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Incremental Scannerless
Generalized LR Parsing

Abstract

The Scannerless Generalized LR (SGLR) parsing algorithm supports the develop-
ment of composed languages seamlessly but does not support incremental pars-
ing. The Incremental Generalized LR (IGLR) parsing algorithm, on the other
hand, does not support the seamless composition of languages. This thesis pre-
sents the Incremental Scannerless Generalized LR (ISGLR) parsing algorithm
and investigates the effects of combining the SGLR and IGLR parsing algorithms.
While the algorithmic differences are orthogonal, the fact that scannerless pars-
ing relies on non-deterministic parsing for disambiguation has a negative impact
on incrementality. Nonetheless, we show that the ISGLR parsing algorithm per-
forms better than the batch SGLR parsing algorithm in typical scenarios. On av-
erage, the ISGLR parser can reuse 99% of a previous parse result. When parsing
from scratch, the ISGLR parser has a 24% run time overhead compared to the
SGLR parser, but when parsing incrementally for changes that are smaller than
1% of the input size on average, it has a 9× speedup.
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Chapter 1

Introduction

The development of a new programming language follows a predefined set of stages. The
language needs a parser, static semantics, and a translation to some other language or ma-
chine code to run programs written in the language. In addition, an advanced editor for
a programming language has features like incremental parsing, syntax highlighting, refact-
oring actions, and identifier lookup. Developing all these features for a new programming
language takes a lot of effort, and this makes experimenting with language development
cumbersome.

Using a tool that generates a parser from a declarative grammar specification simplifies
the first stage of developing a programming language. These generated parsers can be integ-
rated into an editor, which then supports writing programs in the new language. One such
tool is Syntax Definition Formalism 3 (SDF3) (Vollebregt, Kats, and Visser 2012; de Souza
Amorim and Visser 2020), which generates parsers that make use of the Scannerless General-
ized LR (SGLR) parsing algorithm by Visser (1997). While traditional parsers require both
a lexing and a parsing phase, SGLR parsing merges these two phases by using grammars
that are defined in terms of single characters. Any disambiguation that the lexer normally
performs is encoded in the SDF3 grammar and is consequently handled by the SGLR parser.
The main advantage of this parsing technique is that it reduces the complexity of composing
grammars for different languages into a single grammar. This simplifies the development of
languages that have a different language embedded in them, such as the markup language
HTML, which has CSS and JavaScript embedded into the language.

However, SDF3 and the SGLR parsers it generates do not support incremental parsing.
Wagner and Graham (1997b) created an Incremental Generalized LR (IGLR) parsing al-
gorithm that aims to reuse as much as possible from a previous parse result when reparsing
a changed file. The time it requires to reparse a file containing a textual change is propor-
tional to the size of this change. Just like SGLR parsing, the IGLR parsing algorithm is based
on the Generalized LR (GLR) parsing algorithm by Tomita (1985) and Rekers (1992). We
provide the background on all these parsing techniques in Chapter 2.

In this thesis, we applyWagner’s incremental parsing technique to Visser’s SGLR parsing
algorithm. The different disambiguation methods of SGLRmight interfere with incremental
parsing in how much of the parse result can be reused. Therefore, in this thesis, we answer
the following research question:

What are the Effects of Combining Scannerless and Incremental GLR Parsing?

To answer this research question, we have investigated the differences of both SGLR parsing
and IGLR parsing compared to GLR parsing. In terms of their algorithms, these differences
are orthogonal to each other and can be combinedwithout difficulties. We present the result-
ing Incremental Scannerless Generalized LR (ISGLR) parsing algorithm in Chapter 3. While
the algorithmic differences are orthogonal, we show that there exist non-trivial interactions

1



1. INTRODUCTION

between these two techniques: scannerless parsing introduces non-determinism in parsing
that would not occur in non-scannerless parsing. This has a negative impact on the incre-
mentality of the ISGLR parser, meaning that it can reuse less of the previous parse result
than the non-scannerless IGLR parser.

To simplify the integration of the SGLR parser into an editor, its parse result is passed
through two post-processing tasks: imploding removes irrelevant details from the parse res-
ult, and tokenization generates a list of tokens from the parse result. To our knowledge,
these two tasks have not yet been described in the literature, so we provide their full de-
scription and algorithm in Chapter 4 before presenting an incremental algorithm for each
post-processing task.

We have evaluated the performance of the ISGLR parsing algorithm using an automated
benchmark suite that performs measurements and benchmarks on the ISGLR parser, based
on a configuration file that describes the languages and sources used for the evaluation. In
Chapter 5, we show that the ISGLRparser can reuse 99%of a previous parse result on average.
We benchmark the run time performance using two scenarios: parsing files from scratch and
parsing files incrementally. We show that ISGLR has a 24% run time overhead compared
to SGLR when parsing from scratch, but when parsing incrementally for changes that are
smaller than 1% of the input size on average, it has a 9× speedup.

We compare our approach with existing incremental parsing algorithms in Chapter 6.
In Chapter 7, we conclude this work and state possibilities for future research.

Context We have developed the ISGLR parsing algorithm in the context of Spoofax (Kats
and Visser 2010; MetaBorg 2016), a language workbench that simplifies the development of
programming languages by generating many of the common features for a language based
on declarative specifications. Besides generating an SGLR parser based on a grammar spe-
cificationwritten in SDF3, it also generates a type checker based on a declarative specification
of static semantics rules written in Statix (van Antwerpen et al. 2018), a compiler based on
declarative transformation rules written in Stratego (Bravenboer et al. 2008), and an editor
plugin that contains all of these features. Recent developments in Spoofax include incre-
mental type checking (Aerts 2019) and incremental compilation (Smits, Konat, and Visser
2020), but it still lacks incremental parsing.

Contributions In summary, this thesis presents the following contributions.

• The Incremental Scannerless Generalized LR (ISGLR) parsing algorithm (Chapter 3).

• The negative impact of disambiguation in SGLR on incremental parsing (Chapter 3).

• A description and algorithm for imploding and tokenization (Chapter 4).

• Incremental algorithms for these two post-processing tasks (Chapter 4).

• An evaluation suite for measuring and benchmarking the performance of incremental
parsers (Chapter 5).

• Insight into the performance of the ISGLR parser on representative inputs (Chapter 5).

2



Chapter 2

Background

This chapter provides background for the Incremental Scannerless Generalized LR (ISGLR)
parsing algorithm. Section 2.1 explains the Left-to-right Rightmost-derivation (LR) parsing
algorithm by Knuth (1965) and Section 2.2 explains the Generalized LR (GLR) parsing al-
gorithm by Tomita (1985) and Rekers (1992). Based on GLR parsing, Section 2.3 explains
the Incremental Generalized LR (IGLR) parsing algorithm by Wagner and Graham (1997b)
and Section 2.4 explains the Scannerless Generalized LR (SGLR) parsing algorithm byVisser
(1997).

2.1 LR Parsing
The LR(k) parsing algorithm by Knuth (1965) is a bottom-up approach for parsing input
streams into parse trees. This algorithm parses an input stream according to a given language,
where any language can be specified using context-free grammars. Regarding context-free
grammars, we will use the following terminology, adapted from Sipser (2012):

A context-free grammar is a 4-tuple (N,Σ, R, S), where

1. N is a finite set called the non-terminals;
2. Σ is a finite set, disjoint from N , called the terminals;
• N Y Σ is called the set of symbols;
• $ is a special terminal called the End-of-File (EOF) symbol,

used to indicate the end of the input;
3. R is a finite set of production rules, each of the form A Ñ α

where A is a non-terminal and α is a string of symbols; and
4. S P N is the start symbol.

2.1.1 Lexical Analysis
The input to the parser is a stream of text characters. Since the terminals of an LR grammar
typically correspond to several characters in the text, a lexer will analyse the stream of text
characters and transform it into a stream of tokens that can be used as terminals. The lexer
will skip any layout characters, as they are just used as separation between tokens.

Depending on the lexical analysis system, language designers can define tokens using
regular expressions (W. L. Johnson et al. 1968) or using an entirely different formalism. As
an example, when they use YACC (S. C. Johnson 1975) to describe an LR grammar, they will
usually define the tokens using Lex (Lesk and Schmidt 1975).

3



2. BACKGROUND

2.1.2 Parse Table Generation
Before a context-free grammar can be used for LR parsing, a parse table generator generates
a finite push-down automaton that will represent the LR parser. A two-dimensional parse
table represents the possible state transitions for every state of the automaton, as shown in
Figure 2.1. A parse table consists of two parts: an action table that maps state–terminal pairs
to actions and a goto table that maps state–non-terminal pairs to other states.

In the action table, not all entries contain a valid action; trying to look up an empty entry
will result in an error in the parser. In the bottom-left of the table in Figure 2.1(b), some
entries contain multiple actions; these are called conflicts and will also result in an error.

GExp =

(tS,Eu, ta,+,ˆu, R, S)

The set of rules, R, is:
S Ñ E

E Ñ E + E

E Ñ E ˆ E

E Ñ a

(a) The formal definition of GExp.

state actions gotos
+ ˆ a $ S E

0 S(2) 1
1 S(3) S(4) Accept
2 R(Ea) R(Ea) R(Ea)
3 S(2) 5
4 S(2) 6
5 S(3)/R(E+) S(4)/R(E+) R(E+)
6 S(3)/R(Eˆ) S(4)/R(Eˆ) R(Eˆ)

(b) The parse table of GExp. Shift actions are abbreviated to ‘S’ and Reduce
actions to ‘R’. The actions will be explained in Section 2.1.3.

Figure 2.1: A small expression grammar, GExp, and its corresponding parse table.
The parse table is generated using http://jsmachines.sourceforge.net/machines/lr1.html.

2.1.3 Parsing Algorithm

S Ñ E

E Ñ E + E

E Ñ a

a +

E Ñ a

a

Figure 2.2: A parse tree for
the input “a + a”, parsed
according to the grammar
GExp from Figure 2.1.

The two inputs to the LR parsing algorithm are a parse table
and an input stream of tokens. The output of the parser is a
parse tree, an example of which is shown in Figure 2.2. In this
tree, the leaf nodes correspond to the terminals of the grammar
and the non-leaf nodes, also called parse nodes, correspond to
the production rules.

During parsing, the parser maintains a parse stack. The
parse stack stores references to states in the parse table, always
having the start state at the bottom of the stack. The current
state of the parser is always at the top of the parse stack. Each
link between two stack nodes stores a parse node or terminal.

The parser uses the current state and the first terminal from
the input stream to get an action from the action table, as shown
in Figure 2.3. The three different types of actions decide how
the parser should continue:

Shift(s) Consume a terminal t from the input stream, push state s onto the parse stack,
and store t on the created link to the previous stack node.

Reduce(A Ñ α) Pop |α| items from the parse stack and create parse node n correspond-
ing to production rule A Ñ α with the popped nodes as children. Get state s1 from
the goto table using the state on top of the stack and non-terminal A, push state s1

onto the parse stack, and store n on the created link to the previous stack node.
Accept Finish parsing and return the parse tree that is stored on the link between the

only two remaining nodes on the parse stack.

4
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2.1. LR Parsing

Parse stack Remaining input Action / Goto

state
0

a+ a $
Action(0, a)
= Shift(2)

state
0

state
2a

+ a $
Action(2, +)
= Reduce(E Ñ a)

state
0 E Ñ a

a

+ a $
Goto(0, E)
= state 1

state
0

state
1E Ñ a

a

+ a $
Action(1, +)
= Shift(3)

state
0

state
1

state
3+E Ñ a

a

a $
Action(3, a)
= Shift(2)

state
0

state
1

state
3

state
2a+E Ñ a

a

$
Action(2, $)
= Reduce(E Ñ a)

state
0

state
1

state
3 E Ñ a

a

+E Ñ a

a

$
Goto(3, E)
= state 5

state
0

state
1

state
3

state
5E Ñ a

a

+E Ñ a

a

$
Action(5, $)
= Reduce(E Ñ E + E)

state
0 E Ñ E + E

E Ñ a

a

+ E Ñ a

a

$
Goto(0, E)
= state 1

state
0

state
1E Ñ E + E

E Ñ a

a

+ E Ñ a

a

$
Action(1, $)
= Accept

Figure 2.3: The process of parsing the input “a+ a” according to the context-free grammar
GExp from Figure 2.1. The EOF symbol $ is appended to the input before parsing. In this
figure, Reduce actions are processed in two steps: the first step shows popping items from
the parse stack and the second step shows pushing a new state, determined via the goto table.
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2. BACKGROUND

2.1.4 Bounded Versus Unbounded Lookahead
The k in “LR(k) parsing” stands for the number of terminals that the parser is allowed to look
ahead when determining the next action from the parse table. The parser that we covered
so far only looks at the first terminal in the input stream to determine the next action, so it
is an LR(1) parser. In general, we will assume that a parser has a lookahead of one terminal
when k is not specified.

All LR(k) parsers (with k ě 1) are equally powerful because an LR(k) grammar can
always be transformed into an LR(1) grammar (Mickunas, Lancaster, and Schneider 1976).
However, LR(k) parsers cannot handle all context-free grammars. We say that a grammar
requires a parser with unbounded lookahead if there exists no LR(k) parser that can parse all
strings in the language of the grammar. For example, parsing C++ requires unbounded looka-
head: the statement int (a), b, c, d, …; can be interpreted either as a variable declaration
list (the first being redundantly parenthesized) or as a comma-separated list of expressions
(the first being a cast to int), depending on the final expression in the list. Since there can
be arbitrarily many identifiers preceding this final expression, the parser theoretically needs
infinite lookahead to disambiguate (Willink 2001, p. 147).

2.2 Generalized LR Parsing
Rekers (1992) created the GLR parsing algorithm based on the natural language parsing
algorithm by Tomita (1985). Rekers’ algorithm overcomes the limitation of LR parsing by
simulating unbounded lookahead, so it can handle all context-free grammars.

GLR parsingmakes use of existing LR parse table generators. Whereas parse table entries
with multiple actions generated an error for plain LR parsing, GLR parsing will instead ex-
plore all possible actions. The parser will immediately apply any possible Reduce actions,
while it saves up Shift actions for the different stacks and only applies them once it has pro-
cessed all Reduce actions. Effectively, this means that all active parse stacks are synchronized
at the same location in the input stream.

Rekers uses a Graph-Structured Stack (GSS) to represent the parse stacks. The active
parse stacks each have a different top in the GSS. All stacks have the same root, represented
by the start state, just like the linear parse stack used in LR parsing. Some examples of GSSs
are shown in Figure 2.4. Besides the regular pushing to and popping from the stack, three
other things can happen during GLR parsing:

Forking The parser forks new parse stacks from an existing one whenever it can execute
more than one action. This happens when it encounters a conflict in the parse table,
as shown in Figure 2.4(a). The parser also forks the parse stacks when a Reduce action
can be applied over multiple paths in the GSS, as shown in Figure 2.4(d).

Merging The parsermerges parse stacks back togetherwhen actions fromdifferent parse
stacks result in the same state. Examples of this are shown in Figures 2.4(b) and 2.4(e).

Discarding The parser discards a parse stackwhen it has no available actions. The parser
halts and returns an error when all parse stacks have been discarded.

If the GLR parser needs to merge parse stacks and does not discard the resulting stack
until it finished parsing, an ambiguity remains in the final result. This ambiguity is represen-
ted in a parse node by storing multiple derivations in it. When a parse tree contains (or may
contain) ambiguities, it is referred to as parse forest since multiple non-ambiguous parse trees
could be constructed from it.

When a parser needs to fork the parse stack during parsing to achieve unbounded looka-
head, we say that it is parsing non-deterministically. This does not imply that the final result
contains ambiguities or that the grammar is ambiguous at all.
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state
0

state
1

state
3

state
5E Ñ a

a

+E Ñ a

a

(a) The next terminal in the input stream is ˆ and Action(5, ˆ) = {Shift(4), Reduce(E Ñ E + E)}. The Reduce
action is applied immediately using Goto(0, E) = state 1 and the parse stack forks. The Shift(4) action for the
original stack will be applied after the Reduce action has been processed.

state
0

state
1

state
3

state
5E Ñ a

a

+E Ñ a

a

state
1E Ñ E + E

E Ñ a

a

+ E Ñ a

a

(b) For the new parse stack, Action(1, ˆ) = Shift(4). The Shift actions for both stacks can now be applied. Since
the new state is 4 in both cases, the stacks merge.

state
0

state
1

state
3

state
5E Ñ a

a

+E Ñ a

a

state
1E Ñ E + E

… … …

state
4

ˆ

ˆ

(c) After processing Action(4, a) = Shift(2), Action(2, $) = Reduce(E Ñ a), and Goto(4, E) = 6, the parse stack
looks as follows:

state
0

state
1

state
3

state
5E Ñ a

a

+E Ñ a

a

state
1E Ñ E + E

… … …

state
4

state
6E Ñ a

a
ˆ

ˆ

(d) With Action(6, $) = Reduce(E Ñ E ˆE), there is only one possible action. However, there are two possible
paths to reduce over: 3 – 5 – 4 – 6 and 0 – 1 – 4 – 6. Therefore, two new stacks are created using Goto(3, E) =
state 5 and Goto(0, E) = state 1.

state
0

state
1

state
3

state
5E Ñ E ˆ E

E Ñ a

a

ˆ E Ñ a

a

+E Ñ a

a

state
1

E Ñ E ˆ E

E Ñ E + E

… … …

ˆ E Ñ a

a

(e) The first stack has Action(5, $) = Reduce(E Ñ E +E) left to process and with Goto(0, E) = state 1, the two
stacks are merged again. The parse node on the only remaining edge will then contain two derivations. At this
point, Action(1, $) = Accept and the parser returns this parse node. The second derivation is not shown, as it is
symmetric with the first derivation. Note that if the Accept action would be executed first, the other stack would
still be processed, to get both derivations.

Figure 2.4: A part of the process of parsing “a+ a ˆ a” using GExp from Figure 2.1.
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2.3 Incremental Generalized LR Parsing

Figure 2.5: A screenshot of
Harmonia, an IDE that uses
the IGLR parsing algorithm
(Wagner 1998, Figure 2.1, en-
hanced).

Wagner (1998) introduced the IGLR parsing algorithm,
which extends the GLR parsing algorithm by Tomita (1985)
and Rekers (1992). Boshernitsan (2001) applied this pars-
ing algorithm in the interactive setting of an Integrated De-
velopment Environment (IDE) called Harmonia (a screen-
shot is shown in Figure 2.5). When a software developer
that uses Harmonia makes a small change to a file that they
are working with, the incremental parser only performs
work for the changed regions of the input. The reduced
parsing time greatly speeds up the development process.

We will call subsequent invocations of the parser in in-
teractive settings incremental parses. On the other hand, we
use the term batch parse for a single invocation of the parser
on a file without reusing previous results.

Just like LR and GLR parsing, the IGLR parser has two
phases: a lexer and a context-free parser.

Incremental Lexical Analysis Wagner and Graham (1997a) describe an incremental lexer
that maintains a mapping between the input character stream and the corresponding token
stream. When the user changes the input, only the tokens nearby the changed regions need
an updated lexical analysis to restore the mapping’s consistency.

The incremental lexer updates the tokens directly in the leaf nodes of the previous version
of the parse tree. Therefore, the time to findwhich tokens need to be updated is proportional
to the height of the parse tree for every changed region of the input. In this process, all parse
nodes that are ancestors of the changed token nodes can be marked as changed.

Incremental Parsing After the incremental lexer has updated the tokens in the leaf nodes
of the parse tree, the IGLR parser byWagner and Graham (1997b) performs a traversal along
this tree, starting at the root node. For every parse node that the parser encounters, it checks
whether it is unchanged and valid for reuse. If this is the case, it shifts this node onto the
parse stack, determining the new state from the goto table using the non-terminal symbol on
the left-hand side of the production rule of the shifted parse node. The parser then performs
one of the following two movements:1

Descend If the parser can not reuse the current parse node, it moves to the first child node
of the current parse node. In other words, the parser “breaks down” the current parse
node to check its children.

Next If the parser can reuse the current parse node, it moves to the right sibling of the
current parse node. If the current parse node is the last child in its parent, it moves to
the right sibling of the closest ancestor that is not the last child in its parent.

Figure 2.6 shows an IGLR parser during such a traversal after a programmer has inserted
the character 'b' in an existing identifier “acd” (Wagner 1998, Figure 6.1). It shows how the
parser has already traversed the left part of the parse tree and has reused the parse nodes that
have not changed, with the top of the parse stack (TOS) currently right before the changed
token.

1Wagner (1998) named these movements leftBreakdown and popLookahead, respectively.
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Figure 2.6: A snapshot of the state of an IGLR parser after a programmer has inserted the
character 'b' in an existing identifier “acd” (Wagner 1998, Figure 6.1). The grey area on the
left shows which parse nodes are on the parse stack right before the parser encounters the
changed identifier, with “TOS” as the top of this stack. The grey area on the right shows
which subtrees will be reused. This is not an explicit stack: the IGLR parser uses the Next
movement to traverse over this part of the parse tree.

Valid Parse Node Reuse The IGLR parser can only reuse an unchanged parse node if the
context surrounding this node allows this. To this end, it performs two tests, checking the
context to the left and the context to the right. In otherwords, the parse nodemust be allowed
to follow the part that has already been parsed, and the remaining input following this parse
node must not have changed, respectively. We will give a more detailed example for both
tests in Section 3.3 since the ISGLR parser uses the same tests.

Firstly, the IGLR parser uses a state matching test (Jalili and Gallier 1982) to check the
context to the left, because the parse states capture this context by construction of the parse
table. To implement this test, each parse node stores a reference to the state that was at the
top of the parse stack before the node is pushed onto this stack. In a subsequent incremental
parse, a parse node can only be reused if the state reference stored in the parse node is the
same as the current parse state.

Secondly, the parser tests if the lookahead of the current parse node has changed, to
check the context to the right. If this lookahead did change, the parser might need to take a
different action from the parse table and cannot simply reuse this node. In a deterministic
setting, only one2 token following the current parse node needs to be checked. However, dur-
ing non-deterministic parsing, the number of lookahead tokens is unbounded, as explained
in Section 2.2. In a subsequent incremental parse, there could be changes following a non-
deterministic region that would cause a different parse stack to survive. Therefore, parse
nodes that are created while multiple parse stacks are active, are marked as irreusable. Wag-
ner andGraham (1997b) implement this by not storing a reference to a parse state in them. In
this way, the state matching test will always fail for this parse node, which causes the parser
to Descend from the node to check its children.

2The parser only needs to check one token ahead in the case of an LR(1) parser. An LR(k) parser would
have to check the following k tokens to see if they changed.
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2.4 Scannerless Generalized LR Parsing
Visser (1997) introduced the SGLR parsing algorithm, which is based on the scannerless
variant of the Noncanonical Simple LR (NSLR) parsing algorithm by Salomon and Cormack
(1989) combined with the GLR parsing algorithm by Tomita (1985) and Rekers (1992).

Unlike the other parsing approaches discussed so far, scannerless parsing uses only one
parsing phase: it does not use a lexer. All elements of a language can be described using
a single context-free grammar. This reduces the complexity of composing grammars for
different languages into a single grammar, such as embedding a grammar for JavaScript or
CSS into the grammar of HTML. Referencing symbols from another grammar is enough to
merge one grammar into another. In contrast, composing grammars for a two-phase parser
would also entail writing a lexer that produces tokens for both grammars. We will further
compare language composition with non-scannerless parsers in Section 6.1.1.

Specification ofCharacter-LevelGrammars LRgrammars are token-level grammars because
they use tokens as the terminals of the context-free grammar. SGLR parsing is scannerless,
meaning that it does not use a lexer, so it uses character-level grammars. Language designers
can describe character-level grammars using characters as terminals. The resulting parse tree
has character nodes instead of tokens as leaves. We will use the metalanguage Syntax Defini-
tion Formalism 3 (SDF3) (Vollebregt, Kats, and Visser 2012; de Souza Amorim and Visser
2020) to describe character-level grammars. See Figure 2.7(a) for an example grammar spe-
cified using SDF3. Grammars written in SDF3 can be converted to an LR parse table after a
preprocessing step called grammar normalization, as described in Section 2.4.1.

Context-FreeVersus Lexical Syntax SDF3 distinguishes between context-free syntax and
lexical syntax sections of a grammar. The context-free syntax sections describe produc-
tion rules that are analogous to the rules defined in a token-level grammar. The lexical
syntax sections describe the syntax of lexical elements in the language, e.g., identifier names,
numbers, strings, and operators. Language designers can describe the lexical elements of the
grammar in a context-free way, just like the context-free part of the grammar. Constructs to
disambiguate lexical elements will be discussed in Section 2.4.2.

Parser Implementation The ISGLR parser presented in Chapter 3 is implemented as an ex-
tension to the JSGLR2 implementation of the SGLR parsing algorithm. This implementation
is written in Java and integrated into the Spoofax languageworkbench (Kats and Visser 2010;
MetaBorg 2016). The JSGLR2 parser uses parse tables generated from SDF3 for parsing. The
implementation of JSGLR2 is described in more detail in Section 2.4.3.

2.4.1 Grammar Normalization
Apreprocessing step called grammar normalization converts the SDF3 specification to amin-
imal subset of SDF3 to simplify the parse table generator. Because of grammar normalization,
SDF3 can have high-level features that do not need to be supported by the parse table gen-
erator, thus simplifying the grammar specification process for language designers. Using
Figure 2.7, we will discuss some of the steps that grammar normalization executes.

Kernel Syntax Grammar normalization transforms all production rules in context-free
syntax and lexical syntax sections to rules in a third type of section: kernel syntax. The
kernel syntax section is denoted in SDF3 using the keyword syntax. In kernel syntax, the sort
symbols (representing the non-terminals) are annotated with -CF and -LEX to remember the
origin of the symbol. An injection is added for sorts used in both syntax sections, stating that
the context-free sort is equal to the lexical sort. In the grammar of Figure 2.7, this happens
for the Int sort, among others.
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context-free start-symbols

Exp

context-free syntax

Exp.Add = Exp "+" Exp
Exp.Num = Int

lexical syntax

LAYOUT = [\ \t\n\r]
Int = [0-9]+

(a) The grammar, defined using high-
level SDF3.

syntax

<Start> = <START> <EOF>
<START> = LAYOUT?-CF Exp-CF LAYOUT?-CF
Exp-CF.Add =
Exp-CF LAYOUT?-CF "+" LAYOUT?-CF Exp-CF

Exp-CF.Num = Int-CF
Int-CF = Int-LEX
Int-LEX = [\48-\57]+-LEX
[\48-\57]+-LEX = [\48-\57]+-LEX [\48-\57]
[\48-\57]+-LEX = [\48-\57]
"+" = [\43]
LAYOUT?-CF = LAYOUT-CF
LAYOUT?-CF =
LAYOUT-CF = LAYOUT-CF LAYOUT-CF {left}
LAYOUT-CF = LAYOUT-LEX
LAYOUT-LEX = [\9-\10\13\32]

(b) The same grammar, where grammar normalization trans-
formed it to kernel syntax.

Figure 2.7: A small expression grammar, specified using SDF3 syntax. The grammar allows
expressions (with the sort symbol Exp) to be either an addition or a number. Numbers can
only be integers that consist of one or more numeric characters.

Character Classes The terminal symbols of an SDF3 grammar are character classes, which
describe a set of characters in a compact notation.3 Grammar normalization will transform
all character classes to use decimal Unicode values. For example, in the grammar of Fig-
ure 2.7(a), the Int sort is described by the character class [0-9], which gets normalized to
[\48-\57].

Literal Expansion The literals of the grammar, consisting of non-varying lexical elements
like keywords and operators, are normalized to a list of character classes corresponding to
the characters of the literal. In the example of Figure 2.7, the "+" literal that is used as an
operator in the addition rule gets normalized to the rule "+" = [\43]. A literal keyword like
"if" would get "if" = [\105] [\102] as normalized production rule.

Layout Insertion A scannerless parser processes the input character by character. There-
fore, the full grammarmust alsomodel the layout (whitespace characters) between grammar
symbols. Manually adding this layout explicitly for every production rule would greatly de-
crease the readability of a grammar specification. Therefore, grammar normalization will
insert optional layout symbols (denoted using “LAYOUT?-CF”) between the symbols on the
right-hand side of production rules that are defined in context-free syntax sections. For ex-
ample, the addition rule (Exp.Add) gets explicit LAYOUT?-CF symbols around the "+" symbol
in Figure 2.7(b).

3https://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/reference.html#character-classes
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X? = X
X? =

Y* = Y* Y
Y* = Y

Z+ = Z+ Z
Z+ = Z

Figure 2.8: The nor-
malization of option-
als and lists in SDF3.

Lists andOptionals SDF3 allows for three operators that indicate
the allowed number of occurrences of a sort: ? is used for “zero or
one”, * is used for “zero or more”, and + is used for “one or more”.
Each of these operators is normalized to two rules, as shown in Fig-
ure 2.8. When the list operators are used in a context-free syntax
section, optional layout is also inserted between two sorts on the
right-hand side of the normalized production rules.

Layout Production Rules To let the optional context-free layout
symbol (LAYOUT?-CF) make use of the LAYOUT rule as defined in
Figure 2.7(a), grammar normalization adds the production rules
shown at the bottom of Figure 2.7(b). The normalization of
LAYOUT?-CF is a combination of the optional and list normalizations
as discussed in the previous paragraph. Also, the injection between
the context-free and lexical is added here to make the final connec-
tion with the lexical definition of LAYOUT before normalization.

Start Symbol Grammar normalization adds two global start symbols to the normalized
grammar. The first (<Start>) is used in the first production rule in Figure 2.7(b), which has
the second start symbol (<START>) and the EOF symbol (<EOF>) on the right-hand side. For
the second start symbol, one rule is added for each start symbol defined in the start-symbols
sections. Additionally, for start symbols defined in a context-free start-symbols section,
this rule will also allow optional layout before and after the start symbol.

2.4.2 Lexical Disambiguation Constructs
Character-level grammars contain certain lexical ambiguities that do not occur in token-level
grammars because these ambiguities are usually resolved by the lexer. In SDF3, reject rules
and follow-restriction rules can be used to resolve two types of lexical ambiguities.

Reject Rules One type of lexical ambiguity that can occur, is that a string of tokens can be
interpreted as different lexical elements that are all valid at that position. A typical example
of this is that keywords (like if and return) can also be parsed as an identifier. To solve this,
language designers using SDF3 canmark production rules with the keyword reject, causing
the parser to reject these productions for the non-terminal on the left-hand side of the rule.
Figure 2.9 shows an example of this.

Follow-Restriction Rules Another common ambiguity that arises in character-level gram-
mars is that single identifiers could be split up into several identifiers, while there is no layout
between those parts. To solve this, follow-restriction rules (denoted with -/-) can be used
to prefer the longest match for lexical elements. Figure 2.9 shows an example with a follow-
restriction rule which states that an identifier cannot be followed by a letter because that
would mean that this letter should be part of that identifier.

2.4.3 Modular Parser Implementation
The JSGLR2 parser in the Spoofax IDE implements the SGLR parsing algorithm in amodular
way (Denkers 2018). This allows the implementation of extensions to the parser with as little
code duplication as possible, increases themaintainability of the code, and allows composing
variants if their modules do not have any overlapping changes.

The architecture of the JSGLR2 parser is modular in two dimensions. First, the parser can
be configured to use variants of the runtime data structures for parsing. Second, the parsing
algorithm is spread over modules that each contain an implementation of one or more of the
subroutines of SGLR. We will refer to Denkers (2018, §2.5) for the full SGLR algorithm.
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context-free syntax

Exp.Var = Id

lexical syntax

Id = [A-Za-z]+
Id = "IF" | "THEN" | "ELSE" | "ENDIF" {reject}

lexical restrictions

Id -/- [A-Za-z]

Figure 2.9: An SDF3 example that uses lexical disambiguation constructs. The rule annotated
with {reject} forbids that an identifier is equal to one of the strings in that rule. The follow-
restriction rule in the lexical restrictions section makes sure that an identifier cannot be
followed by another letter.

Runtime Data Structures The JSGLR2 parser can use variants of the runtime data struc-
tures as described below. Constructing a variant of the parser requires passing factories for
these data structures to the constructor of the Parser class. These factories will then instanti-
ate the data structures during a parse.

ParseForest, ParseNode, Derivation, and CharacterNode are the data structures thatmake
up the parse forest that the parser produces for a successful parse. Both ParseNode
and CharacterNode are implementations of ParseForest. A ParseNode stores a list of
Derivations, each ofwhich stores a list of ParseForests again. A Derivation also stores
for which production rule it was created. A CharacterNode stores which character it
represents.

StackNode and StackLink make up the parse stack. A StackNode stores a state reference
and a list of outgoing StackLinks. A StackLink stores references to the two StackNodes
that it connects between, a ParseForest, and whether it is marked as rejected.

ParseState stores the global variables used during parsing: active-stacks, accepting-stack,
for-actor, for-actor-delayed, for-shifter, and the input stream.

SDF3
Grammar

Parse Table
Generation

Parse
Table

Text
Input

SGLR
Parser

Parse
Forest

Imploder AST Tokenizer Tokens

resource
code component

Figure 2.10: The current parsing pipeline in the Spoofax IDE. The top row of the pipeline is
executed during language development, while the bottom row is executed every time a file
is parsed.
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Parser Modules The Java class JSGLR2Implementation is the entry point to the complete
parsing pipeline. It ties the SGLR parsing algorithm, the imploder, and the tokenizer together.
An overview of the Java classes that implement parts of the parsing pipeline is given below.
Additionally, Figure 2.10 shows a schematic overview of the complete parsing pipeline from
input to output. Note that the parse table generator in the top row of this figure is implemen-
ted in the SDF module in Spoofax, i.e., it is not a part of JSGLR2.

Parser contains the main parse loop, deferring several parts of the algorithm to other
components. It has methods for the following procedures of the SGLR algorithm:
PARSE, calls PARSECHARACTER for all characters in the input stream;
PARSECHARACTER, calls ACTOR for every active parse stack and calls SHIFTER after that;
ACTOR, fetches an action from the parse table and acts upon it; and
SHIFTER, pushes the current character onto all remaining active stacks.

ReduceManager hasmethods for theDOREDUCTIONS andDOLIMITEDREDUCTIONS pro-
cedures, which calculate the possible reduction paths in the GSS and call RE-
DUCER for every valid path. It also has a method that covers a large part of the
REDUCER procedure. This method determines which branch of the Reducer to
call, depending on other active parse stacks and their links to other stacks.

Reducer contains the code for the three branches of the REDUCER procedure: the
casewhere both the new stack node and stack link already exist, the casewhere
only the new stack node already exists, and the case where neither already
exist.

StackManager handles the creation of stack nodes and stack links.
ParseForestManager handles the creation of parse nodes and derivations,

and adding derivations to parse nodes.

Imploder transforms a parse forest to an Abstract Syntax Tree (AST). More details will
be given in Section 4.1.

Tokenizer transforms the parse forest to a list of tokens and attaches these tokens to the
AST. More details will be given in Section 4.2.

Parser Variants The current implementation of JSGLR2 supports the following parser vari-
ants, which have been implemented as modular extensions to the standard parser:

Elkhound McPeak and Necula (2004) introduced Elkhound parsing, an optimization to
GLR parsers where it can fall back to the more efficient LR parsing algorithm when
there is only one active parse stack. Denkers (2018, §5.2) describes the implementa-
tion of Elkhound in the JSGLR2 parser.

Optimized Parse Forest Denkers (2018) introduced a variant of the JSGLR2 parser that
skips the creation of parse nodes when they are not needed for the final AST. This
includes parse nodes that would be created for lexical production rules and reject
rules.

Data-Dependent de Souza Amorim, Steindorfer, and Visser (2018) extend SDF3 by al-
lowing symbols to be parameterized by data and allow arbitrary computation at parse
time. They use this extension to solve deep priority conflicts, which are priority con-
flicts between parse nodes that are not directly connected, but instead are separated
by arbitrarily many levels of parse nodes, so regular priority declarations cannot be
used to resolve these conflicts.
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2.4. Scannerless Generalized LR Parsing

Layout-Sensitive de SouzaAmorim, Steindorfer, Erdweg, et al. (2018) extend SDF3with
layout constraint annotations, which allows parsing languages that are sensitive to
layout. For example, Python uses indentation to indicate nesting in blocks of code,
requiring this layout-sensitive parsing approach.

Error Recovery de Jonge et al. (2012) add error recovery to SGLR and implemented this
in JSGLR1, the previous version of the SGLR implementation in Spoofax. The imple-
mentation of this extension in JSGLR2 is a work in progress.

We implemented the ISGLR parser presented in Chapter 3 in the modular architecture of
JSGLR2. Details of the implementation in this architecture will be given in Section 3.5.
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Chapter 3

Incremental Scannerless
Generalized LR Parsing

This chapter presents and analyses the Incremental Scannerless Generalized LR (ISGLR)
parsing algorithm to answer the research question stated in Chapter 1. This parsing al-
gorithm combines Scannerless Generalized LR (SGLR) parsing and Incremental General-
ized LR (IGLR) parsing. The differences of these two parsing algorithms with respect to
GLR parsing are orthogonal to each other and are combined without difficulties. While
the algorithmic differences are orthogonal, we show that there exist non-trivial interactions
between these two techniques.

The ISGLR parsing algorithmworks as follows. First, it calculates a list of changes (called
a diff) between the old and the new version of the input string. Then, starting at the root
node, the parser tests whether parse nodes can be reused in the current context, and if not,
breaks them down and continues with their children. The parser will always break down
parse nodes that contain any of the changed positions as calculated by the diff. When the
parser encounters irreusable parse nodes, which were created while the parser was parsing
non-deterministically (see Section 2.3), it will break those down as well.

In Section 3.1, we apply the ISGLR parsing algorithm to an example to show how it works
in practice. We show that increased non-determinism caused by scannerless parsing results
in less reuse during an incremental parse using more examples in Section 3.2. The ISGLR
parsing algorithm uses the same state matching test and lookahead test as Wagner and Gra-
ham (1997b) (see Section 2.3) to test whether reusing a parse node is valid, as we show in
Section 3.3.

We write out the entire parsing algorithm in detail in Section 3.4. In particular, we high-
light the changes required to the SGLR parser algorithm by Visser (1997). In Section 3.5,
we describe the required changes to the JSGLR2 implementation by Denkers (2018), as de-
scribed in Section 2.4.3.

3.1 ISGLR Parsing by Example
In this section, we will give an intuition of the ISGLR parsing algorithm using an example.
The example is based on a small grammar that allows a list of variable assignment statements
of the shape Stmt.Assign = ID "=" Exp. The allowed expressions are additions, multiplica-
tions, numbers and variables. The full SDF3 grammar is shown in Figure 3.1(a) and the
normalized grammar in Figure 3.1(b).

In this example, we will consider the incremental parse of the input string “ab =42 * 42”
followed by “ans =42 * 42” (hereafter called version 1 and version 2, respectively). The
parse tree of the first input string is shown in Figure 3.2.
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context-free start-symbols
Start

context-free syntax
Start = Stmt+

Stmt.Assign = ID "=" Exp

Exp.Add = Exp "+" Exp {left}
Exp.Mul = Exp "*" Exp {left}
Exp.Var = ID
Exp.Num = NUMBER

context-free priorities
Exp.Mul > Exp.Add

lexical syntax
ID = [a-z]+
NUMBER = [0-9]+

LAYOUT = [\ \t\r\n]

lexical restrictions
ID -/- [a-z]
NUMBER -/- [0-9]

(a) The grammar, defined using high-level SDF3.

Figure 3.1: The SDF3 definition of a small grammar that allows a list of statements that assign
an expression to a variable. The allowed expressions are additions, multiplications, numbers,
and variables.
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syntax

<Start> = <START> <EOF>
<START> = LAYOUT?-CF Start-CF LAYOUT?-CF
Start-CF = Stmt+-CF
Stmt+-CF = Stmt-CF
Stmt+-CF = Stmt+-CF LAYOUT?-CF Stmt-CF
Stmt-CF.Assign = ID-CF LAYOUT?-CF "=" LAYOUT?-CF Exp-CF
Exp-CF.Add = Exp-CF LAYOUT?-CF "+" LAYOUT?-CF Exp-CF {left}
Exp-CF.Mul = Exp-CF LAYOUT?-CF "*" LAYOUT?-CF Exp-CF {left}
Exp-CF.Var = ID-CF
Exp-CF.Num = NUMBER-CF
ID-CF = ID-LEX
ID-LEX = [\97-\122]+-LEX
[\97-\122]+-LEX = [\97-\122]
[\97-\122]+-LEX = [\97-\122]+-LEX [\97-\122]
NUMBER-CF = NUMBER-LEX
NUMBER-LEX = [\48-\57]+-LEX
[\48-\57]+-LEX = [\48-\57]
[\48-\57]+-LEX = [\48-\57]+-LEX [\48-\57]
"=" = [\61]
"+" = [\43]
"*" = [\42]
LAYOUT?-CF = LAYOUT-CF
LAYOUT?-CF =
LAYOUT-CF = LAYOUT-CF LAYOUT-CF {left}
LAYOUT-CF = LAYOUT-LEX
LAYOUT-LEX = [\9-\10\13\32]

priorities

Exp-CF.Mul > Exp-CF.Add,
Exp-CF.Add left Exp-CF.Add,
Exp-CF.Mul left Exp-CF.Mul,
LAYOUT-CF = LAYOUT-CF LAYOUT-CF left LAYOUT-CF = LAYOUT-CF LAYOUT-CF

(b) The SDF3 grammar of Figure 3.1(a), normalized to kernel syntax.

Figure 3.1 (Continued)
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Figure 3.2: The parse tree for the input “ab =42 * 42” according to the grammar in Figure 3.1(b).
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ab·=42·*·42

ans·=42·*·42

ab·=42·*·42

ans·=42·*·42

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

deletedStart = 1
deletedEnd = 2
inserted = "ns"

Figure 3.3: The diff between version 1 and version 2.

Calculate Updates Using Diff As a first step, we compute the character-by-character dif-
ference between the two versions of the input string, using an existing diff algorithm.1 This
algorithm gives a list of changes as a result. Calculating the diff between version 1 and ver-
sion 2 yields a single change, as shown in Figure 3.3. This change indicates that the second
character (the “b”) is deleted and replaced with “ns”.

In general, each text change is modelled using three values: the start and end positions
of the deleted text, and the string that is inserted at the start position. This models text
replacements, insertions, and deletions. For insertions, the start and end index are equal,
because for this change no text is deleted. For deletions, the string that is inserted is left
empty.

When the calculated diff contains changes that have different lengths for the deleted and
inserted text, the positions in subsequent changes become outdated. We will abstract over
this detail since it only requires simple arithmetic to update these positions. In the remainder
of this chapter, we assume that the parser can always correctly detect whether a certain pos-
ition contains a change, based on this abstraction.

Incremental Input Stack The ISGLR parser uses an incremental input stack to consume
input from. Whereas a regular input stream would store only characters, the incremental
input stack can also store entire parse nodes. When the parse node at the top of the stack
cannot be reused for whatever reason, it will be broken down and its children will be pushed
back onto the stack in reverse order so that the first child ends upon top of the stack. Themain
reason for having to break downaparse node iswhen it contains a change from the calculated
diff. Eventually, all parse nodes along the spine between the root node and the changes will
be broken down. Other reasons for breaking down parse nodes will be discussed in the
remainder of this chapter.

The approach of using an input stack differs from the IGLR parsing algorithm ofWagner
and Graham (1998), which performs a walk along the parse tree after updating the tokens
in the leaf nodes, as explained in Section 2.3. This requires the parse nodes to maintain a
reference to their parent, which needs to be updated if a subtree is reused in a different node.
Since we treat parse nodes as immutable, we use the incremental input stack to keep track of
which parse nodes still need to be processed.

1In particular, the diff algorithm implemented in JGit: https://download.eclipse.org/jgit/site/5.6.0.
201912101111-r/apidocs/org/eclipse/jgit/diff/package-summary.html
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$1

$4432

$4432
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$4452
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$441918161272

$441918161282

$4419181612b92

$4419181612ba2
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$4419181612sn472

$4419181612s482

$4419181612s482

$4419181612492

$4419181612ID-LEX2

$4419181612ID-CF2

$4419181612ID-CF2

…

$4419181612ID-CF2

$44Stmt-CF.Assign2

$44Stmt+-CF2

$44Start-CF2

$44Start-CF2

$<START>

Figure 3.4: The parse stack (left) and
the input stack (right) during an incre-
mental parse, using the change from
Figure 3.3.

Incremental Parsing Now, we start parsing ver-
sion 2. In Figure 3.4, we will follow the contents
of the incremental input stack and the parse stack
during parsing. The incremental input stack is
initialized with the root of the parse tree of Fig-
ure 3.2 (node 1 ) and an EOF marker $ .

Node 1 contains the change that was calcu-
lated by the diff, so the parser breaks it down and
pushes its children ( 2 , 3 , and 44 ) onto the in-
put stack. The parser then shifts node 2 onto
the parse stack, since its symbol (LAYOUT?-CF) is
in the goto table of the start state.

Following this, the parser has to break down
multiple parse nodes successively, all the way un-
til character node a ( 10 ) is on top of the in-
put stack. This node can then be shifted onto the
parse stack. Note that its parent node 9 is not
part of the change, but it is directly followed by a
change, so it should still be broken down (more
on this in Section 3.3.2).

Now that character node b is at the top of the
input stack, the update can be applied. Node b
is removed from the stack, while two new charac-
ter nodes n and s are pushed back onto it.

With character node n at the top of the input
stack, the parser can reduce parse node a , creat-
ing node 47 with sort [\97-\122]+-LEX. On top
of this new node, the parser shifts the n onto the
parse stack.

The parser then reduces the two nodes at the
top of the parse stack into node 48 , which is
another parse node with sort [\97-\122]+-LEX.
After shifting the s node, it performs the same
reduction, creating node 49 .

Then, the parser performs two reductions,
from parse node 49 to ID-LEX and from that
node to ID-CF . Note that this is a node with the
same sort as node 6 , which was the first child of
node 5 (with sort Stmt-CF.Assign) in the parse
tree of the first version. Therefore, the parser can
shift all other children of node 5 from the input
stack onto the parse stack and reduce them all to
a new parse node Stmt-CF.Assign .

Finally, the parser performs two more reduc-
tions, shifts parse node 44 , and reduces the en-
tire parse stack to the <START> symbol. With only
the $ node left in the input stack, the parser ac-
cepts the input. Figure 3.5 shows the resulting
parse tree.
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Figure 3.5: The resulting parse tree after first parsing “ab =42 * 42” and then incrementally parsing “ans =42 * 42”. The white nodes were created
during the initial parse (see Figure 3.2) and the green nodes were created during the incremental parse (see Figure 3.4).
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3.2 Non-determinism in ISGLR Parsing
As explained for IGLR parsing in Section 2.3, non-deterministic parsing results in irreusable
parse nodes, which can never be reused in a subsequent incremental parse if they end up on
top of the input stack. WhileWagner andGraham (1997b, §5) showed that non-deterministic
parsing rarely occurs for token-based parsers, the parsing of character-level grammars relies
more on non-deterministic parsing for disambiguation (Visser 1997, §2.2). In this section,
we show some examples of this, using the grammar of Figure 3.1.

3.2.1 Example With Layout Between Operators
Consider a batch parse of the input “a = x + y + z”. After parsing “a = x + y”, the parse
stack contains one parse node for each character, as in stack (1) in Figure 3.6.

With ' ' as the next character, the parser can take four successive Reduce actions. First,
the top five nodes can be reduced to Exp-CF.Add (2), which can then be reduced togetherwith
four other parse nodes to Stmt-CF.Assign (3), which can, in turn, be reduced to Stmt-CF+ (4)
and further to Start (5). Figure 3.6 shows how these parse stacks look like, together with the
parse nodes that are stored in the stack links. Of the five parse stacks, all of them can shift
the ' ' except for stack (3):

(1) expects a '*' following the space, since Exp-CF.Mul has priority over Exp-CF.Add.

(2) expects a '+' following the space, since Exp-CF.Add is left-associative.

(4) expects another Stmt following the space.

(5) expects the End-of-File (EOF) following the space.

The reason why so many parse stacks stay active is that the parser can only use one char-
acter as lookahead. It cannot look after the space to see that it is followed by a '+'. After
all, there could be an arbitrary number of spaces between the 'y' and the '+', and with a
different grammar, there could even be comments (which, in SDF3 grammars, are gener-
ally defined in a context-free way as part of the LAYOUT). Only after reducing the space via
LAYOUT-LEX and LAYOUT-CF to LAYOUT?-CF and seeing that it is followed by a '+', the parser can
discard all parse stacks except stack (2).

In the resulting parse tree, the Exp-CF.Add node corresponding to “x + y” is an irreusable
parse node because it was created when there were two parse stacks active, both expecting
to shift layout (stacks (3)–(5) did not exist yet). The Exp-CF.Add node corresponding to “x +
y + z” is also marked as irreusable. In this case, there was only one active parse stack, but
the parser still had multiple actions: at the same time of creating this parse node, an empty
LAYOUT?-CF nodewas created as well. This is because the latter parsing branch expects to find
another '+' following the LAYOUT?-CF.2

Now consider an incremental parse with input “a = x + y * z”, where the second '+'
changes to '*'. The Exp-CF.Add parse node corresponding to “x + y” will be exposed on
the top of the input stack and the parser will break it down since it is irreusable. However,
most of the children of this parse node can be directly reused (except for the parse node
corresponding to the space between 'x' and '+' because it was also irreusable, but that will
be rebuilt), after which the parse stack looks exactly the same as stack (1). Before shifting the
' ' preceding the '*', the parser can take the same four Reduce actions again. However, this

2This was also the case for the example in Section 3.1, but we ignored this there for simplicity. Also, note
that SDF3 currently uses an LR(0) parse table generator. An LR(1) parse table would be able to see the EOF that
follows it, and in that case, there is only one possible Reduce action and the empty LAYOUT?-CF parse node is not
created. However, the parser can always be “tricked” into non-determinism by adding extra layout before the
EOF: in that case, it will still try to create a layout node, this time being non-empty.
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Figure 3.6: The active parse stacks after parsing “a = x + y”, according to the grammar of Figure 3.1. The stacks are displayed right before a ' ' is
shifted onto stacks (1), (2), (4), and (5). In the parse nodes, Exp is abbreviated to E and LAYOUT is abbreviated to L.
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time, only stack (1) will survive, and after processing ' ' and 'z' it creates an Exp-CF.Mul
node. Note that this Exp-CF.Mul node is not irreusable because there is only one Reduce action
possible: the grammar does not allow any (optional) layout following an Exp-CF.Mul node
since it has the highest priority of all Exp production rules.

3.2.2 Example With Layout Between List Items
Consider a batch parse with input “x = 3 y = 4 z = 5”. After parsing “x = 3”, the parser
is in a similar situation as in the start of the example in Section 3.2.1, shown as stack (1) in
Figure 3.7(a). With one parse node on the parse stack for every character parsed so far, the
parser is about to shift a ' '. Just like in the previous example, the parser can first reduce
the current parse stack (1) multiple times, to Stmt-CF.Assign (2), Stmt-CF+ (3), and finally
to Start (4). At this point, all of these parse nodes are marked as irreusable, because stacks
(1), (3), and (4) can also shift a space as second action:

(1) expects a '*' or '+' following the space.

(3) expects another Stmt following the space (this parse stack survives).

(4) expects the EOF following the space.

After parsing “x = 3 y = 4”, the parse stackwill look like stack (5) in Figure 3.7(b). Here,
a similar thing happens as with the first statement: the top five parse node are reduced to
Stmt-CF.Assign (6), after which the top three parse node are reduced to Stmt-CF+ (7), which
is in turn reduced to Start (8). Again, because a space follows next, stacks (5), (7), and (8)
expect to shift it, so the parse nodes created from these reductions are again all irreusable.

The same thing happens when the parser creates the Stmt-CF+ parse node that spans the
entire input, after also parsing the final “z = 5”. In the resulting parse tree, all parse nodes
corresponding to Stmt-CF+ and Stmt-CF.Assign production rules are marked as irreusable.
Now consider an incremental parse of the input “x = 3 y = 4 z = 7”. Even though only
the very last character has changed, all Stmt nodes will be broken down because they are
irreusable and exposed on top of the input stack.

Do note that adding semicolons (';') at the end of a Stmt production rulemakes sure that
a Stmt-CF.Assign parse node is notmarked as irreusable.3 The semicolon cannot be parsed as
anything else than the end of a statement, and since it always consists of exactly one character,
the parser does not need to consume any further characters before it can create a parse node
for the statement. Similarly, blocks of statements enclosed in curly braces ('{' and '}') are
also not irreusable.

3.2.3 Example With Identifier Versus Keyword
For this example, wewill extend the grammar of Figure 3.1 with two newproduction rules as
shown in Figure 3.8. We add a return statement (Stmt.Return) that consists of the keyword
"return" and an expression (Exp). Note that this keyword could also be parsed as an identi-
fier (ID), according to the rule ID = [a-z]+. Therefore, we also add a {reject} rule to disam-
biguate this.

Consider a batch parse of the input “return ab”. The “return” part can be parsed in two
ways: either as the keyword "return" (1) or as [\97-\122]+-LEX (2). Figure 3.9(a) shows
these two parse stacks right after shifting the final 'n'.

Following this Shift action, multiple Reduce actions follow, of which the final result is
shown in Figure 3.9(b). First, the six character nodes of parse stack (1) are reduced to the

3Of course, before a parser can actually reuse them, they must still pass the state matching test, but that will
only fail when the context changed.
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Figure 3.7: The active parse stacks at two points during the parsing of “x = 3 y = 4 z = 5”, according to the grammar of Figure 3.1. In the parse
nodes, Exp is abbreviated to E and LAYOUT is abbreviated to L.
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context-free syntax

Stmt.Return =
"return" Exp

lexical syntax

ID = "return" {reject}

(a) The production rules, defined us-
ing high-level SDF3.

syntax

Stmt-CF.Return = "return" LAYOUT?-CF Exp-CF

ID-LEX = "return" {reject}

"return" =
[\114] [\101] [\116] [\117] [\114] [\110]

(b) The sameproduction rules, where grammar normalization trans-
formed them to kernel syntax.

Figure 3.8: Two production rules, added to the grammar of Figure 3.1, specified using SDF3
syntax. The first rule introduces a return statement and the second rule prevents the keyword
"return" to be parsed as an identifier.
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(a) The active parse stacks after parsing “return”. The stacks are displayed right after shifting the 'n'.
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(b) The active parse stacks after parsing “return”. The stacks are displayed after processing all possible Reduce
actions based on Figure 3.9(a). The stack link of stack (4) contains two possible derivations for the same sort.
This link is drawn in red because the second derivation marked it as rejected. Since stack (4) has no remaining
valid stack links, the parser will no longer consider it for applying new actions. Therefore, the following ' ' can
only be shifted onto stack (3).

Figure 3.9: The active parse stacks at two points during the parsing of “return ab”, according
to the grammar of Figure 3.1, extended with the production rules of Figure 3.8. In the parse
nodes, LAYOUT is abbreviated to L.
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keyword "return" (3). Then, the [\97-\122]+-LEXparse node of stack (2) is reduced to ID-LEX
(4). The "return" is also reduced to ID-LEX, because of the {reject} rule. Note how this last
reduction merges into stack (4) since it is another way of parsing the sort ID-LEX. This marks
the stack link of stack (4) as rejected, which means that the parser will no longer consider it
as an active parse stack since it has no remaining valid stack links.

Following these Reduce actions, parse stack (3) continues by shifting a ' ' as part of the
LAYOUT?-CF of the production rule for Stmt-CF.Return. In the resulting parse tree, the parse
node corresponding to the "return" keyword is marked as irreusable, because it was created
while the parser was also exploring the possibility that it could have been an identifier.

Now consider an incremental parse for the input “return ans”. The parser will definitely
break down the Stmt-CF.Return parse node because its last child contains changes, making
the "return" parse node end up on top of the parse stack. Because this is an irreusable parse
node, the "return" keyword will need to be parsed from scratch.

3.3 Valid Parse Node Reuse
The ISGLR parser can only reuse an unchanged parse node if the context surrounding this
node allows this. Following the approach of the IGLRparser byWagner andGraham (1997b)
as described in Section 2.3, we use a state matching test to check the context to the left and
we test if the lookahead has changed to check the context to the right. For the lookahead test,
we only need to test one character ahead in a deterministic setting. In order to also check the
lookahead following a non-deterministic region, we will break down irreusable parse nodes
that end up on top of the input stack to reconsider all possible ways of parsing that part of
the input, as we discussed in Section 3.2.

In SDF3, it is possible to construct grammars that do not have optional layout inserted
between context-free symbols, which avoids most occurrences of non-deterministic parsing.
Figure 3.10 shows such a grammar, defined using kernel syntax, so that no optional layout
is inserted during grammar normalization. In this expression grammar, the identifiers and
operators always consist of exactly one character. This makes a scannerless parser behave
exactly in the same way as a token-based parser would. We use this grammar to show two
examples of how the state matching test (Section 3.3.1) and the lookahead test (Section 3.3.2)
prevent invalid reuse of parse nodes in the ISGLR parsing algorithm.

3.3.1 State Matching Test
Consider a batch parsewith input “x+y*z”. The priorities in the grammar of Figure 3.10make
sure that the resulting parse tree has the Exp-CF.Mul node as the right child of the Exp-CF.Add
node, i.e., it could be parenthesized as “x+(y*z)”. Note that this input is parsed fully determ-
inistically thanks to these priorities, so none of the parse nodes is marked as irreusable. This
is regardless of the conflicts in the parse table, as we will explain in Section 3.3.3.

Now consider an incremental parse of the input “x*y*z”. The “+” changes into a “*”, so
the Exp-CF.Add parse node from the previous parse is broken down. After parsing “x*”, the
parse stack contains one Exp-CF.Var node and one "*" node, as shown in Figure 3.11. Parse
state 6 is on top of the stack, which is different from the first parse after the parsing “x+”: the
node for “y*z” (Exp-CF.Mul) was created on top of state 8 during the previous parse. Because
this parse node fails the statematching test, it cannot be directly reused and it is broken down.
The node for “y” (Exp-CF.Var) and the node for “*” ("*") are also broken down because of
a failing state matching test. After that, incremental parsing continues as normal, with a
resulting parse tree that can be parenthesized as “(x*y)*z”.
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start-symbols
Exp-CF

syntax
Exp-CF.Add =
Exp-CF "+" Exp-CF {left}

Exp-CF.Mul =
Exp-CF "*" Exp-CF {left}

Exp-CF.Var = [a-z]

priorities
Exp-CF.Mul > Exp-CF.Add

(a) The grammar, defined using SDF3 kernel
syntax.

syntax
<Start> = <START> <EOF>
<START> = Exp-CF
Exp-CF.Add = Exp-CF "+" Exp-CF {left}
Exp-CF.Mul = Exp-CF "*" Exp-CF {left}
Exp-CF.Var = [\97-\122]
"+" = [\43]
"*" = [\42]

priorities
Exp-CF.Mul > Exp-CF.Add,
Exp-CF.Add left Exp-CF.Add,
Exp-CF.Mul left Exp-CF.Mul

(b) The same grammar, after grammar normalization.

state actions gotos
[+] [*] [a-z] <EOF> all "+" "*" E.A E.M E.V <START>

0 S(1) 3 2 2 4
1 R(E.V)
2 S(7) S(5) R(<START>) 8 6
3 S(7) R(<START>) 8
4 Accept
5 R("*")
6 S(1) 9
7 R("+")
8 S(1) 10 10
9 R(E.M)
10 S(5) R(E.A) 6

(c) The parse table of the grammar, as generated by SDF3. Shift actions are abbreviated to ‘S’ and Reduce actions
to ‘R’. The sort and constructor names have been abbreviated to single letters. Note that the parse table generator
of SDF3 produces one goto state per production rule (Visser 1997, §5.4), rather than one per sort (as for LR
generators). The Reduce actions are valid for any lookahead since SDF3 currently uses LR(0), and we will prefer
a Shift action over a Reduce action to resolve the conflicts, as will be explained in Section 3.3.3.

Figure 3.10: A small expression grammar defined using SDF3 kernel syntax, so that it does
not get optional layout (LAYOUT?-CF) in between production symbols or surrounding the start
symbol during grammar normalization.
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Figure 3.11: The active parse stack and remaining input stack during an incremental parse
from “x+y*z” to “x*y*z”, after parsing “x*”, according to the grammar of Figure 3.10. The
parse state references stored in parse nodes are shown as labels at the bottom right of a node.
In the parse nodes, Exp is abbreviated to E.
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3.3.2 Lookahead Test
Consider a batch parse of the input “x+y+z”. Because the Exp-CF.Add production rule is left-
associative, the resulting parse tree can be parenthesized as “(x+y)+z”. Just as in the previous
example, this input is parsed fully deterministically, so none of the parse nodes is marked as
irreusable.

Now consider an incremental parse with input “x+y*z”. The priorities in the grammar
of Figure 3.10 dictate that the new input should be parsed as “x+(y*z)”. After updating the
second “+” to “*”, a parser without the lookahead test would see that the parse node cor-
responding to “x+y” is not changed, and blindly reuse it. However, this parse node should
actually be broken down because the lookahead changed, so the parser should take a differ-
ent action this time. Instead of reducing to Exp-CF.Add, it should now shift the '*'.

In the ISGLR parsing algorithm, we implement the lookahead test by considering the
character preceding an edit as “changed”when calculatingwhether the parse node at the top
of the input stack contains a change. In this example, this means that the parser considers
the “y” preceding the new “*” as changed. This will trigger the breakdown of the parse node
corresponding to “x+y” and allow the parser to pick a different action. For this approach, we
do not need to remember what the previous lookahead was for every parse node, at the cost
of potentially breaking down slightly more parse nodes than necessary.

3.3.3 Conflicts in This Parse Table
In this section, we have ignored the Shift/Reduce conflicts in the parse table of Figure 3.10(c).
These conflicts are present because SDF3 currently uses an LR(0) parse table generator. In
an LR(1) parse table, the Reduce actions would not overlap with the Shift actions.

For our examples, this means that the parser sometimes tries to reduce to Exp-CF.Add or
<START> while it should only do a Shift action, so it temporarily creates a second parse stack,
similar to the examples in Sections 3.2.1 and 3.2.2. However, because the Shift action can only
be executed on the first parse stack, the other parse stack is immediately discarded. None of
the irreusable parse nodes created during the small period where multiple parse stacks were
active, ends up in the final result, because their parse stacks are discarded.

3.4 ISGLR Parsing Algorithm
In this section, we present the full ISGLR parsing algorithm, broken up into separate func-
tions and procedures. The changes with respect to the SGLR parsing algorithm by Visser
(1997) (and in particular, the implementation by Denkers (2018, §2.5)) are indicated using
a vertical bar in the left margin of the page and will be explained per procedure. These
changes mostly follow the ideas of Wagner and Graham (1997b), with some exceptions: we
have a different way of applying changes to the parse tree (Algorithms 1 and 3) andwework
around the fact that the parse table generated by SDF3 does not support directly indexing
the action table using a production rule instead of a character (Algorithms 4 and 5).

The ISGLR parsing algorithm uses the functions PEEK, POP, and BREAKDOWN, that act on
an incremental input stack. PEEK returns the node on top of the stack without removing it,
POP removes the node on top of the stack and returns it, and BREAKDOWN breaks down the
top node of the input stack and pushes back its children in reverse order.

The PARSE function in Algorithm 1 has a different signature than Visser’s algorithm: it now
allows passing the input string and parse result of the previous version. These two new
parameters are allowed to be empty, in which case we start a batch parse by initializing the
input stack with only character nodes. In the case of an incremental parse, we calculate the
DIFF between the previous and current version of the input string according to Figure 3.3.
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We initialize the incremental input stack with the EOF marker ($) and the root node of the
previous parse tree. We break down the previous parse tree along the spine between the root
node and the changes at the start of the PARSESTEP procedure of Algorithm 2. Additionally,
we define a global boolean variable to remember whether the parser is in multiple states, i.e.,
whether it is parsing non-deterministically. Finally, the parse loop has been adapted to use
the incremental input stack instead of iterating over all characters in the input.

Algorithm 1 The PARSE function of the ISGLR algorithm.
1: function PARSE(global parse-table, input, previous-input, previous-tree)
2: if previous-input = H _ previous-tree = H then
3: global updates Ð H

4: global input-stack Ð [$] + reversed input Ź stack of only character nodes
5: else
6: global updates Ð DIFF(previous-input, input)
7: if updates = H then Ź list of changes
8: return previous-tree Ź If there are no changes, return previous result
9: global input-stack Ð [$, previous-tree] Ź stack of parse nodes and character nodes
10: global accepting-stack Ð H

11: init-stack Ð new stack with start state of parse-table
12: global active-stacks Ð tinit-stacku Ź list of parse stacks
13: global multiple-states Ð false
14: while PEEK(input-stack) ‰ $ ^ active-stacks ‰ H do
15: PARSESTEP()
16: if accepting-stack ‰ H then
17: return the parse node on the only link of accepting-stack
18: else
19: return error

There are three changes to the PARSESTEP procedure in Algorithm 2. Firstly, the assign-
ment to the variable current-character is removed, because we use the incremental input stack
to get the lookahead instead. Secondly, the variablemultiple-states is set to true if there ismore
than one active parse stack. Finally, we call the CHECKUPDATES procedure of Algorithm 3 be-
fore we start processing the for-actor stacks.

Algorithm 2 The PARSESTEP procedure of the ISGLR algorithm.
1: procedure PARSESTEP()
2: multiple-states Ð |active-stacks| ą 1
3: CHECKUPDATES()
4: global for-actor Ð active-stacks Ź list of parse stacks
5: global for-actor-delayed Ð H Ź priority queue of parse stacks
6: global for-shifter Ð H Ź list of xparse stack,parse statey pairs
7: while for-actor ‰ H ^ for-actor-delayed ‰ H do
8: if for-actor = H then
9: for-actor Ð tpop highest-priority stack in for-actor-delayedu

10: for all st P for-actor do
11: if st has a link that is not rejected then
12: ACTOR(st)
13: SHIFTER()
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The CHECKUPDATES procedure in Algorithm 3 checks whether the current lookahead con-
tains any of the changes that were calculated by the diff. Firstly, it checks whether the current
position of the parser is the start of a deletion. If this is the case, we pop all parse nodes that
fall within the range of the deletion from the input stack. If the node at the top of the input
stack covers the deletion only partially, we break it down and continue the loop for its chil-
dren. After the deletion phase, we push all characters that are inserted by the change to the
input stack. Secondly, in the case that the parse node on top of the input stack overlaps with
any of the changes calculated by the diff, we break it down until this is no longer the case.

Algorithm 3 The CHECKUPDATES procedure of the ISGLR algorithm.
1: procedure CHECKUPDATES()
2: if Dupdate P updates : current position = start position of deleted text of update then
3: deleted-end Ð end position of deleted text of update
4: while current position ă deleted-end do
5: ifwidth of PEEK(input-stack) + current position ą deleted-end then
6: BREAKDOWN(input-stack)
7: else
8: POP(input-stack)
9: whilewidth of PEEK(input-stack) = 0 do

10: POP(input-stack) Ź Also pop null-yield parse nodes at position deleted-end
11: Push inserted characters of update to input-stack in reverse order
12: while PEEK(input-stack) contains a change ^ it is not a character node do
13: BREAKDOWN(input-stack)

The ACTOR procedure in Algorithm 4 has a different way of getting the actions from the
parse table. Because the symbol of the top node in the incremental input stack can be either
a terminal or not, the parse table can be indexed in different ways. This has been moved to
a separate function BREAKDOWNUNTILVALIDACTIONS which is shown in Algorithm 5. If that
function needs to break down the current lookahead, any elements that we already added
to for-shifter need to be updated. It is still valid to shift the new lookahead onto the parse
stacks in for-shifter by construction of the parse table, but the stacks will go to a different
state. Finally, if there are multiple possible actions, the multiple-states variable is set to true.

Algorithm 4 The ACTOR procedure of the ISGLR algorithm.
1: procedure ACTOR(st)
2: s Ð state of st
3: original-lookahead Ð PEEK(input-stack)
4: actions Ð BREAKDOWNUNTILVALIDACTIONS(s)
5: if original-lookahead ‰ PEEK(input-stack) then
6: Update GOTO states in for-shifter
7: if |actions| ą 1 then
8: multiple-states Ð true
9: for all a P actions do

10: switch a do
11: case Accept
12: accepting-stack Ð st

13: case Shift(s1)
14: for-shifter Ð txst, s1yu Y for-shifter
15: case Reduce(A Ñ α)
16: DOREDUCTIONS(st, A Ñ α)
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The BREAKDOWNUNTILVALIDACTIONS function in Algorithm 5 determines the possible ac-
tions for the parser based on the current top of the incremental input stack (called lookahead).
We use the first character of the lookahead to index the action table of the parse table. If the
lookahead is a character node, we don’t enter the loop and immediately return the list of
actions. If the lookahead is a parse node, we enter the loop to check if we can reuse it.

If the statematching test succeeds (see Section 3.3.1), we substitute the normal Shift action
with a new one that uses the state from the goto table which matches the production rule of
the lookahead. We also do an optimization here in the case that the only Reduce action would
create a parse node without children and the leftmost descendant of the lookahead has the
same production rule as this Reduce action. In this case, we can remove this action to avoid
settingmultiple-states to true, because this actionwill eventually result in the same parse node
as the one that we want to shift.

We break down the lookahead if it is an irreusable parse node or when there are Shift
actions. Note that at this point, we know that the state matching test failed, so if we can do
different Shift actions based on the first character in the lookahead, this lookahead possibly
needs to be parsed in a different way. If the lookahead is not irreusable and we only have
Reduce actions, we can safely return the current list of actions, which saves us from breaking
down the lookahead.

If the lookahead that we broke down had no children, this is similar to popping a node
from the input stack, soweneed to do twomore things. Firstly, we check if the new lookahead
contains any changes and break it down again until this is no longer the case because the next
parse node on the input stack might span a part of the input that has changed. Secondly, we
empty for-shifter because the parse node that these parse stacks want to shift no longer exists.
These parse stacks will be recreated by Reduce actions with arity 0. Note that this does not
interfere with the optimization of line 10, because that optimization only occurs when the
parser is not in multiple states, meaning that for-shifter must be empty by definition in that
case.

Algorithm 5 The BREAKDOWNUNTILVALIDACTIONS function of the ISGLR algorithm.
1: function BREAKDOWNUNTILVALIDACTIONS(s)
2: lookahead Ð PEEK(input-stack)
3: actions Ð parse-table[s,first character in lookahead]
4: while lookahead is not a character node do
5: if state of lookahead = s then
6: result Ð Reduce actions in actions
7: if multiple-states = false ^ |result| = 1 then
8: Reduce(A Ñ α) Ð only action in result
9: if |α| = 0 ^ leftmost descendant of lookahead has production A Ñ α then
10: result Ð H Ź Prevents setting multiple-states to true
11: add Shift

(
GOTO(s,production rule of lookahead)

)
to result

12: return result
13: if lookahead is irreusable _ DShift(_) P actions then
14: BREAKDOWN(input-stack)
15: if lookahead does not have children then
16: while PEEK(input-stack) contains a change do
17: BREAKDOWN(input-stack)
18: for-shifter Ð H

19: lookahead Ð PEEK(input-stack)
20: else
21: break
22: return actions
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In DOREDUCTIONS and DOLIMITEDREDUCTIONS (Algorithms 6 and 8), the parser records
that it is in multiple states when this reduction leads to more than one GOTO state. This can
occur when multiple parse stacks have previously been merged into a single stack, and the
multiple valid paths wouldmake the REDUCER procedure addmultiple new stacks to for-actor.

Algorithm 6 The DOREDUCTIONS procedure of the ISGLR algorithm.
1: procedure DOREDUCTIONS(st, A Ñ α)
2: if there are multiple valid4 reduction paths, leading to different GOTO states then
3: multiple-states Ð true
4: for all valid paths from st to st1 of length |α| do
5: kids Ð the parse nodes on the links of the path from st to st1

6: REDUCER
(
st1,GOTO(state of st1, A Ñ α), A Ñ α, kids

)
Algorithm 7 The REDUCER procedure of the ISGLR algorithm.
1: procedure REDUCER(st, s, A Ñ α, kids)
2: current-state Ð H if multiple-states, else state of st
3: rule-node Ð new rule node with production A Ñ α, child parse nodes kids
4: if Dst1 P active-stacks : s = state of st1 then
5: if D a direct link l from st1 to st then
6: symbol-node Ð the parse node at l
7: add rule-node to the derivations of symbol-node
8: state of symbol-node Ð H

9: if A Ñ α is a reject production then
10: mark link l as rejected
11: else
12: symbol-node Ð new symbol node for symbolAwith rule-node as first derivation
13: state of symbol-node Ð current-state
14: add link l from st1 to st with parse node symbol-node
15: if A Ñ α is a reject production then
16: mark link l as rejected
17: for all st2 P active-stacks do
18: if st2 has a link that is not rejected ^ st2 R for-actor Y for-actor-delayed then
19: for all Reduce(B Ñ β) P

20: parse-table
[
state of st2,first character in PEEK(input-stack)

]
do

21: DOLIMITEDREDUCTIONS(st2, B Ñ β, l)

22: else
23: st1 Ð new stack with state s
24: symbol-node Ð new symbol node for symbolAwith rule-node as the first derivation
25: state of symbol-node Ð current-state
26: add link l from st1 to stwith parse node symbol-node
27: active-stacks Ð tst1u Y active-stacks
28: if state of st1 is rejectable then
29: for-actor-delayed Ð tst1u Y for-actor-delayed Ź Priority unknown (Visser 1997)
30: else
31: for-actor Ð tst1u Y for-actor
32: if A Ñ α is a reject production rule then
33: mark link l as rejected

4These “valid” paths are those that do not include rejected links. Neither Visser (1997) nor Denkers (2018)
mention this in the SGLR parsing algorithm, but Denkers added this in the JSGLR2 implementation to fix a
reported issue: https://github.com/metaborg/jsglr/commit/5395a5870d51fd08578016fbdd0a756072799ed7
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The REDUCER procedure in Algorithm 7 has one change: we save the parse state of the
current parse stack in the newly created rule-node (or no state if the parser is in multiple
states, to mark it as irreusable).

Algorithm 8 The DOLIMITEDREDUCTIONS procedure of the ISGLR algorithm.
1: procedure DOLIMITEDREDUCTIONS(st, A Ñ α, l)
2: if there are multiple valid5 reduction paths, leading to different GOTO states then
3: multiple-states Ð true
4: for all valid paths from st to st1 of length |α| going through l do
5: kids Ð the parse nodes on the links of the path from st to st1

6: REDUCER
(
st1,GOTO(state of st1, A Ñ α), A Ñ α, kids

)
The SHIFTER procedure in Algorithm 9 has one main change. It no longer needs to create

a new character node for the current character, but instead, we shift the character node or
parse node that is at the top of the input stack.

Algorithm 9 The SHIFTER procedure of the ISGLR algorithm.
1: procedure SHIFTER()
2: active-stacks Ð H

3: lookahead Ð POP(input-stack)
4: for all xs, sty P for-shifter do
5: if Dst1 P active-stacks : s = state of st1 then
6: add a link from st1 to stwith parse node lookahead
7: else
8: st1 Ð new stack with state s
9: add a link from st1 to stwith parse node lookahead
10: active-stacks Ð tst1u Y active-stacks

3.5 Implementation in Modular Architecture
In this section, we describe the implementation of the ISGLR parsing algorithm in the mod-
ular JSGLR2 implementation by Denkers (2018) (see Section 2.4.3). Figure 3.12 shows the
changes to the parsing pipeline of JSGLR2. This figure also shows the Imploder and Token-
izer components, which will be discussed in detail in Chapter 4.

The implementation of the ISGLR parser in the modular architecture of JSGLR2 requires
extensions for several data structures (input stack, parse state, and parse forest) and code
components (parser, reduce manager, and parse forest manager). We discuss each of these
in the paragraphs below, as well as how we manage the caching of previous results between
incremental parses.

Input Stack The ISGLR parser requires a specialization of the input stream because it con-
sumes a stream of parse nodes instead of a stream of characters. Also, the input stream
should allow breaking down parse nodes. Because of this, the implementation of this com-
ponent can be better described as an input stack, rather than a stream.

The implementation of the incremental input stack also handles the processing of changes
as shown in the CHECKUPDATES procedure in Algorithm 3. This encapsulation simplifies the
other parsing procedures since they can always assume that the top of the input stack does
not contain any changes.

5See footnote 4 in DOREDUCTIONS.
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Figure 3.12: The parsing pipeline in Spoofax, updated from Figure 2.10 for incremental
parsing. The top row of the pipeline is executed during language development, while the
bottom row is executed every time a file is parsed. The dashed arrows indicate that a previous
version of this resource is required as input to the incremental components.

Parse State The ParseState class for the ISGLR parser requires two modifications. Firstly,
the basic input stream is replacedwith the incremental input stack. Secondly, it needs to store
the multiple-states global variable, which determines whether newly created parse nodes are
irreusable or not.

Parse Forest (Manager) The ParseForest class and its subclasses have two modifications
for the ISGLR parser. Firstly, each ParseNode stores the parse state that the parser was in dur-
ing the creation, or no parse state if the parser was in multiple states, making the parse node
irreusable. Secondly, we store the width of each ParseForest, i.e., the number of characters
in its yield, to optimize the processing of updates and the imploding and tokenization steps.
Because of these extensions to the ParseForest, the ISGLR parser also requires a specialized
ParseForestManager, which makes sure that all the required data is passed to the constructor
of the ParseForest classes.

Parser and Reduce Manager The changes for the ISGLR parsing algorithm with respect
to SGLR, as indicated in Section 3.4, have been implemented in an extension of the Parser
class. At the start of the PARSE procedure, it instantiates the new data structures. In the
ACTOR procedure, getting actions from the parse table is extended to work if the current top
of the input stack is a parse node instead of a character. Also, this procedure triggers the
breakdown of the parse node that is currently on top of the input stack if it cannot reuse this
parse node or if it finds no applicable actions in the parse table. Keeping track of themultiple-
states variable requires changes in multiple places: at the start of the PARSESYMBOL procedure,
after fetching the actions in the ACTOR procedure, and after calculating the number of valid
reduction paths in the DO(LIMITED)PRODUCTIONS procedures (in the ReduceManager class).

Cache We set up the ISGLR parsing algorithm and the Imploder and Tokenizer compon-
ents such that they take the previous result as input, i.e., they are agnostic of how these
results are cached. Users of the JSGLR2 implementation are free to determine their caching
strategy, but we also implemented a default caching strategy that can be used. This strategy
maintains four HashMaps, one for each resource that needs to be cached (see the dashed ar-
rows in Figure 3.12). These HashMaps are indexed using a file name, combined with some
metadata of the parsing request. They are only updated when the parser produces a valid
result, i.e., this caching strategy ignores parse failures.
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Chapter 4

Incremental Post-Processing

After parsing, the JSGLR2 implementation performs two post-processing tasks, as shown in
Section 2.4.3 and Figure 2.10, to simplify the integration of the parser into an editor. These
tasks can also be performed incrementally, making use of the result of the Incremental Scan-
nerless Generalized LR (ISGLR) parser, as shown in Section 3.5 and Figure 3.12. This chapter
describes these tasks and shows how we made them incremental.

First, the imploder (Section 4.1) reduces the parse forest from a Concrete Syntax Tree
(CST) into an Abstract Syntax Tree (AST). The AST only contains elements that are useful
for further processing, discarding any layout and redundant lexical elements. The AST is
used for type checking and code transformations. Because the imploding of a parse node
does not require information about its context, the incremental imploding algorithm can
directly reuse previous imploding results for unchanged parse nodes.

Second, the tokenizer (Section 4.2) transforms the parse forest to a list of tokens and at-
taches these tokens to the AST. It uses the production rule that was used to create a parse
node to determine the type of the token. The tokens are used for syntax highlighting and
error reporting. Similar to imploding, the incremental tokenization algorithm can reuse pre-
vious tokenization results for unchanged parse nodes. However, instead of storing absolute
positions in tokens, we create a tree-shaped data structure that allows calculating the abso-
lute positions on the fly.

4.1 Imploding
The parse forest that the parser produces is a Concrete Syntax Tree (CST), containing parse
nodes for all kinds of production rules of the context-free grammar. However, many of these
parse nodes are not necessary for further processing steps of the parse result, such as trans-
formation and code generation in Stratego (Bravenboer et al. 2008; MetaBorg 2016) or type
checking in Statix (van Antwerpen et al. 2018; MetaBorg 2016). For example, layout and
literals do not add any semantic meaning to the program. Therefore, these elements are
discarded when the imploder transforms the CST into an AST.

As an example, see the imploded AST of the parse tree in Figure 3.2 in Figure 4.1. In the
CST of Figure 4.1(a), all parse nodes that are not needed to build the AST are left out. The re-
maining relevant nodes can be divided into three categories: those representing lists (node
4 ), those containing constructors (nodes 5 , 19 , 20 , 37 ), and characters that are not
part of literals or layout (nodes 10 , 11 , 25 , 26 , 42 , 43 ). As shown in Figure 4.1(b), the
list nodes are converted into lists in the AST using square brackets ([ … ]), the parse nodes
with constructors are converted into applications of their children, and the characters are im-
ploded into strings. This last step is specific to scannerless parsing since parsing techniques
that require a lexer would already have combined separate characters into larger tokens.

39



4. INCREMENTAL POST-PROCESSING

…

Stmt+-CF

Stmt-CF.Assign

…

'a' 'b'

… Exp-CF.Mul

Exp-CF.Num

…

'4' '2'

… Exp-CF.Num

…

'4' '2'

4

5

10 11

19

20

25 26

37

42 43
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Figure 4.1: The imploded AST corresponding to the parse tree of Figure 3.2. In textual form,
this AST would be written as [Assign("ab", Mul(Num("42"), Num("42")))] .

4.1.1 Imploding Algorithm
The current, non-incremental imploder in JSGLR2 works as shown in Algorithms 10 to 12.

The IMPLODE function of Algorithm 10 will decide how to implode the given parse-tree
based on its grammar production. If the production is context-free, the imploder will re-
cursively implode the children of parse-tree. In the case that parse-tree is an ambiguous parse
node, the imploder will do this for all alternatives. If the production is not context-free, the
imploder creates a leaf of the AST. This leaf is empty in the case that the production is a
literal or layout production.

Algorithm 10 The IMPLODE function of JSGLR2.
1: function IMPLODE(parse-tree)
2: production Ð production of parse-tree
3: if production is context-free then Ź i.e., production contains -CF
4: if parse-tree is ambiguous then Ź i.e., has multiple derivations
5: if production is a list then Ź i.e., has a + or * operator
6: Reorder derivations of parse-tree so that ambiguities are pulled to the top
7: alternatives Ð empty list
8: for all derivation P derivations of parse-tree do
9: Add IMPLODECHILDREN

(
production,

10: FLATTENLISTS(production, child nodes of derivation)
)
to alternatives

11: return amb(alternatives)
12: else
13: return IMPLODECHILDREN

(
production,

14: FLATTENLISTS(production, child nodes of the only derivation of parse-tree)
)

15: else
16: if production is literal or layout then
17: return H

18: else
19: return A new string constructed from all characters in parse-tree1
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The IMPLODECHILDREN function of Algorithm 11 implodes all children of a parse node.
All resulting ASTs that are not empty are added to the list of child-asts. Then, based on the
production rule of the parent node, one of the possible types of AST nodes is created: this can
be a constructor application, a list, an optional, or a tuple; or, if none of these cases applies,
the production must be an injection and the only element of child-asts is returned.

Algorithm 11 The IMPLODECHILDREN function of JSGLR2.
1: function IMPLODECHILDREN(parent-production, parse-trees)
2: child-asts Ð empty list
3: for all parse-tree P parse-trees do
4: child-ast Ð IMPLODE(parse-tree)
5: if child-ast ‰ H then
6: Add child-ast to child-asts
7: if parent-production has Constructor then
8: return Constructor(child-asts)
9: else if parent-production is a list then Ź i.e., has a + or * operator

10: return [child-asts] Ź Construct a list from the child ASTs
11: else if parent-production is an optional then Ź i.e., has a ? operator
12: if |child-asts| = 0 then
13: return None()
14: else
15: return Some(child-asts)
16: else if |child-asts| = 1 then
17: return the only element of child-asts
18: else
19: return (child-asts) Ź Construct a (possibly empty) tuple from the child ASTs

Finally, the FLATTENLISTS function of Algorithm 12 makes sure that the left-recursive lists
in the parse tree are flattened out. This function will remove all parse nodes that represent
a list production (in SDF3, this is a production rule containing a + or *) and return a list of
all children of the removed parse nodes. Figure 4.2 shows an example of how this works. If
the function receives parse nodes that did not belong to a list production, the original list of
parse nodes is simply returned.

Algorithm 12 The FLATTENLISTS function of JSGLR2.
1: function FLATTENLISTS(parent-production, parse-trees)
2: if parent-production is a list then Ź i.e., has a + or * operator
3: flattened-list Ð empty list
4: for all parse-tree P parse-trees do
5: if parse-tree is ambiguous then Ź i.e., has multiple derivations
6: Add parse-tree to flattened-list
7: else
8: sublist Ð FLATTENLISTS(production of parse-tree, children of parse-tree)
9: Add all items in sublist to flattened-list

10: return flattened-list
11: else
12: return parse-trees

1In the implementation of the imploder in Java, this string is taken as a substring from the original input
string, using an offset that is incremented based on the widths of processed subtrees. This detail is left out to
simplify the pseudocode.
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…

Stmt+-CF

Stmt+-CF

Stmt+-CF

Stmt-CF

…

LAYOUT?-CF

…

Stmt-CF

…

LAYOUT?-CF

…

Stmt-CF

…

Figure 4.2: An example of the FLATTENLISTS function of Algorithm 12. This function takes
the parse nodes that represent list productions (the grey nodes) and returns a list containing
all their children (the white nodes). In this example, this list thus contains all Stmt-CF nodes,
interleaved with the LAYOUT?-CF nodes.

4.1.2 Incremental Imploding

The incremental imploding algorithm builds upon the non-incremental algorithm outlined
in Section 4.1.1. We make two observations that help in the design of the incremental im-
ploding algorithm. Firstly, the result of Algorithm 10 does not depend on the ancestors or
siblings of the parse node that is given as input. Secondly, we make use of the fact that parse
nodes are immutable, meaning that their descendants cannot change. Therefore, if the im-
ploder receives a parse node as input that has already been imploded before, the previous
result can be reused.

The implementation of the incremental imploding algorithm is shown in Algorithm 13.
This algorithm builds up a cache, using a dictionary thatmaps fromCST nodes to AST nodes.
If the input to the algorithm is already in this dictionary, we can directly return the stored
result from it. Else, we call the IMPLODE algorithm from Algorithm 10 and store the result of
that in the dictionary before returning it.

Algorithm 13 The IMPLODE function of incremental JSGLR2, extending the IMPLODE function
of Algorithm 10 (referenced using super.IMPLODE).
1: cache Ð dictionary from CST nodes to AST nodes
2: function IMPLODE(parse-tree)
3: if parse-tree R cache then
4: cache[parse-tree] Ð super.IMPLODE(parse-tree)
5: return cache[parse-tree]

There are two implementation details worth noting about this algorithm. Firstly, because
of how Java subclassing and dynamic dispatch works, this new IMPLODE function is executed
when IMPLODECHILDREN recursively calls IMPLODE, instead of the original function. Secondly,
we implemented the cache dictionary using a WeakHashMap,2 allowing the Java garbage col-
lector to delete entries from the dictionary fromwhich the parse nodes no longer exist. There-
fore, this cache is not exposed in the interface of the IMPLODE function.

2https://docs.oracle.com/javase/8/docs/api/java/util/WeakHashMap.html
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4.2. Tokenization

4.2 Tokenization
Most IDEs (Spoofax included) use syntax highlighting to make the code they display easier
to read, giving different types of elements in the code different colours. An IDE generates
these colours using a list of tokens generated by the tokenizer. The tokenizer creates this list
based on the information stored in the CST and the AST, as shown in Figure 4.3. The tokens
are similar to those that a lexer would create before parsing token-level grammars, in the
sense that they contain information about their location in the input and their type. However,
creating the tokens after parsing has the advantage that the token types can be calculated
based on their context, making this calculation more precise, especially when grammars of
multiple languages are composed together.

ID-LEX

LAYOUT-LEX

"="

NUMBER-LEX

LAYOUT-LEX

"*"

LAYOUT-LEX

NUMBER-LEX

'a' 'b'

' '

'='

'4' '2'

' '

'*'
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'4' '2'

7
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25 26
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42 43

(a) The parse nodes of the CST that the tokenizer generates
tokens from.

"ab"

" "
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" "
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" "

"42"

offset

0–2

2–3

3–4

4–6

6–7

7–8

8–9

9–11

token kind

identifier

layout

operator

number

layout

operator

layout

number

(b) The resulting tokens.

Figure 4.3: The tokens that are generated from the parse tree of Figure 3.2.

An IDE can also use the tokens to generate the locations of error messages. Other parts
of the IDE (e.g., the type checker) can report an error or warning by referencing an AST
node instead of having to look up the exact position themselves. To accommodate this, the
tokenizer attaches two tokens to each node in the AST, indicating the leftmost and rightmost
position of the AST in the source code.
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4.2.1 Tokenizer Algorithm
The current, non-incremental tokenizer in JSGLR2 works as shown in Algorithms 14 and 15.

The TOKENIZE function of Algorithm 14 generates a list of tokens based on the input parse
tree. Just like the imploder, this algorithm recursively generates tokens for all context-free
parse nodes.

To make sure that all AST nodes get a left and right token, so-called empty tokens are
created for AST nodes that do not correspond to any characters in the input (see line 12
in Algorithm 14 and lines 4–5 in Algorithm 15). These empty tokens span a width of 0
characters but still contain location and production information.

The tokenizer also keeps track of the positions of tokens. Positions of characters are com-
posed of three integers: offset, the zero-based index of a character in the entire input; line, the
one-based index of the line that the character appears on; and column, the one-based column
index of the character on its line.3 The begin position of a token is the position of the first
character of this token, while its end position is the position after the last character of the
token. This means that for empty tokens, their begin position is equal to their end position.

The initial value for the start-position parameter is a position with offset 0, line 1, and
column 1. While iterating over the child trees, the position is advanced based on the position
ranges of the subtrees (see line 11 in Algorithm 14 and line 2 in Algorithm 15).

Algorithm 14 The TOKENIZE function of JSGLR2.
1: function TOKENIZE(parse-tree, start-position)
2: if production of parse-tree is context-free then Ź i.e., production contains -CF
3: all-tokens Ð H Ź list of tokens
4: for all derivation P derivations of parse-tree do
5: tokens Ð H Ź list of tokens
6: pivot-position Ð start-position
7: for all child-tree P child nodes of derivation do
8: sub-tokens Ð TOKENIZE(child-tree, pivot-position)
9: Add all tokens in sub-tokens to tokens
10: if sub-tokens ‰ H then
11: pivot-position Ð end position of the last token in sub-tokens
12: if tokens = H then Ź This implies that derivation spans 0 characters
13: token Ð CREATETOKEN(parse-tree, pivot-position)
14: Set token as left and right token of AST of derivation
15: Add token to tokens
16: else
17: Set first token in tokens as left token of AST of derivation
18: Set last token in tokens as right token of AST of derivation
19: Add all tokens in tokens to all-tokens
20: return all-tokens
21: else
22: if parse-tree spans 0 characters ^ parse-tree does not have an AST node then
23: return H

24: else
25: token Ð CREATETOKEN(parse-tree, begin-position)
26: Set token as left and right token of AST of parse-tree
27: return [token]

3The pseudocode does not show this level of detail to make it more readable. We assume that the+ operator
can add two position(-range)s together.
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Algorithm 15 The CREATETOKEN function of JSGLR2.
1: function CREATETOKEN(parse-tree, start-position)
2: end-position Ð start-position+ position range of parse-tree
3: Use begin-position and end-positionwhen creating a token in this function
4: if parse-tree spans 0 characters then
5: return empty token
6: production Ð production of parse-tree
7: if production is LAYOUT then
8: return layout token
9: if production is a literal then

10: if production is an operator literal then
11: return operator token
12: return keyword token
13: if production represents a string then Ź i.e., it contains the character class [\ ]4

14: return string token
15: if production represents a number then Ź i.e., it contains the character class [0-9]
16: return number token
17: return identifier token

4.2.2 Incremental Tokenization

There is one main challenge related to incremental tokenization: storing the absolute posi-
tions of tokens would require updates in many tokens for even a small update in the input.
As an example, when the input changes from “ab =42 * 42” to “ans =42 * 42”, an incre-
mental tokenizer does not only need to replace the first token (representing “ab”) by a new
token (representing “ans”), but it would also need to increment the positions of all following
tokens by one.

…

width: 12

"ab" " " "=" width: 7

"42" " " "*" " " "42"

";"

Figure 4.4: An example token tree, generated from the parse tree of Figure 3.2. An imaginary
semicolon has been added for illustration purposes.

To solve this challenge, we turn the list of tokens into a tree-shaped data structure, with
the tokens as leaf nodes. In this tree, every node stores its width in terms of the number
of characters, the number of lines, and the number of columns in the last line. Absolute
positions of tokens can then be calculated on the fly by summing up thewidths of all siblings
to the left along the spine of a token to the root. An example of such a token tree is shown
in Figure 4.4. When calculating the start offset of the token "*", we sum up the widths of its
left siblings (2 + 1 = 3) and the left siblings of its parent node (2 + 1 + 1 = 4), arriving at

4If the right-hand side of the production rule contains the space character (and it is not layout), it must be
enquoted in some way, so it represents a string in its language.
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a start offset of 7. When calculating the start offset of the imaginary ";" token, summing up
the widths of its left siblings gives a start offset of 2 + 1 + 1 + 7 = 11.

Using a tree-shaped data structure to store the tokens has the advantage that we can
make the tokenizer incremental similar to the incremental IMPLODE function, as shown in the
TREETOKENIZE function in Algorithm 16. If the tokenizer has already processed a parse tree,
it can reuse that result from the cache. Note that the same implementation details apply as
for the incremental IMPLODE function in Algorithm 13.

Algorithm 16 The TREETOKENIZE function of incremental JSGLR2, extending the TREETOKEN-
IZE function of Algorithm 17 (referenced using super.TREETOKENIZE).
1: cache Ð dictionary from CST nodes to token tree nodes
2: function TREETOKENIZE(parse-tree)
3: if parse-tree R cache then
4: cache[parse-tree] Ð super.TREETOKENIZE(parse-tree)
5: return cache[parse-tree]

The non-incremental TREETOKENIZE function in Algorithm 17 works roughly the same
as the non-incremental TOKENIZE function in Algorithm 14. The main difference is that the
TREETOKENIZE function does not return a list of tokens but a token tree node. Each token tree
node stores its width (equal to the sum of the widths of its children), its left- and rightmost
tokens, and a reference to its parent.

Algorithm 17 The TREETOKENIZE function of JSGLR2.
1: function TREETOKENIZE(parse-tree)
2: if production of parse-tree is context-free then Ź i.e., production contains -CF
3: all-token-trees Ð H Ź list of token trees
4: for all derivation P derivations of parse-tree do
5: token-subtrees Ð H Ź list of token trees
6: for all child-tree P child nodes of derivation do
7: token-subtree Ð TREETOKENIZE(child-tree)
8: if token-subtree ‰ H then
9: Add token-subtree to token-subtrees
10: if token-subtrees = H then Ź This implies that derivation spans 0 characters
11: token Ð CREATETREETOKEN(parse-tree)
12: Set token as left and right token of AST of derivation
13: Add token to token-subtrees
14: else
15: Set first token in token-subtrees as left token of AST of derivation
16: Set last token in token-subtrees as right token of AST of derivation
17: token-tree Ð new token tree node from token-subtrees
18: Add token-tree to all-token-trees
19: return new token tree node from all-token-trees
20: else
21: if parse-tree spans 0 characters ^ parse-tree does not have an AST node then
22: return H

23: else
24: token Ð CREATETREETOKEN(parse-tree)
25: Set token as left and right token of AST of parse-tree
26: return new token tree node from token
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The CREATETREETOKEN function in Algorithm 18 has onemain difference compared to the
creation of traditional tokens in the CREATETOKEN function inAlgorithm 15: instead of storing
a begin- and end-position, a token in the token tree only stores its width.5

Algorithm 18 The CREATETREETOKEN function of JSGLR2.
1: function CREATETREETOKEN(parse-tree)
2: width Ð position range of parse-tree
3: Use widthwhen creating a token in this function
4: return a token with kind as calculated in CREATETOKEN (Algorithm 15, from line 4)

5Just like how the Java implementation of the imploder needs the original input string to do its calculations
more efficiently (see footnote 1), the same goes for calculating thewidth of a tree token. Ironically, this calculation
also requires knowing the absolute position of a token in its original input string, so the Java implementation of
the tokenizer needs to keep track of this. However, since the tree tokens do not store their absolute position
directly, this does not affect the incrementality of the algorithm.
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Chapter 5

Performance Evaluation

We evaluate the ISGLR parser in two different ways: measurements and benchmarks. All
evaluations use software repositories on GitHub1 as input to the parser, making use of the
recorded history of the files. We describe the evaluation setup and corpus in Section 5.1.

We measure statistics for certain events happening during parsing and the parse nodes
in the resulting parse forest in Section 5.2. We find that irreusable parse nodes make up
27% of the average parse forest, which causes the majority of the breakdown events during
incremental parsing. Languages like Java andWebDSL, which use fence characters like curly
brackets and semicolons, have less irreusable parse nodes in their parse forests andhavemore
parse node reuse than a language like SDF3, which does not have such fences. The majority
of the irreusable parse nodes is not exposed on top of the input stack during a subsequent
incremental parse, so on average, the ISGLR parser can reuse 99% of a previous parse tree.

In Sections 5.3 and 5.4, we evaluate the run time and memory performance of the ISGLR
parser, respectively. We consider both the scenario of batch parses and the scenario of in-
cremental parses. In batch mode, we compare the performance of the ISGLR parser with
two existing JSGLR2 parser variants: the Standard parser and the Elkhound variant (see Sec-
tion 2.4.3). The run time/memory performance of the ISGLR parser in batch mode is 24%
slower/23% higher than the Standard parser and 60% slower/68% higher than the Elkhound
variant. In incremental mode, for changes that are smaller than 1% of the input size on aver-
age, the run time performance of the ISGLR parser is 9× faster than the Standard parser in
batch mode.

In Section 5.5, we discuss possible threats to the validity of this evaluation and to what
extent we countered them.

5.1 Setup
We executed the evaluation on a server machine with two 32-core AMD EPYC processors
with a base frequency of 2.3GHz and 256GB RAMprovided by sixteen DDR4-2933modules.
The used operating system is Ubuntu 20.04 (kernel version 5.4.0-77), usingOpenJDK version
1.8.0_275-b01 and Apache Maven 3.6.3.

We ran a series of evaluation scripts, written in Scala 2.13 unless noted otherwise, inside a
Docker container2 using Docker version 20.10.7. The scripts are configurable using a YAML3

file describing the list of languages and sources to evaluate the parser with.

1https://github.com/
2The Docker container, including the used scripts, are publicly available on GitHub:

https://github.com/metaborg/jsglr2evaluation
3https://yaml.org/
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We separated the evaluation scripts into the following steps:
Pull Languages Pull the latest version of the Spoofax languages used for evaluation from

GitHub and build these projects using Maven.
Pull Sources Pull the latest versions of the sources in the evaluation corpus fromGitHub.

This only pulls versions from Git commits that have changes in source files with the
file extension that belongs to the language, e.g., .java for the Java language.

Preprocessing Validate the evaluation corpus in several ways, see below.
Measurements Perform measurements while parsing and compare parse forests of sub-

sequent versions, see below.
Time Benchmarks Execute benchmarks that measure the run time of the parsers, see

below.
Memory Benchmarks Execute benchmarks that measure the memory usage and cache

size of the parsers, see below.
Post-Processing Process the Comma-SeparatedValues (CSV) files that resulted from the

various benchmarks, add extra data like file sizes and change sizes, and combine all
this into larger CSV files.

Generate Figures Generate plots with Matplotlib,4 in Python 3.8.5.
Publish Generate a web page from the evaluation results and publish it to the website

https://www.spoofax.dev/jsglr2evaluation-site/.

Preprocessing We validate the evaluation corpus in several ways.
For the batch scenario, we ensure the validity of inputs and parsers by parsing all inputs

with all parser variants. Some files can be invalid due to, for example, a mismatch between
language grammar versions and are automatically removed from the batch scenario corpus.
We inspect those files manually to judge whether they are actually invalid or that the lan-
guage grammar was incorrect. To validate consistency between the JSGLR2 variants, we
check that all variants produce the same AST in batch mode.

For the incremental scenario, we validate that an incremental parse of a file has the same
result as a batch parse of the same file. Naturally, this is only done for files that have a
previous version in the evaluation corpus. If this validation fails, it would mean that the
ISGLR parser is incorrect and the entire evaluation is aborted.

Measurements We performed measurements while parsing the input from the evaluation
corpus. We counted the number of parse nodes in the resulting parse forests, recording their
type (parse node or character node) and whether they are irreusable or not.

We also compared parse forests between subsequent versions. During an incremental
parse, we count how many parse nodes are reused or broken down. We also count the num-
ber of parse nodes that are rebuilt, i.e., that were broken down during parsing, but were
recreated with the exact same children as in the parse forest of the previous version. Of the
parse nodes that are broken down, we record the reason for the breakdown.

Time Benchmarks The benchmarks that measure the run time of the parsers make use
of the Java Microbenchmark Harness (JMH),5 version 1.25.2. The setup phase of a JMH
benchmark initializes the parse table and parser for the given language. Also, when doing a
benchmark of an incremental parse, the setup phase parses the first version of the input to
populate the cache.

4https://matplotlib.org/
5https://github.com/openjdk/jmh
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5.1. Setup

JMH runs a predefined action in multiple so-called iterations, where each iteration runs
the action as often as possible for 10 seconds. We run the time benchmarks using 10 warmup
iterations and 10 regular iterations. These warmup iterations execute the action but do not
measure its run time, to warm up the Java Virtual Machine (JVM).

We separated the time benchmarks into multiple executions of JMH, where each of these
benchmark runs considers two consecutive versions of the evaluation corpus. In the setup
phase of the benchmark, we save the results of the first version (parse forests, ASTs, tokens).
We defined the benchmark action as a call to the parser with the second version as input,
using the results of the first version for incrementality.

Memory Benchmarks We run two kinds of memory benchmarks: one that measures the
allocations during parsing and one that calculates the cache size after a parser saves a result to
the cache. For every language, the benchmark script sampled 100 files from the evaluation
corpus to run the memory benchmarks with.

We measure memory allocations by instrumenting the JVM to count every object con-
structor called during parsing, using a custom allocation instrumenter library6 forked from
Google. This library instruments all constructors of all loaded Java classes with a call to an
observable. To this observable, we attach an observer that sums the sizes of all objects that
are created during parsing.

Wemeasure the cache size using the JavaObject Layout library.7 This library can calculate
the size of an object, including the size of all of its references, recursively. For every file in
the benchmark, we subtract a measurement taken before parsing from a measurement taken
after parsing to obtain the impact on the memory usage of the cache for that file.

5.1.1 Evaluation Corpus
Table 5.1 shows the languages and sources that we used to evaluate the performance of the
ISGLR parser. We chose three languages with different characteristics: Java as a General-
Purpose Language (GPL), SDF3 as Domain-Specific Language (DSL) that is used as a meta-
language in Spoofax, and WebDSL as DSL that is used to generate websites. The grammars
of these languages are publicly available on GitHub.

Table 5.1: Corpus used to evaluate the performance of the ISGLR parser. The numbers of
files/lines and the (file/change) sizes are the average of all versions. The change sizes are
equal to the number of removed characters plus the number of added characters.

Language Source Versions Files Lines Size (B) Mean file
size (B)

Change
size (B)

Java
StringUtils 16 1 9 635 396 297 396 297 850
gson 16 204 37 163 1 265 001 6 189 988
slf4j 16 238 26 632 893 078 3 756 8 606

WebDSL
builtin.app 10 1 3 403 98 147 98 147 650
YellowGrass 16 53 6 019 166 767 3 171 1 168
elib-utils 16 17 1 422 39 480 2 322 172

SDF3

NaBL 16 126 4 386 98 690 781 606
DynSem 16 4 437 9 716 2 429 130
FlowSpec 16 15 567 12 209 816 516
Stratego 7 64 2 950 79 224 1 240 379
WebDSL 16 26 3 252 86 032 3 308 114

6https://github.com/mpsijm/simple-allocation-instrumenter
7https://github.com/openjdk/jol
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For two sources, we picked a single large file to investigate the effect of this on the per-
formance of the parser. For Java, we chose the file StringUtils.java, a file of almost 400 kB
from Apache’s Commons Lang library. For WebDSL, we chose the file builtin.app, a file
of almost 100 kB from the WebDSL compiler project. For other sources, we picked entire
repositories. All sources are publicly available on GitHub.

5.2 Measurements Results
In this section, we will discuss measurements about the parse nodes in the parse forest re-
turned as result from the parser (Section 5.2.1) and the reasons for breaking down parse
nodes (Section 5.2.2). Table 5.2 displays the most interesting results from the measurements,
as an average of the measurements over all corpus sources of a language. See Appendix A.1
for the full measurement results.

Table 5.2: Measurements for parse nodes and breakdowns for the different languages in the
evaluation corpus as shown in Table 5.1.

Language
Parse nodes (% of total nodes) Breakdowns (% of total breakdowns)

Irre-
usable Reused Broken

down Rebuilt Contains
Change

Irre-
usable

No
actions

Wrong
state

Average 27.25% 99.12% 0.67% 0.48% 40.68% 56.23% 0.00% 3.08%
Java 19.08% 99.60% 0.17% 0.08% 51.35% 46.67% 0.00% 1.98%

WebDSL 21.32% 99.55% 0.28% 0.15% 51.35% 43.76% 0.00% 4.89%
SDF3 41.36% 98.21% 1.57% 1.21% 19.35% 78.28% 0.00% 2.38%

5.2.1 Parse Nodes

The left part of Table 5.2 shows four measurements as a percentage of the total number of
parse nodes:

Irreusable is the percentage of parse nodes that is marked as irreusable because they
were created while the parser was parsing non-deterministically.

Reused is the percentage of parse nodes that are reused during an incremental parse,
i.e., parse nodes that the parser could shift directly together with all its descendent
nodes.

Broken down is the percentage of parse nodes that the parser has to break down during
an incremental parse.

Rebuilt is the percentage of parse nodes that are created during an incremental parse
for the same production rule and with the same children as in the previous parse.

Note that the percentages “Reused” and “Broken down” do not fully sum up to 100% for
any language, while intuitively, a parse node is either reused or broken down. However, the
CHECKUPDATES procedure might skip larger parse nodes, as shown in line 8 of Algorithm 3.
Any descendants of these skipped parse nodes are not counted in the “Broken down” per-
centage, because the parser does not actively break them down.

Java and WebDSL have over 99.5% parse node reuse, but SDF3 has only 98% parse node
reuse. Similarly, parse forests for Java andWebDSL have around 20% irreusable parse nodes,
while in parse forests for SDF3 they make up 41% of all parse nodes. After manually inspect-
ing parse forests for the different languages, we found that the higher number of irreusable
parse nodes for SDF3 can be explained by the lack of fencing characters in the language.
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Languages like Java and WebDSL use curly brackets ({}) and semicolons (;) as fen-
cing characters. Curly brackets indicate the nesting of parts of code, for example, the body
of a function or the body of an if-statement. Similarly, semicolons terminate a statement
within a block of code. However, in SDF3, code sections are bounded using keywords (like
context-free syntax) and definitions of production rules do not have a terminating char-
acter. The parser will need to parse any word non-deterministically, as discussed in Sec-
tion 3.2.2: a word can either be the next sort in the right-hand side of a production rule, the
sort on the left-hand side of a new production rule, or a keyword that indicates the start of
a new code section. Therefore, the parse nodes which correspond to code sections and pro-
duction rules are marked as irreusable, which makes the ISGLR parser break down many
of these parse nodes during an incremental parse when they end up at the top of the input
stack. In languages that do use fencing characters, this does not happen, because the fences
consist of a single character: when the parser encounters a fence, there is only one way of
parsing the statement (block) that has this fence as the final character.

Of the parse nodes that are broken down, on average, 71% of them are rebuilt.8 This
implies that themajority of the breakdowns are unnecessary in hindsight. However, because
of the non-deterministic nature of scannerless parsing, these breakdowns are still necessary
during parsing since the parser can only look one character ahead. Still, for changes that are
smaller than 1% of the input size on average, we conclude that a reuse of 99% on average is
acceptable for an incremental parser.

5.2.2 Breakdowns
The right part of Table 5.2 shows four measurements as a percentage of the total number of
broken-down parse nodes:

Contains Change is the percentage of breakdowns that happen when that parse node
contains a change as calculated by the diff.

Irreusable is the percentage of breakdowns that break down an irreusable parse node.
No actions is the percentage of breakdowns occurring when there are no valid actions

in the parse table.
Wrong state is the percentage of breakdowns that break down a parse node because the

state matching test failed, i.e., the parse state reference stored in the parse node is not
the same as the current parse state.

The number of breakdowns caused by changed parse nodes is 41% on average. All other
broken-down parse nodes are not located in the spine between the updated character nodes
and the root of the parse forest. Ideally, an incremental parser would only break down parse
nodes that are located in this spine, including the parse nodes that cannot be reused because
the state matching test failed. In the evaluated corpus, another 3% of parse nodes fall in this
latter category.

However, most of the breakdowns, 56% on average, are caused by irreusable parse nodes.
This can be explained by the fact that a quarter of all parse nodes is irreusable, so many of
them end up exposed at the top of the input stack, causing them to be broken down. This
effect is stronger in the parsing of SDF3 than for the parsing of Java or WebDSL, for the same
reasons as mentioned in Section 5.2.1.

None of the breakdowns is caused by the absence of valid actions in the parse table. This
scenario does not occur in this evaluation, since we only consider input files that are valid
according to the grammar of the language.

8This value is calculated from Table 5.2 by dividing the value in the “Rebuilt” column by the value in the
“Broken down” column.
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5.3 Time Benchmark Results
This section shows the performance results of the ISGLR parser in terms of run time, com-
pared to other parser variants in JSGLR2 and Tree-sitter (Brunsfeld 2018). Tree-sitter is a
parser based on the Incremental LR (ILR) parsing algorithm byWagner and Graham (1998).
We will describe Tree-sitter in more detail in Section 6.1.1.
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(c) Parse times of the elib-utils repository.
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(d) Parse times of the nabl repository.

Figure 5.3: Parse times of the last 16 versions of several files and repositories from GitHub,
excluding imploding and tokenization. The red squares represent the Standard JSGLR2
parser, the purple pentagons represent the Elkhound parser variant, the blue downward-
pointing triangles represent the incremental parser in batch mode (i.e., without cache), and
the green upward-pointing triangles represent the incremental parser in incremental mode.
The yellow dots indicate the size of the changes in a particular version, which is the sum of
the number of removed and inserted characters, on the second y-axis.

Table 5.4: Average parse times for the different languages in the evaluation corpus, as shown
in Table 5.1, for three JSGLR2 parser variants. The values indicate the parse time in milli-
seconds, excluding imploding and tokenization.

Language Standard Elkhound Incremental Incremental
(no cache)

Average 785.510 597.235 839.299 82.503
Java 1 974.375 1 497.341 2 112.104 203.043

WebDSL 233.029 175.540 244.903 23.681
SDF3 149.127 118.824 160.888 20.784
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5.3. Time Benchmark Results

All benchmark results in this section show the average run time performance over 10
benchmark iterations, where the error bars in the plots indicate the 99%-confidence interval.
The full time benchmark results are shown in Appendix A.2.

We evaluate the run time performance separately with and without the imploding and
tokenization steps, as shown in the bottom rowof Figures 2.10 and 3.12. The Tree-sitter parser
is only included in the second comparison, where for both parsers their full parsing pipeline
is timed from start to end.

Parsing Only Figure 5.3 shows the parse times for four of the sources in the evaluation
corpus, where the ISGLR parser is measured both in batch mode and in incremental mode.
The parse times in this figure are measured for only parsing, i.e., excluding imploding and
tokenization. The average parse times for the three languages of the evaluation corpus (Sec-
tion 5.1.1) are shown in Table 5.4.

The overall result is that the ISGLR parser in incremental mode has a significant speedup
compared to the Standard parser in batch mode of 9.5×, with changes that are smaller than
1% of the input size, on average. The ISGLR parser in batch mode is 7% slower than the
Standard JSGLR2 parser variant, and 41% slower than the Elkhound variant.

Interestingly, Figure 5.3(a) shows some outliers where the ISGLR parser is significantly
slower to parse incremental updates to StringUtils.java than for the other sources of the
evaluation corpus. Remember from Section 5.1.1 that StringUtils.java is a Java file of almost
400 kB. Some of the slower incremental parsing times can be attributed to the size of the diff,
like version 5. However, version 11 has only added eight characters with respect to version
10, yet the incremental parsing time is one of the longest for this figure. Specifically, these
eight characters were added in four different places throughout the file. Further inspection
using a Java profiler9 showed that executing the diff algorithm took 7× more time than the
incremental parsing for this particular diff. We consider optimizing the diff algorithm out of
scope for this thesis.

With ImplodingAndTokenization Figure 5.5 shows the parse times for four of the sources
in the evaluation corpus. The parse times of the JSGLR2 parser variants are measured for the
full JSGLR2 parsing pipeline, which includes imploding and tokenization. The average parse
times for the three languages of the evaluation corpus (Section 5.1.1) are shown in Table 5.6.
The parse times for Tree-sitter (Brunsfeld 2018) are only measured for the Java language
since no Tree-sitter grammars for WebDSL and SDF3 are available.

The overall result is that the ISGLR parser in incremental mode has a significant speedup
compared to the Standard parser in batch mode of 9.0×, with changes that are smaller than
1% of the input size, on average. The ISGLR parser in batch mode is 24% slower than the
Standard JSGLR2 parser variant, and 60% slower than the Elkhound variant. Comparing
this with the results of Table 5.4, we see that the parsing phase takes up 97% and 95% of
the full JSGLR parsing pipeline for the Standard and Elkhound parser variants, respectively.
For the ISGLR parser, this percentage drops to 83% in batch mode and 91% in incremental
mode. This indicates that the incremental imploding and tokenization algorithms havemore
overhead compared to the incremental parsing algorithm than the original algorithms.

The ISGLR parser is roughly 11× slower than the Tree-sitter parser, both in batch mode
and in incremental mode. It is almost impossible to conclude anything from this because
Tree-sitter is written in the C programming language, while JSGLR2 is written in Java. Gen-
erally speaking, a program written in Java is slower than the same program written in C,
but the slowdown factor varies heavily depending on the type of program (Fourment and
Gillings 2008). However, the speedup of incremental parsing compared to batch parsing for
Tree-sitter is similar, although slightly better (12×) compared to the ISGLR parser.

9https://www.ej-technologies.com/products/jprofiler/overview.html
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(d) Parse times of the nabl repository.

Figure 5.5: Parse times of the last 16 versions of several files and repositories fromGitHub, in-
cluding imploding and tokenization. The red squares represent the Standard JSGLR2 parser,
the purple pentagons represent the Elkhound parser variant, the blue downward-pointing
triangles represent the ISGLR parser in batch mode (i.e., without cache), the green upward-
pointing triangles represent the ISGLR parser in incremental mode, the blue downward-
pointing three-pointed stars represent the Tree-sitter parser in batch mode, and the green
upward-pointing three-pointed stars represent the Tree-sitter parser in incremental mode.
The yellow dots indicate the size of the changes in a particular version, which is the sum of
the number of removed and inserted characters, on the second y-axis.

Table 5.6: Average parse times for the different languages in the evaluation corpus, as shown
in Table 5.1, for three JSGLR2 parser variants and Tree-sitter. The values indicate the parse
time in milliseconds, including imploding and tokenization.

Language Standard Elkhound Incremental Incremental Tree-sitter Tree-sitter
(no cache) (no cache)

Average 810.266 630.811 1 007.738 90.302 – –
Java 2 033.161 1 579.048 2 518.010 217.591 233.929 19.715

WebDSL 241.125 185.905 303.368 27.597 – –
SDF3 156.514 127.480 201.835 25.719 – –
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5.4. Memory Benchmark Results

5.4 Memory Benchmark Results
This section shows the performance results of the ISGLR parser in terms of memory usage,
compared to other parser variants in JSGLR2. All benchmark results in this section show
the average memory performance over 10 benchmark iterations, where the error bars in the
plots indicate the minimum and maximum measurement for that data point. Note that the
error bars are barely visible because the memory usage was almost constant in all cases. For
these memory benchmarks, we measured the full JSGLR2 parsing pipeline, which includes
imploding and tokenization, as shown in the bottom row of Figures 2.10 and 3.12. Note that
we only measured the memory usage when running the parsers in batch mode.

Memory Allocations Figure 5.7 shows the memory usage in terms of memory allocations.
The memory usage of all parser variants tends to increase linearly with respect to the size
of the input files for almost all files of the corpus. The average memory usage is shown
in Table 5.8. On average, the ISGLR parser uses 23% more memory allocations than the
Standard JSGLR2 parser variant and 67% more than the Elkhound variant.

We observe that Figure 5.7(a) shows some outliers where the memory usage is lower
than for other files. After manual inspection, these Java files appeared to be abstract classes
with a large number of documentation comments. This results in a smaller AST compared
to a file of similar size that contains less documentation, therefore reducing memory usage
in the imploder and tokenizer.

Table 5.8: Average memory allocations for the different languages in the evaluation corpus,
as shown in Table 5.1, for three JSGLR2 parser variants. The values indicate the number of
bytes allocated in the memory per character in the input, averaged over 100 input files.

Language Standard Elkhound Incremental
Average 2 480 1 826 3 042
Java 2 379 1 713 2 878

WebDSL 2 287 1 653 2 782
SDF3 2 774 2 113 3 465

Cache Size Figure 5.9 shows the size of the parser cache after parsing, calculated as the dif-
ference between the memory footprints before and after parsing. We can see that the parsers
that only support batch parsing indeed store no data that should be available during a sub-
sequent parse. The incremental parser does store this data, the size ofwhich seems to increase
linearly with respect to the input file size, similar to the number of memory allocations. The
average memory size of the cache is shown in Table 5.10.

Table 5.10: Average memory size of the cache for the different languages in the evaluation
corpus, as shown in Table 5.1, for three JSGLR2 parser variants. The values indicate the
number of bytes allocated in the memory per character in the input, averaged over 100 input
files.

Language Standard Elkhound Incremental
Average 0 0 270
Java 0 0 224

WebDSL 0 0 251
SDF3 0 0 336
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Figure 5.7: Size of memory allocations during parsing for three variants of the JSGLR2
parser: the Standard parser (red squares), the Elkhound parser variant (purple pentagons),
and the ISGLR parser in batch mode (blue triangles). Memory usage is calculated for 100
files of different sizes.
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Figure 5.9: Size of the cache after parsing a file for three variants of the JSGLR2 parser: the
Standard parser (red squares), the Elkhound parser variant (purple pentagons), and the
ISGLR parser in batch mode (blue triangles). Memory usage is calculated for 100 files of
different sizes.
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5.5 Threats to Validity
The chosenmethod of performance evaluation has several concerns thatmight affect its valid-
ity. In this section, we discuss these threats to validity and to what extent we countered them.

Sampling Bias The selection of the evaluation corpus described in Section 5.1.1 raises the
concern of sampling bias. It is not viable to evaluate the ISGLR parser with all possible
languages and all available sources in that language, so selecting a subset of these as corpus
is necessary, although it might not be representative. For the evaluation corpus, we selected
languages that have different features and use cases to cover a range of languages that is as
wide as possible.

Similarly, we need to select a part of the history of a project to use as input for the bench-
mark, as the full history of projects on GitHub consists of thousands of commits. Some com-
mits may be smaller or larger than others, so by only taking the last 16 versions, we might
introduce a bias towards a particular commit size. However, these commits typically still
have larger change sizes than the size of a change would be when typing in the editor. The
average change size of the sources in the chosen corpus is just below 1% of the input size,
spread over multiple files, while typing in an editor leads to change sizes of only a couple of
characters in a single file. Since we show that smaller change sizes typically take less time to
parse incrementally, typing in the editor should not lead to performance issues. Conversely,
a developer might switch branches in Git during development, which leads to larger change
sizes than a single commit, since another branch may be multiple commits ahead or behind
the current branch. However, we argue that the developer does not need an instant editor
update in this scenario, implying that a slightly slower incremental update is acceptable in
that case.

Finally, the parse time of the ISGLR parser does not only depend on the size of the change
but also on what exactly changed. For example, changes to identifier names have less impact
than changes that cause structural rearrangements in the AST. We have not attempted to
quantify the “impactfulness” of a change, but we do suspect to have a sampling bias for this
metric as well, besides the size of a change.

Correctness We do not prove the correctness of the ISGLR parser, so one might argue that
the parser could return invalid results, possibly influencing the run time of the parser by
taking certain shortcuts. Providing a full correctness proof of the ISGLR parser is outside the
scope of this thesis, but we provide arguments for the necessity of certain parts of the ISGLR
parsing algorithm in Chapter 3. However, we do have a suite of integration tests that is run
automatically after pushing code to themain repository, ensuring that the basic functionality
of the incremental parser is correct. In addition, the preprocessing step of the evaluation
suite compares the resulting AST of an incremental parse with the AST of a batch parse for
all files in the evaluation corpus. If the ASTs are not exactly equal, the entire benchmark is
aborted. Of course, the concern of sampling bias also applies here: creating a test suite that
covers all possible inputs is infeasible, and it remains possible that inputs outside the selected
evaluation corpus might cause the ISGLR parser to return an incorrect result.
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Chapter 6

Related Work

Many other incremental parsing techniques have been published in the past years. In this
chapter, we describe these approaches and compare them to our Incremental Scannerless
Generalized LR (ISGLR) parsing algorithm. Wemake a distinction between LR parsers (Sec-
tion 6.1), recursive descent parsers (Section 6.2), and parser combinators (Section 6.3).

6.1 Incremental LR Parsers
The incremental parsers described in this section are based on LR parsing, with a lexer that
produces tokens, and a token-level grammar that the parser uses to generate a parse tree.
Section 2.1 describes LR parsers in detail.

Merlin Bour, Refis, and Scherer (2018) present Merlin, a language server for OCaml. As a
language server, it can answer queries from the user, like requesting the type of an identifier
and navigating to the definition of an identifier.

To gain incrementality, Merlin stores checkpoints during parsing. These checkpoints are
references to immutable parse stack objects, which only results in a small memory overhead
since there is a lot of sharing within parse stacks. When the input to the parser is edited,
Merlin restarts the parser from the last checkpoint belonging to the last unaffected token
before the edit region. This approach has the disadvantage that an edit near the start of the
input file would require almost a full reparse.

Harmonia Wagner andGraham (1998) present an Incremental LR (ILR) parsing algorithm
as an improvement over several earlier approaches to incremental LR parsing. For a descrip-
tion of these earlier approaches and how their shortcomings are resolved, we refer toWagner
and Graham (1998, §2). Later,1 Wagner and Graham (1997b) extended this to allow non-
deterministic parsing with the Incremental Generalized LR (IGLR) parsing algorithm, and
Boshernitsan (2001) implemented an IGLR parser in the interactive setting of an IDE called
Harmonia. Section 2.3 describes IGLR parsing in detail, as the ISGLR parsing algorithm
presented in this work bases its incrementality on the IGLR parsing algorithm.

The ILR parser bases its incrementality on sentential-form parsing. It makes use of the
assumption that the parse table reflects the grammar that it is generated from. The parser
can reuse a parse node if the symbol that it represents is allowed to follow the parse state on
top of the parse stack. The parse table generator provides information on which symbols are
allowed to follow each parse state. This technique does not require state matching.

1These two papers appear to have been published in reverse order, but the paper of Wagner and Graham
(1997b) on IGLR parsing refers back to the paper of Wagner and Graham (1998) on ILR parsing as “Tim A.
Wagner and Susan L. Graham. Efficient and flexible incremental parsing, 1996. Submitted to ACM Trans. Program.
Lang. Syst.” In his PhD thesis, Wagner (1998, Chapters 6&7) did present ILR parsing before IGLR parsing.
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However, this assumption of sentential-form parsing does not hold for production rules
that have been disambiguated during parse table generation, e.g., using precedence and as-
sociativity rules. Wagner and Graham (1998) solve this issue by letting the ILR parser mark
parse nodes as fragile when they represent such a production rule. If the parser encounters
a fragile node during an incremental parse, it will always break it down. The IGLR parser
does not need to track fragility, because it does use state matching, which (together with the
lookahead test described in Section 2.3) also solves this issue.

6.1.1 Parsers Based on Wagner’s Approach
The three incremental parsing approaches described in this section are all based on the ILR
parsing algorithm by Wagner and Graham (1998). All of these approaches allow language
composition, but in a less transparent way than scannerless parsing does. The first two ap-
proaches do not allow non-deterministic (IGLR) parsing, which is considered an advant-
age by their authors since it forces language designers to create non-ambiguous grammars,
which prevents accidental ambiguities to cause errors in the editor. In contrast, scannerless
parsing heavily relies on non-deterministic parsing, as described in Section 3.2.

Eco Diekmann and Tratt (2014) present Eco, a language composition editor. It acts as a
normal text editor, but internally it uses structural (also known as syntax-directed) editing
to make sure that the user always operates on a valid syntax tree. Adding custom grammars
to Eco is possible, but this is “mainly used for testing”2 and not documented.

The Eco editor has a fixed list of combinations of languages that it allows. A user can
edit this list in configuration files.3 In the editor, a user can create fragments in a different
language by creating language boxes, which are zero-width boundaries around text frag-
ments that indicate which language a fragment is written in. Language boxes can be nested
arbitrarily deep.

Tree-sitter Brunsfeld (2018) presents Tree-sitter, a parser generator that generates incre-
mental parsers. It is integrated into widely-adopted editors like Atom and Neovim and
supports many General-Purpose Languages (GPLs). Language designers can generate Tree-
sitter parsers by writing a grammar in JavaScript and running the generator with that gram-
mar as input.4

Language composition is possible in Tree-sitter bymanually instructing the parser which
ranges of the input should be parsed in which language. It is possible to automate this by
adding explicit fences to the host language (e.g., “<?= ... ?>” for the PHP language), then
detecting parse nodes corresponding to those constructs, and use the range of such a parse
node to call the parser for the embedded language.5

Lezer Haverbeke (2019) presents Lezer, a parser generator inspired by Tree-sitter that is
built into CodeMirror,6 a code editor that can be run inside a web browser. Lezer supports
GLR parsing in an opt-in fashion by allowing the grammar designer to annotate which pro-
duction rulesmay allow the parser to fork. Lezer’s lexer is integrated into the parser, allowing
it to be contextual: token definitions are allowed to overlap, “as long as such tokens can’t oc-
cur in the same place anywhere in the grammar”.7 This also allows the layout definitions to
depend on the context.

2https://github.com/softdevteam/eco/pull/150
3https://github.com/softdevteam/eco/pull/238
4https://tree-sitter.github.io/tree-sitter/creating-parsers
5https://tree-sitter.github.io/tree-sitter/using-parsers#multi-language-documents
6https://codemirror.net/
7https://lezer.codemirror.net/docs/guide/#contextual-tokenization
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6.2. Incremental Recursive Descent Parsers

Lezer allows language composition directly in the grammar specification, as long as “the
nested syntax has a clearly identifiable end token”.8 However, unlike Tree-sitter, Lezer gram-
mars allow directly importing a nested grammar and declaratively specifying the boundary
tokens. This comes very close to the seamless language composition that scannerless parsing
allows, and is sufficient for the grammars of GPLs that are currently published.

6.2 Incremental Recursive Descent Parsers
This section describes incremental parsing approaches based on recursive descent (or top-
down) parsing. Unlike LR(k) parsing, which builds a parse tree from the bottom up, recurs-
ive descent parsers start parsing from the top down. Starting with the start symbol, they try
to recognize the input by enumerating all production rules for that symbol and recursively
do this search for all symbols in a production.

Incremental LL(1) Yang (1993) and Li (1995), among others, have introduced algorithms
for incremental LL(1) parsing. Both incremental LL(1) parsing algorithms “cut” the previ-
ous parse tree at the location of an edit: say that the input xyz is edited to xȳz, parse tree X
is equal to the previous parse tree with holes at the locations where the parse nodes for sub-
strings y and z would be, and Z is a list of subtrees that represent parts of z. Then, the parser
initializes the LL(1) parsing algorithm as if it had already parsed X , with the sequences
ȳ and Z as lookahead. To some extent, this is comparable with how ISGLR breaks down
changed parse nodes and stores potentially reusable parse nodes on the input stack.

The algorithm of Yang (1993) decides whether it can reuse a subtree in Z by using its
first terminal node to index the parse table, whereas Li (1995) improved this by allowing
the parse table to contain non-terminals so that the parser can use the symbol in the root of
a subtree to determine the next parse action. The latter approach is equal to how the ILR
parser by Wagner and Graham (1997b) tests if it can reuse a parse node.

Incremental Packrat Parsing Packrat parsing (Ford 2002) is an alternative approach to re-
cursive descent parsing that memoizes intermediate results. The so-called memo table is a
table that saves for every input position whether parsing a production rule at that position
succeeds and howmuch of the input it spans. Thememo table is sparse because it only stores
the entries that the parser needs during parsing.

Dubroy and Warth (2017) add incrementality to packrat parsing by taking the memo
table from a previous parse, removing entries from it that can conflict with the edit, and
starting the parser with this updated memo table. They have implemented this parsing al-
gorithm in Ohm, a parser generator toolkit based on Parsing Expression Grammars (Warth,
Dubroy, and Garnock-Jones 2016). The source code for this parser and some visualizations
can be found online.9

The algorithm that updates the memo table removes all entries that overlap with the po-
sitions touched by the edit, including entries that required to look forward to these positions
to make a proper decision. For example, the parser can only recognize a number consisting
of multiple digits if the position after the number is not a digit. Because recursive descent
parsers use backtracking, the lookahead is theoretically unlimited, so in the worst case, the
update algorithm needs to test for all entries of the memo table whether it should remove
them. However, the performance of the incremental packrat parser in practice suggests that
this is often not the case.

8https://lezer.codemirror.net/docs/guide/#grammar-nesting
9https://ohmlang.github.io/sle17/
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6.3 Incremental Parser Combinators
Bernardy and Claessen (2015) present an incremental parsing algorithm that makes use
of a divide-and-conquer algorithm using parser combinators. The algorithm is implemen-
ted in the Yi editor10 (Bernardy 2008). They also convert a grammar from Backus–Naur
Form (BNF) to a variant of Chomsky Normal Form (CNF) where every production rule is
transformed into a binary tree of productions to reduce the height of the parse tree.

The incremental parser of Bernardy and Claessen (2015) assumes lazy access to the parse
tree. For example, when a user has an editor of a file open, they only view a small part of this
file, and therefore only this part of the file needs to be parsed to perform syntax highlighting.
When the user scrolls down in the file, the parser can resume from where it left off.

The parser of Yi is incremental because it caches intermediate parse results. Bernardy
describes this in a blog post about Yi: “For given positions in the input (say every half-page),
we will store a partially evaluated state of the parsing automaton. Whenever the input is
modified, the new parsing result will be computed by using the most relevant cached state,
and applying the new input to it. The cached states that became invalidated will also be
recomputed on the basis of the most relevant state.”11

10https://github.com/yi-editor/yi/
11https://yi-editor.github.io/posts/2014-09-04-incremental-parsing/
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Chapter 7

Conclusion

This thesis presents the Incremental Scannerless Generalized LR (ISGLR) parsing algorithm
and answers the following research question:

What are the Effects of Combining Scannerless and Incremental GLR Parsing?

To answer this research question, we combined SGLR parsing and IGLR parsing into the
ISGLR parsing algorithm and implemented it in the context of Spoofax. The differences of
these two parsing algorithms with respect to GLR parsing are orthogonal to each other and
are combinedwithout difficulties. While the algorithmic differences are orthogonal, we show
that there exist non-trivial interactions between these two techniques.

The fact that scannerless parsing (with character-level grammars) relies on non-determin-
istic parsing for disambiguation has a negative impact on incrementality. A parse node is
irreusable when the parser creates it while exploring multiple possibilities to achieve un-
bounded lookahead, which is the case for 27% of all parse nodes on average in the evaluated
corpus. The ISGLR parser creates many of these irreusable parse nodes when parsing the
layout between symbols or when parsing literal keywords that overlap with identifiers. If a
production rule ends with a fencing character (like curly brackets ({}) or semicolons (;)),
the parse node that they terminate can be reused in a subsequent incremental parse. In gen-
eral, an incremental parser can reuse more of a previous parse tree if the grammar allows it
to parse the input more deterministically.

Nonetheless, we show that the ISGLR parsing algorithm performs better than the batch
SGLR parsing algorithm in typical scenarios. The majority of the irreusable parse nodes
does not get exposed on top of the input stack during a subsequent incremental parse, so
on average, the ISGLR parser can reuse 99% of a previous parse tree. When parsing from
scratch, the ISGLR parser has a 24% run time overhead compared to the SGLR parser, but
when parsing incrementally for changes that are smaller than 1% of the input size on average,
it has a 9× speedup.

7.1 Future Work
Balanced Lists Wagner andGraham (1998) represent list production rules as balanced bin-
ary trees in the parse tree, while SDF3 normalizes list productions as left-recursive constructs.
Using balanced trees reduces the height of the parse tree toO(logn) (where n is the number
of characters) instead ofO(n) in theworst case. Reducing the height of the parse tree reduces
the length of the spine that needs to be broken down during an incremental parse.

Index Parse Table With Productions Wagner and Graham (1998) adapt the parse table
generator so that it allows their Incremental LR (ILR) parser to retrieve the applicable actions
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from the action table using a state–non-terminal pair. This information is already available
during parse table generation, but SDF3 does not store this in the parse table. The ISGLR
parsing algorithm currently calculates the applicable actions for a non-terminal based on
the first character in its parse node. Only when a parse node can be reused, it accesses the
goto table using the production rule of the parse node. For this thesis, it was out of scope
to improve the parse table generator, but it would be interesting to see if this improves the
performance of the ISGLR parser.

Layout as Skip Productions The lexer of Lezer (Haverbeke 2019) is integrated into its
parser, and this allows layout definitions to depend on the context, among other things.
Their parser essentially “skips” any layout that matches these definitions. Reusing some
ideas from Lezer might reduce non-determinism during parsing that is related to layout.

Incremental Error Recovery De Jonge et al. (2012) implement error recovery for SGLR
parsing, and Wagner (1998, Chapter 8) and Brunsfeld (2018) implement error recovery for
IGLR parsing and ILR parsing, respectively. Error recovery is currently a work in progress
for JSGLR2 (Denkers 2018), and it would be interesting to combine this implementationwith
the incremental parser.

Integrate Into Spoofax While Spoofax already supports incremental type checking (Aerts
2019) and incremental compilation (Smits, Konat, and Visser 2020), these implementations
are coarse-grained: a changed file will need to be fully reprocessed to some degree. They
would benefit from detecting which elements in the AST have changed in a file based on the
result from the incremental parser.

Incremental Editor Update Some tasks in the editor plugin that is generated by Spoofax
would also benefit from incremental updates from the parser. The editor plugin performs
syntax highlighting based on the tokens produced by the tokenization post-processing task.
In addition, it generates a program outline based on the AST. Both of these tasks can be
made incremental using the result from the incremental parser. Conversely, an editor might
already have a built-in way of detecting textual updates, which can be used to improve the
diff part of the ISGLR parsing algorithm.
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Acronyms

AST Abstract Syntax Tree
BNF Backus–Naur Form
CNF Chomsky Normal Form
CST Concrete Syntax Tree
CSV Comma-Separated Values
DSL Domain-Specific Language
EOF End-of-File
GLR Generalized LR
GPL General-Purpose Language
GSS Graph-Structured Stack
IDE Integrated Development Environment
IGLR Incremental Generalized LR
ILR Incremental LR
ISGLR Incremental Scannerless Generalized LR
JMH Java Microbenchmark Harness
JVM Java Virtual Machine
LR Left-to-right Rightmost-derivation
NSLR Noncanonical Simple LR
SDF3 Syntax Definition Formalism 3 (Vollebregt, Kats, and Visser 2012;

de Souza Amorim and Visser 2020)
SGLR Scannerless Generalized LR
SLR Simple LR
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Glossary

action . . . . . . . . . . . . . . . . . . . . 4–7, 9, 14, 24, 26, 28–31, 33, 34, 37, 53, 65, 66
The three different types of actions listed in the action table that decide what the parser
should do: Shift, Reduce, or Accept. Section 2.1.3 shows a full description of these
actions.

action table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 30, 31, 34, 66
The part of the parse table that maps state–terminal pairs to actions.

ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 12, 40, 62, 77
A part of the input stream that can be parsed in multiple ways, represented as a parse
node with multiple derivations.

ambiguous grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 62
A context-free grammar forwhich there exists some string that can be parsed inmultiple
ways.

batch parse . . . . . . . . . . . . . . . . . . . . . . 8, 24, 26, 29, 31, 49, 50, 60, see parse
A single invocation of a parser without reusing previous results, i.e., not being incre-
mental.

character class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 45, 113
A compact notation to describe a set of characters. For example, [A-Za-z] denotes the
set of all letters in the English alphabet.

character node . . . . . . . . . . . . . . . . . . . . . 10, 13, 22, 26, 31–34, 36, 50, 53, 77
A leaf node of a parse tree for a scannerless parser, corresponding to a single character
of the input string.

character-level grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 12, 24, 65
A context-free grammar that is described using characters as terminal symbols.

conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 6, 29–31
An entry in the action table that has more than one action.

context-free grammar . . . . 3–6, 10–12, 17–20, 24–31, 39, 43, 50, 51, 53, 55, 61–65, 115
A description of a language, as defined in Section 2.1.

derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 7, 13, 14, 28, see ambiguity
A possible way of parsing the input represented by the parse node that contains this
derivation.

diff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 21, 22, 31, 33, 53, 55, 66
A list of changes between two strings of characters.
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goto table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 5, 8, 22, 30, 34, 66
The part of the parse table that maps state–non-terminal pairs to other parse states.

grammar normalization . . . . . . . . . . . . . . . . . . . . . 10–12, 17, 19, 28–30, 65
The process of transforming a high-level SDF3 grammar specification to a specification
that only uses core constructs of SDF3.

imploding . . . . . . . . . . . . . . . . . . . . . . . . . 14, 37, 39–42, 44, 47, 54–57, 92
The process of reducing a Concrete Syntax Tree (CST) to an Abstract Syntax Tree
(AST).

incremental parse . . . 8, 9, 17, 22–24, 26, 29–31, 36, 49, 50, 52, 53, 60, 62, 65, see parse
An invocation of the parser on an input that received a change with respect to a pre-
vious version. During an incremental parse, the parser tries to reuse subresults of a
previous parse.

injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 12, 41
A production rule in a grammar that has only one symbol on its right-hand side.

input stack . . . . . . . . . . . . . . . . . . . 21, 22, 24, 26, 29–34, 36, 37, 49, 53, 63, 65
Used as input by the ISGLR parser. Contains both character nodes and parse nodes. If
the parse node on top of the input stack may not be reused, it is broken down and its
children are pushed back to the stack such that the first child ends up on top.

input stream . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4, 6–8, 13, 14, 21, 36, 37
The input to a parser, usually a stream of characters. In non-scannerless parsers, a
lexer transforms this input stream into a stream of tokens before parsing.

irreusable parse node . . . . . . . 9, 17, 24, 26, 29, 31, 34, 36, 37, 49, 50, 52, 53, 65, 77
A parse node that can never be reused during a subsequent incremental parse if it ends
up at the top of the input stack, because it was created during non-deterministic parsing.

kernel syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 11, 19, 28–30
A low-level representation of production rules in SDF3, in which the sorts symbols (rep-
resenting the non-terminals) are annotated with -CF or -LEX to remember whether it
originates from context-free syntax or lexical syntax, respectively.

layout . . . . . . . . . . . . . . . . . . . 3, 11, 12, 15, 24, 26, 29, 30, 39, 40, 45, 62, 65, 66
Parts of source code that do not contribute to the meaning of it, but only contribute
to readability. Examples are comments (usually denoted with “//” or “/* */”) and
characters representing whitespace, such as space (' ', U+0020), tab ('\t', U+0009),
and newline ('\n', U+000A).

lexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 8, 10, 12, 39, 43, 61, 62, 66
Used for parsers that recognize token-level grammars. Transforms an input stream of
text characters into a stream of tokens that can be used as terminals.

lexical element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–12, 39
Elements in the grammar of a language thatwould correspond to a single token in token-
level grammars. Examples include identifier names, numbers, strings, and literals.

literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 39, 40, 65
A non-varying lexical element in a context-free grammar. Examples include keywords
and operators.

metalanguage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 51, 114
A language specifically used to describe another language, like SDF3.
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non-deterministic parsing . . . . . . . . . . . . . . 6, 9, 17, 24, 29, 32, 52, 53, 61, 62, 65
When a parser needs to fork the parse stack during parsing, exploring multiple parse
states at once to achieve unbounded lookahead. This does not imply that the final result
contains ambiguities.

non-terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4, 8, 10, 12, 63, 66
Shorthand for non-terminal symbol. Non-terminal symbols can be used on both sides
of production rules.

parse . . . . . . . . . . . . . . 8, 13, 23, 57, 63, 77, see batch parse & incremental parse
(noun) An invocation of the parser.

parse forest . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 13, 14, 36, 39, 49–53, 77
A parse tree that contains (ormay contain) ambiguities. Multiple non-ambiguous parse
trees could be constructed from a parse forest.

parse node . . . . . . . 4, 6–9, 13, 14, 17, 21–37, 39–44, 49, 50, 52, 53, 61–63, 65, 66, 77
A non-leaf node in a parse tree, corresponding to a production rule.

parse stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9, 13, 14, 22, 24–36, 61
Stores references to parse states, with the start state at the bottom and the current state
at the top of the stack. Each link between two stack nodes stores a parse node or terminal
node.

parse state . . . . . . . . . . . . . . . . . . . . . . . 4–9, 13, 22, 29, 30, 32–37, 53, 61, 66
A state of an LR-based parser automaton, used in the parse table and the parse stack.

parse table . . . . . . . . . . . . . . . . . 4, 6, 9, 10, 24, 29–31, 33, 34, 37, 53, 61, 66, 115
A two-dimensional table that represents the possible state transitions of an LR-based
parser automaton. Consists of an action table and a goto table.

parse table generator . . . . . . . . . . . . . . 4, 6, 10, 14, 24, 30, 31, 61, 62, 65, 66, 115
An algorithm that generates a parse table from the production rules of a context-free gram-
mar.

parse tree . . . . . . . 3, 4, 6, 8–10, 17, 20–24, 26, 29, 31, 32, 39, 40, 43, 44, 49, 61, 63, 65
A tree-shaped representation of an input string, parsed according to a context-free
grammar, containing parse nodes and terminal nodes.

production rule . . . . . . 3, 4, 8, 10–14, 26, 28–31, 34, 35, 39–41, 44, 45, 52, 53, 62–66
A rule in a context-free grammar of the form A Ñ α which maps non-terminal A to a
string of symbols α.

sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–12, 22, 28–30, 53
(noun) A non-terminal symbol in SDF3.

spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 32, 45, 53, 65
The path between a given node in a tree and the root of that tree.

start symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 12, 30, 63
The root symbol of a context-free grammar.

state matching . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 17, 26, 29, 34, 53, 61, 62
A test that determineswhether unchanged parse nodes can be reused, which is the case
when the parse state reference stored in the parse node is the same as the current parse
state.

symbol . . . . . . . . . . . . . . . . . . . . . . . . 3, 10–12, 14, 22, 29, 30, 33, 61, 63, 65
A symbol in a context-free grammar. Can be either a non-terminal symbol or a terminal
symbol.
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terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7, 10, 11, 33, 63
Shorthand for terminal symbol. Terminal symbols can only be used on the right-hand
side of production rules.

token . . . . . . . . . . . . . . . . 3, 4, 8–10, 12, 14, 21, 24, 39, 43–47, 51, 61–63, 66, 114
A substring of the input to the parser, used as terminal symbol when parsing token-
level grammars (Section 2.1) or generated after parsing with character-level grammars
(Section 4.2).

token-level grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 12, 29, 43, 61
A context-free grammar that is described using tokens as terminal symbols.

tokenization . . . . . . . . . . . . . . . . . . . . . . . . 14, 37, 39, 43–47, 54–57, 66, 92
The process of generating a list of tokens from a parse tree and attaching these tokens
to the corresponding Abstract Syntax Tree (AST).

unbounded lookahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 65
A property of a parser that allows it to look ahead an arbitrary number of terminal
symbols during parsing. In Generalized LR (GLR) parsing, this is accomplished by
non-deterministically parsing the input in pseudo-parallel, using multiple active parse
stacks at once.
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Appendix A

Full Evaluation Results

This appendix contains the full evaluation results for the Incremental Scannerless General-
ized LR (ISGLR) parser. These results are also available online at the Spoofax evaluation
website for JSGLR2: https://www.spoofax.dev/jsglr2evaluation-site/2021-06-15_18:13/.

A.1 Measurements
The tables on the left are counts of parse nodes and character nodes after a parse for one
version of the input has finished. For parse nodes, it also shows the number of ambiguous
parse nodes and the number of irreusable parse nodes (percentages are relative to the “Parse
Nodes Count” column).

The tables on the right are counts of certain events happening during parsing. It shows
howmany parse nodes were created during parsing and howmany parse nodes were reused
or rebuilt (percentages are relative to the “Parse Nodes Count” of the row at the same height
in the left part of the table, i.e., the previous version of the parse forest). The “Shift” column
shows how many parse nodes and character nodes the parser has shifted during the parse.
The “Breakdown Count” column shows how many parse nodes were broken down during
parsing (percentages are relative to the “Parse Nodes Count” column of the row at the same
height in the left part of the table). The other “Breakdown” columns give a breakdown (pun
intended) of the different types of breakdowns (percentages are relative to the “Breakdown
Count” column), for which the full explanation can be found in Section 5.2.2.

A copy of Table 5.2 in Section 5.2.

Language
Parse nodes (% of total nodes) Breakdowns (% of total breakdowns)

Irre-
usable Reused Broken

down Rebuilt Contains
Change

Irre-
usable

No
actions

Wrong
state

Average 27.25% 99.12% 0.67% 0.48% 40.68% 56.23% 0.00% 3.08%
Java 19.08% 99.60% 0.17% 0.08% 51.35% 46.67% 0.00% 1.98%

WebDSL 21.32% 99.55% 0.28% 0.15% 51.35% 43.76% 0.00% 4.89%
SDF3 41.36% 98.21% 1.57% 1.21% 19.35% 78.28% 0.00% 2.38%
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Incremental parsing measurements for all languages.

Language
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average 587 518 0.34% 27.25% 336 819
Java 1 453 416 0.00% 19.08% 852 068

WebDSL 198 475 0.00% 21.32% 101 295
SDF3 110 664 1.01% 41.36% 57 095

Language
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average 7 816 99.12% 0.48% 411 1 072 0.67% 40.68% 56.23% 0.00% 3.08%
Java 13 989 99.60% 0.08% 631 1 849 0.17% 51.35% 46.67% 0.00% 1.98%

WebDSL 3 733 99.55% 0.15% 324 589 0.28% 51.35% 43.76% 0.00% 4.89%
SDF3 5 725 98.21% 1.21% 279 778 1.57% 19.35% 78.28% 0.00% 2.38%

A.1.1 Java

Incremental parsing measurements for the Java language.

Source
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average 1 453 416 0.00% 19.08% 852 068
StringUtils 572 516 0.00% 15.27% 396 264

gson 2 304 220 0.00% 23.36% 1 264 778
slf4j 1 483 511 0.00% 18.61% 895 163

Source
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average 13 989 99.60% 0.08% 631 1 849 0.17% 51.35% 46.67% 0.00% 1.98%
StringUtils 8 186 99.65% 0.14% 607 826 0.28% 47.76% 51.46% 0.00% 0.78%

gson 7 883 99.93% 0.02% 534 907 0.05% 53.68% 45.10% 0.00% 1.22%
slf4j 25 897 99.21% 0.07% 752 3 814 0.19% 52.63% 43.44% 0.00% 3.93%
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Incremental parsing measurements for Java source StringUtils.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 572 516 0

(0.00%)
87 442

(15.27%) 396 264

0 572 123 0
(0.00%)

87 583
(15.31%) 395 110

1 572 280 0
(0.00%)

87 611
(15.31%) 395 172

2 572 360 0
(0.00%)

87 639
(15.31%) 395 216

3 571 559 0
(0.00%)

87 419
(15.29%) 394 856

4 575 679 0
(0.00%)

88 130
(15.31%) 397 653

5 571 608 0
(0.00%)

87 203
(15.26%) 395 931

6 571 549 0
(0.00%)

87 192
(15.26%) 395 896

7 571 380 0
(0.00%)

87 129
(15.25%) 395 842

8 571 370 0
(0.00%)

87 120
(15.25%) 395 842

9 573 253 0
(0.00%)

87 429
(15.25%) 397 158

10 573 271 0
(0.00%)

87 435
(15.25%) 397 176

11 573 279 0
(0.00%)

87 435
(15.25%) 397 184

12 572 868 0
(0.00%)

87 432
(15.26%) 397 048

13 572 909 0
(0.00%)

87 432
(15.26%) 397 077

14 572 251 0
(0.00%)

87 448
(15.28%) 396 792

15 572 267 0
(0.00%)

87 424
(15.28%) 396 796

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 8 186 570 514

(99.65%)
802

(0.14%) 607 826 1 585
(0.28%)

809
(47.76%)

745
(51.46%)

0
(0.00%)

31
(0.78%)

→ 0 1 058 237 0 395 111

0 → 1 4 125 571 624
(99.91%)

269
(0.05%) 463 86 498

(0.09%)
225

(45.18%)
273

(54.82%)
0

(0.00%)
0

(0.00%)

1 → 2 3 430 571 811
(99.92%)

294
(0.05%) 307 139 468

(0.08%)
146

(31.20%)
318

(67.95%)
0

(0.00%)
4

(0.85%)

2 → 3 10 379 569 573
(99.51%)

1 187
(0.21%) 864 643 1 975

(0.35%)
815

(41.27%)
1 136

(57.52%)
0

(0.00%)
24

(1.22%)

3 → 4 10 617 571 140
(99.93%)

207
(0.04%) 345 2 829 418

(0.07%)
214

(51.20%)
203

(48.56%)
0

(0.00%)
1

(0.24%)

4 → 5 38 596 560 927
(97.44%)

4 185
(0.73%) 2 107 5 078 11 288

(1.96%)
7 415

(65.69%)
3 609

(31.97%)
0

(0.00%)
264

(2.34%)

5 → 6 52 571 537
(99.99%)

12
(0.00%) 9 2 17

(0.00%)
14

(82.35%)
3

(17.65%)
0

(0.00%)
0

(0.00%)

6 → 7 2 400 570 976
(99.90%)

250
(0.04%) 257 81 464

(0.08%)
245

(52.80%)
218

(46.98%)
0

(0.00%)
1

(0.22%)

7 → 8 3 306 570 856
(99.91%)

323
(0.06%) 358 84 515

(0.09%)
149

(28.93%)
362

(70.29%)
0

(0.00%)
4

(0.78%)

8 → 9 4 113 571 080
(99.95%)

120
(0.02%) 113 1 415 289

(0.05%)
171

(59.17%)
117

(40.48%)
0

(0.00%)
1

(0.35%)

9 → 10 3 055 572 754
(99.91%)

288
(0.05%) 372 81 498

(0.09%)
180

(36.14%)
311

(62.45%)
0

(0.00%)
7

(1.41%)

10 → 11 3 824 572 704
(99.90%)

253
(0.04%) 505 49 566

(0.10%)
317

(56.01%)
245

(43.29%)
0

(0.00%)
4

(0.71%)

11 → 12 6 150 571 851
(99.75%)

943
(0.16%) 681 171 1 110

(0.19%)
393

(35.41%)
714

(64.32%)
0

(0.00%)
3

(0.27%)

12 → 13 1 941 572 391
(99.92%)

257
(0.04%) 238 114 476

(0.08%)
239

(50.21%)
236

(49.58%)
0

(0.00%)
1

(0.21%)

13 → 14 26 307 566 933
(98.96%)

3 134
(0.55%) 2 027 1 457 4 549

(0.79%)
1 280

(28.14%)
3 125

(68.70%)
0

(0.00%)
144

(3.17%)

14 → 15 4 491 571 559
(99.88%)

307
(0.05%) 465 158 643

(0.11%)
339

(52.72%)
304

(47.28%)
0

(0.00%)
0

(0.00%)
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Incremental parsing measurements for Java source gson.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 2 304 220 0

(0.00%)
538 217

(23.36%) 1 264 778

0 2 302 158 0
(0.00%)

537 864
(23.36%) 1 263 518

1 2 301 731 0
(0.00%)

537 769
(23.36%) 1 263 366

2 2 301 561 0
(0.00%)

537 742
(23.36%) 1 263 290

3 2 301 512 0
(0.00%)

537 746
(23.36%) 1 263 286

4 2 300 237 0
(0.00%)

537 100
(23.35%) 1 262 874

5 2 300 237 0
(0.00%)

537 100
(23.35%) 1 262 874

6 2 300 455 0
(0.00%)

537 130
(23.35%) 1 263 000

7 2 300 304 0
(0.00%)

537 170
(23.35%) 1 262 824

8 2 300 750 0
(0.00%)

537 218
(23.35%) 1 263 198

9 2 300 828 0
(0.00%)

537 218
(23.35%) 1 263 276

10 2 310 537 0
(0.00%)

539 822
(23.36%) 1 267 874

11 2 310 798 0
(0.00%)

539 875
(23.36%) 1 268 038

12 2 310 965 0
(0.00%)

539 913
(23.36%) 1 268 122

13 2 309 965 0
(0.00%)

539 656
(23.36%) 1 267 740

14 2 311 257 0
(0.00%)

539 929
(23.36%) 1 268 390

15 2 310 257 0
(0.00%)

539 672
(23.36%) 1 268 008

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 7 883 2 302 621

(99.93%)
430

(0.02%) 534 907 1 039
(0.05%)

559
(53.68%)

459
(45.10%)

0
(0.00%)

20
(1.22%)

→ 0 6 362 523 0 1 263 722

0 → 1 7 120 2 299 996
(99.91%)

457
(0.02%) 580 709 1 622

(0.07%)
1 002

(61.78%)
560

(34.53%)
0

(0.00%)
60

(3.70%)

1 → 2 2 253 2 301 180
(99.98%)

270
(0.01%) 346 182 477

(0.02%)
214

(44.86%)
232

(48.64%)
0

(0.00%)
31

(6.50%)

2 → 3 3 267 2 300 876
(99.97%)

333
(0.01%) 494 144 701

(0.03%)
287

(40.94%)
410

(58.49%)
0

(0.00%)
4

(0.57%)

3 → 4 36 200 2 293 631
(99.66%)

2 972
(0.13%) 2 755 1 742 6 093

(0.26%)
2 519

(41.34%)
3 408

(55.93%)
0

(0.00%)
166

(2.72%)
4 → 5 0 204 0

5 → 6 1 504 2 300 069
(99.99%)

74
(0.00%) 309 160 167

(0.01%)
61

(36.53%)
106

(63.47%)
0

(0.00%)
0

(0.00%)

6 → 7 3 474 2 299 610
(99.96%)

260
(0.01%) 442 161 442

(0.02%)
304

(68.78%)
134

(30.32%)
0

(0.00%)
4

(0.90%)

7 → 8 514 2 300 290
(100.00%)

7
(0.00%) 213 377 13

(0.00%)
9

(69.23%)
4

(30.77%)
0

(0.00%)
0

(0.00%)

8 → 9 3 867 2 297 824
(99.87%)

876
(0.04%) 585 1 741 2 943

(0.13%)
2 099

(71.32%)
832

(28.27%)
0

(0.00%)
12

(0.41%)

9 → 10 31 772 2 300 657
(99.99%)

84
(0.00%) 321 4 648 169

(0.01%)
83

(49.11%)
86

(50.89%)
0

(0.00%)
0

(0.00%)

10 → 11 950 2 310 474
(100.00%)

30
(0.00%) 268 166 62

(0.00%)
34

(54.84%)
28

(45.16%)
0

(0.00%)
0

(0.00%)

11 → 12 1 192 2 310 659
(99.99%)

84
(0.00%) 296 102 138

(0.01%)
32

(23.19%)
106

(76.81%)
0

(0.00%)
0

(0.00%)

12 → 13 7 289 2 307 965
(99.87%)

304
(0.01%) 375 866 805

(0.03%)
500

(62.11%)
299

(37.14%)
0

(0.00%)
6

(0.75%)

13 → 14 11 558 2 307 585
(99.90%)

397
(0.02%) 441 1 737 1 145

(0.05%)
748

(65.33%)
388

(33.89%)
0

(0.00%)
9

(0.79%)

14 → 15 7 289 2 308 257
(99.87%)

304
(0.01%) 375 866 805

(0.03%)
500

(62.11%)
299

(37.14%)
0

(0.00%)
6

(0.75%)
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Incremental parsing measurements for Java source slf4j.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 1 483 511 0

(0.00%)
276 101

(18.61%) 895 163

0 1 519 876 0
(0.00%)

282 515
(18.59%) 912 784

1 1 519 878 0
(0.00%)

282 515
(18.59%) 912 785

2 1 519 912 0
(0.00%)

282 519
(18.59%) 912 813

3 1 519 914 0
(0.00%)

282 518
(18.59%) 912 814

4 1 520 978 0
(0.00%)

282 566
(18.58%) 913 852

5 1 496 179 0
(0.00%)

278 176
(18.59%) 902 914

6 1 496 177 0
(0.00%)

278 176
(18.59%) 902 912

7 1 464 481 0
(0.00%)

272 295
(18.59%) 885 244

8 1 455 828 0
(0.00%)

271 349
(18.64%) 881 191

9 1 455 801 0
(0.00%)

271 330
(18.64%) 881 184

10 1 455 715 0
(0.00%)

271 317
(18.64%) 881 132

11 1 455 707 0
(0.00%)

271 322
(18.64%) 881 134

12 1 456 442 0
(0.00%)

271 509
(18.64%) 881 518

13 1 456 563 0
(0.00%)

271 522
(18.64%) 881 618

14 1 459 217 0
(0.00%)

271 885
(18.63%) 883 547

15 1 458 960 0
(0.00%)

271 819
(18.63%) 883 490

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 25 897 1 471 637

(99.21%)
1 053

(0.07%) 752 3 814 2 918
(0.19%)

1 936
(52.63%)

773
(43.44%)

0
(0.00%)

209
(3.93%)

→ 0 3 584 556 0 913 020

0 → 1 13 481 1 517 062
(99.81%)

2 548
(0.17%) 1 486 1 074 2 813

(0.19%)
9

(0.32%)
2 384

(84.75%)
0

(0.00%)
420

(14.93%)

1 → 2 320 1 519 682
(99.99%)

74
(0.00%) 274 175 203

(0.01%)
181

(89.16%)
21

(10.34%)
0

(0.00%)
1

(0.49%)

2 → 3 1 626 1 519 648
(99.98%)

160
(0.01%) 451 40 263

(0.02%)
81

(30.80%)
178

(67.68%)
0

(0.00%)
4

(1.52%)

3 → 4 62 643 1 499 575
(98.66%)

604
(0.04%) 639 10 153 1 719

(0.11%)
1 134

(65.97%)
533

(31.01%)
0

(0.00%)
52

(3.03%)

4 → 5 121 190 1 466 834
(96.44%)

5 295
(0.35%) 2 698 12 787 16 988

(1.12%)
12 645

(74.43%)
3 903

(22.98%)
0

(0.00%)
440

(2.59%)

5 → 6 1 012 1 495 997
(99.99%)

80
(0.01%) 339 42 187

(0.01%)
86

(45.99%)
99

(52.94%)
0

(0.00%)
2

(1.07%)

6 → 7 125 435 1 422 510
(95.08%)

2 978
(0.20%) 1 278 21 699 10 631

(0.71%)
7 981

(75.07%)
1 693

(15.93%)
0

(0.00%)
957

(9.00%)

7 → 8 46 590 1 440 557
(98.37%)

3 243
(0.22%) 1 579 7 967 9 335

(0.64%)
6 035

(64.65%)
2 065

(22.12%)
0

(0.00%)
1 235

(13.23%)

8 → 9 740 1 455 669
(99.99%)

107
(0.01%) 334 33 144

(0.01%)
47

(32.64%)
94

(65.28%)
0

(0.00%)
3

(2.08%)

9 → 10 431 1 455 639
(99.99%)

70
(0.00%) 303 11 84

(0.01%)
47

(55.95%)
35

(41.67%)
0

(0.00%)
2

(2.38%)

10 → 11 977 1 455 512
(99.99%)

103
(0.01%) 406 17 197

(0.01%)
98

(49.75%)
99

(50.25%)
0

(0.00%)
0

(0.00%)

11 → 12 3 895 1 455 364
(99.98%)

179
(0.01%) 381 494 350

(0.02%)
155

(44.29%)
188

(53.71%)
0

(0.00%)
7

(2.00%)

12 → 13 281 1 456 396
(100.00%)

30
(0.00%) 265 112 43

(0.00%)
20

(46.51%)
21

(48.84%)
0

(0.00%)
2

(4.65%)

13 → 14 7 226 1 455 937
(99.96%)

137
(0.01%) 404 2 192 247

(0.02%)
97

(39.27%)
148

(59.92%)
0

(0.00%)
2

(0.81%)

14 → 15 2 602 1 458 180
(99.93%)

190
(0.01%) 445 407 567

(0.04%)
423

(74.60%)
137

(24.16%)
0

(0.00%)
7

(1.23%)
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A.1.2 WebDSL

Incremental parsing measurements for the WebDSL language.

Source
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average 198 475 0.00% 21.32% 101 295
builtin.app 182 107 0.00% 23.09% 98 145
YellowGrass 332 492 0.00% 19.68% 166 333
elib-utils 80 827 0.00% 21.20% 39 406

Source
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average 3 733 99.55% 0.15% 324 589 0.28% 51.35% 43.76% 0.00% 4.89%
builtin.app 2 693 99.28% 0.15% 457 343 0.27% 56.16% 39.28% 0.00% 4.56%
YellowGrass 6 632 99.79% 0.09% 334 1 220 0.17% 49.13% 46.03% 0.00% 4.84%
elib-utils 1 874 99.57% 0.21% 181 204 0.40% 48.75% 45.97% 0.00% 5.28%
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Incremental parsing measurements for WebDSL source builtin.app.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(1..9) 182 107 0

(0.00%)
42 046

(23.09%) 98 145

1 186 944 0
(0.00%)

43 193
(23.10%) 100 882

2 180 226 0
(0.00%)

41 560
(23.06%) 97 219

3 181 858 0
(0.00%)

42 160
(23.18%) 98 047

4 182 288 0
(0.00%)

42 160
(23.13%) 98 231

5 181 241 0
(0.00%)

41 808
(23.07%) 97 627

6 181 366 0
(0.00%)

41 853
(23.08%) 97 683

7 181 437 0
(0.00%)

41 867
(23.08%) 97 721

8 181 783 0
(0.00%)

41 902
(23.05%) 97 935

9 181 824 0
(0.00%)

41 909
(23.05%) 97 956

10 182 132 0
(0.00%)

41 944
(23.03%) 98 172

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(2..10) 2 693 180 774

(99.28%)
277

(0.15%) 457 343 497
(0.27%)

222
(56.16%)

247
(39.28%)

0
(0.00%)

28
(4.56%)

→ 1 479 900 0 100 883

1 → 2 249 180 143
(96.36%)

78
(0.04%) 121 11 120

(0.06%)
95

(79.17%)
18

(15.00%)
0

(0.00%)
7

(5.83%)

2 → 3 5 078 180 026
(99.89%)

59
(0.03%) 303 883 199

(0.11%)
143

(71.86%)
49

(24.62%)
0

(0.00%)
7

(3.52%)

3 → 4 3 060 181 400
(99.75%)

208
(0.11%) 291 308 447

(0.25%)
338

(75.62%)
88

(19.69%)
0

(0.00%)
21

(4.70%)

4 → 5 6 365 179 810
(98.64%)

1 174
(0.64%) 943 963 1 653

(0.91%)
516

(31.22%)
988

(59.77%)
0

(0.00%)
149

(9.01%)

5 → 6 605 181 126
(99.94%)

24
(0.01%) 198 66 114

(0.06%)
89

(78.07%)
18

(15.79%)
0

(0.00%)
7

(6.14%)

6 → 7 1 855 180 898
(99.74%)

212
(0.12%) 538 124 467

(0.26%)
203

(43.47%)
255

(54.60%)
0

(0.00%)
9

(1.93%)

7 → 8 2 865 180 846
(99.67%)

320
(0.18%) 724 308 590

(0.33%)
230

(38.98%)
323

(54.75%)
0

(0.00%)
37

(6.27%)

8 → 9 1 773 181 355
(99.76%)

181
(0.10%) 519 103 427

(0.23%)
204

(47.78%)
214

(50.12%)
0

(0.00%)
9

(2.11%)

9 → 10 2 387 181 361
(99.75%)

236
(0.13%) 474 318 456

(0.25%)
179

(39.25%)
270

(59.21%)
0

(0.00%)
7

(1.54%)
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Incremental parsing measurements for WebDSL source YellowGrass.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 332 492 0

(0.00%)
65 441

(19.68%) 166 333

0 318 753 0
(0.00%)

63 030
(19.77%) 158 975

1 321 421 0
(0.00%)

63 523
(19.76%) 160 568

2 320 082 0
(0.00%)

63 043
(19.70%) 159 970

3 321 187 0
(0.00%)

63 228
(19.69%) 160 445

4 323 904 0
(0.00%)

64 046
(19.77%) 161 720

5 323 900 0
(0.00%)

64 047
(19.77%) 161 716

6 326 852 0
(0.00%)

64 504
(19.73%) 163 359

7 326 874 0
(0.00%)

64 504
(19.73%) 163 370

8 335 813 0
(0.00%)

65 837
(19.61%) 168 635

9 344 778 0
(0.00%)

67 624
(19.61%) 172 696

10 344 930 0
(0.00%)

67 645
(19.61%) 172 793

11 345 013 0
(0.00%)

67 645
(19.61%) 172 833

12 345 015 0
(0.00%)

67 645
(19.61%) 172 834

13 344 461 0
(0.00%)

67 645
(19.64%) 172 557

14 344 393 0
(0.00%)

67 645
(19.64%) 172 529

15 346 034 0
(0.00%)

67 996
(19.65%) 173 274

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 6 632 331 816

(99.79%)
301

(0.09%) 334 1 220 549
(0.17%)

237
(49.13%)

286
(46.03%)

0
(0.00%)

26
(4.84%)

→ 0 703 238 0 159 026

0 → 1 11 089 317 608
(99.64%)

563
(0.18%) 653 2 080 1 045

(0.33%)
486

(46.51%)
529

(50.62%)
0

(0.00%)
30

(2.87%)

1 → 2 9 470 317 565
(98.80%)

1 344
(0.42%) 970 1 014 2 193

(0.68%)
790

(36.02%)
1 245

(56.77%)
0

(0.00%)
158

(7.20%)

2 → 3 4 400 319 478
(99.81%)

306
(0.10%) 388 670 576

(0.18%)
246

(42.71%)
290

(50.35%)
0

(0.00%)
40

(6.94%)

3 → 4 13 573 319 903
(99.60%)

791
(0.25%) 818 1 714 1 297

(0.40%)
411

(31.69%)
853

(65.77%)
0

(0.00%)
33

(2.54%)

4 → 5 936 323 678
(99.93%)

189
(0.06%) 176 99 229

(0.07%)
65

(28.38%)
126

(55.02%)
0

(0.00%)
38

(16.59%)

5 → 6 6 626 323 741
(99.95%)

81
(0.03%) 157 1 679 157

(0.05%)
42

(26.75%)
96

(61.15%)
0

(0.00%)
19

(12.10%)

6 → 7 345 326 756
(99.97%)

26
(0.01%) 105 49 96

(0.03%)
63

(65.63%)
33

(34.38%)
0

(0.00%)
0

(0.00%)

7 → 8 21 228 326 775
(99.97%)

72
(0.02%) 148 5 297 98

(0.03%)
22

(22.45%)
72

(73.47%)
0

(0.00%)
4

(4.08%)
8 → 9 19 230 53 4 062

9 → 10 977 344 565
(99.94%)

89
(0.03%) 93 178 183

(0.05%)
135

(73.77%)
32

(17.49%)
0

(0.00%)
16

(8.74%)

10 → 11 481 344 782
(99.96%)

32
(0.01%) 121 102 150

(0.04%)
120

(80.00%)
30

(20.00%)
0

(0.00%)
0

(0.00%)

11 → 12 144 344 967
(99.99%)

19
(0.01%) 91 16 45

(0.01%)
21

(46.67%)
24

(53.33%)
0

(0.00%)
0

(0.00%)

12 → 13 844 344 215
(99.77%)

157
(0.05%) 170 70 799

(0.23%)
603

(75.47%)
195

(24.41%)
0

(0.00%)
1

(0.13%)

13 → 14 420 344 235
(99.93%)

41
(0.01%) 121 72 142

(0.04%)
108

(76.06%)
30

(21.13%)
0

(0.00%)
4

(2.82%)

14 → 15 9 710 343 164
(99.64%)

810
(0.24%) 947 1 202 1 222

(0.35%)
437

(35.76%)
740

(60.56%)
0

(0.00%)
45

(3.68%)
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Incremental parsing measurements for WebDSL source elib-utils.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 80 827 0

(0.00%)
17 136

(21.20%) 39 406

0 80 035 0
(0.00%)

16 982
(21.22%) 38 955

1 80 033 0
(0.00%)

16 982
(21.22%) 38 953

2 80 255 0
(0.00%)

16 986
(21.17%) 39 118

3 80 437 0
(0.00%)

17 030
(21.17%) 39 211

4 80 765 0
(0.00%)

17 147
(21.23%) 39 378

5 80 669 0
(0.00%)

17 106
(21.21%) 39 317

6 80 575 0
(0.00%)

17 112
(21.24%) 39 283

7 80 645 0
(0.00%)

17 140
(21.25%) 39 320

8 80 553 0
(0.00%)

17 093
(21.22%) 39 302

9 80 843 0
(0.00%)

17 182
(21.25%) 39 430

10 80 975 0
(0.00%)

17 182
(21.22%) 39 496

11 80 921 0
(0.00%)

17 160
(21.21%) 39 480

12 81 043 0
(0.00%)

17 160
(21.17%) 39 547

13 81 539 0
(0.00%)

17 274
(21.18%) 39 821

14 83 116 0
(0.00%)

17 504
(21.06%) 40 480

15 83 373 0
(0.00%)

17 593
(21.10%) 40 589

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 1 874 80 481

(99.57%)
172

(0.21%) 181 204 326
(0.40%)

148
(48.75%)

160
(45.97%)

0
(0.00%)

18
(5.28%)

→ 0 187 245 0 38 972

0 → 1 327 79 962
(99.91%)

65
(0.08%) 73 22 74

(0.09%)
41

(55.41%)
33

(44.59%)
0

(0.00%)
0

(0.00%)

1 → 2 3 529 79 550
(99.40%)

381
(0.48%) 170 375 482

(0.60%)
31

(6.43%)
449

(93.15%)
0

(0.00%)
2

(0.41%)

2 → 3 3 138 79 671
(99.27%)

328
(0.41%) 227 323 523

(0.65%)
165

(31.55%)
297

(56.79%)
0

(0.00%)
61

(11.66%)

3 → 4 1 085 80 424
(99.98%)

7
(0.01%) 31 169 12

(0.01%)
7

(58.33%)
5

(41.67%)
0

(0.00%)
0

(0.00%)

4 → 5 1 125 80 417
(99.57%)

109
(0.13%) 111 104 308

(0.38%)
215

(69.81%)
86

(27.92%)
0

(0.00%)
7

(2.27%)

5 → 6 1 378 80 053
(99.24%)

376
(0.47%) 296 71 661

(0.82%)
512

(77.46%)
101

(15.28%)
0

(0.00%)
48

(7.26%)

6 → 7 628 80 498
(99.90%)

45
(0.06%) 71 57 74

(0.09%)
38

(51.35%)
36

(48.65%)
0

(0.00%)
0

(0.00%)

7 → 8 655 80 368
(99.66%)

99
(0.12%) 133 84 240

(0.30%)
45

(18.75%)
123

(51.25%)
0

(0.00%)
72

(30.00%)

8 → 9 893 80 537
(99.98%)

9
(0.01%) 34 131 15

(0.02%)
7

(46.67%)
8

(53.33%)
0

(0.00%)
0

(0.00%)

9 → 10 1 425 80 517
(99.60%)

150
(0.19%) 193 166 314

(0.39%)
122

(38.85%)
145

(46.18%)
0

(0.00%)
47

(14.97%)

10 → 11 1 260 80 610
(99.55%)

237
(0.29%) 195 82 354

(0.44%)
100

(28.25%)
236

(66.67%)
0

(0.00%)
18

(5.08%)

11 → 12 1 040 80 617
(99.62%)

106
(0.13%) 267 124 303

(0.37%)
183

(60.40%)
100

(33.00%)
0

(0.00%)
20

(6.60%)

12 → 13 1 425 81 008
(99.96%)

9
(0.01%) 60 278 34

(0.04%)
26

(76.47%)
8

(23.53%)
0

(0.00%)
0

(0.00%)

13 → 14 8 686 80 084
(98.22%)

569
(0.70%) 742 900 1 285

(1.58%)
587

(45.68%)
698

(54.32%)
0

(0.00%)
0

(0.00%)

14 → 15 1 518 82 900
(99.74%)

84
(0.10%) 108 168 217

(0.26%)
143

(65.90%)
72

(33.18%)
0

(0.00%)
2

(0.92%)
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A.1.3 SDF3

Incremental parsing measurements for the SDF3 language.

Source
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average 110 664 1.01% 41.36% 57 095
NaBL 194 597 0.88% 39.72% 98 595

DynSem 20 549 1.23% 40.08% 9 680
FlowSpec 24 064 1.07% 48.77% 12 079
Stratego 151 528 0.72% 36.82% 79 123
WebDSL 162 581 1.14% 41.39% 85 998

Source
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average 5 725 98.21% 1.21% 279 778 1.57% 19.35% 78.28% 0.00% 2.38%
NaBL 7 174 99.40% 0.37% 374 912 0.44% 18.74% 79.14% 0.00% 2.12%

DynSem 2 200 98.15% 1.25% 132 300 1.72% 20.64% 78.00% 0.00% 1.36%
FlowSpec 6 187 95.14% 3.04% 254 798 4.05% 21.18% 77.06% 0.00% 1.77%
Stratego 6 874 99.25% 0.62% 303 864 0.73% 24.81% 69.59% 0.00% 5.60%
WebDSL 6 191 99.10% 0.79% 334 1 017 0.89% 11.37% 87.58% 0.00% 1.05%
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Incremental parsing measurements for SDF3 source NaBL.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 194 597 1 704

(0.88%)
77 292

(39.72%) 98 595

0 190 950 1 675
(0.88%)

75 884
(39.74%) 96 540

1 191 566 1 681
(0.88%)

76 083
(39.72%) 96 879

2 191 211 1 677
(0.88%)

75 900
(39.69%) 96 705

3 191 212 1 677
(0.88%)

75 901
(39.69%) 96 706

4 194 181 1 707
(0.88%)

77 100
(39.71%) 98 475

5 194 177 1 707
(0.88%)

77 096
(39.70%) 98 471

6 194 255 1 707
(0.88%)

77 096
(39.69%) 98 540

7 194 265 1 707
(0.88%)

77 099
(39.69%) 98 556

8 194 617 1 717
(0.88%)

77 231
(39.68%) 98 731

9 194 634 1 717
(0.88%)

77 231
(39.68%) 98 742

10 197 569 1 717
(0.87%)

78 553
(39.76%) 100 108

11 197 573 1 717
(0.87%)

78 551
(39.76%) 100 110

12 197 557 1 717
(0.87%)

78 553
(39.76%) 100 104

13 197 574 1 717
(0.87%)

78 553
(39.76%) 100 115

14 197 617 1 717
(0.87%)

78 553
(39.75%) 100 148

15 197 574 1 717
(0.87%)

78 553
(39.76%) 100 115

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 7 174 193 424

(99.40%)
731

(0.37%) 374 912 866
(0.44%)

91
(18.74%)

761
(79.14%)

0
(0.00%)

13
(2.12%)

→ 0 512 465 0 96 664

0 → 1 5 005 190 304
(99.66%)

561
(0.29%) 278 763 644

(0.34%)
49

(7.61%)
588

(91.30%)
0

(0.00%)
7

(1.09%)

1 → 2 1 335 190 919
(99.66%)

262
(0.14%) 222 125 374

(0.20%)
136

(36.36%)
235

(62.83%)
0

(0.00%)
3

(0.80%)

2 → 3 933 191 006
(99.89%)

156
(0.08%) 191 134 207

(0.11%)
38

(18.36%)
169

(81.64%)
0

(0.00%)
0

(0.00%)

3 → 4 11 041 190 313
(99.53%)

101
(0.05%) 184 2 217 275

(0.14%)
165

(60.00%)
108

(39.27%)
0

(0.00%)
2

(0.73%)

4 → 5 658 194 024
(99.92%)

139
(0.07%) 179 85 160

(0.08%)
37

(23.13%)
123

(76.88%)
0

(0.00%)
0

(0.00%)

5 → 6 1 492 193 915
(99.87%)

245
(0.13%) 165 234 261

(0.13%)
10

(3.83%)
251

(96.17%)
0

(0.00%)
0

(0.00%)

6 → 7 13 604 192 231
(98.96%)

1 797
(0.93%) 741 1 236 2 023

(1.04%)
37

(1.83%)
1 967

(97.23%)
0

(0.00%)
19

(0.94%)

7 → 8 1 832 194 072
(99.90%)

145
(0.07%) 188 281 192

(0.10%)
30

(15.63%)
157

(81.77%)
0

(0.00%)
5

(2.60%)

8 → 9 1 149 194 411
(99.89%)

167
(0.09%) 192 120 205

(0.11%)
22

(10.73%)
173

(84.39%)
0

(0.00%)
10

(4.88%)

9 → 10 33 184 188 957
(97.08%)

2 682
(1.38%) 1 091 4 545 3 105

(1.60%)
306

(9.86%)
2 760

(88.89%)
0

(0.00%)
39

(1.26%)

10 → 11 15 001 195 195
(98.80%)

2 002
(1.01%) 792 1 452 2 238

(1.13%)
71

(3.17%)
2 140

(95.62%)
0

(0.00%)
27

(1.21%)

11 → 12 15 405 195 000
(98.70%)

1 964
(0.99%) 789 1 564 2 220

(1.12%)
105

(4.73%)
2 091

(94.19%)
0

(0.00%)
24

(1.08%)

12 → 13 1 149 197 351
(99.90%)

167
(0.08%) 192 120 205

(0.10%)
22

(10.73%)
173

(84.39%)
0

(0.00%)
10

(4.88%)

13 → 14 2 793 196 875
(99.65%)

242
(0.12%) 202 394 337

(0.17%)
118

(35.01%)
200

(59.35%)
0

(0.00%)
19

(5.64%)

14 → 15 3 036 196 783
(99.58%)

340
(0.17%) 207 410 539

(0.27%)
216

(40.07%)
287

(53.25%)
0

(0.00%)
36

(6.68%)
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Incremental parsing measurements for SDF3 source DynSem.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 20 549 253

(1.23%)
8 237

(40.08%) 9 680

0 19 331 239
(1.24%)

7 763
(40.16%) 9 066

1 20 227 252
(1.25%)

8 091
(40.00%) 9 540

2 20 241 252
(1.24%)

8 088
(39.96%) 9 550

3 20 231 251
(1.24%)

8 083
(39.95%) 9 546

4 20 233 251
(1.24%)

8 083
(39.95%) 9 548

5 20 222 250
(1.24%)

8 077
(39.94%) 9 544

6 20 119 249
(1.24%)

8 008
(39.80%) 9 470

7 20 438 254
(1.24%)

8 160
(39.93%) 9 652

8 20 683 255
(1.23%)

8 285
(40.06%) 9 759

9 20 304 249
(1.23%)

8 119
(39.99%) 9 550

10 20 650 251
(1.22%)

8 275
(40.07%) 9 711

11 21 180 256
(1.21%)

8 540
(40.32%) 9 968

12 21 312 259
(1.22%)

8 600
(40.35%) 10 027

13 21 312 259
(1.22%)

8 602
(40.36%) 10 027

14 21 750 267
(1.23%)

8 785
(40.39%) 10 248

15 21 750 267
(1.23%)

8 785
(40.39%) 10 248

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 2 200 20 169

(98.15%)
256

(1.25%) 132 300 353
(1.72%)

75
(20.64%)

273
(78.00%)

0
(0.00%)

5
(1.36%)

→ 0 50 935 0 9 070

0 → 1 4 425 18 864
(97.58%)

349
(1.81%) 180 655 466

(2.41%)
86

(18.45%)
373

(80.04%)
0

(0.00%)
7

(1.50%)

1 → 2 2 218 19 750
(97.64%)

340
(1.68%) 196 200 476

(2.35%)
86

(18.07%)
387

(81.30%)
0

(0.00%)
3

(0.63%)

2 → 3 1 061 20 056
(99.09%)

155
(0.77%) 85 167 186

(0.92%)
32

(17.20%)
148

(79.57%)
0

(0.00%)
6

(3.23%)

3 → 4 1 875 19 851
(98.12%)

288
(1.42%) 133 165 379

(1.87%)
44

(11.61%)
333

(87.86%)
0

(0.00%)
2

(0.53%)

4 → 5 1 857 19 847
(98.09%)

326
(1.61%) 138 174 387

(1.91%)
42

(10.85%)
331

(85.53%)
0

(0.00%)
14

(3.62%)

5 → 6 1 493 19 835
(98.09%)

217
(1.07%) 124 225 384

(1.90%)
176

(45.83%)
204

(53.13%)
0

(0.00%)
4

(1.04%)

6 → 7 3 458 19 538
(97.11%)

334
(1.66%) 211 540 478

(2.38%)
109

(22.80%)
368

(76.99%)
0

(0.00%)
1

(0.21%)

7 → 8 1 718 20 260
(99.13%)

135
(0.66%) 93 285 177

(0.87%)
21

(11.86%)
152

(85.88%)
0

(0.00%)
4

(2.26%)

8 → 9 903 20 140
(97.37%)

148
(0.72%) 78 173 223

(1.08%)
104

(46.64%)
118

(52.91%)
0

(0.00%)
1

(0.45%)

9 → 10 1 789 20 146
(99.22%)

121
(0.60%) 82 323 157

(0.77%)
20

(12.74%)
136

(86.62%)
0

(0.00%)
1

(0.64%)

10 → 11 4 180 20 061
(97.15%)

398
(1.93%) 159 603 605

(2.93%)
180

(29.75%)
407

(67.27%)
0

(0.00%)
18

(2.98%)

11 → 12 1 736 20 926
(98.80%)

192
(0.91%) 101 263 253

(1.19%)
36

(14.23%)
210

(83.00%)
0

(0.00%)
7

(2.77%)

12 → 13 2 133 20 826
(97.72%)

367
(1.72%) 166 199 487

(2.29%)
80

(16.43%)
406

(83.37%)
0

(0.00%)
1

(0.21%)

13 → 14 2 630 20 990
(98.49%)

234
(1.10%) 148 360 321

(1.51%)
66

(20.56%)
254

(79.13%)
0

(0.00%)
1

(0.31%)

14 → 15 1 525 21 440
(98.57%)

239
(1.10%) 93 166 311

(1.43%)
39

(12.54%)
272

(87.46%)
0

(0.00%)
0

(0.00%)
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Incremental parsing measurements for SDF3 source FlowSpec.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 24 064 259

(1.07%)
11 733

(48.77%) 12 079

0 19 941 210
(1.05%)

9 753
(48.91%) 10 166

1 20 465 215
(1.05%)

9 920
(48.47%) 10 398

2 20 853 219
(1.05%)

10 127
(48.56%) 10 584

3 21 591 230
(1.07%)

10 563
(48.92%) 10 931

4 23 044 248
(1.08%)

11 312
(49.09%) 11 530

5 23 832 263
(1.10%)

11 690
(49.05%) 11 891

6 25 088 275
(1.10%)

12 362
(49.27%) 12 522

7 25 250 275
(1.09%)

12 372
(49.00%) 12 580

8 25 181 273
(1.08%)

12 345
(49.03%) 12 551

9 25 239 273
(1.08%)

12 369
(49.01%) 12 582

10 25 304 274
(1.08%)

12 402
(49.01%) 12 620

11 25 373 275
(1.08%)

12 435
(49.01%) 12 659

12 25 368 275
(1.08%)

12 430
(49.00%) 12 654

13 26 820 283
(1.06%)

12 771
(47.62%) 13 540

14 27 616 295
(1.07%)

13 137
(47.57%) 13 980

15 28 023 295
(1.05%)

13 248
(47.28%) 14 154

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 6 187 22 937

(95.14%)
695

(3.04%) 254 798 925
(4.05%)

211
(21.18%)

695
(77.06%)

0
(0.00%)

19
(1.77%)

→ 0 59 603 0 10 180

0 → 1 10 431 17 770
(89.11%)

1 408
(7.06%) 474 1 169 2 072

(10.39%)
533

(25.72%)
1 520

(73.36%)
0

(0.00%)
19

(0.92%)

1 → 2 5 162 19 646
(96.00%)

653
(3.19%) 271 583 816

(3.99%)
103

(12.62%)
691

(84.68%)
0

(0.00%)
22

(2.70%)

2 → 3 7 087 19 710
(94.52%)

820
(3.93%) 254 883 1 150

(5.51%)
246

(21.39%)
889

(77.30%)
0

(0.00%)
15

(1.30%)

3 → 4 14 153 19 357
(89.65%)

1 738
(8.05%) 605 1 656 2 227

(10.31%)
384

(17.24%)
1 787

(80.24%)
0

(0.00%)
56

(2.51%)

4 → 5 7 615 22 006
(95.50%)

852
(3.70%) 355 845 1 036

(4.50%)
111

(10.71%)
891

(86.00%)
0

(0.00%)
34

(3.28%)

5 → 6 8 917 22 702
(95.26%)

797
(3.34%) 408 1 140 1 139

(4.78%)
338

(29.68%)
764

(67.08%)
0

(0.00%)
37

(3.25%)

6 → 7 6 956 23 570
(93.95%)

1 113
(4.44%) 426 785 1 439

(5.74%)
261

(18.14%)
1 120

(77.83%)
0

(0.00%)
58

(4.03%)

7 → 8 920 24 957
(98.84%)

218
(0.86%) 86 116 268

(1.06%)
85

(31.72%)
183

(68.28%)
0

(0.00%)
0

(0.00%)

8 → 9 926 24 994
(99.26%)

133
(0.53%) 62 114 186

(0.74%)
30

(16.13%)
154

(82.80%)
0

(0.00%)
2

(1.08%)

9 → 10 1 948 24 817
(98.33%)

393
(1.56%) 122 282 421

(1.67%)
11

(2.61%)
395

(93.82%)
0

(0.00%)
15

(3.56%)

10 → 11 670 25 216
(99.65%)

56
(0.22%) 63 86 87

(0.34%)
21

(24.14%)
66

(75.86%)
0

(0.00%)
0

(0.00%)

11 → 12 857 25 179
(99.24%)

141
(0.56%) 69 94 201

(0.79%)
52

(25.87%)
147

(73.13%)
0

(0.00%)
2

(1.00%)

12 → 13 20 204 20 515
(80.87%)

1 437
(5.66%) 427 3 248 2 037

(8.03%)
863

(42.37%)
1 156

(56.75%)
0

(0.00%)
18

(0.88%)

13 → 14 5 218 26 220
(97.76%)

530
(1.98%) 98 693 599

(2.23%)
63

(10.52%)
530

(88.48%)
0

(0.00%)
6

(1.00%)

14 → 15 1 741 27 397
(99.21%)

143
(0.52%) 92 280 198

(0.72%)
57

(28.79%)
139

(70.20%)
0

(0.00%)
2

(1.01%)
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Incremental parsing measurements for SDF3 source Stratego.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(9..14) 151 528 1 094

(0.72%)
55 800

(36.82%) 79 123

9 150 091 1 080
(0.72%)

55 045
(36.67%) 78 291

10 150 138 1 080
(0.72%)

55 087
(36.69%) 78 333

11 151 550 1 096
(0.72%)

55 773
(36.80%) 79 231

12 151 908 1 097
(0.72%)

55 978
(36.85%) 79 378

13 152 430 1 100
(0.72%)

56 287
(36.93%) 79 672

14 153 053 1 108
(0.72%)

56 632
(37.00%) 79 832

15 153 054 1 108
(0.72%)

56 633
(37.00%) 79 833

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(10..15) 6 874 150 400

(99.25%)
933

(0.62%) 303 864 1 108
(0.73%)

171
(24.81%)

879
(69.59%)

0
(0.00%)

58
(5.60%)

→ 9 401 368 0 78 354

9 → 10 402 149 947
(99.90%)

31
(0.02%) 74 122 132

(0.09%)
110

(83.33%)
22

(16.67%)
0

(0.00%)
0

(0.00%)

10 → 11 19 726 147 456
(98.21%)

2 250
(1.50%) 476 2 558 2 696

(1.80%)
323

(11.98%)
2 330

(86.42%)
0

(0.00%)
43

(1.59%)

11 → 12 2 406 151 382
(99.89%)

153
(0.10%) 109 209 167

(0.11%)
15

(8.98%)
127

(76.05%)
0

(0.00%)
25

(14.97%)

12 → 13 4 650 151 137
(99.49%)

572
(0.38%) 231 634 750

(0.49%)
109

(14.53%)
590

(78.67%)
0

(0.00%)
51

(6.80%)

13 → 14 13 306 149 645
(98.17%)

2 431
(1.59%) 804 1 562 2 681

(1.76%)
438

(16.34%)
2 018

(75.27%)
0

(0.00%)
225

(8.39%)

14 → 15 756 152 835
(99.86%)

163
(0.11%) 125 96 219

(0.14%)
30

(13.70%)
185

(84.47%)
0

(0.00%)
4

(1.83%)
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Incremental parsing measurements for SDF3 source WebDSL.

Version
Parse Nodes Character

Nodes
CountCount Ambi-

guous
Irre-
usable

Average
(0..14) 162 581 1 853

(1.14%)
67 285

(41.39%) 85 998

0 161 682 1 829
(1.13%)

67 013
(41.45%) 85 500

1 161 735 1 829
(1.13%)

67 020
(41.44%) 85 515

2 162 255 1 837
(1.13%)

67 200
(41.42%) 85 783

3 162 345 1 838
(1.13%)

67 260
(41.43%) 85 846

4 162 361 1 838
(1.13%)

67 260
(41.43%) 85 856

5 162 369 1 841
(1.13%)

67 220
(41.40%) 85 844

6 162 273 1 840
(1.13%)

67 184
(41.40%) 85 799

7 162 457 1 856
(1.14%)

67 210
(41.37%) 85 931

8 162 615 1 857
(1.14%)

67 304
(41.39%) 86 050

9 162 878 1 864
(1.14%)

67 403
(41.38%) 86 167

10 162 841 1 864
(1.14%)

67 376
(41.38%) 86 154

11 163 063 1 868
(1.15%)

67 436
(41.36%) 86 285

12 163 158 1 876
(1.15%)

67 445
(41.34%) 86 330

13 163 210 1 876
(1.15%)

67 445
(41.32%) 86 370

14 163 466 1 876
(1.15%)

67 495
(41.29%) 86 543

15 163 466 1 876
(1.15%)

67 495
(41.29%) 86 538

Version
Parse Nodes Shift Breakdown

Created Reused Rebuilt Parse
Node

Character
Node Count Contains

Change
Irre-
usable

No
Actions

Wrong
State

Average
(1..15) 6 191 161 117

(99.10%)
1 287

(0.79%) 334 1 017 1 444
(0.89%)

99
(11.37%)

1 331
(87.58%)

0
(0.00%)

14
(1.05%)

→ 0 422 079 0 85 526

0 → 1 1 074 161 420
(99.84%)

87
(0.05%) 82 169 263

(0.16%)
175

(66.54%)
88

(33.46%)
0

(0.00%)
0

(0.00%)

1 → 2 2 491 161 488
(99.85%)

190
(0.12%) 115 426 246

(0.15%)
34

(13.82%)
211

(85.77%)
0

(0.00%)
1

(0.41%)

2 → 3 16 085 158 693
(97.80%)

3 212
(1.98%) 967 2 217 3 558

(2.19%)
131

(3.68%)
3 382

(95.05%)
0

(0.00%)
45

(1.26%)

3 → 4 7 615 160 514
(98.87%)

1 704
(1.05%) 434 1 254 1 830

(1.13%)
53

(2.90%)
1 771

(96.78%)
0

(0.00%)
6

(0.33%)

4 → 5 8 149 160 343
(98.76%)

1 771
(1.09%) 446 1 323 1 982

(1.22%)
153

(7.72%)
1 821

(91.88%)
0

(0.00%)
8

(0.40%)

5 → 6 4 912 161 016
(99.17%)

1 196
(0.74%) 277 861 1 277

(0.79%)
73

(5.72%)
1 196

(93.66%)
0

(0.00%)
8

(0.63%)

6 → 7 8 917 159 740
(98.44%)

1 845
(1.14%) 479 1 655 2 399

(1.48%)
457

(19.05%)
1 874

(78.12%)
0

(0.00%)
68

(2.83%)

7 → 8 16 962 158 781
(97.74%)

3 490
(2.15%) 528 2 532 3 675

(2.26%)
29

(0.79%)
3 642

(99.10%)
0

(0.00%)
4

(0.11%)

8 → 9 2 066 162 256
(99.78%)

326
(0.20%) 110 375 358

(0.22%)
23

(6.42%)
334

(93.30%)
0

(0.00%)
1

(0.28%)

9 → 10 7 783 160 967
(98.83%)

1 751
(1.08%) 445 1 263 1 897

(1.16%)
67

(3.53%)
1 826

(96.26%)
0

(0.00%)
4

(0.21%)

10 → 11 2 079 162 477
(99.78%)

332
(0.20%) 108 398 363

(0.22%)
18

(4.96%)
345

(95.04%)
0

(0.00%)
0

(0.00%)

11 → 12 2 814 162 257
(99.51%)

595
(0.36%) 189 500 797

(0.49%)
149

(18.70%)
607

(76.16%)
0

(0.00%)
41

(5.14%)

12 → 13 1 632 162 778
(99.77%)

324
(0.20%) 132 281 379

(0.23%)
34

(8.97%)
331

(87.34%)
0

(0.00%)
14

(3.69%)

13 → 14 1 606 162 913
(99.82%)

279
(0.17%) 99 412 296

(0.18%)
13

(4.39%)
283

(95.61%)
0

(0.00%)
0

(0.00%)

14 → 15 8 683 161 111
(98.56%)

2 208
(1.35%) 605 1 591 2 337

(1.43%)
78

(3.34%)
2 248

(96.19%)
0

(0.00%)
11

(0.47%)
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A.2 Time Benchmarks

The tables on the left show parse times for only the parsing phase, while the tables on the right show parse times for the full JSGLR2 parsing pipeline,
which includes imploding and tokenization, as shown in the bottom row of Figures 2.10 and 3.12. All times aremeasured inmilliseconds. The tables
in the middle show the size of the input and the number of added/removed characters for each version.

Average parse time for all languages, excluding version 0.

Language Standard Elkhound Incremental Incremental
(no cache)

Average 785.510 597.235 839.299 82.503
Java 1 974.375 1 497.341 2 112.104 203.043

WebDSL 233.029 175.540 244.903 23.681
SDF3 149.127 118.824 160.888 20.784

Size Removed Added
(B) (B) (B)

336 635 682 816
851 080 1 757 1 725
101 548 205 458
57 277 83 265

Language Standard Elkhound Incremental Incremental Tree-sitter Tree-sitter
(no cache) (no cache)

Average 810.266 630.811 1 007.738 90.302 – –
Java 2 033.161 1 579.048 2 518.010 217.591 233.929 19.715

WebDSL 241.125 185.905 303.368 27.597 – –
SDF3 156.514 127.480 201.835 25.719 – –

A.2.1 Java

Average parse times for the Java language, excluding version 0.

Source Standard Elkhound Incremental Incremental
(no cache)

Average 1 974.375 1 497.341 2 112.104 203.043
StringUtils 548.470 406.090 576.152 163.664

gson 3 530.745 2 748.975 3 775.883 289.502
slf4j 1 843.908 1 336.959 1 984.278 155.963

Size Removed Added
(B) (B) (B)

851 080 1 757 1 725
396 376 369 481

1 265 099 344 644
891 764 4 557 4 049

Source Standard Elkhound Incremental Incremental Tree-sitter Tree-sitter
(no cache) (no cache)

Average 2 033.161 1 579.048 2 518.010 217.591 233.929 19.715
StringUtils 580.587 436.086 692.993 170.913 54.080 21.040

gson 3 626.562 2 866.369 4 530.654 301.643 434.953 20.072
slf4j 1 892.333 1 434.687 2 330.383 180.218 212.755 18.034
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Parse times for Java source StringUtils.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 548.470 406.090 576.152 163.664
0 510.245 410.015 607.831 567.981
1 569.867 412.210 560.635 203.766
2 571.769 406.264 579.527 137.604
3 512.182 399.330 573.533 242.027
4 517.057 418.798 591.289 166.918
5 560.044 408.426 565.200 274.735
6 565.144 403.616 582.418 43.652
7 574.693 401.232 559.943 105.395
8 563.347 410.130 564.563 104.429
9 556.038 405.553 584.746 63.173
10 558.353 408.050 557.377 142.577
11 526.810 400.134 636.828 201.492
12 544.163 398.685 562.959 192.542
13 535.120 410.863 596.468 99.104
14 541.432 397.419 553.625 289.401
15 531.037 410.638 573.166 188.143

Size Removed Added
(B) (B) (B)

396 376 369 481
395 110 – –
395 172 0 62
395 216 0 44
394 856 515 155
397 653 0 2 797
395 931 3 940 2 218
395 896 35 0
395 842 64 10
395 842 7 7
397 158 0 1 316
397 176 0 18
397 184 0 8
397 048 136 0
397 077 0 29
396 792 754 469
396 796 80 84

Version Standard Elkhound Incremental Incremental Tree-sitter Tree-sitter
(no cache) (no cache)

Average 580.587 436.086 692.993 170.913 54.080 21.040
0 613.234 447.702 685.152 677.608 53.953 55.989
1 589.096 430.918 665.578 204.115 54.375 5.190
2 525.333 442.995 670.220 133.418 54.245 14.311
3 596.581 444.350 702.911 253.706 55.092 54.925
4 598.532 442.535 673.724 175.444 54.990 5.662
5 589.638 431.712 749.065 296.903 53.480 77.045
6 553.568 435.171 710.847 44.800 53.708 2.056
7 580.305 429.797 683.152 109.176 53.764 5.572
8 557.878 431.062 684.287 110.730 54.037 5.479
9 554.663 426.705 678.664 67.274 53.735 5.411
10 625.021 437.813 685.739 151.585 54.321 6.441
11 587.075 443.293 678.918 220.436 53.922 11.363
12 577.435 442.426 733.281 198.861 53.780 23.409
13 598.358 440.583 670.686 96.101 53.761 16.372
14 620.832 429.453 690.750 309.318 54.291 71.858
15 554.494 432.485 717.076 191.827 53.704 10.500
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Parse times for Java source gson.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 3 530.745 2 748.975 3 775.883 289.502
0 3 114.155 2 763.787 3 540.657 3 473.504
1 3 618.639 2 701.489 3 955.413 287.628
2 3 602.246 2 692.837 3 936.817 285.333
3 3 678.500 2 726.585 3 704.812 286.764
4 3 135.207 2 719.616 3 949.931 304.329
5 3 628.444 2 720.835 3 528.902 274.734
6 3 647.294 2 895.733 3 862.009 270.388
7 3 379.192 2 819.992 3 591.335 314.200
8 3 153.701 2 787.409 3 645.922 276.597
9 3 737.047 2 699.772 3 786.667 286.849
10 3 695.981 2 772.365 3 690.220 310.451
11 3 280.822 2 805.696 3 634.455 288.995
12 3 712.268 2 772.718 3 755.381 290.828
13 3 395.237 2 652.254 3 952.558 289.544
14 3 666.518 2 740.640 3 678.815 296.714
15 3 630.081 2 726.681 3 965.007 279.173

Size Removed Added
(B) (B) (B)

1 265 099 344 644
1 263 538 0 1 263 518
1 263 386 573 421
1 263 310 98 22
1 263 306 24 20
1 262 894 1 083 671
1 262 894 0 0
1 263 022 0 126
1 262 846 302 126
1 263 220 0 374
1 263 298 25 103
1 267 896 0 4 598
1 268 060 0 164
1 268 144 0 84
1 267 762 1 135 753
1 268 412 788 1 438
1 268 030 1 135 753

Version Standard Elkhound Incremental Incremental Tree-sitter Tree-sitter
(no cache) (no cache)

Average 3 626.562 2 866.369 4 530.654 301.643 434.953 20.072
0 3 533.697 2 877.887 4 453.189 4 786.196 432.136 443.473
1 3 278.285 2 699.250 4 267.664 303.627 447.886 19.127
2 3 822.314 2 858.514 4 484.484 289.680 438.720 16.571
3 3 386.830 2 883.233 4 454.842 293.020 431.946 19.386
4 3 821.525 2 875.712 4 656.754 353.911 433.808 34.124
5 3 816.020 2 878.528 4 804.442 294.436 434.877 15.768
6 3 900.653 2 859.448 4 307.176 288.156 431.076 20.862
7 3 797.019 2 912.520 4 339.391 307.115 439.001 21.316
8 3 459.621 3 009.576 4 827.296 285.400 431.967 18.220
9 3 361.746 2 857.024 4 297.740 299.716 429.407 20.830
10 3 464.597 2 823.515 4 449.837 309.913 433.013 21.895
11 3 370.940 2 872.003 4 797.996 289.960 436.452 18.685
12 3 820.651 2 819.557 4 560.324 290.045 434.129 18.649
13 3 864.571 2 873.621 4 452.984 293.021 436.982 18.472
14 3 822.406 2 944.329 4 553.043 312.105 433.934 19.199
15 3 411.260 2 828.712 4 705.833 314.536 431.090 17.972
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Parse times for Java source slf4j.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 1 843.908 1 336.959 1 984.278 155.963
0 1 950.869 1 396.467 1 924.703 1 895.252
1 1 914.720 1 345.672 2 191.663 160.343
2 1 910.553 1 395.761 1 905.263 135.988
3 1 688.898 1 418.170 1 927.477 140.715
4 1 952.318 1 273.339 2 138.546 178.288
5 1 913.849 1 302.889 1 963.789 225.093
6 1 887.770 1 391.150 1 883.856 135.516
7 1 977.712 1 361.097 1 914.908 226.041
8 1 625.192 1 370.718 2 067.581 180.761
9 1 879.117 1 250.072 1 861.661 132.147
10 1 851.934 1 343.630 2 096.098 135.887
11 1 853.402 1 242.876 1 855.218 145.600
12 1 878.930 1 329.713 2 131.885 134.209
13 1 883.879 1 331.258 1 904.392 135.011
14 1 856.527 1 327.615 1 775.771 138.090
15 1 583.828 1 370.429 2 146.060 135.751

Size Removed Added
(B) (B) (B)

891 764 4 557 4 049
912 784 – –
912 785 0 1
912 813 8 36
912 814 0 1
913 852 8 814 9 852
902 914 20 902 9 964
902 912 6 4
863 562 37 270 19 602
881 191 671 18 300
881 184 7 0
881 132 52 0
881 134 5 7
881 518 16 400
881 618 2 102
883 547 202 2 131
883 490 399 342

Version Standard Elkhound Incremental Incremental Tree-sitter Tree-sitter
(no cache) (no cache)

Average 1 892.333 1 434.687 2 330.383 180.218 212.755 18.034
0 1 962.037 1 461.973 2 301.925 2 429.781 217.761 219.257
1 1 949.528 1 453.325 2 256.715 172.429 217.246 8.911
2 1 780.389 1 411.431 2 238.574 143.523 216.544 10.035
3 2 086.934 1 446.944 2 467.858 151.674 219.741 10.524
4 1 937.893 1 484.835 2 524.441 268.604 218.903 25.982
5 2 009.672 1 558.417 2 273.049 326.079 215.636 67.605
6 1 942.201 1 467.338 2 490.050 142.852 214.497 10.747
7 1 741.697 1 503.599 2 298.376 290.557 212.140 41.282
8 1 853.447 1 406.083 2 182.388 201.929 208.579 20.808
9 1 728.795 1 394.955 2 292.012 137.419 209.333 10.251
10 1 897.723 1 409.310 2 211.121 140.060 207.715 10.656
11 1 993.814 1 397.318 2 475.115 153.019 210.503 8.233
12 1 911.829 1 446.683 2 280.729 143.075 208.636 11.411
13 1 833.444 1 434.646 2 300.400 136.817 209.983 7.986
14 1 701.047 1 295.931 2 489.464 151.905 210.005 13.943
15 2 016.578 1 409.487 2 175.459 143.323 211.867 12.134

A.2.2 WebDSL

Average parse times for the WebDSL language, excluding version 0.

Source Standard Elkhound Incremental Incremental
(no cache)

Average 233.029 175.540 244.903 23.681
builtin.app 249.465 185.023 263.670 27.441
YellowGrass 360.934 270.288 375.227 34.731
elib-utils 88.690 71.310 95.813 8.871

Size Removed Added
(B) (B) (B)

101 548 205 458
97 843 475 174

167 287 107 1 060
39 515 32 141

Source Standard Elkhound Incremental Incremental
(no cache)

Average 241.125 185.905 303.368 27.597
builtin.app 267.130 196.868 334.089 31.030
YellowGrass 364.214 285.688 458.316 40.419
elib-utils 92.029 75.159 117.699 11.342
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Parse times for WebDSL source builtin.app.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 249.465 185.023 263.670 27.441
1 266.187 191.839 278.880 270.626
2 262.139 185.533 277.219 25.195
3 223.751 179.368 262.086 27.702
4 248.952 180.288 259.710 26.949
5 250.799 192.804 254.144 36.115
6 256.824 182.942 259.105 24.456
7 244.860 184.720 279.631 26.242
8 246.218 187.573 268.891 27.521
9 260.944 184.491 252.059 25.631
10 250.694 187.492 260.181 27.155

Size Removed Added
(B) (B) (B)

97 843 475 174
100 882 – –
97 219 3 663 0
98 047 0 828
98 231 10 194
97 627 604 0
97 683 0 56
97 721 0 38
97 935 0 214
97 956 0 21
98 172 1 217

Version Standard Elkhound Incremental Incremental
(no cache)

Average 267.130 196.868 334.089 31.030
1 279.817 196.008 340.347 342.084
2 268.534 202.189 324.073 26.479
3 279.992 202.742 344.977 38.476
4 263.362 187.933 352.829 28.644
5 261.398 191.781 332.648 45.938
6 265.544 191.989 317.260 25.824
7 271.876 201.561 351.438 28.053
8 262.419 196.931 326.250 29.291
9 264.730 202.284 333.181 27.165
10 266.317 194.397 324.146 29.401
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Parse times for WebDSL source YellowGrass.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 360.934 270.288 375.227 34.731
0 326.021 258.895 382.747 375.826
1 350.203 269.790 381.338 37.656
2 349.087 268.371 374.891 43.228
3 350.056 256.040 348.459 32.232
4 349.585 268.767 361.169 40.465
5 340.806 261.018 383.822 30.672
6 358.853 258.436 351.155 32.425
7 371.666 264.268 347.987 28.763
8 371.762 274.609 393.565 40.464
9 368.866 277.560 352.047 39.598
10 369.962 280.473 399.384 29.453
11 373.611 280.305 376.083 31.326
12 373.763 262.900 370.201 31.007
13 331.360 275.490 408.462 31.922
14 382.947 270.806 409.803 30.669
15 371.483 285.486 370.034 41.082

Size Removed Added
(B) (B) (B)

167 287 107 1 060
158 975 – –
160 568 121 1 714
159 970 954 356
160 445 67 542
161 720 38 1 313
161 716 4 0
163 359 0 1 643
163 370 12 23
168 635 0 5 265
172 696 0 4 061
172 793 32 129
172 833 32 72
172 834 0 1
172 557 281 4
172 529 67 39
173 274 0 745

Version Standard Elkhound Incremental Incremental
(no cache)

Average 364.214 285.688 458.316 40.419
0 322.583 270.795 429.477 431.878
1 360.298 290.884 427.663 50.274
2 318.511 269.640 434.078 61.583
3 362.199 275.319 433.132 44.342
4 359.778 277.303 421.927 55.434
5 368.950 278.087 466.042 31.967
6 354.989 280.019 437.152 34.685
7 372.142 274.603 437.677 30.182
8 335.676 286.318 469.427 44.186
9 358.421 297.573 446.813 43.347
10 374.248 299.657 494.391 32.145
11 390.910 295.862 508.930 31.577
12 389.511 289.188 452.468 31.168
13 391.335 297.690 494.219 33.675
14 340.434 290.551 465.037 32.109
15 385.813 282.629 485.790 49.609

97



A
.
FULLEVALUATION

RESULTS

Parse times for WebDSL source elib-utils.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 88.690 71.310 95.813 8.871
0 82.423 70.155 89.681 95.225
1 87.218 68.698 98.440 7.603
2 82.132 69.742 91.284 9.371
3 89.226 69.606 98.881 10.049
4 89.641 71.085 87.965 8.119
5 90.753 71.517 93.305 8.514
6 90.943 72.859 98.665 8.662
7 92.183 70.864 95.146 8.058
8 82.246 71.391 94.134 8.571
9 91.406 70.044 93.005 8.001
10 90.550 72.145 94.159 8.697
11 86.594 72.144 94.190 9.121
12 89.672 71.642 100.388 8.367
13 83.455 71.824 93.306 8.454
14 91.709 72.245 102.869 12.852
15 92.622 73.845 101.460 8.625

Size Removed Added
(B) (B) (B)

39 515 32 141
38 955 – –
38 953 2 0
39 118 0 165
39 211 66 159
39 378 0 167
39 317 94 33
39 283 48 14
39 320 1 38
39 302 21 3
39 430 0 128
39 496 29 95
39 480 22 6
39 547 2 69
39 821 0 274
40 480 169 828
40 589 22 131

Version Standard Elkhound Incremental Incremental
(no cache)

Average 92.029 75.159 117.699 11.342
0 96.551 71.086 110.582 114.429
1 92.814 75.213 113.256 8.016
2 86.217 72.883 112.333 12.733
3 91.201 73.849 122.497 13.913
4 93.397 75.025 124.901 10.583
5 95.497 73.691 114.172 9.534
6 93.696 77.906 119.379 11.018
7 94.806 74.913 110.154 8.675
8 92.301 73.878 120.606 9.304
9 93.427 74.362 117.196 8.808
10 86.160 74.077 114.960 13.685
11 94.842 77.152 117.428 11.032
12 93.339 74.075 114.295 9.201
13 95.111 78.341 116.424 10.879
14 87.856 75.412 127.476 21.259
15 89.771 76.603 120.402 11.486

A.2.3 SDF3

Average parse times for the SDF3 language, excluding version 0.

Source Standard Elkhound Incremental Incremental
(no cache)

Average 149.127 118.824 160.888 20.784
NaBL 248.609 194.725 268.438 33.179

DynSem 26.006 21.133 28.662 5.145
FlowSpec 35.278 29.035 39.252 8.577
Stratego 231.338 183.947 251.471 26.424
WebDSL 204.402 165.280 216.618 30.596

Size Removed Added
(B) (B) (B)

57 277 83 265
98 834 184 422
9 759 25 104
12 345 125 391
79 380 61 318
86 067 22 92

Source Standard Elkhound Incremental Incremental
(no cache)

Average 156.514 127.480 201.835 25.719
NaBL 254.829 209.901 330.948 38.750

DynSem 27.797 22.963 37.408 7.857
FlowSpec 37.772 31.233 50.636 13.299
Stratego 246.166 195.066 308.393 31.794
WebDSL 216.004 178.237 281.788 36.896
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Parse times for SDF3 source NaBL.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 248.609 194.725 268.438 33.179
0 250.544 192.285 271.866 249.973
1 251.955 194.495 251.967 30.628
2 240.936 193.368 255.114 28.513
3 244.266 191.811 253.297 27.862
4 244.303 198.509 259.455 33.187
5 253.614 199.143 280.289 27.593
6 254.523 187.106 287.502 28.362
7 248.624 193.144 274.419 40.047
8 255.298 193.190 247.621 27.635
9 242.818 200.243 260.494 28.209
10 306.991 195.278 286.163 55.790
11 256.088 190.641 284.046 42.526
12 245.111 196.228 283.476 41.294
13 230.777 200.295 277.397 27.543
14 232.957 192.485 250.312 29.751
15 220.869 194.939 275.021 28.744

Size Removed Added
(B) (B) (B)

98 834 184 422
96 540 – –
96 879 0 339
96 705 174 0
96 706 3 4
98 475 341 2 110
98 471 4 0
98 540 0 69
98 556 0 16
98 731 0 175
98 742 0 11
100 108 1 465 2 831
100 110 104 106
100 104 248 242
100 115 0 11
100 148 191 224
100 115 224 191

Version Standard Elkhound Incremental Incremental
(no cache)

Average 254.829 209.901 330.948 38.750
0 260.355 209.091 319.534 341.853
1 265.994 214.581 317.569 33.395
2 257.144 207.690 337.709 30.296
3 229.444 202.478 307.133 29.336
4 269.891 211.170 341.943 36.723
5 263.225 203.466 342.024 28.480
6 236.581 212.924 344.119 29.309
7 232.504 220.040 351.583 54.574
8 237.903 211.939 303.800 29.732
9 232.127 209.990 321.503 29.496
10 270.070 209.106 352.497 73.302
11 260.686 212.197 339.839 56.342
12 270.553 207.202 313.593 57.086
13 273.302 205.698 349.267 28.707
14 272.789 209.727 325.196 31.764
15 250.227 210.304 316.438 32.708
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Parse times for SDF3 source DynSem.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 26.006 21.133 28.662 5.145
0 23.964 19.627 26.813 26.882
1 25.837 20.681 28.228 6.442
2 26.099 20.172 28.725 5.290
3 25.055 20.832 27.904 4.302
4 25.606 21.268 27.607 4.886
5 25.833 21.062 27.942 4.962
6 25.701 20.908 28.053 4.555
7 24.829 20.894 28.100 6.013
8 25.709 20.468 28.012 4.584
9 24.915 21.236 27.862 4.118
10 25.617 20.891 28.331 4.752
11 26.959 21.202 28.452 6.502
12 26.000 21.504 29.461 4.745
13 27.729 21.020 30.324 5.536
14 26.929 22.194 30.200 5.621
15 27.276 22.670 30.726 4.874

Size Removed Added
(B) (B) (B)

9 759 25 104
9 066 – –
9 540 0 474
9 550 0 10
9 546 4 0
9 548 0 2
9 544 4 0
9 470 78 4
9 652 56 238
9 759 0 107
9 550 209 0
9 711 0 161
9 968 27 284
10 027 0 59
10 027 2 2
10 248 0 221
10 248 2 2

Version Standard Elkhound Incremental Incremental
(no cache)

Average 27.797 22.963 37.408 7.857
0 26.048 20.996 35.466 34.575
1 26.480 22.778 34.985 11.515
2 27.801 22.160 38.180 7.767
3 26.280 21.637 35.854 5.443
4 26.967 22.217 36.576 6.528
5 27.043 22.704 36.470 7.190
6 26.993 22.661 37.548 6.234
7 27.228 22.747 35.500 9.673
8 27.195 23.737 37.294 7.186
9 27.946 21.747 37.103 5.161
10 27.948 22.732 37.217 7.150
11 28.708 23.794 37.248 11.343
12 28.030 23.470 38.551 7.021
13 28.903 23.261 38.458 8.613
14 29.427 24.079 40.860 9.644
15 30.001 24.714 39.279 7.395
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Parse times for SDF3 source FlowSpec.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 35.278 29.035 39.252 8.577
0 29.827 24.026 33.622 33.251
1 29.923 24.145 32.734 10.640
2 30.332 24.278 33.491 7.185
3 31.568 26.343 33.947 8.389
4 33.100 26.475 36.851 13.340
5 34.484 28.446 38.581 9.606
6 35.335 29.165 40.731 10.228
7 35.644 30.645 41.263 9.998
8 35.244 30.601 40.648 5.494
9 37.907 29.822 40.323 5.311
10 35.821 29.734 40.161 6.497
11 36.921 30.450 40.689 5.377
12 36.599 29.350 40.453 5.273
13 37.272 31.347 41.948 16.568
14 37.864 31.579 42.971 8.415
15 41.159 33.146 43.984 6.336

Size Removed Added
(B) (B) (B)

12 345 125 391
10 166 – –
10 398 76 308
10 584 0 186
10 931 31 378
11 530 46 645
11 891 0 361
12 522 17 648
12 580 72 130
12 551 29 0
12 582 0 31
12 620 0 38
12 659 0 39
12 654 8 3
13 540 1 581 2 467
13 980 0 440
14 154 14 188

Version Standard Elkhound Incremental Incremental
(no cache)

Average 37.772 31.233 50.636 13.299
0 31.252 25.072 41.035 41.284
1 31.045 25.964 40.726 16.745
2 31.887 26.411 40.593 10.672
3 33.944 28.244 43.793 14.631
4 35.116 30.201 49.271 27.023
5 36.672 30.289 49.327 15.180
6 38.860 31.028 53.332 16.547
7 38.130 31.224 51.229 14.669
8 38.145 31.944 54.883 6.419
9 39.160 32.925 49.874 7.507
10 39.768 32.681 54.161 9.018
11 38.310 31.982 51.647 6.029
12 39.467 33.015 51.115 7.454
13 41.886 33.651 53.122 23.345
14 41.807 34.052 57.361 15.078
15 42.385 34.883 59.102 9.165

Parse times for SDF3 source Stratego.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 231.338 183.947 251.471 26.424
9 226.619 180.479 248.538 248.358
10 235.082 179.032 246.124 20.951
11 228.249 180.503 242.531 35.282
12 233.428 190.932 267.120 23.903
13 213.648 183.172 251.578 23.754
14 234.556 186.140 252.648 32.954
15 243.065 183.902 248.824 21.699

Size Removed Added
(B) (B) (B)

79 380 61 318
78 291 – –
78 333 54 96
79 231 162 1 060
79 378 0 147
79 672 18 312
79 832 129 289
79 833 2 3

Version Standard Elkhound Incremental Incremental
(no cache)

Average 246.166 195.066 308.393 31.794
9 232.024 186.610 294.465 292.806
10 254.045 190.244 312.593 21.307
11 242.430 201.798 307.034 47.601
12 245.755 191.530 300.525 25.607
13 245.527 196.365 297.620 31.827
14 242.960 194.322 311.118 42.320
15 246.280 196.138 321.467 22.102

101



A
.
FULLEVALUATION

RESULTS

Parse times for SDF3 source WebDSL.

Version Standard Elkhound Incremental Incremental
(no cache)

Average 204.402 165.280 216.618 30.596
0 200.194 165.581 215.281 227.837
1 204.197 166.431 207.700 26.615
2 189.313 164.352 220.025 27.370
3 197.230 164.831 207.987 39.591
4 200.683 163.307 215.856 31.261
5 199.334 163.215 230.702 31.604
6 207.198 166.165 218.716 29.377
7 208.579 166.837 211.050 33.062
8 208.245 164.092 207.910 36.819
9 206.942 164.201 209.997 26.767
10 206.028 166.243 213.583 31.967
11 206.340 167.478 234.758 30.051
12 215.316 163.458 209.008 27.314
13 206.024 165.222 234.109 26.943
14 199.102 169.170 213.681 26.868
15 211.497 164.197 214.195 33.323

Size Removed Added
(B) (B) (B)

86 067 22 92
85 500 – –
85 515 52 67
85 783 0 268
85 846 0 63
85 856 0 10
85 844 50 38
85 799 45 0
85 931 114 246
86 050 0 119
86 167 0 117
86 154 17 4
86 285 0 131
86 330 24 69
86 370 0 40
86 543 0 173
86 538 35 30

Version Standard Elkhound Incremental Incremental
(no cache)

Average 216.004 178.237 281.788 36.896
0 217.891 171.354 281.202 267.256
1 200.142 175.458 295.214 27.340
2 217.900 176.373 275.369 29.527
3 218.666 184.393 274.712 49.673
4 220.651 180.516 295.892 51.704
5 217.303 178.121 295.963 41.833
6 210.368 179.741 280.381 32.282
7 209.642 178.047 275.611 44.323
8 220.227 177.271 279.323 49.866
9 219.935 178.604 277.716 29.116
10 222.944 172.873 270.160 40.494
11 216.337 179.912 269.427 29.112
12 217.212 176.450 293.319 31.444
13 222.033 177.199 270.401 27.974
14 212.739 177.661 280.448 28.142
15 213.956 180.937 292.892 40.610
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Appendix B

SPLASH Conference 2019 –
ACM Student Research Competition

In the week of 20–25 October 2019, I had the opportunity to present my work at the ACM
Student Research Competition (SRC), during the SPLASH conference in Athens, Greece.1 In
the SRC held at SPLASH, I achieved first place in the category of graduate (Master and PhD)
students. The competition consisted of several rounds, with several deliverables, which have
been listed below.

Call for Submissions: Extended Abstract To participate in the SRC, participants had to
submit an extended abstract of nomore than 800words and nomore than 2 pages (excluding
references). Appendix B.1 contains my submission, which is also published in the Proceed-
ings Companion of SPLASH 2019.2 After review, eight participants were invited to present
their work at the conference, of which four undergraduate and four graduate students.

First Round: Poster On Wednesday the 23rd, the eight participants presented a poster
showing their work to the jury. The poster that I presented is included in Appendix B.2
and available online on the website of the Programming Languages research group.3 The
jury selected six participants (three in each category) to advance to the next round.

Second Round: Presentation On Thursday the 24th, the six selected participants gave a
presentation of ten minutes followed by a question session of five minutes. In each category,
the winning participant advanced to the Grand Finals.

Grand Finals: Short Paper The winners of all SRCs throughout the year competed in the
Grand Finals. A different panel of judges evaluated these winners against each other via
the web. Three undergraduates and three graduates were chosen as the SRC Grand Finals
winners. Finalists had to submit a short paper of no more than 4000 words and no more
than 5 pages (excluding references). Appendix B.3 contains my submission, which is also
available on the website of the ACM SRC.4 It was not selected as one of the winners but did
receive one “weak accept” and two “accept” judgements.

1https://2019.splashcon.org/track/splash-2019-SRC
2https://dl.acm.org/doi/10.1145/3359061.3361085
3https://pl.ewi.tudelft.nl/posters/2019/10/22/incremental-scannerless-generalized-lr-parsing/
4https://src.acm.org/binaries/content/assets/src/2020/maarten-p.-sijm.pdf
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Abstract
We present the Incremental Scannerless Generalized LR
(ISGLR) parsing algorithm, which combines the benefits of
Incremental Generalized LR (IGLR) parsing and Scannerless
Generalized LR (SGLR) parsing. The parser preprocesses the
input by modifying the previously saved parse forest. This
allows the input to the parser to be a stream of parse nodes,
instead of a stream of characters. Scannerless parsing relies
heavily on non-determinism during parsing, negatively im-
pacting the incrementality of ISGLR parsing. We evaluated
the ISGLR parsing algorithm using file histories from Git,
achieving a speedup of up to 25 times over non-incremental
SGLR.

CCSConcepts • Software and its engineering→ Incre-
mental compilers; Parsers.

Keywords incremental, scannerless, GLR, IGLR, SGLR, IS-
GLR, parsing, Spoofax
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1 Background
Visser introduced Scannerless Generalized LR (SGLR) pars-
ing, which combines the lexical and context-free phases of
Generalized LR (GLR) parsing. [5] The terminals in the gram-
mar are single characters instead of tokens. This has several
advantages: it removes the need for a separate lexing (or
scanning) phase, supports modelling the entire language
syntax in one single grammar, and composing grammars for
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different languages. One notable disadvantage is that the
SGLR parsing algorithm is a batch algorithm: it processes
each input file in its entirety. This becomes a problem for
software projects that have large files, as every small change
requires the entire file to be parsed again.

Wagner [6] and TreeSitter [4], amongst others, have intro-
duced Incremental Generalized LR (IGLR) parsing algorithms
that improve upon batch GLR parsing by incrementally pars-
ing changes to large files. However, these algorithms use a
separate incremental lexical analysis phase which compli-
cates the implementation of incremental parsing and does
not directly allow language composition.

2 Incremental Scannerless GLR Parsing
We present the Incremental Scannerless Generalized LR
(ISGLR) parsing algorithm, which combines the benefits of
IGLR parsing and SGLR parsing. We implemented the al-
gorithm as part of the Spoofax language workbench [2] as
a modular extension to the Java implementation of SGLR
(JSGLR2). [1] We will discuss the main ideas of our parsing
algorithm.

Input Preprocessing After successfully parsing an input
file, the parser saves both the input string and the resulting
parse forest. When reparsing the same file, it calculates the
difference between the previous and the new input strings.
The changes can be deletions or insertions, or both at the
same time. From the previous parse forest, the parser re-
moves parse nodes that fall within a deleted region and
creates a new (temporary) parse node for every inserted
region, which contains the inserted characters as children.
Changed parse nodes will no longer be valid, which will be
fixed during parsing.

Parsing Instead of a stream of characters, the input to the
parsing algorithm is a stream of parse nodes. These parse
nodes can either be internal nodes (corresponding to gram-
mar productions) or terminal nodes (corresponding to char-
acters).
When parsing starts, the input stream consists only of

the pre-processed parse forest and the end-of-file marker.
When the parser encounters an invalid parse node in the
input stream, it is broken down, meaning that its child nodes
will become part of the input stream instead. Ultimately, the
parser will break down all parse nodes on the spines from
the root to the changed regions. An example of this is shown
in Figure 1.
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(a) Left: a preprocessed parse tree, where node E has been changed.
Because of this, its ancestors A and B become invalid.
Right: the resulting parse tree after reparsing.
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reduce

reduce

shift

shift
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(b) The parse stack is on the left and the input stream is on the
right. During parsing, the invalid nodes A and B are broken down.
Node D and subtree C can be fully reused.

Figure 1. An example of how the input stream and parse
stack are behaving during incremental parsing.

State Matching A state matching test decides whether
an unchanged internal node from the input stream can be
reused or not. The parser will store in all parse nodes the
top-most state of the parse stack that it was pushed onto. If
the current state of the parser is equal to the state stored in
the next node of the input stream, it can be reused; else, it
must be broken down.

Non-determinism When there are multiple possible ac-
tions, GLR parsers will split into multiple stacks and run the
parsing algorithm concurrently on these stacks, synchroniz-
ing on shift actions. [3] Any stacks that have no applicable
actions are discarded. As long as there are no ambiguities
in the grammar, only one parse stack will remain. With a
reparse, a change right after a non-deterministic region can
cause a different parse stack to survive. As a result, any parse
node that was created during non-deterministic parsingmust
be broken down.

SGLR parsing relies heavily on the fact that the parser
is non-deterministic because character-level grammars fre-
quently need arbitrary length lookahead. [5] Unfortunately,
this means that the number of parse nodes that can be reused
is a lot less than for IGLR parsing. It is not yet clear how to
reduce non-determinism in character-level grammars.

3 Evaluation
We evaluated the ISGLR parsing algorithm with Git reposi-
tories, using the file differences between commits as input
to the parser. Preliminary results show that the incremen-
tal parser is on average 13% slower than the JSGLR2 parser
when parsing a file from scratch, but achieves a speed-up
when parsing the files incrementally. The speedup of ISGLR
over JSGLR2 ranges from 15% faster (for parsing all versions
of all files in a repository1) to 25 times faster (for a single file
of 90 kilobytes that has changes averaging 700 bytes2).

4 Conclusion
Our main contribution is the ISGLR algorithm, which com-
bines SGLR parsing with IGLR parsing. An open challenge
for this algorithm is that typically fewer parse nodes can
be reused than with IGLR parsing. However, in typical use
cases, the ISGLR parsing algorithm will still perform better
than the non-incremental variant.
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Introduction
We present the Incremental Scannerless Generalized LR (ISGLR) parsing algorithm, which combines the benefits of Incremental Generalized LR (IGLR) parsing
[4] and Scannerless Generalized LR (SGLR) parsing [3]. We implemented the algorithm as part of the Spoofax language workbench [2] as a modular extension
to the Java implementation of SGLR (JSGLR2) [1]. We achieve a major speedup compared to JSGLR2 when parsing files incrementally.

Processing Changes (Diff )

final char hs = label.charAt(0);

if (0xd800 <= hs && hs <= 0xdbff) {
return true;

} else if (Character.isHighSurrogate(hs)) {
return true;

}
return false;

}
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final char hs = label.charAt(0);

if (0xd800 <= hs && hs <= 0xdbff) {
return true;

} else {
return Character.isHighSurrogate(hs);

}
}
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Upon a change by the user in the editor, the Diff component of the parser will receive a
new version of the input file and computes a character-by-character difference with the
previous version. These changes are then applied to the previously saved parse forest,
producing the Updated Forest, as shown on the right.
Since parse nodes are immutable in our implementation, a parse node that receives up-
dates to its children will be recreated (represented by the gray nodes in the updated
forest). At parse time, the parser will break down any changed nodes and try to reuse
unchanged nodes (see “Parsing Algorithm”).

Non-determinism
The character-level grammars used for SGLR parsing frequently need arbitrary length lookahead [3].
Therefore, these grammars have a higher degree of non-determinism than token-level grammars. As an
example, consider the grammar specification on the right. The graph-structured parse stack below shows
a parser in states 5 and 6 after parsing the four characters “·a··”. Now, two things can happen:

• If the parser encounters the end of the file, stack 6 reduces to the Start symbol.
• If the parser encounters an alphabetic character, it is shifted onto stack 5 and stack 6 is discarded.

In either case, this means that the created Row node can never be freely reused in a subsequent parse.
Unfortunately, this means that the number of parse nodes that can be reused is a lot less than for

IGLR parsing. It is not yet clear how to reduce non-determinism in character-level grammars.
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Above: An example grammar written in SDF3.

Below: The same grammar as above, normalized.
syntax
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The incremental parsing pipeline architecture.
Top row: executed during language development.

Middle row: executed every time that a file is parsed.
Bottom row: caches that are maintained between parses.

Parsing Algorithm
Instead of a stream of characters, the input to the parsing algorithm is a stream of parse
nodes. These parse nodes can either be internal nodes (corresponding to grammar produc-
tions) or terminal nodes (corresponding to characters).

When parsing starts, the input stream consists only of the pre-processed parse forest and
the end-of-file marker. When the parser encounters a changed or invalid parse node in the
input stream, it is broken down, meaning that its child nodes will become part of the input
stream instead. Ultimately, the parser will break down all parse nodes on the spines from
the root to the changed regions.

A
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F G
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Node E has changed, therefore

nodes A and B are also updated
(see “Processing Changes”)

A*
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D E*
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F G
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Parsing times of the JSGLR2 parser and the ISGLR parser on a Java file of ± 100 kB.

Evaluation
We evaluated the ISGLR parsing algorithm with Git repositories, using the file differences
between commits as input to the parser. Preliminary results show that the incremental
parser is on average 13% slower than the JSGLR2 parser when parsing a file from scratch,
but achieves a speed-up when parsing the files incrementally. ISGLR can be up to 25×
faster than JSGLR2 when using files that are hundreds of kilobytes large.

The same incremental parsing times as in the plot below, showing the
relation between change sizes and incremental parsing time.
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Abstract
We present the Incremental Scannerless Generalized LR
(ISGLR) parsing algorithm, which combines the benefits of
Incremental Generalized LR (IGLR) parsing and Scanner-
less Generalized LR (SGLR) parsing. The ISGLR parser can
reuse parse trees from unchanged regions in the input and
thus only needs to parse changed regions. We also present
incremental techniques for imploding the parse tree to an
Abstract Syntax Tree (AST) and syntax highlighting. Scan-
nerless parsing relies heavily on non-determinism during
parsing, negatively impacting the incrementality of ISGLR
parsing. We evaluated the ISGLR parsing algorithm using
file histories from Git, achieving a speedup of up to 25 times
over non-incremental SGLR.
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1 Introduction
Background Scannerless Generalized LR (SGLR) parsing
combines the lexical and context-free phases of parsing. The
terminals in the grammar are single characters instead of
tokens. This has several advantages: it removes the need for
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a separate lexing (or scanning) phase, supports modelling
the entire language syntax in one single grammar, and al-
lows composition of grammars for different languages. One
notable disadvantage is that the SGLR parsing algorithm of
Visser [9] is a batch algorithm, meaning that it must process
each entire file in one pass. This becomes a problem for soft-
ware projects that have large files, as every small change
requires the entire file to be parsed again.

Incremental Generalized LR (IGLR) parsing is an improve-
ment over batch Generalized LR (GLR) parsing. Amongst
others, Wagner [10] and TreeSitter [8] have created parsing
algorithms that allow rapid parsing of changes to large files.
However, these algorithms use a separate incremental lexical
analysis phase which complicates the implementation of in-
cremental parsing [11] and does not directly allow language
composition.

Contributions In Section 2, we present the Incremental
Scannerless Generalized LR (ISGLR) parsing algorithm that
combines the benefits of incremental and scannerless GLR
parsing. The algorithm only considers changed parts of the
input and includes a test that prevents unchanged parse
nodes from being reused incorrectly when a change in the
context would require them to be parsed differently.

We explain the impact of non-determinism on the ISGLR
parsing algorithm in Section 3. This effect explains that the
combined algorithm cannot reuse as much from previous
results as the non-scannerless IGLR parsing algorithm.

In Section 4, we discuss the integration of the ISGLR pars-
ing algorithm in the Spoofax language workbench [3]. It is
implemented as an extension to the Java implementation of
SGLR (JSGLR2) [2]. Specifically, we focus on imploding to
an Abstract Syntax Tree (AST) and on syntax highlighting.
We have evaluated the algorithm on input from the Git

version control system, as shown in Section 5. Regardless
of the non-determinism issue, the ISGLR parsing algorithm
performs up to 25 times faster than batch parsing for small
changes to large files.
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2 Incremental Scannerless GLR Parsing
Wepresent the ISGLR parsing algorithm,which combines the
benefits of IGLR parsing and SGLR parsing. We will discuss
the main ideas of our parsing algorithm below.

Input Preprocessing The input to the ISGLR parser con-
sists of two parts: a list of changes between the previous and
the current input strings, and the parse tree that resulted
from the previous parse. The changes can be deletions or
insertions, and having both at the same time represents a re-
placement. From the previous parse tree, the parser removes
parse nodes that fall within a deleted region and creates a
new (temporary) parse node for every inserted region, which
contains the inserted characters as children.

Parse nodes store the width of their subtree to make this
preprocessing step efficient. The width corresponds to the
number of characters of the input represented by the subtree.
With the exact position of a change, the subtrees requiring
changes can be found using a traversal from the root node
and recursively picking the child that contains this position.
Any new parse nodes created in this process are marked

as irreusable, signalling to the parser that they are not valid
for reuse. This includes the parse nodes created because of
insertions and replacements. In addition, all ancestors of any
changed nodes are marked irreusable, simply because they
have one or more descendants that cannot be reused, like
the nodes A and B in the example of Figure 1a.

Parsing Instead of a stream of characters, the input to the
parsing algorithm is a stream of parse nodes. These parse
nodes can either be internal nodes (corresponding to gram-
mar productions) or terminal nodes (corresponding to char-
acters).

When parsing starts, the input stream consists only of the
preprocessed parse tree and the end-of-file marker. When
the parser encounters an irreusable parse node in the input
stream, it is broken down, meaning that its child nodes will
become part of the input stream instead. Ultimately, the
parser will break down all parse nodes on the spines from
the root to the changed regions. An example of this is shown
in Figure 1b.

State Matching The state matching test is an extra check
to decide whether an unchanged internal node from the
input stream can be reused or not. This prevents the parser
from blindly reusing a parse node that needs to be parsed
differently because a part of the input has changed before
the current position.

To accomplish this, the parser will store in each parse node
the topmost state of the parse stack that it was pushed onto,
so that it can be used for the state matching test during a
subsequent incremental parse. During parsing, if the current
state of the parser is equal to the state stored in the next
node of the input stream, this node can be reused; else, it
must be broken down like other irreusable parse nodes.

A

B C

D E* F G

A*

B* C

D E* F G

(a) Left: a preprocessed parse tree, where node E has been changed.
Because of this, its ancestors A and B are irreusable.
Right: the resulting parse tree after reparsing.
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break down

reduce
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shift
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(b) The parse stack is on the left and the input stream is on the
right. During parsing, the invalid nodes A and B are broken down.
Node D and subtree C can be fully reused.

Figure 1. An example of how the input stream and parse
stack are behaving during incremental parsing.
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Figure 2. An example where non-determinism is used dur-
ing parsing. In both sentences “I saw her duck swim” and
“I saw her duck down”, there is no ambiguity in the final
result, but the word “her” has a different interpretation de-
pending on the final word of the sentence. Therefore, the
parser must explore both possibilities until it encounters the
disambiguating final word.

3 Non-determinism
When a GLR parser reaches a point where multiple actions
are possible, it will split the parse stack into multiple stacks
and run the parsing algorithm concurrently on these stacks,
synchronizing on shift actions [6]. Any stacks that have
no applicable actions are discarded. As long as there are
no ambiguities in the grammar, only one parse stack will
remain.

Example To illustrate this, consider the example in Fig-
ure 2, showing two parse trees for two slightly different Eng-
lish sentences: “I saw her duck swim” and “I saw her duck
down”. Both sentences are not ambiguous in their meaning,
but the words “her” and “duck” do have a different interpre-
tation depending on the last word of the sentence. For the
simplicity of this example, assume that these two sentences
are the only possible valid sentences in English.
If these sentences were parsed using a GLR parser, the

parser would split the parse stack when encountering the
word “her”. One parse stack would explore the possibility
of “her” being a possessive pronoun, while the other would

try to parse “her” as being a regular pronoun. This signals
the start of a non-deterministic region in the input sentence:
the parser can not directly know which interpretation is the
correct one, so it explores all possibilities. Only when the
parser reaches the final word of the sentence, the parser can
discard the parse stack that has the incorrect interpretation
and it continues with the single remaining parse stack, which
ends the non-deterministic region in the input.

Impact on Incrementality Consider the previous exam-
ple in an incremental setting, parsing one sentence after the
other using an incremental parse. The changed word right
after the non-deterministic region causes a different parse
stack to survive. Even though the words “her” and “duck”
have not changed, an incremental parser cannot blindly reuse
the result of the previous parse.
As a result, any parse node that is created during non-

deterministic parsing must be marked as irreusable, so that it
will be broken down during the incremental parse even when
it is unchanged. This forces the parser to explore all possible
interpretations again. In the cases where, after reparsing,
the parser chooses the same interpretation as before, it has
effectively wasted some time reparsing that part.

Impact on Scannerless Parsing SGLR parsing relies heav-
ily on the fact that the parser is non-deterministic because
character-level grammars frequently need arbitrary length
lookahead [9]. Unfortunately, this means that the number
of parse nodes that ISGLR parsing can reuse is a lot less
than for IGLR parsing. It is not yet clear how to reduce non-
determinism in character-level grammars.
According to our measurements, about one-third of all

parse nodes are marked as irreusable when parsing Java
source code. However, on average only 2% of all parse nodes
(of both kinds) were broken down during the experiment of
Figures 4 and 5 in Section 5. The reason for this is as follows:
while some irreusable nodes are exposed along the spine
between the root and the changed regions, the majority of
the irreusable parse nodes are not exposed and therefore the
parser also does not need to break them down.

4 Editor Integration
Code editors can use the incremental result of an ISGLR
parser to incrementally calculate the results of type checking
and compilation, amongst others. In this research project, we
focus on imploding the parse tree to an AST and on syntax
highlighting.
We implemented the ISGLR parser in the Spoofax lan-

guage workbench [3]. In Spoofax, language designers can
specify programming languages declaratively by describing
their syntax, static and dynamic semantics, and transforma-
tions. Spoofax then generates an editing environment for
the language, including syntax highlighting and error check-
ing. Our incremental parser adds to other recent work that
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incrementalizes the Spoofax pipeline, such as an incremen-
tal type checker [1], an incremental build system [4], and
incremental compilation [7].
We implemented the ISGLR parsing algorithm as an ex-

tension to the JSGLR2 parsing algorithm [2]. The modular
nature of JSGLR2 helped to only extend those parts of the
parser that required changes to allow incremental parsing,
resulting in about 1000 added lines of Java code.

Imploding The parse tree that the parser generates con-
tains many details about the input program that are not rel-
evant for further processing. Examples include whitespace
and literal keywords (like if or return). The keywords are
redundant information because they are always the same for
their corresponding grammar rule and whitespace is redun-
dant because it only contributes to the layout of the program,
not the meaning of it.
In Spoofax, imploding is the post-processing step after

parsing that removes this redundant information from the
parse tree, producing an Abstract Syntax Tree (AST) that
can be used in further processing. The baseline algorithm
works in a top-down fashion: after processing a parse node,
it processes the children of this node recursively.

In the design of the incremental imploding algorithm, we
make use of two things. Firstly, we know that the parser
only changed a small part of the parse nodes. All new parse
nodes are reachable from the root of the parse tree via other
changed parse nodes. Put differently, if a parse node is not
changed, we can be certain that all its descendants are also
not changed. Secondly, imploding is an operation that hap-
pens locally on parse nodes: no information of the parent
node or any of the child nodes is required to process the cur-
rent parse node. Because of this, we can store the resulting
AST for each imploded parse node.

The incremental imploding algorithm also processes a
parse tree recursively from the top down, with one key dif-
ference from the baseline algorithm: when encountering a
parse node that already has a resulting AST, we can directly
reuse this result. This ensures that only the parse nodes that
are changed by the incremental parser are processed.

Figure 3. An editor showing syntax highlighting.

Syntax highlighting In most code editors, a program is
displayed to the user using colours to give a visual indication
about the different program elements in the code, as shown in
Figure 3. This is also the case in Spoofax. Language designers
can indicate which program elements get which colour and
Spoofax will show the right colours in the editor.
Spoofax transforms the parse tree that resulted from the

parser into a list of editor tokens, each given the correct
colour based on the grammar rule that the parse node was
created with. It might seem odd to create tokens when one
of the features of scannerless parsing was that no tokens are
required before parsing. However, there is one key difference
with regular tokenization: for these tokens, information from
the parser can be used to determine their type and colour.
This means that the exact same word can be coloured dif-
ferently based on context. Regular tokenizers like Lex only
partially support this by allowing custom C code to be ex-
ecuted and having a mechanism called start conditions [5].
However, this can never be as powerful as a full context-free
parser, simply because then a parser would be unnecessary.
For the incremental syntax highlighter, we store the to-

kens as leaves to the AST and link them together to allow
iterating over the tokens in linear time. Updating tokens in
updated parts of the AST is done in a way similar to im-
ploding: subtrees that did not change can be directly reused
and changed subtrees require reprocessing. In the case of
reprocessing, the links between tokens on the boundaries of
the change must be updated to make sure that iterating over
all tokens uses the most recent tokens.

Figure 4. Parsing times of the JSGLR2 parser and the ISGLR parser on a Java file of almost 100 kB. The yellow squares and
blue triangles indicate the parsing times (left y-axis) for these two parsers, respectively. The red diamonds indicate the number
of changed bytes between each version (right y-axis).
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Figure 5. The same incremental parsing times as in Figure 4,
showing the relation between change sizes and incremental
parsing time.

5 Evaluation
We evaluated the runtime performance of the ISGLR parsing
algorithm. As input to the parser, we use the file differences
between commits in Git repositories. This experimentmodels
how the parser would be used by a developer in their editor
in the case that they would switch between commits in their
local clone of the repository, for example, when they pull the
latest changes committed by other developers. We are still
working on experiments where user input is simulated as
theywould beworking in the editor. The differences recorded
in individual commits vary greatly in size and therefore
cannot be directly used for this scenario.

It is important to distinguish between two types of results:
those for batch parsing (where the full file is parsed from
scratch) and for incremental parsing (where a new version
of the file with a small change is parsed).
Preliminary results show that the ISGLR parser is on av-

erage 13% slower than the JSGLR2 parser when performing
a batch parse. This slight slowdown can be attributed to the
need to store more data to perform incremental updates later.
However, for incremental parses, the ISGLR parser has a

speedup over JSGLR2 ranging from 15% faster (for parsing
all versions of all files in a repository1) to 25 times faster
(for a single file of 90 kilobytes that has changes averaging
700 bytes, with a standard deviation of 1100 bytes2). The
results for the last experiment are shown in Figures 4 and 5.
These figures show a slight correlation between the size of a
change and the time needed by the ISGLR parser to perform
an incremental parse on this change.
So far, our experiments have focused on evaluating just

the parsing algorithm. In upcoming experiments, we will
also evaluate the performance of the incremental imploding
algorithm and incremental syntax highlighting.

1https : / / github . com / metaborg / mb - rep / tree /
e33de52a766a1df6cbef79f069c3ebab822ef6e0
2https : / / github . com / AnySoftKeyboard / AnySoftKeyboard / blob /
16570810a492188687ad074679c74a9114291aa2/app/src/main/java/com/
anysoftkeyboard/keyboards/views/AnyKeyboardViewBase.java

6 Conclusion
Our main contribution is the ISGLR algorithm, which com-
bines SGLR parsing with IGLR parsing. An open challenge
for this algorithm is that typically fewer parse nodes can be
reused than with IGLR parsing due to the non-deterministic
nature of scannerless parsing. However, in typical use cases,
the ISGLR parsing algorithm will still perform better than
the non-incremental variant.

Within this research project, we implemented incremental
algorithms for imploding the parse tree to an AST and for
syntax highlighting. We are still in the process of evaluating
the performance of these editor integration services.
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Appendix C

Spoofax Enhancements

The Spoofax language workbench simplifies the development of programming languages by
generating many of the common features for a language based on declarative specifications.
During my thesis, I have worked on several enhancements of Spoofax that were not directly
related to my research on incremental parsing, but rather served as “side quests”. Some of
these enhancements were significant enough that I did not want to leave them unmentioned.

Unicode Support Before this enhancement, languages created in Spoofaxwere constrained
to use characters in the ASCII range ([\0-\255]). The EOF value was hardcoded to have
value \256, which hindered the full adoption of Unicode in JSGLR and SDF. In a series of
pull requests,1 I refactored the EOF value to be -1 instead and adapted the parser (generator)
code to work with characters wider than 16 bits. The parse table generator now explicitly
handles the EOF as a separate entity, while before, it was just appended to the end of the
character class ranges. In addition, SDF3 now supports binary (e.g., \0b101010), octal (e.g.,
\052), and hexadecimal (e.g., \0x2a) escape codes in character classes, to aid in specifying
Unicode characters with high code point values. An example of a Spoofax language that uses
Unicode characters is shown in Figure C.1.

Figure C.1: A screenshot of Spoofax in Eclipse, showing a language that uses Unicode charac-
ters. The language supports the lambda symbol, emoji for addition and multiplication sym-
bols and the left-pointing arrow, and numbers with combining code points that turn them
into emoji. In this language, identifiers can consist of any characters that are not already used
in the language.

1https://github.com/metaborg/jsglr/pull/72, https://github.com/metaborg/sdf/pull/38, and more
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C. SPOOFAX ENHANCEMENTS

Spoofax Syntax Highlighting in LaTeX Typesetting larger snippets of code in LaTeX with
syntax highlighting is usually done with the listings or minted package. However, these
packages typically only support the most-used General-Purpose Languages (GPLs). Using
them to typeset a Domain-Specific Language (DSL) generally involves a bunch of work-
arounds, including manually listing keywords or manually overriding colours for certain
parts of the displayed code. Therefore, Chiel Bruin and I have automated the typesetting
of languages that are built with Spoofax.2 The implementation is a plugin for the Python
package pygments, which is used by the minted package to generate syntax highlighting in
LaTeX. Our plugin wraps the JSGLR2 command-line JAR3 and converts the resulting tokens
and associated colours to a format that pygments understands. This thesis also makes use of
this tool to typeset code snippets of SDF3, a DSL that is also defined in Spoofax, for example
in Figures 2.7 and 3.1.

Spoofax Dark Theme Many text editors for programming languages (and many other ap-
plications as well) include a dark theme, to reduce eye strain from looking at a bright screen
for a long period. The Spoofax language workbench is implemented as a plugin in Eclipse
and IntelliJ, two major IDEs that have both light and dark themes. However, the languages
generated by Spoofax are fixed to a single colouring scheme, defined in the ESV metalan-
guage.4 This colouring scheme is usually defined to have dark letters on a light background,
so setting Eclipse to use a dark theme makes Spoofax languages unreadable. To resolve this,
I devised a workaround (also known as “hack”) that inverts the lightness of the colours
defined in ESV when Eclipse is using a dark theme,5 which can be used until ESV changes
the way it uses colour schemes. I preferred this over simply inverting the colours since that
results in very bright text colours for most Spoofax languages. An example of a Spoofax
instance in Eclipse with a dark theme is shown in Figure C.2.

Figure C.2: A screenshot of Spoofax in Eclipse, using a dark theme. Top-left: SDF3. Top-right:
Java (default Eclipse colours, not the Spoofax colours). Bottom-left: the Spoofax testing lan-
guage (SPT). Bottom-right: the ATerm language, which describes ASTs.

2https://github.com/ChielBruin/spoofax-latex-tools/#spoofax-pygments
3https://github.com/metaborg/jsglr/tree/master/org.spoofax.jsglr2.cli
4https://www.metaborg.org/en/latest/source/langdev/meta/lang/esv.html#syntax-highlighting
5https://github.com/metaborg/spoofax-eclipse/pull/19
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SLR(1) Parse Table Generation As an unfinished experiment, I have implemented an
SLR(1) parse table generator in SDF3.6 While SLR(1) parse table generation works for most
grammars, it currently does not yet work for layout-sensitive grammars. In addition, it still
needs a configuration option in the properties file of Spoofax languages (metaborg.yaml). I
have used this experimental branch to test if it improves the performance of the ISGLR parser,
but its impact did not look promising enough to finish the implementation. However, it did
help to provide me insight on the different parsing behaviour between LR(0) and (S)LR(1)
parse tables, which I refer to in Sections 3.2 and 3.3.

6https://github.com/metaborg/sdf/pull/27
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