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Abstract
Gaze estimation holds significant importance in
various applications. Pioneering research has
demonstrated state-of-the-art performance in gaze
estimation models by utilizing deep Convolutional
Neural Networks (CNNs) and incorporating full fa-
cial images as input, instead of or in addition to
solely using one or both eye images. Facial im-
ages encode crucial cues that can enhance the ac-
curacy of gaze regression models. However, it re-
mains unclear which specific facial features con-
tribute and to what extent they contribute to the
overall estimation accuracy. In this research, we
aim to shed light on identifying the influential fa-
cial regions and quantifying their contributions to
gaze estimation accuracy.

1 Introduction
Background. Eye gaze direction holds importance in
many applications, including human-computer interaction
[1], driver monitoring systems [2], and behavioral analysis
[3] among others. Accurate estimation of gaze direction has
been shown to significantly enhance human-computer inter-
action efficiency [4], for example in head-mounted display
(HMD) systems [5]. Gaze tracking is a crucial component
in driver monitoring safety, as it enables the detection of a
driver’s focused attention to prevent accidents [6], [7], [8].
The works by Hessels et al. [3] and Holmqvist et al. [9] have
further evidenced the importance of eye-tracking models in
the studying of human perceptual, cognitive processes, and
behavioral analysis. These findings highlight the crucial role
that gaze estimation plays in our world and emphasize its im-
portance in various research areas.

In recent years, the inclusion of full facial images as input
to deep Convolutional Neural Networks (CNNs) has emerged
as a crucial factor in improving the accuracy of eye-gaze re-
gression models, significantly highlighting the importance of
capturing the entire facial context [10], [11], [12]. Pioneer-
ing research by Zhang et el., Krafka et al., and Zemblys et al.
have made a significant contribution by incorporating full fa-
cial images as input to convolutional neural networks (CNNs)
instead of, or in addition to, solely focusing on one or both
eye regions. Their studies have shown that while eye re-
gions are crucial for gaze estimation, the inclusion of full fa-
cial images is also essential as they encompass valuable cues
that significantly leverage the performance of gaze estimation
models.

While previous studies have highlighted the importance
of including full facial features in gaze regressor models, as
they provide valuable cues for accurately predicting gaze
direction. However, despite these advancements, a funda-
mental question remains unanswered: Which specific facial
features contribute significantly to improving the accuracy of
gaze estimation models?

Research questions and main contributions. The ob-
jective of this study aims to answer the aforementioned

question by conducting an investigation into the significant
regions of the face and quantifying their contribution toward
their impact on the accuracy of gaze estimation. The
contributions of this research are two folds. Firstly, it aims
to establish and conduct a comprehensive analysis of the
performance disparity between convolutional neural network
(CNN) models that utilize only eye-only regions and those
that incorporate full facial input. Second, this research
focuses on detecting and assessing the influence of specific
facial regions that are significant for gaze estimation.

Roadmap. This paper includes the following sections.
Section 2 provides an overview of relevant literature. Sec-
tion 3 explains the research approach for analyzing eye
and full-face models and their facial feature contribution.
Section 4 presents the conducted experiments and their
results. Section 5 discusses and interprets the findings.
Section 6 addresses the study’s ethical implications. Finally,
Section 7 summarizes the results, limitations, and future
improvements.

2 Related Work
This section provides an overview of relevant research on the
role of facial features in gaze estimation. Gaze estimation
encompasses two main approaches: model-based [13], [14],
[15] and appearance-based [16], [12], [11] methods. Model-
based techniques employ mathematical models that capture
the geometry and position models and their correlation with
observed eye images. Appearance-based methods utilize ma-
chine learning to establish a mapping between the visual ap-
pearance of the eye including images and corresponding gaze
directions. In this study, we employ appearance-based gaze
estimation techniques to explore the impact of distinct facial
regions on gaze estimation accuracy. Our study is related to
previous work as discussed below.

Zhang et al. [16] explored the significance of various facial
features in gaze estimation. The research involved occluding
different facial regions using a grey-colored mask to assess
the resulting decrease in estimation accuracy. Comparisons
were also made between the performance of blocking the eye
regions and utilizing full-face input. Their findings indicated
that full-face input provides more information than head pose
direction, highlighting the importance of incorporating full-
facial input for improved gaze estimation accuracy.

Krafka et al. [12], in addition, introduced iTracker, a multi-
region gaze regressor that inputs both eyes and full-face im-
ages and face grid. Their study showed the inclusion of full-
face images is beneficial as it contributes to reducing the error
rate and outperformed state-of-the-art approaches.

In a study by Palmero et al. [17], it was demonstrated
that whole facial images contain richer information beyond
just the eye regions, including illumination and pose direc-
tion. The researchers explored the influence of different facial
components, such as eyes, full facial images, and facial land-
marks, on the development of a multi-stream recurrent convo-
lutional gaze estimation network. The findings indicated that
incorporating geometric facial landmarks into appearance-
based methods had a beneficial regularization effect on the
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accuracy of gaze estimation. This highlights the significance
of considering the entire facial context in improving the per-
formance of gaze estimation models.

Sakurai et al. [18] introduced a study that investigated the
correlation between facial and eye movements, highlighting
the value of integrating visual cues from both the face and
eyes for accurate gaze tracking. The research demonstrated
the efficacy of incorporating facial direction estimation in
achieving precise eye-tracking results, particularly when sub-
jects have the freedom to move their eyes and head. This
work emphasizes the importance of considering both facial
and eye movements for robust gaze estimation.

3 Methodology
In this section, we propose the following experimental proce-
dure as shown in Figure 1 to investigate the efficacy of differ-
ent facial regions on eye gaze estimation. It aims to through-
out identify and quantify the contribution of different impor-
tant facial areas toward the accuracy of eye gaze estimation.

Figure 1. The research methodology employed to investigate the
influence of different facial regions on eye gaze estimation.

The experimental methodology is divided into several sub-
sections, each addressing a specific stage of the research pro-
cess. Subsection 3.1 provides comprehensive details regard-
ing developing deep convolutional neural network (CNN)
models for gaze estimation. These models serve as the foun-
dational results for further analysis. Subsection 3.2 focuses
on the evaluation and analysis of two CNN models: the base-
line eye-only CNN model and the full-face CNN model. The
assessment aims to compare their performances and deter-
mine the impact of incorporating full-face information. To
investigate the significance of specific facial areas, subsec-
tion 3.3 outlines the procedure used for region importance
analysis. This analysis aims to identify which facial regions
play a crucial role in gaze estimation. The final subsection
3.4 explains the quantitative analysis of the contribution of
each identified facial landmark in subsection 3.3, conducting
a more in-depth investigation into their actual influence on
the accuracy of gaze estimation.

3.1 Model Development
This stage aims to create two eye-gaze regression models:
a baseline model that takes two eye images as input, and a
comparative model that processes a complete facial image.
Specifically, both models implement a deep CNN architec-
ture consisting of two main procedures: feature extraction
using convolutional blocks and eye-gaze estimation using a
series of fully connected layers to produce pitch and yaw val-
ues. To allow our baseline model to incorporate left and right
eye images as its input features, we decided on a multi-input
architecture that employs shared weight for the convolutional

layers to receive two images of size 43× 73× 3. This design
allows the model to learn relevant features from both eyes
simultaneously. The feature maps extracted from the convo-
lutional blocks are then merged by concatenation and passed
through the fully connected layers to make predictions. Sim-
ilarly, our comparative model is developed utilizing the same
convolutional blocks and fully connected layers to infer gaze
direction from the full facial image of size 224× 224× 3. By
employing identical convolutional and fully connected archi-
tectures, we can perform a comprehensive performance com-
parison between different input features while mitigating the
impact of network complexities.

3.2 Performance Analysis
The performance analysis is conducted to examine the dis-
parity in estimation accuracy between using only eye images
and utilizing full facial images. The analysis encompasses
three stages: pre-tuning, fine-tuning, and testing. During the
pre-tuning stage, the two models are trained on a dataset to
enable them to learn relevant features that can be generalized
across multiple test subjects. Fine-tuning, on the other hand,
replicates the calibration techniques inspired by the works of
Chen et al. [19] and Bandyopadhyay et al. [20]. This fine-
tuning process is essential in acquainting the model with the
specific instances of a given test subject, thus leading to im-
proved performance. The testing phase utilizes the fine-tuned
model and assesses its accuracy with regard to the angular
loss by first converting the predicted pitch and yaw into the
3-dimensional XYZ domain, Equation 1, and computing the
loss in degree as shown in Equation 2.

x = cos(pitch) ∗ sin(yaw)
y = sin(pitch)

z = cos(pitch) ∗ cos(yaw)
(1)

Equation 1 shows the conversion from pitch yaw vector to
3-dimensional vector in XYZ plane.

cosine similarity =
XY Zpred ·XY Ztruth

||XY Zpred|| ∗ ||XY Ztruth||

angular loss = cos−1(cosine similarity) ∗ 180
π

(2)

Equation 2 computes the angular loss between 2 vectors in a
3-dimensional XYZ plane in degree unit.

3.3 Region Importance Analysis
This stage adapts the Region Important Analysis approach,
as proposed by the works of Zeiler et al. [21] and Zhang et
al. [16], to gain insights into the contribution of different fa-
cial areas towards the accuracy of gaze estimation models.
This approach allows us to identify and analyze the specific
regions of the face that play a significant role in influencing
the performance of these models. The approach employs a
sliding window to occlude different regions of the face with a
gray-colored mask allowing for the evaluation of the resulting
decrease in accuracy. The occluded image is then fed into the
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full-face model for gaze prediction, and the corresponding ac-
curacy drop is measured. To construct the heat map for each
image, a blur filter is applied, and the values are normalized
to the range of [0,1]. A significant distinction in this work
compared to the work proposed by Zhang et al. [16] is the
utilization of the mean of max operation, illustrated by Algo-
rithm 1, to obtain the region importance heat map for each test
subject. This derivation is established to put significance to
facial regions that benefit the estimation accuracy even when
minor variations and rotations of facial images occur.

Algorithm 1 Calculate Heat Map using Mean of Max Oper-
ation for batches of heat map images.

1: for i← 0 to #batches do
2: max[i]← max(batches[i], axis = 0)
3: end for
4: mean← mean(max, axis = 0)
5: heatmap← mean
6: return heatmap

3.4 Region Contribution Measurement
To understand the relative importance of different facial re-
gions in gaze estimation, this stage identifies and quantifies
the accuracy contribution of each influential region. The pro-
cess of identifying the significant facial regions involves lo-
calizing and segmenting areas that exhibit substantial contri-
butions to the error based on the region importance heat map
obtained in the previous Subsection 3.3. These regions are
then encoded into rectangular masks. Each mask is subse-
quently utilized to fine-tune the full face model and evaluate
the corresponding test subject, following the cross-validation
procedure discussed in Subsection 3.2. By observing the re-
sulting accuracy changes for all test subjects against the full-
face model performance benchmark acquired by evaluating
the comparative model, we gain valuable insights into the im-
pact of the masked regions on gaze estimation accuracy.

4 Experiments
In this section, we present a series of experiments conducted
based on the methodology outlined in Section 3. Our aim is to
determine and quantify the accuracy contribution of different
facial input features on the accuracy of gaze estimation. We
begin by providing implementation details of the gaze esti-
mation models, which serve as the fundamental components
of our analysis. Next, in Subsection 4.2, we delve into the
specifics of the dataset and metrics utilized for model con-
struction and evaluation. Lastly, Subsection 4.3 showcases
and examines the experimental work and its outcomes.

4.1 Model Architectures
This study introduces two distinct models with different
specifications. The first baseline model is specifically
designed to process two eye images, which are cropped from
the original full facial image, as its input. On the other hand,
the subsequent comparative model takes the entire full facial
image as its input. The implementation details of these two
models are provided below. The reference implementations

used in this paper are publicly accessible here [GitHub].

The baseline eye-only model architecture. The inclu-
sion of two eye areas is a crucial descriptor in gaze regressor
models as the direct gaze direction visual information they
provided. To establish the baseline benchmark model, a deep
CNN based on the ResNet18 architecture [22] is adapted to
predict the 3D gaze direction solely from the left and right
eye regions.

Figure 2 illustrates the architecture of the baseline eye
model, which incorporates two eye images as input. Each
image is processed through the Convolutional layers of
ResNet18 to extract relevant features. These features are then
concatenated and passed through an Average Pooling layer,
followed by a final fully connected layer that predicts the
pitch and yaw values. It is worth noting that the ResNet18
convolutional layers used to learn features from both eye
images are shared weights.

The comparative Full-Face model architecture. To
examine the impact of facial areas beyond the eye regions,
a CNN model that utilizes full facial images as input is
developed. The model architecture adopts the ResNet18 ar-
chitecture as its backbone. By utilizing the same architectural
design as the baseline eye model, we can obtain a throughout
understanding of how different input features influence
the performance of gaze estimation while minimizing the
influence of varying model complexities.

Figure 3 provides a detailed depiction of the implementa-
tion of the full face model. This model utilizes ResNet18
Convolutional layers to extract relevant features from the in-
put full-face image. One distinction from the baseline eye
model is that the features extracted from the convolutional
layers directly pass through the Average Pooling and Fully
Connected layers, eliminating the need for a concatenation
layer.

4.2 Experimental Setup
Dataset. In this study, the MPIIFaceGaze Dataset [23], [24]
is utilized to develop and assess the performance of both the
baseline, shown by Figure 2, and comparative gaze estima-
tion models, shown by Figure 3. The evaluation is conducted
using cross-validation with 15 test subjects. Examples of the
dataset are depicted in Figures 4, 5, and 6. The dataset com-
prises 3000 facial images and annotation vectors with 28 di-
mensions for each of the 15 test subjects. The first two di-
mensions of the annotation vectors encode the ground-truth
gaze direction information, while the coordinates of the left
and right eye corners are represented in 8 dimensions at in-
dex 4, 5, 6, 7, 8, 9, 10, and 11. For this study, the men-
tioned dimensions are crucial in constructing and assessing
the models. Both models undergo training using data from
14 test subjects and are subsequently evaluated on the remain-
ing subject, incorporating calibration techniques, inspired by
a higher accuracy performance as discussed in the works of
Chen et al. [19] and Bandyopadhyay et al. [20]. This itera-
tive process is repeated 15 times, covering all 15 test subjects.
The accuracy achieved by each model is then averaged across
all test subjects to assess their performance.
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Figure 2. CNN Architecture for Eye baseline model based on ResNet18 Convolutional backbone.

Figure 3. CNN Architecture for full face input model based on ResNet18 Convolutional backbone.

(a) (b) (c) (d) (e)

Figure 4. Examples of MPIIFaceGaze Dataset: First image index,
test subject IDs 0, 1, 2, 3, and 4 from left to right.

(a) (b) (c) (d) (e)

Figure 5. Examples of MPIIFaceGaze Dataset: First image index,
test subject IDs 5, 6, 7, 8, and 9 from left to right.

(a) (b) (c) (d) (e)

Figure 6. Examples of MPIIFaceGaze Dataset: First image index,
test subject IDs 10, 11, 12, 13, and 14 from left to right.

Metrics. To train and evaluate the performance of the mod-
els, Mean Absolute Loss (L1) and Angular Loss are utilized

as the chosen metrics. First, the L1 loss is utilized to min-
imize the loss of the regression models shown in Equation
3. Second, the angular loss given by Equation 2 is used for
the evaluation procedure, including the determination of the
best-performing model and result comparisons. This angu-
lar loss metric is particularly valuable as it measures the gaze
direction loss in degrees, providing a more intuitive under-
standing of the model’s performance. By employing the an-
gular loss, we can effectively assess how accurately the mod-
els capture the desired gaze direction, thus gaining insights
into their overall performance.

L1 =
1

N

N∑
i=1

|gaze(i)true − gaze
(i)
pred| (3)

Equation 3 explains the Mean Absolute Loss (or L1 Loss)
function used to train the gaze estimation models.

Training Specification. The training phase pre-tunes
both models adhering to the following specifications. The
procedure utilizes a dataset comprising 14 test subjects, with
each subject contributing 3000 images. The total of 42, 000
images is divided into pre-tune and evaluation datasets
using a ratio of 0.9 and 0.1, resulting in 37, 800 and 4, 200
images respectively for the pre-tune and evaluation sets. The
models are trained for 20 epochs, and the model with the
best performance based on the angular error (Equation 2) is
saved at each epoch, which is utilized to test the model. The
training uses a batch size of 32, a learning rate of 10−4, and
Adam optimizer [25]. The model is optimized to minimize
the L1 loss function, Equation 3, between the predicted and
ground-truth 2-dimensional pitch, yaw vectors.

Testing Specification. Having obtained the best model
from the training procedure, the testing stage begins by
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initially fine-tuning the model and subsequently evaluating
its performance using the following approach. The testing
is conducted for the one remaining test subject, with a total
of 3000 images. The test dataset is divided into fine-tuning,
also known as calibration, and evaluation sets, with a ratio
of 0.1 and 0.9 respectively. This division results in 300
images allocated for fine-tuning and 2700 images designated
for evaluation purposes. The adoption of fine-tuning, or
calibration in other words, is inspired by the works of Chen
et al. [19] and Bandyopadhyay et al.[20]. The calibration
dataset, 300 images, is used to fine-tune the best pre-tuned
model obtained in the training phase. In order to prevent
overfitting, the Batch Normalization layers of the models
are frozen before the fine-tuning process takes place. The
hyperparameters used during the calibration training phase
remain similar to those of the pre-tuning phase. The models
are trained for 30 epochs, and the evaluation results against
the evaluation dataset, which consists of 2700 images, are
averaged over the last 10 epochs to obtain the final evaluation
result. The average operation is utilized to compute a robust
final evaluation result, mitigating the impact of fluctuation
around the convergence point. This approach helps ensure
stability and reliability in the obtained evaluation outcome.

4.3 Results

The cross-validation results of the baseline eye-exclusive in-
put model are depicted in Figure 7. The angular error re-
sults for the full-face model are provided in Figure 8. The
histograms provide the angular error in degree per test sub-
ject and the average loss among all subjects. The average
angular loss across the 15 test subjects is calculated to be
3.316± 0.603 for the eye-only model and 2.924± 0.594 for
the full-face model. These results evidence that utilizing the
full facial input significantly improves the error of gaze esti-
mation, with the full-face model outperforming the eye-only
model by over 11%, given by Equation 4.

Figure 7. Cross-Validation results for the baseline eye-only model
over 15 MPIIFaceGaze test subjects.

Figure 8. Cross-Validation results for the full face model over 15
MPIIFaceGaze test subjects.

4.4 Influential Facial Regions

The improved performance by utilizing full facial images im-
plies that facial landmarks beyond the eye areas are contribut-
ing important cues that can leverage gaze estimation accu-
racy. To further investigate the contributive facial factor, this
experiment applies the regional importance analysis approach
(described in Subsection 3.3) to identify the significant facial
regions encoded in the heat map representation for 15 test
subjects. The experiment employs specific hyperparameters:
a filter size of 32 × 32, a stride of 16, a mask value of 127,
a blur filter of size 32, and a batch size of 85. Examples of
the applied sliding windows at different positions are shown
in Figure 9. The acquired 3000 heat maps using the occluded
facial images for each subject are divided into batches of size
85 and applied the mean of max Algorithm 1 to obtain the fi-
nal region importance heat map. The experiment is conducted
on all 15 test subjects, using the respective fine-tuned full fa-
cial models trained on their individual data. The resulting
heat maps are illustrated in Figures 10, 11, and 12. The heat
maps assign significance to the error proportionally accord-
ing to the corresponding facial area, emphasizing the regions
that are valuable for gaze estimation.

(a) (b) (c) (d) (e)

Figure 9. Region Importance Analysis sliding windows applied to
the first image of test subject 14. Shown from left to right: (16, 32),
(192, 144), (208, 48), (208, 208), and (64, 16) positions with the

box filter implemented
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(a) (b) (c) (d) (e)

Figure 10. Regional importance heat maps for test subject ids 0, 1,
2, 3, and 4 respectively from left to right.

(a) (b) (c) (d) (e)

Figure 11. Regional importance heat maps for test subject ids 5, 6,
7, 8, and 9 respectively from left to right.

(a) (b) (c) (d) (e)

Figure 12. Regional importance heat maps for test subject ids 10,
11, 12, 13, and 14 respectively from left to right.

The acquired individual region importance heat maps are
averaged to identify the facial regions that consistently hold
significance across all 15 test subjects. The resulting heat
map, Figure 13, highlights the importance of different facial
regions in accurately estimating gaze.

Figure 13. Unweighted Averaged Region Importance Heatmap
computed with all 15 test subjects’ heatmaps

4.5 Region Accuracy Contribution

We have decoded the influential areas depicted in the heat
map Figure 13. The analysis has led us to identify seven spe-
cific facial areas that play a crucial role in accurately estimat-
ing gaze. These areas are highlighted in Figure 14 below.

(a) (b) (c) (d)

(e) (f) (g)

Figure 14. The identified regions contribute the most to the overall
accuracy of gaze estimation. The regions are highlighted by a dark

rectangular shape.

The regions are identified as the right eyebrow (a), left eye-
brow (b), right eye (c), left eye (d), nose (e), right cheek (f),
and left cheek (g).

To quantify the contribution toward gaze estimation accu-
racy of the identified facial landmarks, we conducted an ex-
perimental approach discussed in subsection 3.4 to occlude
each landmark encoded by a rectangular mask and compare
the performance with the benchmark data illustrated in Fig-
ure 8. The mask rectangular coordinates are given in Table 1.
The regions excluded by the rectangular masks are illustrated
in Figure 15. The experiment involved the use of occluded
image data to fine-tune and evaluate, following a similar ex-
perimental setup as described in Subsection 4.4 using all test
subjects for each occluded region. The results of this evalua-
tion are presented in Table 2.

Region x0 y0 x1 y1
Right Eyebrow 0 0 56 50
Left Eyebrow 160 0 224 55

Right Eye 13 50 107 104
Left Eye 116 50 213 102

Nose 75 118 143 183
Right Cheek 0 105 57 187
Left Cheek 160 112 217 186

Table 1. Rectangular coordinates in pixels for 7 identified facial
landmarks, depicted relative to a width and height of (224, 224).

7



(a) (b) (c) (d)

(e) (f) (g)

Figure 15. From left to right, the figure shows examples of
occluded facial regions: right eyebrow, left eye-brow, right eye, left

eye, nose, right cheek, and left cheek for the first image of test
subject 14.

Occluded Region Averaged Angular Error (Deg)
Right Eyebrow 3.007± 0.604
Left Eyebrow 2.973± 0.649

Right Eye 3.502± 0.754
Left Eye 3.518± 0.720

Nose 3.033± 0.626
Right Cheek 3.000± 0.628
Left Cheek 2.968± 0.614

Table 2. Averaged angular error evaluated for each occluded facial
region in degree.

The ranked importance of facial features, determined by
the averaged angular loss, is as follows: eyes, nose, eyebrows,
and cheeks. To quantitatively assess the contribution value of
each identified region, we utilize Equation 4 and compare it
against the benchmark accuracy of 2.924 degrees achieved
with full facial input.

contribution =
errregion − errbenchmark

errbenchmark
· 100% (4)

The relative error improvement contributions are as fol-
lows: Right Eyebrow (2.7%), Left Eyebrow (1.6%), Right
Eye (16.5%), Left Eye (16.8%), Nose (3.5%), Right Cheek
(2.5%), and Left Cheek (1.4%). These results demonstrate
the relative impact on accuracy for each specific facial re-
gion.

5 Discussion
Performance comparison. Our results, Figures 7 and 8,
highlight the superior performance of the comparative model
that incorporates a full facial image as its input, surpassing
the baseline model that solely relies on the eye regions.
Our findings reveal a significant improvement in estimation
accuracy, by more than 11%, when utilizing a full facial
image. This finding emphasizes the crucial role played by
other facial regions, in addition to the left and right eye areas,
in enhancing gaze estimation accuracy.

Facial region contributions. The experiments utilizing
region-important analysis and contribution study have

identified the facial areas: right eyebrow, left eyebrow, right
eye, left eye, nose, right cheek, and left cheek that plays
an important role in improving the estimation accuracy.
The obtained results clearly demonstrate the relative impact
of different facial regions, with the nose emerging as a
particularly influential feature, just behind the eye regions.
The experiments show that the nose region can contribute
up to 3.5% improvement in relative accuracy. The high
contribution of the nose region can be attributed to its ability
to provide valuable cues related to head pose direction. The
eyebrow area contains specific features that are related to
eye movements and gaze direction such as the position of
the eyebrow arch or the presence of wrinkles can provide
clues about the upward or downward gaze. During our
dataset analysis, we discovered that the left and right cheek
regions can be helpful in determining the direction of a test
subject’s gaze. In our observations, we noticed that when the
face image leaned in a particular direction, the cheek areas
exhibited variations and revealed background information as
well, offering valuable information about the test subject’s
likely gaze direction, as illustrated in Figure 16. These
findings reinforce the notion that the cheek areas can improve
gaze prediction.

(a) (b) (c) (d) (e)

Figure 16. From left to right, the figure shows instances where the
test subject leans toward one direction, and the cheek regions can

provide an important cue for estimating gaze direction. From left to
right, the figure shows examples of test subjects 12, 14, 4, 5, and 8

respectively.

6 Responsible Research
This study utilizes deep learning techniques and a dataset
containing facial information. Throughout our research, we
have implemented several measures to ensure the integrity
and reproducibility of our findings. In Section 6.1, we discuss
the ethical considerations involved in employing the deep
learning model and dataset. Additionally, Section 6.2 elab-
orates on the reproducibility of our research results and im-
plementation.

6.1 Scientific Integrity
The MPIIFaceGaze dataset [23], [24], which contains facial
images and encoded landmark information, is employed in
this study. It is essential to acknowledge the potential risk of
re-identification faced by the dataset participants. To address
this risk, our research takes measures to anonymize the par-
ticipants by withholding personal information such as names,
ages, and addresses.

In terms of deep learning, our research upholds ethical
principles and ensures the credibility and dependability of
our findings. We provide transparent explanations of the
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methodology, algorithms, and implementation details in Sec-
tion 3, and offer reference implementations used in this study
[GitHub]. To eliminate discrimination and biases towards
specific user groups, the dataset utilized in constructing and
evaluating our models incorporates the data of all test subjects
through a cross-validation approach.

6.2 Reproducibility
Ensuring the reproducibility of our research is an important
aspect to allow for further exploration and improvement of
the proposed methods. We publicly open-source our code
on GitHub, including the baseline and comparative models
architecture and necessary evaluation programs to obtain our
findings. The methodology and algorithms ideas can be found
in Section 3 and hyper-parameter setups are presented in Sub-
section 4.2. It is important to acknowledge the stochastic
property caused by the random weight initiation procedure
when training the provided model, which can cause the re-
sults to fluctuate and not fully equal to the results illustrated
in this work. We have performed average operations through
many epochs to mitigate these fluctuations and improve the
robustness of our obtained results. Our reference implemen-
tation includes the necessary packages and version informa-
tion that can be deployed in any environment to ensure the
program behaves deterministically in reproduced setups. Fur-
ther improvements or feedback to our work can be requested
or reported via pull request features.

7 Conclusions and Future Work
In this work, we studied the importance of facial features in
the gaze estimation problem. We proposed the experimental
methodology and implementation that demonstrated the im-
proved performance, to more than 11%, with the inclusion of
full facial input to predict gaze direction in comparison to us-
ing only eye regions. By adapting the region importance anal-
ysis method [21], [16] and cross-validation, we have identi-
fied the 7 facial landmarks: right eyebrow, left eyebrow, right
eye, left eye, nose, right cheek, and left and their perspective
contribution values in improving relative accuracy of gaze es-
timation.

It is important to acknowledge that while the performed ex-
periment captures the independent important facial regions, it
does not show the correlation impacts. In future work, we aim
to deploy combination feature analysis to gain insight into
how combined facial features impact accuracy. Furthermore,
we aim to study the important facial feature by deep learn-
ing interpretation methods such as GradCam [26] and Full-
Gradient representation [27] to understand which features are
learned by the CNN models. This information can explain
what are the important features considered by the networks.
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