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Abstract
Detecting similarities between (RNA, DNA, and protein) sequences is an important part
of bioinformatics. Among the algorithms used to accomplish this, the Smith-Waterman
algorithm is very popular. A sequential implementation of Smith-Waterman requires
quadratic running time with respect to the length of the sequences. As the amount
of data in this field is continuously increasing, quick analysis through a sequential
implementation is no longer feasible. One way to reduce the running time is by using
parallelism and parallel platforms. There is a great diversity of hardware platforms that
enable parallelism in different ways, each favoring different types of computations. The
subject of this thesis is to understand the performance of the state-of-the-art parallel
implementation of the Smith-Waterman algorithm, PaSWAS, on different parallel
hardware platforms. PaSWAS has been designed and implemented using CUDA, the
proprietary framework from NVIDIA. This choice limits the PaSWAS functionality to
NVIDIA GPUs. By using OpenCL, a platform independent, standard programming
model for many-cores, we enable PaSWAS to run in parallel on other hardware platforms.
We show that, for NVIDIA GPUs, the portability enabled by OpenCL comes at the
expense of performance. We further define a set of platform-specific parameters that
have a high performance impact for the OpenCL implementation, and demonstrate
empirically that their values are different for different hardware platforms. We also
demonstrate that proper partitioning of the sequences can increase parallelism, which
leads to better performance. Lastly, we create a performance estimator which is able to
predict the execution time of the PaSWAS algorithm on different hardware platforms for
given dataset. This enables us to determine a-priori which hardware platform to use for
a given dataset. We conclude that PaSWAS is a very effective parallel implementation
of the Smith-Waterman algorithm, which delivers excellent results for GPUs (in both
CUDA and OpenCL), and can be quite effective on CPUs, too. The performance vs.
portability tradeoff of OpenCL is relevant for PaSWAS, and it is ultimately the choice
of the end user which of the two is more relevant.

Keywords: OpenCL, CUDA, Sequence alignment, PaSWAS, Bioinformatics, Paral-
lelism, Smith-Waterman, Performance estimator

Thesis Committee:
Supervisor: Dr. Ir. Ana Lucia Varbanescu, Faculty EEMCS, PDS, TU Delft
Committee Member: Prof. Dr. Ir. Henk Sips, Faculty EEMCS, PDS, TU Delft
Committee Member: Drs. Sven Warris, Faculty PRI, Wageningen UR
Committee Member: Prof. Dr. Ir. Rini van Solingen, Faculty EEMCS, SERG, TU Delft





Contents

1 Introduction 1
1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . 1
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 What is bioinformatics? . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Sequence alignment within the context of bioinformatics . . . . . . . . . 9
2.4 Sequence alignment outside the context of bioinformatics . . . . . . . . 9
2.5 Processing Units: GPUs and CPUs . . . . . . . . . . . . . . . . . . . . 10
2.6 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Work 19
3.1 Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Parallel implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 OpenCL, CUDA, and portability . . . . . . . . . . . . . . . . . . . . . . 20

4 SeqSWAS 23
4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Calculate the alignment matrix . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Trace back from the alignment matrix . . . . . . . . . . . . . . . . . . . 26
4.4 Output the alignment(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 PaSWAS 29
5.1 Local-Memory in PaSWAS . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Global-Memory in PaSWAS . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Increasing the Granularity . . . . . . . . . . . . . . . . . . . . . . 35

6 Data Transfers 39
6.1 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

i



ii Contents

7 Experiments and Results 43
7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.2 GPU: GTX480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.3 GPU: GTX680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Partitioning 55
8.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Static Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Dynamic Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.3.1 Partitioning Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . 58
8.3.2 Partitioning Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . 59

8.4 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9 Performance Prediction 67
9.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10 Conclusion and Future Work 73
10.1 Contributions and Findings . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 77

Appendix 87

A Appendix A: Work-group configuration 87



Contents iii





CHAPTER 1
Introduction

Detecting similarities between (RNA, DNA and protein) sequences is an important
part of bioinformatics. By comparing/aligning these sequences with each other, one
can determine, for example, whether given sequences are constructed from the same
biological building blocks and/or gain a deeper understanding of the evolutionary aspects
within the field of molecular biology.

1.1 Motivation and Problem Statement
When aligning two sequences, we are looking for the similarity between these sequences.
Sequence alignment can be divided into two major categories: local and global sequence
alignment. With local sequence alignment, we are trying to find the most similar region
within two sequences, whereas with global sequence alignment we are looking for the
overall similarity of two sequences. In this thesis we focus on the Smith-Waterman
algorithm [Smi+81], which is used to solve the local sequence alignment problem.

The run-time complexity of the Smith-Waterman algorithm is given by O(|𝑠| × |𝑡|),
when aligning two sequences 𝑠 and 𝑡 (here, |𝑥| signifies the length of a certain sequence
𝑥). This problem can be regarded as a polynomial optimization problem, which resides
in the complexity class 𝑃𝑂 [Aus99]. Optimization problems that reside in this class
tend to be characterized as efficient and tractable. However, when the length of the
sequences increases (i.e., |𝑠| and |𝑡| are very large), a quadratic growth in the execution
time is expected. As the databases of sequences are continuously growing[CS 14], the
time needed to align the sequences in these databases also increases considerably. Thus,
it is important for biologists to accelerate the execution time of the Smith-Waterman
algorithm.

One way to achieve this acceleration is by parallelizing the algorithm, and using
multiple computing units (that collaborate to solve the task at hand) instead of one
single processor. Ideally, this leads to a reduction of execution time proportional to the
number of processors used, but the exact gain is entirely dependent on the application.
For example, utilizing two processors will not necessarily reduce the execution time
by 50%. Such behaviour is typically due to processors not being able to perform the
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2 1 Introduction

computations completely independent of each other.
To enable parallelism at the platform level, one can use multi-core CPUs or clusters

of multi-core CPUs. These solutions focus on coarse-grained parallelism: each node
and/or core is responsible for processing a large chunk of data. Another approach is
to harness the power of a graphics processing unit (GPU) as an accelerator. A GPU is
a hardware device which enables fine grained parallelism: each core only evaluates a
very small piece of the data. However, the number of available cores is much larger for
a GPU than for a CPU (because GPUs are designed for graphical processing, which is
characterized by massively parallel but relatively simple computations), and it is often
the case that the theoretical peak performance of a GPU is much higher than that of a
CPU.

In short, both these families of hardware platforms enable parallelism, but which one
of them is the most suitable for the Smith-Waterman algorithm is not yet known. This
thesis focuses on giving an empirical solution to this challenge.

In order to exploit the diversity of available parallel hardware platforms, thus proposing
the most efficient solutions for the Smith-Waterman algorithm, we must understand
how these platforms behave in the context of this application. Therefore, the main
objective that drives our research is to understand the performance of the Smith-
Waterman algorithm on different types of hardware platforms.

1.2 Approach
This thesis focuses on the performance of the Smith-Waterman algorithm. Specifically,
we use a state-of-the-art implementation called PaSWAS [War+15]. PaSWAS is imple-
mented to use CUDA, a proprietary framework provided by NVIDIA [Nic+08] for its
own graphical processing units (GPUs). Thus, in its original state, PaSWAS can only
use NVIDIA GPUs to achieve performance improvement over the sequential version of
the algorithm.

To also enable a parallel execution on multi-core CPUs, we must choose a programming
model that allows portability among multiple devices - like OpenCL or OpenACC.
For example, OpenCL [Sto+10] offers functional portability across several platforms
(including NVIDIA GPUs), with minimal code changes. Its generality does not necessarily
decrease the performance on a specific platform [Du+12]. However, it is not known
whether OpenCL brings additional performance penalties compared to CUDA. Therefore,
our first research question is:

• (R1): Can we achieve similar performance on a NVIDIA GPU when porting the
CUDA code of PaSWAS to OpenCL?

By answering this question, we can determine whether OpenCL is a viable alternative
to the proprietary framework of CUDA for our particular application. Our empirical
evaluation will determine whether the use of OpenCL for the Smith-Waterman algorithm
is feasible and efficient, without significant performance losses compared with the version
that uses CUDA.
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We further extend our horizon, aiming to determine what are the parameters which
determine a significant performance increase or decrease for our OpenCL implementation.
We focus on the parameters which are both application-dependent and hardware-specific.
Thus, we aim to answer the following research question:

• (R2): Which are the platform-specific parameters that have a high performance
impact?

To answer this question, we create several PaSWAS implementations, each enabling a
specific set of parameters. We empirically assess these versions and determine which set
of parameters leads to the best performance, depending on the platform.

Within PaSWAS, the size of the sequences and targets can be very different. To allow
for uniform processing, sequences in a database are padded to the length of the largest
sequence. In the same time, there is strong correlation between the length of a sequence
and the amount of parallelism that processing that sequence exhibits. In general, longer
sequences tend to have less parallelism compared to shorter ones. Thus, treating all
sequences as the largest sequence might incur significant performance penalties. To
circumvent this issue, we must investigate smarted partitionings of the datasets into
manageable lengths. Our third reseacrh question is:

• (R3): How can we partition a dataset to enable the most parallelism?

To answer R3, we designed and implemented three partitioning algorithms. We
empirically determine which one leads to the highest peformance improvement (compared
to the current scheme used in PaSWAS) and recommend it for further usage in PaSWAS
- for CUDA and OpenCL, CPUs and GPUs alike.

The calculations done within PaSWAS can take a significant amount of time. Further-
more, different devices and their capabilities can result in significantly large performance
differences in achieved performance. For both these reasons, we need a performance
estimator able to predict the execution time of PaSWAS with a new dataset on different
devices. Therefore, we investigate the possibility of building such a predictor:

• (R4): Can we provide a performance predictor that can estimate the performance
of PaSWAS on a given platform, with a given dataset?

To answer this question, we build a model-based predictor by exploiting the inherent
execution structure of the PaSWAS algorithm together with data characteristics (which
are known before hand) and the hardware platform parameters. We further verify the
accuracy of the prediction empirically.

1.3 Thesis Structure
The rest of the thesis is organized as follows. Chapter 2 provides a brief introduction
into bioinformatics, and provides a high-level comparison between OpenCL and CUDA.
To demonstrate the usage of OpenCL in practice, we also discuss an implementation
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of matrix multiplication. In Chapter 3, we summarize prior research on the topics
related to our study. We briefly assess representative work and discuss how it influences
and how it differs from our work. In chapter 4, we present a sequential counterpart of
PaSWAS. We discuss PaSWAS in greater detail, in chapter 5. One of the important
performance challenges in PaSWAS is related to the data transfers between devices.
We analyze the benchmarking results for these transfers in chapter 6, providing a clear
overview on which choices should be made in the real application. 7. We focus on the
performance of PaSWAS on different platforms, using different features. In chapter 8,
we describe the three partitioning algorithms we have developed in order to achieve
more parallelism. Our experimental results are presented in detail in chapter In chapter
9 we describe our performance prediction model, its validation and its usability. We
will conclude this thesis in chapter 10, which presents our conclusion - together with
the main contributions and limitations we found in this study - and sketches promising
directions for future research.



CHAPTER 2
Background

2.1 What is bioinformatics?
In this section, we briefly discuss the field of bioinformatics and how it intersects with
computer science and biology. The field of bioinformatics originated from the necessity
to analyse the ever growing biological data. Manual (that is, by human labour) analysis
of the aforementioned data became impractical, therefore tools had to be created to
automate the process of dissecting the biological data. These tools are (partially)
grounded in the field of computer science.

Biological data includes DNA (DeoxyriboNucleic Acid) , RNA (RiboNucleic Acid)
and protein sequences. DNA sequences are located within every cell of a living organism,
these DNA sequences store biological information. This information can range from
the colour of your eyes, the scent of a rose and the way in which a bacteria infects a
lung cell. More specifically, DNA encodes the instructions for building protein molecules
(proteins play a vital role in the nourishment of cells) [Cla08].

RNA molecules interpret the instructions encoded in the DNA and act accordingly by
creating proteins within this cell [JE +90]. The aforementioned process of transitioning
from DNA to proteins was introduced in [Cri70]. This article has adopted the name of
the central dogma of molecular biology. Figure 2.1(a) provides a schematic overview of
this process, commonly known as general information transfer.

The most important elements of the aformentioned dogma are given by replication,
transcription and translation. Before examining these elements more closely, we will
provide a quick overview of the structure of DNA and RNA sequences.

Both RNA and DNA sequences belong to the classes of nucleic acids and are composed
of repeated units of nucleotides. A single nucleotide consists of nitrogenous base which
can either be Cytosine (C), Guanine (G) or Adenine (A) (A and G are called purines).
Nucleotides in DNA sequences introduce an additional base, which does not occur in
RNA sequences, namely Thymine (T). However, RNA sequences also have an additional
base: Uracil (U) which is a replacement for Thymine (U, T and C are regarded as
pyrimidines). Besides of having a nitrogenous base, a nucleotide is composed of a (carbon

5
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𝐷𝑁𝐴

𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

�� 𝑇 𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 // 𝑅𝑁𝐴
𝑇 𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 // 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠

(a) General information transfer

𝑅𝑁𝐴

𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

�� 𝑅𝑒𝑣𝑒𝑟𝑠𝑒 𝑇 𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛// 𝐷𝑁𝐴
𝑇 𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 // 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠

(b) Special information transfer

𝑅𝑁𝐴 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠oo
��

// 𝐷𝑁𝐴

(c) Unknown information transfer

Figure 2.1: Information transfer between DNA, RNA, and proteins

based) sugar molecule and a phosphorus containing region (also known as phosphate
group). A nucleotide from a RNA sequence contains the sugar molecule ribose, whereas
in DNA sequences the sugar molecule is deoxyribose.

Figure 2.2: Structure of both DNA and RNA. In addition the molecular structure of the
nitrogenous bases are displayed.

Figure 2.2 represents the structures of DNA and RNA sequences, in addition the
molecular layout of the 5 nitrogenous bases are displayed. We can observe from figure
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2.2 that a RNA sequence contains one strand of nucleotides. Whereas DNA sequences
have two strands of nucleotides, which are connected by their bases. Only a subset of
nitrogenous bases can be paired, these are dictated by the Watson and Crick base pairs.
The bases that can be paired are: Adenine with Thymine (or Uracil) and Guanine with
Cytosine. Both RNA and DNA strands have a sense of directionality, the different ends
of these strands are called 5’ and 3’. With DNA sequences the two strands are connected
by their different ends, that is the 5’ end of one strand is connected with 3’ end of the
other strand.

Cells reproduce continuously (for example to replace worn-out cells), DNA replication
provides a cornerstone for this reproduction. As the name of this process already implies,
DNA replication tries to create an two exact copies of a cell’s DNA. The group of
enzymes that perform these replications are DNA polymerases. Both of the (existing)
DNA strands act as a template for the newly replicated strands. The enzymes cannot
create a new strand, however they can extend existing ones. To this end a small RNA
sequence, a primer, is used to initiate the replication. Figure 2.3 illustrates this process
for a single strand of DNA. In the example the sequence TGGAC acts as a primer.
Additionally the figure illustrates that the nucleoside (the same as a nucleotide but
without the phosphate group) are extended from 3’ end side.

Figure 2.3: The process of a single strand DNA replication.

Transcription provides the conversion between a DNA sequence to a RNA sequence,
the resulting RNA sequence is called mRNA (messenger RNA). mRNA should contain
the information creating proteins. The process for constructing the mRNA sequence
is similar to that of DNA replication however instead of using both strands only a
single strand is used (the one in which a specific protein is encoded). The process of
transcription is initiated by an enzyme called RNA polymerase. We will distinguish
between two strands located in the DNA, template and coding strand. The template
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strand is used to construct the mRNA, employing the rules of the Watson-Crick base
pairs. Note that the mRNA sequence should be similar to the coding strand except for
the replacement of Thymine with Uracil.

Figure 2.4: Depiction of a cell and the corresponding steps to create a protein.

From figure 2.4 we can see that transcription occurs inside the cell’s nucleus. The last
phase, translation, transpires outside of the nucleus more specifically in the cytoplasm.
With translation the actual protein is constructed. The transcribed mRNA (outside
of the nucleus) interacts with a specialized complex called ribosome. The ribosome
reads the mRNA. Each sequence of three bases, called a codon, usually codes for one
particular amino acid, (amino acids are the building blocks of proteins). A type of RNA
called transfer RNA (tRNA) assembles the protein, one amino acid at a time. Protein
assembly continues until the ribosome encounters a stop codon (a sequence of three
bases that does not code for an amino acid).

Two other types of information transfers are also described in the aformentioned
dogma. These are special and unknown transfers which only occur by human intervention
or don’t occur at all.

2.2 Sequence alignment
A commonly used algorithm within the field of bioinformatics is sequence alignment
[Kle+06]. With (global) sequence alignment, one wants to measure how similar two
different sequences are to each other. The aforementioned algorithm can be classified as
a dynamic programming algorithm. Characteristic of a dynamic programming algorithm,
constructed for a certain problem, is that the problem at hand can be solved by solving
its subproblems. If we have two sequences 𝑠 = 𝑠1 . . . 𝑠𝑛 and 𝑡 = 𝑡1 . . . 𝑡𝑚 we can establish
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the following recurrence relationship for the sequence alignment problem:

𝐴(𝑖,𝑗) = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴(𝑖 − 1,𝑗 − 1) + 𝑊 (𝑠𝑖,𝑡𝑗) (1).
𝐴(𝑖,𝑗 − 1) + 𝑔𝑎𝑝 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑖𝑛 𝑠 (2).
𝐴(𝑖 − 1,𝑗) + 𝑔𝑎𝑝 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑖𝑛 𝑡 (3).
0

(2.1)

In 2.1 𝐴(𝑖,𝑗) indicates the alignment score between 𝑠𝑖 and 𝑡𝑗 . Thus, within the
sequence alignment problem we can (1) either leave the sequences as are, by aligning 𝑠𝑖

and 𝑡𝑗 , using the scorings matrix 𝑊 , or (2) and (3) introduce a gap in either sequences
(case (2) and case (3)).

2.3 Sequence alignment within the context of bioinformatics
Within the context of bioinformatics, local sequence alignments are often preferred (e.g.
Smith-Waterman algorithm) to compare strands of DNA (or strands of RNA for that
matter) instead of global sequence alignments (e.g. Needleman-Wunsch Algorithm).
With local sequence alignments, we are interested in subsets 𝑥 ⊆ 𝑠 and 𝑦 ⊆ 𝑡 such that
the alignment between 𝑥 and 𝑦 is maximal (or at least it has a sufficient alignment
score). The input to the alignment algorithm is defined as: 𝑠𝑖 and 𝑡𝑗 ∈ {𝐴,𝐶,𝐺,𝑇}
or {𝐴,𝐶,𝐺,𝑈}. Thus the sequences 𝑠 and 𝑡 are comprised out of repeated units of
nitrogenous bases. Local/global sequence alignments for this kind of data is useful since
we can infer things like common ancestry (homology) when comparing the DNA of two
different organisms.

2.4 Sequence alignment outside the context of bioinformatics
A rather obvious application, outside the context of bioinformatics, which employs the
sequence alignment algorithm can be a proofing tool integrated into a word processor.
In the aforementioned case the sequences 𝑠 and 𝑡 are words from the natural language.
The sequence 𝑠 will be a misspelled word typed by a user whereas 𝑡 is the suggested
word given by the proofing tool. In addition, the sequence alignment algorithm can be
used to detect plagiarism [Irv04] i.e. the algorithm can determine if two submissions are
very much alike.

A not so apparent application for sequence alignment is to detect code clones (as is
done in the following implementation: https://github.com/jruoff/CloneGrid). In
this case 𝑠 and 𝑡 represent the source code from a certain programming language (i.e.
the contents of hello.c or hello.cpp) and the elements 𝑠𝑖 and 𝑡𝑗 represent a single line of
code. If there is a high alignment score this can indicate that the coder is adopting a
copy/paste behaviour of writing code.

https://github.com/jruoff/CloneGrid
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2.5 Processing Units: GPUs and CPUs
As data tends to increase[CS 14] one needs to find ways to efficiently (i.e. within an
acceptable time frame) process the data.

One way to gain a performance boost is to process data (if applicable) in parallel instead
of sequentially. Using CPU based libraries like OpenMP[Ope14] the aforementioned can
be achieved relatively easily (i.e. by placing a pragma above a for-loop, to indicate that
the loop has to be processed in parallel).

The number of processing units within (commercially available) CPUs are quite
limited, thus when (big) data is partitioned among the processing units, each processing
unit still has to process a significant amount of data.

Another paradigm has arisen to enable parallelism, namely the use of GPGPUs
(General-purpose computing on graphics processing units). That is, using GPUs for
other tasks then graphical processing. GPGPUs are used within numerous scientific
fields. These fields include, but are not limited to, astronomy, biology and computational
finance. GPUs are inherently designed to compute in a massively parallel environment,
since these types of computations are needed for graphics rendering. Due to the large
number of processing units that are available within a GPU, the data that has to be
processed by one processing unit is reduced dramatically.

Figure 2.5: Architectural difference between a CPU and a GPU (image courtesy of
NVIDIA).

Figure 2.5 provides a schematic overview of both a multi-core CPU and a GPU (more
specifically a GPU with one streaming multiprocessor). As can be seen from figure 2.5,
a GPU consists of many processing units (a processing unit is characterized by a single
control and cache unit combined with one or more ALU circuits, to allow for threaded
computation). This is in contrast of what is depicted for the CPU, that is a CPU
consists of a single (bigger) cache and (a more complex) control unit. In addition a CPU
has less ALU circuits. GPGPU solutions will flourish when an algorithm has a high
arithmetic intensity (computations are dominant factor to influence the performance of
the algorithm instead of memory accesses).
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2.6 CUDA
CUDA (Compute Unified Device Architecture) is a parallel computing architecture for
C/C++ and is created by NVIDIA. With CUDA a GPU (Graphical Processing Unit),
manufactured by NVIDIA, can be used as a GPGPU.

A CUDA application consists of two separate code bases namely the host and the
kernel. Commonly the host code will run on a CPU whereas the kernel is executed on a
device. These devices are restricted to GPUs manufactured by NVIDIA. The purpose
of the host is to facilitate memory management. That is, allocating memory blocks on
the device and freeing these blocks when they are not needed anymore. In addition the
host can read from and write to the allocated memory blocks.

Figure 2.6 gives a more elaborate view on how data is processed on a GPGPU platform.
First data is copied from the main memory (which is accessible from the host) to the
memory of the GPU. Typically, main memory is larger than GPU memory. When the
data has been transferred from the host memory (main memory) to the device memory,
the device is able to process this input data and generate output data (on the device
memory). Eventually the output data is transferred back to the main memory by the
host.

Figure 2.6: Data processing on a GPGPU platform (image courtesy of NVIDIA).

The actual algorithm (or a part of the algorithm that can be efficiently parallelized)
is written in the kernel. The kernel gets executed on the device through a call within
the host code (indicated by step 2 and 3 in figure 2.6).

CUDA adheres to the so called SIMT (Single Instruction Multiple Threads) execution
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model, meaning that each thread (spawned from a processing unit within a streaming
multiprocessor) will execute the same instructions. These instructions are dictated by
the kernel.

As is displayed by figure 2.7, a kernel gets executed within a grid. A grid is a collection
of blocks. These blocks are then further subdivided into threads. Both the grid and
block sizes are configurable by the programmer. The streaming multiprocessor can
execute multiple blocks in parallel 1. Thus when more blocks are scheduled on the
multiprocessor the level of parallelism increases and subsequently the performance of
the algorithm should increase. The maximum number of blocks that can be executed
concurrently is limited by the GPU’s hardware.

Figure 2.8 provides an overview of the memory hierarchy within CUDA. There are 4
memory types each ranging in size and access time, these are (sorted from largest in
size and highest access time to smallest in size and lowest access time): global memory,
constant memory, shared memory and registers.

Transferring data between the host and device can only occur in both the global
and constant memory. Constant memory has the property that it does not allow to be
written to by the threads participating in the kernel execution (data remains constant,
is not variable). Whereas global memory allows for both reading and writing by the
threads. In addition constant memory tends to be cached and thus providing faster
access than global memory. Both global and constant memory are shared among every
block in a kernel execution grid.

Proper use of the memory types could have a performance enhancing effect. For
example one wants to minimize the accesses to global memory, in the kernel, since
retrieving (and writing) data from (to) global memory is expensive. To circumvent
the problem of continuously accessing global memory, shared memory is used. Shared
memory is shared among the threads in the same thread block, access to this type of
memory is significantly faster than global memory. Thus if a certain global memory
access pattern has been established within a thread block, e.g. certain data elements are
accessed more frequently, the overall performance will be positively influenced if these
data elements are put in the shared memory and accessed from the shared memory.
Registers are thread specific storage units.

1 internally blocks are processed in warps. These warps are collection of 32 threads that are launched
and (usually) executed together, this is actually what the SIMT principle encompasses. The warp
size is not configurable by the programmer
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Figure 2.7: CUDA’s kernel execution model (image courtesy of NVIDIA).
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Figure 2.8: CUDA’s memory model (image courtesy of NVIDIA).
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2.7 OpenCL
As already stated, CUDA works solely for GPUs that are manufactured by NVIDIA.
OpenCL (Open Computing Language), on the other hand, subjects its framework to
an array of hardware devices, and it is not necessarily restricted to one vendor. These
devices include FPGAs, DSPs, GPUs and CPUs. In this thesis, the latter two are
considered.

OpenCL is managed by the Khronos group, a group devoted to creating open standards
for accelerating parallel computing, graphics, dynamic media, computer vision and sensor
processing on a wide variety of platforms and devices. The OpenCL framework uses a
C/C++ like interface.

Architecturally, CUDA and OpenCL are strikingly similar. Just like with a CUDA
implementation (see Section 2.6), OpenCL requires two code bases: the host and the
kernel code. However a significant difference is that a kernel can be executed on both
GPU and CPU devices. In OpenCL, these devices are partitioned into one or more
compute units. A compute unit is further divided into a number of processing elements.
The aforementioned is displayed in figure 2.9, which shows the platform model of
OpenCL.

Figure 2.9: OpenCL’s platform model (image courtesy of the Khronos group).

The platform model of OpenCL resembles the architecture of a GPU (see Section 2.5).
A compute unit can be seen as a streaming multiprocessor. In addition a processing
element can be considered as a core within the streaming multiprocessor. Although the
platform model of OpenCL is not optimized for CPU architectures (since the platform
model resembles the architecture of a GPU) recent research indicates[J S+13][J S+12]
that OpenCL still is a viable alternative to efficiently enable parallelism on CPUs.

The kernel gets processed over an index space called N-Dimensional Range (NDRange).
The NDRange is the equivalent of a grid in CUDA. An NDRange consists of a set
of work-items (equivalent to threads in CUDA). These work-items are grouped in a
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work-groups (equivalent to blocks in CUDA). Compute units are able to process multiple
work-groups in parallel. Figure 2.10 presents a 2-dimensional NDRange (OpenCL also
allows the creation of 1 and 3-dimensional NDRanges). The similarities between the
elements that are involved in CUDA’s and OpenCL’s kernel executions are depicted in
table 2.1

Figure 2.10: 2-dimensional NDRange (image courtesy of Khronos group).

Table 2.1: Similarities of the elements that are involved in the kernel execution between
CUDA and OpenCL.

CUDA OpenCL
Grid NDRange
Block Work-Group
Thread Work-Item

Also the memory hierarchy that OpenCL introduces is highly similar with that of
CUDA (see figure 2.8). The four memory types that OpenCL introduces are global,
constant, local, and private memory.

The global and constant memory types can be accessed by every work-item. However
constant memory is (cached) read only memory, whereas global memory facilitates both
reading and writing.

Local memory is accessible by work items within the same work group (the CUDA
equivalent of local memory is shared memory). The type of memory which can only be
accessed by a single work-item is called private memory (the CUDA equivalent for this
type of memory are registers). Table 2.2 outlines the similarities between the memory
models of CUDA and OpenCL.
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Table 2.2: Similarities of memory types between CUDA and OpenCL

CUDA OpenCL
Global Global
Constant Constant
Shared Local
Register Private





CHAPTER 3
Related Work

In this chapter, we survey related work. Specifically, we briefly discuss different al-
gorithms that solve the sequence alignment problem, we present alternative parallel
solutions to accelerate the Smith-Waterman algorithm, and we address the issue of
(performance) portability in OpenCL, which plays an important role in our multi-device
analysis.

3.1 Sequence alignment
In the early days of protein sequence comparison, most known related proteins were
compared over their whole lengths. In this case, global sequence alignment would be
sufficient. However, soon proteins that shared only isolated regions of similarity were
found [Mor99]. Extracting these regions is difficult through the use of the "global"
Needleman-Wunsch algorithm [Nee+70]. To respond to these kinds of alignments, the
Smith-Waterman algorithm [Smi+81] was constructed. Computationally wise, both
these algorithms have the same sequential running time O(𝑛 × 𝑚) when aligning a
sequence of length 𝑚 to a another sequence of length 𝑛. That is, in both cases an
alignment matrix is constructed of size 𝑛 × 𝑚. However, the way in which a maximum
scoring alignment is retrieved does differ between these algorithms.

With the Needleman-Wunsch algorithm, we can only choose entries from the last row
or column as a starting point for an alignment. For the Smith-Waterman algorithm, we
are not limited by this constraint. Both of these algorithms are exact, meaning that
they always produce the most similar alignment between two sequences (or, in the case
of local sequence alignment, the most similar region).

The exact Smith-Waterman algorithm was becoming too slow on the rapidly increasing
datasets. Therefore, various heuristics have been developed to improve the runtime on
large datasets. For example, BLAST [Alt+90] and FASTA[Lip+85] are both heuristics
that solve the sequence alignment problem much faster, but without guaranteeing to
extract the most optimal alignment.
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3.2 Parallel implementations
To allow both fast execution and an exact solution, a lot of research has been conducted
to determine how effectively can the the Smith-Waterman algorithm parallelized - i.e.,
how much performance can be gained from parallelism.

We can identify two different directions for parallelization: intra-sequence [Woz97]
and inter-sequence [Rog11]. Inter-sequence parallelization is useful when many pairs of
sequences need to be aligned simultaneously. Intra-sequence parallelization performs
parallelization for each single pairwise alignment. PaSWAS [War+15] enables both types
of parallelization.

In [Man+08], one of the first implementations of the Smith-Waterman algorithm in
CUDA is explored. The authors convey the legitimacy of using a GPU for performing
sequence alignments, based on the argument that the speed-up achieved over the heuristic
BLAST is 2.4x (thus, the first CUDA implementation is faster and exact). Furthermore,
the CUDA implementation is compared to a CPU-based solution described in [Far07]. It
is noted that the CPU implementation outperforms the CUDA implementation for longer
sequences. This observation further justifies the need for an in-depth study on how a
specific hardware platform influences the performance of the parallel Smith-Waterman
algorithm.

All these implementations utilize an affine gap penalty score, which means that
we have a different score for opening and extending a gap. In addition, each of the
implementations steps do not take the trace back step into account. Compared with
these versions, the starting algorithm for our study is the most advanced: it produces
exact solutions, it is fast, and it enables the alignment of large sequences.

3.3 OpenCL, CUDA, and portability
The differences between CUDA and OpenCL have been thoroughly analyzed. For
example, in [Fan+11; Kom+10] thorough analysis is conducted to determine the expla-
nation of the performance gap between these two parallel programming frameworks. To
this end, the authors, critically evaluate the generated PTX code (a pseudo-assembly
language for CUDA and OpenCL when used in conjunction with NVIDIA GPUs) of both
CUDA and OpenCL. This code can be used to understand how different optimization
decisions are taken by the CUDA and/or OpenCL compilers. The authors identify
several optimization techniques which are automatically enabled by CUDA and should
be done manually if one wants have a performance-comparable OpenCL implementation.
One of these optimization techniques was also found during our research, namely CUDA
automatically enables loop unrolling[Aho86], while in OpenCL this is not done by
default.

With regard to the interplay of OpenCL with CPUs, the authors of [J S+13] have
defined a set of performance traps that should be avoided when programming in OpenCL
for a CPU device. The architectural model of OpenCL somewhat resembles the hardware
architecture of a GPU, therefore we have an inherent architectural mismatch between a
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CPU and a GPU. Careful code specialization should be performed to allow OpenCL
code to obtain good performance on the CPU. According to the authors of [J S+13],
the most important mismatches are appear due to the parallelism granularity and
memory model. OpenCL assumes fine-grained parallelism, i.e., each core performs a
small amount of work, but CPU cores are equipped for larger workloads (i.e., multi-core
CPUs prefer coarse-grained parallelism). In addition, the memory model that OpenCL
uses does not directly map to a CPU. This is especially hurtful, performance-wise, for
local memory, which typically leads to performance improvements when used on the
GPU, and performance penalties when used on CPUs. This mismatch happens because
the OpenCL local memory does not map to a specific cache, but rahter to the global
memory itself. When creating our OpenCL PaSWAS implementation, we took into
account these differences, and quantified the impact of these perfrmannce parameters
for each platform, CPU or GPU.





CHAPTER 4
SeqSWAS

We will explore the sequential solution to the Smith-Waterman algorithm, in this chapter.
This algorithm is used to calculate the speedup (i.e., achieved performance benefit) of
our parallel implementations. The sequential algorithm has adopted the name SeqSWAS
which stands for Sequential Smith-Waterman Alignment Software.

We can distinguish four steps within the execution of SeqSWAS, these are:

1. Initialize the datastructure
2. Calculate the alignment matrix
3. Trace back from the alignment matrix
4. Output the alignment(s)

4.1 Initialization
In the initialization phase, two files are read from the filesystem: the sequences and the
targets. Both of these files are composed out of one or more sequences with variable
length (for a more elaborate view on what type of data these sequences contain we refer
you to 2.2). While reading these sequences into memory they are padded to a constant
length. This constant length is determined by the size of the largest sequence.

Thus, if we have two sequences 𝑠0 and 𝑠1 and |𝑠0| > |𝑠1| in a single file, sequence 𝑠2
is padded with the character 𝑥 such that |𝑠0| = |𝑠1|. The padded sequences are then
concatenated and stored in a variable 𝑆 = 𝑠0𝑠1. The padding scheme, facilitates a
somewhat trivial manner to retrieve a single sequence 𝑠𝑖 from 𝑆.

Because the padded characters are added artificially (i.e., these characters were not
present in the original data), aligning characters to 𝑥 will result in a very low alignment
score. In this way we do not compromise the overall result of the alignment, since the
Smith-Waterman algorithm is a maximization problem, i.e., we are looking for high
alignment scores. From now on, we will consider 𝑠0 and 𝑡0 as the largest sequence, and
target, respectively.

(i.e., 𝑠0 > 𝑠𝑖 voor alle i>0 and 𝑡0 > 𝑡𝑖 voor alle i>0)

23



24 4 SeqSWAS

4.2 Calculate the alignment matrix
After the initialization phase, the actual alignment matrix 𝐴 can be calculated. Each
element 𝑎𝑖𝑗 , where 1 ≤ 𝑖 ≤ |𝑠0| and 1 ≤ 𝑗 ≤ |𝑡0|, is computed using the recurrence
relationship defined in 2.1. The variables |𝑠0| and |𝑡0| represent the length of the longest
sequence and target. An example of an alignment matrix is given below:

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 . . . 0
0 𝑎11 𝑎12 𝑎13 . . . 𝑎1|𝑡0|
0 𝑎21 𝑎22 𝑎23 . . . 𝑎2|𝑡0|
...

...
...

... . . . ...
0 𝑎|𝑠0|1 𝑎|𝑠0|2 𝑎|𝑠0|3 . . . 𝑎|𝑠0||𝑡|

⎤⎥⎥⎥⎥⎥⎦
Figure 4.1: The initialization of the alignment matrix

The first row and column of the matrix 𝐴 are padded with 0, to simplify the process
of evaluating the recurrence relationship. The pseudocode for generating the remaining
values 𝑎𝑖𝑗 is presented in Algorithm 1.

From Algorithm 1 we can see that an element 𝑎𝑖𝑗 can either originate from its
upper (𝑎𝑖−1𝑗), left (𝑎𝑖𝑗−1) or upper left (𝑎𝑖−1𝑗−1) neighbor. In the former two cases we
introduce a gap score and in the latter case we align 𝑠𝑖 with 𝑡𝑗 and use the matrix 𝑊 to
determine the (mis)alignment score of these two characters. Figure 4.2 provides a visual
representation of the aforementioned. If all of these values are negative, 𝑎𝑖𝑗 remains 0
and the direction from which 𝑎𝑖𝑗 originates is undetermined (this refers to the direction
ND in algorithm 1, which stands for No Direction).Thus every element in the alignment
matrix is positive (i.e., ≥ 0)

𝑎𝑖−1𝑗−1 𝑎𝑖−1𝑗

𝑎𝑖𝑗−1 𝑎𝑖𝑗
𝐺𝑎𝑝
oo

𝐺𝑎𝑝

OO

𝑊 (𝑠𝑖,𝑡𝑗)

ee

Figure 4.2: The dependencies between elements of the alignment matrix

Within the calculation of the alignment matrix we also keep track of the overall
maximum (which is signified by the variable 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑎𝑥 in Algorithm 1) and the
direction from where a score originated, stored in the matrix 𝐷 (using the abbreviated
form of the direction: U(p), L(eft) and U(pper)L(eft)). These elements are added to
simplify the process of tracing back.
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Input: Sequence s, Target t, 𝑠0, 𝑡0
Output: Matrix A, Matrix D, global_max
A[𝑠0+1][𝑡0+1] = {0};
D[𝑠0][𝑡0] = {0};
global_max = 0;
for 𝑖 = 1 . . . 𝑠0 do

for 𝑗 = 1 . . . 𝑡0 do
score=0;
direction=ND;
// Compute surrounding values
up=A[i-1][j]+gap;
left=A[i][j-1]+gap;
upper_left=A[i-1][j-1]+W(𝑠𝑖,𝑡𝑗);
if up > score then

score = up;
direction = U;

end
if left > score then

score = left;
direction = L;

end
if upper_left > score then

score = upper_left;
direction = UL;

end
A[i][j] = score;
D[i-1][j-1] = direction;
global_max = max(score,global_max);

end
end

Algorithm 1: Sequential alignment matrix calculation
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4.3 Trace back from the alignment matrix
The trace back routine is responsible for generating the (higher scoring) alignments. To
this end, we introduce a new data structure, namely a list of StartingPoint objects. In
addition we utilize the Direction matrix 𝐷 constructed in Algorithm 1. A StartingPoint
indicates from where in the alignment matrix 𝐴 to start the trace back.

Element 𝑎𝑖𝑗 is chosen as a StartingPoint when it has a sufficiently high alignment score
(i.e., 𝑎𝑖𝑗 ≥ 𝑥 × 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑎𝑥 where 𝑥 is configurable by the user, most commonly such
that 0 < 𝑥 ≤ 1 ). When a StartingPoint has been found, the actual trace back can be
conducted. That is, we want to determine the path that was taken to this StartingPoint.

This path is recorded within the direction matrix 𝐷. The end of an alignment is
indicated by an 𝑎𝑥𝑦 for which 𝑎𝑥𝑦 = 0. Note that these elements have an undetermined
direction (ND), therefore the path of the alignment can not be extended any further.
Thus the end of an alignment is indicated by a neighbour who has a direction equal to
ND. To indicate this end, a new direction type is introduced: stop direction (SD). The
pseudocode for the trace back routine is presented in Algorithm 2

When 𝑎𝑖𝑗 is marked, it has a negative value. Because each element is positive
(𝑎𝑖𝑗 ≥ 0), when 𝑎𝑖𝑗 < 0 we can consider it to be marked. An important thing to note
about algorithm 2 is that the Matrix 𝐴 is evaluated from element 𝑎𝑋𝑌 . . . 𝑎11 whereas
with Algorithm 1 the elements are processed in the order of 𝑎11 . . . 𝑎𝑋𝑌 .
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Input: 𝑠0, 𝑡0, Matrix A, Matrix D
Output: StartingPointList
for 𝑖 = 𝑠0 . . . 1 do

for 𝑗 = 𝑡0 . . . 1 do
score = A[i][j];
if score is sufficiently high ∧ unmarked then

set score as StartingPoint;
Add StartingPoint to StartingPointList;
mark score;

end
// Perform actual trace back
while score is marked do

Determine neighbor of score by looking at matrix D[𝑠𝑐𝑜𝑟𝑒𝑖][𝑠𝑐𝑜𝑟𝑒𝑗 ];
set score to neighbors value (e.g A[i-1][j],A[i][j-1] or A[i-1][j-1]);
if score equals 0 then

D[i][j] = SD;
else

mark score;
end

end
end

end
Algorithm 2: Sequential trace back calculation

4.4 Output the alignment(s)
Using the data generated by Algorithm 2, the actual alignments can be presented to the
user. By iterating through the StartingPoint list and using the Direction matrix, we can
determine how a sequence 𝑠 = 𝑠1 . . . 𝑠𝑠0 is aligned to a target 𝑡 = 𝑡1 . . . 𝑡𝑡0 . That is, we
can present to the user where a gap is placed (in either the sequence or the target), or
which 𝑠𝑖 and 𝑡𝑗 are matched. The full algorithm of SeqSWAS is presented in Algorithm
3.
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Input: Sequences S, Targets T, 𝑠0, 𝑡0
S:= read content of sequence file;
T:= read content of target file;
for 𝑖 = 1 . . . |𝑆| do

for 𝑗 = 1 . . . |𝑇 | do
call Algorithm 1 with sequence 𝑠𝑖 and target 𝑡𝑗 ;
call Algorithm 2 with alignment matrix A and direction matrix D;
Output results using StartingPointList and Direction matrix;

end
end

Algorithm 3: SeqSWAS



CHAPTER 5
PaSWAS

PaSWAS (Parallel Smith-Waterman Alignment Software) is the parallel counterpart
of the sequential SeqSWAS. We discuss both CUDA and OpenCL In this chapter we
will take a closer look at PaSWAS. More specifically, the way in which parallelism
is enabled, is examined. PaSWAS enables both inter and intra-kernel parallelization.
Inter-kernel parallelization is accomplished by performing multiple sequence alignments
in one iteration, instead of processing the sequence aligments one by one (see algorithm
3). Since each sequence alignment can be executed independently, the act of inter-kernel
parallelization is relatively easily accomplished. From SeqSWAS we identified four steps,
these were:

1. Initialization (One time only).
2. Calculation of the alignment matrix (Done for each sequence alignment).
3. Trace back from the alignment matrix (Done for each sequence alignment).
4. Output the alignment(s) (Done for each sequence alignment).

Steps two and three are subjected to intra-kernel parallelization, i.e., the computation
of the alignment Matrix 𝐴 is parallelized. From the previous chapter, we have seen an
inherent dependency between the elements 𝑎𝑖𝑗 (see Figure 4.2)

With this data dependency, it is not trivial to introduce parallelism. By computing
the anti-diagonal at the same time, parallelism is enforced. This scheme is commonly
known as the wavefront pattern [Anv+01], which works as follows: when 𝑎11 is known,
the entries 𝑎12 and 𝑎21 can be computed in parallel by two work-items. The entries 𝑎13,
𝑎22 and 𝑎31 can only be evaluated in parallel (by three work-items) when 𝑎12 and 𝑎21
are known. The maximum number of work-items that can be active within a sequence
alignment is given by 𝑚𝑖𝑛(|𝑠0|,|𝑡0|), where |𝑠0| is the length of the largest sequence
and |𝑡0| the length of the largest target. This process is illustrated in Figure 5.1 for
|𝑠0| = |𝑡0| = 3.

29
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⎡⎢⎢⎣
0 0 0 0
0 𝑎11 𝑎12 𝑎13
0 𝑎21 𝑎22 𝑎23
0 𝑎31 𝑎32 𝑎33

⎤⎥⎥⎦
Figure 5.1: Parallel calculation of alignment matrix A.

Elements that have the same color can be computed in parallel. With regard to the
trace back step, the same parallelization technique is used. However, the computations
start from element 𝑎|𝑠0||𝑡0|. A single work-item in this step is responsible for determining
whether it is a StartingPoint and to mark his neighbor when it is a part of an alignment.

In OpenCL (or CUDA) work-item synchronization can only occur within a work-
group. These synchronizations come in the form of barriers. A barrier ensures that the
kernel execution of a work-item resumes after each work-item (within a work-group)
has accessed this barrier. This construct is particularly useful in case of the wavefront
pattern, since we can ensure the correct order of execution.

The number of work-items that can execute within a work-group is limited by the
hardware. For example the NVIDIA GTX480 allows for 1024 work-items in a single
work-group. Since we are evaluating a matrix, a possible work-group configurations
could be 1x1024, 2x512, 256x4 and so on. What happens when |𝑠0| × |𝑡0|>1024? In this
case we would need multiple blocks to evaluate this alignment. However, synchronization
between work-groups cannot be enforced [Seo+11] within a single kernel execution.

A possible solution to this problem is to execute kernels sequentially [Reh+09], within
the host. Each kernel is then reponsible for computing one or more work-groups, which
can be processed independently. The illustration in figure 5.2 gives an impression of
this computation. In this case we need nine work-groups to compute a single alignment.
Work-groups (denoted by 𝑤𝑔𝑖𝑗) with the same color can be executed in a single kernel
run.

Thus the wavefront pattern is applied on both the work-item and work-group scale.
When we calculate the alignment matrix we start from 𝑤𝑔00 and work our way through
𝑤𝑔22. Whereas with the trace back phase we start from 𝑤𝑔22 and end in 𝑤𝑔00.

⎡⎣𝑤𝑔00 𝑤𝑔01 𝑤𝑔02
𝑤𝑔10 𝑤𝑔11 𝑤𝑔12
𝑤𝑔20 𝑤𝑔21 𝑤𝑔22

⎤⎦
Figure 5.2: The order in which the work-groups are processed.
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5.1 Local-Memory in PaSWAS
As already stated in Sections 2.6 and 2.7, the usage of local-memory (or shared-memory
in CUDA) can have a performance enhancing effect on the GPU. To this end a PaSWAS
algorithm is created that employs the faster access times of the local memory compared
to continuously accessing global memory. We present this algorithm in this section. We
assume that a single work-group has a dimension of 𝑆𝑠 by 𝑆𝑡 (note that for the GTX480,
𝑆𝑠 × 𝑆𝑡 ≤ 1024). In addition, we assume that the sequences and targets are padded
such that they divide perfectly by 𝑆𝑠 and 𝑆𝑡, respectively.

The total amount of work-groups needed to compute a single alignment is then given
by |𝑠0|

𝑆𝑠
× |𝑡0|

𝑆𝑡
.

The data structures that are populated for the calculation of the alignments are: the
alignment matrix A, the direction matrix D, and maximum matrix M. Each of these
data structures are stored within the local-memory domain. If we look at 𝑤𝑔00 from
figure 5.2, its local alignment matrix would appear as follows:

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
0 𝑎11 𝑎12 . . . 𝑎1𝑆𝑡

0 𝑎21 𝑎22 . . . 𝑎2𝑆𝑡

...
...

... . . .
...

0 𝑎𝑆𝑠1 𝑎𝑆𝑠2 . . . 𝑎𝑆𝑠𝑆𝑡

⎤⎥⎥⎥⎥⎥⎦
Figure 5.3: Local alignment matrix A of first work-group.

The actual computation of each element 𝑎𝑖𝑗 does not differ between work-groups. That
is, the same type of computations are performed for 𝑤𝑔00 or any arbitrary 𝑤𝑔𝑖𝑗 . However,
the way in which the local-memory is initialized does vary. 𝑤𝑔00 does not depend in any
way on the computations of other work-groups. Therefore, during initialization the first
row and column of this local alignment matrix are padded with 0’s.

On the other hand, 𝑤𝑔01 does depend on the scores that 𝑤𝑔00 has generated. In this
case the first row of the alignment matrix of 𝑤𝑔01 is padded with 0’s whereas the first
column (except for 𝑎00) is filled with halo values (in this case 𝑎1𝑆𝑡 . . . 𝑎𝑆𝑠𝑆𝑡) . These halo
values are retrieved from global memory.

After each work-group has computed its local alignment matrix, the contents are
stored back to the global memory with the omission of the halo and padded values. The
possible configurations of the local alignment matrix A (other than the first work-group)
are displayed in Figure 5.4. In this Figure, 𝑥 represents the to-be-computed elements by
a single work-group. In addition N,E, and NE represent a single global memory access,
of respectively, the upper, left, and upper-left work-groups.

The pseudocode for generating these elements 𝑥 is displayed in algorithm 4
As with SeqSWAS Algorithm 1 we also want to calculate the overall maximum score

in PaSWAS. The same pattern depicted in figure 5.2 is applied for calculating the
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⎡⎢⎢⎣
0 𝑁 𝑁 𝑁
0 𝑥 𝑥 𝑥
0 𝑥 𝑥 𝑥
0 𝑥 𝑥 𝑥

⎤⎥⎥⎦
(a) Upper 𝑤𝑔 is already
computed

⎡⎢⎢⎣
0 0 0 0
𝐸 𝑥 𝑥 𝑥
𝐸 𝑥 𝑥 𝑥
𝐸 𝑥 𝑥 𝑥

⎤⎥⎥⎦
(b) Left 𝑤𝑔 is already com-
puted

⎡⎢⎢⎣
𝑁𝐸 𝑁 𝑁 𝑁
𝐸 𝑥 𝑥 𝑥
𝐸 𝑥 𝑥 𝑥
𝐸 𝑥 𝑥 𝑥

⎤⎥⎥⎦
(c) Upper-left 𝑤𝑔 is already
computed

Figure 5.4: An overview of the possible local alignment matrix initializations

Input: Sequence s, Target t
Output: Matrix A, Matrix D, Matrix M
Determine work-item id (𝑤𝑆𝑠 ,𝑤𝑆𝑡);
Initialize local alignment matrix based on work-group id 𝐿𝑎[𝑆𝑠 + 1][𝑆𝑡 + 1];
Initialize local direction matrix 𝐿𝑑[𝑆𝑠][𝑆𝑡] to ND;
Initialize local max matrix 𝐿𝑚[𝑆𝑠][𝑆𝑡] by retrieving max value of neighboring 𝑤𝑔;
Determine the to be aligned characters (𝑠𝑖,𝑡𝑗) based on work-item and
work-group id;
for 𝑖 = 0 . . . 𝑆𝑠 + 𝑆𝑡 − 1 do

if i=𝑤𝑆𝑠+𝑤𝑆𝑡 then
up=𝐿𝑎[𝑤𝑆𝑠 ][𝑤𝑆𝑡+1]+gap;
left=𝐿𝑎[𝑤𝑆𝑠+1][𝑤𝑆𝑡 ]+gap;
upper_left=𝐿𝑎[𝑤𝑆𝑠 ][𝑤𝑆𝑡 ]+W(𝑠𝑖,𝑡𝑗);
Determine the best 𝑠𝑐𝑜𝑟𝑒 and its 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛;
𝐿𝑎[𝑤𝑆𝑠+1][𝑤𝑆𝑡+1] = 𝑠𝑐𝑜𝑟𝑒;
𝐿𝑑[𝑤𝑆𝑠 ][𝑤𝑆𝑡 ] = 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛;
Determine 𝐿𝑚[𝑤𝑆𝑠 − 1][𝑤𝑆𝑡 − 1] according to 5.5

end
Barrier;

end
Store 𝐿𝑑 into global direction memory;
Store 𝐿𝑎 without padded and halo values into global alignment memory;
Store work-group maximum 𝐿𝑚[𝑆𝑠 − 1][𝑆𝑡 − 1] into global maximum memory;

Algorithm 4: Matrix A, Matrix D, Matrix M calculation
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maximum score. Each work-group calculates its maximum and propagates this value
to its neighbor, this propagation occurs via global memory. For example, 𝑤𝑔11 utilizes
the (already stored in global memory) maximum value of the work-groups 𝑤𝑔10, 𝑤𝑔01,
and 𝑤𝑔00 to determine its own maximum. Eventually, the last work-group (i.e. 𝑤𝑔22 in
5.2) will store the overall maximum of an alignment. Figure 5.5 gives an overview of
how the maximum is calculated within a work-group. The value 𝑚00 is determined by
max(𝐿𝑎[1][1], maximum value from surrounding 𝑤𝑔). 𝑚10 in turn is computed using
max(𝐿𝑎[2][1],𝑚00) As you may notice these computations also adhere to the wavefront
pattern. That is, 𝑚11 can only be computed when 𝑚01 and 𝑚10 are known.

𝑚00 𝑚01𝑚𝑎𝑥
oo . . .𝑚𝑎𝑥

oo 𝑚1𝑆𝑡−1𝑚𝑎𝑥
oo

𝑚10

𝑚𝑎𝑥

OO

𝑚11𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

. . .𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

𝑚1𝑆𝑡−1𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

...

𝑚𝑎𝑥

OO

...𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

. . .𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

...𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

𝑚(𝑆𝑠−1)0

𝑚𝑎𝑥

OO

𝑚(𝑆𝑠−1)1𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

. . .𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

𝑚𝑆𝑠−1𝑆𝑡−1𝑚𝑎𝑥
oo

𝑚𝑎𝑥

OO

Figure 5.5: The dependencies between elements of the alignment matrix

As already stated, the parallel trace back step also adheres to the wavefront pattern.
Only, in this step, we start our computations from the last work-group and work our
way to 𝑤𝑔00. A single work-group is processed according to algorithm 5

In algorithm 5, the StartingPoints are added to the StartingPointList using a global
index value. This global index value is incremented atomically1 [Stu+92] and signifies
where a StartingPoint may be stored in the StartingPointList.

In addition, the barriers between marking neighboring scores are needed to circumvent
race conditions. Race conditions occur when two or more threads adjust the contents of
the same memory location [Net+92]. For example, in figure 5.3, 𝑎21’s upper neighbour
is the same as 𝑎12’s left neighbor (namely 𝑎11). Thus, without the barriers, it might be
possible that both 𝑎21 and 𝑎12 will simultaneously adjust 𝑎11, leading to inconsistent
results.

Intra-kernel parallelization can be enabled (e.g., computing multiple alignments
concurrently) by launching multiple work-groups at the same time. Referring to figure
5.2, instead of executing one work-group 𝑤𝑔00, a multitiple of 𝑤𝑔00 can be launched,
each solving a different alignment. In the next iteration a multitude of work-groups
𝑤𝑔10 and 𝑤𝑔01 are executed, further solving their alignments. This process is repeated
until we reach 𝑤𝑔22. The amount of intra-kernel parallelization is dependent on |𝑠0|,

1 Atomic operations enforce that a set of instruction are executed without interruption.
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Input: 𝑠0, 𝑡0, Matrix A, Matrix D, Matrix M
Output: StartingPointList
Determine work-item id (𝑤𝑆𝑠 ,𝑤𝑆𝑡);
Retrieve alignment 𝑆𝑠 × 𝑆𝑡 scores based on work-group id from global alignment
memory and store in local memory 𝐿𝑎 ;
Retrieve 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 from global maximum matrix;
for 𝑖 = 0 . . . 𝑆𝑠 + 𝑆𝑡 − 1 do

if i=𝑤𝑆𝑠+𝑤𝑆𝑡 then
score = 𝐿𝑎[𝑤𝑆𝑠 ][𝑤𝑆𝑡 ];
if score is sufficiently high & unmarked then

set score as StartingPoint;
Add StartingPoint to StartingPointList;
mark score;

end
Mark upper-left neighbor when marked score came from the upper-left
direction;
barrier;
Mark upper neighbor when marked score came from the upper direction;
barrier;
Mark left neighbor when marked score came from the left direction;
barrier;

end
barrier;

end
Algorithm 5: Parallel trace back calculation

|𝑡0|, and the memory available on the device.
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5.2 Global-Memory in PaSWAS
In addition to the local memory implementation, we have created another implementation
of PaSWAS which only utilizes the global memory. One of the main reasons for
creating this algorithm is to determine whether employing a solely global memory based
implementation can have a performance enhancing effect on the CPU. It can also be
used as a validation for the local memory implementation, as to whether it is beneficial
to have global-local memory transfers for the GPU.

In general, with OpenCL CPU implementations, all memory spaces (e.g. constant,
local, global memory spaces) are mapped onto the same hardware memory, so a kernel
that makes explicit use of constant and local memory spaces may actually incur more
overhead than a kernel that only uses global memory references[Sto+10]. Thus, we
expect that for the CPU the global memory implementation should yield superior
performance compared to the local implementation.1

The global implementation was derived from the local one, by omitting the transfers
between the global and local memory spaces. Moreover, any reference made to the local
memory was replaced by their global counterpart. However, this is not entirely efficient.
For example, the types of initializations for the work-group alignment matrix illustrated
in figure 5.4 are not needed in the global case, since we can directly access these halo
and padded values from the global memory. The only initialization that needs to be
performed on the alignment matrix is that we start with a matrix such as figure 4.1
i.e., the first row and column of the matrix should be padded with zeroes. Using the
function ClEnqueueFillBuffer, introduced in OpenCL 1.2, one can achieve this.

5.2.1 Increasing the Granularity
In [She+13] it is stated that the fine grained parallelism that OpenCL naturally offers can
be both advantageous as well as disadvantageous for the performance of an application
that will be executed on an CPU. The fine grained parallelism is enabled in PaSWAS by
letting each work-item be responsible for a single element of the alignment,direction and
maximum matrix. With coarse-grained parallelism we want a work-item to be responsible
for the computation of more than one element. The coarse-grained implementation will
be discussed in this section.

We introduce two new parameters namely 𝑊𝐿𝑠 and 𝑊𝐿𝑡. Their values determine
how many entries of the matrices have to be computed by a single work-item. More
specifically, a work-item processes 𝑊𝐿𝑠 × 𝑊𝐿𝑡 entries (𝑊𝐿 is an abbreviation of
workload). Within a work-group we still compute 𝑆𝑠 × 𝑆𝑡 elements, thus the total

1 We will further refer to this global memory implementation as "global implementation", and to the
local memory version as "local implementation".
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amount of work-items that can be active within a work-group is:

𝑆𝑠 × 𝑆𝑡

𝑊𝐿𝑠 × 𝑊𝐿𝑡
(5.1)

The algorithm for calculating the scores can then be rewritten to algorithm 6

Input: Sequence s, Target t
Output: Matrix A, Matrix D, Matrix M
Determine work-item id (𝑤 𝑆𝑠

𝑊 𝐿𝑠

,𝑤 𝑆𝑡
𝑊 𝐿𝑡

);

for 𝑖 = 0 . . . 𝑆𝑠
𝑊 𝐿𝑠

+ 𝑆𝑡
𝑊 𝐿𝑡

do
if i=𝑤 𝑆𝑠

𝑊 𝐿𝑠

+𝑤 𝑆𝑡
𝑊 𝐿𝑡

then
for 𝑗 = 0 . . . 𝑊𝐿𝑠 − 1 do

for 𝑘 = 0 . . . 𝑊𝐿𝑡 − 1 do
Retrieve character 𝑠𝑥;
Retrieve character 𝑡𝑦;
Determine best score and its direction;
Calculate maximum score;

end
end

end
Barrier;

end
Algorithm 6: Coarse grained alignment, direction and max matrix calculation

Essentially, this algorithm is the same as algorithm 4, but it introduces two extra
for-loops. The index 𝑥 in algorithm 6 is a function of 𝑊𝐿𝑠 and 𝑆𝑠, while 𝑦 is determined
by 𝑊𝐿𝑡 and 𝑆𝑡.

The process of tracing back does differ from algorithm 5 and is presented in algorithm
7. The main difference between algorithm 7 and 5 (besides the nested for-loop) is that
the barriers are replaced with semaphores, when marking neighboring values. Barriers
are not suitable in this case, since we cannot ensure that all work-items will access these
barriers. Semaphores [Dij68] are particularly useful because they enforce that only one
work-item can access a specific resource (in this case an element of the alignment matrix).
The functions getSemaphore and releaseSemaphore are displayed in algorithm 8 and
algorithm 9.

We have a semaphore for each element 𝑎𝑖𝑗 in the alignment matrix, thus we have
|𝑠0|×|𝑡0| semaphores. These semaphores are initialized to 0 with ClEnqueueFillBuffer,

The function atom_xchg is provided by OpenCL and stores a value in 𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥𝑦

while returning the previous content of this semaphore.
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Input: 𝑠0, 𝑡0, Matrix A, Matrix D, Matrix M
Output: StartingPointList
Determine work-item id (𝑤 𝑆𝑠

𝑊 𝐿𝑠

,𝑤 𝑆𝑡
𝑊 𝐿𝑡

);

Retrieve 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 from global maximum matrix;
for 𝑖 = 0 . . . 𝑆𝑠

𝑊 𝐿𝑠
+ 𝑆𝑡

𝑊 𝐿𝑡
do

if i=𝑤 𝑆𝑠
𝑊 𝐿𝑠

+𝑤 𝑆𝑡
𝑊 𝐿𝑡

then
Retrieve 𝑠𝑐𝑜𝑟𝑒𝑥𝑦 from alignment matrix;
for 𝑗 = 0 . . . 𝑊𝐿𝑠 − 1 do

for 𝑘 = 0 . . . 𝑊𝐿𝑡 − 1 do
if score is sufficiently high & unmarked then

set score as StartingPoint;
Add StartingPoint to StartingPointList;
mark score;

end
𝑔𝑒𝑡𝑆𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥−1𝑦−1 when marking upper-left neighbor;
𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥−1𝑦−1 when upper-left neighbor is marked;
𝑔𝑒𝑡𝑆𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥𝑦−1 when marking upper-left neighbor;
𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥𝑦−1 when upper-left neighbor is marked;
𝑔𝑒𝑡𝑆𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥−1𝑦 when marking upper-left neighbor;
𝑟𝑒𝑙𝑒𝑎𝑠𝑆𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥−1𝑦 when upper-left neighbor is marked;

end
end

end
barrier;

end
Algorithm 7: Coarse grained parallel trace back calculation

Input: 𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥𝑦

occupied:=atom_xchg(𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥𝑦,1);
while occupied > 0 do

occupied:=atom_xchg(𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥𝑦,1);
end

Algorithm 8: The getSemaphore primitive

Input: 𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥𝑦

atom_xchg(𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑥𝑦,0);
Algorithm 9: The releasSemaphore primitive





CHAPTER 6
Data Transfers

In this chapter we investigate the effect of data transfers on the overall performance. In
turn, we describe techniques to alleviate the costs incurred by data transfers.

An important issue for the performance of an OpenCL application (or CUDA for
that matter) is the data transfer between a host and a device [Kar+10]. Commonly
these transfers are bidirectional. That is the host transfers data to a device, in turn
the device generates the output from the input data and sends it back to the host. In
PaSWAS, only a single datastructure is send from the host to device (H2D), namely
h_maxPossibleZeroCopy. This data structure aids in fine tuning the alignments accu-
mulated from the trace back phase. Both the StartingPointList and Direction matrix
are send back from the device to the host (D2H) after the trace back phase is completed.

When using a discrete GPU device, these transfers occur via the PCI-Express (PCIe)
bus. The NVIDIA GTX480 GPU has the capabilty of PCI-E 2.0x16, which enables a
memory bandwidth of 8 GB/s. To put things into perspective, the device memory of the
GTX480 can be accessed with a bandwidth of 177.4 GB/s. Thus H2D and D2H transfers
can be a serious bottleneck within an application [M D+11]. Figure 6.1 provides a visual
overview of the transferring scheme between a host and a device.

A way in which data transfer can be minimized is by utilizing zero-copy memory
[Pha+10]. When data has been allocated into zero-copy memory, a device can access it
from the host without performing an explicit copy, hence the name zero-copy.

Although OpenCL provides portability between different platforms and vendors, each
of these vendors have their own tricks to enable zero-copy. In this section we will
elaborate on how to create zero-copy memory with OpenCL and CUDA.

For Intel CPUs data can be page-locked by invoking the function clCreateBuffer
with one of the flags CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR.

According to [Int14] CL_MEM_ALLOC_HOST_PTR is commonly used when you want the
runtime to handle the creation of the memory buffer object. Whereas CL_MEM_USE_HOST_PTR
should be utilized when we already have some data on the host and want to load this
data in a memory buffer. Using the function clEnqueueMapBuffer we can give the host

39
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Figure 6.1: data transfer between a host and a device (image courtesy of [M D+11]).

read and write access to the memory object. These permissions are given to the device
by invoking the function clEnqueueUnmapMemObject

Creating pinned memory for OpenCL NVIDIA is slightly different[Nvi11]. A buffer,
that will likely be zero-copy , is created with the flag CL_MEM_ALLOC_HOST_PTR. More
specifically, two calls to the function clCreateBuffer are made. One buffer is created
using one of the flags CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY or CL_MEM_READ_WRITE.
In addition, another call is made to clCreateBuffer only this time the flag

CL_MEM_ALLOC_HOST_PTR is used, in combination with one of the three flags men-
tioned above. With clEnqueueMapBuffer the host data is mapped to the device
buffer. H2D and D2H communication occurs (e.g. with clEnqueueReadBuffer or
clEnqueueWriteBuffer) between the host pointer and the buffer created without the
flag CL_MEM_ALLOC_HOST_PTR. When applying zero-copy in this manner the page-locked
buffers are allocated twice on a GPU device.

Lastly CUDA, enables the creation of zero-copy memory by invoking the function
CudaHostAlloc with the flag CudaHostAllocMapped. With CudaHostGetDevicePointer
one retrieves a device pointer from the host memory. This device pointer can then be
used in a kernel.

6.1 Empirical Evaluation
By running a microbenchmarking suite we want to determine the best configuration for
the creation of memory objects. The kernel for this microbenchmarking suite computes
the square of each element in a vector 𝑠𝑖𝑧𝑒2 and stores the result in a output vector.
The experiments included three hardware platforms namely, a Intel multi-core CPU and
two NVIDIA GPUs. These hardware platforms will be used throughout this thesis and
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the specifications of these devices can be found in table 7.1.
With regard to the CPU hardware platform, we define three ways to allow for memory

transfers these are: normal memory transfers (indicated by 𝑛𝑜𝑛𝑒 in figure 6.2, 6.3
and 6.4), Zero-copy handled by the runtime (through CL_MEM_ALLOC_HOST_PTR) and
finally zero-copy initialized by the user, through the flag of CL_MEM_USE_HOST_PTR). The
results for the CPU are shown in figure 6.2. We can immediately see that no zero-copy
incurs important performance penalties. Utilizing either CL_MEM_ALLOC_HOST_PTR or
CL_MEM_USE_HOST_PTR, the desired effect of zero-copy is accomplished, i.e., H2D an
D2H have been reduced to zero (which, in turn, leads to better end-to-end performance
of the kernel).
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Figure 6.2: Performance of memory transfers CPU.

The performance difference between CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR
is too small to be easily visible; however, when looking at the raw performance data, we
observe that CL_MEM_USE_HOST_PTR-based solution has an slight performance advantage
over the CL_MEM_ALLOC_HOST_PTR-solution. Therefore, we will utilize CL_MEM_USE_HOST_PTR
when needing a zero-copy implementation in our subsequent analysis.
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Figure 6.3: Performance of memory transfers CUDA.

With regard to CUDA, we have a single scheme to enforce zero-copy - depicted by
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either GTX480-0C and GTX680-0C in figure 6.3. In this figure, we note that the
zero-copy scheme is tightly coupled with an increase in kernel execution time. Indeed,
the memory transfers seem to be reduced to zero, but the execution time of the kernel
has now increased significantly. This behavior is due to the fact that we are still working
with discrete graphics cards, and therefore data still needs to be transferred through the
PCIe bus, only this is now included (from our measurements), in the kernel time. We
do, however, notice a significant improvement in the end-to-end kernel execution time
between the non-zero copy and zero-copy.

For the OpenCL GPU implementations, we combine the methods suggested by [Int14]
and [Nvi11] to determine which scheme will yield the best performance. These are given
by 𝑈𝑠𝑒, 𝐴𝑙𝑙𝑜𝑐 and, the one suggested by NVIDIA, 𝐴𝑙𝑙𝑜𝑐 − 𝑁𝑉 𝐼𝐷𝐼𝐴. We present in
figure 6.4, a performance comparison of all these memory transferring schemes. From
this figure, we see that the performance utilizing no zero-copy is the worst performing
version. The second best solution is given by the CL_MEM_USE_HOST_PTR construct (note
that the H2D and D2H transfers are still present). The construct that was discussed in
[Nvi11] provides the best performance, although - as expected - these transfers are not
completely removed (we are, again, using a discrete GPU).
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Figure 6.4: Performance of memory transfers GPU.

To summarize, we have empirically evaluated the ways in which the cost of data
transfer can be minimized. A common technique for minimizing data transfer is to
enable the so-called zero-copy. Each platform (hardware and software) has its own
specific mechanisms for enabling zero-copy, which can lead to performance improvement.
The best such mechanism for each platform will be used in our OpenCL PaSWAS
implementation.



CHAPTER 7
Experiments and Results

In this chapter we describe the results of our empirical evaluation of the OpenCL
PaSWAS as described in chapter 5. Our goal is to report and rank the performance of
the different types of algorithms we have implemented, and analyze the causes of the
observed behavior.

7.1 Experimental Setup
The experiments were executed on the wide-area distributed system, called DAS-4
[Bal+00], a multi-cluster build by a consortium of research institutions in the Netherlands.
The goal of DAS-4 is to provide a common computational infrastructure for researchers.
The system has support for various programming models, including OpenCL and CUDA,
and it allows us to test different platforms (GPUs and multi-CPU systems). In addition,
DAS-4 allows for isolation of tasks, avoiding situations where machines would be running
different tasks concurrently, thus corrupting the performance measurements.

7.1.1 Hardware Platforms
Throughout the experiments, we utilize three hardware platforms, namely two NVIDIA
GPUs and one multi-core CPU. The characteristics of these devices are listed in 7.1.
The GPUs belong to different NVIDIA architecture families: GTX480 has a Fermi
architecture, which is the predecesor of the Kepler architecture from GTX680. There are
several important differences between these architectures - e.g., the amount of processing
unit within a streaming multiprocessor has increased from 32 on Fermi to 192 on Kepler;
similarly, the memory sizes (for both the main memory and the caches) have been
increased, and memory bandwidth is also higher. Although, the GTX480 has more
streaming multiprocessors, its total number of processing units - i.e., threads or CUDA
cores is lower (32 × 15 = 480) than those in GTX680 (192 × 8 = 1536). Note that both
the GTX680 and GTX480 use an Intel Xeon E5620 as a host processor.

43
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Table 7.1: The hardware platforms used to evaluate PaSWAS.

Type Name Clock Fre-
quency

Memory size Memory
bandwidth

Multi proces-
sors

CPU Intel Xeon
E5620

2458 MHz 24GB 25.6 GB/s 16

GPU NVIDIA
GTX480

700MHz 1.5GB 144 GB/s 15

GPU NVIDIA
GTX680

1006MHz 2GB 192.2 GB/s 8

7.1.2 Datasets
We consulted existing literature to retrieve credible datasets which are commonly used
with sequence alignment [Hai+11],[Man+08] [Liu+13]. Each dataset is characterized by
two sets of sequences, namely the sequence and the target databases. Table 7.2 lists the
details of each dataset. The columns |𝑆|, |𝑠𝑎𝑣𝑔| and |𝑠0| represent the characteristics of the
sequence database. These are given by number of sequences (|𝑆|), average sequence length
(|𝑠𝑎𝑣𝑔|) and the largest sequence length (𝑠0) . With the target database these parameters
are denoted by |𝑇 |, |𝑡𝑎𝑣𝑔| and |𝑡0|. DS3 to DS6 utilize protein databases (retrieved
from http://www.ensembl.org/info/data/ftp/index.html) from rats, dogs, mice
and humans, respectively. These are aligned to predefined protein sequences. The
remaining two datasets were gathered from https://github.com/swarris/PaSWAS/
tree/master/PaSWAS/data and were used in the past for the evaluation of the PaSWAS
CUDA implementation.

Table 7.2: Datasets used for the evaluation of PaSWAS.

Dataset |𝑆| |𝑠𝑎𝑣𝑔| |𝑠0| |𝑇 | |𝑡𝑎𝑣𝑔| |𝑡0|
DS1 401824 292 446 4 20 21
DS2 55295 410 706 7 69 76
DS3 26153 508 7358 34 1359 5478
DS4 25160 577 35180 34 1359 5478
DS5 52998 448 35213 34 1359 5478
DS6 99436 374 35991 24 1801 5478

http://www.ensembl.org/info/data/ftp/index.html
https://github.com/swarris/PaSWAS/tree/master/PaSWAS/data
https://github.com/swarris/PaSWAS/tree/master/PaSWAS/data
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Table 7.3: Abbreviations used in figures 7.1 to 7.12.

Abbreviation Meaning
GLOBAL_0C Only utilizing global memory with zero-copy

memory transfers
GLOBAL_N0C Only utilizing global memory without zero-

copy memory transfers
SHARED_0C Global+local memory with zero-copy memory

transfers
SHARED_N0C Global+local memory without zero-copy

memory transfers
GLOBAL_CG Only utilizing global memory with increased

granularity and with zero-copy memory trans-
fers

7.2 Experiments
Our evauation focuses on measuring the performance of the implementations described
in sections 5.1, 5.2 and 5.2.1. Thus, experiments are executed on the local memory, only
global memory and coarse grained granularity implementations of PaSWAS. Additionally
we discuss the effects of zero-copy memory transfers on each hardware platform and, for
each platform, we use the best-performing scheme, deduced from the analysis performed
in the section 6. Table 7.3 presents the abbreviations used along this section and
throughout figures 7.1 to 7.12.

We experiment on work-group sizes ranging from 8 × 8 to 16 × 16. We only consider
square work-groups, since it can be formally proven that this configuration yields the
most parallelism (see Appendix A for the proof). The datasets are statically partitioned
according to the algorithm described in section 8.2, using a threshold value of 1024
(empirically chosen to deliver fairly balanced sub-datasets). The overall performance
measure for a single dataset is retrieved by adding the execution time of each resulting
sub-dataset.

Table 7.4: Data characteristics of first 5 runs.

𝑅𝑢𝑛 |𝑠| |𝑡| 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑆𝑝𝑒𝑒𝑑 − 𝑢𝑝

0 35992 5480 685 4.48
1 35992 4064 508 3.04
2 35992 3008 376 2.89
3 35992 1504 188 2.78
4 35992 464 58 1.74
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Figure 7.1: CPU performance of DS1,DS2 DS3, DS4 & DS5 with 8 × 8 work-group
configuration (note the difference in scale).
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Figure 7.2: CPU speed-up of DS1,DS2 DS3, DS4 & DS5 with 8×8 work-group configuration
(note the difference in scale)..
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Figure 7.3: CPU performance of DS1,DS2 DS3, DS4 & DS5 with 16 × 16 work-group
configuration (note the difference in scale)..
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Figure 7.4: CPU speed-up of DS1,DS2 DS3, DS4 & DS5 with 16 × 16 work-group
configuration (note the difference in scale).

7.2.1 CPU
For the CPU, we evaluate all configurations described in table 7.3. The results are
presented in figures 7.1 to 7.4. Figures 7.1 and 7.3 represent the execution time of the
PaSWAS algorithm on 5 datasets (DS1 to DS5), with work-group sizes of 8 × 8 and
16 × 16. We run each configuration three times to remove any noise that can be present
in our performance data1

From figures 7.1 and 7.3 we can construct a performance ranking, as follows:

GLOBAL_CG > GLOBAL_0C > GLOBAL_N0C > SHARED_0C > SHARED_N0C (7.1)

The relation of 𝑋 > 𝑌 in equation 7.1 is defined as X outperforming Y, in terms of
execution time. We make three observations.

First, the implementations that use global memory only are outperforming the ones
using local memory for the datasets 𝐷𝑆1 to 𝐷𝑆5. This behavior is somewhat expected,
because memory objects created through OpenCL are cached by the hardware. Explicit
caching through local memory will perform worst than hardware caching, and will also
introduce an unnecessary overhead[Int11].

Second, we see that zero-copy memory transfers is preferred with respect to "normal"
memory transfers, i.e., GLOBAL_0C > GLOBAL_N0C. This is also expected behavior,
since both the host and the device are the same hardware platform, namely the CPU.
No additional copy of data is needed from host to device, as the memory is directly
accessible. This is exactly what zero-copy enables.

Third, the best performing implementation is GLOBAL_CG, where the workload of
a single work-item is increased. From figure 7.2, we can see that increasing the workload

1 We omit the error bars because we observe that the results are fairly stable.
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has a positive effect on the CPU. This effect is further enhanced when moving to a
work-group of size 16 × 16, see figure 7.4. In both these figures the speed-up is plotted
relative to the sequential implementation SeqSWAS described in section 4. The increase
in performance can be attributed to the way in which a work-item processes the elements
given to it. These elements are computed in a row-major order, which is a CPU-friendly
way of data accessing. As a result we preserve cache locality within each work-item[J
S+13], which in turn leads to performance improvement. When we have a work-group
size of 16 × 16 each work-item computes 8 × 8 elements. We believe that the cache
was still not fully saturated in this case, allowing for faster access of more elements
compared to the case of when we have a work-group size of 8 × 8. The opposite is true
for the other four configurations, where we experience an increase of approximately
10000 seconds for each configuration other than GLOBAL_CG.

We will now take a closer look at the largest dataset (DS6) and explain how the
speed-up is achieved. For this dataset, the sequence file is divided into 13 files. The
target file is partitioned into 5 files. Thus we have in total 65 = 13 * 5 runs. Figure 7.5
displays the speed-up achieved for each run 1.

The number of work-groups that can be executed concurrently is dependent on the
size of the smallest sequence that we want to align. When sequences of similar length
are aligned, the amount of work-groups that can be executed concurrently is at its
maximum and, consequently, we have an increase in speed-up. However, if a sequence is
significantly smaller compared to the others, this will yield a lower speed-up since less
work-groups will be able to run concurrently. This is exemplified in table 7.4, which
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Figure 7.5: Speed-up of individual runs on GLOBAL_CG with DS6.

1 A run is defined as an independent execution of the PaSWAS algorithm with a given parameter set.
A parameter set contains among others, the length of the largest sequence and the length of the
largest target for a specific dataset.
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shows the achieved speed-up, for different pairs of sequence lengths (|𝑠| and |𝑡|) for the
first 5 runs. In addition, the amount of work-groups that can be processed concurrently
is given by 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦. We can see that run 0 provides a much better speed-up than
run 4. This is because |𝑠| is fixed, and |𝑡| decreases between subsequent runs. It follows
that 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 will also then decrease between subsequent runs. In general, when
there is a big difference between |𝑠| and |𝑡|, the speed-up is negatively impacted.

We can see from figure 7.5, in general, that when the runs are increasing in size, the
speed-up is also increasing, because the sequences tend to get smaller in length but
more in number. Due to this, the sequential implementation SeqSWAS needs to perform
more iterations, while PaSWAS can do more in parallel. However, when the opposite is
true, that is, we either need to compute a low number of sequences or we have little
parallelism, then the overhead caused by using OpenCL reflects in a lower speed-up.
These two observations, are valid in general and are not limited by a specific hardware
platform (as will be seen in the subsequent sections).

7.2.2 GPU: GTX480
As with the CPU, we can construct a performance hierarchy for the GTX480 using the
data presented in figures 7.6 to 7.9. This ranking is:

SHARED_0C > SHARED_N0C > GLOBAL_0C > GLOBAL_N0C (7.2)

We make the following observations.
First, compared to the CPU, the positions of the implementations using global and

local memory are interchanged. This happens as local memory is mapped to a physical,
fast on-chip memory on GPUs. This allows for faster access times and thus better
performance [Kom+10]. To achieve this, the programmer needs to explicitly move
elements from global memory to local memory. There might be cases where the overhead
of transferring data from global memory to local memory outweigh the benefits of faster
access times - for exampe, when data is not accessed very often. However, by looking at
the figures 7.6 to 7.9, this does not happen.

Second, from the same figures 7.6 to 7.9, we conclude that the best implementation
of CUDA (SHARED_0C) outperforms OpenCL’s best implementation (SHARED_-
0C). This behavior appears because (1) the CUDA compiler makes more aggresive
optimizations (as observed by our direct PTX code analysis), (2) CUDA uses predefined,
optimized operators (e.g., max(a,b)), and (3) OpenCL kernel launches are more expensive.
This was established by a simple benchmarking experiments, where we ran empty kernels
(i.e., with no code in the body of the kernel) and measured the kernel execution time.
The results are presented in tables 7.5 and 7.6, which show the empty kernel execution
times for both CUDA and OpenCL, as well as a the ration 𝑂𝑝𝑒𝑛𝐶𝐿

𝐶𝑈𝐷𝐴 , to quintify how
much worse OpenCL’s kernel launch overhead is compared to CUDA. We can clearly
see that OpenCL imposes a 50-60% additional overhead for launching a single kernel.
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Since PaSWAS launches its kernel iteratively, i.e., it utilizes multiple kernel launches to
solve the alignment problem, this extra overhead will have an immediate impact on the
performance of our OpenCL implementation, lowering it visibly.

Third, figure 7.10 displays the speed-up achieved for every run on DS6. Note that
there are more runs in figure 7.5, because not every alignment could be processed by the
GPU, due to memory constraints. The figure illustrates a relatively constant peformance
gap between the CUDA and OpenCL performance, in the favor of the former. Also,
we point out that figures 7.10 and 7.5 show the same trends, whie means that our
observation that a larger number of small sequences is more beneficial to parallelism
(and, therefore, performance) than a few long sequences. The impact of this observation
on the overall application will be further explored in Chapter 8.
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Figure 7.6: GTX480 performance of DS1,DS2 DS3, DS4 & DS5 with 8 × 8 work-group
configuration (note the difference in scale).
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Figure 7.7: GTX480 speed-up of DS1,DS2 DS3, DS4 & DS5 with 8 × 8 work-group
configuration (note the difference in scale).

7.2.3 GPU: GTX680
Finally, we report the performance results we have observed when using he newer GPU
architecture from NVIDIA, namely the Kepler-based card GTX680. The experiments
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Figure 7.8: GTX480 performance of DS1,DS2 DS3, DS4 & DS5 with 16 × 16 work-group
configuration (note the difference in scale).
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Figure 7.9: GTX480 of DS1,DS2 DS3, DS4 & DS5 with 16 × 16 work-group configuration
(note the difference in scale).

Table 7.5: Empty kernel time of first 5 runs DS4 on Fermi GPU.

𝐶𝑈𝐷𝐴 𝑂𝑝𝑒𝑛𝐶𝐿 𝑂𝑝𝑒𝑛𝐶𝐿
𝐶𝑈𝐷𝐴

0.251212 0.39641 1.577989905
0.143879 0.227866 1.583733554
0.477382 0.75581 1.583239418
0.190479 0.299574 1.572740302
0.162582 0.252844 1.55517831

we ran are similar to those performed on the GTX680 GPU. The results are shown in
figures 7.11 to 7.14.

For the first time, we notice a different ranking for the CUDA and OpenCL versions.
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Table 7.6: Empty kernel time of first 5 runs DS4 on Kepler GPU.

𝐶𝑈𝐷𝐴 𝑂𝑝𝑒𝑛𝐶𝐿 𝑂𝑝𝑒𝑛𝐶𝐿
𝐶𝑈𝐷𝐴

0.290487 0.455344 1.567519373
0.167555 0.271146 1.618250724
0.562043 0.897534 1.596913403
0.224472 0.354497 1.579248191
0.19206 0.299833 1.561142351
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Figure 7.10: Speed-up of individual runs on SHARED_0C with DS6 for GTX480 on both
CUDA and OpenCL.

For CUDA, in general:

SHARED_N0C > SHARED_0C > GLOBAL_N0C > GLOBAL_0C (7.3)

For OpenCL, in general:

SHARED_0C > SHARED_N0C > GLOBAL_0C > GLOBAL_N0C (7.4)

Note however that, for OpenCL, the differences between zero-copy and non zero-copy
tend to be quite small. Also note that the significant outliers in these pictures are the
numbers measured for CUDA with zero-copy enabled. In other words, very surprisingly,
the CUDA implementation does not react well to zero-copy memory transfers for this
card. We have no clear explanation of this strange behaviour. We have ruled out defect
of the card and/or the usage of the wrong compiler or CUDA version. We have also
ruled out the possibility that the unified address space is the cause for this. This new
CUDA functionality simplifies the process of enabling zero-copy, but we have noticed



7.2 Experiments 53

the same behavior for older CUDA versions. We are further investigating the issue
by building a parameterized memory microbenchmark that can analyze this behavior
systematically.
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Figure 7.11: GTX680 performance of DS1,DS2 DS3, DS4 & DS5 with 8 × 8 work-group
configuration (note the difference in scale).
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Figure 7.12: GTX680 speed-up of DS1,DS2 DS3, DS4 & DS5 with 8 × 8 work-group
configuration (note the difference in scale).



54 7 Experiments and Results

  0

  20

  40

  60

  80

  100

  120

  140

  160

  180

  200

  220

C
U
D
A
−D

S1

C
U
D
A
−D

S2

O
C

L−D
S1

O
C

L−D
S2

Ti
m

e
 (

in
 s

e
c

o
n

d
s)

Framework−Dataset

Performance of GTX680 on Smaller Datasets (16x16)

GLOBAL_0C

GLOBAL_N0C

SHARED_0C

SHARED_N0C

(a) DS1 & DS2

  0

  5,000

  10,000

  15,000

  20,000

  25,000

  30,000

  35,000

  40,000

  45,000

C
UD

A
−D

S3

C
UD

A
−D

S4

C
UD

A
−D

S5

O
C

L−D
S3

O
C

L−D
S4

O
C

L−D
S5

Ti
m

e
 (

in
 s

e
c

o
n

d
s)

Framework−Dataset

Performance of GTX680 on Larger Datasets (16x16)

GLOBAL_0C
GLOBAL_N0C
SHARED_0C
SHARED_N0C

(b) DS3, DS4 & DS5

Figure 7.13: GTX680 performance of DS1,DS2 DS3, DS4 & DS5 with 16 × 16 work-group
configuration (note the difference in scale).
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Figure 7.14: GTX680 of DS1,DS2 DS3, DS4 & DS5 with 16×16 work-group configuration
(note the difference in scale).



CHAPTER 8
Partitioning

In this chapter we will describe three partitioning algorithms, which we have created
to investigate whether the performance can be increased when we partition a dataset.
We will first start by giving a proper definition of the problem and the need for a
partitioning algorithm. After the problem has been made clear, the three algorithms
will be discussed more indepthly. We conclude this section, by empirically evaluating
the three partitioning algorithms.

8.1 Problem Description
In PaSWAS, intra-kernel parallelization is enabled by computing multiple alignments in
parallel. Commonly, we have a set of sequences S={𝑠0 . . . 𝑠𝑛−1} that we want to align
to a set of targets T={𝑡0 . . . 𝑡𝑛−1}, that is:

∀0≤𝑖<𝑛,0≤𝑗<𝑚 𝑎𝑖𝑗

.
Here, 𝑎𝑖𝑗 signifies the alignment between 𝑠𝑖 and 𝑡𝑗 . Furthermore, these sets are sorted

such that |𝑠0| ≥ . . . ≥ |𝑠𝑛−1| and |𝑡0| ≥ . . . ≥ |𝑡𝑚−1| where |𝑥| indicates the length of
sequence 𝑥.

Currently, the number of alignments that can be computed in parallel is determined
by 𝑠0 and 𝑡0 (e.g. the largest sequence and the largest target). Using |𝑠0|, the remaining
sequences are padded to this maximum length. This is also performed for the targets,
which are padded to the length of 𝑡0. Moreover, the number of alignments that can be
computed in parallel is strictly limited by the memory capacity of a device (besides |𝑠0|
and |𝑡0|). That is, if we have 2MB of memory available, and we need 1MB to compute
the alignment 𝑎00, we could evaluate at most 2 alignments in parallel.

When we have sequences of similar length (e.g. |𝑠0| ≈ . . . ≈ |𝑠𝑛−1| and |𝑡0| ≈
. . . ≈ |𝑡𝑚−1|), this scheme provides a good approximation of the degree of intra-kernel
parallelism. However, when we have |𝑠0| >> |𝑠1| ≈ . . . ≈ |𝑠𝑛−1| and/or |𝑡0| >> |𝑡1| ≈
. . . ≈ |𝑡𝑚−1|, basing the amount of parallelism on the largest sequence and the largest

55



56 8 Partitioning

target will yield sub-optimal results, because we excessively pad much shorter sequences
and/or targets and perform a lot of needless computations. This solution limits the
amount of parallelism, which limits the potential performance of the overall application.

Let’s illustrate this trade-off with an example: let us assume we have S={𝑠0,𝑠1} and
T={𝑡0,𝑡1} such that the set of alignments A is given by A={𝑎00,𝑎01,𝑎10,𝑎11}. We have 2
sequences and 2 targets, and we need to conduct 4 alignments. We further assume that
to compute the alignment 𝑎00 we need 1 MB, and for all the remaining alignments we
need 0.3 MB. On a device with 1 MB of memory, basing all the alignments on 𝑎00 would
yield no intra-kernel parallelism, since each alignment needs to be evaluated sequentially,
thus we need 4 iterations to perform all the alignments on the device. However, when
we partition the data into two sets - 𝐴1 = {𝑎00} and 𝐴2 = 𝐴 − 𝐴1 = {𝑎01,𝑎10,𝑎11}, set
𝐴2 can be evaluated in one iteration, by evaluating all its three alignments in parallel.

To enable such a scheme, which yields higher parallelism, we need (1) a partitioning
algorithm to determine the best number of sets and their sizes, and (2) separate
executions of the algorithm, one for each set (i.e., one for 𝐴1 and one for 𝐴2 in the
previous example). To this end, we discuss three algorithms designed and implemented
for this smart partitioning.

8.2 Static Partitioning
The most simple solution to partition a dataset is by defining a threshold and partitioning
the sets S and T based on this threshold. That is, if |𝑠0| − |𝑠1| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then two
separate sets are created: one for sequence 𝑠0, and another one ( 𝑆1 ) for all the remaining
sequences. The set 𝑆1 is then further partitioned using the rule described above, only
the condition is changed to |𝑠1| − |𝑠2| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The same algorithm is applied for
𝑇 . The implementation of this algorithm is described in Algorithm 10.

Input: Set X, threshold
Output: Partitioning = Set of sets = 𝑋𝑠𝑒𝑡𝑠

𝑥𝑝𝑟𝑒𝑣:= 𝑥0;
sets:= 1;
for 𝑖 = 0 . . . |𝑋| − 1 do

if 𝑥𝑝𝑟𝑒𝑣 − |𝑥𝑖| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
sets++;
Create new set 𝑋𝑠𝑒𝑡𝑠;

end
add 𝑥𝑖 to 𝑋𝑠𝑒𝑡𝑠;

end
Algorithm 10: Algorithm for static partitioning of a set X

After both sets S and T are partitioned by Algorithm 10, the sequences in each subset
of S are aligned to the targets of each subset of T.

The theoretical upper bound of this algorithm is given by O(|𝑆| + |𝑇 |). The algorithm



8.3 Dynamic Partitioning 57

does not utilize any knowledge about the distribution of the data and can thus be
considered simplistic. The next two algorithms attempt more intelligent decisions by
using more analysis.

8.3 Dynamic Partitioning
In this section, we describe two algorithms which attempt to maximize the number of
alignments that can be computed in parallel. This metric determines how the sets S
and T should be partitioned. An approximation of the number of alignments that can
be conducted on a device is given by:

𝑃𝑖𝑗 = 𝑀𝑒𝑚𝑜𝑟𝑦

𝑚𝑒𝑚(𝑎𝑖𝑗) (8.1)

In equation 8.1, mem(𝑎𝑖𝑗) is the amount of memory needed for a single alignment of
𝑠𝑖 with 𝑡𝑗 . Thus, 𝑃𝑖𝑗 expresses how many alignments we can process in parallel with 𝑠𝑖

and 𝑡𝑗 , as the largest sequence and target, given a certain memory capacity, (𝑀𝑒𝑚𝑜𝑟𝑦).
For example, for 𝑃00 = 4, we can evaluate 4 alignments using 𝑠0 and 𝑡0 as a reference.
This leads us to the following three possible configurations:

1. Align 4 sequences to 1 target
2. Align 2 sequences to 2 targets
3. Align 1 sequence to 4 targets

All these configurations could be executed in parallel, but they do not lead to the same
performance. If the set T only contains 1 target then using options 2 and 3 would be a
waste of resources. When |𝑇 | ≥ 4 and |𝑆| ≥ 4 all three options are viable and choosing
a configuration is not that trivial. Algorithm 11 provides the means to determine the
best configuration given a certain sequence 𝑠𝑘 and a target 𝑡𝑙

The variables 𝑖𝑡𝑒𝑟𝑠 and 𝑖𝑡𝑒𝑟𝑡 represent the number of iterations needed to process
|𝑆| − 𝑘 sequences and |𝑇 | − 𝑙 targets. From Algorithm 11, we can observe that the best
configuration is the one which minimizes the total number of iterations (𝑖𝑡𝑒𝑟𝑠 × 𝑖𝑡𝑒𝑟𝑡)
given |𝑠𝑘| and |𝑡𝑙|. In other words, we are maximizing the number of alignments that
can be evaluated in parallel (𝑝𝑎𝑟𝑠 × 𝑝𝑎𝑟𝑡). Note that the memory usage depends on five
factors namely:

• The length of the sequence 𝑠𝑖.
• The length of the target 𝑡𝑗 .
• The number of sequences that can be processed in parallel 𝑝𝑎𝑟𝑠.
• The number of targets that can be processed in parallel 𝑝𝑎𝑟𝑡.
• The number of iterations needed to process all sequences 𝑖𝑡𝑒𝑟𝑠 = ⌈ |𝑆|

𝑝𝑎𝑟𝑠
⌉.
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Input: Set S, Set T, sequence 𝑠𝑘, target 𝑡𝑙, Memory
Output: configuration(𝑝𝑎𝑟𝑠,𝑝𝑎𝑟𝑡,𝑠𝑠,𝑠𝑡)
𝑖𝑡𝑒𝑟𝑠:= |𝑆| − 𝑘;
𝑖𝑡𝑒𝑟𝑡:= |𝑇 | − 𝑙;
𝑖𝑡𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 := 𝑖𝑡𝑒𝑟𝑠 × 𝑖𝑡𝑒𝑟𝑡+1;
for 𝑖 = 1 . . . |𝑆| − 𝑘 do

𝑖𝑡𝑒𝑟𝑠:=⌈ |𝑆|−𝑘
𝑖 ⌉;

for 𝑗 = 1 . . . |𝑇 | − 𝑙 do
𝑖𝑡𝑒𝑟𝑡:=⌈ |𝑇 |−𝑙

𝑗 ⌉;
Determine memory usage (|𝑠𝑘|,|𝑡𝑙|,i,j,𝑠𝑠);
if memory usage ≤ Memory & 𝑖𝑡𝑒𝑟𝑠 × 𝑖𝑡𝑒𝑟𝑡 < 𝑖𝑡𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then

𝑝𝑎𝑟𝑠 := i;
𝑝𝑎𝑟𝑡 := j;
Found a possible configuration (𝑝𝑎𝑟𝑠,𝑝𝑎𝑟𝑡,𝑖𝑡𝑒𝑟𝑠,𝑖𝑡𝑒𝑟𝑡);
𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 := 𝑖𝑡𝑒𝑟𝑠 × 𝑖𝑡𝑒𝑟𝑡 ;

end
end

end
Return configuration(𝑝𝑎𝑟𝑠,𝑝𝑎𝑟𝑡,𝑠𝑠,𝑠𝑡);

Algorithm 11: Algorithm for determining best configuration

Thus, the three possible configurations listed above (for 𝑃00 = 4) can have different
memory needs and 𝑃𝑖𝑗 provides an approximation for each of these configurations.
Determining a configuration based on 11 is performed with a time complexity O(|𝑆||𝑇 |)

8.3.1 Partitioning Algorithm 1
Our goal is to partition both sets S and T such that we enable the most parallelism,
based on equation 8.1. A first algorithm for this task is presented in Algorithm 12.

The basic idea of this algorithm is to compute as much sequences in parallel for a
certain alignment 𝑎𝑖0 (0 ≤ 𝑖 < |𝑆|), then determining whether we can improve the
parallelism when moving to a smaller target 𝑡𝑗 (0 < 𝑗 < |𝑇 |). The size of the list 𝑅𝑢𝑛𝑠
determines how many separate runs of PaSWAS we need to evaluate a whole dataset. A
𝑅𝑢𝑛 contains all the parameters needed to invoke a single run of PaSWAS.

We add a 𝑅𝑢𝑛 to the 𝑅𝑢𝑛𝑠 list if and only if it increases the parallelism. When this
is not the case, the number of iterations of the previous 𝑅𝑢𝑛 is increased by 1, so either
𝑖𝑡𝑒𝑟𝑠 or 𝑖𝑡𝑒𝑟𝑡 is increased by 1. A threshold based version of this algorithm has also
been implemented in which we enforce that the amount of parallelism should at least
increase by (1 + 𝛼), before it is registered as a separate run.

The time complexity of this algorithm is O(|𝑆|2|𝑇 |2). Although it has a significantly
larger complexity (compared with the complexity of the static partitioning, O(|𝑆|+ |𝑇 |)),
this algorithm produces more balanced partitions.
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Input: Set S, Set T, Memory
Output: Partitioning = Set of sets = 𝑅𝑢𝑛𝑠
𝑖:= 0;
𝑗:= 0;
𝑃 := 0;
𝑅𝑢𝑛𝑠 := ∅;
while 𝑖 < |𝑆| do

Calculate 𝑃𝑖0 if 𝑃𝑖0 ≤ 0 then
Alignment cannot be done;
𝑖 := 𝑖 + 1

else
if 𝑃𝑖0 > 𝑃 then

𝑃 := 𝑃𝑖0;
Determine configuration according to Algorithm 11;
Add (i,0,𝑝𝑎𝑟𝑠,𝑝𝑎𝑟𝑡,1,1) to 𝑅𝑢𝑛𝑠;
Iterate over T starting from j:=𝑝𝑎𝑟𝑡 and add them to 𝑅𝑢𝑛𝑠 IFF we
gain enough parallelism;
i := i + 𝑝𝑎𝑟𝑠;

else
We did not gain enough parallelism when moving to a smaller
sequence;
Increase 𝑠𝑖𝑡𝑒𝑟 by 1 in previous run;
Use 𝑝𝑎𝑟𝑠 of previous run;
i := i + 𝑝𝑎𝑟𝑠;

end
end

end
Return 𝑅𝑢𝑛𝑠;

Algorithm 12: First (dynamic) partitioning algorithm.

8.3.2 Partitioning Algorithm 2
The second partitioning algorithm is inspired by the Set Cover Problem (SCP) [Sla96].

This is an optimization problem known to be NP-hard [Gar+79]. Within the compu-
tational complexity theory, problems of this complexity class are regarded as unfeasible.
This is due to their exponential theoretical running time to produce an optimal solution.
Heuristics [Kor+00] are often used to enable a polynomial running time in the expense
of an exact optimal solution (e.g. approximated).

The SCP problem definition follows. Let’s assume an universe 𝑈 = {𝑢1,𝑢2, . . . ,𝑢𝑛}
and a set of sets 𝐻 = {𝐻1,𝐻2, . . . , 𝐻𝑚}. For each set 𝐻𝑖 we have 𝐻𝑖 ⊆ 𝑈 . For this
problem, we want to find a minimal cover 𝐶 ⊆ 𝐻 such that the union of each set 𝐻𝑖 ∈ 𝐶
is 𝑈 .
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The mapping between SCP and the problem of partitioning the sets S and T is achieved
by perceiving the universe 𝑈 as a collection of all alignments: 𝑈 = {𝑎00, . . . , 𝑎|𝑆|−1|𝑇 |−1}
and |𝑈 | = |𝑆||𝑇 |. We construct a set 𝐻𝑖𝑗 for each alignment, thus |𝐻| = |𝑆||𝑇 |. The set
𝐻𝑖𝑗 contains the following elements of the universe:

𝐻𝑖𝑗 = {𝑎𝑘𝑙 | 𝑘 ≥ 𝑖 𝑎𝑛𝑑 𝑙 ≥ 𝑗} (8.2)

The resulting optimization problem then becomes choosing a minimal cover such that
we maximize

∑︀
𝑃𝑖𝑗 .

Note that 𝐻00 contains all alignments. However, 𝑃00 might be very low for this set.
Figure 8.1 presents the structure of the matrix 𝐻. From this figure we can also deduce
the relationship between different sets. For an arbitrary 𝐻𝑖𝑗 , all elements below 𝐻𝑖𝑗 and
to the right of 𝐻𝑖𝑗 are contained in this set. The sets which are contained in 𝐻11 are
highlighted in red in figure 8.1.

𝐻 =

⎡⎢⎢⎢⎢⎢⎣
𝐻00 𝐻01 𝐻02 𝐻03 . . . 𝐻0|𝑇 |−1
𝐻10 𝐻11 𝐻12 𝐻13 . . . 𝐻1|𝑇 |−1
𝐻20 𝐻21 𝐻22 𝐻23 . . . 𝐻2|𝑇 |−1

...
...

...
... . . . ...

𝐻(|𝑆|−1)0 𝐻(|𝑆|−1)1 𝐻(|𝑆|−1)2 𝐻(|𝑆|−1)3 . . . 𝐻|𝑆|−1|𝑇 |−1

⎤⎥⎥⎥⎥⎥⎦
Figure 8.1: Structure of the set matrix H and the depiction of the sets which are contained
in 𝐻11 are highlighted in red

In our implementation of this partitioning algorithm, each of 𝐻𝑖𝑗 = |{𝑎𝑘𝑙 | 𝑘 ≥
𝑖 𝑎𝑛𝑑 𝑙 ≥ 𝑗}| and 𝑈 = |𝑈 |

That is, 𝐻𝑖𝑗 denotes the number of alignments that can be processed using 𝑠𝑖 and
𝑡𝑗 as the largest sequence and target. Also, the universe is set to the total amount of
alignments that need to be processed. In addition, we introduce a matrix 𝑃 (figure 8.2).
Each 𝑃𝑖𝑗 is calculated according to equation 8.1 and provides an approximation of the
amount of alignments we can evaluate in parallel when again using 𝑠𝑖 and 𝑡𝑗 as the
largest sequence and target. It is possible that 𝑃𝑖𝑗 > 𝐻𝑖𝑗 , in this case 𝑃𝑖𝑗 is adjusted
such that 𝑃𝑖𝑗 = 𝐻𝑖𝑗 .

Algorithm 13 provides an overview of the the second partitioning algorithm.
Finding a tuple (𝑘,𝑙) in the matrix 𝑃 is achieved by finding the maximum element in

this matrix. However, there is a constraint in how this tuple is chosen. If the previously
chosen tuple is (𝑖,𝑗) then all tuples which are characterized by (𝑘 < 𝑖,𝑙 < 𝑗) are excluded
from the search. This restriction originates from the PaSWAS implementation. Take
the situation where tuple (1,1) is processed by the PaSWAS algorithm, which means
that all the alignments in 𝐻11 have already been performed. If we then choose tuple
(0,0), with set 𝐻00 which contains all the sequences and targets then PaSWAS will again
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𝑃 =

⎡⎢⎢⎢⎢⎢⎣
𝑃00 𝑃01 𝑃02 𝑃03 . . . 𝑃0|𝑇 |−1
𝑃10 𝑃11 𝑃12 𝑃13 . . . 𝑃1|𝑇 |−1
𝑃20 𝑃21 𝑃22 𝑃23 . . . 𝑃2|𝑇 |−1

...
...

...
... . . . ...

𝑃(|𝑆|−1)0 𝑃(|𝑆|−1)1 𝑃(|𝑆|−1)2 𝑃(|𝑆|−1)3 . . . 𝑃|𝑆|−1|𝑇 |−1

⎤⎥⎥⎥⎥⎥⎦
Figure 8.2: Structure of the set matrix P

Input: Set S, Set T, Memory
Output: Partitioning = Set of sets = 𝑅𝑢𝑛𝑠
𝑈 := |𝑆| × |𝑇 |;
𝑅𝑢𝑛𝑠 := ∅;
Initialize matrix 𝐻 and 𝑃 ;
while 𝑈 > 0 do

Find (𝑖,𝑗) in 𝑃 with maximum parallelism;
𝑈 := 𝑈 - 𝐻𝑖𝑗 ;
Update matrix 𝐻 and 𝑃 ;
Determine configuration according to Algorithm 11;
Add (i,j,𝑝𝑎𝑟𝑠,𝑝𝑎𝑟𝑡,𝑠𝑠,𝑠𝑡) to 𝑅𝑢𝑛𝑠;

end
Return Runs;

Algorithm 13: Second (dynamic) partitioning algorithm

perform the alignments which were already executed with 𝐻11. Since in its current form,
PaSWAS will align every sequence to every target. However when we first choose tuple
(1,0) then the resulting 𝐻 matrix is given by figure 8.4. In this case we can choose 𝐻00,
since we need to compare 𝑠0 to every target. These are precisely the alignments that
have not yet been conducted.

𝐻 =

⎡⎢⎢⎢⎢⎢⎣
𝐻00 𝐻01 𝐻02 𝐻03 . . . 𝐻0|𝑇 |−1
𝐻10
𝐻20

...
𝐻(|𝑆|−1)0

⎤⎥⎥⎥⎥⎥⎦
Figure 8.3: Structure of the set matrix H after the tuple (1,1) is chosen

Given a tuple (𝑖,𝑗) the update routine updates the matrices 𝐻 and 𝑃 . That is, for all
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𝐻 =
[︀
𝐻00 𝐻01 𝐻02 𝐻03 . . . 𝐻0|𝑇 |−1

]︀
Figure 8.4: Structure of the set matrix H after the tuple (1,1) is chosen

𝑘 and 𝑙:

𝐻𝑘𝑙 := 𝐻𝑘𝑙 − (𝐻𝑘𝑙 ∩ 𝐻𝑖𝑗) := 𝐻𝑘𝑙 − 𝐻𝑚𝑎𝑥(𝑘,𝑖)𝑚𝑎𝑥(𝑗,𝑙) (8.3)

For example if (𝑖,𝑗) = (1,0), the set 𝐻01 will become:

𝐻01 := 𝐻01 − (𝐻0,1 ∩ 𝐻1,0) := 𝐻01 − 𝐻11 (8.4)

Again, if there are 𝐻𝑘𝑙 for which 𝑃𝑘𝑙 > 𝐻𝑘𝑙 then 𝑃𝑘𝑙 is updated such that 𝑃𝑘𝑙 = 𝐻𝑘𝑙.
Algorithm 13 runs in O(|𝑆|2|𝑇 |2), since, in the worst case, the while loop is executed

O(|𝑆||𝑇 |) times. The routines "update", "find maximum", and "determine configuration"
run in O(|𝑆||𝑇 |) time. Thus the overall worst case running time is given by O(|𝑆|2|𝑇 |2).

8.4 Empirical evaluation
Both of dynamic partitioning algorithms have the same theoretical complexity of
O(|𝑆|2|𝑇 |2), but they take a different approach in how these partitions are constructed.
To determine which of these algorithms is best suitable for this task, we empirically eval-
uate both partitioning algorithms and recommend the winning one as the partitioning
algorithm to be used.

Figures 8.5 to 8.10 present the overall performance of the algorithm when using the two
dynamic partitioning algorithms, and indicate their performance for each programming
model and platform we use. The hardware platforms were limited to Intel Xeon CPU
and the GTX480 GPU. In every graph, we also list the best performance obtained
with static partitioning (Chapter 7) for that dataset. Thus, all the bars below this line
indicate solutions, based on dynamic partitioning, that lead to better performance than
the best static partitioning.

We observe that dynamic partitioning can lead to better performance than the static
partitioning, especially for larger datasets. For example, for DS1 and DS2, the difference
between static partitioning and dynamic partitioning is still relatively small, so static
partitioning is a feasible solution. However, for DS3 to DS6, all datasets show clear
perforance improvement when using dynamic partitioning, with differences as large as
60%. Note that on the x-axis of these figures we list the threshold value. This value
dictates how strict we are with respect to starting new runs. When the threshold value
is high less, runs will be executed. Consequently when the threshold value is low, more
runs are executed.

We see from figures 8.5 to 8.10 that in most of the cases a dynamic partitioning
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(b) Dynamic partitioning - algorithm 2.

Figure 8.5: Using different partitioning algorithms on DS1. The horizontal line represents
the best performance achieved with static partitioning.
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(b) Dynamic partitioning - algorithm 2.

Figure 8.6: Using different partitioning algorithms on DS2. The horizontal line represents
the best performance achieved with static partitioning.
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(b) Dynamic partitioning - algorithm 2.

Figure 8.7: Using different partitioning algorithms on DS3. The horizontal line represents
the best performance achieved with static partitioning.
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(b) Dynamic partitioning - algorithm 2.

Figure 8.8: Using different partitioning algorithms on DS4. The horizontal line represents
the best performance achieved with static partitioning.
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(b) Dynamic partitioning - algorithm 2.

Figure 8.9: Using different partitioning algorithms on DS5. The horizontal line represents
the best performance achieved with static partitioning.
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Figure 8.10: Using different partitioning algorithms on DS6. The horizontal line represents
the best performance achieved with static partitioning.
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algorithm is a better alternative for increasing performance. In addition we observe
that dynamic partitioning algorithm 2 provides faster executions of PaSWAS. Using our
findings, we recommend dynamic partitioning algorithm 2 in conjunction with PaSWAS.





CHAPTER 9
Performance Prediction

In this chapter we describe a model for predicting the performance of PaSWAS. Specifi-
cally, our goal is to provide an approximation of the execution time of the analysis for a
random dataset on a given platform, before executing the application.

9.1 Modeling
In order to create the model for PaSWAS, we used one of the larger datasets (more
specifically, DS4) as a reference. This dataset is statically partitioned with a threshold
of 1024 into 38 sub-datasets (thus, the full analysis requires 38 runs).

The parameters of our model are the length of the sequence, |𝑠0|, the length of the
target, |𝑡0|, and the size of a work-group 𝑆𝑠 × 𝑆𝑡. The number of alignments that can
be executed in parallel on the device is expressed as 𝑛𝑠 × 𝑛𝑡. The time needed for an
iterative kernel is given by:

𝑇 =
𝑛+𝑚−1∑︁

𝑖=1
𝑇𝑖 (9.1)

In equation 9.1, 𝑛 = |𝑠0|
𝑆𝑠

, 𝑚 = |𝑡0|
𝑆𝑡

, and 𝑇𝑖 denote the time for a single kernel run. The
bound 𝑛 + 𝑚 − 1 stems from the wavefront pattern - e.g., when 𝑛 = 3 and 𝑚 = 3, we
need 5 iterations (as can be seen from figure 5.2). If we would have unlimited resources
(e.g. the number of processors and the amount of memory are unlimited), each 𝑇𝑖 can
be approximated by the time it takes to evaluate one work-group 𝑇𝑤𝑔, and equation 9.1
can be rewritten to:

𝑇 = (𝑛 + 𝑚 − 1) × 𝑇𝑤𝑔 (9.2)

When we have limited amounts of processors and memory (i.e., the real case), each
𝑇𝑖 can have a different value, since not all work-groups in one iteration can be processed

67
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in parallel. Therefore, 𝑇𝑖 is dependent on the hardware device - more specifically, by the
number of work-groups it can process concurrently.

Due to the wavefront pattern of processing, we observe 𝑇𝑖, 0 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1 following
three phases:

• Increasing: the number of work-groups to be executed in parallel is increasing
until we reach the maximum, which is given by 𝑝 = min(𝑛,𝑚). In this phase, we
observe an increasing 𝑇𝑖, i.e., 𝑇𝑖 ≤ 𝑇𝑖+1, 0 ≤ 𝑖 < 𝑝.

• Constant: 𝑇𝑖 remains constant since we are continuously processing 𝑝 work-groups.
• Decreasing: this last phase sees 𝑇𝑖 decreasing (i.e., the perfect opposite of the

increasing phase). This happens because the number of work-groups to be scheduled
for execution decreases in subsequent iterations. Thus, we observe a decreasing 𝑇𝑖,
i.e., 𝑇𝑖 ≥ 𝑇𝑖+1, 𝑛 + 𝑚 − 1 − 𝑝 − 1 ≤ 𝑖 < 𝑛 + 𝑚.

Each of these phases occur in a specific region of the iterative kernel execution. That
is, the number of work-groups increases in the region 𝑖 = {1, . . . ,𝑝}, remains constant in
𝑖 = {𝑝 + 1, . . . ,𝑚 + 𝑛 − 1 − 𝑝 − 1} and decreases between 𝑖 = {𝑚 + 𝑛 − 1 − 𝑝, . . . ,𝑚 + 𝑛}.
To prove our intuition is correct, figures 9.1(a) and 9.1(b) present the execution time
of each iteration (i.e., the 𝑇𝑖) for a single sub-dataset in DS4. We observe the three
distinct phases emerging in the graphs.

Utilizing the structure of the wavefront pattern, each 𝑇𝑖 can be defined as:

𝑇𝑖 =

⎧⎪⎨⎪⎩
𝑇1 + 𝑇𝑝−𝑇1

𝑝−1 × 𝑖 1 ≤ 𝑖 ≤ 𝑝

𝑇𝑝 𝑝 + 1 ≤ 𝑖 ≤ 𝑚 + 𝑛 − 1 − 𝑝 − 1
𝑇𝑝 − 𝑇𝑝−𝑇1

𝑝−1 × 𝑖 𝑚 + 𝑛 − 1 − 𝑝 ≤ 𝑖 ≤ 𝑚 + 𝑛

Substituting these values in 9.1 yields an approximation of the total execution time 𝑇 .
Thus, 𝑇 can be modeled by three "lines" - i.e., one with a positive slope, a horizontal

line, and a line with a negative slope. These lines and the slopes are defined by 𝑇1 and
𝑇𝑝 (which can be easily measured). Therefore, 𝑇𝑥 for 𝑥 = {1,𝑝} is determined by:

𝑇𝑥 =
{︃

ℎ𝑐 𝑛𝑠 × 𝑛𝑡 × 𝑏𝑥 ≤ ℎ𝑤𝑔

𝑛𝑠×𝑛𝑡×𝑏𝑥
ℎ𝑤𝑔

× ℎ𝑐 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The constant ℎ𝑤𝑔 is hardware-related, and depends on the maximum amount of
work-groups that can be scheduled in parallel on a device. For example, GTX480 has
15 Streaming Multiprocessors on which 8 work-groups can be scheduled; in this case,
ℎ𝑤𝑔 = 120.

The constant ℎ𝑐 is determined empirically, and it represents the time needed to
compute the elements in a work-group of size 𝑆𝑠 × 𝑆𝑡. This value is hardware and
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implementation dependent. For example, the CUDA implementation has a lower ℎ𝑐

than the OpenCL one, according to our experimental findings (see chapter 7). ℎ𝑐 was
extracted by processing the complete reference dataset and averaging the timing details
for the iterations which ran fully concurrent (e.g. 𝑛𝑠 × 𝑛𝑡 × 𝑏𝑥 ≤ ℎ𝑤𝑔, where 𝑏𝑥 is the
number work-groups requested in iteration 𝑥).

However, as already stated, not every iteration can accomplish a fully concurrent
execution. In this case, we approximate 𝑇𝑥 by penalizing the extra scheduling steps by
the factor of 𝑛𝑠×𝑛𝑡×𝑏𝑥

ℎ𝑤𝑔
. This approximation gives us an impression on the additional

computation time when more work-groups have to be scheduled then the hardware can
process concurrently.

Table 9.1 displays the constants that we have used to model the calculate score
kernel. These values were retrieved from the training datasets using a work-group
configuration of 8 × 8. We can model the 16 × 16 case by multiplying ℎ𝑐 by 2. Since
2 × (8 + 8 − 1) ≈ 16 + 16 − 1, that is we have to do 2 as much iterations in a work-group
of size 16 × 16, compared to an 8 × 8 case.

Table 9.1: The constants ℎ𝑤𝑔 and ℎ𝑐 for each device and platform.

GTX480(CUDA) GTX480(OCL) GTX680(CUDA) GTX680(OCL)
ℎ𝑐 0.000024 0.00003 0.000025 0.000033
ℎ𝑤𝑔 120 120 128 128

We note that our model is less applicable to CPUs because it does not explicitly
take into account the scheduling cost of work-groups and context switching between
work-items. With CPUs, these costs can be significant.
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Figure 9.1: Execution time per iteration for the GTX480 platform, on a single sub dataset.
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9.2 Validation
To validate our model, we present in figures 9.3 and 9.2 a graphical comparison between
the predicted performance and the measured execution time. We see that the behavior
is predicted quite accurately, though more calibration might be necessary for some of
the platforms.
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Figure 9.2: Execution time per iteration for the GTX480 platform, on a single sub dataset.
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Figure 9.3: Execution time per iteration for the GTX480 platform, on a single sub dataset.

To quantify the accuracy of our prediction (i.e., the difference between our model and
the real execution time), we define a similarity measure:

𝑆𝑖𝑚(𝑇𝑟𝑚,𝑇𝑟𝑎) = |𝑇𝑟𝑎 − 𝑇𝑟𝑚|
𝑇𝑟𝑚

(9.3)

In this equation, 𝑇𝑟𝑚 and 𝑇𝑟𝑎 represent the predicted execution and the actual running
time in run 𝑟. The similarity measure for all the runs in a dataset (e.g. DSx) the relative
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error is then given by:

𝑒𝑟𝑟𝑜𝑟(𝐷𝑆𝑥) =
∑︀#𝑟𝑢𝑛𝑠

𝑟=1 𝑆𝑖𝑚(𝑇𝑟𝑚,𝑇𝑟𝑎)
#𝑟𝑢𝑛𝑠

(9.4)

In other words, the overall similarity measure is determined by taking the average of
the difference between the predicted execution time against the actual time for each run.
Table 9.2 presents an overview of these errors for datasets DS3, DS5, and DS6 (datasets
DS1 and DS2 are not interesting, because they are too small).

We make the following observations. First, the average errors are acceptable for the
implementations using 16 × 16 work-groups, but are quite large for the implementations
using 8 × 8 work-groups. We believe this is due to insufficient calibration of the
parameters, and we plan to further improve them. Second, we note that the prediction
for CUDA is more accurate than the prediction for OpenCL. We believe this happens
because the execution time per iteration is more stable in CUDA than in OpenCL, and
because we do not model correctly the kernel launch overhead. These hypotheses are to
be validated empirically.

Overall, we believe our model is able to predict quite well the trends of the execution,
it is fairly accurate for executions using 16 × 16 work-groups, and enables a correct
performance-based ranking of the potential platforms for analyzing a dataset. More
calibration and tuning are necessary to be able to predict the exact execution time for
all platforms and all execution configurations.
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Table 9.2: Performance prediction errors for each dataset.

Dataset Min Max Avg
OpenCL 8x8
GTX480

DS3 0.674 1.120 0.947

DS5 0.295 1.109 0.906
DS6 0.369 3.052 1.105

OpenCL 16x16
GTX480

DS3 0.009 0.098 0.043

DS5 0.013 0.260 0.068
DS6 0.0028 0.220 0.047

OpenCL 8x8
GTX680

DS3 1.022 1.620 1.370

DS5 0.504 1.666 1.408
DS6 0.577 3.929 1.542

OpenCL 16x16
GTX680

DS3 0.278 0.070 0.021

DS5 0.001 0.226 0.049
DS6 0.003 0.003 0.059

CUDA 8x8
GTX480

DS3 0.368 0.783 0.626

DS5 0.130 0.747 0.604
DS6 0.221 2.304 0.775

CUDA 16x16
GTX480

DS3 0.148 0.199 0.175

DS5 0.154 0.376 0.198
DS6 0.149 0.376 0.203

CUDA 8x8
GTX680

DS3 0.586 1.089 0.857

DS5 0.104 0.707 0.568
DS6 0.277 2.765 1.014

CUDA 16x16
GTX680

DS3 0.032 0.151 0.098

DS5 0.001 0.146 0.052
DS6 0.002 0.273 0.066



CHAPTER 10
Conclusion and Future Work

Comparing RNA, DNA and protein sequences is a common activity in bioinformatics. If
two sequences in an alignment have a common ancestor, mismatches can be interpreted
as point mutations, and gaps as insertion and deletion mutations. By analyzing these
mutations, one can determine in what aspects these organisms differ.

A commonly used algorithm for performing sequence alignments is the Smith-Waterman
algorithm. This algorithm performs alignments of two sequences 𝑠 and 𝑡 with a time
complexity of O(|𝑠| × |𝑡|). To align 𝑛 sequences against 𝑚 other sequences, the time
complexity changes to O(𝑛 × |𝑠| × 𝑚 × |𝑡|). As datasets are constantly increasing in
size, i.e., 𝑛,𝑚,|𝑠| and |𝑡| are growing larger, the Smith-Waterman algorithm can be
quite slow to compute a set of alignments (from tens of minutes to hours for a common
dataset). To reduce this execution time, various parallel versions of the Smith-Waterman
algorithm have been developed (see section 3. For this thesis, we have chosen to start
our evaluation from the implementation in [War+15].

In this context, the goal of this thesis was to provide an empirical evaluation of the
parallel Smith-Waterman algorithm on different hardware platforms (different GPUs
and multi-core CPUs), aiming to understand which ones are more suitable for large, fast
bioinformatics processing. In this chapter we summarize the insights we have gathered
from this evaluation and draw a set of conclusions. We further sketch several future
work directions.

10.1 Contributions and Findings
We revisit here our research questions from section 1.2, listing our findings.

• (R1): Can we achieve similar performance on a NVIDIA GPU when porting the
CUDA code of PaSWAS to OpenCL?

In sections 7.2.2 and 7.2.3, we have shown that OpenCL has reasonable performance for
the PaSWAS algorithm. In general, CUDA takes on average 30% less than OpenCL
to process the same datasets. This happens due to the ability of the CUDA compiler
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to better unroll loops (as observed by our direct PTX code analysis). Additionally,
OpenCL kernel launches are more expensive (about 50-60% slower than CUDA). Since
PaSWAS launches its kernel iteratively, i.e., it utilizes multiple kernel launches to solve
the alignment problem, this will have an immediate impact on the performance of our
OpenCL implementation, lowering it visibly.

• (R2): Which are the platform-specific parameters that have a high performance
impact?

Our OpenCL implementation has allowed a similar implementation for both families of
devices - CPUs and GPUs. In order to specialize the code in a performance-aware manner
for each type of platform. Specifically, we had tuned the local memory usage on and off,
we had enabled and disabled zero-copies, and we have tuned the workload granularity
per thread. All these are, in fact, parameters of a generic OpenCL implementation of
PaSWAS. From sections 7.2.2, 7.2.3, and 7.2.1, we found that a PaSWAS implementation
that uses solely global memory, zero-copy memory transfers, and coarser granularity
(i.e., each work-item computes more than one element) provided the best performance
on the CPUs. Furthermore, for GPUs, a shared memory implementation achieves the
best performance. In terms of zero-copy memory, the effects were surprinsingly different:
the Kepler GPUs (GTX 680) show a drop in performance when using zero-copy memory
transfers, while the Fermi GPUs (GTX 480) showed a significant performance increase
when memory transfers were enabled through zero-copy. Overall, we conclude that this
OpenCL code specialization via these parameters is important for allowing both GPUs
and CPUs to be competitive, performance-wise.

• (R3): How can we partition a dataset to enable the most parallelism?

Two challenges need to be met when using accelerators to improve the performance
of PaSWAS: sequences are getting larger and more "irregular" (i.e., sequences to be
aligned are of significantly different lengths), and the memory of devices remains limited.
Therefore, a smart partitioning of the input datasets is required to obtain as much as
possible from the parallelization of the problem. In chapter 8, we demonstrated that
properly partitioning a dataset directly leads to exposing more parallelism, and thus
better performance. This relates to the observation that larger sequences limit the
possible parallelism to be achieved. By clustering sequences in batches of similar sizes,
we could maximize the amount of parallelism for every run. We have also observed
that the most specialized algorithm does not always provide the best solution to the
partitioning problem - instead, a less complex algorithm, leading to a coarser-grain
clustering provides the best solution in terms of performance.

• (R4): Can we provide a performance predictor that can estimate the performance
of PaSWAS on a given platform, with a given dataset?
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Even after parallelization, the execution time of PaSWAS depends heavily on the size
of the dataset and the platform used for processing. We attempted to predict this
execution time for each device by using an analytical model, calibrated with a short
training phase. In chapter 9, we discuss the modeling of PaSWAS for different platforms.
Using the empirical data from one of our datasets, we were able to train our performance
estimator and predict the performance of other datasets on each hardware platform.
Our predictor works very well for GPUs, where the execution time is fairly stable, and
very limited training is needed for calibration. We have observed, however, that the
performance on the CPUs is much more difficult to predict. In conclusion, we are able
to predict the execution time for the GPU platforms, enabling, for example, the a-priori
selection of the best platform for running the analysis of a given dataset, but an accurate
prediction for CPUs requires more work to understand (or, rather, reverse engineer) the
mapping of the OpenCL platform to the hardware itself.

10.2 Future Work
Based on our findings we suggest three interesting directions for further research.

First, our OpenCL implementation of PaSWAS is based on the CUDA version
from [War13]. Such a reference does not exist for the CPU platforms. To this end, we
believe an OpenMP version can be created to determine whether OpenCL and OpenMP
provide comparable performance.

Second, our performance predictor must be tweaked and tuned to work better for
CPU prediction as well. This is really important for cases where many datasets need to
be analyzed, and both the CPU and the GPU can be employed to solve this task: a
high-level (static) scheduler can use the prediction information to partition the datasets
such that both the CPU and the GPUs finish in comparable time.

Third, and somewhat a generalization of the previous point, is the use of heterogeneous,
distributed systems. Since each alignment can be computed independently, utilizing
multi-node and/or multi-device platforms should be feasible. The biggest research
challenge in this case would be to determine how to distribute the work on different
nodes and devices such that a reasonable work-balance is achieved.
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APPENDIX A
Appendix A: Work-group configuration

In this appendix we will proof that a square work-group is the best choice. A work-group
is evaluated in:

𝐼(𝑥,𝑦) = 𝑥 + 𝑦 − 1 (A.1)

Where 𝐼(𝑥,𝑦) signifies the number iterations needed when we have a work-group
dimension of 𝑥 × 𝑦

𝑇 = 𝑥 × 𝑦 (A.2)

Where 𝑇 denotes the number of work-items.
Our goal is to minimize A.1. Using A.2, A.1 can be written as:

𝐼(𝑥) = 𝑥 + 𝑇

𝑥
− 1 (A.3)

In order to minimize A.1 we have to show that A.3 has an extreme and that the
extreme is indeed a minimum. The value where the extreme of A.3 occurs, can be
calculated by setting the first derivative of A.3 to 0. Which means:

1 − 𝑇

𝑥2 = 0 (A.4)

This gives us A.5, from A.2 it immediately follows that A.6 also holds. Further it can
be easily shown that the second order derivative of A.3 is greater than 0. Which means
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that the extreme is indeed a minimum.

𝑥 =
√

𝑇 (A.5)

𝑦 =
√

𝑇 (A.6)

Since 𝑥 = 𝑦, it follows that a square work-group requires a minimum number of
iterations. Q.E.D.
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