments upon statistical
analysis of data over time: if distribution of some data parameters significantly changes over short period
of time, this might be an indication of a drift. However, particular drift detectors base their exact technique
upon various strategies. We selected and worked with the family of error-based drift detector due to their
wide usage within scientific literature. The general technique behind error-based drift detectors is related
to comparing models’ classification error over various data batches. Data batches, on which model exhibit
significantly higher error than what was observed in training dataset, are considered to have drifts. Below we
discuss the most popular error-based drift detectors in more details:

1. Adaptive Windowing (ADWIN) compares distributions between 2 halves of variable-length windows of
recent items by comparing their means. [19]

2. Drift Detection Method (DDM) tracks error rate in testing data over various batches. If such error rate
hits a certain threshold, drift is detected. [33]

3. Early Drift Detection Method (EDDM) uses similar technique as DDM, but keeps track of the running
average distance between errors on consequent test batches. [15]

4. Exponentially Weighted Moving Average for Drift Detection (ECDD) uses exponentially weighted mov-
ing average of model error rate. If error rate deviates significantly from the exponentially weighted error
from the previous observations, drift is detected. [75]

5. HDDA - relies on both Hoeffding’s inequality [37] and moving average to track drifts in data. [20]

6. HDDW - similarly relies on Hoeffding’s inequality [37] but weighted moving average. [20]

In addition to common drift detectors, there exists many novel drift adaptation techniques tailored to
specific use case. For example, Saurav et. al. propose Recurrent Neural Network model with integrated drift
adaptation for anomaly prediction over time series [76] where RNN model is capable of training incrementally
and adjusting to newly incoming observations. Xu et. al. as well integrates drift adaptation into neural-based
model for anomaly detection [98] by prioritizing recent observations over older ones and increasing their
corresponding weights while retraining.

There is an increasing use of drift adaptation which provoked an emerging of online libraries for drift
detection as River 1 or AlibiDetect 2. Such libraries offer a set of built-in methods for drift detection as well as
stream modelling methods with integrated drift adaptation.

1https://riverml.xyz/
2https://github.com/SeldonIO/alibi-detect

https://riverml.xyz/
https://github.com/SeldonIO/alibi-detect

20 3. Related Work

Figure 3.7: Singular Value Decomposition of matrix A (from Medium). Diagonal entries (dark blue) in Σ are singular values of A.

3.5. Time series disorder
When working with real-world data, almost always such type of data includes noise. The main question that
arises is whether such real-world data indeed has any underlying structure or whether it is simply a disorder
of different complexity over time. One known approach for measuring data disorder is entropy analysis. It
is widely applied in EEG analysis [42], [53], stock data examination [25], [83] and other matrices [96], [13].
Generally, the term entropy comes from information theory and can be described as lack of predictability or
a measure of disorder [34]. Yet there has been created various methods for entropy calculation with some of
the widely-used types shown below:

1. Permutation entropy - measures complexity of a dynamic time series signal by capturing the order of
relationships between time series singular values. Then, a probability distribution of ordinal patterns
of time series is drawn from the data and corresponding signal’s complexity is calculated. [16]

2. Spectral entropy - extracts power spectrum amplitude components of time series and calculated Shan-
non entropy upon it [30]

3. Singular value decomposition (SVD) entropy - measures the structure of correlation matrix for the
component of a given signal time series. Vectors drawn from correlation matrix analysis are used to
describe complexity of a signal. [25]

4. Approximate entropy - measure of instability of variation in the signal by finding changes in underlying
per-episode behavior and by comparing these underlying sample patterns [68].

5. Sample entropy - is a modification of approximate entropy. It measures the regularity of a signal and is
independent of the pattern length as well as it does not include self-similar patterns [73]

In vast majority of applications large periods of time series are used for entropy calculation making such
experiments an offline case. However, we decided to apply entropy analysis into near real-time scenario and
measure time series disorder over small intervals. Our main assumption is that entropy of anomalous regions
should show different complexity to the entropy of a non-anomalous regions within the same time series. We
expect that presence of an anomaly within time series batch increases or decreases disorder of this time series
batch, and we expect disorder measure (entropy) to reflect this.

3.5.1. Selected Entropy: Singular Value Decomposition
Singular Value Decomposition entropy describes signal via its regularity that is determined via the number
of vectors attributed to the signal [44]. Entropy value is measured using singular value matrix decomposition
routine:

We can represent input signal as an array of values [x1, x2, ..., xn]. From this array, the delay vector ai can
be constructed using delay τ and embedding dimension de :

https://medium.com/@mukesh.mithrakumar/singular-value-decomposition-with-tensorflow-2-0-af36fa31c772

3.5. Time series disorder 21

ai = [xi , xi+τ, ..., xi+(de−1)τ] (3.12)

Having delay vectors, the embedding space A can be constructed by using delay vectors from different
signal windows:

A = [a(1), a(2), ..., a(N − (de −1)τ)]T (3.13)

Then, singular matrix decomposition is performed on matrix A. Effectively, the singular value decompo-
sition of a matrix A is a factorization of the form A=UΣV* with U being square unitary matrix, Σ is rectangular
diagonal matrix, and V - square complex unitary matrix. Graphical representation of value decomposition
process is shown in Figure 3.7.

The diagonal entries in Σ are known as singular values of A. The SVD entropy HSV D is then defined in
Equation 3.15 [17]

HSV D =−∑
σ̄i l og2σ̄i (3.14)

where M is the amount of singular values and σi is normalized as below:

σ̄i = σi∑M
j=1σ j

(3.15)

Essentially, resulting singular values measure feature-richness of a given signal.

II
Experiments

23

4
Data

4.1. Publicly Available Data
To the best of our knowledge, there exists only 3 publicly available benchmarks with univariate time series
and corresponding anomalous labels.

1. Yahoo1 is an open-source benchmark from the datacenters of the search engine Yahoo with part of data
coming from real Yahoo traffic, and part of data being synthesized. Real-time data points are labeled
manually by editors, whereas labels of synthetic data are generated. The interval of time series is 1 hour.
Yahoo consists of 4 subsets:

(a) A1Benchmark - 67 time series that came from real-world observations and that were manually
labeled by human experts.

(b) A2Benchmark - 100 synthetic time series with the majority of time series having their own peri-
odicity. Time series from this benchmark include single anomaly values.

(c) A3Benchmark - 100 synthetic time series. Time series from this benchmark include single anomaly
values, however, they are more noisy then A2 Benchmark. This benchmark also includes noise,
trend, seasonality and change point data per time series.

(d) A4Benchmark - 100 synthetic time series. The majority of the anomalies in these series are rep-
resented by a sudden transitions from an input data trend to another significantly different input
data trend. Similarly to A3 Benchmark, this benchmarks includes noise, trend, seasonality and
change point values.

All time series in Yahoo dataset are rather short with the length around 2000 time points.

2. KPI2 is a benchmark from AIOPS competition that contains multiple curves with labeled anomalies
collected from different internet companies like eBay. The interval of time series ranges from 1 to 5
minutes. Time series from this dataset came from real world observations, they include numerous
different types of anomalies in them, and they have varying length about 15000 to 200000 time points.

3. NAB3 is a publicly available dataset with different data records of different nature. In total, there are 58
time series in NABdataset grouped under different categories that corresponds to time series nature:
there are several artificially generated time series with and without anomalies as well as many real-
world observations of EC2 metrics, taxi usage, stock tracking etc.. There is no consensus on time series
granularity within NAB dataset, and it varies from minutely granularity for the artificial data to hourly
granularity for click-per-cost real-world time series.

This benchmark has its labels provided in a different form then the other datasets which make it hard
to be used as a practical anomaly detection benchmark [81]. NAB gives 2 labeling techniques for la-
beling its data: the first labeling technique consists only of ground truth single-point anomaly labels

1https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
2http://iops.ai/dataset_detail/?id=10
3https://github.com/numenta/NAB/tree/master/data

25

https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
http://iops.ai/dataset_detail/?id=10
https://github.com/numenta/NAB/tree/master/data

26 4. Data

per anomaly interval, the second labeling approach places a window of the fixed size (10% of time se-
ries length) around ground truth label and identifies everything within this interval as anomaly. The
second approach results in many normal time points being labeled as anomalies whereas the first ap-
proach misses large portion of anomalies points. Such labeling strategy is made to be used with NAB
labeling technique introduced in [49]. It prioritizes methods that detect anomalies earlier but does not
assess how good a method is in precise anomalous interval capturing. Therefore, potential users of
NAB dataset are encouraged to do additional anomaly labeling of time series tailored to their use case.

Real data from NAB dataset is divided into the following categories:

(a) realAWSCloudwatch. Machine metrics collected by Amazon CloudWatch service as CPU utiliza-
tion or disk read bytes. All time series have anomalies and their granularity is 5 minutes. All except
one time series have anomalies and their granularity is 1 hour.

(b) realAdExchange. Web advertisement clicking rates time series. The metrics is cost-per-click (CPC
time series) or cost-per-thousand-impressions (CPM time series).

(c) realKnownCause represents a general collection of time series with the known anomaly cause.
Time series in this subset did not go through the process of manual labelling by human experts.

(d) realTraffic. Time traffic data from the Twin Cities Metro area in Minnesota with metrics as occu-
pancy, speed and travel time/ The data was collected by [3]. The granularity of time series varies
from 5 to 10 minutes.

(e) realTweets. Time series of Twitter mentions of large publicly-traded companies such as Facebook
or Apple. Metrics is the number of mentions of a ticker symbol of a particular company within 5
minutes intervals.

Artificial data has the following structure:

(a) artificialNoAnomaly. Artificially generated data that has no anomalies. Its granularity is 5 min-
utes.

(b) artificialWithAnomaly. Artificially generated data that has anomalies. Its granularity is 5 minutes.

5
Experiments and Analysis

5.1. Model Evaluation
We split every time series in a dataset into training and testing data with the ratio 50%-50%, and we use the
first part for training and the second part for testing.

We commit our evaluation in online fashion meaning that we test data in batches allowing only limited
amount of the most recent timestamps from the stream to be labeled. In order to simulate streaming scenario,
we use a sliding window of a fixed length in our experiments. Window of a fixed size goes through testing
data part of the data, for every window we record predicted labels and store them in memory. In the end
of testing data, we compare joint predictions from all of the windows against true labels on a whole test
data part to obtain one overall score. Schematic representation of our testing routine is shown in Figure
5.1. We selected F1-score as a single performance measure for anomaly detectors since it is widely used
across literature [72], [56]. F1-score is a single measure that calculates trade-off between precision and recall.
Precision is the percentage correctly detected anomaly labels out of all hits, whereas recall is the percentage
of correctly detected anomalies out of all true anomalies. The definitions of precision, recall, and F1-score are
shown in (5.1), (5.2), (5.3) respectively, with TP being true positives, FP - false positives, TN - true negatives,
and FN - false negatives.

pr eci si on = T P

T P +F P
(5.1)

r ecal l = T P

T P +F N
(5.2)

F 1− scor e = 2∗pr eci si on

pr eci si on + r ecal l
(5.3)

Since we target data streams, the distribution of the upcoming data is always unknown. Therefore, hyper-
parameter tuning was not performed to avoid biasing the model towards the training data.

5.2. Statistical Testing for Significance
In order to verify that the improvement shown by the top model/method is statistically significant, we use
Wilcoxon Signed Rank Test [94]. The test compares the location of two sample distributions by assessing the
pairwise matched samples. Wilcoxon Signed Rank Test is a non-parametric test meaning it does not assume
parameterized distribution of the input data which is applicable to our experiments. We are using Wilcoxon
Test in order to compare the distributions of F1-scores of anomaly detectors derived on singular time series
within fixed dataset. The null-hypothesis is that the median of F1-score differences between compared mod-
els over the same time series within a dataset is zero. If Wilcoxon Signed Rank Test gives a significant p-values
of less than 5% then we can reject null-hypothesis and assume that the difference is significant.

27

28 5. Experiments and Analysis

Figure 5.1: Schematic representation of training/testing procedure. All labels from test batches are collected and recorded and then
used all together for the final F1-score calculation.

5.3. Base Models’ Performance
We have chosen one to two machine learning algorithm from every category of our classification of machine
learning methods for anomaly detection in time series (available under Section 3.2.1). We then ran the se-
lected models on benchmark datasets without any optimization or hyperparameter tuning since this would
require anomaly labels of time series to be known. The performance was measured in terms of F1-score, how-
ever, we also kept track of other metrics, namely, sensitivity, specificity, and the amounts of false positives
and false negatives.

The decision to use several models from some categories and only a single model from other categories
was based on popularity of particular methods within scientific literature. For example, to the best of our
knowledge, many studies use several different ETS methods as base models or in ensemble of weak learners
[48], [60], and therefore, we have tested two methods, namely Exponential Smoothing and SARIMA, from this
class.

The whole set of candidate base models is listed in Table 5.1.

Selected model Model group
LOF Distance-based methods

DBSCAN Distance-based methods
OC-SVM Clustering methods

Exponential Smoothing ETS methods
SARIMA ETS methods

Isolation Forest Isolation methods
LSTM Auto-Encoder Deep learning methods

Spectral Residuals Saliency methods
PSO-ELM Combinations of methods and ensembles

Table 5.1: Candidate base detectors with corresponding classes from Section 3.2.1.

We first ran all selected models on Yahoo A1 dataset, which contains real data only. Such decision was
made to filter out less promising models on a smaller dataset without running all detectors across all available
time series. We chose Yahoo A1 due to its popularity within scientific literature as well as real nature and short
length of time series that it contains. Overall F1-score on test data for each model is shown in Table 5.2.

We then selected the set of 4 best-performing models, namely, LSTM Auto-Encoder, SARIMA, Spectral
Residuals, and PSO-ELM, and ran them on all public datasets (including KPI and NAB).

Our results show that when applied into sliding window scenario with the window of length 60, perfor-

5.3. Base Models’ Performance 29

Model Total Test F1-score
LSTM AE 0.304
SARIMA 0.295

SR 0.195
PSO-ELM 0.187

Exponential Smoothing 0.169
DBSCAN 0.168
OC-SVM 0.151

Isolation Forest 0.106
LOF 0.031

Table 5.2: Base models’ F1-scores on Yahoo A1 dataset.

Total Test F1-score
Dataset LSTM SARIMA SR PSO-ELM

Yahoo A1 0.304 0.295 0.195 0.187
Yahoo A2 0.008 0.298 0.511 0.006
Yahoo A3 0.020 0.294 0.602 0.055
Yahoo A4 0.0173 0.302 0.534 0.068
KPI 0.110 0.160 0.063 0.106
NAB 0.201 0.137 0.051 0.205

Table 5.3: Overall performance of top base models on public data.

mance of all base predictors drops below F1-score of 0.5. We show the performance of top base models on all
public data in Table 5.3.

As Table 5.3 indicates, selected anomaly detectors do not adapt to different streaming scenarios, as judged
by low F1-score (F1-score ≤ 0.7). We can also observe that different models exhibit their best performance on
different datasets, such as Spectral Residuals model having relatively high F1-score on all 3 synthetic datasets
within our benchmarks, however, failing to adapt to real data.

Finding 1: Conventional anomaly detectors are not directly applicable to streaming scenario, and they have
poor generalizability to different datasets.

We have also performed light Bayesian Optimization (20 rounds) for all 4 base models in order to verify
that our models indeed report compatible performance once tuned. We excluded Yahoo A3 and A4 dataset
from this experiment due to time constraints and the fact that they both contain synthetic data whereas we
are interested in real data and already have one synthetic dataset Yahoo A2. Our results with and without
optimization are shown in Table 5.4.

We have observed that once being optimized for specific time series, models show around 2-fold increase
in their detective performance. Nonetheless, since we are performing completely unsupervised learning, we
have proceeded with SARIMA, LSTM AE, PSO-ELM, and SR models without any fine-tuning.

Total Test F1-score
Dataset LSTM LSTM-optim SARIMA SARIMA-optim SR SR-optim PSO-ELM PSO-ELM-optim

Yahoo A1 0.304 0.411 0.295 0.422 0.195 0.276 0.187 0.323
Yahoo A2 0.008 0.494 0.298 0.427 0.511 0.517 0.006 0.507
KPI 0.110 0.177 0.160 0.173 0.063 0.102 0.106 0.316
NAB 0.201 0.206 0.137 0.139 0.051 0.110 0.205 0.211

Table 5.4: Overall performance of top base models on public data with and without optimization. -optim column corresponds to the
tuned model.

30 5. Experiments and Analysis

5.4. Data Analysis
The main purpose of performing data analysis was to find possible relations among certain time series/datasets
and predictive performance of various groups of anomaly detectors instantiated via F1-scores. In case of ex-
istence of potential relation, it can be then exploited in order to either boost the performance of an existing
anomaly detector or to identify time series that are more applicable for incident detection in case of fixed
type of anomaly detector.

First, we have extracted certain properties (see Appendix 18) from all time series and all benchmarks. In
total, 64 properties for each time series have been calculated using Catch22 and FFORMA systems described
in details in Sections 3.1.2 and 3.1.1 respectively. We also used per-time-series F1-score for each of the 4 top-
performing machine learning methods from Table 5.2 in our analysis.

The analysis consisted of several parts and had 4 main purposes:

1. Describe datasets via the distributions of time series features found within them.

2. Identify similar and more distinct datasets by calculating distances between feature distributions from
different datasets.

3. Correlate the performance of base detectors on different benchmarks to the distance between these
benchmarks.

4. Correlate the performance of base detectors on different time series to the features found within these
time series independently of a datasets to which particular time series belongs.

For per-dataset analysis we conducted the following steps:
We have collected the properties of all time series within 3 benchmarks and looked at feature distributions

between different datasets. Since our selected benchmarks contain only a small amount of time series (454
time series in total), we decided to compare feature distributions against another larger and publicly available
benchmark of time series. Selected benchmark does not provide per-univariate-time-point anomaly label,
however, in our analysis we are only interested in time series features and so that anomaly labels are irrelevant
for the task. We have chosen UEA/UCR (University of East Anglia and University of California, Riverside) Time
Series Classification Repository benchmark for this purpose [29]. Such decision was related to the fact that
this repository was used in Catch22 study [54] and it contains a total of 147198 time series samples from
various classes.

We examined per-feature distribution and distances among such distributions between different bench-
marks including UCR benchmark. We also calculated the total distance between datasets as a total distance
between all their features. There exists no single universal measure for calculating distances between two
probability density functions. Due to this, we decided to use 8 different distance measures from different
classes of pdfs’ distance measures. These classes were introduced in [26] and depends on the base for-
mula/technique used for calculating distance measure. We selected most common measure from every cat-
egory and show them in Table 5.5.

The resulting orderings of all datasets based on distance between their pdfs are shown in Table 5.6. Since
different distance measures do not have complete agreement on the pair of the most distant and the clos-
est datasets, we calculated rank similarities among these distance orderings via each of 8 different distance
measures using Kendall’s rank correlation test [47]. The purpose of rank similarity analysis was in finding
strongly correlated distance measures as well as finding general agreement of ranking via different distance
types among each other. The results of rank correlation test are shown in Table 5.7. As Table 5.7 indicates,
we have not found many strongly correlated candidates as well as there is generally only poor agreement
between different distance measures on an ordering of the datasets. Notably, only rankings via Euclidian
distance and squared Euclidian distances seem to have strong similarity. Such finding is explained by the
similarity in distance calculation for these distance measures.

To verify that time series features distributions calculated on different benchmarks came from the same
general distribution, we have performed Kolmogorov-Smirnov statistical test [18]. Our results show that there
is no evidence to believe that any of features distributions from any of a benchmark came from different
distribution.

After initial step of our analysis, we were not able to identify more related datasets, as judged by time
series features found within them, due to the controversy of the results under different similarity measures.
We then proceeded by analyzing time series features independently of the dataset they belong to.

5.4. Data Analysis 31

Distance type Selected distance Formula

Lp Minkowsky family Euclidian L2 d
(
p, q

)=√∑n
i=1

(
pi −qi

)2

L1 family Sorensen d
(
p, q

)= ∑n
i=1 |pi−qi |∑n
i=1(pi+qi)

Intersection family Intersection d
(
p, q

)=∑n
i=1 mi n(pi , qi)

Inner product Inner product d
(
p, q

)= P •Q

Fidelity family Fidelity d
(
p, q

)=p
pi qi

Squared L2 family (χ2) Squared Euclidian d
(
p, q

)=∑n
i=1

(
pi −qi

)2

Shannon’s entropy family Kullback–Leibler d
(
p, q

)=∑n
i=1 pi ln pi

qi

Table 5.5: Selected types of measures for distances between probability density functions from each of base classes from [26]

Dataset 1 Dataset 2 Euclidian Sorensen KL Inner Product Fidelity Intersection Squared Euclidian
Yahoo A1 Yahoo A2 15.898 13.788 8.225 6.524 11.202 14.740 12.049
Yahoo A1 Yahoo A3 19.859 15.339 10.824 7.873 10.367 14.740 18.175
Yahoo A1 Yahoo A4 16.683 14.342 9.076 8.501 11.597 14.740 13.053
Yahoo A1 NAB 12.312 12.978 10.426 5.822 8.790 14.740 7.810
Yahoo A1 KPI 11.345 12.412 12.459 2.478 5.432 14.740 6.568
Yahoo A2 Yahoo A3 17.731 13.227 14.641 14.481 15.823 22.000 15.233
Yahoo A2 Yahoo A4 15.935 11.848 12.982 13.038 16.993 22.000 12.220
Yahoo A2 NAB 16.314 12.580 17.707 4.525 8.857 22.000 12.758
Yahoo A2 KPI 13.787 13.838 19.048 3.358 6.467 22.000 9.356
Yahoo A3 Yahoo A4 15.165 13.906 7.544 17.332 18.621 22.000 12.017
Yahoo A3 NAB 18.498 15.413 13.847 8.906 10.412 22.000 16.017
Yahoo A3 KPI 18.471 14.188 16.961 4.677 6.868 22.000 15.844
Yahoo A4 NAB 15.866 14.697 15.459 7.769 10.253 22.000 11.939
Yahoo A4 KPI 15.514 14.624 18.645 4.233 6.746 22.000 11.589

NAB KPI 10.119 12.059 8.631 2.980 5.709 12.540 5.562

Table 5.6: Distance measures between the datasets via 8 different distance measures between pdfs of their features.

After extracting two sets of time series features via Catch22 and FFORMA methods, we used them in per-
time-series correlation analysis. We performed 2 different analysis: one for linear correlations via Pearson
correlation coefficient, and another one for non-linear correlations via mutual information. The correlations
we have looked into are correlations between particular time series values and corresponding F1-score of
models on these time series.

The relation between two variable are considered to be strong if r-coefficient> 0.7 or r-coefficient< −0.7
[58]. As our results indicate, there are no strong linear correlations in our data. Additionally, mutual infor-
mation values all fall below 0.5 indicating absence of strong non-linear correlations. However, for 90% of
extracted time series features their mutual information with model scores is above 0 showing weak extent of
dependability.

Since we have not encountered any clear influence of time series features on models’ performance, we
researched influence of other time series variable on predictive performance of the models.

Finding 2: Neither time series features nor benchmarks these time series belong to have strong correlations
to models’ performances.

32 5. Experiments and Analysis

Euclidian Sorensen KL Inner Product Fidelity Intersection Squared Euclidian
Euclidian 1.000 0.429 0.086 0.410 0.352 0.267 0.962
Sorensen 0.429 1.000 0.086 0.257 0.124 0.216 0.390

KL 0.086 0.086 1.000 -0.276 -0.333 0.572 0.048
Inner Product 0.410 0.257 -0.276 1.000 0.867 0.267 0.448

Fidelity 0.352 0.124 -0.333 0.867 1.000 0.216 0.390
Intersection 0.267 0.216 0.572 0.267 0.216 1.000 0.267

Squared Euclidian 0.962 0.390 0.048 0.448 0.390 0.267 1.000

Table 5.7: Similarities in ranking via 8 different distance measures among Yahoo, KPI and NAB datasets.

5.5. Drift Adaptation
In this part of the analysis, we have looked into possible ways how drifts in data may influence predictive
performance of base models. Unfortunately, to the best of our knowledge, there is no publicly available time
series data where both anomaly labels and drifted parts are identified. Therefore, we selected a set of base
drift detectors for data streams and tested their agreement in drifts they identify on our benchmarks. We
selected the following drift detectors due to their popularity with the scientific literature: ADWIN [19], DDM
[33], EDDM [15], ECDD [75], HDDA [37], and HDDW [37]. As our results indicate, there was no agreement
found among different drift detectors on to what is considered as a drift within a stream: amount of detected
drifts per a single time series varied from 0 (in case of DDM) to hundreds or thousands (in case of HDDA).

Since we were not able to reliably label drifts in our data, we decided to look into alternative ways of
identifying and exploiting drifts in streaming data.

Our first approach relied on per-batch online performance of models by measuring whether it degrades
over time. In this settings, instead of looking into one general F1-score over test data, we recorded per-batch
hamming distance 1 of every anomaly window. We then calculated average hamming distance for batches
before the first anomaly and after the last anomaly in testing data. We schematically represent our per-batch
evaluation routine in Figure 5.2. Orange dotted line corresponds to time series batch with anomalies – in
general, time series might have single or several batches with anomalies. D1 represents average batched
hamming distance before the first anomaly in time series calculated over the first 3 batches (the first 3 blue
dots). D2 represents average batched hamming distance after the last anomaly in time series calculated over
the last 4 batches (the last 4 blue dots). We track D2-D1 difference per time series. In case of performance
degradation, measure will increase due to increased percentage of mismatched labels. Average changes of
hamming distance in such test settings per public dataset are shown in Table 5.8. We can see that there is
no stable change in average per-batch hamming loss change over time across all anomaly detectors except
for performance on Yahoo A1 dataset. However, such behavior might be explained by the fact that the vast
majority of time series within Yahoo A1 have their anomalies in the very last portion of time series, not leaving
representative amount of normal batches for calculating D2 reliably.

Increase in avg. Hamming Loss
Dataset LSTM SARIMA SR PSO-ELM

Yahoo A1 0.141 0.125 0.126 0.133
Yahoo A2 0.337 0.0 0.004 0.0
NAB 0.090 0.083 -0.003 0.081
KPI 0.028 -0.001 0.005 -0.002

Table 5.8: Average change of per-batch Hamming loss before first and after the last anomaly encounters in time series.

The second approach relied on integrating existing drift detectors described in Section 5.2, namely AD-
WIN, DDM, EDDM, ECDD, HDDA, and HDDW, into our base models and comparing their performance to
the same models without drift adaptation. In these experiments we again excluded Yahoo A3 and A4 dataset
due to time constraints and synthetic nature of the data in these datasets. We also did not use SR model
for drift adaptation experiments since the model itself does not require pre-training and, therefore, should
not be updated. Table 5.9 reports performance for our base models without drift adaptation and the high-
est achieved performance with one of the tested drift detectors. Table 5.10 indicates the best performing drift
detector per model and detaset.

1Fraction of wrong labels to all labels produced by a model.

5.6. Entropy analysis 33

Total Test F1-score
Dataset LSTM LSTM DA SARIMA SARIMA DA PSO-ELM PSO-ELM DA

Yahoo A1 0.304 0.300 0.295 0.295 0.187 0.187
Yahoo A2 0.008 0.011 0.298 0.355 0.006 0.006
KPI 0.110 0.094 0.160 0.242 0.106 0.107
NAB 0.201 0.187 0.137 0.142 0.205 0.207

Table 5.9: F1-score on test set for models with and without drift adaptation, where DA = drift adaptation

Best-performing Drift Detector
Dataset LSTM SARIMA PSO-ELM

Yahoo A1 EDDM HDDW/EDDM EDDM
Yahoo A2 HDDW HDDW/EDDM HDDW/EDDM/ECDD
KPI EDDM ECDD HDDW
NAB ECDD HDDW EDDM

Table 5.10: Drift detectors that yield highest performance in combination with anomaly detector on selected datset. Drift detectors in
bold improve performance in relation to anomaly detector without drift adaptation.

As the results in Table 5.9 show, we did not find any consistent improvement in performance when apply-
ing drift adaptation, yet SARIMA model seems to benefit from drift adaptation on all benchmarks. In addition,
Table 5.10 indicates the most applicable set of drift detectors for anomaly detection scenario: HDDW, EDDM,
and ECDD. However, due to inconsistency of the results we do not consider drift adaptation to be profitable
for generalizability improvement of anomaly detectors.

Finding 3: Drift adaptation does not always improve applicability of anomaly detectors into various stream-
ing scenarios, yet some models, as SARIMA, benefit from it.

Figure 5.2: Schematic representation of evaluation of change in base model performance on time series data via per-batch hamming
distance.

5.6. Entropy analysis
All the directions of our previous analysis were completely or partially based on the belief that data streams
have some underlying structure that can be instantiated via features or disrupted via drifts. Our base models,
as SARIMA or LSTM AE are trying to reconstruct underlying representation of a stream and detect outliers.

34 5. Experiments and Analysis

Figure 5.3: Example of how entropy model pops out anomalous batches. Accepted boundaries are shown with dashed grey lines, blue
color of a batch indicates 0 anomalies whereas red color indicates presence of anomalies within a batch.

In this current direction we offer to treat streams as disorder. If our streams do not have structure and con-
sist of disordered observations, we can detect anomalies in such settings by looking at data complexity: even
though there is no underlying structure, anomalies exhibit different behavior from what was recorded before.
Such difference in behavior might be identifiable via complexity comparison of consequent stream batches.
For example, anomaly situation when all monitoring machines went off will have lower complexity in com-
parison to behavior before anomaly has happened since zero-signal does not need a lot of information to
be reconstructed. On the other hand, if we see anomalous increase in CPU usage created by, for example,
additional processes, the behaviour of such processes adds additional complexity to the stream disorder.

We tried to exploit this direction by identifying per-batch stream complexity via different measures of
per-batch entropy.

We defined and measured entropy in batched scenario where time series are split into non-intersecting
consequent batches of equal length and disorder in every batch is measured. We set a hard static threshold for
upper and lower bounds of per batch entropy by calculating mean per-batch entropy value on a training data
and allowing a deviation within ± standard deviation boundaries. We re-labeled training set per-batch where
batch with at least one anomaly got label of 1 and 0 otherwise. We ran experiments on NAB and KPI datasets
in order to find the most suitable entropy in a given scenario. Our results, reported in Table 5.11, show that
value decomposition entropy is the most suitable measure for identifying anomalous batches. Figure 5.3
shows the capability of entropy model to highlight anomalous batches.

Thereafter, we proceeded with SVD entropy only and we created entropy model for comparison with al-
ready existing baseline models. Our entropy model works by calculating per-batch entropies from a train part
of time series and then it calculates upper and lower bounds via mean ± f actor ∗ std on a range of batched
entropies from train set. We again used per-batch evaluation scenario for comparing baselines with entropy
model. In such settings, applying solely toy entropy model without any additional ML-based anomaly detec-
tors performs comparably well to our base detectors within the same settings (see results in Table 5.12).

Finding 4: SVD entropy analysis is capable of highlighting anomalous batches within the signal.

We then ran brute-search through possible window sizes and boundary factors to find the best matching
parameters for KPI dataset. Our results show that the window of 55 is the best choice (F1-score = 0.453),
however, window of 35 is almost as good (F1-score = 0.451) when using factor of 2.5 (see Figure 5.5 (a)). This
result means that entropy windowing can be integrated into real-time streams.

Figure 5.5 (b) shows same brute-search applied to NAB dataset. In this case, there is no gradual change of
F1-score over adjacent values of windows and factors. In addition, the range of F1-scores obtained by model
is lower than in case of KPI. Therefore, in case of NAB data, optimal window for entropy application might be

5.6. Entropy analysis 35

Entropy Measure F1-score KPI
Value Decomposition entropy 0.421

Sample entropy 0.266
Approximate entropy 0.105

Spectral entropy 0.093
Permutation entropy 0.024

Table 5.11: Analysis of anomaly detection per-batch performance of various entropy measures from Section 3.5.

Model F1-score NAB F1-score KPI
SR 0.149 0.262

SARIMA 0.304 0.531
LSTM AE 0.205 0.263
PSO-ELM 0.312 0.266

Entropy std model 0.190 0.421

Table 5.12: Per-batch performance analysis of toy entropy model versus 3 best-performing baseline models from Section 5.3.

obtained by chance.
Figure 5.5 (c) and (d) apply same brute-force search on Yahoo A1 and A2 datasets. For A1 data, optimal

window is 85 with a factor of 1.0 whereas for A2 the optimal window is 25 with a factor of 1.8.
Interestingly, we were not capable of finding optimal window size for Yahoo synthetic benchmarks A3 and

A4 - our heatmaps suggest that optimal window lies in bottom-right corner of the map meaning maximally
large windows with maximally small factors (near 0.0) that would label every incoming point as anomaly due
to high restrictiveness. Corresponding heatmaps are shown in Figure 5.5 (e) and (f).

Finding 5: SVD entropy can be applied into near-real time scenario with batch sizes being below 100 time
points.

Figure 5.4: An examples of dynamic threshold adaptation for LSTM AE. Threshold is shown by the red line and is applied on LSTM AE
forecasting loss.

After we have found the optimal window size that can fit into our definition of near real-time scenario for
time series, we decided to integrate entropy-based threshold into existing base methods. Since each of the
base methods ground their detection strategy upon scoring incoming points from a univariate stream, we
can apply entropy analysis to adjust models’ threshold over data stream dynamically in relation to disorder
measure of a particular batch. We integrated entropy threshold into existing (rigid) threshold strategies for
every model. This was done in several steps:

1. We calculate per-batch anomaly scores on a training part of time series.

36 5. Experiments and Analysis

2. Based on these scores, we set minimum and maximum threshold for non-anomalous batch values by
calculating mean and standard deviations of per-batch entropy scores:

thr eshol d_bot tom = entr opy_scor es − f∗σ

thr eshol d_top = entr opy_scor es + f∗σ
Factor f is subjected to particular time series, yet our experiments show that the factors between 1.0
and 2.5 yield the best performance.

3. When making predictions in streaming settings, we first populate current anomaly batch up until it is
full and then test whether its disorder measure falls within normal deviation of entropies.

(a) If this is the case, then we proceed with built-in anomaly detection strategy of a model.

(b) Otherwise, we shrink built-in threshold value by the same magnitude as current entropy batch
deviates from mean entropy.

(a) KPI (b) NAB

(c) Yahoo A1 (d) Yahoo A2

(e) Yahoo A3 (f) Yahoo A4

Figure 5.5: Colormap of entropy model performance on public datasets (Yahoo, NAB, KPI) with varying window sizes and factor values.
Colorbar indicates F1-score performed in batched fashion with the corresponding window size.

5.6. Entropy analysis 37

Proposed strategy aims to minimize anomaly threshold in presence of entropy abnormalities, meaning
that we allow more points to be classified as anomalies when entropy of data changes. Dynamic threshold
adaptation integrated within LSTM AE model is shown in Figures 5.4.

Total F1-score
KPI NAB Yahoo A1 Yahoo A2 Murex ING

Model BT ET BT ET BT ET BT ET BT ET
SARIMA 0.173 0.180 0.139 0.194 0.422 0.208 0.427 0.343 0.175 0.131
LSTM AE 0.177 0.214 0.206 0.234 0.411 0.277 0.494 0.233 0.129 0.078
SR 0.102 0.277 0.110 0.171 0.276 0.182 0.512 0.228 0.112 0.112
PSO-ELM 0.220 0.316 0.123 0.211 0.323 0.303 0.507 0.304 0.144 0.133

Table 5.13: Performance of tuned models with built-in (BT) and entropy (ET) threshold strategies on publicly available data.

Total F1-score
KPI NAB Yahoo A1 Yahoo A2 Murex ING

Model BT ET BT ET BT ET BT ET BT ET
SARIMA 0.160 0.161 0.137 0.174 0.295 0.191 0.298 0.105 0.081 0.078
LSTM AE 0.110 0.132 0.201 0.219 0.304 0.184 0.008 0.008 0.046 0.059
SR 0.063 0.079 0.051 0.055 0.195 0.155 0.511 0.302 0.104 0.100
PSO-ELM 0.106 0.106 0.205 0.205 0.187 0.183 0.006 0.006 0.061 0.104

Table 5.14: Performance of raw models with built-in (BT) and entropy (ET) threshold strategies on publicly available data.

Total F1-score
LSTM SARIMA PSO-ELM

Dataset BT ET BT ET BT ET
Yahoo A2 0.011 0.014 0.355 0.125 - -
KPI - - 0.242 0.251 0.107 0.131
NAB - - 0.142 0.158 0.207 0.220

Table 5.15: Performance of raw models with built-in (BT) and entropy (ET) threshold and with the most applicable drift detector from
Table 5.10 (if any) on publicly available data. "-" indicates that drift adaptation did not improve model performance (see Table 5.10)

and, therefore, entropy threshold has not been tested in such settings.

P-values from Wilcoxon Signed Rank Test
Raw models Tuned models

Model KPI NAB KPI NAB
SARIMA 0.551 0.055 0.014 4.2e−6

LSTM AE 0.031 0.009 0.007 0.031
SR 0.119 0.344 0.001 1.7e−5

PSO-ELM 0.863 0.922 0.065 7.8e−5

Table 5.16: P-values of Wilcoxon Signed Rank Test performed on F1-score distributions (with and without entropy threshold) of raw
and optimized models per dataset.

Our last step was to test joint models (baselines + entropy threshold) on publicly available data. Our re-
sults are reported in Table 5.13 for tuned models and in Table 5.14 for raw models. In addition, for the com-
binations of base models and datasets that benefit from drift adaptation (see Table 5.10), we ran experiments
with both dynamic entropy threshold and drift detectors. We report results in Table 5.15 for raw models only.
We also performed statistical test (Wilcoxon Signed Rank Test) described in Section 5.2 to test significance of

38 5. Experiments and Analysis

change when applying entropy-based threshold over the datasets. These results are reported in Table 5.16 for
the dataset where we observed improvement, namely, NAB and KPI, and for both raw and optimized models.

Results indicate that in application to KPI and NAB public data, entropy-based threshold boost perfor-
mance of models from our selection, as judged by total F1-score. Such boost in performance is significant
for all optimized models except PSO-ELM on KPI data, as indicated by p-values ≤ 0.05. The average improve-
ment is around 30% and fluctuates between 0% to 50% for different model types and different datasets. In
case of Yahoo dataset, we only tested our models on benchmarks A1 and A2 since we could not find optimal
window for other 2 benchmarks. In case of Yahoo, entropy-based threshold decreases models’ performance.
Additionally, we used internal ING Murex dataset for test, where entropy-based threshold did not improve
performance either.

Finding 6: Entropy-based threshold seems to improve models’ performance on closer-to-real-case data, as
in case of KPI and NAB datasets, whereas it decreases performance for datasets with larger granularity, as Yahoo
or ING Murex.

5.7. Comparison to state-of-the-art models
Based on all finding and observations from the previous stages of our research, we have decided to combine
them all together into a single model and compare this model to the recent state-of-the-art anomaly detectors
found in scientific literature. We selected Online Evolving Spiking Neural Networks model (OeSNN-UAD)
proposed in 2021 by Piotr S. Maciąga et. al. [56] due to its recentness and large collection of anomaly detectors
it was compared to. We compare our model to all base models used in [56] that include recently invented
(2019) DeepAnt model [62] as well as some older anomaly detectors outlined below:

1. Numenta and NumentaTM [12] are the algorithms based on hierarchical temporal memory network
(HTM) and anomaly likelihood calculation part for anomaly detection.

2. HTM JAVA [35] is a Java implementation of the Numenta algorithm.

3. Skyline [84] is an ensemble algorithm for anomaly detection. Majority-voting is used to identify anomaly
label of a time point.

4. TwitterADVec [67] is a Seasonal Hybrid ESD (S-H-ESD) -based algorithm [74] for anomaly detection.

5. EGADS [48] an ensemble algorithm for anomaly detection in time series proposed by Yahoo. It uses
time series learning and modelling in order to identify deviations in incoming streams from the learned
model and detect anomalies based on it. It is capable of detecting three distinct anomaly types, namely:
outliers, sudden change points in values and anomalous sub-sequences of time series.

6. DeepAnT [62] is neural methods for anomaly detection that can have in its core long short-term layers
(LSTM) or convolutional (CNN) layers. It works by modelling time series and then detecting anomalies
in true observed values.

7. Bayesian Changepoint [11] time series change point detection algorithm based on Bayesian inference
and it analyses a probability distribution of the time series partitions created from earlier detected
change points. For the algorithms to work reliably, it is desired to have sudden change points in stream
distributions over time.

8. EXPected Similarity Estimation (EXPoSE) [78] distribution-based anomaly detector. It detects anoma-
lies if current input distribution of input deviates to what has been observed before.

9. KNN CAD [24] makes used of nearest-neighbours classification technique for anomaly detection in
univariate streams.

10. Relative Entropy [90] Kullback-Leibler divergence based methods for anomaly detection. It compares
previously observed and current distributions of time series points and detects anomaly if divergence
is large. This technique resembles our per-batch entropy calculation.

11. ContextOSE [82] extracts values from time series inputs and creates context properties from them.
Anomalous label is given to such points which context differs significantly to baseline context.

5.8. Evaluation of online models 39

Table 5.17: Average F-measure values obtained for Numenta Anomaly Benchmark stream data using the unsupervised anomaly
detectors (marked with *) presented in [56] and using proposed PSO-ELM-ET detector. The results in bold are the best for each data

files category. The results for the detectors marked with * were reported in [56].

Dataset category
B

ay
es

ia
n

C
h

an
ge

p
oi

n
t*

C
on

te
xt

O
SE

*

E
X

Po
SE

*

H
T

M
JA

VA
*

K
N

N
C

A
D

*

N
u

m
en

ta
*

N
u

m
en

ta
T

M
*

R
el

at
iv

e
E

n
tr

op
y*

Sk
yl

in
e*

Tw
it

te
r

A
D

Ve
c*

W
in

d
ow

ed
G

au
ss

ia
n

*

D
ee

p
A

n
T

*

O
eS

N
N

-U
A

D
*

P
SO

-E
LM

-E
T

Artificial no Anomaly 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Artificial with Anomaly 0.009 0.004 0.004 0.017 0.003 0.012 0.017 0.021 0.043 0.017 0.013 0.156 0.427 0.346

Real Ad Exchange 0.018 0.022 0.005 0.034 0.024 0.040 0.035 0.024 0.005 0.018 0.026 0.132 0.234 0.362
Real AWS Cloud 0.006 0.007 0.015 0.018 0.006 0.017 0.018 0.018 0.053 0.013 0.06 0.146 0.369 0.404

Real Known Cause 0.007 0.005 0.005 0.013 0.008 0.015 0.012 0.013 0.008 0.017 0.006 0.2 0.324 0.350
Real Traffic 0.012 0.02 0.011 0.032 0.013 0.033 0.036 0.033 0.091 0.020 0.045 0.223 0.340 0.341
Real Tweets 0.003 0.003 0.003 0.010 0.004 0.009 0.010 0.006 0.035 0.018 0.026 0.075 0.310 0.212

Averaged 0.008 0.009 0.006 0.018 0.008 0.018 0.018 0.016 0.034 0.015 0.025 0.133 0.286 0.288

We did not run or pre-train any of the above detectors by ourselves since, in majority, they report rather
poor performance on NAB benchmark [62] in comparison to other prominent models. We use earlier re-
ported results from [56] as the point of reference.

In selecting components of our model we relied on the following conclusions from our previous observa-
tions as well as on architectural constraints of our base models:

1. We have observed that on longer time series that are closer to real data, entropy-based threshold boosts
performance, therefore, we decided to use a model with entropy thresholding.

2. In order for model to be comparable to OeSNN-UAD, we need to perform point-based predictions,
yielding anomaly predictions one-by-one.

3. Ideally, we would like our model to be capable to retrain in real-time as well, since it might be profitable
to use it with drift adaptation for some datasets.

Based on the above observations, we decided to use PSO-ELM model with entropy-based threshold (PSO-
ELM-ET). We removed normalization from the original implementation of PSO-ELM since this would require
us to know and normalize point in future incoming time series points. Instead of using non-intersecting
batches for entropy calculation, we used sliding batches with the stride of 1 on the test part of the time series,
we calculate per-batch entropy mean and standard deviation values same way we did it before on disjoint
batches. We used extensive hyperparameter tuning of our model where parameters such as entropy window
size, factor f as well as some internal PSO-ELM hyperparameters like training window size have been tuned.
We performed our hyperparameter optimization the same way it was done for OeSNN-UAD.

Table 5.17 shows performance of PSO-ELM-ET against previous models on all subsets of NAB dataset. As
Table 5.17 indicates, our model is capable of reaching state-of-the-art overall performance as well as outper-
forms previous models on a number of NAB subset.

Finding 7: Proposed PSO-ELM-ET model has comparable performance to the state-of-the-art detectors on
NAB dataset. Yet, this model is not a universally best choice for other datasets.

5.8. Evaluation of online models
In this section we would like to discuss evaluation routines used in online anomaly detection domain and
their representativeness of actual model behavior after deployment.

The vast majority of current and previous studies on online anomaly detection uses single total F1-score
as their measure of models’ performance. This is exactly the reason why we used such evaluation technique in
our study - to assess and score our models such that they can be compared directly with the existing detectors.
In addition, some studies use single overall evaluation scores as precision, recall, balanced accuracy, and
Matthews correlation coefficient [56], [39], [72]. All these scores reflect or combine proportions of correctly
or wrongly classified anomalies by some detector within test part of the data.

40 5. Experiments and Analysis

Nevertheless, such single-value scores do not give any insight into actual models’ performance during its
life-cycle once deployed. For example, a model with average stable performance over its whole lifespan will
yield nearly identical metrics as a model that initially had high accuracy or precision which drastically drops
over time in production. Therefore, we looked into alternative ways of measuring models’ performances and
evaluating them over time that can give insight into how model behavior changes over time.

To the best of our knowledge, there is only very limited amount of studies that evaluates online anomaly
detectors over time and use such matrices for detector comparisons. One immediate approach would be to
look into per-batch predictor metricise over time, where for example F1-scores or precision are calculated
on small disjoint but consequent batches of time series values. With this approach, it becomes possible to
observe changes of predictive behavior of models over time and identify models with stable performance, or
models which performance degrades over time. In addition, such approach still allows for identifying strictly
superior models: such model will have all per-batch metrics above less-accurate models. We provide visual
representations in Figure 5.6 (a) and (b).

(a) (b)

Figure 5.6: Per-batch F1-score of PSO-ELM model with various thresholding techniques on a KPI time series.

In Figure 5.6 a) model with dynamic threshold is superior to another two models on every batch, even
though performance of the model is unstable over time interval. In such case, it can be concluded, that
dynamic threshold model is the best choice out of 3 options for the selected time series. However, as Figure
5.6 b) shows, on a different time series there is no best-fitting model, since dynamic threshold model performs
the worst in the beginning but gains advantage over time. Additionally, it can be observed that in case of time
series from Figure 5.6 b), their performance starts decreasing almost immediately after the first test batch
which a single F1-score over test set would not indicate.

Therefore, we think it is profitable to evaluate and track performance of online detectors via per-batch
metrics over time. Then, the extent of the deviation within such metrics, overall trend, and average distance
to another model metrics can be used to evaluate online model.

Finding 8: Modern evaluation techniques for online anomaly detectors are not representative of a model
lifespan when deployed. Nevertheless, when tracking performance over time, more complex analysis involving
human-in-the-loop is needed to reliably assessing online performance.

III
Discussion and Conclusions

41

5.9. Discussion 43

5.9. Discussion
Within this work, we have structured existing anomaly detection techniques using one single general classifi-
cation. We have selected the most popular methods out of each category and we have tested their applicabil-
ity to various known public streaming benchmarks. We researched what variables that are present within the
benchmark time series data, might have an influence on the predictive performance of anomaly detectors
and their generalizability. We exploited our findings and proposed one final PSO-ELM-ET model: a combi-
nation of an already existing model based on particle swarm optimization of extreme learning machines and
an entropy-dependent threshold technique that adjusts rigid anomaly threshold over a span of time based on
batched entropies. Below, we discuss our findings in more detail and we draw corresponding conclusions.

We have found that some types of anomaly detectors do not adapt well to real-time streams: for instance,
clustering, isolation, or distance-based methods did not show competitive performance in our experiments.
Our best-performing online anomaly detectors include neural-based models, such as Auto-Encoders or Ex-
treme Learning Machines, and signal-processing models such as SARIMA or Spectral Residuals. One reason
for this might be that all of our selected base models make use of time dependency within the time series
either via LSTM layers or by using time series characteristics as frequencies or seasonality during model cre-
ation and prediction.

Our Finding 1 indicates that conventional anomaly detectors do not generalize well into various stream-
ing scenarios as shown by their low performance on the joint set of anomaly detection benchmarks (F1-score
≤ 0.7). We did not find any strong patterns or accordance among models’ performances: each benchmark
has its own top-performing model which is not universal across other datasets.

Neither did we find any similarities or dissimilarities across publicly available benchmarks, that could be
correlated to the detective performance of the models. Finding 2 shows that we did not find any strong rela-
tion between particular time series features (independently of the dataset) and models’ performances on the
given data. Nevertheless, our analysis is highly limited by the number of publicly available time series and
bias, if any, present within them. Our final set consists of 456 time series out of 3 public benchmarks with the
vast majority of them (367) coming from Yahoo benchmark. Not only such a small amount of time series lim-
its our correlation research on time series feature influence on models’ performance, but particular dataset
biases may lower result soundness. As an example, a recent study from 2021 [95] argues that modern anomaly
detection time series benchmarks suffer from flaws such as unrealistic anomaly densities, mislabeled ground
truth, or location of anomaly groups (that tends to be towards the very end of a time series). Such flaws also
may have an influence on our results in general, and correlation analysis in particular. We reckon that one
useful extension of our study might be to perform a large-scale correlation analysis with thousands of labeled
time series.

Our Finding 3 indicate that, in general, there is no consistent improvement of anomaly detectors when
combined with drift detectors, however, individual anomaly detectors may exhibit a performance boost when
combined with drift adaptation. We have also identified a set of the best-suitable drift detectors for particular
models in application to streaming data. Our findings show that EDDM, ECDD, and HDDW adapt the best to
our base anomaly detectors.

Our contribution consists of exploiting time series disorder, we have shown that it is feasible to decom-
pose time series into per-batch entropy values over short periods of time with the window size suitable to
our definition of near real-time anomaly detection (Finding 4 and Finding 5), and that such short-period
entropy indicators are capable of highlighting anomalous batches. We did not find a single overall window
that yields the best performance over all benchmarks - in order to achieve the most representative entropy-
decomposition values over time series batches, it is necessary to search for an optimal entropy window within
such time series. We found entropy windows to be in a range of 35 to 85 time points, with some datasets com-
pletely failing to optimal window search and, therefore, being inapplicable to entropy analysis. We used such
short-period entropy measures for dynamically adjusting rigid anomaly threshold measure in base models.
We tested various entropy measures with singular values decomposition entropy proving to be the best choice
in our case, leaving behind more popular choices for time series entropy analysis, such as permutation and
spectral entropies. Such a result might be influenced by the short window size constraint: to the best of our
knowledge, previous studies on entropy analysis within time series data applied it to significantly larger time
periods.

Based on our complete exploratory analysis, we selected and proposed one final anomaly detection model
for data streams (Finding 6). Our model did not show reliable accuracy on anomaly benchmarks (accuracy
0.7). Nevertheless, when tuned with optimization routines given within the literature, it is capable of showing
performance comparable to state-of-the-art online anomaly detectors, as Finding 7 indicates.

44

We believe that our findings indicate there is an overall little generalization of online anomaly detectors to
different time series types, and that there is no one-suits-all solution. In order to achieve the highest perfor-
mance, not only a detector should be tuned per time series, but also different detector types better capture
anomalies in different time series. We selected PSO-ELM-ET model as the final choice due to it seemingly
better applicability to lengthy and closer-to-real time series, as those in NAB or KPI detasetsas, well as due to
its speed of training.

Lastly, we argue in Finding 8 that a popular single F1-score measure over the test set is not represen-
tative of the true changing behavior of an anomaly detector in real time and, therefore, cannot be used
alone to evaluate online anomaly detectors. We believe that per-batch metrics (as F1-score measure) cap-
ture changes in models’ performance over their life cycle and should be used for assessing online anomaly
detectors. Nonetheless, interpretation of such metrics is not always straightforward, it requires human-in-
the-loop intervention for model comparison and it is highly use-case specific.

5.10. Future Work
Our analysis suffers from the limited amount of available data. Therefore, one interesting improvement of our
work lies in applying our analysis to a larger set of time series. Such time series can be artificially generated or
can be of real nature, yet, in our opinion, the real data type is the most interesting one. In addition, possible
correlations between models’ performance and types of data (real vs anomalous) can be researched as well
as other data type groupings based on the granularity of time series or their nature (machine metrics, traffic
metrics, etc.).

Additionally, our analysis works solely with univariate data whereas the applicability of our findings to the
multivariate case might is of high interest.

Last but not the least, more in-depth research into possible evaluation metrics for online anomaly detec-
tors will be a valuable input for the domain.

5.11. Conclusion
In our work, we researched the applicability of time series anomaly detectors to online scenarios with fully
unsupervised learning. We have tested selected detectors out of several groups and we identified the best-
performing models for univariate cases, namely, SARIMA, LSTM AE, PSO-ELM, and Spectral Residuals. How-
ever, our response to the first research question from Section 1.2 is we observed poor preservation of models’
performance over different datasets.

To answer the second research question from Section 1.2, we analyzed various dependencies among per-
formance scores of anomaly detectors, represented by F1-score on a full test set, and certain time series
properties. We researched several categories of such properties, such as time series features, data drifts, and
time series disorder, and their possible influence on models’ performance. We found time series disorder, as
measured via singular value decomposition entropy, to be the most promising and interesting direction for
improving the performance preservation of anomaly detectors.

We proposed an adaptive threshold method to diminish time series disorder influence on the perfor-
mance of anomaly detectors as the response to the last research question from Section 1.2. The method is
capable of adjusting in near real-time in relation to the entropy measure of incoming time series batches, and
we show its applicability to all base models on 2 out of 3 datasets. We also combined all our findings together
by selecting one final model for anomaly detection in streaming data and by testing it against state-of-the-art
benchmarks on NAB dataset to show the competitiveness of our method.

Lastly, we discuss possible problems and solutions in evaluating online anomaly detectors via single F1-
score.

5.11. Conclusion 45

Feature From Method Description
DN_HistogramMode_5 Catch22 Mode of z-scored distribution

(5-bin histogram)
DN_HistogramMode_10 Catch22 Mode of z-scored distribution

(10-bin histogram)
CO_f1ecac Catch22 First 1/e crossing of

autocorrelation function
CO_FirstMin_ac Catch22 First minimum of

autocorrelation function
CO_HistogramAMI_even_2_5 Catch22 Automutual information,

m = 2, τ = 5
CO_trev_1_num Catch22 Time-reversibility statistic,

〈(xt+1 −xt)3〉t
MD_hrv_classic_pnn40 Catch22 Proportion of successive differences

exceeding 0.04σ []
SB_BinaryStats_mean_longstretch1 Catch22 Longest period

of consecutive values above the mean
SB_TransitionMatrix_3ac_sumdiagcov Catch22 Trace of

covariance of transition matrix between symbols
in 3-letter alphabet

PD_PeriodicityWang_th0_01 Catch22 Periodicity measure of [92]
CO_Embed2_Dist_tau_d_expfit_meandiff Catch22 Exponential fit

to successive distances in 2-d embedding space
IN_AutoMutualInfoStats_40_gaussian_fmmi Catch22 First minimum

of the automutual information function
FC_LocalSimple_mean1_tauresrat Catch22 Change in correlation length

after iterative differencing
DN_OutlierInclude_p_001_mdrmd Catch22 Time intervals

between successive extreme events above the mean
DN_OutlierInclude_n_001_mdrmd Catch22 Time intervals

between successive extreme events below the mean
SP_Summaries_welch_rect_area_5_1 Catch22 Total power in lowest fifth

of frequencies in the Fourier power spectrum
SB_BinaryStats_diff_longstretch0 Catch22 Longest period of successive

incremental decreases
SB_MotifThree_quantile_hh Catch22 Shannon entropy of two successive

letters in equiprobable 3-letter symbolization
SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 Catch22 Proportion of slower timescale

fluctuations that scale with linearly rescaled range fits
SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1 Catch22 Proportion of slower

timescale fluctuations that scale with DFA (50% sampling)
SP_Summaries_welch_rect_centroid Catch22 Proportion of slower timescale

fluctuations that scale with linearly
rescaled range fits

FC_LocalSimple_mean3_stderr Catch22 Mean error from a rolling 3-sample
mean forecasting

hurst FFORMA Hurst exponent
seasonality FFORMA strength of seasonality

series_length FFORMA length of time series
unitroot_pp FFORMA test statistic based on Phillips-Perron test

unitroot_kpss FFORMA test statistic based on KPSS test
stability FFORMA stability
nperiods FFORMA number of seasonal periods in the series

seasonal_period FFORMA length of seasonal pertiod
trend FFORMA strength of trend
spike FFORMA spikiness

linearity FFORMA linearity
curvature FFORMA curvature

e_acf1 FFORMA first ACF value of remainder series
e_acf10 FFORMA sum of squares of first 10 ACF values of remainder series
x_pacf5 FFORMA sum of squares of first 5 PACF values of original series

diff1x_pacf5 FFORMA sum of squares of first 5 PACF values of differenced series
diff2x_pacf5 FFORMA sum of squares of first 5 PACF values

of twice-differenced series
nonlinearity FFORMA nonlinearity
lumpiness FFORMA lumpiness

alpha FFORMA ETS(A,A,N) α̂
beta FFORMA ETS(A,A,N) β̂

flat_spots FFORMA number of flat spots, calculated by discretizing the series
into 10 equal sized intervals and counting the maximum

run length within any single interval
entropy FFORMA spectral entropy

crossing_points FFORMA number of times the time series crosses the median
arch_lm FFORMA ARCH LM statistic
x_acf1 FFORMA first ACF value of the original series

x_acf10 FFORMA sum of squares of first 10 ACF values of original series
diff1_acf1 FFORMA first ACF value of the differenced series

diff1_acf10 FFORMA sum of squares of first 10 ACF values of differenced series
diff2_acf1 FFORMA first ACF value of the twice-differenced series

diff2_acf10 FFORMA sum of squares of first 10 ACF
values of twice-differenced series

hwalpha FFORMA ETS(A,A,A) α̂
hwbeta FFORMA ETS(A,A,A) β̂

hwgamma FFORMA ETS(A,A,A) γ̂
peak FFORMA strength of peak

through FFORMA strangth of through
arch_acf FFORMA sum of squares of the first 12 autocorrelations of z2

garch_acf FFORMA sum of squares of the first 12 autocorrelations of r 2

arch_r2 FFORMA R2 value of an AR model applied to z2

garch_r2 FFORMA R2 value of an AR model applied to r 2

seas_pacf FFORMA partial autocorrelation coefficient at first seasonal lag
sediff_acf1 FFORMA first ACF value of seasonally differenced series

Table 18: Full set of time series features used for correlation analysis.

Bibliography

[1] Aws cloudwatch. URL https://aws.amazon.com/cloudwatch/.

[2] Luminol. URL https://github.com/linkedin/luminol.

[3] Minnesota department of transportation. URL https://www.dot.state.mn.us/.

[4] Prophet. URL https://research.facebook.com/blog/2017/02/
prophet-forecasting-at-scale/.

[5] Cardiac software. URL https://www.medicalexpo.com/prod/northeast-monitoring/
product-110013-732396.html.

[6] E*trade. URL https://us.etrade.com/home.

[7] Wikipedia fourier transform. URL https://en.wikipedia.org/wiki/Fast_Fourier_transform#
/media/File:FFT_of_Cosine_Summation_Function.svg.

[8] Intensive care admission data from dutch government. URL https://coronadashboard.
government.nl/landelijk/intensive-care-opnames.

[9] Wikipedia lstm. URL https://en.wikipedia.org/wiki/Long_short-term_memory.

[10] Sara Abdelghafar, Ashraf A. Darwish, Aboul Ella Hassanien, Mohamed Yahia, and A. A. S. Zaghrout.
Anomaly detection of satellite telemetry based on optimized extreme learning machine. Journal of
Space Safety Engineering, 6:291–298, 2019.

[11] Ryan P. Adams and David J. C. Mackay. Bayesian online changepoint detection. arXiv: Machine Learn-
ing, 2007.

[12] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly detec-
tion for streaming data. Neurocomputing, 262:134–147, 2017.

[13] Mosabber Uddin Ahmed and Danilo P. Mandic. Multivariate multiscale entropy: a tool for complexity
analysis of multichannel data. Physical review. E, Statistical, nonlinear, and soft matter physics, 84 6 Pt
1:061918, 2011.

[14] Daniel B. Araya, Katarina Grolinger, Hany F. ElYamany, Miriam A. M. Capretz, and Girma T. Bitsuam-
lak. Collective contextual anomaly detection framework for smart buildings. 2016 International Joint
Conference on Neural Networks (IJCNN), pages 511–518, 2016.

[15] Manuel Baena-Garc, José Avila, Albert Bifet, Ricard Gavald, and Rafael Morales-Bueno. Early drift de-
tection method. 2005.

[16] Christoph Bandt and Bernd Pompe. Permutation entropy: a natural complexity measure for time se-
ries. Physical review letters, 88 17:174102, 2002.

[17] F. S. Bao, Xin Liu, and Christina Zhang. Pyeeg: An open source python module for eeg/meg feature
extraction. Computational Intelligence and Neuroscience, 2011, 2011.

[18] Vance W. Berger and Yanyan Zhou. Kolmogorov–smirnov tests. 2005.

[19] Albert Bifet and Ricard Gavaldà. Learning from time-changing data with adaptive windowing. In SDM,
2007.

47

https://aws.amazon.com/cloudwatch/
https://github.com/linkedin/luminol
https://www.dot.state.mn.us/
https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/
https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/
https://www.medicalexpo.com/prod/northeast-monitoring/product-110013-732396.html
https://www.medicalexpo.com/prod/northeast-monitoring/product-110013-732396.html
https://us.etrade.com/home
https://en.wikipedia.org/wiki/Fast_Fourier_transform#/media/File:FFT_of_Cosine_Summation_Function.svg
https://en.wikipedia.org/wiki/Fast_Fourier_transform#/media/File:FFT_of_Cosine_Summation_Function.svg
https://coronadashboard.government.nl/landelijk/intensive-care-opnames
https://coronadashboard.government.nl/landelijk/intensive-care-opnames
https://en.wikipedia.org/wiki/Long_short-term_memory

48 Bibliography

[20] Isvani Inocencio Frías Blanco, José del Campo-Ávila, Gonzalo Ramos-Jiménez, Rafael Morales Bueno,
Agustín Alejandro Ortiz Díaz, and Yailé Caballero Mota. Online and non-parametric drift detection
methods based on hoeffding’s bounds. IEEE Transactions on Knowledge and Data Engineering, 27:810–
823, 2015.

[21] Thomas Kelman Boehme and Ronald N. Bracewell. The fourier transform and its applications. Ameri-
can Mathematical Monthly, 73:685, 1966.

[22] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. Sand in action: Subsequence
anomaly detection for streams. Proc. VLDB Endow., 14:2867–2870, 2021.

[23] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Identifying density-
based local outliers. SIGMOD ’00, page 93–104, New York, NY, USA, 2000. Association for Comput-
ing Machinery. ISBN 1581132174. doi: 10.1145/342009.335388. URL https://doi.org/10.1145/
342009.335388.

[24] Evgeny Burnaev and Vladislav Ishimtsev. Conformalized density- and distance-based anomaly detec-
tion in time-series data. ArXiv, abs/1608.04585, 2016.

[25] Petre Caraiani. The predictive power of singular value decomposition entropy for stock market dynam-
ics. Physica A-statistical Mechanics and Its Applications, 393:571–578, 2014.

[26] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between probability density
functions. 2007.

[27] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Comput.
Surv., 41:15:1–15:58, 2009.

[28] Dipankar Dasgupta and L.F. Nino. A comparison of negative and positive selection algorithms in novel
pattern detection. Smc 2000 conference proceedings. 2000 ieee international conference on systems, man
and cybernetics. ’cybernetics evolving to systems, humans, organizations, and their complex interactions’
(cat. no.0, 1:125–130 vol.1, 2000.

[29] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall, Ab-
dullah Mueen, Gustavo Batista, and Hexagon-ML. The ucr time series classification archive, October
2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

[30] Jürgen Fell, Joachim Röschke, Klaus Mann, and Cornelius Schäffner. Discrimination of sleep stages: a
comparison between spectral and nonlinear eeg measures. Electroencephalography and clinical neu-
rophysiology, 98 5:401–10, 1996.

[31] Ralph Foorthuis. On the nature and types of anomalies: a review of deviations in data. International
Journal of Data Science and Analytics, pages 1 – 35, 2021.

[32] Ben D. Fulcher and Nick S. Jones. hctsa: A computational framework for automated time-series phe-
notyping using massive feature extraction. Cell systems, 5 5:527–531.e3, 2017.

[33] João Gama, Pedro Medas, Gladys Castillo, and Pedro Pereira Rodrigues. Learning with drift detection.
In SBIA, 2004.

[34] Robert M. Gray. Entropy and information theory. In Springer New York, 1990.

[35] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of sequence
memory in neocortex. Frontiers in Neural Circuits, 10, 2016.

[36] Trent Henderson and Ben D. Fulcher. An empirical evaluation of time-series feature sets. ArXiv,
abs/2110.10914, 2021.

[37] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the Amer-
ican Statistical Association, 58:13–30, 1963.

https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Bibliography 49

[38] Xiaodi Hou and Liqing Zhang. Saliency detection: A spectral residual approach. 2007 IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[39] Ganghui Hu, Jing Wang, Yunxiao Liu, Wang Ke, and Youfang Lin. Ccad: A collective contextual anomaly
detection framework for kpi data stream. Communications in Computer and Information Science, 2021.

[40] Guangbin Huang, Qin-Yu Zhu, and Chee Kheong Siew. Extreme learning machine: Theory and appli-
cations. Neurocomputing, 70:489–501, 2006.

[41] Rob J. Hyndman, Earo Wang, and Nikolay Pavlovich Laptev. Large-scale unusual time series detection.
2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 1616–1619, 2015.

[42] Massimiliano Ignaccolo, Miroslaw Latka, Wojciech Jernajczyk, Paolo Grigolini, and Bruce J. West. The
dynamics of eeg entropy. Journal of Biological Physics, 36:185–196, 2010.

[43] Meenal Jain and Gagandeep Kaur. Distributed anomaly detection using concept drift detection based
hybrid ensemble techniques in streamed network data. Clust. Comput., 24:2099–2114, 2021.

[44] Herbert F. Jelinek, Luke A. Donnan, and Ahsan H. Khandoker. Singular value decomposition entropy as
a measure of ankle dynamics efficacy in a y-balance test following supportive lower limb taping. 2019
41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
pages 2439–2442, 2019.

[45] Fan Jiang, Ying Wu, and Aggelos K. Katsaggelos. Detecting contextual anomalies of crowd motion in
surveillance video. 2009 16th IEEE International Conference on Image Processing (ICIP), pages 1117–
1120, 2009.

[46] Baihong Jin, Yuxin Chen, Dan Li, Kameshwar Poolla, and Alberto Sangiovanni-Vincentelli. A one-
class support vector machine calibration method for time series change point detection. In 2019
IEEE International Conference on Prognostics and Health Management (ICPHM), pages 1–5, 2019. doi:
10.1109/ICPHM.2019.8819385.

[47] Carl F. Kossack and M. G. Kendall. Rank correlation methods. American Mathematical Monthly, 57:425,
1950.

[48] Nikolay Pavlovich Laptev, Saeed Amizadeh, and Ian Flint. Generic and scalable framework for auto-
mated time-series anomaly detection. Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2015.

[49] Alexander Lavin and Subutai Ahmad. Evaluating real-time anomaly detection algorithms – the nu-
menta anomaly benchmark. 2015 IEEE 14th International Conference on Machine Learning and Appli-
cations (ICMLA), pages 38–44, 2015.

[50] Longyuan Li, Junchi Yan, Haiyang Wang, and Yaohui Jin. Anomaly detection of time series with
smoothness-inducing sequential variational auto-encoder. IEEE Transactions on Neural Networks and
Learning Systems, 32(3):1177–1191, 2021. doi: 10.1109/TNNLS.2020.2980749.

[51] Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael Weyrich. A survey on anomaly
detection for technical systems using lstm networks. Comput. Ind., 131:103498, 2021.

[52] F. Liu, K. Ting, and Z. Zhou. Isolation forest. 2008 Eighth IEEE International Conference on Data Mining,
pages 413–422, 2008.

[53] Xiaofeng Liu, Aimin Jiang, N. Xu, and Jianru Xue. Increment entropy as a measure of complexity for
time series. Entropy, 18:22, 2016.

[54] Carl Henning Lubba, Sarab S. Sethi, Philip Knaute, Simon R. Schultz, Ben D. Fulcher, and Nick S. Jones.
catch22: Canonical time-series characteristics. Data Mining and Knowledge Discovery, 33:1821 – 1852,
2019.

[55] Ya lun Chou. Statistical analysis, with business and economic applications. 1975.

50 Bibliography

[56] Piotr S. Maciag, Marzena Kryszkiewicz, Robert Bembenik, and Jesús López Lobo. Unsupervised
anomaly detection in streamdatawith online evolving spiking neural networks. 2021.

[57] Ruchi Makani and B.V.R. Reddy. Taxonomy of machine leaning based anomaly detection and its
suitability. Procedia Computer Science, 132:1842–1849, 2018. ISSN 1877-0509. doi: https://doi.
org/10.1016/j.procs.2018.05.133. URL https://www.sciencedirect.com/science/article/pii/
S1877050918308652. International Conference on Computational Intelligence and Data Science.

[58] S. David McSwain, Donna S Hamel, P. Brian Smith, Michael A. Gentile, Saumini Srinivasan, Jon N. Me-
liones, and Ira M Cheifetz. End-tidal and arterial carbon dioxide measurements correlate across all
levels of physiologic dead space. Respiratory care, 55 3:288–93, 2010.

[59] H. Zare Moayedi and M. A. Masnadi-Shirazi. Arima model for network traffic prediction and anomaly
detection. 2008 International Symposium on Information Technology, 4:1–6, 2008.

[60] Pablo Montero-Manso, George Athanasopoulos, Rob J. Hyndman, and Thiyanga S. Talagala. Fforma:
Feature-based forecast model averaging. International Journal of Forecasting, 36:86–92, 2020.

[61] Fabian Mörchen. Time series feature extraction for data mining using dwt and dft. 2003.

[62] Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas R. Dengel, and Sheraz Ahmed. Deepant: A deep learn-
ing approach for unsupervised anomaly detection in time series. IEEE Access, 7:1991–2005, 2019.

[63] Gustavo H. F. M. Oliveira, Rodolfo Carneiro Cavalcante, George G. Cabral, Leandro L. Minku, and Adri-
ano Oliveira. Time series forecasting in the presence of concept drift: A pso-based approach. 2017 IEEE
29th International Conference on Tools with Artificial Intelligence (ICTAI), pages 239–246, 2017.

[64] Salima Omar, Asri Md. Ngadi, and Hamid H. Jebur. Machine learning techniques for anomaly detec-
tion: An overview. International Journal of Computer Applications, 79:33–41, 2013.

[65] Guansong Pang, Chunhua Shen, L. Cao, and A. V. Hengel. Deep learning for anomaly detection. ACM
Computing Surveys (CSUR), 54:1 – 38, 2021.

[66] Clifton Phua, Kate Smith-Miles, Vincent Cheng-Siong Lee, and R. Gayler. Adaptive spike detection for
resilient data stream mining. In AusDM, 2007.

[67] Phyks. Introducing practical and robust anomaly detection in a time series | twitter blogs. 2015.

[68] Steven M. Pincus. Approximate entropy as a measure of system complexity. Proceedings of the National
Academy of Sciences of the United States of America, 88:2297 – 2301, 1991.

[69] Riccardo Poli, James Kennedy, and Tim M. Blackwell. Particle swarm optimization. Swarm Intelligence,
1:33–57, 2007.

[70] Yu Qin and YuanSheng Lou. Hydrological time series anomaly pattern detection based on isolation
forest. In 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Con-
ference (ITNEC), pages 1706–1710, 2019. doi: 10.1109/ITNEC.2019.8729405.

[71] Jamal Raiyn and Tomer Toledo. Real-time road traffic anomaly detection. Journal of Transportation
Technologies, 04:256–266, 2014.

[72] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang,
Jie Tong, and Q. Zhang. Time-series anomaly detection service at microsoft. Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.

[73] Joshua Richman and J. Randall Moorman. Physiological time-series analysis using approximate en-
tropy and sample entropy. American journal of physiology. Heart and circulatory physiology, 278 6:
H2039–49, 2000.

[74] Bernard A Rosner. Percentage points for a generalized esd many-outlier procedure. Technometrics, 25:
165–172, 1983.

https://www.sciencedirect.com/science/article/pii/S1877050918308652
https://www.sciencedirect.com/science/article/pii/S1877050918308652

Bibliography 51

[75] Gordon J. Ross, Niall M. Adams, Dimitris K. Tasoulis, and David J. Hand. Exponentially weighted mov-
ing average charts for detecting concept drift. ArXiv, abs/1212.6018, 2012.

[76] Sakti Saurav, Pankaj Malhotra, T. R. Vishnu, Narendhar Gugulothu, Lovekesh Vig, Puneet Agarwal, and
Gautam M. Shroff. Online anomaly detection with concept drift adaptation using recurrent neural net-
works. Proceedings of the ACM India Joint International Conference on Data Science and Management
of Data, 2018.

[77] Karsten Schmidt. Computing the moore–penrose inverse of a matrix with a computer algebra system.
International Journal of Mathematical Education in Science and Technology, 39:557 – 562, 2008.

[78] Markus Schneider, Wolfgang Ertel, and Fabio Tozeto Ramos. Expected similarity estimation for large-
scale batch and streaming anomaly detection. Machine Learning, 105:305–333, 2016.

[79] Kamran Shaukat, Talha Mahboob Alam, Suhuai Luo, Shakir Shabbir, Ibrahim A. Hameed, Jiaming Li,
Syed Konain Abbas, and Umair Javed. A review of time-series anomaly detection techniques: A step to
future perspectives. 2021.

[80] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouët. Anomaly detection in
streams with extreme value theory. Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017.

[81] Nidhi Singh and Craig Olinsky. Demystifying numenta anomaly benchmark. 2017 International Joint
Conference on Neural Networks (IJCNN), pages 1570–1577, 2017.

[82] M. Smirnov. Contextual anomaly detector, 2016. URL https://github.com/smirmik/CAD.

[83] Vladimir N. Soloviev, Andrii O. Bielinskyi, and Viktoria Solovieva. Entropy analysis of crisis phenomena
for djia index. In ICTERI Workshops, 2019.

[84] A. Stanway. Etsy skyline, 2015. URL https://github.com/etsy/skyline.

[85] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.

[86] Thiyanga S. Talagala, Rob J. Hyndman, and George Athanasopoulos. Meta-learning how to forecast
time series. 2018.

[87] Mingyan Teng. Anomaly detection on time series. 2010 IEEE International Conference on Progress in
Informatics and Computing, 1:603–608, 2010.

[88] Mingyan Teng. Anomaly detection on time series. In 2010 IEEE International Conference on Progress in
Informatics and Computing, volume 1, pages 603–608, 2010. doi: 10.1109/PIC.2010.5687485.

[89] Maurras Ulbricht Togbe, Yousra Chabchoub, Aliou Boly, Mariam Barry, Raja Chiky, and Maroua Bahri.
Anomalies detection using isolation in concept-drifting data streams. Comput., 10:13, 2021.

[90] Chengwei Wang, Krishnamurthy Viswanathan, Choudur K. Lakshminarayan, Vanish Talwar, Wade Sat-
terfield, and Karsten Schwan. Statistical techniques for online anomaly detection in data centers.
12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops,
pages 385–392, 2011.

[91] Xiaozhe Wang, Kate Smith-Miles, and Rob J. Hyndman. Characteristic-based clustering for time series
data. Data Mining and Knowledge Discovery, 13:335–364, 2005.

[92] Xiaozhe Wang, Anthony Wirth, and Liang Wang. Structure-based statistical features and multivariate
time series clustering. Seventh IEEE International Conference on Data Mining (ICDM 2007), pages 351–
360, 2007.

[93] Xiaozhe Wang, Kate Smith-Miles, and Rob J. Hyndman. Rule induction for forecasting method selec-
tion: Meta-learning the characteristics of univariate time series. Neurocomputing, 72:2581–2594, 2009.

https://github.com/smirmik/CAD
https://github.com/etsy/skyline

52 Bibliography

[94] Robert F. Woolson. Wilcoxon signed-rank test. 2005.

[95] Renjie Wu and Eamonn J. Keogh. Current time series anomaly detection benchmarks are flawed and
are creating the illusion of progress. ArXiv, abs/2009.13807, 2021.

[96] Ning Xinbao. Multiscale entropy analysis of complex physiologic time series. Beijing Biomedical Engi-
neering, 2007.

[97] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan
Pei, Yang Feng, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis
in web applications. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, pages
187–196. International World Wide Web Conferences Steering Committee, 2018.

[98] Rongbin Xu, Yongliang Cheng, Zhiqiang Liu, Ying Xie, and Yun Yang. Improved long short-
term memory based anomaly detection with concept drift adaptive method for supporting iot ser-
vices. Future Generation Computer Systems, 112:228–242, 2020. ISSN 0167-739X. doi: https://doi.
org/10.1016/j.future.2020.05.035. URL https://www.sciencedirect.com/science/article/pii/
S0167739X20302235.

[99] Yin Zhang, Zihui Ge, Albert G. Greenberg, and Matthew Roughan. Network anomography. In IMC ’05,
2005.

[100] Puning Zhao and Lifeng Lai. Analysis of knn density estimation. ArXiv, abs/2010.00438, 2020.

https://www.sciencedirect.com/science/article/pii/S0167739X20302235
https://www.sciencedirect.com/science/article/pii/S0167739X20302235

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	I Preliminaries
	Introduction
	Problem Description
	Research Questions
	Contributions
	Objectives and Constraints

	Background
	Time series
	Time Series Features
	Univariate Streaming Data
	Anomalous Data
	Anomaly Detection
	Monitoring Services

	Related Work
	Time Series Feature Extraction
	FFORMA Approach
	Catch22 Approach

	Machine Learning Techniques for Anomaly Detection in Time Series
	Grouping of Machine Learning Methods for Anomaly Detection
	Novel methods

	Selected Models
	SARIMA
	Long Short-Term Memory Auto-Encoder
	Spectral Residuals
	Particle Swarm Optimization of Extreme Learning Machines

	Drift Detection in Time Series
	Drifted Data
	Drift Detectors

	Time series disorder
	Selected Entropy: Singular Value Decomposition

	II Experiments
	Data
	Publicly Available Data

	Experiments and Analysis
	Model Evaluation
	Statistical Testing for Significance
	Base Models' Performance
	Data Analysis
	Drift Adaptation
	Entropy analysis
	Comparison to state-of-the-art models
	Evaluation of online models

	III Discussion and Conclusions
	Discussion
	Future Work
	Conclusion

	Bibliography

