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Chapter 1

Introduction

About fifty years ago, the marketing industry was guided by the principle You are where you
live that the location of a person is a defining factor of their identity (Allen, 1982; Klein, 1989).
This principle led to the development of the initial geodemographic systems. By merging public
data with private computing resources, marketers could segment areas of interest into focused
zones, enabling a more precise profiling of individuals, households, and neighbourhoods based
on specified categories (Phillips & Curry, 2002). These practices can be seen as precursors to
current location data collection methods, where advances in ubiquitous sensing and communi-
cation technologies have added a digital dimension to urban environments, going beyond the
mere capture of geographic features.

Modern digital technologies enable the collection of a much wider range of data than tra-
ditional zip code targeting, a significant leap in the scale, precision, and potential applications
of such data. In 2017, Sidewalk Labs, a Google-affiliated company, envisioned a futuristic city
when it promised to make Toronto’s Waterfront district the most measurable community in the
world (Bliss, 2018), gathering extensive data on the environment, transportation, energy and
infrastructure. The pursuit of increasingly large, sophisticated, and potentially invasive forms
of data collection is often enough driven by hopes of addressing pressing issues (e.g., air pol-
lution, traffic congestion, or even public safety) with fancy technology and shiny new datasets
— overlooking the importance of a more nuanced understanding of the impact deployed digital
technology has on humans, their social dynamics, and the built environment. The termination
of Sidewalk Labs’ project (Jacobs, 2022) highlights the critical balance between the potentials
and limitations, risks, and harms that can stem from extensive data collection and analysis tech-
nologies in the lived environment.

1.1 Active mode data for research and practice

While aiming for smarter, safer, and more efficient urban environments, harnessing the power
of sensor measurements and computed predictions about human mobility has become a central
aspect of modern traffic monitoring, control, and management. Digital footprints of humans
in urban space have been useful in designing and planning transportation and infrastructure
projects that are often expensive, contributing to safe, sustainable, and equitable transport. The
increasing availability of data provides researchers and practitioners with a valuable resource in
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shaping more liveable and sustainable cities, where walking and cycling are viable alternatives
to car use, although data alone does not guarantee success.

Walking and cycling are basic modes of transport, and principal elements in the set of mo-
bility systems. In urban transportation, pedestrians and cyclists contribute a unique layer of
complexity. A major challenge in contemporary traffic and transportation theory, however, is
that there is still much to learn about how, when, and where people walk and cycle. The move-
ments of active modes (i.e., walking and cycling), are complex due to the many degrees of
freedom, unlike network-constrained car traffic. Theories have allowed scholars to effectively
analyse and predict the demand and the behaviour of pedestrians and cyclists at different levels
(Hoogendoorn & Bovy, 2004; Gavriilidou et al., 2019a), while various modelling techniques
have been introduced to examine these different behavioural levels, both at a micro- and macro-
scopic scale (PTV, 2016; Duives et al., 2019; Tan et al., 2024).

From the perspective of transportation researchers and practitioners, data about pedestrians
and cyclists are not only essential for observing their behaviour in urban environments, but also
for understanding the impact they have on traffic flow and road safety. Data are crucial for
developing predictive models that can help, for instance, better design transportation infrastruc-
ture, or improve equity and access to safe and efficient pedestrian and cycling infrastructure.
When available, pedestrian and cyclist data can be utilized in different forms and types (Feng
et al., 2021), ranging from macro-level analyses of the entire transportation network to micro-
level investigations of individual links or cross-sections. This enables researchers to validate
their models, and allow practitioners and policymakers to use advanced tools and make well-
informed choices that align with the latest developments of their respective fields.

1.2 Knowledge disparity

In the last decade, there has been growing interest in studying walking and cycling as an essen-
tial mode of transportation. This interest, combined with augmented awareness of goals, strate-
gies, and management has led to more research focus and real-life implementations, supported
by increased funding. Despite the acknowledged importance of the field (Sun & Yin, 2017),
however, researchers and practitioners still face a relative lack of empirical approaches and ad-
vanced tools to explain and predict urban walking and cycling dynamics. The long-standing
historical focus on motorised vehicular modes has constrained the availability of high-quality
datasets and techniques to collect, process and analyse these data, impeding the empirical study
of active mode dynamics.

With the strong industry-backed funding of car research and governmental focus on mo-
torised vehicle oriented roadway infrastructure from the past, it is only logical that this field is
still in its infancy. The lack of investment and attention has resulted in a relative scarcity of sen-
sors, methods, data, and information in the active mode field. Notably, long-lasting effects of
continuous car-centric investments are visible in the pervasive traffic surveillance infrastructure
generating data 24/7; non-existent at this scale for active mode traffic, while the availability of
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such data is limited in most parts of the world'. Ultimately, the scarcity of pedestrian and cy-
clist data assumably induced a lack of micro- and macroscopic models, as it plays a crucial role
in calibrating and validating new models, which in turn limited their availability. Furthermore,
due to the scarcity of data, methods for data collection and empirical analysis remain limited,
inducing a restricted number of specific types of empirical active mode studies and insights.

Undoubtedly, pedestrians and cyclists exhibit intricate movements, characterized by their
multiple degrees of freedom and their complex behaviours, inherent to their continuous social
interactions within diverse contexts. This uniqueness challenges the collection of data compared
with traditional methods used for vehicles like cars. Moreover, the smaller size and reduced
iron content of individuals (in contrast to cars) further complicates accurate monitoring and
analysis. It should also be noted that experiments in controlled environments often have limited
scope and struggle to represent complex urban scenarios, while pedestrians and cyclists may
have a different expectation of privacy than car drivers in public spaces. This poses challenges
and may induce more sophisticated sensor settings and methods able to capture and process the
specific data requirements from the field. In this context, the fusion of multiple data sources and
combined techniques to convert it into a form that can be interpreted and analysed by humans?
has great potential for improvement. Drawing from other fields such as computer vision, signal
processing, or simulation, innovative methods could emerge in the future to enhance this process
even further in the field of active modes.

In the broadest sense, the ultimate promise of data collection and analysis in active mode
transportation, is to gain a better understanding of pedestrian and cycling behaviour, identify
areas of improvement, and develop evidence-based policies and strategies that prioritize safety
and efficiency. This shall not only benefit the individuals who rely on these modes of trans-
portation but also contribute to the overall health and well-being of our communities. Both the
lack of data and robust processing techniques, however, may be factors contributing to the rel-
atively restricted scientific and practical advancements in understanding and developing active
mode traffic to the same levels as car traffic. This constraint also manifests in the mostly timid
implementation of these findings in cities globally.

1.3 Data collection and processing

As we have described earlier, it is likely that the scarcity of data and processing techniques
for studying pedestrian and cyclist movements has impacted the availability of new theories,
models and tools to explain and predict urban walking and cycling dynamics in urban contexts.
However, a new wave of technological advancements, driven by industry and research commu-
nities from different fields, is now emerging. The developments are likely to have a profound
effect on the landscape, in particular on the collection and analysis of data using many different
methodologies. Processing this data enables measuring physical quantities or classes such as
presence, pressure, acceleration, location, shape, object type, and so on. These may be used to

Note the role of geographic disparity of data in AI (Sambasivan et al., 2021), also reflecting in urban devel-
opment where areas with more extensive data collection infrastructure, may have an advantage in urban planning
and development (Malaker & Meng, 2024).

2When frequently the problem is much earlier in the process as most people do not know what to look for or
are unable to phrase appropriate questions.
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estimate spatiotemporal densities, velocities, or flows of active modes; providing information
to an end-user or as input to another system.

1.3.1 Contemporary data collection techniques

In the past, traditional methods such as manual surveys and observational studies have been
complemented by more advanced digital technologies. The integration of sensors, video ana-
lytics, and GPS tracking systems has enabled researchers and practitioners to experiment with,
or deploy data collection systems to gather, sometimes in real-time, sometimes high-resolution
data on pedestrians and cyclists. A brief look at the research output within the transportation
community underscores the increasing number of scientific contributions enabled by an array
of different data collection methods in the past few years. These include, field studies employ-
ing GPS-equipped pedestrians and bicycles (Daamen et al., 2017; Strauss & Miranda-Moreno,
2017), controlled experiments with static vision sensors (Gavriilidou et al., 2019b), the analysis
of (big) social media data (Yang et al., 2019; Gong et al., 2020), incorporation of Wi-Fi and
Bluetooth technologies (Versichele et al., 2014; van Oijen et al., 2020), the integration of more
involved Radar and LiDAR sensors (Lee et al., 2020), or more recently, the utilization of vir-
tual reality (VR) (Feng et al., 2024). Each techniques offers a unique perspective on movement
patterns, interactions with urban space and infrastructure, and responses to other traffic par-
ticipants or environmental factors. Despite smartphones and other wearable devices enabling
large-scale data collection (e.g., capturing population movements on a macro-scale (Schlédpfer
et al., 2021)), the proprietary nature of most mobile applications makes such data difficult to
access for researchers in the public sector.

1.3.2 Autonomous dreams and a new sensing paradigm

The digital layer capturing pedestrian and cyclist spatial and temporal characteristics with con-
temporary sensing techniques may soon be augmented by a new sensing paradigm, which could
offer the availability and accessibility of data that seems so essential to foster innovation and
sustainable impact to take place. The rise of distributed computing and connectivity infras-
tructure, but especially, the growing sensing and processing needs of intelligent autonomous
systems (IAS), lead to an exponential increase in the generation of captured human features
— such as their movement patterns, shapes, and contextual information — at different tem-
poral and spatial scales. Connected autonomous vehicles (CAV) are an instance of intelligent
autonomous systems that can process and analyse data from several sensors to make decisions
and perform tasks independently. The promise of these new systems has captured the imagina-
tion of the many, and the hope extends beyond mere technological innovation. Some foresee
a future where safety is drastically increased through a decrease of road accidents (Hawkins,
2023). Others find inspiration in the prospect of diminished urban traffic (Lang et al., 2020), or
in the development of a more inclusive and accessible transport system (Aquino, 2024).

CAVs or self-driving cars, for instance, pushed by seemingly unstoppable private and polit-
ical forces, are being developed and used progressively and increasingly. Real-world deploy-
ments on roads have rapidly materialized, showcasing the tangible progress in intelligent and
autonomous vehicle technology. Companies like Waymo, Cruise, Wayve, and others have taken
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significant strides, placing semi-autonomous and autonomous vehicles on public roads for test-
ing and, in some cases, commercial use. They use perception systems that leverage advanced
data and compute capabilities of deep learning, producing an enormous amount of sensor data
(approximately 750 megabytes per second (Harris, 2022b)). A necessary precondition to deploy
such data-hungry systems, is the availability of powerful computational resources to perform
calculations at very high speeds, possibly in real-time>. This abundant stream of data is utilized
as a valuable source of training material for deep learning algorithms to enhance process this
data and increase their performance in driving tasks. The integration of 5G/6G connectivity
should enable collaborative approaches to analyse vision or other sensor data at the edge/fog,
leading to more robust and scalable data ways of identifying and classifying objects, such as
pedestrians within the environment, providing a crucial layer of perception for autonomous
driving systems.

The motivation for this thesis is driven by the exciting possibilities and inherent limitations
and challenges, emerging from this new sensing paradigm, pushed by these technological in-
novations and autonomous dreams. It should be made clear, however, that this thesis not only
applies to autonomous vehicles, but also to more traditional moving* sensor platforms (MSP)
that do not necessarily operate autonomously, but are equipped with a wide range of sensors.
Such human-operated ground or airborne vehicles (e.g., sensor-equipped cars, bicycles, or even
humans with bodycams) may also be equipped with advanced sensors and technologies to col-
lect and analyse immense amounts of data about their surrounding environment, yet do not rely
on this information to self-operate.

1.3.3 The unexplored dimensions

In the context of IAS, it is important to recognize these systems are specifically designed to
capture spatiotemporal data of objects in urban environments (and thus also humans) as they
require this information to self-operate. Justified by their primary function (i.e., self-operation)
they require to capture their environment to maximize the safety of all traffic participants, and
thus coordinate massive amounts of data across time and space. Therefore, in a world where
pedestrians and cyclists are (still) an integral part of transportation systems, the success of IAS
inherently hinges on their ability to capture these individuals. If unable to capture surrounding
people despite their presence, that is, finding the optimal balance between detection accuracy,
false positives and false negatives, it is effectively useless, rendering the entire technology ob-
solete.

The generation of pedestrian and cyclist data required to self-operate IAS, not only allows
to improve their situational awareness but may also enable a variety of secondary functions
and applications. It creates a by-product that may be exploited for other purposes by traffic re-
searchers and practitioners, such as traffic monitoring, control and management. For example,
the generated data may be a source of measurements and insights into how and where people
move on sidewalks and cycle paths. This information would allow to obtain a view of micro-

3The necessary infrastructure deployment may not be as much of an issue as one might think, given the
significant investments being made in this area.

4 Although different research communities may accord nuances in the exact definition of “mobile” and mov-
ing,” this work uses these terms interchangeably to refer to systems that can collect data while in motion. This can
include humans, vehicles, drones, and all other forms of transportation-based sensing systems.
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scopic and macroscopic traffic flows in an observed area, an asset for advanced surveillance
applications in traffic operation, control, and management. Inspired by previous work in the
context of environmental monitoring with traditional moving sensor platforms (Anjomshoaa
et al., 2018; Minet et al., 2018), this thesis speculates on the secondary functions of rising IAS
(or traditional moving sensor platforms as dedicated forms of data collection) to emerge as a
new source of data for traffic research and practice.

With this in mind, leveraging this technological push to address still unexplored pedestrian
and cyclist domains comes with a set of challenges and unknowns when it comes to the po-
tential utilities and societal impacts. In particular in the context of pedestrian and cycling traf-
fic research and practice, where significant gaps emerge when mapping current domain needs
to technological advancements emerging from IAS. In theory, present needs and challenges
from the active mode community may be addressed with emerging wealth of information; how-
ever, how this data may technically be exploited, and how to make information from all these
data, remains unclear. Further, existing application scenarios and future use cases must be
(re)evaluated, as this augmented data source likely provides a different set of inputs that, with
today’s data-driven approaches, may affect the output of the systems. The practical use and de-
ployment also questions the societal impact in this (brave new...) sensing paradigm, in particular
as we collect data about a-priori not explicitly consenting human beings. From the perspective
of the traffic engineering community, this nascent interdisciplinary field opens up a large blank
canvas, a unique opportunity to integrate insights from various disciplines that can transform
the way we capture, interact, and navigate with our surroundings.

1.4 Research objective and questions

This thesis seeks to investigate the potential utility and societal impact of exploiting pedes-
trian and cyclist data from moving sensors (IAS or MSP) in the context of traffic research and
practice. The use of the term exploitation is twofold: 1) the development of methodological
knowledge and tools to extract traffic information from the data, and 2) under what conditions
(e.g., limitations, risks, and harms) it contributes to technological, societal and economic devel-
opment. To fulfil the main objective of the research, several derived research questions were
formulated. In the following, the research questions and the relation between them is detailed:

What are the technical and functional requirements to a pedestrian and cyclist traf-
fic sensing system that uses moving sensor platforms to collect data? The new digital
layer created from by-products of the emerging sensing paradigm is undertheorized for
traffic engineering applications. It is thus essential to better understand the origin of
the data and the interplay of related infrastructure. This motivates to first define and
articulate both the technical and functional prerequisites essential for a sensing system
using a connected network of mobile platforms as sensor nodes to capture pedestrian and
cyclist spatiotemporal properties. This first objective establishes a theoretical founda-
tion by analysing key requirements and constraints, providing a comprehensive overview
that outlines the specific features and capabilities necessary for the efficient functioning
of the mobile sensing system. This includes an exploration of potential obstacles that
may impede the seamless operation of the mobile sensing system, such as data accuracy,
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resources, and consumption, as well as the integration of other relevant technologies.
[Chapter 2]

What specific adaptations are required for advanced state estimation and data as-
sociation methods to effectively infer trajectories from data collected by both static
and moving network-constrained sensors? Having identified different types of data and
technical requirements in the previous step, it is possible to envision future mobile sens-
ing scenarios, starting with assumptions aiming at using most basic location information
possible in a generic road-network context. Presuming the availability of the pedestrian
and cyclist measurements, the next step involves exploring methodologies to effectively
apply and derive insights from the future data. A second objective of this thesis is thus
to conduct a comprehensive review of the current state-of-the-art methodologies related
to state estimation and data association techniques employed in inferring trajectories us-
ing data obtained from static and moving sensors. A systematic analysis of identified
gaps grounds the research and enables to contribute to the advancement of knowledge
in the field by proposing a novel methodology that addresses the limitations of existing
approaches, ultimately enhancing the applicability of trajectory inference from pedestrian
and cyclist data collected by network-constrained moving sensors. [Chapter 3]

What potential advancements in traffic control and safety can be achieved by inte-
grating data derived from moving sensors such as connected autonomous vehicles?
By understanding the functional challenges and requirements of the sensing system, and
developing a method to use the data adequately, the tangible benefits and practical ap-
plications of integrating data derived from moving sensors into future traffic surveillance
systems can be explored. In light of the increasing attention from the traffic community
towards reducing delays for cyclists at signalized intersections, this investigation seeks to
demonstrate how data from dynamic sensing infrastructure can provide valuable insights
and help optimize traffic control and management strategies to improve road safety and
contribute to the development of intelligent transportation systems. The practical impli-
cations will be investigated with a concrete use case at hand, emphasizing the potential to
manage traffic flow in contemporary urban environments with this new type of informa-
tion. [Chapter 4]

What are potential privacy concerns affecting pedestrians and cyclists that emerge
from traffic engineering use cases utilizing IAS as they enter urban environments?
After exploring the potential benefits and functionalities of this new sensing paradigm,
it is crucial to study the interplay and its implications within the realms of political-
economical forces, privacy and security, and traffic research. By positioning these inter-
related potentials and conflicts within the purview of diverse research communities, this
study seeks to highlight the multifaceted dynamics at play. This study investigates how
mobile sensing technologies intersect with political and economic structures, exploring
their impact on societal frameworks, and investigates the balance between the potential
utility of mobile sensing and the associated concerns surrounding privacy. Ultimately, the
objective is to understand how IAS infrastructure is different from other digital infrastruc-
tures, stimulating future research to address shown gaps, and guide future deployments
in ways that align with ethical values. [Chapter 5]
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Figure 1.1: Research approach

1.5 Research approach

In this section, the research approach illustrated in Figure 1.1 will be described, and grounds
on a conceptual framework proposed by Jackson & Zave (1995). Building on their work, we
define a system as the machine together with its users and the whole environment. We apply
parts of this influential conceptual framework both to the context of IAS and non-autonomous
MSP, to clarify the system boundaries, the requirements, specifications, as well as the elements
that the system of study interacts with. By analysing the key elements and relationships within
this framework, we can gain valuable insights into the underlying mechanics, systematically
identify areas of research, and delineate the different elements of this thesis.

In the context of this thesis the term machine describes the hardware and software apparatus
including the material infrastructure as well as data platforms built on top of these infrastruc-
tures. We consider sensing, positioning, processing and communication infrastructures to be
the material infrastructure needed [for IAS or MSP] to generating measurements about the ma-
chine’s internal and external state, retrieving the machine’s position, leveraged for data collec-
tion and processing, and sharing information across the system. The environment, in contrast,
refers to the portion of the real world relevant to the operation of the machine,e.g., traffic par-
ticipants such as pedestrians, cyclists, and drivers, as well as the built environment comprising
roads, buildings, and other infrastructure. Additionally, it includes natural features like vege-
tation, atmospheric conditions, lighting, and other factors. Furthermore, social and economic
dimensions may also be included within this broader definition of the environment. At a given
time, a sensor generates a capture of the machine’s internal or external state (e.g., to obtain
measurements about distance, speed and colour of an external object). We refer to a scan as the
set of all captures received by a sensor at a given time, while the machine’s internal or external
state may be captured by multiple sensors at the same time instant.
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The infrastructures are interconnected in different layers and represent how the physical
compute is organized for the functioning of the machine in the environment. A platform, on
the other hand, can be described as the operating system (OS) like layer that enables and is
a gateway to services that make use of the different material infrastructures. This means that,
platformization enables various services that leverage resources provided by the different infras-
tructures, e.g., data collection, localization, detection, tracking, or control services. The com-
putation initiated by services can be organized in different ways, e.g. on-device or centralised
server, while it dynamically leverages sensing, positioning, processing, and communication ca-
pabilities of cloud, edge, and mobile devices to form a digital layer that can be used for different
applications such as, navigation, gaming, advertising, emissions monitoring, parking fees, or
traffic monitoring and control applications. Infrastructure and platform are intertwined and we
distinguish both in the ways they are controlled?, that is, they can be owned and operated by the

same or different parties ©.

To comprehensively investigate and gain a holistic understanding of this emerging field, an
interdisciplinary research approach was adopted, integrating transport research with other rele-
vant scientific communities. To address Research Question 1 effectively, relevant data and per-
spectives (which are not immediately evident or accessible within existing publications) were
compiled to provide a comprehensive overview of the topic of study. Consequently, desk re-
search entailed a literature review as well as interviews with domain experts, aiming to system-
atically compile and synthesize current knowledge across related disciplines, while character-
ising design constraints and functional requirements to the system of study’. Recognizing the
limitations of state-estimation techniques applied in traditional traffic contexts, we expanded
the scope by studying their foundational aspects — signal processing and tracking theories —
thereby constructing a robust framework for fusing pedestrian and cyclist observations to ad-
dress Research Question 2 through experiments and simulation validation. To answer Research
Question 3, a traffic control scenario was defined, while modelling and simulation were used to
generate scenario-specific data at scale. Due to the lack of adequate real-world data, simulation
was used when necessary to address the research questions 2, 3 (and 4, however not included
in this thesis). Compensating for the emerging nature of this sensing paradigm, filling gaps
within location privacy research, and acknowledging the absence of standards, addressing Re-
search Question 4 involved examining the broader socio-technical impact through a review of
academic literature, but also including non-scientific magazine and journal articles and opinion
pieces, to support the conceptual modelling of the system.

For example, entities providing servers, mobile devices, sensors and processors, as well as application pro-
gramming interfaces (APIs) as the basis for all software development and applications (Apple, 2020). A reflection
on consequences of power asymmetry and control over users, developers and increasingly, public institutions is,
however, outside the scope of this chapter.

5We could argue, based on (Plantin, 2018), that a platform with the data it makes available is a knowledge
infrastructure. A discussion about the control and consequences is, however, outside the scope of this thesis.

TJackson & Zave (1995) refer to a control system as “a machine that interacts with its environment to bring
about or maintain relationships in that environment”. Thereby, requirements state these desired relationships, and
are concerned entirely with the environment, where the effects and benefits of the machine will be felt and assessed.
This definition aligns with our approach and understanding of functional challenges and requirements
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1.6 Contributions

The overarching contribution of this thesis is to enhance knowledge on extracting actionable
pedestrians and cyclists information from data collected by moving sensors (IAS or MSP), as
well as its related societal impacts. Findings from this thesis contribute to science by developing
methodological knowledge on information extraction and highlighting previously overlooked
implications on privacy and beyond. This thesis has implications for practice, especially in
areas facing increasingly high levels of sensor deployments, by providing insights for policy
development, traffic management, and responsible innovation.

1.6.1 Contributions to science

All studies contain one or multiple contributions to science. These are presented below in the
order-of-appearance in this thesis.

Insights into requirements, challenges and design constraints for systems using pedestrian
and cyclists data from mobile sensing platforms (Chapter 2)

The generic characterization of the system, yet described from the perspective of traffic research
and practice, could contribute to the scientific understanding of novel forms of large-scale data
collection in various fields such as engineering, computer science, environmental monitoring,
or even epidemiology and economics. The analysis of functional requirements could provide re-
searchers with insights into the minimum set of features needed for such a system to be effective
(which may vary based on factors such as data collection objectives, environmental conditions,
regulatory frameworks, etc.), identify gaps between data needs and computational infrastruc-
ture, and contribute to methodological advancements in data collection and integration. The
identification of functional challenges and design constraints could inform future research on
how to balance these factors in system design. The theoretical design integrates the core com-
ponents of the system as a starting point for relevant communities to work on challenges related
to reliability, scalability, ethical, privacy, and security issues inherent to this design, while ex-
ploring potentials such as of context-aware methods in data collection.

Methodology for network-bound targets in multi-target tracking problem (Chapter 3)
The proposed framework enables the reconstruction of trajectories from an unknown and vary-
ing number of pedestrians and cyclists across larger networks, also given false measurements
and clutter. Building upon this framework, basic location information from any moving objects
or subjects can be fused together to infer individual trajectories. The inclusion of the network-
constraint may be used as building block when extending or developing new state-estimation
and data-association algorithms, since it has been shown to allow for more efficient predictions
over extended periods of time and a simplification in the measurement association process.
With the flexibility for multiple sensor modalities and settings, the proposed framework of-
fers the possibility to include the environment more comprehensively and could be applied to
various fields.

Control method to inform, prioritize and optimize an intelligent traffic signal controller
(Chapter 4)

The impact of integrating cyclist data generated from CAVs on traffic signal control (depend-
ing on specific parameters, e.g., settings of the CAV, penetration rate of the CAV, occlusion)
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is explored with a proposed vehicle-actuated controller approach, incorporating tracking ca-
pabilities. The effect of cyclist demand on the delay of cyclists and cars evaluated. Using a
straightforward approach, which would not require significant upgrades to existing infrastruc-
ture, introducing CAVs at low penetration rates can already help reduce cyclist delays. Further-
more, observing the absence of cyclists appears to be valuable information to the controller, as
it enables phase truncation to minimize lost time. These findings and insights have implications
for the scientific community, with potential applications in reducing traffic congestion, improv-
ing traffic flow, and enhancing road safety. Combining novel data collection approaches with
adapted control methods, may also inspire future research to dynamically prioritize specific
transport modes.

Foundation for investigating location privacy implications for non-users that stem from
the infrastructural shift introduced by IAS (Chapter 5)

Using the conceptual framework presented in Chapter 1.5 helped define appropriate terminol-
ogy and better relate interactions within the system. The presented comparative analysis of IAS
and other established digital systems highlights how the relationship between the machine and
the environment is different for IAS than from other existing systems. Identifying this area
overlooked in scientific discourse, which implies location privacy implication for active modes,
can serve as an initial foundation for interdisciplinary work across scientific communities (e.g.,
transportation, privacy, security, or law). The findings particularly support future research, and
motivate towards the development of more comprehensive privacy analyses, including the eval-
uation of existing privacy frameworks and models.

1.6.2 Contributions to society

This dissertation contains multiple societal contributions. These are presented below in an order
that is not specific.

Opportunities for transforming transportation systems

Using data generated by IAS or MSP could help improve traffic safety, efficiency, or even ac-
cessibility within the network. Furthermore, incorporating additional data such as traffic signs,
green spaces, or mobility/public transit information may help identify areas where infrastruc-
ture improvements are needed. For example, spotlighting hidden commuting pathways to build
new lanes for faster cyclists. Building on the systematic analyses of data requirements and
technical functionalities, private and public institutions can design and develop technological
sensing systems, evaluate necessary infrastructure investments and research efforts. Further,
researchers ad practitioners can build proof-of-concepts following the principal components of
this thesis, to optimize their transportation systems, offering more adequate mobility solutions,
e.g., better understanding demand (also predicting).

Guidebook and protocols

Furthermore, this thesis contributes by advancing a set of requirements and design challenges
that are elementary when using the data in the context of traffic engineering. It can help prac-
titioners understand the potential of using moving sensors platforms to capture pedestrian and
cyclist information. It enables getting a sense of the data collection, at different spatial and
temporal levels, given technological possibilities and urban constraints. This is valuable when
assessing the potential deployment of such systems in urban areas. In fact, self-driving car com-
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panies already enter partnerships with cities in which self-driving cars are unleashed on public
roads, while in return, they may be willing to share certain data (Grauerholz, 2017; Hawkins,
2019).

Advancing traffic monitoring, control and management

A more methodological contribution can be found in the framework proposed to an unknown
and varying number of pedestrians and cyclists in a road-network. The presented network-
constrained multi-target tracking methodology, tracks using information from moving (and can
be easily extended to static) sensors. The flexibility of the framework makes it applicable in
real-world applications, e.g., information from different sensors can be used if they provide
individual position on the road and the general map, and different motion or measurement mod-
els can be applied. The proposed methodology serves practitioners a foundation for initiating
experiments of advanced traffic applications (e.g., intersection control, monitoring) in central-
ized data processing settings. For example, by leveraging state-of-the-art traffic signal systems
(e.g., those currently in use in the Netherlands) this approach could be incorporated into current
systems to enhance capabilities by processing data from moving sensors.

Surveillance risks and harms in IAS

The analysis and formalization of the new form of continuous capture of the public environment
including non-users, where different services are foreseen to power a set of potential applica-
tions, led to the identification of an infrastructural shift from current computational infrastruc-
tures. This provides strong signals to public and private stakeholder to consider a set of novel
potential risks and harms led by the deployment of such systems. By signalling the potential
expansion of surveillance infrastructures, illustrated with most recent real-world deployments,
actors of society are provided with a solid base to reflect and discuss on the future they want to
shape.

Intuitions on power dynamics

This dissertation makes contributions to the practice of different actors of the public and pri-
vate sector, which are part of the IAS paradigm by interests that may be adverse to each other
and vie to favour their particular interests and activities. This work is suggestive of using IAS
as a source of pedestrian and cyclist traffic data in many different ways; e.g., for designing and
planning infrastructure projects (e.g., cycling infrastructure, or access to mobility), crafting new
policies and action plans (e.g., spatial community knowledge, or target voters), or strengthening
commercial position on the market (e.g., develop new products and services). It is unclear, how-
ever, who will ultimately own and manage essential infrastructures and data platforms. While
not being its primary focus of this thesis, it initiates a critical reflection into various components
the system across its chapters. By unravelling elements to subjective power dynamics — echoes
of existing concentration of power within technology companies — this thesis provides policy-
makers and other relevant stakeholders with insights that may contribute to a nuanced discourse
on governance and oversight necessary for IAS to operate in the public interest.

1.7 Thesis outline

In the following an overview of the chapters of this thesis is presented. Four separate chapters
(2-5) address the research questions posed in Section 1.4. These chapters constitute the body
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of this thesis and contain articles that were written during the PhD, with the author being the
first author. At the beginning of each chapter, it is indicated where the article was published or
whether it is under review. The published articles are not modified in any way to avoid potential
citation conflicts with the articles found in the journals.

After an introductory chapter, this thesis delves into the various data and compute dimen-
sions that make up the overall sensing system. The reader is provided with an overview of the
different components, necessary to capture spatiotemporal properties of pedestrians and cyclists
from moving sensor platforms. Concretely, Chapter 2 elaborates on a variety of requirements,
along with functional challenges, and outlines the research to be performed with the generated
data.

After presenting this overview that can be interpreted as a theoretical design, a more method-
ological part is provided. Chapter 3 assumes that the data described in Chapter 2 is at our dis-
posal and provides a methodology on how to extract valuable information from it. Specifically,
it proposes a new method for advanced traffic applications, tracking an unknown and varying
number of moving targets (e.g., pedestrians or cyclists) constrained by a road network, using
mobile (e.g., vehicles) spatially distributed sensor platforms.

Chapter 4 then aims to showcase the potential of this new information in a concrete traffic
control use case using the method proposed in Chapter 3. Although there are many possible
use cases one could think of, an application is selected that prioritizes cyclists at signalized
intersections. Data collected from cyclists using mobile sensor platforms is utilized to provide
utility back to the same cyclists the data was gathered from.

When collecting data about individuals, utility comes always at a cost of privacy because
the more data is collected, the more it is possible to infer sensitive information about the in-
dividual. Chapter 5 represents research that not been published yet. Although preliminary, it
provides a good starting point to reflect on and discuss identified location privacy implications
for pedestrians and cyclists (in this work referred to as non-users) that stem from the infrastruc-
tural shift introduced by IAS entering physical space. This chapter provides the reader with a
solid foundation and appropriate vocabulary to better distinguish the surveillance infrastructure
in development from existing ones, position it in the privacy as well as traffic community, and
motivates for future research in this field by presenting unsolvable conflicts once technology
becomes infrastructure.

Finally, the last chapter of this thesis concludes with main findings, scientific limitations and
discussion, while looking back at the research questions. Finally, the implications for practice
and recommendations for future research are provided.






Chapter 2

Towards new system designs for active
mode mobile sensing

The main motivation for this chapter is the need for theory with focus on capturing spa-
tiotemporal properties of pedestrians and cyclists from types of IAS, which is believed to sup-
port a host of new research and application development.

With stationary sensor systems or crowd-sourced data from mobile and wearable devices
being part of the current active mode data collection toolbox, this chapter investigates both
technical and functional prerequisites and challenges of within this novel sensing paradigm.
This chapter thus presents a plausible design grounded in specifications on key components
such as sensing, networking, processing, and communication, suited to the distinctive context
of active mode research and practice. The generic nature of this chapter helps guide different
stakeholders with the transfer of their use cases and utility functions in response to the available
infrastructure and the surrounding environment. Ultimately, this chapter theoretically grounds
design choices and assumptions made in the next chapters, and supports future mobile sensing
use cases needed to further identify data and methodological needs.

This chapter is published as a journal article: Vial A., Daamen W., Ding A.Y., van Arem
B., and Hoogendoorn S.P. (2020), AMSense: How Mobile Sensing Platforms Capture Pedes-
trian/Cyclist Spatiotemporal Properties in Cities. IEEE Intelligent Transportation Systems Mag-
azine.
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2.1 Introduction

While urbanisation is competing claims on space in cities, it is essential to understand peoples’
movements for the design and management of infrastructure, safety, mobility, as well as for pub-
lic and private transportation. The new digital layer emerging in cities that includes sensors and
pervasive mobile systems can help observe and manage different walking and cycling mobility
and movement patterns by gathering large amounts of spatiotemporal data. Data about pedes-
trians and cyclists — so-called active modes — dynamics in urban environments are essential
for different types of spatiotemporal analyses, models and behavioural theories. Nowadays for
instance, stationary sensing systems are used to continuously monitor pedestrians and cyclists
at fixed locations over time (e.g., camera-systems at intersections). Observations about active
modes, however, could also be collected with spatially distributed sensing platforms and shared
among each other. Although a dense network of stationary observers could possibly meet the
desired objective (i.e., providing spatiotemporal mobility information), such large network de-
ployment may require an excessive number of sensor nodes in order to achieve satisfactory
sensing performance, at high infrastructural costs. In addition, a static network is not flexible
and would not adapt to unpredictable network dynamics or changes of the physical environment.
For instance, events due to sensor failure, coverage holes, and changes in the infrastructure or
mobility behaviours that are likely to happen in an urban context.

In the past, a number of studies have used vehicles to monitor the urban environment (e.g.,
traffic, pollution, road conditions). As the number of sensors in a vehicle has increased by
the thrive to so-called intelligent vehicles it evolved from a purely mechanical to a genuine
cyber-physical system that continuously streams diverse data in real time. Some of these data
are essential to the proper working of a vehicle’s components and functionalities, but at the
same time the captured surplus of data could be used for other purposes (Massaro et al., 2017).
The ever increasing number of sensors in intelligent vehicles (e.g., LIDAR, Radar and vision)
enable a wide range of urban monitoring applications, thanks to their ample sensing, storage,
processing, and communication (e.g., V2V, V2I) capabilities that have not been utilised for this
purpose up till now. In the context of this research, an intelligent vehicle can be understood
as mobile sensing platform, capturing pedestrian and cyclist spatiotemporal properties from
the number of distinct signals it generates. In a foreseeable future, large groups of connected
intelligent vehicles, are expected to be deployed in cities and potentially coordinate their actions
through communication networks. The promising nature of these connected mobile sensing
platforms enables to carry out tasks, proven to be difficult when performed by a single vehicle,
or static sensor.

In this paper, complementing current active mode sensing methods, we propose a novel
sensing system, called AMSense, that grounds on connected intelligent vehicles as mobile sens-
ing nodes in a network, to capture pedestrians/cyclists spatiotemporal properties in cities. In this
dynamic, multi-sensor approach, real-time data, algorithms, and models are fused to estimate
spatiotemporal densities, velocities and flows of active modes using presence, position, and
movement data collected by a fleet of mobile sensing platforms. Active mode data shall be
extracted, processed, and shared through a mobile sensing network.

Contributions. AMSense represents the first pedestrians/cyclists mobile sensing system
that innovates in such a fundamental part of active mode research, especially in the provision
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of real-world, and real-time data. Mobile sensing platforms that collectively gather active mode
information in a network, is a rich application domain with many challenges left to be resolved.
We therefore characterise design constraints and requirements, in terms of sensing performance,
processing, and control, of such a novel active mode sensing system. Probably the most impor-
tant contributions of this work revolve around the combination of data, the extensive temporal
and spatial scale, and the dynamics of the data collection system. This novel sensing paradigm
offers a number of advantages over more traditional methods using stationary sensor systems
or more recently available data from mobile or wearable devices, as it reduces effort and cost
to collect pedestrian/cyclist data, at an extensive temporal and spatial scale, while providing
answers to intrusiveness and scaling effects. This paper presents a theoretical design of such a
sensing system.

The remainder of the paper is organised as follows: Section II covers different types of active
mode research as well as their required data, and compares current data collection methods.
Section III illustrates the proposed work with an urban sensing example, and addresses main
requirements to such a novel sensing system. Section IV delivers insight into architecture and
functions of our proposed mobile sensing network, while Section V elaborates on how to derive
active mode spatiotemporal properties in large urban environments. Section VI concludes this
paper and highlights future research directions.

2.2 Problem formulation

The use of data is not only crucial for the empirical observation of active mode movement be-
haviour, but at the same time, data is decisive for the development of models, their calibration
and validation. Yet, datasets providing comprehensive pedestrian and cyclist mobility informa-
tion on road-, lane-, or subject-level, are remarkably rare given the rise of sensors in cities. The
need for high-quality datasets that capture pedestrians/cyclists in large urban environments is
undisputed. This section primarily aims to clarify that different tracks of active mode research
require different types of data. Note that we hereby only focus on pedestrian/cyclist movement
data collected in urban environments. This section eventually gives an overview of current
real-world data-collection methods.

2.2.1 Different data for different active mode research

Pedestrian and cyclist dynamics in cities can be described and predicted at three behavioural
levels: strategic, tactical and operational (Hoogendoorn & Bovy, 2004), (Gavriilidou et al.,
2019a). Several modelling approaches at three behavioural levels have been proposed in the
past, both micro- and macroscopically. A comprehensive overview of the main modelling ap-
proaches is described in (Duives et al., 2013) for pedestrian models, and (Twaddle et al., 2014)
for cyclist models.

Various approaches that study active mode flows and behaviours require pedestrian/cyclist
traffic-related data, providing information about movements in space and time. Different mod-
els and behavioural theories require different data; mainly varying in spatial scale, accuracy,
and granularity. In this context, data granularity represents the scale, or the level of detail of a
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dataset, while data accuracy relies on technical capabilities of the data collection system. Fur-
thermore, the temporal character of the data use, or in other words its value loss over time, is
related to the aspect of real-time. In essence, studies at strategic and tactical level usually use
movement data that was aggregated up to a certain extent, and thus conceivably requires data
at lower granularity and accuracy. At the operational level, microscopic models however re-
quire particularly detailed (i.e., high granularity and accuracy) movement data along observed
individual trajectories, as they examine, for instance, variations in speed, directions, relative po-
sitions, or headways. Densities, speeds and flows can however also be observed as fundamental
macroscopic relationships, at higher levels of aggregation.

Pedestrian and cyclist data can thus be used in a variety forms and types, each satisfying a
distinct track of active mode research. Data-driven studies vary in spatial scale, either over the
entire network, a link, or a cross-section, and require more or less time-sensitive information.

2.2.2 Active mode data collection methods

Real-world datasets are required for any empirical model of active mode behaviour and analyses
of movement patterns. Humans are considered to be dynamic by nature as they move at varying
speeds, have different body postures, and wear a range of widely varying clothing that may mask
their body shape. These static and dynamic traits can be captured by different types of sensors
when an active mode is present (e.g., shape), or performing an activity (e.g., walking/cycling).

Micro- and macroscopic measurements at greater spatial level, however, have become more
and more utilised thanks to technological advances linked with mobile technologies. Yet, the
emergence of ubiquitous mobile positioning and tracking devices have enabled the gathering of
large amounts of data, in a technically convenient and economically cheap way. The movement
of pedestrians/cyclists within a given area can be observed from the digital traces generated by a
variety of sensing sources, and requires lower accuracy. For instance, frequently used position-
ing systems (e.g., GPS), are suited to study mobility patterns and route/activity choice, while
the variations in their accuracy, where errors can be caused by satellite orbit or receiver issues,
make them inappropriate for microscopic movement behaviour analyses. This technological in-
tegration hence offers an opportunity to analyse mobility patterns, across transportation modes,
and potentially in real-time. Over the last decade, digital footprints of human mobility patterns
have enabled urban planners, computer scientists, sociologists and engineers to better under-
stand dynamics in cities. Past studies have mostly used GPS location updates (Shoval et al.,
2011; Wirz et al., 2012), mobile phone records (i.e., CDR and sightings data) (Gonzalez et al.,
2008; Calabrese et al., 2010), Bluetooth (Versichele et al., 2014), Wi-Fi (Danalet et al., 2014),
and social media data (Cheng et al., 2011; Jurdak et al., 2015). Still, these data require direct
or indirect collaboration of the tracked target, and thus has to deal with drawbacks in terms of
representativity of the sample. But it is the intrusive nature of these participatory mobile sensing
methods, relying on smartphones, wearables and other logging devices, which represent a major
disadvantage and potential limitation as for data sparseness in some areas. In addition, while
phone call records data (mining of mobile phone data) have proven useful for vehicular traffic
analysis, they present significant disadvantages due to limited spatial resolution and restricted
data access. The spatial resolution may represent a bigger issue for pedestrian, than for cyclist
mobility, as cyclists travel further, and hence more coarse data better describes their behaviour.
Thereby, mode choices are more difficult to infer than route choices (Chen et al., 2016).



2.3 Fundamentals 19

Bluetooth and Wi-Fi are currently referred to as the most suitable technology to measure
active mode traffic in a broad set of traffic conditions: from low traffic volumes to high volume
flows in an urban network. They allow tracking of individuals through a network, one of their
main advantage being the low cost of measurements (Daamen et al., 2015). Wi-Fi, however,
appears to be more generic and thus more suitable. At the same time, owing to the pervasive
coverage, low latency and high bandwidth, the fifth generation (5G) of mobile networks are

becoming another promising solution for urban scale mobility measurement (Wang et al., 2014;
Ding & Janssen, 2018).

Overall, employed data collection methods are restricted to distinct areas of active mode
research as each only gather certain types of data. Yet, there is no data collection method
known that provides information about pedestrian and cyclist spatiotemporal properties on at
different accuracy, as well as various spatial and temporal granularity, in urban settings. The
need for advanced tools, and scalable systems that provide answers to spatiotemporal resolution,
intrusiveness, and dynamic network conditions emerges.

2.3 Fundamentals

The operational objective that we address with this work is to enable researchers and policy
makers to “observe active mode movements in cities at all time*. Figure 2.1 exposes the pro-
posed active mode sensing system, AMSense, to an urban traffic setting that represents pedes-
trians walking on side-/crosswalk, and cyclists cycling on a designated bike path/road. In a real-
world situation, however, many other traffic situations can be encountered due to the complexity
of urban dynamics that continuously provoke unpredicted events. Pedestrians are usually being
described with a normally distributed walking speed, whereas cyclists exhibit a greater range
of speeds but more constant, and thus are being described with a wider distribution and greater
mean velocity. In reality, this flexibility of speeds and directions can lead individuals to fully
stop their motion, carry out less predictable movements (e.g., sidestepping), or disobey traffic
rules (e.g., crossing at an unsignalised intersection). In addition, large intersections, multi-
lane roads, and shared spaces are continuously altering the sensing system’s requirements as
its mobile sensing platforms dynamically sense the environment while being in motion. Over-
all, following urban mobility patterns, higher densities of individuals lead to a higher sensing
demand while higher densities of mobile sensing platforms lead to a higher sensing supply.

2.3.1 Illustrative example

To extend the technological and spatiotemporal flexibility of today’s data collection systems,
we consider the following: every vehicle in a city has one or more attached sensors, and acts
as a mobile sensing platform. These sensors are capable (individually or in combination) to
capture pedestrians/cyclists’ mobility properties in time and space. The generated information
of a vehicle’s perceived environment is filtered, and relevant data diffuses across a network of
mobile sensing platforms. The information collected from each of the sensor-equipped vehicles
is fused, increasing the amount of available data at a certain location, and eventually providing
much greater local detailed knowledge of a city’s neighbourhood, road segment, or sidewalk,
and potentially in real-time. In Figure 2.1, AMSense is exposed to an urban sensing situation in
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Figure 2.1: Urban sensing scenario in which mobile sensing platforms (black rectangles) cap-
ture pedestrians (red circles) and cyclists (green diamonds), and provide informa-
tion about their presence, positions, and movements.

which pedestrians and cyclists are observed by one or more mobile sensing platforms. The sen-
sor equipped vehicles drive along the road network and continuously collect sensor data of their
surrounding environment. This sensed data can then be processed to seek for the information of
interest that is presence, locations, and movements of observed pedestrians and cyclists. These
data can be shared among vehicles and communicated to a remote monitoring and control unit
for additional processing, visualisation, and analyses. A comprehensive perception, in such a
dynamic environment, requires the interplay of different mobile sensing platforms to obtain a
detailed representation of the scene, and accurate data about sensed targets.

Collecting active mode spatiotemporal information in such a way could increase flexibility
in space and time, and data could be generated at different levels of granularity and accuracy.
Ideally, this sensing paradigm enables to perform different types of studies ranging from the
operational level applying very detailed local data along individual pedestrians/cyclists’ tra-
jectories, over using data potentially collected with lower accuracy and aggregated to a lower
degree of representation that would be applied to study macroscopic phenomena, up to studies
at the strategic/tactical level using even more aggregated data over the entire network.

2.3.2 Requirements and performance metrics

A major trait of AMSense, is that it has to operate in increasingly unstructured environments,
which are inherently uncertain and dynamic. We believe there are significant robustness and
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scalability advantages when using vehicles as a mobile sensing platform that collectively achieve
a global objective, while being less intrusive, and less limited by practical constraints (e.g.,
power consumption), network reliability, and local processing capacity, than any data collection
method presented earlier. For instance, vehicles are typically not affected by strict memory,
processing, storage, and energy limitations, which enables the integration of various sensors,
wireless transmitters and processing components. In recent years, several advanced technolo-
gies such as lightweight virtualization and edge computing have been applied to smart vehicles
to enable novel applications and dynamic service deployment (Morabito et al., 2017; Laaroussi
et al., 2018; Morabito et al., 2018).

We identify four prevailing elements that can generate different types of active mode data
by using a network of mobile sensing platforms: network, sensing, processing, and communi-
cation. These fundamental requirements that make AMSense scalable to spatially large urban
environments, and adequate for real-time implementation on rapidly moving vehicles, are illus-
trated as follows. Note that the idea of a system that continuously collects data on pedestrians
and cyclists requires ethical, privacy, and security considerations, which shall be covered in
future research. Therefore, this paper only draws the attention to such issues and advocates the
need for an optional on-demand privacy component, consisting of tailored algorithms and a se-
ries of mechanisms for implementing potential privacy policies in each of the elements outlined
below.

Network Sensor networks are typically deployed in static environments, with application spe-
cific tasks. A highly dense all-static sensor network may possibly meet the Quality of Service
(QoS) (i.e., service of providing spatiotemporal mobility information) requirements in an urban
setting akin to Figure 2.1. However, studies have shown that sensing and networking perfor-
mance of wireless sensing networks can be improved by integrating sensor mobility (Liu et al.,
2005; Srinivasan & Chua, 2007). This for instance, is coupled with advantages for node de-
ployment, and configuration strategies, supporting coverage and control in vast areas. These
are required since our sensing paradigm relies upon a minimum coverage percentage (i.e., per-
centage of area sensed by at least one vehicle). The control of a flexible temporal and spatial
resolution schemes can be translated into coverage robustness as to maximise the number of ve-
hicles sensing the same location. Furthermore, as massive data is generated by diverse sensors
from each mobile sensing platform in the network, at vehicular speed, it is required to minimise
the congestion probability (i.e., traffic load must not surpass the bottleneck capacity of the links)
when data is shared along the network. In addition, the network is required to be robust and
energy efficient in routing. Meanwhile, potential applications may require data to be processed
real-time, thus minimal response times (i.e., latency) are required within the network. At the
same time, data needs to be fresh, that is the most current status for every measurable feature,
requiring low network latency from the time of sensing to the time of processing.

Sensing Sensing components serve as fundamental as they generate the raw data which is used
later to detect, and further interpret active modes spatiotemporal properties. Different types of
active mode data are required to be collected by the sensors, integrated on the mobile sensing
platforms. Although different data can be gathered by diverse sensors that generate data at a
variety of sampling rates and accuracy, a minimal measurement accuracy is required. Thereby,
the data quality is expressed by means of data accuracy and data granularity. The latter refers
to temporal and spatial resolution of the data. Robustness needs to be maintained to avoid sin-
gle sensor deaths (i.e., sensing robustness), and expands a vehicle’s sensing capabilities (e.g.,
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field of view). In order to generate the data, sensing elements require a minimum sensing range
and power. Note that both sensing range and power have a major influence on the coverage
requirements introduced earlier. The sensing application must therefore include energy-aware
adaptation to dynamically adjusted sampling rates as each sensor type generates data at a dif-
ferent rate based on the targets or environment.

Processing On top of sensing, mobile sensing platforms also require embedded computational
resources for data processing. A processing element is key, and can be integrated in many ways.
While the processing can be performed at a centralized server in order to have a lower impact
on resources, some basic filtering and anonymization of the data can also be performed before
actually sending it. Especially given a proliferating amount of data will be generated, processed
and stored, edge is becoming part of the processing layer besides the on-board car processing
and remote cloud processing (Morabito et al., 2018). By using edge, a significant amount of
processing can be offloaded before sending information to control units. Since it is infeasible to
transfer the full amount of raw sensor data at all time, on-board processing and edge processing
are required up to a certain extent before further transmission. To effectively perceive the dy-
namic movements of active modes, the sensing system requires to continuously feed real-time
sensor data into the processing module (i.e., frame-rate), and further understand the captured
scenes (i.e., processing latency) by extraction of only relevant information. Moreover, real-time
processing speeds are required, as well as pre-processing procedures to reduce noise of anal-
ysed signals dynamically depending on the application. A successful implementation of such a
system requires state-of-the-art algorithms.

Communication Data providing information on pedestrians/cyclists is required to be shareable
around the network, in order to eventually be available for further analyses. Vehicular traffic
is network-restricted, mainly following traffic patterns (i.e., commuting hours), and travelling
at maximum 60km/h in inner city-rings. Vehicles require communication capabilities that al-
low them to send and receive information packets to other mobile nodes, and potentially to
additional control units. Some systems use short-range communication not just for detection
but also for enabling collaboration between sensing platforms. As this sensing network shares
time-sensitive information, data needs to be fresh (novel) and transferred in near real-time. The
freshness of that data can vary, depending on how frequently a sensor is relaying readings, and
is defined by sensing the correspondent application. A reliable communication is therefore re-
quired, providing answers to both potential bandwidth and latency issues. In a reliable network,
the mobile sensing platforms need to transmit updates constantly, providing most current status
for every sensed feature (Kadota et al., 2018). The aim is therefore to maximise the novelty of
the data received at any moment, while at the same time avoiding data congestion.

2.4 Design of an active mode sensing network

Advances in sensing, computing and communication have driven efforts to study sensor net-
works, composed of a large number of densely deployed sensor nodes with self-organization,
cooperative effort and on-board processing capabilities (Akyildiz et al., 2002). The vehicular
based sensing paradigm we propose in this paper, is in-line with the Vehicular Sensor Networks
(VSNs) for various urban monitoring tasks (Lee et al., 2006; Hull et al., 2006; Anjomshoaa
et al., 2018; Minet et al., 2018). In this section, we propose the design for AMSense that cap-
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tures pedestrian and cyclist spatiotemporal properties in urban areas, where a high concentration
of vehicles equipped with on-board sensors can be expected, and thereby introduce the network
model and its functional architecture.

2.4.1 Sensor network characteristics

The requirements outlined in the previous section lead to the description of main characteristics,
displayed in Table 2.1, for such a mobile sensing network to be designed.

In a traditional multi-sensor system, large scale networks take in different dynamics: with
mobile, stationary or aerial sensor nodes. We identify two distinct features for a sensing network
that observes pedestrians/cyclists using vehicles as sensing platforms: 1) vehicles are highly
mobile, moving at different speeds along the urban street network, and ii) their mobility pat-
terns are, to some extent, predictable due to the constraints imposed by roads, speed limits,
and commuting habits (patterns). While both are typical traits of a vehicular ad-hoc network,
their mobility extends the spatial and temporal scale of sensing and networking performance.
Data about pedestrians and cyclists can thus be collected at many different locations within the
network along the sensing platforms’ trajectories, and responding to dynamic changes induced
from the urban environment.

Due to mobility, the gquantity of sensors in a network can thereby vary by several orders of
magnitude over a day. As we utilize vehicles as mobile sensing platforms, and mobility patterns
are strongly affected by the global mobility demand and the topology of the street network, the
number of vehicles in cities follow a negative binomial distribution (Cui et al., 2017). The
performance of sensing is eventually directly influenced by this characteristic, as the accuracy
of estimated traffic flow variables increases with the number of operating sensing platforms
observing that same scene. In addition, the spatial dimension becomes feasible, as sensing of
multiple areas can occur in parallel.

Another closely tied network characteristic, with direct impact on the QoS of AMSense, is
the deployment of sensing nodes. The sooner a pedestrian/cyclist is detected the better for the
global network information quality. The optimal placement of sensors is therefore essential to
meet requirements for entirely observing an area or a target. We chose to use urban vehicles
(e.g., private, fleet), enabling wide coverage at reduced cost, as mobile sensing nodes to create
mobile ad-hoc networks and form an inter-vehicle communication network.

Coverage builds upon the quantity and deployment strategy of sensors present in a network.
While sensing coverage can be sparse or dense in urban settings, due to varying traffic densities,
we assume nodes to be deployed with uniform density, g, subject to some temporal traffic
and local patterns. The capabilities of deployed sensors in dense network vary when used
individually versus when employed collectively. The coverage ratio (e.g., partial, full), with a
density ¢ that guarantees redundant coverage of an area to be monitored, depends on the sensing
application and the type of data needed. For instance, besides communications and processing
capabilities, network-wide microscopic sensing task (e.g., trajectories of pedestrians/cyclists
in a network) can benefit from a high quantity of sensing platforms and large coverage ratio,
as detailed representation of pedestrian or cyclist movements. In contrast, local macroscopic
sensing (e.g., densities of pedestrians/cyclists on a road segment), requires less information,
thus a limited coverage is sufficient to provide acceptable traffic estimates. Already a small



2 Towards new system designs for active mode mobile sensing

24

Table 2.1: Overview of designated main characteristics based on (Chong & Kumar, 2003), for a sensing network using vehicles as mobile nodes.

Network Characteristics Type Key Performance Metrics

dynamics mobile spatial resolution

quantity mobility demand temporal resolution

deployment private vehicles, fleets deployment strategies

coverage spatio-temporal traffic pattern redundant coverage, optimal allocation
composition heterogeneous sensor fusion

communication wireless low latency, high bandwidth, 5G

power source internal, on-board energy consumption

architecture multi-layer hybrid, decentralized scalability, real-time implementation, privacy
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number of fleet vehicles could satisfy the coverage requirements (OKeeffe et al., 2019) for
some specific active mode sensing tasks at macroscopic scale. We note that as traffic patterns
contain distinct statistical properties, network-wide traffic state may be inferred from a learned
statistical model.

The composition of a sensor network can be homogeneous or heterogeneous. As illustrated
in the scenario of Figure 2.1, the composition of AMSense is heterogeneous as to accommodate
the interplay of different sensor types.

In addition, sensor nodes need to cooperate by means of communication to maintain consis-
tent real-time local information, which consists of sending and receiving data via a communi-
cation medium. This enables the sensing vehicle to exchange information with other vehicles
in the mobile network. The AMSense communication medium is over wireless (e.g., 5G and
Wi-Fi) to meet the low latency requirement.

The power source represents an influential limitation as various sensors, connectivity com-
ponents, and computing equipment surely have important energy demands. For vehicle net-
works, a higher consumption of energy could eventually translate into reduced vehicle range.
As this work presents the potential of future intelligent vehicles’ “data exhaust”, we will not
consider issues related to continuous power delivery capabilities for the early applications.

Three different types of processing architectures are typically defining a mobile sensing
network; centralized, distributed, or hybrid. Raw collected data needs to undergo communica-
tion and computation, in order to be further processed and aggregated to provide information
about pedestrian/cyclist presence, positions, or movements. While in centralized architectures,
all captured sensing data is instantly transferred to a central processing unit, this approach suf-
fers from potential computational bottlenecks because of the sheer size of generated data, and
is prone to crash in case of central unit failure or death. The inherent spatially distributed na-
ture of multi-vehicle networks, which rely on a distributed communication and computation
architecture, however, invalidate classic centric approaches. Hybrid processing architectures, in
contrast, use a distributed approach to perform some level of local computation at each node,
yet, still rely on a central unit to perform overall data fusion. We propose a multi-layered
hybrid architecture that grounds on distributed and decentralized communication and computa-
tion, in which vehicle nodes communicate locally with surrounding vehicles. This allows the
communication overhead to scale well with increase in network size and efficiently use parallel
processing to process real-time data. This allows complete parallelisation of any algorithm,
speed increase and proves to be a very survivable system.

2.4.2 Functional architecture

Figure 2.2 displays a multi-layer mobile sensing architecture with its primary functions. Re-
mind that we make use of vehicles’ sensing capabilities without interfering with their native
operation. AMSense can be divided into multiple layers based on information hierarchy and
computing capabilities. In a top down order, a cloud layer, on top of which diverse applications
can be developed, governs an edge data processing layer that connects physical devices (i.e.,
mobile sensing platforms) with the cloud. Units and modules follow distinct objectives, and are
represented in the figure to provide functional context.
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Cloud Layer. At a governing level, the cloud layer (Online Fleet Operation (OFO)) offers
resources for monitoring and managing the mobile sensing network, along with resources for
further complex data analyses and long-term storage, while streaming information from mobile
sensing platforms at any given time. This dynamic layer, manages the network, and processes
less time-sensitive, non-raw data, which is already preprocessed through filtering and aggrega-
tion mechanisms by underlying layers. Information reaching the OFO can either be used for
sensing operations management (e.g., data acquisition) or data processing tasks. In the first
place, this layer enables interactions between many possible applications, including their col-
laboration and data exchange, potentially in real-time. Applications are developed on top of
the cloud services and provide users the possibility to further analyse the collected datasets
through APIs. Those make the data available for running additional data analytics, machine
learning, and visualisations on cloud servers that provide deeper insights in the collected data.
In addition, the OFO offers various other services, such as coordinating user-defined sensing
tasks. As such, sensing can either be performed continuously in the background or triggered
by a request via cloud-based applications. Requests (i.e., sensing tasks) can be defined specifi-
cally, including information about possible targets, planned routes and sensing behaviours, after
which, the OFO sends task-related information to respective sensing platforms. The data col-
lection and coordination process of those sensing tasks is performed autonomously by the cloud
and underlying edge layers, based on value specific context selection that is to choose the best
data sources for defined sensing tasks, without the need to contact the cloud service. A mobile
sensing platform can thus wait for incoming tasks, start the data collection, and return results,
or may simply publish pre-processed data without a specific request, whenever a connection
is available. While the freshness of data plays a major role, data can be stored locally at the
edge (e.g., on-board) or globally (e.g., cloud server), before or after pre-processing, and can be
retrieved for further analyses.

Edge Data Processing Layer. Because of computational and QoS requirements and the sheer
size of collected data, we move and offload computation in the proximity of mobile devices by
introducing an intermediate layer responsible for additional data filtering, aggregation, process-
ing and storage. This edge data processing layer entails the computing paradigm that delivers
similar service as cloud computing, but by different means to enable a range of new benefits
such as low latency, context awareness and mobility support. In addition, edge processing layer
delivers similar utility computing model as cloud computing (e.g.,, SaaS, [aaS, PaaS) but in a
decentralized manner, where computing power is brought to the network’s edge infrastructure.
Therefore, the processing tasks on the gathered data happens at the edge, that is on mobile
sensing platforms and the edge infrastructure between mobile devices and cloud services. This
design reduces the load of data on the network and the cloud, as sensing, processing, aggrega-
tion and application execution are distributed over the entire network, and potentially in real-
time. In contrary to a plain middle layer solution, our edge layer includes programmability and
flexibility via software-defined networking (SDN) (Kreutz et al., 2015) and network function
virtualization (NFV) (Han et al., 2015) to deliver ubiquitous processing capabilities across a
wide range of heterogeneous hardware. For instance, the AMSense edge layer will provide im-
age processing and raw sensing data pre-processing simultaneously. Given the heterogeneous
characteristics of various instances deployed in AMSense, the edge data processing layer coop-
erates mutually with both cloud layer and physical layer, by acting as a bridge between elements
that require dedicated interaction.
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Figure 2.2: A high level, multi-layer architecture of the proposed mobile sensing system AM-
Sense. Blue arrows represent data flow between different units.

Physical Layer. Apart from native components and functions that are necessary for a vehicle’s
driving, core components of a sensing platform include sensing, localisation, processing (i.e.,
perception, decision control) and communication.

The sensing module is based of sensors covering a vehicle’s external sensing capabilities,
as well as internal sensors that provide information about a vehicle’s internal state. The sensing
module itself remains configurable, as any vehicle integrated sensor may be activated, and thus
send data, on the grounds of the different types of application. Sensor data can directly be used
for localisation and map provisioning, and thus holds a common interface with the localisation
module.

Although sensing and localisation are strongly linked and together form the core source
of data, the latter is an independent module that has to provide two types of information on
higher abstraction level. First, mobile sensing platforms are required to localise themselves
(ego-localization) on a street network. The localisation module therefore requires to perform
mapping, map updating and provides map information to other modules. Second, mobile sens-
ing platforms are required to localise detected pedestrians and cyclists. Sensors thereby provide
data input to obtain an absolute, global pose from localisation algorithms. Satellite technolo-
gies, as traditional GPS, are largely sufficient on a macroscopic level for road localisation. But
shrinking down the scale to the order of a few centimetres, to perform localisation on lane- or
subject-level in dynamic urban environments, localisation exceeding GPS accuracy is required.
While some techniques to improve the accuracy of a traditional GPS system exists (Knoop et al.,
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2012), the required stringent level of accuracy and availability for such mobile sensing appli-
cation can be achieved using additional sensing sources (i.e., LIDAR and camera) to produce a
more accurate, robust and reliable localisation. The accuracy of an active mode’s position thus
depends on the technical characteristics of the sensing vehicles that capture this individual, but
can also be increased with additional positional measurements that capture the individual, fused
from different locations and perspectives.

The sensing module transfers raw sensor data via an interface to the perception module, with
additional information originating from the localisation module that follows. Different types of
sensors such as LiDAR, Radar, long-range ultrasonic and forward-facing or surrounding-view
camera sensors, provide depth information of a vehicle’s surroundings. This data aggregate, for
instance, can later be used for purposes of environment modelling. Note that sensors of each
mobile sensing platform need to be considered independently, as they are subject to a vehicle’s
ego-motion. Vehicles have different perspectives on a scene, depending on their location and
the orientation of their sensors. For these reasons, data filtering is performed to integrate one
vehicle’s captured scene (e.g., point cloud), to another vehicle’s local view, observing that same
scene, at the exact same time. With detailed information about a vehicle’s orientation and
position, a transformation can be performed that brings the data into a universal-VSP bound
coordinate system by estimating the ego motion. In other words, dynamic (e.g., pedestrians)
and static (e.g., infrastructure) elements from a scene that are output of the mentioned sensors,
can be associated to three dimensional position information, using pre-computed 3D maps of the
environment. Furthermore, several algorithms (e.g., feature extraction, model-based filtering)
are executed to perform active mode detection, and self-monitoring of surrounding vehicles.
Algorithms such as for pedestrian/cyclist detection and classification, or tracking, ground on
deep neural networks. While they require substantial computing resources, their accuracy and
speed is proportional to the computing resources available to them.

The perception module has interfaces to sensing, localisation, planning and control, as well
as to the communication module. Perception data can directly, or indirectly, be used for broad-
casting information via the communication interface to other vehicles, as to extend surrounding
vehicles field of view that may be limited (e.g., visibility) (Qiu et al., 2018). This perceived in-
formation is transferred to the decision and control module, where the real time map of sensed
active modes and their environment is updated. Note that while the processing module is fixed,
the storage module can be customised depending on application and usage.

The communication module embeds the 5G connectivity and spans across three layers, as
illustrated in Figure 2.1. From architectural perspective, this implies that the communication
module integrates the cloud computing, edge computing, SDN, NFV, and combines various
wireless elements to deal with the requirements of AMSense services. As 5G connectivity in
the future will be regarded as one of the mandatory common-pool resources (CPR) similar to
water and electricity, the communication module also cater to the requirements from govern-
mental and economical angles. This will establish a strong connection on the regulation and
management in terms of interoperability, safety, cost of maintenance, public-private ownership,
wireless spectrum bidding and allocation, which is necessary part of AMSense.

The decision and control module has interfaces to the perception and communication mod-
ules, as well as towards the actuators within the native driving module. Algorithms in the
decision and control module are the primary users of the processed information. While path
planning, stabilisation and motion control are performed during the native driving of the vehi-



2.5 Active mode sensing applications with urban vehicles 29

cle, and thus do not relate to the monitoring system, behaviour planning and execution mon-
itoring, however, use information from perception module to potentially perform detection or
tracking tasks. Those are based on messages originating from OFO interface. As mentioned
before, depending on the application, sensed and perceived data can be provided at different
temporal and spatial levels for active mode movement mapping updates. Behaviour planning
entails operating for active mode detection or tracking where waypoints are targeted between
which a route needs to be planned. Behaviour planning does however not only select the mod-
elled movements, but also plans how it has to be executed. This manoeuvre information (e.g.,
orientation, velocity) may be utilised by succeeding vehicles, and provided with lateral and lon-
gitudinal trajectory data to best capture the targeted active mode. For instance, the knowledge of
a no-detection field (e.g., occlusion), is valuable and may affect the path planning of following
vehicles by changing to a lane with better view to capture a pedestrian on the sidewalk. In addi-
tion we also include execution monitoring to this module. This ensures that assigned tasks are
executed as planned, and possible deviations lead to adjustments in the sensing operations. In
the future, it could allow sensing vehicles to actively reposition themselves in order to optimise
their sensing orientation (i.e., distance, angle), using path planning that finds an optimal path
when a task is assigned, while recalculating positional deviations.

2.5 Active mode sensing applications with urban vehicles

The complexities and edge-cases of scene perception, as well as the limitations and imperfec-
tions of sensors, make capturing the presence of active modes from a moving sensor platform
full of open challenges. Using data from a single sensor source, is not necessarily sufficient to
differentiate individuals from other objects in urban environments. We first categorise differ-
ent sensing technologies before diving into sensor applications and examining scenario related
parameters.

2.5.1 Sensor configuration

To start with, we classify the different sensors into those capturing the internal states of the
vehicle and those capturing the states of the environment in which the vehicle operates.

The prior are described by the vehicle CAN bus, a serial broadcast bus that allow near-real-
time management of most sensors and electronic devices embedded in the car. These highly
integrated sensors measure steering angle, brake pressure, or acceleration rate are input for
actuators related to a vehicle’s native driving task. Such data may however be used to indirectly
detect interactions with active modes, and hence denote their presence. In the context of driving
behaviour analysis (Ly et al., 2013; Fugiglando et al., 2019), the identification of changes in a
driver’s behaviour could not only help recognizing hazardous situations but may also lead to
describing active mode presence in real-time. For instance, think of a vehicle firmly braking
in front of a pedestrian crossing (e.g., zebra). The braking operation can directly be read from
outcoming sensor signals via the CAN bus, while the zebra crossing may be identified based on
combination of position and 3D-map. Fusing the data, we could assume that the presence of a
pedestrian is likely.
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Figure 2.3: Illustration of a possible sensor configuration on a mobile sensing platform.

In a second category, we consider active and passive sensors, capturing most points in a ve-
hicle’s surrounding, as exemplified in Figure 2.3, namely: vision, LIDAR, and Radar. Vehicles
equipped with vision sensors, with embedded streaming capabilities are becoming common-
place. Thereby, setups are mainly based on mono, stereo, infrared/thermal cameras. Note that
mono- and stereo cameras offer a high resolution, however are subject to environmental in-
fluences, while infrared/thermal work well at all lighting/ weather conditions and raises less
privacy concerns. While vision sensors can be mounted at multiple locations (e.g., roof, side),
the forward-facing or surrounding-view cameras are used to identify active modes and objects
in the field of view, by creating a composite picture of the surrounding environment. Large
improvements in computer vision based pedestrian detection were made in the recent past (En-
zweiler & Gavrila, 2009; Dollar et al., 2012). LiDAR provides highly accurate long-range
object detections (up to 250m), by continuously scanning the environment. They are usually
mounted to the top of a vehicle, and compared with cameras can provide accurate information
and larger field of view (i.e., unobstructed 360-degree view) (Wang et al., 2017). While LiDAR
exist at different wavelength and resolution, high-resolution LiDAR are able to pinpoint pedes-
trians at high accuracy and make it even possible for the system to detect human poses. Radar
in contrast, output distance, velocity, and typically have high measurement accuracy. Typically,
360-horizontal coverage using short-range Radars (~ 40m range) and mid-range-Radars (~
100m range) can be achieved with 4-6 Radars mounted at each corner/side of the vehicle. As
Radar is less affected by external conditions, they provide redundancy for camera and LiDAR.

The detection accuracy and correct localisation can be significantly improved by fusing data
from a set of sensors. This for instance, supports the use of a sensing network with multiple
sensors, while making use of vehicles’ movements to increase detection and measurement per-
formance through the extension of different field of views. This capability that provides depth
perception of the surrounding environment is likely to become pervasive in future vehicles. Note
that the mentioned sensor components all depend on different system integration and amount of
processing.
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2.5.2 Active mode sensing scenarios

We further give an overview of urban traffic situations, illustrated in Figure 2.4, where pedes-
trians and cyclists can be sensed with AMSense. Four examples illustrate interactions between
mobile sensing platforms and active mode behaviours in typical urban settings: a) target is in
field of view, b) is not in field of view, c¢) unclear situations due to occlusion, and d) the target
deviates from his linear trajectory (e.g., crossing). Note that we assume active modes not to be
restricted by the pedestrian or cyclist network (e.g., shared spaces), while vehicles to only use
the underlying street network.

A pedestrian or cyclist may be identified or tracked in time and space by one or more sensing
platforms. However, when assigned an ID (e.g., “pedestrian 1) and tracked for a certain time
interval, the tracked target may loose its temporary ID in situations where no target-sensing is
possible (e.g., occlusion, location not sensed). The target will most likely be assigned a new ID,
when re-entering the field of view of that same (or different) vehicle. While a vehicle sensing a
target can solely be expressed as the estimate detecting that target, the quality of collected data
depends upon the interplay of the sensing system’s technological capabilities and actual urban
traffic conditions. Overall, the granularity and accuracy of the data are typically determined
by sensor types, while the accuracy also depends upon sensing positioning, node coverage and
external conditions (e.g., weather).

In the first scenario (a), the pedestrian and cyclist are in unobstructed field of view to their
closest vehicle, and can thus directly be captured by that vehicle. This situation occurs when
the target is in detection radius of the sensing vehicle, and in the case that no additional active
mode, or object hinder a clear view on the target. In this situation we assume that data about that
captured individual will always be available by means of at least one sensing vehicle, whether it
is in motion or not. Collected information about that pedestrian/cyclist could therefore include
presence, locations, speeds, and movements, generated at each sampling time until moving out
the detection radius. The measurement accuracy of that individual, is affected by the sensing
vehicle’s position, that is the distance and angle to the target. Furthermore, the effects of such
sensing network on data quality becomes apparent when an active mode is captured by more
than one sensing platform, as in Figure 2.4 vehicles 2 and 6. Both generated data are fused
(data needs to be fresh), extending the vision on that pedestrian while potentially increasing the
accuracy and granularity of the data.

In a second scenario (b), the pedestrian and cyclist are in unobstructed field of view to their
closest vehicle, however can’t be directly captured as they are not inside the vehicle’s detection
radius. This situation occurs in case of large distances or wide angles between the target and
sensing vehicle. In this situation no data on the present active modes is generated. Although
vehicles may sense their surroundings, no pedestrian/cyclist is detected until they reach one of
the vehicles’ sensing radius. Yet, prior data that was generated at the time a pedestrian/cyclist
was moving in a vehicle’s sensing radius, might still be available in the network (e.g., data
storage). Almost fresh information (e.g., near real-time) may then be used to estimate an active
mode’s position for a limited time interval. This situation can be altered by increasing the
coverage of that sensed area.

In a third scenario (c), the pedestrian and cyclist are in obstructed field of view to their clos-
est vehicle, and thus can’t be sensed by that vehicle, in the time of sampling. This situation
occurs when an object (i.e., infrastructure, nature) hinders the view, and thus makes perception
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Figure 2.4: Overview of potential traffic situations, where mobile sensing platforms sense their
environment while pedestrians (red circles) and cyclists (green diamonds) are a) in
field of view, b) not in the field of view, c) not or partially detectable, d) crossing.

of the active mode impossible, even though the target is in radius of detection. This situation
also occurs in settings where crowds make individual detection more difficult. Full occlusion
entirely hinders collecting any data about that individual’s presence, location, speed, or move-
ments, until reappearing in the same (or another) vehicle’s field of view. Partial occlusion, yet,
reduces dramatically the quality of data, however, data about that active mode may be processed
up to a certain extent. The positioning of a mobile sensing platform and its sensors influences
the occlusion shadow, and therefore, the amount of collected information. Thereby, data fusion
enhances the overall detection and perception, as diverse sensors could capture targets differ-
ently. At the same time, increasing the sensing coverage, is likely to expand the collective field
of view on a scene.
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In a fourth scenario (d), we show a subset of different crossing situations in urban traffic
settings. Active modes may use signalised or unsignalised locations to cross a street. Involved
vehicles adapt their ego-motion to the crossing situation, which shall have no effects on sensing
capabilities. However, less vehicles might be able to see that crossing individual as they’ll have
a different perspective on the environment (parallax), e.g., crossing in front of a vehicle create
an occlusion shadow for the following vehicles. Remember that perception data from the first
vehicle can then be used to extend the field of view of following vehicles.

The quality of collected data is, technological capabilities and external conditions aside,
mainly influenced by the positioning of sensing vehicles to their targets, as well as the sensing
coverage at a certain location. Likewise, the movement of pedestrians and cyclists is equally
influencing the collection of data quality, due to occlusion introduced by infrastructure, vehicles
or groups of people. In addition, the movements of vehicles in relation to a sensed radius
influences the granularity of the data. Remind that, collecting datasets about labeled individuals
across the network, as for instance needed in route choice studies, seems impossible without
using additional sensing technologies (e.g., Bluetooth).

2.5.3 External operating conditions

Although we cannot account for all environmental factors that might affect the sensing perfor-
mance, we describe the ones that are most likely to adversely affect the correctness of sensors,
protocols, and algorithms. In the remainder of this section, we describe weather effects, occlu-
sion effects, and noise model.

In addition to dealing with internal system failures resources (e.g., bandwidth), the mobile
sensing network, and more particularly single sensor nodes may fail or be blocked due to phys-
ical damage, or environmental interferences. Environmental reliability, denoted as Ry(¢), can
be modelled using the Poisson distribution and represents the probability functioning without
interruption during sampling time 7. Furthermore, weather conditions (e.g., low visibility), can
directly affect the active mode detection, and cause false positives/negatives. In scenarios with
low lighting conditions, we expect a drastic decrease in sensing performance of most vision
sensors (infrared excluded). Temperature is not expected to have a direct effect on overall per-
formance.

Road conditions (e.g., street quality) and the presence of obstructing infrastructure or urban
greenery can have a negative impact on the quality of sensing targets and communication be-
tween nodes. One of the main concerns when detecting pedestrians and cyclists is occlusion,
which occurs especially in high density scenes or when objects hinder a clear view in an ob-
served area. A vehicle’s field of view towards the sidewalk may be occluded by trees, parked
cars or urban infrastructure. This prevents the mobile sensing platform to correctly observe
the actual scene, and thus missing out possible pedestrians (or cyclists). Although some areas
might present high risk of occlusion, this occlusion might not be present for very long since the
active modes and sensing vehicles are moving at different relative speed. In an eventual future,
in which one could think of vehicle manufacturers or fleet operators allowing the placement of
sensors at various locations on a vehicle, the surrounding environment could be perceived from
a multitude of distinct points on a mobile sensing platform. It should be noted that vehicle-free
areas make up a sizeable fraction of most urban areas. Active modes would therefore have to be
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monitored with other mobile vehicles (e.g., bikes, drones), or static sensors that are equivalent
to mobile sensing platforms at speed 0, and their fusion would be worth considering in future
studies.

Typically, such a mobile sensing network is subject of noise-corruption that increases with
the quantity of sensor nodes involved. As mentioned earlier, the detection of a pedestrian/cyclist
is only expressible as a probability. All raw sensor data come with uncertainties (i.e., sensor
efficiency, weather, road conditions) and hence inherit noise. Probabilistic methods, such as
Kalman filter, addresses this margin of error.

2.6 Conclusion

In this paper, we presented AMSense, a novel mobile sensing system that uses connected multi-
sensor equipped vehicles to build a sensing network which captures pedestrians and cyclists
spatiotemporal properties in urban areas. The collected data about pedestrian/cyclist presence,
locations, and movements can be used as input for a variety of studies that require active mode
information at diverse macro- and microscopic levels. Future work will dig into challenges
of reliability, scalability, as well as ethical, privacy, and security considerations. Moreover,
future work will investigate dynamic and context-aware data collection, explore the potential of
measuring spatiotemporal densities, speeds and flows using such a mobile sensing system, and
study active repositioning of sensing vehicles to optimise vehicle allocation.



Chapter 3

Network-constrained tracking of cyclists
and pedestrians

Chapter 2 has identified data and technical requirements distinct to active mode research and
practice within the new sensing paradigm. In the current chapter, we zoom in on pedestrian and
cyclist observations from types of IAS, especially on how to make sense of these observations
in time and space.

We do so by assuming the availability of data with a minimal set of features as to show how
little needs to be sensed to obtain a comprehensive microscopic and macroscopic picture of traf-
fic flows in a larger area. This chapter proposes a new method for advanced traffic applications,
tracking an unknown and varying number of moving targets (e.g., pedestrians or cyclists) con-
strained by a road network, using mobile (e.g., vehicles) spatially distributed sensor platforms.
We showcase the framework with a simulation study, highlighting how network-constraints in-
herent to transportation infrastructure is beneficial when estimating the number and location of
pedestrians and cyclists. The proposed framework can conceptually be extended to any type of
sensing realm and presents a versatile tool for different stakeholders in various contexts. This
chapter also directs attention to latent privacy concerns for potential applications.

This chapter is published as a journal article: Vial A., Hendeby G., Daamen W., van Arem
B., and Hoogendoorn S.P. (2022). Framework for Network-Constrained Tracking of Cyclists
and Pedestrians. IEEE Transactions on Intelligent Transportation Systems.
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3.1 Introduction

Inferring the number of pedestrians and cyclists, as well as their individual states (e.g., position,
velocity) from a sequence of measurements, allows drawing a complete micro- and macroscopic
picture of the traffic flows in an observed area. This is of great value for advanced surveillance
applications in traffic operation, control and management.

Traditional setups for these applications rely on stationary or participatory sampling tech-
nologies. Stationary sensing systems gather data that can be used to reconstruct trajectories
or counts, but only at local scale (e.g., cross- or very short road sections). At the same time,
crowd-sourced data from mobile and other wearable devices allow tracking individuals through
a network, but require direct or indirect collaboration of the tracked individual and are mostly
sparse in nature (not all persons are detected). Current advanced surveillance applications and
traffic monitoring typically consider longer time horizons to associate new measurements with
existing tracks to monitor individuals over time. Proposed methods mainly consider stationary
sensor settings, which often produce a visual stream from a fixed location (Barthélemy et al.,
2019; Duives et al., 2020), however come with low spatial resolution and scalability.

With novel distributed-computing and connectivity capabilities, a growing number of on-
board sensors, the collection of data on pedestrians and cyclists is expected to further intensify
with the advent of connected autonomous mobile systems. Self-driving vehicles, drones, or
other types of connected robots will enter populated environments and may act as mobile sens-
ing platforms generating a proliferating amount of data about the platform’s internal state, but
also about the static and dynamic local area they observe. With the collective intelligence and
innate mobility of such sensor platforms, pedestrians and cyclists traffic characteristics could be
captured at an extended spatial and temporal scale (Vial et al., 2020). In the future, knowledge
about position, motion state, and pose of people could enable next generation traffic or crowd
surveillance systems to estimate the number of people and reconstruct trajectories across the
network.

Yet deriving complete trajectories of indistinguishable pedestrians and cyclists in a network
using observations from mobile spatially distributed sensor platforms, is complicated. First,
there is an unknown and varying number of people, where position and motion states of indi-
viduals are unknown. At the same time, noisy sensors, changing environmental conditions, or
occlusion are responsible for missed detections and clutter. And with no a priori information
about which observations originate from which existing or newly detected individual, the many
possibilities of assigning a measurement to an individual complicate the task.

There have been major developments in pedestrian and cyclist detection and tracking, for in-
stance, in areas related to autonomous navigation and control. Safety-critical applications, e.g.,
self-driving vehicles rely on accurate human motion prediction and path planning (Rudenko
et al., 2020; Keller & Gavrila, 2014; Kooij et al., 2019). Proposed methods and pilot deploy-
ments however typically consider spatially restricted short time horizons. Thereby presence and
state information is crucial to better understand and anticipate actions, that is knowing what an
individual will do next, e.g., start, continue, or stop walking.
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Figure 3.1: Illustration of the concept showing a simple road network and the underlying
Markov Process.

In the last decades, different target tracking approaches have been proposed that aim at esti-
mating the number and states of (multiple) dynamic objects using noisy sensor measurements,
taking source from the tracking community. Existing algorithms, however, consider short time
horizons and are mostly designed for unconstrained motion in two- and three-dimensional
space, where complexity tends to grow exponentially due to the number of hypotheses. At-
tempts have been made to better model the behaviour of pedestrians, e.g., (Batkovic et al.,
2018), which aims at learning to predict for collision avoidance, and (Luber et al., 2011), in
which spatial motion model is learned from observations. Due to their added complexity, these
methods fit poorly into standard multi-target tracking methods.

Road information has previously been used to support ground target tracking. The approach
proposed in (Pannetier et al., 2004) tracks the objects in free space and then, in a wide sense,
projects the estimates onto the road network. This ensures that targets are estimated on the
road, but does not improve projections as done in this paper. In (Kirubarajan et al., 2000),
a variable structure interacting multiple model (VS-IMM) is introduced, which uses different
motion models based on the target location to keep the objects on the roads. In (Ulmke &
Koch, 2006), targets are described in a combination of global 2-D coordinates, and the quasi
1-D coordinates as used in this paper. This allows for more efficient predictions while, as
in (Kirubarajan et al., 2000) and (Song et al., 2018), the VS-IMM is used. Compared to the
proposed method, the number of target hypotheses are regularly reduced, keeping them alive
until observations can determine which one is correct in the proposed multi-hypotheses tracker
(MHT). Furthermore, (Kirubarajan et al., 2000) and (Ulmke & Koch, 2006) consider airborne
ground moving indicators as sensor, which is different from ground based sensors moving on
the road network as introduced in this work. In more recent efforts, (Song et al., 2018) uses
measurements from static sensors and include road map information, however, focus on tracking
interacting vehicles rather than on the effects of road constraints when tracking targets in a
network. (Zheng & Gao, 2018) extends the idea of including road map knowledge to random
finite set (RFS) methods, however, using a more involved road representation and handling
than the method proposed in this paper. (Lopez-Araquistain et al., 2019) also uses a different
road and coordinate representation that requires projections, however, the concept of branching
hypotheses in ambiguous situations (e.g., at intersections), also found in (Krishanth et al., 2014),
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is similar to the handling found in our approach.

The key contribution in this paper is to introduce the concept of network bound targets into
the multi-target tracking problem. This is done by introducing a target representation, compris-
ing a traditional target tracking representation and a discrete component placing the target on
a given edge in the network. This model is then used to derive a network-constrained multi-
hypotheses tracker (NC-MHT). The inclusion of knowledge about the network structure allows
for more efficient target predictions over extended periods of time and simplifies the measure-
ment association process, as compared to not utilizing a network structure. The network bound
target model is derived with tracking of an unknown and varying number of pedestrians and cy-
clists in an urban setting using mobile spatially distributed sensor platforms in mind. Hence, the
NC-MHT is evaluated on three simulations of targets moving around on an urban infrastructure
of connected roads, highlighting different properties introduced by adding the network con-
straint. The NC-MHT opens up the field for new applications for network-wide traffic surveil-
lance, using information about the number of individuals and their states, to enhance advanced
traffic operation, control and management systems.

The remainder of this paper is organized as follows. The next section presents relevant
background theory on fundamentals, namely Bayesian filtering and multiple target tracking.
Section III introduces the mathematical problem formulation and network-constrained system
models. Section IV presents the derived NC-MHT filter and details the integration of the net-
work structure. Section V presents simulation results from three tracking scenarios. Section VI
discusses the outlook and potential extensions of the proposed approach. Conclusions are drawn
in Section VIIL.

3.2 Background

Using conventional methods for multiple target tracking (MTT), the individual targets are tracked
using Bayesian filters (Fang et al., 2018), following a step where the available observations in
each scan are assigned to the different tracks. In this context, a track represents a potential target
and contains information about its estimated past and current state, and a scan is a set of ob-
servations received at the specific point in time. A MHT considers several different association
hypotheses in parallel. Additional logics handle track creation and termination of tracks over
time. The steps are outlined here, and further adapted to network bound targets in the following
section.

3.2.1 Bayesian filtering

The state xj (e.g., position and velocity) of a target at time k can, given the observations from
time 1 to k, z;.x, be estimated using recursive Bayesian filtering. This is achieved using a two
step iterative process that sequentially predicts and updates the probability density function of
the target state p(xg|z1.x)s

P(Xet1]z1:0) :/P(Xk+1\xk)l?(xk|z1:k)dxk (3.1a)

(zi|xk) p(xk|21:0-1)
P(zk|z1:4-1)

paelzig) =2 (3.1b)
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The first equation predicts future states, given the current state and a motion model p(x; 1 |xx),
and the second step incorporates information from a new observation p(zx|x;) into the estimate.

For linear models with Gaussian noise, where both the dynamic and measurement model
are linear, the seminal Kalman filter (KF) (Kalman, 1960) provides the analytic solution to the
Bayesian filtering recursion. For the case that nonlinear models are used, the extended Kalman
filter (EKF) (Jazwinski, 1970), or unscented Kalman filter (UKF) (Julier & Uhlmann, 1997) can
be used to approximate the solution, and in highly nonlinear scenarios the particle filter (PF)
(Ristic et al., 2004) can be used.

3.2.2 Multiple target tracking

Multiple target tracking is an extension to the state estimation problem where both the number
of targets and their states should be estimated, based on available scans. The observations that
make up the scans are noisy, a target may sometimes fail to produce a detection, and clutter
(false observations) which all complicate the task.

The core of the MTT problem lies in the association of observations to the right track, as
given the association, the state of the tracks can be estimated using Bayesian filtering. Data
association is needed as it is not known which observation originates from which target, not to
mention which observations are clutter. Classical MTT solutions as the global nearest neigh-
bour (GNN) tracker, the joint probabilistic data association (JPDA) filter, and the multiple
hypothesis tracker (MHT) (Reid, 1979) differ in the way the association is performed and how
many hypotheses are maintained. See (Blackman & Popoli, 1999; Bar-Shalom & Li, 1993) for
more details. More recently developed MTT methods, e.g., the probabilistic hypothesis density
(PHD) filter (Vo & Ma, 2006; Krishanth et al., 2017), the labelled multi-Bernoulli 1LMB) filter
(Reuter et al., 2014), and Poisson multi-Bernoulli mixture (PMBM) filter (Garcia-Fernandez
et al., 2018), are based on random finite set statistics and are derived differently, resulting in
slightly different methods. None of these methods, however, are designed to utilize network
constraints.

The MHT is one of the most popular and common MTT methods. The use of several associ-
ation hypotheses in parallel took off with Reid’s seminal paper (Reid, 1979), yet requires many
approximations to become a computationally tractable technique as the number of possible track
associations increases exponentially with time. Since then, it has been further developed as this
technique gained some momentum in the tracking community, and has been applied in specific
application domains. The MHT technique relies on evaluating the probabilities of sequences
of measurements from various targets. Two main variants of MHT can be found in literature:
Hypothesis-Oriented (HO-) (Reid, 1979), and Track-Oriented MHT (TO-MHT) (Kurien, 1990).
Cox (Cox & Hingorani, 1996) further contributed to the design of an efficient MHT implemen-
tation by introducing Murty’s algorithm (Murty, 1968). The latter reduces the computational
complexity as it helps avoiding considering unnecessary hypotheses.
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3.3 Problem formulation

This paper considers a regular MTT problem, with an additional network constraint as imposed,
e.g., by targets being bound to a system of roads. That is, given a set of mobile sensors, with
limited field of view, determine the number of targets present in the tracking volume and their
respective state. Standard target tracking assumptions are assumed to apply:

Al: Targets act independently, without influencing one another.

A2: The number of new targets at each time is Poisson distributed, with the rate Ayr, and
targets appear uniformly in the tracking volume.

A3: In a scan of observations from a sensor, each observation either originates from a single
target or is a false detection, and each target produces at most one observation.

A4: The number of false observations (observations not originating from a target) in a scan
is Poisson distributed with the rate Ag,, and the observations are uniformly distributed in
the sensors field of view.

AS5: The probability to detect a target that is within the field of a sensor is constant, Pp.

A6: The probability a target survives from a time to the next is constant, Ps.
Additionally, this paper assumes targets to be network constrained, that is:

AT7: The targets are bound to network constraints, and hence cannot move freely in the tracking
volume. A target is always associated with exactly one discrete network state at any time.

Here, it will be assumed that the network constraint is in fact a road network. However, the
theory developed applies to any situation where the targets are associated to a discrete state that
can be modelled as a Markov process. Notation will be kept as general as possible.

3.3.1 The network constraint: road network

Targets are constrained to move on roads, sidewalks, and cycle paths, which make up the con-
sidered network constraints defined in Assumption A7. A key observation is that a target can
only be on one road segment at the time, and once the target reaches an intersection it contin-
ues on to another connected road segment, which limits the motion of the targets. This can be
modelled as a discrete Markov chain, where the road segments make up the states and the transi-
tion probabilities! model the probabilities to transition from one road to another once the target
reaches an intersection. This can be represented with a directed graph G = (V,A), with a set of
vertices V (representing the different states or road segments) of size n and edges A CV x V (the
possible transition from one road segment to another) of size m. A weight function p: A — [0, 1]
assigns a non-negative probability p(&'|d) to transition from state & to segment &' once the target
reaches the end of the road segment represented by 9. It follows from the rule of total probabil-
ity that Y5 p(8'|8) = 1. Furthermore, each vertex contains information about the length of the

'A discussion on the determination of the transition probabilities is provided in Section 3.6.2.



3.3.2 Network-constrained state-space model 41

road segment it represents, L(3) > 0. The graph hence represents a topological map of the road
network.

3.3.2 Network-constrained state-space model

To utilize the road constraints, a discrete component is added to the target state to indicate which
road segment the target is on, and the “regular” part of the state will be used to track the target
within the node. Both the prediction and observation model are modified to take the discrete
component in consideration.

Targets evolve independently of each other, in discrete time, and the state of each target is
represented by a vector

where x;, is a real-valued state vector describing the target motion within a node, and 9y is the
state in the Markov process. The semantics of the state space x; € R™ can vary depending on the
considered application, yet usually includes components related to the target’s kinematic state
such as position, velocity, and possibly acceleration, along the road segment, but could also be
used to describe the lateral position on the road. In the end, the actual position of the target in
the world is a combination of the current node J, giving the general position determined from
map, and the x; component which specifies the position along the road segment as illustrated in
Fig. 3.1.

Motion model

The nonlinear dynamic model describes the motion within a node as

X1 = f) v, vie~ N(0,O) (3.2)

where vy is process noise that is assumed to be white and Gaussian with covariance matrix
covv; = Q. The discrete state Oy follows the transition probability p (i1 |Ok,xr+1) Where
Or+1 = O unless xy; indicates that the target reached the end of the current road segment.
Once a state transition occurs, the node specific state, and distance travelled along the current
road segment, x| is updated accordingly. Typically, this means resetting the distance travelled.
In the considered application, when a transition takes place and xi 41 1s the position component
of the continuous state, remove the distance travelled on the previous segment to reach the end
of it x R Xt 1 — L(). It could, however, potentially also include additional adjustments
as a result of specific properties of the new road segment. The adjustment procedure must be
repeated if after compensation the target is past the end of the next segment too.

Observation model

At any time instant k, sensor platforms may deliver scans, Z;. The position of the mobile
sensor is assumed to be known, and as defined in Assumption A5, each target is detected with
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probability P, when in the field of view of a sensor. The state variables above are related to
measurements Z; according to a nonlinear observation model

Zk = (2, 22()) (3.32)
7% = h(X) + ex, ex ~ N (0,Ry) (3.3b)
(&) =Pr(d, = &) (3.3¢)

where h(xy) represents the state of the target and relates to an ideal (vector valued) measure-
ment, and e is the measurement error which is assumed to be Gaussian with covariance matrix
cov(er) = Ry. Furthermore, each observation includes the probability that the target was ob-
served in the discrete state &, zg(S’ ) — a simplification, reasonable in many cases, is that the
discrete state information is accurately provided, i.e., that only one state has non-zero probabil-

1ty.
Because several sensors can operate simultaneously, let S = {s, },—.v be the set of mobile

sensors, where V is the number of operating sensors that acquire data of dynamic targets present
on the road network. A scan Zj is the set of all M; measurements received by a sensor platform

v at time k such that Z) = {ZI:’1 ,ZZ’Z, .. ,ZZ’M"}, and where ZZ’i represents the ith observation
received at scan k, by sensor v. This way, a target may be observed by multiple sensor platforms
at the same time instant.

3.3.3 False observations and new targets

As part of the point-to-object and defined in Assumption A3, each target gives rise to at most
one measurement per sensor, at each time step. Targets in the field of view are assumed detected
and observed with probability P, (Assumption AS). Further, the number of new targets nyr and
false observations ng, in the volume V are assumed Poisson distributed,
v (W)

plnd, V)= (34)
with intensity Axr and Aga, respectively, see Assumptions A2 and A4. Both new targets and
false observations, together denoted extraneous observations, are assumed uniformly distributed
in the current tracking volume. The total spatial density of the extraneous observations also
follows a Poisson distribution with intensity Agx and can be expressed as follows

Aex = Anr + Ara, (3.5)

which, as will be seen, can be used to simplify some expressions.

Note: In the network constraint cases, the sensors can be assumed to only produce state
(road) bound observations, which is beneficial compared to the general case where no such
restrictions exist.

3.4 Network-constrained multiple hypothesis tracking

In a MHT, several potential targets are tracked using separate single target tracking filters, and
a higher level logic decides which observations to pair with the currently maintained tracks,



3.4.1 Extended Kalman filter 43

Measurements

= 5
. Ze = (z 2 () . ) K-best Global N-Scan + Score
Sensing Gating Clustering > > .
Hypotheses Ty based Pruning
Predicted
i
Prior Tracks Tracks 7,
atk—1
KF Prediction Association KF Update
State Transitions Posterior Tracks
atk
Map % -« Network Maintenance

v

Presentation

Figure 3.2: Outline of proposed tracking framework, with traditional MHT logic inside orange
area.

which observations should be considered to be false, and when to create new tracks. In the
MHT, several such hypotheses are maintained in parallel, while at the same time estimating the
probability of each of the different hypotheses to be correct. Key components are to generate
the appropriate hypotheses, and to reduce the number of considered hypotheses as much as pos-
sible to keep the computational complexity as low as possible. The network constraint, being
discrete in its nature, simplifies the hypothesis handling. This section outlines the MHT formu-
las adopted to take the network constraints into consideration. Fig. 3.2 provides an overview of
the different elements of the proposed algorithm.

3.4.1 Extended Kalman filter

The EKF (Jazwinski, 1970) is arguably the most common technique used for single target track-
ing in the MHT. The EKF does not deal with discrete components, hence it cannot be directly
applied to the hybrid state proposed in Sec. 3.3.2.

Time update

The solution is to condition on the discrete state &y, and use the regular EKF for the continuous
part of the state x;. This yields, for a given Jy, for the time update

k-1 = F(E1k-1)5 (3.6a)
Pyt = FPe_ 11 F + Ok (3.6b)

where £, is the mean of the estimate of the state at time k given the measurements up until
time k — 1, Py is the matching error covariance matrix, and Fy = f (R k—1) the linearization
around £, of the dynamic model.

Caveat, performing this prediction step might position the target past the end of the current
discrete state. The interpretation in the described setting is that the target reaches the end of
the current road segment. That is, the target should transition to a new discrete state. This is
done following the underlying Markov model as described in Section 3.3.1. If there are several
different possible transitions, where each have transition probabilities, all are taken and new
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track hypotheses are created, and the hypothesis probability is updated accordingly by the MHT
logics, as described below. After the transition the continuous state x is compensated in each
transition, as described in Sec. 3.3.2. As for the case there is no discrete state to be propagated
to, e.g., a target is existing the tracking volume of interest, the target is simply removed from
the set.

Measurement update

When an observation is obtained, again conditioned on the discrete state, the continuous part of
the state can be updated, provided the discrete state is possible in the observation, using

Bk = X1 + Kz — 20, (3.7a)
Prik = Prjk—1 — KieHi P15 (3.7b)
Zie = h(&—1) (3.7¢)
Sk = HxPyy— 1 H{L + Ry, (3.7d)
Ki = Py HL S, 1, (3.7¢)

where Hy = I’ (ﬁk‘ «—1)- If no observation is available, the update step is simply skipped, and if
several are available the step is repeated.

Contrary to the prediction step, the observation update will never trigger transition in the
discrete state, if the simplified version is used. The update is performed under the presumption
that the observation places the target in the current discrete state, hence the estimate stays in the
same state. The only ambiguities in this step is due to different observations being associated
with the current track.

Corner cases

The above approach assumes that each track hypothesis can fully be assigned to a discrete state.
This is often a reasonable approximation as long as the estimated track is far from the end of
the current road segment, as compared to the uncertainty of the estimate. However, if the track
is close to the edge of the road segment or the uncertainty is considerable, with a non-negligible
probability the track could instead be on an adjacent road segment. Two different solutions to
this are considered here: always splitting tracks with significant overlap, and splitting when
needed for proper association with observations.

In the former case, when a track is predicted close to an intersection, split the track inn — 1,
where 7 is the number of potential roads at this intersection, and divide the probability according
to the probability mass on all segments other than the segment the target is currently on (based
on the uncertainty). The resulting two new tracks should have means combining to the original
mean, and a combined covariance (including the spread of the mean term) should match the
original covariance. A benefit of this approach is that it is easy to implement, however, it leads
to unnecessarily fast growth of hypotheses to consider.

In the latter case, observations are allowed to be associated with tracks on adjacent discrete
states, if there is a significant probability of leakage. Associated this way, the track is split into
two identical ones splitting the probability as above, and where the one is projected back at the
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extension of the adjacent segment (i.e., as if a transition had taken place but x; had not yet been
adjusted) and then that track is updated as if it had been on the segment. This results in fewer
hypotheses, as splitting is only performed when needed, but the logic is slightly more complex
to implement.

Track representation

As should be clear from the presentation above, a specific estimated track, i, is fully described
by the sequence of discrete state transitions assumed to take place, 8"1: «» and the observations as-
sociated with the track, 07.;, together denoted T;<| ;= ( 10 07 l), k > [ for the state at time k with
measurements from up until time /. And several different 7;; could describe the same underly-
ing target, with different assumptions about the discrete state sequence and what observations
originate from the target.

New tracks are started where available measurements are not associated with any other
existing track. The observation is used to set the general position determined from the map and
the position on the road segment such that given Z,

xe=h"1(z) (3.82)
& =20(8') =Pr(8; = &). (3.8b)

If the state x; cannot be uniquely determined from z; (4 is not invertible), as much as possible is
derived from z; and remaining parts of the state vector is set to default values. As an example,
assume x; state with position and velocity and measurements z; providing (possibly via a con-
version) the position; then the position part of x; is given by z; and the speed is set to a nominal
value, e.g. 0. This represents the possibility that the observation corresponds to a new target
that has entered or newly appeared in the network.

3.4.2 Track hypotheses and scores

A track comprises the different hypotheses about a target, as a result of different 7, assumptions
as described above, and a score for each of these. The different track hypotheses assumed
to represent the same underlying target can be represented with a track tree, where the tree
branches are a result of discrete state transitions and how the observations are associated. The
score indicates the importance of the specific hypothesis. For track hypothesis i this is described
as the log-likelihood ratio (Bar-Shalom et al., 2007)

p(target exist|r§<|l,21:l)

i =log : . (3.9)
M p(no target|t; ;, Zy.)

The score can be updated recursively, as decision points are reached in the track tree.

Similar to the track state, the track score update can be divided into two steps. When the
track is propagated in time, except for compensating for the probability to survive affecting
all tracks alike, only the changes of discrete states affect the score when the score is divided
amongst the potential transitions. The score of track hypothesis i becomes

;.c\kfl = Kf(_i)l‘k_l +log (Psp(8;|8—1 7932“{,1)), (3.10)
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Figure 3.3: Illustration of track hypotheses and global hypotheses. A target tree can be con-
structed to store the hypothetical tracks of the corresponding target. A global hy-
pothesis represents a set of all possible tracks that are compatible from different
targets. The state transition occurs when x| indicates that the target reached the
end road segment, here indicated by the state &°.

where p(i) is the parent hypothesis (i.e., a single prior hypotheses) of hypothesis i. It should be
noted that, when no state transition is possible log (p(8|d;_ ,xfd 1)) =1log(Ps). If Ps = 1 this
means the score remains unchanged.

The update of the score as the result of assigning a new observation (or not) as the result of
obtaining a scan is a bit more involved,

, o) log(1 — Pp), ifG}'(:@
=0+ Pop(Zel Zig 1 S (3.11)
klk — “k|k—1 10g< p( k|x;k 1Tkk)>’ it £0
where
P(Z)Z1g-1,70,) = plarlZin—1,Thy) - 22 (8
(ZalZx1,%0) = platlZin 1,7 -2 (80) .

i v S
= N (2k| 2> Si) - 2k (8k)-
There are two different cases: an observation is obtained or not.

If no observation is obtained, 95C = (, the only change to the score is that the probability of
the target is scaled by the probability to not observe the target, (1 — Py ). That is, the score drops
if the target is expected to have been observed.

If an observation is obtained, 92 = 0, the probability of the target is compensated by the
probability to observe the target, Py, and the probability that the target would produce the ob-
tained observation (which can be computed from the innovation in the Kalman filter). The no
target probability is scaled with the probability of obtaining the observation without a target
present, Ag,.

Note: The absence of observations, sometimes denoted negative information, represents a
valuable source of information as it lowers the score for track hypotheses where the target was
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not observed as expected. Hence, though the track state does not change, it is important to
update the track scores based on this negative information. This helps to reduce the number of
track hypotheses that should be considered.

New tracks are created from observations and given the initial score Efd . = log(Ynt), where
Ynr 18 used to get the right initial likelihood ratio. Terminating tracks, on the other hand, are
simply dropped by cause of being too unlikely.

Given the track score /!

K the probability of track i existing can be computed as

p(target i exists]lel,’c};U) = (3.13)

where it has been utilized that the probability of existence and non-existence must sum to 1.

3.4.3 Global hypotheses

A global tracking hypothesis, Tj., is a description of a complete solution to the multi-target
tracking problem; i.e., the number of targets and their respective states. A global hypothesis
assigns each observation to a track, or assumes it is a false observation, and determines the
sequence of discrete states of all tracks. This can also be described as picking out which track
hypotheses to use. The number of track hypotheses grows rapidly over time, as ideally all possi-
ble discrete state transitions and measurement associations should be explored. However, only
a few of these track hypotheses are consistent with each other, fulfilling Assumption A3 which
states that a measurement can only originate from one target, and can form global hypothe-
ses. A global hypothesis, therefore, contains at most one hypothetical track from each track
tree. Fig. 3.3 illustrates track trees, track hypotheses and global hypotheses, and how they are
updated as new scans of observations arrive.

The probability of a global hypothesis is obtained as the product of the probability of each
included track hypothesis and the probability of all unassociated measurements being false
alarms. The log-probability of the global hypothesis / can be computed as the sum of the
score of the contained track hypothesis compensated with a term taking false observations into
consideration

log(P(TixlZ14) = Y, G+ |Ziallog(Aen), (3.14)
ictracks(/)
where tracks(/) is the set of track hypotheses in global hypothesis /, and |Z;.| the total number
of observations.

The global track score can be updated recursively, using the recursive property of the track
hypotheses scores

log(p(ThylZix)) = log(p(Thu_ilZix—1)) + Y 4 + |Zllog(hes), (3.15)
ietracks(/)
where 6}; = (ﬁfd P Ef@l‘ «_1) is the score increment in the current step for track hypothesis i.

In this formulation, the network constraints are naturally handled, as they are contained in
the track scores, and do not require any special handling.
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3.4.4 Complexity saving methods

To achieve a computationally tractable solution, it is necessary to lower the number of consid-
ered global hypotheses. This is done by removing too improbable hypotheses, and if possible
only generate relevant hypotheses. The methods used for this are discussed in this section.

Generating the k-best hypotheses

The number of global hypotheses grows exponentially with time, and needs to be handled to
achieve computational tractability. One way to limit the complexity is to only generate a subset
of the possible hypotheses. That is, to construct a subset of data associations @; € @ possible
in each step, such that |®;| < |®;|, which will generate the best scores. This can be posed as
an assignment problem and solved with standard combinatorial optimization algorithms. Many
algorithms exist to efficiently solve the optimal assignment problem based on the additive in-
crements in the track scores, e.g., the Hungarian algorithm (Kuhn, 1955), the Auction algorithm
(Bertsekas, 1988), and the Jonker-Volgenant-Castanon (Jonker & Volgenant, 1987) algorithm.
If combined with Murty’s algorithm (Murty, 1968), the k-best assignments can be found in
polynomial time. The remaining hypotheses can then simply be left unconsidered.

Gating

Gating is a technique to simplify the association problem, making it less computationally de-
manding by removing potential associations that are too unlikely. This is achieved by ignoring
track to observation associations, if the observation lies outside the gate of the track.

The gate is set such that the probability of rejecting a true association is low. Using ellip-
soidal gating (Collins & Uhlmann, 1992) the gate is defined by
Dg = (Zk—2k|k71)TSkil(Zk—2k\k71) <Y, (3.16)

which defines an ellipsoid around the predicted observation in which the observation must be
considered. Assuming Gaussian distributions, Dg ~ %2 (n;), it is possible to design Y for a
given probability to reject a correct association.

With the hybrid state space, as considered here, gating is performed in two steps, first ob-
servations where the discrete state does not match are dropped, and then normal gating is per-
formed. Fig. 3.4 exemplifies the gating procedure, which is simplified by the fact that the
continuous part of the observation is scalar such that

|2k — Zkk—1] < KOp—1, (3.17)

where K is a factor times standard deviations, Gy, in the considered dimension.

Clustering

Clustering is a method in which tracks that share observations are put in clusters, and then
each cluster is treated independently. This is beneficial as association and track hypotheses



3.5 Simulation study 49

KOk |k—1
Xkuc—l
N
o= ) O ©
2(3) 2(4) Z(Z) Z(l)

Figure 3.4: Road-constrained gating.

generation scales poorly with the number of involved targets and observations. When producing
the final global hypotheses, hypotheses from the different clusters can be combined freely. The
clustering is performed based on which tracks allow the same observation in their gate.

Clusters can be formed recursively over time. In that case, two clusters that gate in the same
observation must be merged. Similarly, clusters should regularly be examined to see if they
can be split, as a result of removing track hypotheses that have connected sub-clusters. For
more details and implementation details the reader is referred to (Reid, 1979; Kurien, 1990;
Olofsson et al., 2017). Once again, the hybrid nature of the suggested model can help simplify
the handling.

Pruning strategies: track, hypothesis and target management

Tracks are deleted based on the track score (Blackman, 2004), or N-scan sliding window (Kim
et al., 2015). The first method prunes low probability hypotheses and tracks. N-scan pruning, on
the other hand, traces back to the node at scan kK — N and deletes the subtrees that diverge from
the selected branch at that node. This represents the possibility that a target has disappeared
from the scene. Furthermore, as indicated in Section 3.4.1, the network constraints cause tracks
that can not be propagated to a new discrete state to be removed from the set of existing tracks.
This represents the possibility that a target has exited the network. Targets are also removed
accordingly, that is as soon as it has no remaining track in any hypothesis. Because the track
score contain all relevant statistical information, remaining tracks lose no information during
the pruning process.

3.5 Simulation study

In this section, the results from an empirical evaluation on three simulated scenarios are pre-
sented. The scenarios are chosen to highlight properties of the proposed NC-MHT on track-
handling at intersections, data association, and measurement dependency. To evaluate the pro-
posed approach, the NC-MHT filter was integrated into the standard (unconstrained) MHT filter
from (Olofsson et al., 2017), to which it is compared? in terms of tracking performance. Note
that it is difficult to provide any accurate complexity analysis, and that the proposed method has
low maintenance to keep branching tracks alive, that is, carries more hypotheses that can be eas-
ily handled. The comparison is performed in terms of summarizing statistics of the trackers and

>The compared trackers are implemented in Python and C++, and the simulations were run on a laptop with a
2.8 GHz Quad-Core Intel Core i7 and 16 GB memory.
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the MTT measure generalized optimal sub-pattern assignment (GOSPA) metric (Rahmathullah
etal., 2017),

1

©2) (g 2 (mi 2P+ S (xl+ 1% =2 )
dp ™ (x,X)= | min Y d(xi,%;)" +—(]x|+ %] —2]V]) (3.18)
yel', .~ 2
(i.j)ey
where X = {%1,..., %3} is a finite subset of state estimates of the ground truth setx = {x1,..., X5 },

and y represents the assignment sets between these two sets. Let d°(x,X) = min(||x — £||,¢) de-
note a cutoff metric for any x, £ € R”. Further, let I" denote the set of all possible assignment sets.
GOSPA allows a decomposition of the error into three parts: 1) localisation error, 2) missed tar-
gets, and 3) false targets. In the simulations, the GOSPA is computed based on the 2D positions
of the tracks, and the parameters are set to ¢ = 8, corresponding to a maximum error appropriate
for this setting, and p = 2, corresponding to using the 2-norm which is a standard choice.

Note that GOSPA is a single unified performance metric, whereas the other quantities are
presented because they represent properties that are important in MTT.

3.5.1 Simulation setup

The kinematic state at time k is described by the target’s position and velocity. For simplicity
one-dimensional motion is considered for the NC-MHT such that x; = [y, y'k]T contains position
and velocity. Nonlinear measurement models are more adequate when using real-world data, as
not only position and velocity of a target is measured, but also range (r), bearing (o), and angle
rate (7) to a target’s position can be measured (e.g., Radar). The choice of an appropriate model
depends on the considered application, yet this implementation uses linear-Gaussian dynamics
and observations as handling the nonlinear case is a trivial extension following (3.6)—(3.7). The
kinematic state motion model follows linear constant velocity (CV) given parameters

. 1 AT _ 2 A3/3 Az/2
F‘{o 1]’ Q‘”[Aéﬁ XT

with sampling time Ar = 1s, and where ¢ = 0.1 m is the process noise variance. In the simu-
lation, targets move with initial mean speed 1.415m/s (standard deviation is 0.215m/s). Non-
linear effects in the target dynamics at intersections are ignored in this simulation, but can
easily be considered using models describing interactions between, e.g., targets at higher den-
sity junctions. For simplicity the probability of target survival is set to Ps = 1. The discrete
state transition probabilities, moving targets from segment to segment, are equally distributed
among the set of possible outgoing transitions from any given node.

In the simulation, sensors are mobile and independent with initial mean speed 12.3m/s
(standard deviation is 1.5m/s), and limited field of view [—30,30] (m) in longitudinal direction.
The designed path for targets (e.g., a sidewalk) is assumed all observed within a sensor’s field
of view. The parameters of the measurement model are

7=l 3] [0

where 6 = 0.5m. The clutter intensity is Ara(z) = AV U(z) where U(-) is a uniform density
over the sensor field of view, V = 2 x 30m is the network-constrained “volume” of the field
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(a) Hlustration of NC-MHT and the standard two-dimensional MHT, where ground truth is represented
as solid green line. The inclusion of network constraints allows for more efficient target prediction

over longer time periods, and simplifies the measurement association.
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(b) Tracking results at different time steps, visualizing the position and uncertainty of estimated tracks in
two dimensions. Note that 2-D allows to visualize the evolution of the [NC-MHT | uncertainty, while it
kept only 1-D (i.e., along the road) in the implementation. The blue crosses are sensor measurements
and are at the centre of the sensor’s field of view (blue circle).

Figure 3.5: Illustration and simulation results of main differences in tracking behaviour be-
tween NC-MHT (black crosses) and the standard MHT (red diamonds).
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of view, and A = 0.01 x m~! is the average number of clutter observations per unit volume.
Further, the discrete state information included in each provided observation is accurate. In
situations where several sensor platforms operate simultaneously, a sequential measurement
update strategy is employed. That is, a separate measurement update step is applied for each
sensor. This approach scales well with the number of sensors, and fits naturally in a distributed
setting as measurements can be dealt with as they arrive.

The NC-MHT performance is compared to a standard MHT that describes the kinematic
state by the target’s position and velocity in two dimensions, and where the motion follows
a constant velocity model. Similarly, sensor observations are given in Cartesian x- and y-
coordinates.

Note: For the simulation, target and clutter observations were generated in the network-
constrained space, yet used for both NC-MHT and standard MHT when comparing both per-
formances. This ensures using the same measurements when comparing both filters, however,
it considerably benefits the two-dimensional standard MHT. Also, the choice of linear models
benefits the performance of the standard MHT, as compared to the NC-MHT.

3.5.2 Variable negative information

To save computations this implementation exploits the vital knowledge provided by so-called
negative information, as described in Section 3.4.2. Regularly providing the filter with mea-
surements of targets that should have been seen by the sensor, i.e., non-presence, has significant
impact on track likelihood scores and can help abandon unlikely tracks. Hence, the MTT should
be updated with all scans, empty or not to maintain proper track scores. It is tempting to drop
empty scan, as they do not affect the track estimates just the scores, in order to save time. To
evaluate the importance of negative information and see its effect in the presented setting, a
scheme with a varying proportion of empty scans reported to the MTT is proposed in the third
scenario.

3.5.3 Results

Three simulated scenarios were used in this study. The first two are designed to highlight
the benefits of the proposed NC-MHT as compared to the standard MHT when it comes to
target prediction and measurement association. The third scenario evaluates the measurement
dependency of the filter given a different number of observations. For the first two scenarios 500
Monte Carlo runs are performed, whereas the third, including two variations, is run 100 times
each. The presented results are averaged over the Monte Carlo runs. For all three simulations,
the maximum number of hypotheses per cluster and the minimum normalized hypothesis score
are set to 50 and 4 respectively. Also note that only tracks that have been assigned at least twice
with a measurement have been kept for presentation in the global hypothesis.

Scenario 1 In the first scenario, one target initiated ahead of the fork junction was simulated for
100 time steps. True trajectories are shown in Fig. 3.6. For this scenario, 10 sensor platforms
were initiated randomly distributed in the network. The scenario parameters were set to P, =
0.95, Axt = 0, Ags = 0.6.
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Figure 3.6: True target tracks (in different colours) for the three simulated scenarios, where
black lines are road segments. In scenario 1 (left), one target is initiated on the
horizontal segment before the fork junction, which eventually leads to a track split.
In scenario 2 (centre), two targets are initiated well separated, before entering the
two horizontal segments, potentially passing close to each other. In scenario 3
(right), three targets are initiated on random segments and more targets are born
from different locations during the simulation.

This scenario particularly highlights beneficial network constraint effects for more efficient
target prediction over an extended period of time. This scenario is challenging because when the
target leaves the fork junction, and no measurement update is performed, correctly predicting
the target state is complicated. The network constraints allow to keep track of the two different
turns the target may perform as it leaves the fork intersection, whereas the standard filter predicts
the target to continue straight and going off-road eventually losing track, unless an observation
is obtained right after the turn. This behaviour is illustrated in Fig. 3.5a, where the standard
MHT misses the turn in absence of new updates and continues its prediction in the wrong
direction (‘c%—’cé). With the arrival of new measurements, the MHT reacts by initiating a new
track with along the new road segment (’cg—’c%).

The GOSPA performance is shown in Fig. 3.9, and summarizing statistics are shown in
Fig. 3.7. A closer look at the latter unveils a higher number of tracks produced by the NC-MHT,
here resulting in a higher number of clusters and global hypotheses. This a likely bi-product
of the clutter model benefiting the standard MHT and can be improved by adjusting tuning
parameters. Overall, for this scenario the GOSPA results show that the NC-MHT gives smaller
errors than the standard MHT filter. The GOSPA location error is larger for the NC-MCT
towards the end, this is a result of the NC-MHT being better at maintaining tracks, whereas
the MHT lose them effectively moving part of the location error to a missed track error. This
is further substantiated by Table 3.2. Hence, in cases where maintaining track continuity is of
importance the proposed NC-MHT has benefits.

Scenario 2 In the second scenario, two targets are initiated well separated before moving onto
a horizontal segment in opposite direction were simulated for 100 time steps. True trajectories
are shown in Fig. 3.6. For this scenario, 20 sensor platforms were initiated randomly distributed
in the network. The scenario parameters were set to P, = 0.95, Axyr = 0, Agy = 0.6.

This setup highlights how adding network constraints simplifies the measurement associa-
tion process. This scenario is challenging for traditional approaches because when the targets
are close their measurements form a single cluster, making data association difficult. Given
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Figure 3.9: Tracking results for simulation  Figure 3.10: Tracking results for simulation
scenario 1. scenario 2.

the type of targets, their speeds are assumed low and thus do not allow to distinguish their
movements in two different directions that way. Fig. 3.5 illustrates how traditional approaches
without network restriction need to consider all incoming measurements (if in the gate) for the
measurement to track association, and possibly fail. The network constraints allow to bypass
growing free-space complexity of traditional approaches and lead to more efficient gating and
data association as measurements as motion is bound to a specific segment.

The GOSPA performance is shown in Fig. 3.10, and summarizing statistics are shown in
Fig. 3.8. Overall, for this scenario the GOSPA results show that the NC-MHT performs better
than the standard filter. The NC-MHT can keep tracks longer in time, as shown in Table 3.2.
Note that, as compared to the first scenario, Scenario 2 has twice the number of sensors, hence
resulting in more observations. This could explain the lower location error. As expected, results
suggest that NC-MHT number of misses significantly less targets.

Scenario 3 In the third scenario, three targets initiated at random locations in the network are
simulated for 100 time steps. New targets enter in the surveillance area at different time steps
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and are born at random locations in the network. Targets leaving the surveillance area is not
considered here, however, can be easily handled by adjusting the probability of survival Pg
for future implementations. The true trajectories are shown in Fig. 3.6. For this scenario, the
performance of the filters were compared based on two realisations with different numbers of:
a) number of available sensors, and b) proportion of empty scans provided to the tracker. The
scenario parameters are shown in Table 3.1.

This scenario illustrates a slightly more realistic urban traffic setting and is challenging be-
cause of the many intersections, targets, and observations. This simulated scenario particularly
highlights the potential of the approach for real-world applications. More precisely, Scenario
3a) highlights the (low) density of observations needed as a result of efficient predictions along
the road segments in the proposed method. Scenario 3b), on the other hand, explores the im-
portance of the negative information provided to the tracker.

Fig. 3.11 shows the GOSPA performance of the NC-MHT filter given 5, 10,20 and 40 mo-
bile spatially distributed sensor platforms respectively, and the performance of the MHT with
40 initiated sensors. Results show that the NC-MHT achieves a similar performance to the
standard filter yet with significantly less sensors. In this simulation, the lower the number of
sensors, the fewer measurements are provided to the tracker, and the less updates can be per-
formed by the filter. This confirms results from scenario 1 suggesting that the included network
structure knowledge of the NC-MHT allow for more efficient target predictions over extend
period of time. The difference in track length shown in Table 3.2 supports this outcome. More
sensors means more clutter measurements, but also more observations of true targets. Results
also show that with more sensors, more unlikely tracks can be killed, e.g., existing tracks get
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Figure 3.11: Tracking results for simulation Scenario 3a). The legend refers the number of
sensors initiated.
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Table 3.1: Parameters for the two realisations of simulation Scenario 3.

Py AnT  Apa Sensors empty scans
S3a) 0.95 24 0.6 |5,10,20,40 1
S3b) 095 24 0.6 20 25%,50%,75%,100%

less likely when sensors expected a target but did not see any.

Fig. 3.12 shows the GOSPA performance of the NC-MHT filter given 25, 50, 75, and 100
percent of available sensors that provide the tracker with additional negative information, re-
spectively, and is compared to the performance of the MHT given all sensors are included in the
time update step. The results indicates that adding only a few instances of negative information
can benefit the tracker significantly.
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Figure 3.12: Tracking results for simulation scenario 3b). The legend refers to available pro-
portion of available sensors (in percent) that provide the tracker with additional

negative information, respectively.



Table 3.2: Results for all Scenarios 1-3.

GOSPA NLE MT FT Track length

NC-MHT MHT NC-MHT MHT NC-MHT MHT NC-MHT MHT | NC-MHT MHT

S1 411.7 848.3 224.5 199.3 217.5 2838.8 2396.9 4732.0 52.8 26.9
S2 159.2 860.0 37.5 1086.2 52.5 4532.6 708.7 2264.0 10.3 5.7
S3.a-5 1095.5 n.a. 1313.1 n.a. 9192.3 n.a. 2477.4 n.a. 27.1 n.a.
- 10 1004.5 n.a. 1611.6 n.a. 6389.7 n.a. 3072.9 n.a. 33.0 n.a.

-20 857.3 n.a. 1404.3 n.a. 3927.0 n.a. 3127.3 n.a. 36.4 n.a.

-40 693.7 1482.5 894.6 198.8 1890.8 9758.7 3182.0 13027.5 39.2 37.1
S3.b-25 1055.1 n.a. 1467.5 n.a. 3787.2 n.a. 7058.2 n.a. 58.1 n.a.
-50 944.1 n.a. 1545.1 n.a. 3693.1 n.a. 4827.8 n.a. 49.0 n.a.

-75 897.5 n.a. 1556.5 n.a. 3836.8 n.a. 3778.8 n.a. 42.2 n.a.

- 100 878.5 1485.4  1425.3 185.9 3931.8 11152.6 34217 11883.2 37.8 32.0

SimseyY  €°6°¢
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3.6 Outlook

In this section, we discuss technical and non-technical effects that may be induced by design
decisions on the tracker, and the tracking system.

3.6.1 Motion and target dynamics

A comprehensive understanding of targets motion and their respective environment is an impor-
tant factor for better trajectory reconstruction. Extending the proposed framework using more
sophisticated kinematic models can easily be achieved, and could lead to better prediction per-
formances on the short-term. As standard models are widely accepted for their simplicity, it
seems important to keep their accuracy for trajectory estimation in balance with inherent com-
putational cost. Yet, the longer the prediction horizon needs to be, the more important choice of
the model becomes. Moreover, it is about how to make better predictions when little information
is available. On the other hand, improving the scene understanding using social- and behaviour-
aware models could significantly strengthen tracking and resulting trajectory estimations (e.g.,
(Krishanth et al., 2017)), for instance, in shared spaces, when approaching signalized intersec-
tions, or during overtaking manoeuvres. This additional complexity however is a non-trivial
extension to our proposed MHT approach as it breaks the assumption of independent targets.
However with some approximations, e.g., that the interactions do not interfere with anything
else than the propagation of targets, these models could probably be used with good results and
at a reasonable cost. With pedestrian and cyclist motion being influenced by weather, time of
day, surrounding infrastructure and environment, as well as social and behavioural cues, future
work would benefit from including such contextual information as this can lead to better long-
term, and potentially network-wide, tracking results. Future extensions of this work could also
substitute fixed parameters with learned distributions, which helps the tracker to better interpret
measurements and tracks (e.g., (Luber et al., 2011)). For instance, the rate at which new targets
appear and where they appear are dependent on time and space and could similarly be learned.

3.6.2 Sensing infrastructures and measurements

The mobile sensing setting used in this work can conceptually be extended to any type of sens-
ing realm where incoming measurements provide information about targets, and regularly report
non-presence to improve tracking. Also since current developments hint to the integration of ad-
ditional decentralized processing layers where computing power is brought to the edge, thereby
fusion of additional information from additional static or participatory sensor infrastructure is
conceivable and represents no extra adaptation to the proposed method.

Contextual information about the static and dynamic environment can be captured by dif-
ferent types of sensors. Using additional information could lead to significant improvements
of the tracking system, and particularly in the data association logic, for instance as a way
to strengthen the discrimination between different objects. Recent advances in deep-learning-
based trackers, for instance, improve the discriminative power for visual tracking applications
(Zhang et al., 2021a).
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Furthermore, node transition probabilities can either be determined based on prior knowl-
edge or set based on empiric studies about, e.g., how many take a left or right turn at an inter-
section. Following traffic patterns this could be something that changes throughout the day and
week and could be function of environment features (e.g., weather, green canopy), real-time
incidents (e.g., events, construction), network knowledge (e.g., road types, touristic routes) or
infrastructure (e.g., road quality).

3.6.3 Privacy considerations

Further improvements of the NC-MHT tracking performance can make it more suited for real-
world applications, yet the gain in utility may come at the cost of the targets’ privacy. The
centralised scheme presented in this work, which pools all location observations to a central
entity and hence may facilitate the surveillance of individuals or collectives, raises privacy con-
cerns.

Individual location traces are akin fingerprints, as demonstrated by past research on the
similarity of human mobility patterns (Alessandretti et al., 2020), their predictability (Song
et al., 2010), and the uniqueness of individual traces (de Montjoye et al., 2013). But it is
the realisation that with sufficient data it is possible to precisely locate, track, and possibly
(re-)identify people that is a major source of concern. Standard MTT approaches have been
frequently used in the location privacy community, e.g., Gruteser and Hoh were among the first
to use a MHT to link anonymized location samples to some individual users and recreate their
traces (Gruteser & Hoh, 2005).

Anonymized location samples as considered in this paper, however, create a false sense of
security because of the the spatial and temporal correlation between successive observations.
Longer tracking duration, for instance, typically leads to an accumulation of information and
can help infer sensitive information about individuals. The traffic density, on the other hand, can
have both positive and negative impact on privacy, but is a factor beyond an individual’s control.
Using auxiliary data sources (e.g., household address or location-based service databases) to
the anonymous traces further increases the risk of inferring locations, identities, and potentially
interests of an individual.

Overall, the accumulation of observations in a central database, anonymized or not, reduces
the burden for attacks that can easily be automated and applied to large numbers of individuals,
therefore augmenting the risk beyond individual tracking to a more collective threat.

More work is needed to study effects of the methodological, and higher-level system design
space, both on target privacy and utility of future applications.

3.7 Conclusion

The advent of mobile sensor platforms is expected to drastically increase the amount of infor-
mation collected about traffic participants (e.g., pedestrians or cyclists) in populated environ-
ments, which can be of great value for multiple future applications, e.g., digital twin, smart
road infrastructure, autonomous driving, and advanced traffic surveillance. To make use of
this information, this work presented a framework for network-constrained tracking of targets
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with observations from spatially distributed and mobile sensor platforms. The key contribution
represents the introduction of network bound targets into the multi-target tracking problem.

The proposed approach can be applied to any type of network-constraint environment, by-
passing the growing free-space complexity of traditional MTT approaches, and use different
types of observations. The generic nature of this work makes it interesting for any type of
sensing setting where incoming observations provide information about targets, and potentially
report non-presence of targets. Derived information can, for instance, be valuable input for traf-
fic signal controller aiming at reducing idling times for cyclists at signalized intersections, for
crowd monitoring systems measuring previously unobserved network links, or fusing observa-
tions from different sensors and road users to distribute traffic at the micro level. Overall, we
see the potential to utilize this information in more places as it can be applied to more difficult
problems than those addressed before.

Future work will explore the application space for next generation traffic surveillance and
control systems, evaluating a range of simulated scenarios using a microscopic traffic simulator.
The highlighted properties of the modified method as compared to a standard MHT can be
used to predict the gains obtainable with other MTT filters. A more thorough evaluation, then
focused on a particular scenario or application is an interesting direction for future research.
Furthermore we motivate the need for experiments in real road traffic scenarios, which can
help increase the persuasiveness of the proposed framework. It should be noted that given the
(at this time) difficult access to data from a fleet of moving sensor platforms over longer time
and space, any other dataset that provides information about targets and regularly report non-
presence could be applied to our framework. This work hints to future directions for research
in tracking and privacy engineering within the intelligent transportation realm.



Chapter 4

A novel data source for advanced traffic
management and control

Previous chapters provided a comprehensive understanding of general requirements and
system design, enabling the development of a method to effectively utilize data from multiple
sensor nodes. This chapter leverages the insights and methods developed so far and explore
specific use cases and evaluate their potential benefits and challenges.

More concretely, the objective of this chapter is to investigate and demonstrate how this
new type of data can provide valuable insights and help optimize traffic control and management
strategies to improve road safety and sustainability. The chapter showcases the potential benefits
for cyclist prioritization in a traffic signal control setting with a comprehensive simulation. By
providing a proof of concept of how this novel data source may be used in a real traffic use case,
we hope to inspire various stakeholders to build upon this foundation for future research, and to
think about how existing data sources could be used in similar fashion.

This chapter is published as a journal article: Vial A., Salomons A.M., Daamen W., van
Arem B., Hoogendoorn-Lanser S., and Hoogendoorn S.P. (2023). Prioritizing cyclists at signal-
ized intersections using observations from moving sensors. Transportation Research Record:
Journal of the Transportation Research Board.
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4.1 Introduction

In order to make mobility systems greener, safer, fairer, more efficient and in the end cheaper,
traffic and transportation systems must continue to be geared towards multi-modal strategies.
When making trips in urban environments, motorized vehicles, cyclists and pedestrians loose
time when they stop and idle at signalized intersections. This increases the level of discomfort
for cyclists, especially the full stops where at least one foot has to touch-down (Fajans & Curry,
2001). This is relevant as we know that the number of cyclists in cities increases with lower
discomfort along the bike network (Pashkevich, 2013). The urge to reduce delays for cyclists
at signalized intersections has recently drawn increasing attention from the traffic community
(Wierbos et al., 2021; Claus, 2022). The motivation of this study is to investigate the potential
of early cyclist detection for responsive signal control that prioritizes cyclists, so this mode of
transport will suffer less from stops and long delays.

In the Netherlands, signalized intersections are controlled by vehicle-actuated control (VA).
VA control uses information about the current traffic state to control the use of the conflict
areas, i.e., areas where two conflicting movements meet. The order in which directions will
receive green is based on a fixed control structure, with stages of non-conflicting movements
constructed with the aid of pairwise conflicts (Furth et al., 2012). The order of the phases is red-
green-yellow, and the yellow time is based on the speed of the traffic and the distance where
traffic can choose whether to proceed or to stop, the so-called dilemma zone. The actuation is
mostly done by means of loop detector information (Reggiani et al., 2022). VA is phase control,
the green duration of an individual movement is determined by the occupation of its detectors.
Although multiple detectors are recommended for all traffic modes (van Dijck et al., 2018),
two to three inductive loops are typically used upstream of the intersections for cars, while for
cyclists, only one inductive loop is placed near the stop line.

More recently, VA control has been extended to enable certain movements to be prioritized,
i.e., VA control with priority (VAP). These extended, so-called ‘intelligent’ traffic light con-
trollers (iITLC), are enhanced by communication with the traffic (van der Vliet et al., 2016).
The aim of iTLC is to inform the approaching traffic, to optimize the control and to prioritize
target groups. For example, a public transport vehicle, a truck, or an emergency vehicle can
initiate the end of green times of conflicting movements to pass as soon as possible. Similarly,
VAP can be used to prioritize cyclists based on conditional priority, e.g., with rain sensors that
are used to prioritize cyclist during rainfall only (Fietsberaad, 2012; Lusk, 2016). Eventually the
iTLC will improve the estimation of traffic states (Poelman et al., 2020). The communication
with cars is done via on-board computers or mobile apps, while cyclists rely on communication
enabled by Radar on a fixed location (Lai, 2021), or from smartphone apps (Verbeeke, 2020).
The number of cyclists using mobile apps, however, is still low as not all cyclists are willing
to use an app or remember to start an app (Verbeeke, 2020). This mismatch results in a higher
share of cars communicating with the iTLC than communicating cyclists.

Because cycling is encouraged in the Netherlands (Reggiani et al., 2022; Arellana et al.,
2020), more solutions are needed to balance out the lack of information about cyclists ap-
proaching the intersection. Eventually, this will make it possible to prioritize this environmen-
tal friendly traffic mode more effectively than is currently the case. Other solutions to increase
traffic controllers’ situational awareness of cyclists is to install additional sensing infrastructure,
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e.g. extra detector loops, fixed cameras or radars (Claus, 2022). This approach, however, comes
at a considerable cost of deployment and maintenance (Klein et al., 2006).

Recent studies utilize connected automated vehicles (CAVs) as a mean for learned eco-
driving control policies to reduce idling time at signalized intersections (Jayawardana & Wu,
2022). The broad sensing, processing and communication capabilities of future CAVs make
them well-suited for advanced traffic monitoring and control applications. As they must con-
tinuously sense the environment in which they operate, CAVs may also provide relevant traffic
information about cyclists, and can thus be understood as mobile sensing platforms (Vial et al.,
2020). Observations generated from their field of view can be shared using wireless communi-
cation with nearby vehicles (e.g., for cooperative vision) or infrastructure such as traffic signal
controllers (e.g., with iTLC). The benefits of using observations from CAVs, is that the position
and speed of cyclists may be observed by multiple CAVs at different locations (e.g., to confirm
the presence at a location), while cyclists do not need to start an app. Since prioritization of cy-
clists may increase the delay of other traffic modes, robust observations are necessary to avoid
giving priority too early or for too long.

The main ambition of this paper is to show how augmenting the situational awareness of
traffic signal controllers using observations from CAVs, can enable prioritizing cyclists and re-
duce lost times in the control cycle in an effective way. In this paper, the following contributions
are made:

1. propose a control method that uses available cyclist observations from moving sensor
platforms (here exemplified with CAVs) to prioritize and optimize traffic conditions for
cyclists,

2. quantify the effect on cyclists and cars delays, on the number of stops and on effective
green use for cyclists, for different levels of car and bicycle demand,

3. highlight to which extent different traffic and environmental conditions may influence
these results (i.e., settings of the CAV, penetration rate, occlusion),

4. show how observing the absence of cyclists appears to be valuable controller information
(e.g., reducing lost time by phase truncation)

We showcase this with a vehicle-actuated control application that prioritizes cyclists, and
use a microscopic traffic simulator to simulate cyclist and car traffic approaching a signalized
intersection. Note that in this work we consider cyclists to be indistinguishable from each other,
that is, no additional information from sensors (e.g., clothing colour) that could help strengthen
the discrimination between different cyclists is assumed to be given. Available observations
from CAVs are used to estimate the dynamic states (i.e., positions and speeds) of an unknown
and varying number of cyclists using a multiple-target tracking (MTT) approach. The detector
information is then augmented with the estimated cyclist states as input for the cyclist prior-
ity request logic of the proposed cyclist prioritising vehicle-actuated controller with tracking
(VAT). The cyclist and car delays from the implemented VAT are empirically evaluated against
a state-of-the-art VA and VAP controller. This work motivates for more optimized designs that
better balance delays in more involved traffic situations.

The remainder of this paper is organized as follows. The next section gives an overview
of the proposed VAT approach. Then, we recall the MTT approach used to track cyclists from
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individual observations and present related models used for this study. Models used for priority
requests and lost time reduction in the control cycle are introduced in the fourth and fifth section.
Experimental design and simulation setup are presented in the sixth section, followed by the
results from an empirical evaluation. Conclusions and future work are presented at the end of
the paper.

4.2 Approach

The objective of the proposed method is to use additional information from moving sensor
platforms! to inform, prioritize and optimize intelligent traffic signal controllers. The general
idea and main elements of our approach, are outlined in this section and depicted in Figure 4.1.

Traffic demand
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CAV position, Controller state
cyclist observations (signals + detectors)
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their states
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— VAT control Desired signal states
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Figure 4.1: Bicycle priority Vehicle-Actuated Control with Tracking (VAT) using observations
from moving sensor platforms (e.g., CAVs). PR zone: zone where priority can be
requested.

When a cyclist enters the field of view (FoV) of a sensor platform, an observation may be
generated. Based on the architecture of the iTLC, where road users share their position, speed
and intended route by wireless communication with the traffic controller (Flgan et al., 2016),

I'This article uses the term moving sensor platform as a more general description of technological sub-systems
that generate data of their surroundings for their safe functioning (e.g., CAVs, drones, or other types of robots).
Later in the paper, we will showcase the proposed approach with CAVs in simulation.
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this work assumes sensor platforms to similarly share available observations of cyclists with
the traffic controller. In order for the traffic controller to make use of available observations
over time, the dynamic state of observed cyclists (e.g., position and speed) must be estimated
along the cycle path so that, at a suitable moment, the priority request of the signal controller
can be activated. The way the iTLC handles the input from sensor platforms to grant priority to

individual cyclists, or a platoon of cyclists, is comparable to the way data from static camera or
Radar is handled 2.

The unknown and varying number of cyclist, however, complicates the task of associating
available observations with cyclists present on the cycle path. In addition, sensor platform
observations are not perfect. They may be noisy, include clutter or miss a cyclist because of
occlusion. And with no a priori information about which observation originates from which
existing or newly detected cyclist, the many possibilities of assigning a measurement to an
individual complicate the task. We use a multiple-target tracking approach to infer the number
of cyclist present on the cycle path and estimate their dynamic state at each time instant.

For the case cyclists are estimated to be located in the priority request zone>, a priority

request logic is initiated. The VAT controller then ends green time for conflicting traffic at the
next possible moment and the desired signal state (i.e., green) is set for cyclists. In this way
cyclists can be prioritized earlier, unlike VAP, where the cyclists have to continue up to the stop
line and have to stop before the priority will be granted. For the case cyclists are estimated not
to be located in the defined priority request zone, a phase truncation logic is initiated that will
reduce the lost time in the control cycle.

4.3 Inferring the number and states of indistinguishable cy-
clists

In order for the traffic signal controller to act according to information provided from sensor
platforms’ field of view, we use a MTT approach to infer the number of cyclists and estimate
their dynamic states (e.g., position, speed) from a sequence of available observations. MTT is
an extension to the state estimation problem, including a data association component as it is
not known which observation originates from which cyclist, not to mention which observations
are clutter or missed detections. In this section, we introduce the used MTT approach, relevant
state space models, and discuss the applicability and assumptions made using this approach in
a traffic signal control setting.

4.3.1 Road network-constrained MTT

We use the network-constrained multiple hypothesis tracking (NC-MHT) approach proposed in
(Vial et al., 2023a) to update the belief of a target’s position along a defined road network from
a temporal sequence of observations.

2An example where bicycle priority is applied using smart cameras detecting bicycle platoons of three or
more cyclists can be found in the municipality of Hengelo (NL) (Crow, 2022), while bicycle priority using cyclists
observations from static Radar was applied in the municipality of Delft (NL) (Lai, 2021).

3 Area upstream of the traffic signal where the decision about cyclist priority is made.
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At each time step, an association event represents a set of valid assignments of observations
to existing tracks (of already observed targets), new targets or false observations, where a track
corresponds to a data association sequence Til: ;. for target i up to time k. Each track is modeled
as single target tracking filters (i.e., Bayesian filtering) following prediction steps or updates
in case it is associated to an observation. The decision whether or not to update an existing
track with an observation is made using gating, a technique used to simplify the association
problem by removing potential associations that are too unlikely. If the observation lies outside
the gating area predicted for a track (based on the state estimate, the next observation of the
track is predicted), the track to observation association is ignored.

A complete solution to the MTT problem is given by a global tracking hypothesis, which
represents the inferred number of targets and their respective states along the road network. We
refer the interested reader to the original work (Vial et al., 2023a) for more details on, e.g., data
association logic, track likelihood computations or handling of the road constraints, as we focus
on the target state description and estimation models for the rest of this section.

4.3.2 State space models

Let us assume that cyclists evolve independently of each other and the state of each cyclist at
time k is represented by a vector
Xk
X, =
k (81() )

where, the actual position of the cyclist is a combination of the general position determined
from the map 9 (i.e., cycle lane), and x; which specifies the position, velocity and acceleration
on the cycle lane, such that x; = [rg, i, %] .

Cyclist motion model

A nonlinear dynamic model describes the motion of each cyclist such that

Xkt = () F v, vie~ N(0,0), 4.1)

with a control input u; (e.g., to specify the traffic signal state at each time step), and vy is process
noise assumed to be white and Gaussian with covariance matrix covv; = Q.

The kinematic state motion model of cyclists approaching the intersection follows linear
constant velocity if not in so-called human-vision distance to the traffic light.

In human-vision distance to the traffic light, on the other hand, we assume the signal status
to have an effect on the cycling behaviour. We use a simple model that describes cycling move-
ments in response to the colour of the traffic light as proposed in (Dabiri et al., 2022). Thereby,
the acceleration/deceleration of a cyclist is represented as follows,
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0<I15—r, <Dy,
if signal is red,
) 0<IS—ry <Dy, i>i,

=140, e (4.2)
if signal is green,

,,,( 2\ 2 0<I5—r,<Dy,i<i,
7 1—<r.—(’§> )

if signal is green,

with discretisation time Az, comfortable speed 7, and comfortable acceleration of the cyclist is
denoted ¥ at time step k and where Cs(k) denotes the number of required time steps in order to
fully stop before the intersection,

Cs(k) = max <1, def(k)J) , (4.3)

F At

where d;(k) denotes the distance between the cyclist and the traffic light at time step k. This
model is applied according to the following cases, where [ represents the position of the stop
line and Dy, represents the human-vision distance from the traffic light: In the first case, while
the cyclist is in human-vision distance to the traffic light and the signal is red, the cyclist decel-
erates until an eventual full stop ahead of the traffic light. In a second case where the light gets
green while in the human-vision distance, no acceleration is applied to the cyclist, unless the
current speed is lower than the defined comfortable speed.

As for the case the cyclist has passed the intersection, the kinematic state motion model fol-
lows constant velocity if cycling at comfortable speed, otherwise the acceleration is represented
according to the last case of Equation (4.2).

Observation model

Let us assume moving sensor platforms to have a limited FoV, a known position along the
road network and that observations may be generated at any time. Each observation originates
from a single cyclist, or is a false detection. When a cyclist is visible to a sensor platform
at time k, and thus in its FoV, the cyclist is detected with probability Pp, where the available
observation provides a measurement about the cyclist’s general position from the road map (e.g.,
the probability of being on a specific cycle lane) and specifies the position and speed along that
road segment (e.g., where on the cycle lane). A single sensor platform can observe multiple
cyclists at the same time and thus provide multiple observations at one time step, yet each target
produces at most one observation. Given multiple sensor platforms operating, a single cyclist
may also be observed by several sensor platforms simultaneously.

Note, that the absence of observations represents a valuable source of information as it
lowers the score for track hypotheses where the target was not observed as expected. This helps
to reduce the number of track hypotheses that should be considered.
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4.3.3 State prediction and update

As mentioned earlier, tracks are estimated using Bayesian filtering following prediction steps
or updates in case it is associated to an observation. We use an extended Kalman filter (EKF)
(Jazwinski, 1970) in case of nonlinear motion, and the standard Kalman filter (KF) (Kalman,
1960) for the linear case. When an observation is obtained, the continuous part of the cyclist
state can be updated, provided the discrete state is possible in the observation. If no observation
is available, the update step is simply skipped, and if several are available, the step is repeated.
We refer the interested reader to (Vial et al., 2023a) for more details on network-constrained
effects and assumptions in the context of the NC-MHT framework.

4.3.4 Applicability and assumptions in a traffic signal control setting

The flexibility of the used NC-MHT framework, particularly the formulation of the network-
constrained target state, makes it generally suitable to associate available measurements with
cyclists present on the cycle path. As compared to more standard MTT approaches in free space,
the inclusion of network constraints allows for more efficient target predictions over extended
periods of time and simplifies the measurement association process. As this work considers
moving sensor platforms as new source of cyclist information, it is reasonable to assume the
knowledge about the network structure and the sensor platform position always to be known.

Cyclists overtaking other cyclists or approaching a signalized intersection can influence one
another. Their motion can, for instance, be affected by the behaviour of others, the surrounding
environment or their destination choice. More advanced motion models, including interactions
of targets have the potential to be utilized to improve tracking, improving predictions in particu-
lar over extended periods of times without observations. However, interactions between targets
strictly speaking violate a key assumption of the used framework, and more generally of all
classic tracking frameworks, as they treat targets independently to save complexity. Extending
the method to take these interactions into consideration is non-trivial and more importantly has
a very negative impact on computational complexity. To prove the concept of our application,
we therefore consider cyclists to move independently as bypassing the violation of this basic
assumption and using more involved behavioural models is out of scope for this study.

At the same time, cyclists respond to the colour of the traffic light, e.g., by adapting their
speed. In contrast to the interactions between cyclist, the traffic signal colour is a fixed input at
every time step and can thus considered in this study as additional control input for the cyclist
motion in the used approach.

The used NC-MHT framework models transitions in a road network as a discrete Markov
Chain, where a target transitions from one road segment (e.g., cycle lane) to another once it
has reached the end of that segment (i.e., the intersection), according to a computed transition
probability. When applied to a traffic signal control setting, e.g., where cyclist approach an
intersection, the provided network representation allows to specify different cycle lanes. Each
sensor platform observation could thus include the probability that the cyclist was observed on
that cycle lane. To limit computational complexity, this paper uses a simplification where the
cycle lane is assumed to be accurately provided by the sensor platform (i.e., only one cycle path
has non-zero probability).
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Note that for some traffic signal control applications (as exemplified later in this study) the
complete intersection area (e.g., conflict areas) must be included in the continuous description
of the cyclist motion state, so the network representation used in the NC-MHT must be such
that cyclist can be tracked not only before and after an intersection, but also at the intersection.
Ignoring the presence of a cyclist in such crucial zones would have considerable negative effects
for overall safety and efficiency of the controller.

4.4 Arrival time and priority request

To give priority to cyclists at the right moment, the arrival time of the cyclist must be calculated.
Giving cyclists priority will have an effect on the delay of other traffic, and to avoid causing
excessive delay to conflicting vehicle movements, the priority of the bicycle movement will be
conditional.

4.4.1 Arrival time calculation

To find the optimum moment to give a cyclists priority, the position r; and speed 7y are extracted
from the tracks included in the best global hypothesis of the tracker. The time step between new
estimated trajectories, between k and k + 1, is Ak. The speed of the cyclists is assumed to
be constant between the two observations. After n time step f; the position of the cyclists is
determined by ry ,=ry + Fxnts, where n < Ak/t;. The time it takes a cyclist to arrive at the stop
line is:

Ist = Tkn
larr = ———» (4.4)
Tk

where 15 — r'rn 1s the distance the cyclists has to cover at time step k + nt; to the stop line 15,

4.4.2 Conditional priority request

The priority start of the bicycle movement depends on the arrival time 7, of the cyclists, on
the controller state, and on the priority conditions. First we discuss the priority start moment,
followed by the conditions for which priority is given, or extended.

When the conditions favour priority, the start of the priority request depends on the controller
state:

1. During green, yellow or clearance times of parallel movements the priority is requested
at the moment the cyclist is about to brake, this is #4,,;, seconds before arriving at the stop
line. The light can turn green immediately after requesting:

Larr S tAmin- (45)

2. During green, yellow or the clearance time of conflicting movements: also here the signal
needs to turn green on the moment the cyclist starts to brake. However, if a conflicting
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signal i is green, it takes time to end this signal, so the remaining time f,; before the
bicycle green can start should be taken into account. The request is done if:

tarr S tAmm + mlaX<tr,l)7 (4.6)
The remaining time depends on the yellow time L; of the conflicting movement i, the
clearance time C; between the conflicting movement and the bicycle movement, and
Gena > the time that has passed since the green time of movement i ended:

tri=Li+Ci— Gena,, 4.7)

The conditions for starting the priority depend on the green duration of conflicting move-
ments, and on the number of times priority was realised for the bicycle movement:

1. do not truncate conflicting movements too soon, at least p.% of the maximum green
should be given to a conflicting direction,

2. limit the number of priority realisations, after the bicycle priority ends, it should not start
again before the lost time has expired. This ensures that one of the conflicting movements
that have a green request, will receive green.

Also priority extension should be limited, do not extend the green time for cyclists too long:

1. the green may extend at maximum p,% of the maximum green,

2. extend the priority only if a cyclist will arrive at the stop line within #4,,,, seconds after
the predecessor moved over the stop line.

Since VAT priority is granted when a cyclist is observed and there is a conditional extension
of the green time, a single cyclist that arrives will be prioritized over a platoon of cyclists that
will arrive after the #4,,, or after the maximum green extension of the bicycle green has been
reached. This means that the VAT controller does not optimise the green time with respect to
the arrival of platoons, nor does it consider platoon dispersion.

4.5 Reducing lost time by phase truncation

Moving sensor platform observations can be used to prioritize approaching cyclists, yet can
also be used to optimize the control by reducing unused green and lost time in the control cycle
by truncation of the minimum green time, the yellow time or clearance time, here indicated as
“phase truncation”. Since two separate areas need to be observed, the area from the priority
request location to the stop line (PR zone), and on the intersection (clearance zone), the phase
truncation is done in two steps. First the minimum green and yellow truncation is considered
related to the PR zone, secondly, if the conflict zone is clear, the clearance time is ended.

If it is observed that there are no cyclists present at the PR zone, and the bicycle signal is
showing green because the minimum green time has not expired yet, the minimum green time
can be ended. The gap-out time of the detectors is not needed, since it is certain the queue is
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cleared. If there are no cyclists in the PR zone (which is upstream of the dilemma zone), no
cyclist can decide to go when yellow is shown, so the yellow time does not have any function
and can be ended. This truncation should take into account the speed of the fastest cyclists
Fe fast (€.g., e-bikes) and the duration of the yellow signal L. :

dirunc = fc,fasth 4.8)

If cyclists are not present in the priority request location and in the conflict area, the clear-
ance time can be ended, the conflict area is clear for conflicting movements. The safety risks
of phase truncation is reduced by the demand that multiple sensor platforms should observe
these areas, the priority request location and the conflict area, and these sensor platforms should
provide redundant observations that there are no cyclists present.

4.6 Experimental design and simulation setup

The aim of this case study is to quantify the potential of using cyclist observations from moving
sensor platforms, here exemplified in a CAV use case, with the implemented VAT approach that
prioritizes cyclists by tracking, by answering the following questions:

Q1: How does the VAT, VA (no priority) and VAP control (priority on detection) compare in
terms of car and bicycle delay and stops, for different levels of car and bicycle demands?

Q2: What is the effect of using VAT on the efficient use of green for cyclists?
Q3: How does the penetration rate and the FoV of CAVs affect the cyclist delay?

Q4: What is the value of observing the absence of cyclists?

This section first provides more details about the scenarios simulated in this study. We then
describe the designed case study, and eventually elaborate on assumptions and design choices
made for the implementation of the numerical experiments.

4.6.1 Simulation scenarios

To answer the questions listed above, we evaluate the benefits of the proposed VAT approach
with five simulated scenarios using PTV Vissim 11 microscopic traffic simulator (PTV, 2016).
The road network is synthetic, that is, not based on an existing intersection and thus the mi-
crosimulation network is not calibrated with existing data. The network is made sufficiently
complex to show the proof of concept, yet simple enough to make the set-up feasible. The
demand levels are based on realistic demands (Godefrooij, 2016).

* To answer Q1, we evaluate the benefits of the proposed VAT approach against VA and
VAP implementations in terms of the effect of the bicycle demand (100-800 c/h), for
various levels of car demand (50%-150% of the baseline car demand, given in Figure
4.2).
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* For Q2 we assess how VA, VAP and VAT handle green actuation and duration for the
different bicycle demand.

» For Q3, different variables of the tracker were changed to compare different VAT sce-
narios. The VAT base scenario was chosen with 300 c/h, 50% CAV and 30m FoV, as
well as no occlusion or phase truncation. The baseline car demand is given in Figure 4.2.
The probability of detection for each CAV is set to P, = 0.95. The penetration rate of
CAVs was evaluated based on 50%, 10% and 5% CAVs. Note that, the baseline case has
50% CAVs since results from preliminary tests did not show much variation with a higher
penetration rate. The field of view was set to 30m, 20m and 10m.

* Question Q4 can be split in two situations. First, if a CAV does not observe any cyclists,
this can be the consequence of occlusion, thus occlusion events are added and compared
to the VAT base scenario described above. Second, if observations from multiple CAVs
provide redundant information about the absence of cyclists and no occlusion takes place,
we can evaluate the benefits of the proposed VAT approach against VA and VAP imple-
mentations in terms of phase truncation. In particular we are interested in minimum green,
gap time, yellow time and clearance time truncation.

Given stochastic effects and priority, we used 7 different seeds to simulate, with a simulation
duration of 900 s (10-15 cycles), with sampling time AT = 1s for the tracker, and the control is
updated every AT = 0.1s yet assuming a constant speed during that second.

4.6.2 Case study

We simulate cyclists and vehicles moving along the road network depicted in Figure 4.2. This
intersection is close to a realistic situation and sufficiently complex in seeing the effect of pri-
oritization. For simplicity only CAVs parallel to the cycle lane can observe cyclists. To mimic
a realistic control, a three block-control was implemented, but with only one direction that is
not parallel to the cycle lane. Cyclists travel from South to North on the (red) cycle path. A
loop detector for cyclists is placed at the stop line, as is most commonly used in the Nether-
lands (Reggiani et al., 2022) (a benchmark country in terms of bicycle infrastructure). As
mentioned in the introduction of this paper, the detector is used as actuator for the VA- , VAP-
and VAT-approach. Vehicles present on the network are either conventional non-sensing (“‘car’)
or equipped with sensing capabilities allowing them to generate observations about objects in
their field of view (“CAV”). CAVs that have the cycle path within the defined FoV can generate
cyclist observations at any time. The cyclists moving along the cycle path are either ‘common’
cyclists with an average speed of 15 km/h, or fast cyclists (e.g., e-bikes) with a speed of 25
km/h. These speed differences are introduced to challenge the arrival time estimation.

4.6.3 Network representation

According to the tracking framework introduced earlier, all observations received from CAVs
are network-constrained, which can theoretically be represented as a Markov model in the form
of a directed graph. As indicated earlier the complete intersection must be included in the
continuous description of the cyclist motion state. We thus represent the cycle path entirely as a
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Figure 4.2: Intersection used in microsimulation, with the control block diagram. The bicycle
movement is depicted by the arrow with ‘c’. The demand for all movements is given
in the figure.

single line segment. This design choice allows us to have cyclist observations and propagation
at the complete intersection area, without issues of cyclists transitioning from one segment to
the next.

4.6.4 Field of view and occlusion

As indicated earlier, the size of the FoV determines if a CAV can observe the cycle path, and if
so, which part. Only cyclists within the FoV can be observed by a CAV. The shape of 2D-FoV
can be approximated best by an ellipse (D. Gohring & Ganjineh, 2011), but for simplicity, we
approximate the FoV by a square. Figure 4.3 shows that this approximation is reasonable with
respect to the actual size of the FoV. For the baseline VAT the size of the FoV is set to 30m.
The size of the FoV is determined by the lateral distance to the cycle path. CAVs with a FoV of
30m can observe the cycle path being three lanes away from the cycle path, while with a FoV
of 10m, only CAVs on the lane directly next to the cycle path can observe cyclists. In more
practical terms, the larger the FoV, the more information may be shared with the tracker, which
leads to higher certainty in cyclist estimates.

For occlusion events, we implement a simple model where only lines of sight between the
CAV and the cycle path, perpendicular to the cycle path are considered. If another vehicle is
partly within the perpendicular line of sight, this part of the cycle path cannot be observed by
the CAV. Figure 4.3 illustrates the simplified occlusion model. Close to the stop line waiting
vehicles can obstruct this view, so the occlusion is worst near the stop line. The consequence
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Figure 4.3: Illustration of the simplified occlusion model. The observed bicycle path areas are
hatched, the two cyclists within the circle are not observed because of the occlusion
due to the red car.

of this event is that if the tracker gets conflicting information, that is, from CAVs that observe
the cyclists without occlusion in their FoV and from CAVs that cannot observe a cyclists but
should given their position with respect to the cycle path, the tracker may (depending on track
likelihood computations) end the trajectory.

4.6.5 Implementation details

The Vissim network is controlled by a vehicle-actuated controller (Trafcod, (Furth & Muller,
1999)) which react on the occupancy of detectors. The COM-interface gives information to
Controller adjustment in Matlab, Matlab passes (a part of) the information through to the Track-
ing algorithm in Python and C++, information from the Tracking algorithm is input for the Con-
troller adjustment. The Controller adjustment decides when a direction will start or end green
or end yellow, and based on this, certain detectors will be cleared or occupied, to make sure the
signal timing is as intended.

4.7 Results

In this section, the results from the empirical evaluation are presented, for the proposed VAT
controller and two state-of-the-art controllers, VA and VAP:

* VA: Vehicle Actuated control, using detectors, without any priority,
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* VAP: Vehicle Actuated control where cyclists are Prioritised on the stop line detector,

* VAT: Vehicle Actuated with cyclist priority using CAV-based Tracking.

The base scenario is with 50% CAV and 30 m FoV, without occlusion or phase truncation and
the baseline car demand from Figure 4.2.

Figure 4.4 shows how the tracker deals with the cyclists observations, and estimates the
cyclist trajectories, by comparing to the actual trajectories of the cyclist in the simulation. This
figure also highlights how a track initiated by a false observation results in a unjustified priority
start of green.

vissim position
within FOV
tracker position ‘

position on the cycle lane (m)

O 4

0 el I & i
350 400 450 500 550 600 650

simulation time (s)

Figure 4.4: Trajectories of cyclists, blue line: actual trajectory (true positions), red: observed
by CAV within FoV, and the position of the cyclists according to the tracker al-
gorithm (estimated positions). At 300m the stop line is indicated with the signal
phases (green, yellow, red). In grey circles false observations are indicated.

4.7.1 Q1: VAT vs. baseline control scenarios

In answering Q1, Figure 4.5 presents an intuition of the performance of the proposed VAT
approach against the baseline cases used in this study. It presents the percentage of cyclist stops,
bicycle and car delay as function of the demand. As can be seen from Figure 4.5a, VAT shows
a reduced number of required stops for cyclists as compared to both VAP and VA. In particular,
observing cyclists ahead of the stop line in a priority scenario with tracking (VAT) considerably
improves the number of stops when compared to a priority without tracking scenario (VAP),
where there is a high probability that a cyclist stops on the detector since the detector is close
to the stop line.

The delay as function of cyclist demand, see Figure 4.5b, is smallest for VAT with a low
demand while it is highest for VA. This result is a logical consequence given VA request can
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only be honoured when the block of the cyclists movement can be activated. If VAT is compared
to the VAP results, the difference between the delay of cyclists is smaller than for the stops, the

effect of prioritization on delay reduction is larger than the effect of being observed further
ahead of the stop line.
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Figure 4.5: As function of the cyclist demand: (a) stopped cyclists, average delay of (b) cyclists
(c) cars, (d) cumulative delay.

When the average delay for cyclists is compared to that of car delay, see Figure 4.5c, the
effect is smallest for a small demand, but differences get bigger with larger demand. From 400
cyclist/hour, it can be observed that the average car delay start to increase significantly, while
the average delay for cyclists hardly changes for higher demand as shown in Figure 4.5a. With

increasing demand, the priority for cyclist is given more often and for a longer duration, thus
leading to higher delays for cars.

The car demand for the results in Figure 4.5 is fixed. Also the effect of the demand of cars
(hence the number of CAVs) is tested for the VAT scenario. The ratio between the demand
of car movements remains the same as for the original simulations, but the demand is set to a
percentage of this baseline demand (100% equals the baseline demand). As can be seen from
figure 4.6a the delay of the cars is strongly related to the car demand, with increasing demand
the delay increases much, especially if there is also a high bicycle demand (from 60 to 100
s). For the cyclists this effect is less, because the cyclists receive priority, even when there
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Figure 4.6: The effect of the car demand, as percentage of the baseline car demand (a) average
car delay and (b) bicycle delay demand.

are fewer CAVs around to observe them. Once a cyclists is observed it will, in most cases,
be “remembered” by the tracking algorithm and will receive priority. Furthermore, if there are
fewer cars, the green time of the car movements will be less, cyclist will receive green earlier
and the delay will be lower. Only for a demand of 200 c/h the effect of a higher car demand (cq
more CAVs) is visible: with 150% the delay is lower than for 125%.

4.7.2 Q2: bicycle green actuation, bicycle and car green duration and
green use

This section aims to answer Q2 by showing how VA, VAP and VAT each handle bicycle and car
green, and the result it has on effective green use for cyclist and car delay. The green handling
in Figure 4.7 shows (as function of the bicycle demand) how many cyclists move over the stop
line during green, the average green duration for the bicycle signal, and how much time was
given per cyclist, that is, per actuation the green duration divided by the number of cyclists
during that move over the stop line. As can be seen from Figure 4.7c the green allotted per
cyclist reduces as the cyclist demand increases, so the green time is used more effectively with
increasing demand, until about 500 c/h where it starts to level. For 300 c/h and more, the green
time per cyclist is much higher for VAT control than for VA and VAP, so the green time per
cyclists is used less efficiently.

As can be seen in Figure 4.7, VA control does not actuate the bicycle signal often (4.7a),
and for a short duration (4.7b). With increasing demand, the green distribution over the cyclists
(is the amount of green per cyclists) decreases (4.7c), so for high demand many cyclists pass
the stop line during green.

VAP actuates often, therefore it needs lower green times than for VA, since smaller queues
can be discharged faster. Since the duration of a signal is at least the minimum green time, this
can lead to unused green after the cyclists have moved over the stop line, so the green used per
cyclists is higher for VAP than for VA.
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Figure 4.7: Bicycle green handling for VA, VAP and VAT: (a) average number of cyclists that
move over the stop line during green, (b) average green duration of the bicycle
movement, (c) average green time allotted per cyclist.
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VAT also actuates more often than VA, less than VAP, but extends the green time for longer
periods, especially when the demand increases, the green is extended to cater for approaching
cyclists. Unused green time is present before cyclists move over the stop line. In further de-
velopment of the controller, this extension of the green should be assessed, since for VAT this
results in high car delays (4.8a). This relation is absent for VA and VAP.

In Figure 4.8a the average car delay is given for the average bicycle green duration, for the
demand. Results indicate a linear relation between the green time of the bicycle signal and the
car delay. In 4.8b, for the different percentages of the car demand, the green time needed to
cater for this demand is given. This green time is calculated, by using the Webster cycle time
(Webster, 1958), which is optimum for non-uniform arrivals. The Webster cycle time takes
into account the control structure and the car demand, and the green time used for the bicycle
movement. As can be seen, for equal or more than the base scenario demand, the desired green
time is higher than the actual green time the car movements receive, leading to a higher delay,
as has been shown in Figure 4.8a.

4.7.3 Q3: impact of CAV penetration rate and field of view

The results presented in Figure 4.9 show the difference of weighted average delay between the
new scenario and the base scenario. The average is weighted for the number of vehicles, which
are different for each simulation. When the difference is positive, the new scenario will give a
higher delay than the base scenario.
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Figure 4.9: Difference with respect to the base scenario for (a) delays for cyclists, (b) delays
for cars.

In answering Q3, Figure 4.9 indicates that the penetration rate reduction to 10% has hardly
any effect on the delay, the standard deviation is larger than the difference. For a CAV pene-
tration rate of 5% the delay is higher for cyclist. Thereby, the FoV appears to have hardly any
difference, a smaller FoV will yield to a bit more delay on average, but the standard deviation
is larger than the difference. Note that the FoV chosen for this study are believed to be con-
servative values as compared to available setups in practice, which benefit from much wider
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FoVs. Overall, and as expected, both small FoV or small penetration of CAV leads to less cy-
clist observations. Because a cyclist observation initiates the creation of a hypothesized track,
when not assigned to an existing track, that cyclist’s trajectory will be estimated until the stop
line to eventually request for priority. The un-interruption of a track may, however, depend on
the configured track pruning strategies applied with the tracker. Therefore, if more observations
are generated, by a larger penetration rate or larger FoV, cyclists will benefit from the priority
requested by a cyclist that has been observed. If it happens less often because of a low pene-
tration rate of 5%, the priority is given less often and the delay will increase with respect to the
base scenario.

4.7.4 Q4: what is the value of observing the absence of cyclists?

In answering Q4, two scenarios were computed that are representative for situations where
cyclists are not observed. Figure 4.9 shows that in the case of occlusion, the delay is higher on
average. The tracker removes existing tracks when too much in doubt, thus leaving the cyclist
as “unseen” and having no base to request priority. A more detailed look at the behaviour of the
tracker confirms that track removal is a consequence of occlusion events in the simulated traffic
situation . Thereby, when a CAV generates no observation about a cyclist (because of occlusion)
that should have been seen, the likelihood of that (unobserved) track decreases. While the
tracker can appropriately handle a reasonable amount of occlusion given the provided occlusion
model, occlusion levels increase significantly close to the intersection. A solution to this would
be to implement a more sophisticated place-dependent occlusion model, which handles various
levels of occlusion at different locations. With more available observations, however, even
higher occlusion levels are handled well by the used tracker, as indicated in Figure 4.4.

The second scenario presented here is the truncation of green phase. When the minimum
green phase, yellow phase or clearance time is truncated, the gains will be highest. The cycle
will be shorter without unused lost time, and priority will be granted earlier, leading to less delay
and fewer stops. As can be seen in Figure 4.9, except for the phase truncation, the difference
in car delay is opposite to that of cyclist. Where cyclists have more delay, the cars have less,
although for most cases the difference is smaller than the standard deviation. Both cars and
bicycles gain from phase truncation, smaller cycles with less lost time is beneficial for both
traffic modes. Overall, although phase truncation leads to a low delay for all traffic modes, this
can only be done when it is absolutely certain that no cyclists are observed within the dilemma
zone, and no cyclists are observed in the conflict area, since the risk is very high for a cyclist that
is present yet has not been observed. The prevention of occlusion events and false observations,
i.e., through redundancy of measurements, is thus an important safety factor.

4.8 Conclusion

This work highlighted the potential of cyclist observations made from moving sensor platforms
to augment the situational awareness of traffic signal controllers. A simulation study quanti-
fied the benefits of the proposed approach, using a vehicle actuated controller that uses CAV
observations to prioritize cyclists and reduce lost times in the control cycle, with two baseline
scenarios; with and without cyclist priority.
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In terms of car and bicycle delay and stops, results indicate that with a low penetration
rate and with occlusion, prioritizing cyclists by tracking (with a small FoV) can reduce the
delay for cyclists or avoid stops, using a simple algorithm. However, the average car delay
increases much when the number of cyclists increases, while the average bicycle delay does not
show much variation. Prioritization schemes applied in real-world traffic situations confirm this
result, e.g., in the city of Rotterdam (NL), when cyclists were prioritized during rainfall, the
queues for car directions increased substantially (Rubio, 2015).

An analysis of efficient use of green for cyclists indicates that unused green for the bicycle
movement, or many priority request by cyclists, lead to short green times for cars. An explana-
tion for this result is that the controller does not optimize the delay for all traffic participants,
and neither takes into account the platoon dispersion of cyclists.

Both small FoV or small penetration of CAV leads to less cyclist observation. Results
highlight the importance of handling false observations as they can lead to unjustified green
starts where no cyclists are present. Highly occluded areas (i.e., at the intersection) can have
negative impact on the information available to the tracker and thus lead to, e.g., pruning tracks
of existent cyclists, which eventually leads to less priority requests.

Results indicate that observational confirmation that cyclists are not present is beneficial for
all traffic, leading to less lost time in the cycle.

4.8.1 Future work

Future work of this study can span out in multiple directions. We outline a set of interesting
paths for future research and discuss practical difficulties implementing such a method.

Although results from the simulation indicate that also a low penetration rate of cyclists can
benefit from priority by CAV observations, in practice, things might look a bit different. For
instance, we expect control cycles where cyclists can be prioritized, and control cycles where,
due to absence of CAVs (in cases of current low CAV penetration rates (Statista, 2022)), cyclists
are not prioritized. This may raise false expectations about such a prioritization scheme among
cyclists which, in turn, may affect the credibility of the control and may eventually induce red
light running (Meel, 2013).

Furthermore, the level of false observations and the avoidance missed detections, e.g., due
to potential occlusion events frequent in urban areas, should be tackled as this may lead to
losses and delays that are not necessary. The model used to realize occlusion is a very simple
model to apply. Further research in literature and by measurements is needed to determine how
severe occlusion is when CAVs observe cyclists, depending on location and time, e.g. place-
dependent occlusion. Further, the value of information in time or quality, e.g., in what way the
CAV communicates the quality of its observation in case of occlusion, needs to be investigated.

Experiments under real-world conditions must be performed. Generating real data will
provide valuable insight about how efficient CAVs can be in observing cyclists, and enable the
calibration of a microsimulation. Furthermore, the communication between iTLC and CAVs
must be further developed, extending existing setups where a few static sensors provide traffic
data to iTLC.
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Cyclists prioritization should be assessed with respect to safety. When a saturated car queue
moves over the stop line, ending green can be unexpected by the car drivers, and less credible
control can lead to red light running.

The proposed truncation of phases, especially the clearance time truncation, is not fit for
use in practice yet. The certainty no cyclists are on the conflict area should be very high before
the clearance time can be ended, so first this part of equipment and model should be tested
thoroughly before it is used in practice.

The method of prioritization used in current controller, can lead to a situation where one
cyclist can get one second less delay and does not have to stop, but this can make, say, three
cyclists just arriving at start red of the bicycle signal to have to wait, say, nine seconds (the time
for conflicting movements to start and clear the conflict area). This leads to a large variation
from simulation to simulation in number of stops and delay. Now that the proof of concept
is given that cyclists benefit of prioritization by observation, the next step is to optimize the
control, that balances the delay and stops of cyclists and cars. Suitable for vehicle-actuated
control is a function that determines the signal phases with an objective function, based on
a weighted combination of the total time spent (TTS) by the motorized vehicles and by the
bicycles in the system, and their stops.

When cyclists are prioritized, it is beneficial for the throughput of the intersection that the
cyclists are close together, so the green extension can be shorter, as is shown at the municipality
of Hengelo (NL) where cyclists are encouraged to form platoons so that they can be prioritized
(Crow, 2022). Furthermore, a combination of speed advice for cyclists (Dabiri & Hegyi, 2018)
and prioritization should also be researched in future.



Chapter 5

Privacy challenges introduced by
intelligent autonomous systems

Chapters 2—4 explored the system’s functional requirements, data integration methods, and
traffic-related benefits, while briefly acknowledging privacy concerns without examining po-
tential limitations or harms inherent to the IAS infrastructure. This chapter suggests pressing
privacy implications of anticipated changes brought by IAS, highlighting the need for interdis-
ciplinary research and collaboration.

This chapter builds upon the conceptual framework presented in Chapter 1.5, which pro-
vides a solid foundation for clarifying terminology and understanding interactions between sys-
tem components. It shows how the relationship between the machine and the environment is
different for IAS than from other existing systems, and how platforms deployed on top of the
infrastructure eventually lead to an increased control over the environment to enable the safe
functioning. The contributions of this chapter pave the way for further research into compre-
hensive privacy analyses, including the evaluation of existing privacy frameworks and models
in the context of IAS.

This preliminary research provides strong signals to public and private stakeholders by
putting on the map a set of novel potential limitations and risks led by the deployment of these
infrastructures in environment inhabited by people.

This chapter represents unpublished and preliminary research informed by earlier discus-
sions between Vial A., Giirses S., Troncoso C., and Hoogendoorn S.P.
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5.1 Introduction

Unmanned intelligent autonomous systems (IAS) are systems that are designed to be capable
of operating without human intervention. Visions for unmanned IAS in urban environments
include self-driving vehicles, drones and other types of connected robots. These different types
of systems have in common that they need to continuously sense the environment to function,
and to do so safely. This means that IAS, by design, include many sensing facilities. Justified
by safety requirements (Sanchez et al., 2016), they are expected to coordinate data across time
and space, introducing a mobile surveillance infrastructure into the environments that they func-
tion in. The mobile surveillance infrastructure consists of mobile nodes connected through a
complex network of computational entities, continuously sharing sensor data with nearby edge-
cloud servers. These also include platforms that are essential for the provision of economically
viable and scalable digital services. These platforms are envisioned to be used for “measuring,
targeting, addressing, formatting, calculating, standardizing, projecting and forecasting” public
environments (Parikka, 2023). We foresee this newly introduced infrastructure to reconfigure
the lived environment and see these developments as signalizing an infrastructural build-out, the
consequences of which will have privacy implications. Some of these privacy implications will
inevitably enter the field of traffic engineering; changes in traffic flows will need adaptation due
to introduction of IAS, while the field will be able innovate to the science and practice utilizing
the sensing data collected for the functioning of these systems. The main objective of this chap-
ter is to stimulate further research into the privacy implications inherent to the infrastructural
shift! introduced by IAS that arise in traffic engineering use cases, with a specific focus on the
tracking of people that inhabit these environments.

We focus on connected autonomous vehicles (CAVs), a specific instance of an IAS with
sensing requirements>. With the development of CAVs, a variety of applications with significant
implications on policy, society and the urban environment, are expected to be deployed (Milakis
et al., 2017, 2018; Soteropoulos et al., 2019)>. These applications promise to bring benefits
to users, including profound changes to people’s mobility (e.g. self-driving taxis), access to
logistics (e.g. delivery robots) or data collection capabilities (e.g. traffic or environmental

I'The infrastructural shift has already started with the use of cloud technologies, e.g., Amazon Ring’s surveil-
lance network and the platformization of services (Stahie, 2019) is expressed by the rise of a digital infrastructure,
which can be deployed onto conventional infrastructure (e.g., road or transport networks) with the promise of
making these physical structures programmable. These computational infrastructures consist of a vast global net-
work of data centres, network infrastructure and connected devices, as well as software platforms. The promise
of programmability is that by adding a digital layer, the plans and policies of conventional infrastructures can be
abstracted from their underlying physical constraints, that is, can be updated, automated and optimized just like
digital systems. As part of this process, these environments are instrumented in order for digital devices to function
autonomously and safely within them (Toh et al., 2020).

ZFirst examples of the rapid development of surveillance infrastructure using CAVs include individual tracking
(Greenberg, 2019), mobile cameras for police departments (Gordon, 2022), or the surveillance of distancing be-
tween people using camera equipped cars (Bezemer, 2020). In a recent article, the Electronic Frontier Foundation
has documented the re-purposing of autonomous vehicle infrastructures for investigation purposes to serve law
enforcement requests (Guariglia, 2023)

3We highlight the work of (de Sio et al., 2023), which relates values and actions of AVs; sensing is one of those
actions, for which the paper posits criteria of tracking and tracing for the AV to satisfy principles of meaningful
human control.
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sensing). By users we mean people who use a CAV operator’s product, platform or service.
Note that a user can occupy different roles, for instance, a person transported in a self-driving
car, an intelligent traffic signal controller receiving information about observed cyclist traffic,
or a traffic engineer collecting traffic flow data in a sensed area.

Traffic engineering is crucial to the successful introduction of CAVs onto roads (Tettamanti
et al., 2016; Mladenovic & McPherson, 2016; Toh et al., 2020), and the field’s transformation
with the availability of granular sensing data is likely to further entrench privacy issues as some-
thing the field will have to grapple with. The rise of privacy issues in traffic engineering have
been longer in the making. In the past two decades traffic research and practice have witnessed
an increased availability of various types of traffic data*. The large deployment of sensor net-
works in urban environments and the rapid advancements of mobile and communication tech-
nologies have, in another infrastructural shift, enabled the use of different sensing technologies
for the collection of information about pedestrians and cyclists. Using the data from dedicated
or personal sensing systems has allowed traffic research to empirically study human movement
behaviours and to develop, calibrate and validate micro- and macroscopic models. Further, it
has pushed traffic engineering practices to deploy more modern traffic monitoring, control and
management applications, e.g., evolving from fixed traffic signal timing settings to intelligent
traffic light controllers (van der Vliet et al., 2016) using information from approaching traffic
via on-board computers, mobile apps (Verbeeke, 2020) or enabled by Radar on a fixed location
(Lai, 2021).

In particular, in this chapter we focus on location data, as CAVs are likely to collect and share
location data impacting users of these services and this data is likely to trigger the interest of
traffic engineers. Efforts of location privacy scholars have been instrumental in understanding
inherent risks of localization and (re-)identification from users traces. This line of research
gained popularity with advances in another infrastructural shift; the roll out of cell networks
and broad use of Wi-Fi enabled the use of a wide range of location-based services. (Krumm,
2007; de Montjoye et al., 2013; Gambs et al., 2014; Zang & Bolot, 2011; Pyrgelis et al., 2017;
Xu et al., 2017), propose different location privacy preserving mechanisms (LPPM) to mitigate
these problems (Krumm, 2009; Primault et al., 2019; Andrés et al., 2013; Takagi et al., 2020),
and introduce metrics to evaluate the proposed approaches (Wagner & Eckhoff, 2018; Zhao
& Wagner, 2019). However, their application in the currently developed infrastructural shift
enabled by IAS, and here considered with the introduction of CAYV, is not straightforward.

With the advent of self-driving cars, drones or other types of connected robots, the amount
of sensed features in public spaces is expected to drastically surge. We speculate these types of
IAS to become a new source of data for science and practice, in particular, for design, planning,
decision-making and innovative services. This raises broader issues of how traffic engineering
might be used to optimize physical environments for the seamless and safe functioning of these
autonomous systems (e.g., CAVs)>.

4Legislation and regulation have also increased, limiting the storage of privacy sensitive data.
For example, by pushing out pedestrian access to remove complexity and make overall behaviour of traffic
more predictable, or requiring a micro-transaction to insure safe passage when crossing the road (Bogost, 2016).



86 5 Privacy challenges introduced by intelligent autonomous systems

6 It also raises a plethora of privacy concerns for people who inhabit the environment cap-
tured by this infrastructure, which have not yet been studied in great detail by privacy and traffic
engineering communities alike.

“Autonomy” and “intelligence” are the two most important features for the seamless and
safe functioning of unmanned IAS. To act safely in the world, CAV aim to capture relevant
objects in the environment, which inevitably includes people who are not users of the IAS ser-
vice (non-users). CAV researchers and designers argue (Sanchez et al., 2016) that this is a
necessary precondition, and sensing surrounding humans a primary function, to maximize the
safety of all traffic participants. In particular, CAVs must observe, model and anticipate hu-
man behaviour (Ohn-Bar & Trivedi, 2016) inside and, more importantly, outside the vehicle.
Perception sensors provide highly accurate measurements in a continuous stream of data. The
fused sensor data is integrated via distributed computational infrastructures in real-time into an
environmental model of a CAV’s surrounding, i.e., a digital representation of the sensed envi-
ronment including roads, objects and free space. Captured objects can be further classified to
distinguish between, e.g., other vehicles, pedestrians, cyclists or solid obstacles, producing data
that is relevant for — the vehicle’s own functioning aside — among others, traffic engineering.

Since the distinction is important from a privacy perspective, we use the term non-user to
refer to someone who is in the environment of a CAV and captured by its sensing devices.
We assume these are not active or registered users of the service that captures their presence
and behaviour. We characterize a non-user as someone that is not offered mechanisms to be
informed about the collection of data about them from an operator’s platform or service, and
similarly with no options to control nor to protect that data by design, which includes data
minimization and privacy respecting defaults.”

The privacy of non-users (e.g., pedestrians, cyclists outside the vehicle) in CAV settings
should be a major source of concern, yet is a blind spot in the related literature. Existing ap-
proaches in CAV and location privacy literature fail to describe the role of non-users, beyond
their indication as moving objects in the scene, and hence miss to study the pressing location
privacy concerns of this extended sensing setting. Efforts on vehicular location privacy focus
on users, and are mostly directed towards communication networks and protocols, proposing
schemes to protect and evaluate the privacy of broadcasted messages containing sensitive infor-
mation (Eckhoff & Sommer, 2014; Zhao & Wagner, 2019; Asuquo et al., 2018; Nguyen et al.,
2022). The used models, further, rely on discrete events and leave continuous capture of the
environment and the possible tracking of non-users unaccounted for.

Fortunately non-users in a CAV context have attracted some interest in qualitative studies
(Bloom et al., 2017) focusing on the expectations and concerns of people surrounding CAV's
towards the technology. The capture of the environment by sensing devices including so-called
bystanders can be found in literature from other fields, e.g., in the context of life-logging de-
vices, augmented reality technology or camera-based assistive devices (Hoyle et al., 2014; Den-

®As (Forlano, 2019) notes, safety goes hand in hand with economic development and for bolstering the au-
tomotive industry, while narratives of technological determinism around safety testing has shifted, as the many
stakeholders advocating for autonomous vehicles argue that the technologies must be tested in the real world to
prove their ability to function safely (Leonardi, 2010).

"One could argue that non-active users of the service, whose presence can be captured by a CAV, may be
provided some of these controls, but this does not change the problem with respect to the limitations of LPPM and
also the need to be tracked by all IAS services to be provided privacy protections.
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ning et al., 2014; Ahmed et al., 2018; Akter et al., 2020). These works, however, focus on
responsiveness, acceptance and behaviours towards these devices, while they entirely ignore
location privacy challenges of non-users.

We expect the capture of non-users location data through types of IAS such as CAVs to be-
come highly precious for private companies, policy makers, and researchers, which as described
in (Calacci et al., 2019), are already being widely exploited both in a benign and surreptitious
way in many of today’s mobile applications. The ability to sell and purchase location data or
other auxiliary information has become a market practice (Cox, 2022) and frequently the topic
of concern in collaborations between tech companies and law enforcement (Guariglia, 2023).

In the following, we develop a cohesive description of IAS and other established digital sys-
tems, grounding our analysis in the conceptual framework presented in Chapter 1.5 (Jackson &
Zave, 1995) . We characterize the data typical for these settings, and make an attempt to formal-
ize their utility in order to facilitate qualitative comparisons across the systems at hand. We then
speculate on IAS, using CAVs as concrete use case, i.e., pedestrians and cyclists captured by
CAVs to function autonomously, and analyse its components, mechanisms, and interrelations to
help distinguish it from existing systems and position IAS appropriately in the field. Building
on the developed understanding of IAS and its place within the existing digital landscape, this
chapter then presents future research directions, pushing towards more comprehensive privacy
analyses. This chapter makes the following contributions:

* Show how the relationship between the machine and the environment is different for IAS
than from more traditional Location-Based and Mobile Crowdsourcing Systems

* Identify potential location privacy implications for non-users that stem from the infras-
tructural shift introduced by IAS entering physical space

This work analyses privacy for non-users and proposes a solid foundation on the issue, for
both the privacy and transportation community.

5.2 Comparative analysis with established systems

Over the past decade, researchers in the privacy community have developed mechanisms and
metrics aiming at mitigating and evaluating location data-related privacy risks. However, ex-
isting frameworks and models are designed with Location-Based Systems (LBS) and Mobile
Crowdsourcing Systems (MCS) in mind. Unlike IAS, their function does not depend on sens-
ing infrastructure capturing people that inhabit the environment of the mobile device while not
being their users. To better measure the effectiveness of existing privacy frameworks in the
future, it is essential to understand the key differences between IAS and established digital sys-
tems like LBS and MCS. Building on the vocabulary and concepts of the framework presented
in Chapter 1.5, the following provides a comparative analysis of how data is represented and
utility is derived in each system.



88 5 Privacy challenges introduced by intelligent autonomous systems

5.2.1 Location-based systems

Mobile or vehicular LBS use location awareness to provide users of mobile devices with specific
services and location data mining algorithms to determine points of interest and traffic patterns
(Andrés et al., 2013).

Typically, LBS are initiated via user location requests, e.g., to find nearby points-of-interest
(Pol), check-in restaurants, emergency call, or informing about an accident. A user’s location
is reported leveraging the infrastructure’s positioning system, e.g., GPS satellites, cellular base
stations, or Wi-Fi routers distributed on mobile devices, e.g., smartphones, wearables, or vehi-
cles. The interaction with the environment is limited to input from and to the user (based on the
location of the user). The machine changes state based on inputs from user and the location of
the user, and eventually effect the output. The generated location data enables a service provider
to track users across location, giving the service provider the possibility to build services based
on locations of many users (e.g., traffic monitoring), which may also effect the environment
(e.g., users may go to certain Pol, or change paths to avoid traffic).

Data — The state of a user at a certain event is typically modelled as a triplet (Shokri et al.,
2010),
XYBS — (identity, position,time).

The identity of a user can be defined by any feature that makes a user distinguishable from
another. This distinguishability provides the distinct association between a user and the location
information of a request in time. Typical LBS use single locations, i.e., revealing the current
location once to a service provider to obtain a service (e.g.,“nearby Pol”), whereas other LBS
report locations more often resulting in trajectories (e.g., routing and navigation services, or
sports tracking). The time distribution of reported information can thus vary between snapshot,
sporadic, or continuous (Shokri et al., 2010; Asuquo et al., 2018), where the latter is more
common in vehicular LBS.

Utility — Let U = {u,, },—1.~ be a set of users, where N is the number of users. At time k the
state X,?BS of a user u; is shared upon request of the user’s mobile device with service provider
SP. In return, a utility is obtained by the user at time k+ 1. Let F = {fLBS}, _; .3/ be the set of
utilities, where M is the number of utilities a user can obtain 8. More generally, we define the
user-centric utility to depend on the service query of a user, the granularity and accuracy of the
shared location, and can be represented as

LBS
Xk

Up « 7~ SP

| fLBS i I

\ k+1,j /

Note that, in existent location privacy literature, LBS are typically modelled such that the
service provider is not linked to any utility. We argue, however, that the service providers may
receive some utility g in return of the offered service as represented by the dashed arrow. This,
for instance, can be in form massive collection of request data which, most often, is exploited

81n some cases several utilities can be obtained from sharing location information, e.g., maps, routing, traffic
updates, social networking, or context advertising.



5.2.2  Crowdsourcing systems 89

for operational improvements, developments of further services (e.g., how busy is a Pol?), and
monetization.

5.2.2 Crowdsourcing systems

Crowdsourcing systems leverage a platform’s available sensing and/or processing capabilities,
frequently from an unknown number of participants, to solve tasks in a distributed manner.
Mobile and (manned) vehicular crowdsourcing applications are mostly location aware (Chatz-
imilioudis et al., 2012), and capture single or specific indicators collectively using positioning,
sensing and processing infrastructure. In contrast to LBS, the interaction with the environment
is based on user interaction. These systems typically link the location data with measurements
of application-dependent sensors. The machine thus changes state based on measurement and
location of each user. The location and sensing data enable provider to build services that ag-
gregate location and measurements of many users (e.g., pollution sensing). In other words,
MCS execute data collection service via the platform — we like to call, observations as a ser-
vice (OaaS). The results may impact the environment, e.g., user behaviour, how you organise
resources to clean up the pollution. The geo-located measurements are typically shared with
servers to attain a particular global objective that can, in some cases, generate the foundation
for LBS applications. For example, Google Maps relies on crowdsourcing for the generation
and updating of their maps, while these maps can then be used to provide location-based ser-
vices to users (e.g., routing).

Data — Similar to LBS, crowdsourcing applications typically include /ocation and time informa-
tion. Crowdsourcing settings differ from LBS as they may report a measurement from various
types of sensors, e.g., radiation level tied to the timestamped location of a user (Safecast, 2022),
or acceleration measurement from a smartphone (Matarazzo et al., 2018). The data can be
modelled as

XMES — (identity, measurement , position,time),

where the type of sensor used to collect measurements depends on the utility of the applica-
tion. In contrast to LBS settings, however, data is typically collected continuously over longer
periods of time. Note that MCS leverage the positioning infrastructure, also used in LBS, to
link measurements with location data and turn them into crowdsourced information. For exam-
ple, accelerometer data collected from smartphones can be linked with positions and provide
valuable information on traffic conditions (Mohan et al., 2008).

Collected data points can be linked via personal user identifiers often present in more tradi-
tionally LBS settings, or, more indirectly, using a quasi-identifier obtained by combining each
user’s (unique) device identifier, the location and other available information (Boukoros et al.,
2019).

Utility — In contrast to LBS, and as described in (Boukoros et al., 2019), the utility cannot be
captured with a user-centric approach as crowdsourcing benefits from aggregating data collected
by a large amount of users. Let thus Z,‘c/ be the set of all MZ measurements received by the MCS
operator from a subset of data collectors V, where V C U, such that 2/ = {ZZ1 - ,ZZM" }, and
where ZZ‘ includes X,?’ICS, i.e., data received at time k from user u;. Further, let W be a set
of users that are not data collectors, where W C U and W  V, who can obtain utility without
collecting and sharing measurements.
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This form of collective and value-based utility f,?iCIS exists through users (here represented

as dynamic set Vj) that act as data collectors, however, applications may append LBS-like user-
centric utilities f,?fls " once enough data is available (e.g., openstreetmap). In other words, the
aggregated utility for the users can be the same as for the service provider (and depends on the
number of participants?).

5.2.3 Intelligent autonomous systems

IAS include, based on notions introduced in Chapter 1.5, all the users, the respective sur-
rounding environment, as well as the devices (e.g., CAVs) and server infrastructure of the util-
ity/sensing provider.

Jackson & Zave (1995) avoid to provide a literal definition of the environment, but describe
it informally as mechanisms of the (mechanical) apparatus and its use (by users), where envi-
ronment phenomena can be understood as predicates characterizing sets of events. We complete
this informal definition in three ways: (1), we introduce a dynamic dimension including static
and dynamic objects (e.g., roads, animals, and non-users), local conditions (e.g., climate, traffic,
and network topology) and the own location of the mobile device as input that may impact its
safe functioning. The dynamic nature of environment states may change the state of the ma-
chine, which may require adaptive actions and reactions of the system to user input; (2), we
expand the temporality of phenomena as we regard events to be successive, but also simultane-
ously possible. To be autonomous and adaptive the environment must be sensed (and processed)
across infrastructure, possibly sharing data about one or multiple events, while potentially at the
same time; and (3), we consider an additional component for the view of time, as phenomena
are predictable based on past events. In other words, the potential next state in the environment
is predicted based on previously captured data to eventually decide upon the next state of the
machine.

Now, let us focus on the interaction between the machine and the environment. According
to Jackson & Zave (1995), if the machine is to interact with the environment some phenom-
ena must be shared by both, while machine- or environment-controlled events are initiated by
either the machine or the environment. For example, if there are no users interacting with a
traditional car, no sensing event (e.g., throttle position) will ever occur, regardless of the ma-
chine’s behaviour. In contrast, our framework regards the possibility of control to be detached
by the physical presence of users’, as the function of the machine may primarily be dependent
on the environment state excluding (or putting second) user input. As we shall see later, when
exemplifying IAS using CAVs, the idea that some environment-controlled events might be con-
strained by environment properties, and thus the machine can exploit these constraints (through
programmability) to prevent events from occurring, is surprisingly accurate.

Typically, the environment is where the user is.
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In order to provide further detail and highlight the changing role of non-users given previous
works, the following section provides more detail into each of these aspects by comparison
with existing commonly used systems. To do so we make a set of assumptions about various
components of the system, e.g., according to the flow of information, and analyse what sets it
apart and enables the shift from common infrastructures enabled by LBS or MCS.

Connected autonomous vehicles

To make our case concrete we focus on CAVs, a specific instance of IAS where the material in-
frastructure is exploited via platforms to provide services and empower, for instance, transport
applications like self-driving cars. Thereby, the surrounding environment is continuously cap-
tured by the infrastructure as a necessary precondition to self-operate in the environment. The
available sensing and processing infrastructure enable services based on each CAV to theoret-
ically navigate the environment in full autonomy. Furthermore, the connectivity infrastructure
enables communication between vehicles (e.g., via V2X) and to the edge cloud server (e.g., via
5/6G) yielding offloaded application-dependent computation services while maintaining low
latency and high accuracy. Localization, perception, tracking, and control services, power a
large number of applications while in interplay with the offloaded data and map information.
This not only allows to improve situational awareness of their environment, e.g., collaborative
object localization at intersections as an important task for the safe and efficient autonomous
operation, but also enables a variety of secondary applications, e.g., using data for traffic engi-
neering/surveillance applications.

CAV can include LBS and crowdsourcing services too. For example, a user may request a
ride sharing service via mobile phone (i.e., mobile LBS), and eventually be driven by a self-
driving car (i.e., vehicular LBS) to the desired destination. This — IAS as means of transport
— 1s what is commonly assumed to be the primary mobility applications of urban CAVs. On
the other hand, the utility/sensing provider may facilitate other services based on CAVs to em-
power secondary applications. For example, a municipality (dependent on the infrastructure
of utility/sensing provider) may access observations about different mode choices of people or
the green canopy across the city, and thus exploit the sensing done by the infrastructure (e.g.,
fleet of self-driving cars) for transport, urban planning or environmental monitoring tasks (i.e.,
MCS).

Table 5.1 provides an overview of main distinctions between IAS (e.g., CAV), LBS and
MCS, but also with related existing real-world applications that may, at first glance, appear to
be very similar. We distinguish between the surveillance infrastructure enabled by IAS (e.g.,
CAV) and existing ones in six distinct ways: 1) it is not dedicated to surveillance applications,
2) it includes non-users, 3) user input is secondary, 4) it increases non-user sensing without
additional physical infrastructure, 5) it enables responsiveness in real-time and 6) is used to
make physical infrastructure programmable.

1. While most LBS and MCS are also not primarily dedicated to surveillance, a misleading
analogy can be made with surveillance deployments expanding in public spaces (e.g.,
CCTV) and on private grounds (e.g. Amazon Ring (Stahie, 2019)), typically leaving
non-users no possibility to self-control opt-in or opt-out choices (Zhang et al., 2021b).
CCTVs, however, are dedicated to surveillance whereas CAVs sense to operate safely in
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the environment.

. The necessity of sensing the environment — ideally from many CAVs — includes human

non-users and is what sets it apart from existing systems, e.g., MCS infrastructure that is
usually aimed at sensing a single or specific indicator. These (non-users) are considered
as one of the environmental objects and differ from users as they have not subscribed
to the service nor do they want to be part of it. While this problem may exist in some
MCS applications (e.g., Google Maps), the capture of non-users in CAVs, however, is
precondition for the safe functioning and operation. Here again, a misleading analogy
could be made with existing applications such as CCTV, Amazon Ring or Google Street
View, where non-users are captured by a camera at the entrance of a shop, in the garden
via the neighbour’s doorbell, or in stitched virtual-reality photos done by sensing vehicles
walking along the road. These, however, do not rely on the sensing of the environment to
function.

. As the input is aggregated to capture the environment across infrastructure, the input of

the user becomes secondary. The input from the environment may change the state of the
machine which, eventually, may require adaptive CAV actions as well as reactions of the
system to user input (e.g., change how you go from A to b).

. The mobility of the devices and the existing material infrastructure make it possible to

cover the entirety of an area with a single device. Adding more devices, on the other
hand, can be achieved without adding more material infrastructure, and can help increase
the spatial and temporal granularity in an area.

. IAS (e.g., CAV) can be distinguished from LBS and MCS as it must react in real-time

according to the sensed environment, while in some ways resembles CCTV, e.g., in the
context of license plate readers. Using input data from the environment, however, CAVs
must predict the next possible state of all things in the environment. Based on this, they
change state, adapt, act in the environment.

. The introduction of computational infrastructure onto our common physical infrastruc-

tures make it become programmable. For example, the programmability of the infras-
tructure further increases the possibility of the machine to control the environment to
enable its safe(r) functioning (e.g., traffic lights, road engineering, placement of trees). '°

10A5 the data collected about the user-context is similar to LBS or MCS setting, we refer the interested reader

to respective literature that study location-based user-centric and collective value-based utilities. For the rest of
this chapter, we concentrate our attention to the capture of the environment by CAVs, in particular, to the role of
non-users.
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) Amazon Google
LBS Crowdsourcing IAS CCTV Ring Street View
Target User User User Non-User Non-User Non-User Non-User
Deployment Individual Individual Individual = 0 orked Individual  Individual  Individual
or networked or networked
Information Loc Loc Loc Meas Meas Meas Loc
and Meas and Meas at Loc at Loc at Loc
Utility . . User centric . . . .
(on the box) User centric Collective Collective Collective Surveillance  Surveillance =~ Mapping
Sensors Mobile Mobile Mobile Mobile Static Static Mobile
llecti . i ) )
Collection Often sporadic Regular Sporadic Continuous Continuous  Regular Snapshot
Pattern or regular
Spatial . . ) . . . . . . . .
User centric User centric User centric ~ Mobile section | Static section Static section Mobile section
Coverage
Multi- 1
Data Type Tabular Tabular Tabular ulti-moda Stream Stream Image

Stream

€Ts

SWA)SAS snowouoine JuSII[[u]

€6



94 5 Privacy challenges introduced by intelligent autonomous systems

Data — The position of the CAVs are known given precise positioning systems. When perceiv-
ing the environment, a set of measurements (i.e., scan) is generated at the specific point in time
that includes static and dynamic objects. In this process, the raw data captured from available
sensors’ fields of view, is processed through a range of detection, localization and classification
assignments to enable the CAV to “see” the environment in which it operates. Typically, and in
contrast to LBS and MCS, the capture is a continuous and uninterrupted stream of data, required
to guarantee the operation in real-time based on complex data. While dynamic objects can also
be other CAVs, animals or robots, we focus on human environmental objects, i.e., non-users, to
evaluate their privacy. A non-user can only be observed when in the field of view of a sensor,
while is defined in object classes (e.g., pedestrian, cyclist) according to a certain likelihood,
mostly relying on sensor, algorithmic and computational performance. Humans are therefore
reduced to objects, which is underlined in the way their subject type is erased. A captured
non-user object, can be described by its dynamic state at a specific time

(dynamic state,time,object).

The dynamic state vector typically includes position and velocity and can, for example, be
augmented with acceleration. Non-users generate data but not from their personal device and
their object attribute is not linked to a permanent and unique identifier that is kept when an
object leaves the field of view. We assume the case where there is no personal device that can
be sensed to eventually show that even in this setting there are privacy problems.

Utility — As described above IAS may include LBS and MCS applications that provide user-
centric kafls or collective f,z{(fs utilities for users. We argue, however, that the utility function
is augmented to have some primary utility from capturing non-users f,ﬁ? to enable the main
function of CAVs. In fact, applications deployed by service providers (e.g., self-driving) rely

on the precise perception of non-users to generate utility for users and themselves.

It becomes clear that the user-centric f,!“fls or collective f,?icls utilities are conditioned on

the primary utility f,gAS. Platforms deployed on top of the infrastructure eventually lead to
an increased control over the environment to enable the safe functioning. The expansion of
the environment as described in Jackson & Zave (1995) to something more dynamic and less
user-centred, which is exposed to constant change and transformation, is inherent of IAS and
captured by the proposed framework. The environment is conceived as all sorts of things, which
collapses differences between objects and humans. The relationship between the machine and
the environment is thus different for IAS than from other existing systems. A thought provoking
realization, however, is that the service utility could decrease/or become negative, e.g., if non-
users make themselves unrecognizable for sensors (Heathman, 2017), or increase with roads
closed to non-motorized traffic. We anticipate that the interplay with material and computational
infrastructure will generate tussles similar to what has been observed at the beginning of the
twenty first century in internet infrastructures (Clark et al., 2002), ultimately affecting the utility
provided to users, while potentially also to non-users.
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5.3 What’s next

The comparative analysis provides a qualitative understanding of key differences between IAS
and established digital systems, highlighting the need to investigate if existing privacy ap-
proaches apply to non-users, and IAS infrastructure in more general.

A comprehensive privacy analysis of IAS must challenge existing privacy frameworks and
models. Theoretical and quantitative evaluation of location privacy preserving mechanisms
(LPPMs) is needed, drawing inspiration from Boukoros et al. (2019), while potential extensions
could involve replacing Geo-Indistinguishability (Geol) (Andrés et al., 2013) with Geo-Graph-
Indistinguishability (GeoGI) (Takagi et al., 2020). A practical application could be derived
from traffic engineering scenarios, e.g., where individuals are captured by CAVs for traffic
monitoring, control, and management purposes.

Toy example — Building on recent studies (Salazar-Miranda et al., 2023; Vial et al., 2023b), we
consider a scenario where CAVs enhance situational awareness for traffic monitoring facilities,
previously limited to static sensors. In this context, CAVs monitor temporarily deployed!!
urban road infrastructure, such as pop-up pedestrian bridges or cyclist lanes. Non-user are
captured by one or more CAVs and can described by its dynamic state at a given time. Note that
despite our understanding of CAV data production, a dearth of information remains regarding its
utilization, particularly in aspects like real-time dissemination and offline analysis. Building on
Liu & Gruteser (2021) proposal for offloading data capture to servers and shared databases, this
assumption seems reasonable given common data market practices, such as Tesla’s Autopilot
’snapshots’ (Harris, 2022a). From a utility perspective, CAV data can help assess the impact
of temporary measures, infrastructure usage, or route choices by measuring pedestrian/cyclist
traffic characteristics on alternative routes were previously unobserved.

With this in mind, an adversarial scenario will have to be determined, including both adver-
sary capabilities and goals, to examine the application of traditional privacy frameworks. Using
real-world data or simulations, it can be evaluated (with appropriate metrics), how LPPMs ap-
ply in providing both utility necessary for the functioning of safety-relevant applications of the
system and privacy for non-users. We expect, however, that the quantified analyses will reveal
the weaknesses of existing privacy frameworks by showing that existing LPPMs impose unac-
ceptable price on utility and that many of them do not even provide good privacy guarantee for
non-users.

Future work could also explore the role of consent solutions in visual systems, similar to
those used for online photo sharing, which have proven challenging to implement in non-user
contexts (Olteanu et al., 2018). Additionally, investigating the effects of non-user privacy on
CAVs operating on dedicated roads could provide valuable insights. Moreover, the research
community needs to qualitatively examine the impact of this new mobile surveillance infrastruc-
ture on society and urban spaces, acknowledging potential conflicts that arise when technology
becomes integrated into infrastructure. We also invite consideration of fundamental questions:
can there be utility for non-users, and can one only have privacy if part of the infrastructure?

"'"These temporary deployments are emergent as safety and comfort of pedestrian and cyclist spaces influences
the quality of life in cities, but crowding can limit these gains (e.g., perceived level of comfort on a busy walking
or cycling facility during city events).






Chapter 6

Conclusions, implications and
recommendations

This final chapter presents the main findings and overall conclusions of this thesis, as well as
the implications for practice and recommendations for future research.

6.1 Main findings

The main objective of this thesis is to investigate the potential utility of pedestrian and cyclist
data generated from moving sensors (IAS or MSP)! for advancing traffic research and practical
applications. Additionally, it examines the broader societal implications associated with the
capture of such data within urban settings. To achieve this goal, four main research questions
(RQ) were defined and explored in a series of studies. In this section, the main findings of these
studies are highlighted by answering the research questions set out in Section 1.4.

What are the necessary technical and functional requirements to a pedestrian and cyclist
traffic sensing system that uses moving sensor platforms to collect data? (RQ1)

Pedestrian and cyclist data can be used across various active mode research tracks, with stud-
ies ranging from comprehensive network analysis to detailed link, or cross-section demanding
more or less time-sensitive information. Current data collection methods, however, are often
restricted to narrow areas of active mode research because of their inherent limits in spatial and
temporal resolution, intrusiveness, and ability to handle dynamic network conditions. Literature
suggests that integrating sensor mobility, given a certain quantity of sensors, can enhance the
performance of wireless sensing networks. The optimal placement of mobile sensors is crucial
in achieving comprehensive coverage and accurate data collection. For instance, network-wide
microscopic sensing tasks can benefit from densely deployed sensing platforms with high cov-

' A reminder that while generation of extensive perception data including pedestrians and cyclists is predomi-
nantly propelled by the progression towards IAS, as has been exemplified with CAVs, the generation of data does
not mandate that sensor platforms must possess autonomy. Both IAS and human-operated MSP, are capable of
capturing information about their surrounding environment. Chapter 2, 3 and 4 present findings applicable to both
IAS and MSP settings, with an occasional preference for illustrating one over the other for argumentative purposes.
Notably, Chapter 5 focuses on IAS; however, it’s important to note that many of its conclusions can be transferred
to settings involving MSPs.
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erage ratios, whereas local macroscopic sensing applications can thrive with fewer, but more fo-
cused deployments. A multi-layered hybrid architecture is suggested as it leverages distributed
and decentralized communication and computation, enabling sensor nodes to locally communi-
cate with surrounding ones while efficiently scaling with increasing network size and utilizing
parallel processing for real-time data analysis. The multitude of scenarios in which real-world
data represents a potential asset for solving research questions necessitates a thoughtful map-
ping of objectives to sensing requirements and network characteristics, tailored to specific con-
texts and environments. Overall, it is suggested to leverage current technologies and maximize
the novelty of data received at any given moment while avoiding data congestion. With the
increasing amount of data being generated, processed and potentially stored, edge computing
is a necessary element of the processing layer. Advancements in perception and powerful deep
learning approaches have made it possible to accurately capture the environment surrounding
moving sensor platforms, however, ethical, privacy, and security concerns are yet to be ad-
dressed if used for future traffic surveillance applications.

What specific adaptations are required for advanced state estimation and data association
methods to effectively infer trajectories from data collected by both static and moving
network-constrained sensors? (RQ2)

Inferring individual trajectories opens up opportunities for investigating diverse areas of study
within active mode research. A review of literature on state estimation and data association
methods suggests that the origins of most these approaches predominantly lie in ground or
airborne autonomous systems; domains that have significantly contributed to the development
of methods. These approaches, however, typically consider spatially restricted and short time
horizons (as they are mainly developed for safety-critical applications), and/or are designed
for unconstrained motion in two- and three-dimensional space (e.g., airborne ground moving
indicators as sensor). The network-constrained multi-target tracking framework proposed in
Chapter 3 fills this gap and extends the traditional target tracking representation with a dis-
crete component placing the target on a given road segment in the network. Simulation results
particularly highlight network-constraint effects for efficient target predictions over extended
periods of time, and in simplifying the associations process, as compared to not utilizing net-
work structure. Furthermore, the beneficial element of so-called negative information, reporting
non-presence of targets, is highlighted and provides convincing evidence on the relevance of all
types of data. The versatile framework is applicable across many sensor settings where pres-
ence and non-presence of targets are available from a sequence of measurements, and provides
researchers and practitioners with a means to draw a micro- and macroscopic picture of the
traffic flows in a defined network for a variety of use cases.

How can this information be leveraged to improve traffic control and safety? (RQ3)

A review of relevant literature and real-world applications indicates a mismatch of cars and other
modes (the study in Chapter 4 focuses on cyclists) data shared with iTLC as a means to opti-
mize traffic at intersections, making it difficult to efficiently optimize traffic control and improve
safety. Because existing solutions to improve the situational awareness of traffic controllers
come with a considerable cost of deployment and maintenance, Chapter 4 investigated how us-
ing cyclist observations from mobile sensing platforms could augment the situation awareness
of traffic signal controllers, and thus enable prioritizing cyclist and reduce lost times in an ef-
fective way. The study put the framework proposed in Chapter 3 to the test and results from
a simulated study highlighted the potential of using CAV-generated cyclist observations to pri-
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oritize cyclists and reduce lost times as compared to not using this novel type of information.
The study indicates that already a low penetration rate of CAVs, and therefore a limited number
of available observations, can reduce the delay for cyclists or even avoid stops, using a simple
algorithm. Simulated results also confirmed that observing non-presence is beneficial for all
traffic. The study proposes a viable approach for conducting practical experiments leveraging
current iTLC infrastructure in any sensing setting that transmit target observations indicating
their presence or non-presence.

What are the interrelated potentials and conflicts introduced by the new mobile sensing
paradigm? (RQ4)

Previous studies acknowledged privacy-related ethical issues. The study presented in Chapter
5, however, provides a more detailed assessment of limitations, risks, and potential harm asso-
ciated with an IAS infrastructure. The privacy of non-users (e.g., pedestrians or cyclists outside
the vehicle) in IAS-like setting is a blind spot in both traffic and privacy research literature. The
analysis and comparison of existing systems (LBS and MCS) vs IAS shows that the privacy
implications stem from this newly introduced infrastructure and holds the potential to reconfig-
ure the lived environment. We see these developments as signalizing an infrastructural shift. In
contrast to LBS and MCS, the utility function in IAS is augmented to have some primary utility
from capturing non-users to enable the main function of the IAS. We thus concluded that the
user-centric or collective utilities are conditioned on the primary utility. These findings gesture
towards that location privacy implications will inevitably impact traffic research and practice?,
challenging possible benefits induced by the introduction of IAS (e.g., optimized traffic flows
or the availability of novel data). The study outlines the research to be performed, particularly
presenting the urgent need for a comprehensive assessment of existing privacy frameworks and
models. The findings shall motivate traffic and privacy scholars to work together better un-
derstand inherent conflicts implied by IAS-type data collection infrastructures, e.g., related to
location privacy, and develop new approaches and mechanisms to better balance utility and
privacy.

6.2 Overall conclusions

Based on the chapter findings, this section draws overall conclusions to the main research objec-
tive, highlighting the technological foundations that enable utility and the societal implications
that emerge from the development of this sensing paradigm.

At the technological level, progress primarily driven by fields related to IAS demonstrate by
implementation that available technology, as we exemplified with CAVs, effectively supports
key aspects of the proposed sensing paradigm today. This suggests that data on pedestrian and
cyclist presence, locations, and movements is being generated, while more or less available,
enabling the potential for informed research and applications in active mobility at both macro-
and microscopic-levels. Thorough review of existing literature throughout the chapters of this
thesis, however, reveals a notable absence of both theoretical frameworks and practical im-
plementations for the sensing paradigm, across multiple scientific disciplines, highlighting the

2We note that privacy implication within traffic engineering have long been in the making, i.e., mainly because
of the increased availability of recent data collection methods, pushing practices to deploy more modern traffic
surveillance.
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need for further investigation how the data will be collected to substantiate its full benefits. The
multitude of scenarios in which real-world data represents a potential asset for solving research
questions necessitates a thoughtful mapping of objectives to sensing requirements and network
characteristics, tailored to specific contexts and environments. For instance, network-wide mi-
croscopic sensing requires high quantities of sensor platforms and large coverage ratios for
detailed movement tracking, whereas local macroscopic sensing can benefit from limited cov-
erage for acceptable traffic estimates. Notably, this work suggest that even with limited number
of sensor platforms, it may be possible to meet specific microscopic application requirements,
potentially at a network level. This underscores the potential of adopting data-minimization
principles in sensor deployment, optimizing resources while maintaining acceptable levels of
privacy and utility. Furthermore, our work highlights the value of incorporating information
on target absence, which can provide critical insights even in challenging environments. To
advance this work from its current stage, further improvement of system architectures (e.g.,
towards more decentralised processing schemes), algorithms, and external control systems is
crucial. From a pure technological perspective, these enhancements will be essential for transi-
tioning our work towards practical deployment.

The sensing paradigm presented in this thesis is deeply intertwined with broader societal
factors, including technological, social, and institutional considerations that collectively shape
distinct usage patterns and raise important ethical concerns. The ownership of deployed infras-
tructure and associated data creates ambiguity, affecting how data will be collected, managed,
analysed, and utilized. The realization that industry will play a prime role in determining archi-
tectural design choices, which in turn influence scholarly activities within this domain, must be
considered. Furthermore, academic conversations surrounding the privacy concerns of pedestri-
ans and cyclists within IAS still seem to often overlook critical nuances. This work highlights
the evident gap in existing privacy and transport literature on this specific subject. Our first
examination into location privacy implications uncovered an intriguing perspective, wherein
pedestrians and cyclists can be understood as not active beneficiaries (i.e., non-users) but rather
as a entities within a system that do not directly provide them with services or benefits. This
suggests that existing location privacy preserving mechanisms may not function as intended as
they are designed for users of a system. This intuition warrants further comprehensive investi-
gation to confirm its validity. This work also suggests broader risks extending beyond individual
location privacy concerns; optimization-driven systems, designed to exploit behaviour and en-
vironment data for value extraction, and risks related to the concentration of power and control
through infrastructure ownership. As we move forward, it is important to consider the broader
implications of these technologies and ensure that their benefits are equitably distributed, rather
than perpetuating existing power dynamics. Bridging scientific disciplines seems essential to
reevaluate existing location privacy preserving mechanisms and their design principles, as well
as more nuanced discussions about the responsibilities of infrastructure owners.

6.3 Implications for practice

Given the interdisciplinary nature of the research, this thesis offers an array of implications
for practice. In the following, we elaborate upon three categories of implications for practice:
addressing real-world challenges, the socio-technical understanding of stakeholders and actions
aimed at enhancing privacy and security.
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Addressing real-world challenges

To achieve effective problem-solving, we recommend a proactive approach that prioritizes
analysing utility and limitations from the outset. Practice is encouraged to identifying the
many real-world problems and understanding their context, as solely throwing technology at
often misunderstood issues has not proven effective in the past. There are many cases where
data is lacking or inadequate, creating opportunities for innovative data collection like the one
presented in this work. For example, collecting data using one or a fleet of mobile sensing
platforms can be beneficial in filling such data gaps, e.g., in traffic monitoring at temporarily
deployed road infrastructure or safety-related sensing at intersections. Insights from this thesis
suggest that designing, deploying, and operating such sensing system requires careful consid-
eration of configuration options that align with specific performance metrics. This work hints
at many interesting use cases where architectural and data strategies, i.e., determining the mini-
mum amount of data required for specific tasks, still need to be determined. Practice should not
be dependent on the IAS industry setting standards maximizing their utility functions, as col-
lecting data at a local scale, even using more traditional MSPs like sensor-equipped cars, buses,
trash-trucks, drone, bicycles, and so on, can already offer significant value both at micro and
macroscopic level. This is not a blind promotion of the presented sensing paradigm; rather, we
do emphasize the importance of readily available data sources in meeting essential needs across
various use cases. The algorithmic contributions of this work, together with their application in
a traffic control context, imply that already simple algorithmic solutions can be of interest for
specific use cases in the real-world.

Socio-technical understanding of stakeholders

Data and compute are the two most important elements for the deployment and operation of
such sensing infrastructure. A brief look at today’s digital technology industry shows a concen-
tration of both these resources in the hands of a few corporations, making decisions that rein-
force their market dominance, while exerting considerable influence on science and policy and
society as a whole. Decision-makers must thus understand the politics and economics of com-
putational infrastructure’s impact, drawing insights from other infrastructural shifts, to ensure
informed decision-making 3. Policymakers and practitioners must actively participate in dis-
cussions about design, deployment and operation of sensing infrastructure associated with IAS
or MSP — for instance, advocating to use the generated data for advanced traffic surveillance
— as it is easy to see how missing involvement could lead to a situation of limited influence
over data usage. After the deployment of a new digital infrastructure, it’s often incredibly chal-
lenging, if not entirely undesirable by powerful stakeholders, to reverse or undo it. This rings
especially true in the case of a surveillance system fueled by vast quantities of data, as history
has demonstrated. Policy-makers and practitioners are sometimes offered to tap into live ve-
hicle operation data provided by tech firms, presented as an attractive alternative to traditional
data collection methods — or as only data option. This underscores the shift towards integrating
operational insights from emerging IAS or MSP directly into policy frameworks and strategic
traffic engineering and planning.

3Consider again the following scenario; if traffic engineering were solely influenced by CAV companies advo-
cating for pedestrian-free streets to enhance their systems’ efficiency and safety, and thus maximize their primary
utility function, it could lead to decisions that prioritize corporate interests over public welfare. This illustrates
the necessity for proactive engagement by policymakers and transportation practitioners as to ensure these new
sensing infrastructures serve the public interest and align with societal values, rather than just serving commercial
agendas.
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Actions for privacy and security

This sensing paradigm generates unprecedented amounts of data in and of urban environments,
underscoring the importance for incorporating comprehensive privacy, security, and ethical
frameworks to become integral to the design process, ensuring a responsible approach to ur-
ban innovation. Policy makers and practitioners must thus not shy away of modelling and
analysing potential risks and harms early in the development process, as to proactively imple-
ment measures to mitigate those. Policies must be investigated that may regulate the use of
secondary data as ways to preserve public privacy Bloom et al. (2017). Centralizing data, for
instance, raises serious privacy and security concerns, risking unauthorized surveillance, pro-
filing, and discrimination among others. Applying privacy mechanisms, decentralization, or
federated systems can offer viable solutions and need to be further investigated and developed.

6.4 Recommendations for future research

Although the research conducted in this dissertation has valuable contributions, it serves as an
initial step towards cultivating a comprehension of the forthcoming sensing paradigm. The gen-
eration of detailed traffic information from IAS or MSP opens up several exciting avenues for
traffic researchers to explore the dynamics of cyclists and pedestrians within the urban envi-
ronments. In the following, we provide further details about prospective avenues for research.

Data fusion, multi object tracking and scene understanding

Future research in the field should aim at harnessing network resources more efficiently by
leveraging a deeper understanding of real-world traffic dynamics and the environment. A natu-
ral first step is to extend the tracking framework presented in Chapter 3. We propose advancing
the model to incorporate more sophisticated kinematic models that could improve short-term
prediction accuracy, while keeping inherent computational cost in balance. Furthermore, de-
veloping methods to handle sparse data is an interesting area of research. To enhance data
association logic and prediction performance, one could explore fine-tuning pre-trained mod-
els or transfer learning, as well as incorporating more advanced social and behavioural mod-
els into a scene understanding framework. Utilizing rich contextual information from diverse
data modalities could improve overall model performance. However, such extensions must
be carefully evaluated to ensure they align with existing assumptions underlying the proposed
framework. Another interesting direction considers the Markov graph transition probabilities,
as these could be informed by learned traffic or environmental patterns. Overall, we propose
exploring multi-modality as a research direction, building upon our sensor setup from Chap-
ter 2. By integrating camera data, for instance, a scene graph could be build and represents
entities and their relationships, such as buses and pedestrians. One possible avenue may thus be
combining symbolic and sub-symbolic approaches with recent generative models to leverage
richer data representation, improve predictive models, and enhance holistic understanding.

Towards next generation traffic surveillance

In Chapter 2, we analysed the requirements of the sensing paradigm. In Chapter 4, we explored
the utility in a traffic signal control scenario. Future research should explore potential appli-
cations in various traffic surveillance contexts, where a systematic approach is needed to map
objectives to sensing requirements and network characteristics for specific contexts.
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Traffic Impact Assessment — The new source of traffic information could for instance
be used to assess safety risks for active modes at various locations in the network. Fu-
ture work could assess the impact of newly introduced infrastructure, e.g., bike lanes,
pedestrian zones, or traffic calming measures on cyclist and pedestrian behaviour. For
instance, compare mobile sensing platforms’ data before and after infrastructure changes,
potentially even on a lane-level as suggested in Chapter 3, to assess their impact on traffic
flows, safety, and overall mode choice. Surrogate safety measures related to active modes
(e.g., time to collision) could be measured for uncontrolled intersections and roundabouts
in real-time.

Traffic Monitoring — Traffic volume, vehicle speeds and cyclist/pedestrian behaviour
may, for instance, help infer high-risk areas, which, in-turn, could lead to recommenda-
tions for infrastructure improvements and traffic management strategies. Furthermore,
future research could build upon recent works using mobile sensor platforms to monitor
infrastructure conditions, for instance, mapping properties of sidewalks, bike lanes, and
active mode networks in more general (Vogt et al., 2023). Analysing these properties
against spatiotemporal traffic densities, velocities and flows can help develop strategies
to enhance active transportation options. The selection of mobile sensor platform type is
important, as described in Chapter 2. Attributes such as speed, height, or angle can im-
pact data quality and relevance for specific sensing tasks. Extensions of the traffic control
use case presented in Chapter 4, may investigate how to detect congestion, conflicts, or
safety hazards involving cyclists and pedestrians. This could be of value to provide timely
alerts to traffic control entities, or traffic management centres and road users to mitigate
potential risks.

Traffic Control — Future work should dig into traffic prioritization strategies to enhance
safety. A high level of confidence that the conflict zone is clear before clearing is essen-
tial. For instance, the model used to identify occlusion in Chapter 4 should be revisited.
Location and timing may impact occlusion severity, suggesting a need for investigation
into place-dependent occlusion models. Additional sensors (static or moving) may be
employed to verify clearance. However, findings of this thesis suggest investigating the
impact of various sensing characteristics described in Chapter 2, such as sensor speed,
placement, and coverage, on specific safety metrics. Furthermore, abundance of available
information in this paradigm opens up new avenues for exploring self-learning algorithms
in traffic control. Building on the idea and concepts presented in the cyclist prioritizing
traffic control scenario, adopting a self-learning approach may help optimize intersection
control (e.g., balancing the delay and stops of cyclists and cars), better predict cyclist tra-
jectories over intersections, and better perform at determining clearance times for traffic
conflicts. Moreover, it may be worth investigating the impact of how clustered groups
can improve intersection throughput by reducing green extension times.

Insights into behaviours, modes and activities

This new type of data may also enhance our comprehension of pedestrians and cyclist be-
haviours, modes and activities. The proposed system design presented in Chapter 2 hints to the
simultaneous use of internal sensor platform data with external environment perception; recent
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work shows how pedestrian activity and transportation modes can be classified using images
collected from moving vehicles (Salazar-Miranda et al., 2023). Next steps could analyse fac-
tors like interactions with vehicular traffic and compliance with traffic rules could, for instance,
guide educational campaigns, and traffic management strategies to promote safer interactions
between different road users. The percentage of cyclists with helmets, potentially in relation to
speed information, could be measured and similarly lead to strategies for improving helmet use.
Furthermore, unmarked crossings points and the start of a cyclist’s turning movement could be
identified, offering valuable information for reevaluating current infrastructure. However, it is
crucial to carefully consider concerns around privacy as presented in the last chapter of this
thesis.

On the role of privacy engineering

As automation intersects with human interaction, prioritizing privacy engineering is crucial.
We advocate for an interdisciplinary approach that embeds privacy considerations by design.
For example, the centralized tracking scheme proposed in Chapter 3 direct attention to latent
privacy concerns. Future work investigating the impact on target privacy and application util-
ity could provide valuable insights when designing more decentralized or federated system.
Furthermore, future research should put to the test existing privacy frameworks and location
privacy preserving mechanisms and evaluate their appropriateness theoretically and quantita-
tively, within specific traffic engineering applications. Chapter 5 provided theoretical indica-
tions that existing LPPMs, initially developed for user-centric LBS, may fail in providing both
utility necessary for the functioning of safety-relevant applications of the system and privacy for
the non-users. We suggest further investigation into data minimization strategies, as they hold
promise for both tracking individual entities (as discussed in Chapters 3 and 4) and providing
alternative solutions that support privacy-enhancing systems through observations confirming
the absence of targets. Overall, researchers should elaborate on the role and impact of this new
mobile surveillance infrastructure on society and the urban space. Normalizing surveillance, as
is currently happening at scale, e.g., with video surveillance from doorbells, erodes a right to
privacy and goes a slippery slope with increasing deployments of IAS in urban environments
where the capture of human “objects” is justified by safety.
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Summary

To promote safer, more equitable, and environmentally friendly transportation options, gov-
ernments are aiming to boost the proportion of trips made walking and cycling. Despite the
acknowledged importance of active mode research, however, a relative lack of empirical ap-
proaches, advanced tools and high-quality data persists in understanding the dynamics of when,
where, and how people walk and cycle. This resulted in relatively limited scientific advance-
ments and mostly timid implementation of these findings in cities.

This thesis leverages a novel sensing paradigm, driven by the deployment of intelligent
autonomous systems (IAS) in cities (e.g., self-driving cars, drones, and other instances), which
results in an unprecedented surge in the generation of human features — such as their movement
patterns, shapes, and contextual information — at great temporal and spatial scale. Importantly,
the thesis also applies to other moving sensor platforms (MSP) equipped with advanced sens-
ing capabilities that do not rely on this information to self-operate, such as traditional buses,
bicycles, or even humans using bodycams. When autonomous, however, these systems are
specifically designed to capture spatiotemporal data of all objects and traffic in their surrounding
environment, including pedestrians and cyclists, as they require this information to self-operate.
The generated data may represent a valuable new source of information for traffic researchers
and practitioners, however, have implications on privacy or broader potential of misuse.

With this in mind, the objective of this thesis is to investigate the potential utility and soci-
etal impact of exploiting pedestrian and cyclist data from moving sensors (IAS or MSP) in the
context of traffic research and practice. The use of the term exploitation is twofold: 1) the de-
velopment of methodological knowledge and tools to extract traffic information from the data,
and 2) under what conditions (e.g., limitations, risks, and harms) it contributes to technological,
societal and economic development.

To achieve this goal and gain a holistic understanding of this emerging paradigm, this the-
sis builds upon an interdisciplinary research approach, bridging transport research with other
relevant scientific communities. To establish a solid foundation for our assumptions and de-
sign choices moving forward, we derived a theoretical framework by synthesizing diverse data
sources and expert knowledge. This conceptualization, tailored specifically for active mode
research and practice, focuses on key components of the system as sensing, networking, pro-
cessing, and communication units, enabled us to discern requirements, along with functional
challenges, and to outline research to be performed with the generated data (Chapter 2). We
then refine our analysis by examining both the temporal and spatial dimensions of the data, as
it could be generated at different levels of granularity and accuracy. We derived a methodology
capable of consistently yielding updated active mode location information throughout the entire
network, that allows us to reconstruct individual trajectories across a road network, using mo-
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bile spatially distributed sensor platforms (Chapter 3). Using this approach, and leveraging the
insights developed so far, we investigate and demonstrate how this new type of data can provide
valuable insights and help optimize traffic control and management strategies. We defined a
traffic control scenario, and used modelling and simulation to generate scenario-specific data
at scale (Chapter 4). In fact, due to the lack of adequate real-world data, simulation was used
when necessary to address the research questions 2, 3. When gathering data on individuals,
however, there is an inherent trade-off between utility and privacy. The sensing paradigm’s
broader socio-technical impact is examined by comparing it with current systems, emphasizing
location privacy implications for non-users (pedestrians and cyclists) (Chapter 5). The follow-
ing paragraphs detail the findings of this research with respect to these four topics.

Towards new system designs for active mode mobile sensing

We present a theoretical design for a novel mobile sensing system (AMSense) that uses vehicles
as mobile sensing nodes in a network to capture spatiotemporal properties of pedestrians and
cyclists in urban environments. In this dynamic, multi-sensor approach, real-time data, algo-
rithms, and models are fused to estimate presence, positions and movements of active modes
with information generated by a fleet of mobile sensing platforms. It represents a scalable sys-
tem that provides answers to spatiotemporal resolution, intrusiveness, and dynamic network
conditions. The moving platform may thus increase observational robustness through data from
multiple-sources. In this chapter, we motivate the need and show the potential of such a sensing
paradigm, which supports a host of new research and application development. We investigated
technical requirements and challenges within this innovative sensing approach, detailing a de-
sign for crucial elements like sensing, networking, processing, and communication tailored for
active mode research.

Network-constrained tracking of cyclists and pedestrians

The increase in perception capabilities of connected mobile sensor platforms leads to an ex-
tensive surge of sensed features at various temporal and spatial scales. Harnessing available
observations could enable to see how and where people move on sidewalks and cycle path.
We propose a new method for advanced traffic applications, tracking an unknown and varying
number of moving targets (e.g., pedestrians or cyclists) constrained by a road network, us-
ing mobile spatially distributed sensor platforms. In contrast to existing approaches that often
consider short time horizons and are mostly designed for unconstrained motion in two- and
three-dimensional space, where complexity tends to grow exponentially due to the number of
hypotheses, we introduce the concept of network bound targets into the multi-target tracking
problem, and hence to derive a network-constrained multi-hypotheses tracker (NC-MHT) uti-
lizing the general position determined from the map and the position on the road segment. A
simulation study shows that the method performs well in comparison to the standard MHT fil-
ter in free space. Results particularly highlight network-constraint effects for more efficient
target predictions over extended periods of time, and in the simplification of the measurement
association process, as compared to not utilizing a network structure.

A novel data source for advanced traffic management and control

Traditionally, cyclist traffic data is collected via loop detectors, push buttons, smartphone apps,
or through extra infrastructure like detector loops, cameras, and radars. However, mobile app
usage is still low, and additional infrastructure is costly given the expenses related to deploy-
ment and maintenance. The main objective of this study was to show how augmenting the situ-
ational awareness of traffic signal controllers, using observations from moving sensor platforms
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(e.g., only considering position and speed), can enable prioritization of cyclists and reduce lost
time within the control cycle in an effective way. We investigated the potential of using this
new source of information, using a revised vehicle-actuated controller. This controller exploits
CAV-generated observations of cyclists to optimize the control for cyclists. The results from a
simulation study indicated that with a low CAV penetration rate, prioritizing cyclists by track-
ing reduced cyclist delays and stops, even with a small field of view. We point to future work,
optimizing the control that balances the delays and stops of cyclists and cars.

Privacy challenges introduced by intelligent autonomous systems

IAS are expected to coordinate data across time and space, introducing a mobile surveillance
infrastructure into the environments that they function in. We foresee this newly introduced
infrastructure to reconfigure the lived environment and see these developments as signalizing
an infrastructural build-out, the consequences of which will have privacy implications. We in-
vestigated the privacy implications that arise in traffic engineering scenarios within this sensing
paradigm, particularly focusing on how people’s movements are monitored. We used the term
non-user to refer to someone who is in the environment of a CAV and captured by its sens-
ing devices. The privacy of non-users (e.g., pedestrians, cyclists outside the vehicle) in CAV
settings should be a major source of concern, yet is a blind spot in the related literature. We
identify and highlight key implications on location privacy for pedestrians and cyclists, marking
the first effort to formalize privacy for active modes. The consistent distinction with other exist-
ing systems and the defined terminology can help researchers from different fields understand
the intricacies of this complex socio-technical system and motivates for future research.

Conclusions and implications

To the best of our knowledge, this thesis represents the first academic exploration into the po-
tential utility and societal impact of exploiting pedestrian and cyclist data from moving sensor
platforms, in the context of traffic research and practice.

At the technological level, the progress primarily driven by fields related to IAS demonstrate
by implementation that available technology, effectively supports key aspects of the proposed
sensing paradigm today. Thorough review of existing literature, however, reveals a notable ab-
sence of both theoretical frameworks and practical implementations for the sensing paradigm.
The multitude of scenarios in which real-world data represents a potential asset for solving re-
search questions necessitates a thoughtful mapping of objectives to sensing requirements and
network characteristics, tailored to specific contexts and environments. Areas for future re-
search include developing data fusion techniques, multi-object tracking, and scene understand-
ing. Additionally, findings suggest potential for next-generation traffic surveillance applica-
tions, which presents opportunities for further research and development.

The sensing paradigm, however, is deeply intertwined with broader societal factors, includ-
ing technological, social, and institutional considerations that collectively shape distinct usage
patterns and raise important ethical concerns. This work displays that academic conversations
surrounding the privacy of pedestrians and cyclists within IAS still seem to often overlook
critical nuances, highlighting evident gaps in existing privacy and transport literature on this
specific subject. This work also hints at broader risks extending beyond individual location pri-
vacy concerns. This work motivates to bridge the gap with the privacy engineering community
to develop systems that balance utility and privacy, prioritizing approaches that embed ethical
values by design.






Samenvatting

Om veiligere, rechtvaardigere en milieuvriendelijkere vervoersopties te bevorderen, streven
overheden ernaar om het aandeel verplaatsingen te voet en met de fiets te verhogen. Ondanks
het erkende belang van onderzoek naar actieve vervoerswijzen, is er echter nog steeds een re-
latief gebrek aan empirische benaderingen, geavanceerde instrumenten en gegevens van hoge
kwaliteit om de dynamiek van wanneer, waar en hoe mensen lopen en fietsen te begrijpen.
Dit resulteerde in relatief beperkte wetenschappelijke vooruitgang en over het algemeen zeer
beperkte implementatie van deze bevindingen in steden.

Dit proefschrift maakt gebruik van een nieuw detectieparadigma, aangedreven door de inzet
van intelligente autonome systemen (IAS) in steden (zelfrijdende auto’s, drones en andere in-
stanties), wat resulteert in een flinke toename in het observeren van menselijke kenmerken
— zoals hun bewegingspatronen, vormen en contextuele informatie — op grote temporele en
ruimtelijke schaal. Belangrijk is dat dit proefschrift ook van toepassing is op andere bewe-
gende sensorplatforms (MSP) die zijn uitgerust met geavanceerde sensormogelijkheden die niet
athankelijk zijn van deze informatie om zichzelf te kunnen besturen, zoals traditionele bussen,
fietsen of zelfs mensen met bodycams. Wanneer ze autonoom zijn, zijn deze systemen echter
specifiek ontworpen om spatiotemporele gegevens vast te leggen van alle objecten en verkeer
in hun omgeving, inclusief voetgangers en fietsers, omdat ze deze informatie nodig hebben om
zichzelf te kunnen besturen. De gegenereerde gegevens kunnen een waardevolle nieuwe bron
van informatie vormen voor verkeersonderzoekers en beleidsmakers, maar hebben implicaties
voor de privacy of een breder potentieel voor misbruik.

Met dit in gedachten is het doel van dit proefschrift om het potentiéle nut en de maatschap-
pelijke impact te onderzoeken van het exploiteren van voetgangers- en fietsersgegevens van be-
wegende sensoren (IAS of MSP) in de context van verkeersonderzoek en -praktijk. Het gebruik
van de term exploitatie is tweeledig: 1) de ontwikkeling van methodologische kennis en hulp-
middelen om verkeersinformatie uit de gegevens te extraheren, en 2) onder welke voorwaarden
(ijkpunten, beperkingen, risico’s en schade) dit bijdraagt aan technologische, maatschappelijke
en economische ontwikkeling.

Om dit doel te bereiken en een holistisch begrip te krijgen van dit opkomende paradigma,
bouwt dit proefschrift voort op een interdisciplinaire onderzoeksbenadering, waarbij een brug
wordt geslagen tussen transportonderzoek en andere relevante wetenschappelijke communities.
Om een solide basis te leggen voor onze aannames en ontwerpkeuzes voor de toekomst, hebben
we een theoretisch kader opgesteld door verschillende gegevensbronnen en kennis van experts
samen te voegen. Deze conceptualisatie, die specifiek is toegesneden op onderzoek naar en
de praktijk van de actieve modi, richt zich op de belangrijkste onderdelen van het systeem in
sensor-, netwerk-, verwerkings- en communicatie-eenheden en stelde ons in staat om eisen en
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functionele uitdagingen vast te stellen, en om onderzoek te schetsen dat moet worden uitgevoerd
met de gegenereerde gegevens (hoofdstuk 2). Vervolgens hebben we onze analyse verfijnd door
zowel de temporele als de ruimtelijke dimensies van de gegevens te onderzoeken, aangezien
deze op verschillende niveaus van granulariteit en nauwkeurigheid konden worden gegenereerd.
We hebben een methodologie ontwikkeld die consistent bijgewerkte locatie-informatie over
de actieve modus oplevert voor het hele netwerk, waarmee we individuele trajecten over een
wegennetwerk kunnen reconstrueren met behulp van mobiele, ruimtelijk gedistribueerde sen-
sorplatforms (Hoofdstuk 3). Met behulp van deze aanpak en de inzichten die we tot nu toe
hebben ontwikkeld, onderzoeken en demonstreren we hoe dit nieuwe type gegevens waarde-
volle inzichten kan opleveren en kan helpen bij het optimaliseren van verkeersregel- en man-
agementstrategieén. We definieerden een verkeersregelscenario en gebruikten modellering en
simulatie om scenariospecifieke gegevens op schaal te genereren (hoofdstuk 4). Door het gebrek
aan adequate gegevens uit de echte wereld, werd waar nodig gebruik gemaakt van simulatie om
de onderzoeksvragen 2 en 3 te beantwoorden. Bij het verzamelen van gegevens over individuen
is er echter een inherente wisselwerking tussen nut en privacy. De bredere socio-technische im-
pact van het detectieparadigma wordt onderzocht door het te vergelijken met huidige systemen,
waarbij de nadruk ligt op de gevolgen voor de locatieprivacy van niet-gebruikers (voetgangers
en fietsers) (hoofdstuk 5). De volgende paragrafen beschrijven de bevindingen van dit onder-
zoek met betrekking tot deze vier onderwerpen.

Naar nieuwe systeemontwerpen voor actieve mobiele detectie

We presenteren een theoretisch ontwerp voor een nieuw mobiel sensorsysteem (AMSense) dat
voertuigen gebruikt als mobiele sensorknooppunten in een netwerk om spatiotemporele eigen-
schappen van voetgangers en fietsers in stedelijke omgevingen vast te leggen. In deze dynamis-
che multi-sensor benadering worden real-time gegevens, algoritmen en modellen samengevoegd
om de aanwezigheid, posities en bewegingen van actieve modi in te schatten met informatie die
wordt gegenereerd door een vloot van mobiele sensorplatforms. Het is een schaalbaar sys-
teem dat antwoorden geeft op spatiotemporele resolutie, penetratie en dynamische netwerkom-
standigheden. Het bewegende platform kan dus de robuustheid van de observatie vergroten
door gegevens van meerdere bronnen te gebruiken. In dit hoofdstuk motiveren we de noodzaak
en tonen we het potentieel van een dergelijk detectieparadigma, dat een groot aantal nieuwe
onderzoeks- en toepassingsontwikkelingen ondersteunt. We hebben de technische vereisten en
uitdagingen binnen deze innovatieve detectiebenadering onderzocht en een ontwerp voor cru-
ciale elementen zoals detectie, netwerken, verwerking en communicatie op maat gemaakt voor
onderzoek naar de actieve modi.

Netwerkbeperkt volgen van fietsers en voetgangers

De toename in waarnemingsmogelijkheden van verbonden mobiele sensorplatforms leidt tot
een grote hoeveelheid waargenomen kenmerken op verschillende tijd- en ruimteschalen. Door
gebruik te maken van de beschikbare waarnemingen kan men zien hoe en waar mensen zich
bewegen op trottoirs en fietspaden. Wij stellen een nieuwe methode voor geavanceerde ver-
keerstoepassingen voor, waarbij een onbekend en variérend aantal bewegende doelen (bijv.
voetgangers of fietsers), begrensd door een wegennetwerk, wordt gevolgd met behulp van mo-
biele, ruimtelijk gedistribueerde sensorplatforms. In tegenstelling tot bestaande benaderingen
die vaak rekening houden met een korte tijdshorizon en meestal ontworpen zijn voor onbeperkte
beweging in twee- en driedimensionale ruimte, waarbij de complexiteit exponentieel toeneemt
door het aantal hypotheses, introduceren we het concept van netwerkgebonden doelen in het
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multitarget-trackingprobleem, en leiden we zo een netwerkbeperkte multi-hypothesetracker
(NC-MHT) af die gebruikmaakt van de algemene positie die bepaald wordt uit de kaart en
de positie op het wegsegment. Een simulatiestudie toont aan dat de methode goed presteert in
vergelijking met het standaard MHT-filter in de vrije ruimte. De resultaten benadrukken met
name de netwerkbeperkende effecten voor efficiéntere doelvoorspellingen over langere perio-
den en in de vereenvoudiging van het meetassociatieproces, vergeleken met het niet gebruiken
van een netwerkstructuur.

Een nieuwe gegevensbron voor geavanceerd verkeersbeheer en -regeling

Traditioneel worden verkeersgegevens van fietsers verzameld via lusdetectoren, drukknoppen,
smartphone apps of via extra infrastructuur zoals detectielussen, camera’s en radars. Het ge-
bruik van mobiele apps is echter nog steeds laag en extra infrastructuur is kostbaar gezien de
kosten voor installatie en onderhoud. Het hoofddoel van dit onderzoek was om aan te tonen hoe
het vergroten van het situationeel bewustzijn van verkeersregelaars, met behulp van observaties
van bewegende sensorplatforms (alleen rekening houdend met positie en snelheid), het mogelijk
kan maken om fietsers voorrang te geven en verloren tijd binnen de regelcyclus op een effec-
tieve manier te verminderen. We onderzochten het potentieel van het gebruik van deze nieuwe
informatiebron met behulp van een aangepaste voertuiggestuurde regelaar. Deze regelaar maakt
gebruik van CAV-waarnemingen van fietsers om de regeling voor fietsers te optimaliseren. De
resultaten van een simulatiestudie toonden aan dat bij een lage penetratiegraad van CAYV, het
prioriteren van fietsers, door het volgen van fietsers, de vertragingen en stops van fietsers ver-
minderde, zelfs met een klein gezichtsveld. We wijzen op toekomstig werk, het optimaliseren
van de regeling die de vertragingen en stops van fietsers en auto’s in balans brengt.

Privacy-uitdagingen geintroduceerd door intelligente autonome systemen

Van IAS wordt verwacht dat ze gegevens in tijd en ruimte coordineren, waardoor ze een mobiele
bewakingsinfrastructuur introduceren in de omgevingen waarin ze functioneren. We verwachten
dat deze nieuw geintroduceerde infrastructuur de leefomgeving zal herconfigureren en zien deze
ontwikkelingen als het signaal van een infrastructurele opbouw, waarvan de gevolgen impact
zullen hebben op de privacy. We onderzochten de privacyimplicaties die zich voordoen in ver-
keerskundige scenario’s binnen dit detectieparadigma, waarbij we ons met name richtten op
de manier waarop de bewegingen van mensen worden gemonitord. We gebruikten de term
niet-gebruiker om te verwijzen naar iemand die zich in de omgeving van een CAV bevindt
en opgevangen wordt door de sensoren. De privacy van niet-gebruikers (voetgangers, fietsers
buiten het voertuig) in CAV omgevingen zou een grote bron van zorg moeten zijn, maar is een
blinde vlek in de gerelateerde literatuur. We identificeren en benadrukken de belangrijkste im-
plicaties voor de locatieprivacy van voetgangers en fietsers, als een eerste poging om privacy
voor actieve modi te formaliseren. Het consistente onderscheid met andere bestaande systemen
en de gedefinieerde terminologie kan onderzoekers uit verschillende vakgebieden helpen de fi-
jne kneepjes van dit complexe socio-technische systeem te begrijpen en motiveert toekomstig
onderzoek.

Conclusies en implicaties

Voor zover wij weten, vertegenwoordigt dit proefschrift de eerste academische verkenning naar
het potenti€le nut en de maatschappelijke impact van het gebruik van gegevens van voetgangers
en fietsers van bewegende sensorplatforms in de context van verkeersonderzoek en -praktijk.
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Op technologisch niveau toont de vooruitgang die voornamelijk wordt gedreven door vakge-
bieden die gerelateerd zijn aan IAS, door implementatie aan dat de beschikbare technologie
vandaag de dag effectief belangrijke aspecten van het voorgestelde detectieparadigma onderste-
unt. Een grondige studie van de bestaande literatuur onthult echter een opvallende afwezigheid
van zowel theoretische kaders als praktische implementaties voor het detectieparadigma. De
vele scenario’s waarin gegevens uit de echte wereld een potenti€le bron zijn voor het oplossen
van onderzoeksvragen, vereisen dat doelstellingen naar detectievereisten en netwerkkenmerken
doordacht in kaart worden gebracht en op maat gemaakt voor specifieke contexten en omgevin-
gen. Gebieden voor toekomstig onderzoek zijn onder andere de ontwikkeling van datafusietech-
nieken, het volgen van meerdere objecten en het begrijpen van specifieke situaties. Daar-
naast suggereren de bevindingen een potentieel voor de volgende generatie verkeersbewak-
ingstoepassingen, wat mogelijkheden biedt voor verder onderzoek en ontwikkeling.

Het detectieparadigma is echter sterk verweven met bredere maatschappelijke factoren,
waaronder technologische, sociale en institutionele overwegingen die samen vorm geven aan
verschillende gebruikspatronen en die belangrijke ethische vragen oproepen. Dit werk laat zien
dat academische gesprekken over de privacy van voetgangers en fietsers binnen het IAS nog
steeds vaak kritieke nuances over het hoofd lijken te zien, en benadrukt duidelijke hiaten in de
bestaande privacy- en transportliteratuur over dit specifieke onderwerp. Dit werk wijst ook op
bredere risico’s die verder gaan dan de privacy van de individuele locatie. Dit werk motiveert
om de kloof met de privacy engineering gemeenschap te overbruggen om systemen te ontwikke-
len die nut en privacy in evenwicht brengen, waarbij prioriteit wordt gegeven aan benaderingen
die ethische waarden verankeren in het ontwerp.
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Summary

The deployment of moving sensor platforms (e.g., self-driving cars, drones, and
other instances) with advanced sensing is rapidly increasing the capture of human
features at unprecedented temporal and spatial scales, especially in cities. This
thesis advances knowledge on extracting information from this novel data source
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