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Abstract
Algorithmic trading already dominates modern fi-
nancial markets, yet most live systems still rely on
fixed heuristics that falter when conditions change.
Deep reinforcement learning agents promise adap-
tive decision making, but their behaviour is driven
entirely by the reward function - a design choice
that remains poorly researched. Given the critical
importance of reward function design in RL prob-
lems, this paper investigates the impact of differ-
ent choices of reward functions while trading in
the Forex market and focusing on the EUR/USD
pair. We explore different rewarding methods
such as profit-only, risk-adjusted, multi-objective,
imitation-learning based, and self-rewarding mech-
anisms. Overall, we demonstrate the impact of
careful reward engineering and whether it can boost
performance and efficiency, highlighting reward
design as a critical and previously under-examined
part of RL for deploying reliable trading models.

1 Introduction
Algorithmic trading now drives much of global market flow,
reacting to news and order book changes in milliseconds, cru-
cial in the $7.5 trillion per day Forex market, whose 24/5 ca-
dence and sensitivity to macro events create extreme volatil-
ity [2; 13]. Yet most live systems still depend on hand-crafted
rules or static supervised models that falter when regimes
shift, forcing costly manual re-tuning [10].

Reinforcement learning (RL) offers a more adaptive al-
ternative: by treating trading as a sequential decision task,
RL agents optimize long-term rewards and adjust online
to changing conditions. Recent surveys and case studies
confirm RL’s promise as the next step in quantitative fi-
nance, particularly for fast-moving markets like Forex [11;
6; 1].

1.1 Motivation
A pivotal and often neglected design choice in RL trading
is the reward function, which supplies the learning signal
that shapes agent behavior. Rewards can target raw profit,
risk-adjusted return, drawdown, Sharpe ratio, or more com-
plex utilities, and this choice strongly affects training stabil-
ity and eventual performance. Poorly aligned rewards in-
vite over-fitting or unstable policies, yet most studies adopt
them heuristically with little justification. To close this gap,
we systematically compare profit-based, risk-adjusted, multi-
objective, self-rewarding and imitation learning based reward
schemes for an RL agent in the Forex market, aiming to es-
tablish practical guidelines for robust, interpretable, and ef-
fective reward design.

1.2 Research questions
The main research question is: What are the impacts of dif-
ferent possible reward functions on the ability of the RL
model to learn, and the performance of the RL Model? It
is divided into four sub questions:

SQ1: Does substituting PnL type reward functions with
risk-adjusted ones yield better results?

SQ2: Does using multi-objective rewards (weighted
combination of profit, risk, transaction costs and
drawdown penalty) improve the perfor- mance of
the model and how do these components of the
multi-objective reward function impact the perfor-
mance?

SQ3: Does imitation learning [5] helps to compute a re-
ward function which would improve the perfor-
mance of the model?

SQ4: Does a self-rewarding mechanism [8] improve
adaptability of the model, thus resulting in better
results?

1.3 Related Work
Early work by Moody and Saffell [12] showed that RL can
learn profitable trading policies, sparking a line of research
that replaces hand-crafted rules with sequential decision
agents. Deep learning has since enabled end-to-end RL
frameworks: Jiang et al. [9] optimise multi-asset portfolios,
Tsantekidis et al. [18] exploit micro-price momentum, and
Huang [7] casts trading as a Markov game.

Reward engineering.
Recent studies stress that the reward signal, more than
network design, dictates robustness. Cornalba et al. [4] use
multi-objective blends; Rodinos et al. [15] embed Sharpe
ratio in the reward; Goluža et al. [5] stabilise learning with
imitation signals; and Huang et al. [8] introduce a self-
rewarding network that adapts online. Direct comparisons
across reward types, however, remain scarce.

RL in Forex.
Carapuço et al. [3] demonstrated RL outperformance on
intraday currency pairs; Silva and Rodrigues [17] added risk
overlays; Marimuthu [10] highlighted liquidity advantages
for RL agents in FX.

Surveys.
Hambly et al. [6] review sample-efficient RL in finance; Bai
et al. [1] and Napate et al. [13] argue that RL mitigates the
brittleness of rule-based systems in evolving markets.

Gap.
Collectively, these works show RL’s promise but also re-
veal an ad-hoc approach to reward design. Our study closes
this gap by benchmarking profit, risk, multi-objective, imita-
tion, and self-reward formulations in a unified Forex setting,
analysing their impact on learning stability and trading per-
formance.

1.4 Contributions
This research aims to advance the understanding and practi-
cal application of reinforcement learning (RL) in algorithmic
trading within the foreign exchange (Forex) market, with a



specific focus on the role of reward function design. The key
contributions of this work are as follows:

• Systematic reward study: Side-by-side evaluation of
profit, risk-adjusted, multi-objective, self-reward, and im-
itation rewards.

• Real-world FX benchmark: High-frequency EUR/USD
data for realistic agent testing.

• Rich metrics: Returns plus risk and behavioural stability
indicators.

• Open framework: Fully reproducible code, templates, and
tools.

• Design rules: Practical guidelines for choosing reward sig-
nals in RL trading.

1.5 Paper Structure
The remainder of the paper is organised as follows. Section 2
reviews background of the research. Section 3 details the ex-
perimental method. Sections 4 and 5 report and discuss the
results. Section 6 addresses ethical considerations, and Sec-
tion 7 concludes, states possible improvements and current
limitations.

2 Background
Before conducting this research we had to cover many as-
pects of algorithmic trading, reinforcement learning and also
formally describe the problem.

2.1 Algorithmic Trading
Algorithmic trading [13] uses software to scan real-time data
and submit orders at latencies unreachable by humans. Tra-
ditional rule-based or supervised systems assume station-
ary markets and struggle in the noisy, regime-shifting Forex
arena, where macro-news and policy shocks cause rapid price
swings. Adaptive methods are therefore essential. Core at-
tributes of algorithmic trading are:

• Speed – Sub-millisecond execution.

• Scalability – Single algorithmic trading program (one set
of rules and parameters running in software) can monitor
and trade many assets simultaneously.

• Consistency – Rule-driven decisions free of emotion.

• Backtesting – Strategies validated on historical data before
deployment.

2.2 Reinforcement Learning
Reinforcement learning (RL) trains an agent to interact with
an environment, choosing actions that maximise long-run re-
ward via trial and error. The formalism is a Markov Decision
Process (MDP) M = (S,A, P,R, γ) [14]:

• S – state space, A – action set

• P (s′|s, a) – transition probability

• R(s, a) – immediate reward

• γ∈ [0, 1] – discount factor

At each step t the agent in state st selects at, receives rt =
R(st, at), and observes st+1 ∼ P (·|st, at). It seeks a policy
π(a|s) that maximizes expected discounted return

J(π) = Eπ

[ ∞∑
t=0

γtrt

]
.

Key RL elements:

• Agent – decision-maker
• Environment – market simulator
• State st – feature vector at t
• Action at – trade (e.g. Buy, Sell, Hold)
• Reward rt – profit, risk metric, etc.

RL is well suited to sequential, non-stationary tasks such
as high-frequency Forex trading, where agents must adapt on-
line and optimize long horizon objectives [6; 1].

2.3 Formal Problem Description
The trading problem is cast as a discrete-time MDP. At each
step t, the agent observes a feature vector ot ∈ Rn, chooses
an action at ∈ 0 : Buy, 1 : Sell, 2 : Hold, receives a reward
rt, and the environment moves to st+1. The goal is to learn a
policy πθ(a|s) that maximises the discounted return

∑
t γ

trt.

Focus on reward design.
All experiments keep data, features, and a fixed DQN con-
stant; only the reward function varies: profit, risk-adjusted,
multi-objective, self-reward, and imitation. We evaluate how
each choice affects learning stability and convergence, risk-
taking behavior and final trading performance.
The study thus isolates the impact of reward engineering in
noisy, non-stationary Forex markets, offering practical guid-
ance for future RL trading systems.

3 Methodology
This section details the experimental workflow designed to
answer our core research question: What are the impacts
of different possible reward functions on the ability of the
RL model to learn, and the performance of the RL Model?
All source code, data pipelines, and configuration files are
open-sourced for full reproducibility.

3.1 Data Acquisition and Pre–trade Processing
Market Feed and Time Horizon
Historical quotations for the EUR/USD currency pair were
downloaded from the Dukascopy public archive [16]. Ticks
covering the period 2 Jan. 2022 – 16 May 2025 were retrieved
and consolidated into 15-minute candles. Using tick data
rather than pre-aggregated bars guarantees that the resulting
series is internally consistent (open, high, low, close, volume)
and free from vendor-side rounding artifacts. The data was
then split into training and evaluation sets with 0.7 and 0.3
ratios respectively. Training data can be seen in Figure 1 and
evaluation data can be seen in Figure 2.



Figure 1: Market train data

Figure 2: Market evaluation data

Cleaning Pipeline

a) Holiday & weekend removal. Intervals in which the
bid, ask, high and low were identical or trading volume
was zero are discarded.

b) Aggregation. Remaining ticks are resampled to 15-
minute OHLCV records with volume taken as the sum
of tick volumes.

c) Gap handling. Fewer than 2% of candles are absent
after aggregation (three weeks out of three years). Miss-
ing bars are left blank—no forward–fill or interpolation
is applied—to avoid leaking artificial structure that a
learning agent might exploit.

Feature Construction
Two independent stages generate inputs for the RL agent:

a) Static market features Computed once for the entire
dataset.

• ∆pt,1 and ∆pt,5 — one- and five-bar log returns,
• normalised RSI14,
• relative trend strength EMA20

pt
, EMA50

pt
.

b) Dynamic agent features Re-evaluated each step.

• cash-to-equity ratio,
• current exposure (−1, 0, +1).

All real-valued columns are z-score normalised on the
training split; the learned mean and variance are reapplied to
the validation and test partitions to preclude look-ahead bias.

3.2 Trading Environment
A custom newly created gymnasium environment,
ForexEnv, emulates leveraged spot trading under real-
istic frictions while retaining analytical clarity.

State and Observation Space
The full state maintained by the environment includes all
market data and agent portfolio information (e.g., prices, vol-
umes, cash, positions, equity). However, the agent is pro-
vided only with a partial observation ot at each step, which
includes just the information needed to make decisions, in
accordance with the Markov assumption. This observation
includes:

1. Market Features – Derived from market history (e.g.,
RSI, log returns).

2. Agent Features – Portfolio-related variables computed
by the environment (e.g., cash-to-equity ratio), not inter-
nally tracked by the agent.

The full observation is obtained by concatenating these two
components,

ot =
[

MarketFeaturest ∥ AgentFeaturest
]
,

which supplies all information judged necessary for informed
action while remaining a partial view of the underlying envi-
ronment.

Action Specification
A key modelling choice is to let the agent output a target ex-
posure rather than an explicit buy–or–sell command. This
exposure can be specified in two alternative ways:

• Continuous scale: a single real number at ∈ [−1, 1],
where at = −1 denotes a fully short position, at = 1 a
fully long position, and at = 0 a flat (all–cash) stance.

• Discrete grid: a finite set of integer labels that
are mapped to evenly spaced exposure levels, e.g.
{−1.0, −0.5, 0.0, 0.5, 1.0}.

Execution Model
At every simulation tick the environment receives the agent’s
desired exposure and determines the trade size needed to re-
balance the current portfolio accordingly. Execution then fol-
lows a realistic micro-structure defined by four rules:

1. Transaction fee. A proportional commission is sub-
tracted on each trade, diminishing sale proceeds or in-
creasing purchase cost.

2. Leverage cap. Gross exposure may not exceed 100% of
account equity; the agent is barred from entering posi-
tions that would require borrowing cash or stock.

3. Bid–ask spread. Long entries transact at the prevail-
ing ask; short entries at the bid, properly accounting for
spread costs.

4. Zero price impact. Trades are assumed too small
to influence market prices. The asset prices evolve
independently of the agent’s actions, and executing
trades does not affect the bid, ask, or mid prices.



Reward Signal
By default the instantaneous reward equals the change in
ledger equity,

rt = Et − Et−1,

but the environment allows to easily change reward functions
(e.g. log return, Sharpe-adjusted, self-reward mechanism,
etc.) to be injected without modifying other mechanics. This
helps for us to examine how different rewards impact the
model’s performance in trading.

Episode Termination
An episode finishes either when the candle stream ends
(natural truncation) or when equity depletes to zero
(bankruptcy termination). Upon termination the complete
trajectory—states, actions, rewards and portfolio values—is
persisted for later analysis.

Mark-to-Market Accounting
Equity is re-marked at every step:

Et = casht + positiont × midpricet,

where the mid-price is the mean of bid and ask quotes.

The above design reproduces the core micro-structure of
real foreign-exchange trading while abstracting away latency,
market depth and counter-party risk. Consequently, any
observed performance differentials can be attributed to the
agent’s learning behaviour and, crucially for this study, to the
chosen reward formulation rather than to idiosyncratic simu-
lator quirks.

3.3 Agent and Learning Algorithm
All experiments employ the same Deep Q-Network (DQN) to
isolate reward-related effects.

• Network. Two dense layers, 128 ReLU units each.
• Hyper-parameters. Learning rate 10−4, replay buffer

50 000, batch 64, target net sync every 500 steps, γ =
0.99.

• Exploration strategy. Max-Boltzmann exploration strat-
egy is used with epsilon 0.1 and temperature as 1.

3.4 Experimental Design
Five types of reward functions are used:
R1: Profit-based. Net equity change, percentage return, log-
equity change.
R2: Risk-adjusted. Sharpe ratio, mean–variance, CVaR ad-
justed.
R3: Multi-objective. Uses a weighted sum of profit, risk,
transaction costs and drawdown penalty.
R4: Self-reward mechanism. Self-rewarding mechanism is
constructed and tested.
R5: Imitation learning. Imitation-learning-based function
is implemented and tested.
The mathematical definitions and more details about these re-
ward functions can be found in Appendix A. These reward
functions are evaluated under identical fixed training settings,

using 50 episodes per run (more episodes are not used since
the model tends to overfit after approximately 30 episodes or
in case there is no convergence at all, the amount of episodes
proved to be irrelevant) over 5 different seeds. Intermediate
models are saved after each episode to track convergence be-
havior. These are then individually evaluated on a single test
episode to track learning progression. In addition the best
performing model over all the episodes is taken and analyzed
further with predetermined evaluation metrics 3.5.

3.5 Evaluation Metrics
Each definition is given in closed form for an equity series
{Et}Tt=0 and single-period returns rt =

Et−Et−1

Et−1
.

(1) Cumulative Return Shows the total percentage change
in the portfolio’s value from the previous time step to the cur-
rent.

CR =

T∏
t=1

(1 + rt)− 1.

(2) Sharpe Ratio The Sharpe ratio is a measure of risk-
adjusted return, indicating how much an investment compen-
sates for the risk taken.

SR =
r − rf
σr

, r =
1

T

T∑
t=1

rt, σr =

√√√√ 1

T − 1

T∑
t=1

(rt − r)2,

where rf is the risk-free rate (set to 0 for intraday analysis).

(3) Maximum Drawdown Measures the maximum fall in
the value of the investment, as given by the difference be-
tween the value of the lowest trough and that of the highest
peak before the trough.

MDD = max
1≤t≤T

(
max
0≤u≤t

Eu − Et

)
.

(4) Profit Factor Ratio of gross profit to gross loss across
trades.

PF =

∑
t:rt>0 rt∑
t:rt<0 |rt|

.

(5) Win Rate Fraction of profitable trades.

WR =
Nwins

Ntrades
, Nwins = #{t | rt > 0}.

(6) Reward Evolution Average reward per episode across
training. Episode-level average reward:

R̄(k) = 1
Lk

Lk∑
t=1

r
(k)
t for episode k of length Lk. Tracking

R̄(k) across k visualises convergence.
(7) Action Distribution Frequency of each action
type (long, short, hold). For each action a ∈ {0, 1, 2},
fa = 1

T

∑T
t=1 1{at = a} measures policy bias towards long,

short, or flat positions.

These metrics help to compare the impact of different types of
reward functions and how the performance changes because
of them.



4 Results

This section compares five reward-design paradigms—profit-
centred, risk-adjusted, multi-objective, self-rewarding, and
imitation learning. For each paradigm we plot episode-
level learning curves, inspect the equity trajectory of the best
model, and report the mean and standard deviation of all key
metrics across training seeds.

4.1 Profit-based

Three profit signals were tested: equity change, log-equity
change, and percentage equity change. Figure 3 shows that
the equity-change agent learns most smoothly, whereas the
log- and percentage variants display substantial early-stage
volatility. After episode 30, the equity-change curve plateaus,
indicating possible over-fitting.

Figure 3: Total trade returns over episodes for profit-based reward
variants.

After selecting the top model for each profit signal, we plot
their equity curves in Figure 4. The equity-change model
is the most stable and best model, even though the profit is
slightly less than percentage equity-change model. Its multi-
seed statistics are listed in Table 1.

Figure 4: Equity OHLC curves for the best model of each profit-
based reward.

Metric Mean Std

Sharpe Ratio ↑ 1.141 0.174
Max Drawdown ↑ -764.86 108.37
Profit Factor ↑ 1.024 0.0038
Equity Change (%) ↑ 9.27 1.47
Total Trades Returns ↑ 926.89 146.97
Total Trades 186 76
Long Trades Count 92 32
Short Trades Count 94 44
Avg Trade Return ↑ 5.67 2.51
Win Rate (%) ↑ 66.17 3.69
Avg Rewards ↑ 0.037 0.0058

Table 1: Performance metrics for the best equity-change reward
model.

4.2 Risk-adjusted

Three risk-aware signals were examined: CVaR-adjusted,
Sharpe-adjusted, and Sortino-adjusted, each with a look-back
window of 100. Figure 5 reveals that the CVaR agent is highly
erratic, whereas the Sharpe- and Sortino-adjusted agents learn
more smoothly and exhibit markedly narrower confidence
bands.

Figure 5: Total trade returns over episodes for risk-adjusted reward
variants.

After selecting the top model for each variant, we plot their
equity curves in Figure 6. Although the CVaR model oc-
casionally achieves larger returns, its instability makes the
Sortino-adjusted model the preferred choice. Multi-seed
statistics for this model are compiled in Table 2.

Figure 6: Equity OHLC curves for the best risk-adjusted models.



Metric Mean Std

Sharpe Ratio ↑ 0.3028 0.0420
Max Drawdown ↑ -1000.53 15.04
Profit Factor ↑ 1.0064 0.0005
Equity Change (%) ↑ 2.17 0.38
Total Trades Returns ↑ 217.03 37.59
Total Trades 273 46
Long Trades Count 224 98
Short Trades Count 49 56
Win Rate (%) ↑ 37.62 2.83
Avg Rewards ↑ 0.178 0.003

Table 2: Performance metrics for the best Sortino-adjusted model.

4.3 Multi-objective

The multi-objective reward combines profit, risk, transaction-
cost, and drawdown penalties using fixed weights of 1:10:1:5.
As shown in Figure 7, training is profitable and relatively sta-
ble until roughly episode 30, at which point returns deterio-
rate, suggesting sensitivity to the fixed weight vector.

Figure 7: Total trade returns over episodes for the multi-objective
reward.

Figure 8 depicts the equity path for the best multi-objective
model. Although its cumulative profit is below that of the
pure profit agent, drawdowns are substantially lower. Table 3
summarises the corresponding multi-seed statistics.

Figure 8: Equity OHLC curve for the best multi-objective model.

Metric Mean Std

Sharpe Ratio ↑ 0.956 0.279
Max Drawdown ↑ -395.83 38.69
Profit Factor ↑ 1.025 0.011
Equity Change (%) ↑ 6.58 1.11
Total Trades Returns ↑ 658.31 111.08
Total Trades 959 123
Long Trades Count 501 86
Short Trades Count 458 50
Win Rate (%) ↑ 65.26 0.88
Avg Rewards ↑ 0.0145 0.0087

Table 3: Performance metrics for the best multi-objective model.

4.4 Self-rewarding Mechanism

Three self-reward networks were trained—min-max, return,
and Sharpe experts—each with a two-layer MLP (128 / 64
units, ReLU). Figure 9 shows that the min-max agent con-
verges most smoothly; the other two variants remain volatile
throughout.

Figure 9: Total trade returns over episodes for self-rewarding vari-
ants.

Figure 10 displays equity curves for the best model of each
variant. Despite its instability, the return-expert agent deliv-
ers the highest terminal equity and is therefore examined in
Table 4.

Figure 10: Equity OHLC curves for the best model of each self-
rewarding variant.



Metric Mean Std

Sharpe Ratio ↑ 0.774 0.227
Max Drawdown ↑ -862.07 143.68
Profit Factor ↑ 1.016 0.005
Equity Change (%) ↑ 6.26 2.00
Total Trades Returns ↑ 626.12 200.04
Total Trades 353 589
Long Trades Count 177 294
Short Trades Count 176 293
Win Rate (%) ↑ 70.24 3.83
Avg Rewards ↑ 0.458 0.074

Table 4: Performance metrics for the best self-reward model (return
expert).

4.5 Imitation Learning

An imitation-learning reward derived from an expert policy
[5] was also evaluated. Figure 11 shows large fluctuations
during the first 20 episodes, followed by convergence to con-
sistently small, often negative, returns.

Figure 11: Total trade returns over episodes for the imitation-
learning reward.

The equity curve of the best imitation model is given in Fig-
ure 12, and its multi-seed metrics appear in Table 5. The
negative Sharpe ratio underscores the difficulty of surpassing
the expert purely through behavioural cloning.

Figure 12: Equity OHLC curve for the best imitation-learning
model.

Metric Mean Std

Sharpe Ratio ↑ -0.3403 0.1175
Max Drawdown ↑ -1150.61 268.44
Profit Factor ↑ 0.9939 0.0017
Equity Change (%) ↑ -3.07 1.19
Total Trades Returns ↑ -306.72 122.89
Total Trades 53 65
Long Trades Count 5 5
Short Trades Count 48 60
Win Rate (%) ↑ 50.33 0.49
Avg Rewards ↑ −2.87× 10−6 3.62× 10−6

Table 5: Performance metrics for the best imitation-learning model.

5 Discussion
This section discusses the empirical findings in Section 4,
connects them to the four research sub-questions (SQ1–SQ4),
and highlights both practical and methodological implica-
tions.

5.1 Profit-based versus Risk-adjusted Rewards
(SQ1)

Figures 3 and 5 show that both reward types exhibit unsta-
ble behavior and it can also be seen that profit-based reward
learning process yields much larger returns. Furthermore, if
we look at the best models from both of these types it can be
observed from Tables 1 and 2 that purely profit-based model
is in almost every metric superior yielding higher Sharpe ratio
(1.141 to 0.3028), Max Drawdown (-764.86 to -1000.83), To-
tal Trades Returns(926.89 to 217.03), etc. With lower Sharpe
ratio it means that risk-adjusted model does not do its job
succesfully by minimizing risk to reward ratio. However,
it should be noted that standard deviation of risk-adjusted
model is smaller for metrics such as Sharpe Ratio, Max Draw-
down, Profit Factor, etc. This suggests that risk-adjusted
model is more stable and resilient to randomness. It is also
more active with it on average making more trades and re-
ceiving bigger average rewards per episode. So in conclusion
it is generally better to use profit-based reward function un-
less the user really wants to avoid randomness.

5.2 Effectiveness of Multi-objective Weighting
(SQ2)

The multi-objective formulation balances four competing
signals (profit, risk, cost, drawdown). Fine-tuned weights
(1:10:1:5) produce a model that delivers respectable returns
and the best max drawdown and also it is the most ac-
tive among all reward functions with -395.83 Max Draw-
down and 959 total trades (Table 3). Nevertheless, Figure 7
shows pronounced deterioration after episode 30, suggesting
that the fixed weight vector either cannot accommodate non-
stationary regimes or starts overfitting on the training data and
is not able to generalize anymore. Hence, while the weighted
mixture outperforms single-objective baselines in early train-
ing, adaptive or state-dependent weighting may be required
for long-run robustness. In conclusion it is an effective re-
ward function which could definitely be considered but the



fine-tuning of hyperparamaters should be considered when
choosing.

5.3 Self-rewarding Mechanisms (SQ3)
Among the self-reward variants, the return-expert signal
emerges as best (Table 4) but still exhibits high-amplitude
swings (Figure 9). The internal reward network evidently
provides richer feedback than a scalar PnL, yet remains prone
to divergence if the expert proxy itself is noisy. The large
standard deviations in trade counts (±590 trades) indicate in-
consistent exploration across seeds. These findings partially
address SQ3: self-rewarding can match traditional objectives
if expert proxies are well-behaved, but they do not inherently
grant superior stability. In conclusion this reward strategy
could have a lot potential but due to its complexity more data
might be needed, in depth hyperparameter tuning is required
and possibly longer training times could help.

5.4 Imitation-learning Reward (SQ4)
The imitation-based agent converges to a narrow action space
and delivers modest, near-zero returns (Figure 11), mirror-
ing Table 5: a negative Sharpe (−0.34) and equity decline
(−3.07%). It is also not as active with only an average of
53 total trades of which of, short trades completely domi-
nate which means the model does not provide variety and
could lose money because of that. Furthermore the steep
early learning curve followed by a flat plateau indicates that
the agent quickly saturates its capacity to replicate expert be-
haviour but cannot devise novel, profitable deviations. Con-
sequently, SQ4 is not supported— pure imitation does not
outperform direct optimization in this setting.

Pure profit signals still dominate on headline met-
rics—posting the highest Sharpe, smallest drawdown and
largest cumulative return—yet they do so at the cost of pro-
nounced episodic noise. Risk-adjusted rewards shrink that
variance but leave money on the table, while multi-objective
weights moderate drawdowns only until over-fitting sets in.
Self-rewarding shows promise but remains unstable, and
imitation-based rewards under-perform outright. These re-
sults suggest that the most effective trading reward should
keep a strong profit core but temper it with adaptive, context-
aware risk penalties rather than relying on any single metric
in isolation.

6 Responsible Research
This study adheres to responsible research principles in terms
of transparency, reproducibility, and ethical integrity.

• Reproducibility: All code, hyperparameter configura-
tions, environment wrappers, and experiment scripts are
publicly released in a dedicated repository. This includes
version-locked dependencies and a README with step-
by-step instructions.

• Data Integrity: Historical Forex data were sourced
from publicly available, reliable APIs (e.g., Dukascopy),
and all transformations are logged to preserve traceabil-
ity. No synthetic or manipulated data were used in model
training or testing.

• Model Fairness: The agent was evaluated across multi-
ple seeds and episodes to account for variance. Results
were averaged and evaluated with used performance
metrics 3.5.

• Ethical Considerations: This research does not in-
volve human subjects, personal data, or sensitive finan-
cial records. However, we acknowledge that algorith-
mic trading can influence real-world market dynamics.
This study is purely academic and does not endorse us-
ing untested RL models in live markets without thorough
safeguards.

• Limitations Disclosure: As outlined in the discussion,
the study excludes transaction costs, latency, slippage,
and multi-asset settings. These were omitted to isolate
the effect of reward functions but should be addressed in
follow-up research before practical deployment.

7 Conclusions and Future Work
This research explored the impact of different reward func-
tion formulations on the performance and learning dynam-
ics of reinforcement learning agents in the context of Forex
trading. Using a controlled experimental setup, we compared
profit-based, risk-adjusted, multi-objective, imitation-based,
and self-rewarding mechanisms, isolating their influence on
both financial outcomes and training behavior.

Key Takeaways
• SQ1 (Profit vs. Risk) – Pure profit rewards produced the

highest Sharpe ratio, profit factor, and cumulative return,
albeit with greater variance. Risk-adjusted rewards low-
ered drawdowns and metric dispersion but failed to de-
liver competitive risk-adjusted returns. Recommendation:
favour profit-centred objectives unless strict risk ceilings
are paramount.

• SQ2 (Multi-objective) – A fixed weighted blend of profit,
risk, cost, and drawdown outperformed single objectives
early on, yet deteriorated after ∼30 episodes, signalling
weight over-fitting. Recommendation: explore adaptive or
state-dependent weighting schemes to retain long-run ro-
bustness.

• SQ3 (Self-reward) – The return-expert network matched
baseline profitability but remained volatile and seed-
sensitive. Its promise hinges on high-quality expert signals
and extensive hyper-parameter tuning. Recommendation:
combine self-reward with larger data regimes and regulari-
sation to stabilise learning.

• SQ4 (Imitation Learning) – Imitation learning based re-
ward converged quickly but plateaued at sub-par, negative-
Sharpe performance, indicating limited capacity to inno-
vate beyond the expert. Recommendation: use imitation
only as a warm-start, then switch to direct optimisation.

Future Work
• Broader environments: Add multiple assets, regime

shifts, slippage, and fees.
• Reward–algorithm fit: Test how each reward pairs with

alternative agents, features, and exploration schemes.



• Hyper-parameter tuning: Search learning rates, buffer
sizes, and reward weights for faster convergence.

• Advanced architectures: Compare policy-gradient and
actor–critic models under identical rewards.

• Adaptive rewards: Let multi-objective weights adjust on-
line to market conditions.

• Live evaluation: Deploy agents in paper-trading or realis-
tic simulators to test out-of-sample robustness.

These steps will deepen our understanding of reward engi-
neering and support more reliable RL trading systems.
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A Reward functions mathematical definitions
Five reward types were explored. Variables are defined as fol-
lows: Et—portfolio equity at step t; Rt =

Et−Et−1

Et−1
—period

return; µt and σt—mean and standard deviation of the
last w returns; CVaRα—conditional value at risk at con-
fidence α; Costt—transaction cost; DDt—instantaneous
drawdown; λ, {wi}—tunable coefficients; πθ—agent policy;
πE—expert policy.
R1: Profit-based. Reward is tied directly to gains.

Net equity change

rEQ
t = Et − Et−1.

Percentage return

r%t =
Et − Et−1

Et−1
.

Log-equity change (additive and numerically stable)

rlogt = ln
(
Et

)
− ln

(
Et−1

)
= ln

(
Et

Et−1

)
.

R2: Risk-adjusted. Add an explicit risk penalty to the profit
signal.

Sharpe-adjusted

rSharpe
t =

µt

σt + ε
, ε ≪ 1.

Mean–variance
rMV
t = µt − λσ2

t .

CVaR-adjusted
rCVaR
t = µt − λCVaRα(Rt−w+1:t).



R3: Multi-objective. Weighted blend of profit, risk, cost,
and drawdown:

rMO
t = w1 r

EQ
t − w2 Costt − w3 DDt − w4 σt,

R4: Self-rewarding mechanism [8]. A small MLP reward
network fϕ is first fitted to an expert label g(s, a) via MSE:

L(ϕ) = E
[
(fϕ − g)2

]
.

During training the agent receives

rSR
t = max

(
fϕ(st, at), g(st, at)

)
,

letting it exploit either the learned or expert re-
ward—whichever is larger—while the policy is updated
by standard DQN.
R5: Imitation-learning reward [5]. Let rRF

t be the agent’s
own profit and rIF

t the profit obtained by following an oracle
trend label yt∈{0, 1}. The reward is their difference:

rIL
t = rRF

t − rIF
t .

Thus the agent receives zero reward when it mimics the or-
acle, is penalised for worse trades, and is encouraged only
when it outperforms the expert.

B The Use of Large Language Models (LLMs)
Large Language Models (LLMs) assistance was used spar-
ingly and responsibly. Its purposes were to help paraphrasing
sentences in a more academic and professional way as well
as styling the text. In addition they were used to help make
plots and tables in LaTex format. Lastly it helped to write
mathematical equations and definitions in LaTex.

This output was reviewed, fixed if needed and edited before
inclusion in the final version.

No content was generated autonomously without author re-
view and/or edit. All use of LLMs was limited to surface-
level editing and phrasing fixes. The scientific content, struc-
ture, analysis, and conclusions of the report reflect the inde-
pendent work of the authors.
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