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Implant failure related to polyethylene wear remains an important issue in total knee arthroplasty.
Polyethylene wear is usually assessed in vivo by measuring the remaining insert thickness on X-ray
images of the knee. To reflect the amount of wear debris more accurately, a 3-dimensional overlap
measurement has been suggested, which is based on implant component models which are matched on
calibrated stereo X-ray images using model-based roentgen stereophotogrammatic analysis. The goal of
this study was to determine the influence of pose estimation, insert thickness deviation and variation in
the femoral-tibial contact location on the accuracy and precision of the measurement using simulations
and a phantom experiment.

We found that the pose estimation was the largest source of variation. The 95% prediction interval
varied between 111 and 283 mm?, which is approximately 100-200% of the detected volumetric wear.
Insert thickness variation resulted in prediction intervals of 74-174 mm?. Variation of the femoral-
tibial contact location in the phantom experiment gave a prediction interval of 40 mm?>. Large
differences in the detected wear volume were found for different flexion angles. At most 56% of the
true wear volume was detected (129 of 230 mm?, 30° of flexion).

In summary, both the accuracy and precision of the volumetric wear measurement were low. The
prediction interval of the volumetric wear measurement is at least as large as the measurement
outcome itself. This is an important limitation to the applicability of the volumetric wear measurement
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in clinical practice and further clinical validation is required.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Polyethylene (PE) wear is an important cause of implant
failure of total knee arthroplasty (TKA), as it can lead to instability
and aseptic loosening (Naudie et al., 2007; Sharkey et al., 2002;
Sundfeldt et al., 2006). Therefore, an accurate and precise method
is required to assess the in vivo progression of PE wear in vivo,
which can be used to predict instability and loosening so as to
initiate a timely intervention.

The current method to assess the progression of PE wear in vivo is
measuring the minimum distance between the femoral condyles and
the tibial plateau using radiographic and fluoroscopic imaging (Collier
et al,, 2003; Duryea et al., 2001; Miller, 2005; Sanzén et al., 1996; van
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IJsseldijk et al, 2012). However, this 2-dimensional measurement
does not reflect the total volume of wear debris that has been
released. Therefore, Gill et al. (2006) presented a method to measure
the in vivo wear volume using 3-dimensional (3-D) geometric models
of the implant components, by estimating their 3-D poses (positions
and orientations) from stereo X-ray images and calculating the
overlap volume with the insert.

For the most part the accuracy and precision of this measure-
ment method have not been validated. The goal of this study was
to determine the influence of important sources of variation on
the accuracy and precision of the volumetric wear measurement.
Amongst others, these depend on the 3-D pose estimation and
deviations in the original insert thickness as a result of the
manufacturing process. Simulation studies were conducted in
which the isolated influences of these sources on the measure-
ment were determined.

In practice, wear is often caused by the sliding motion of the
femoral component relative to the insert. Therefore, the accuracy
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and precision of the measurement will also relate to the flexion
angle at which the measurement is conducted and the variation
in the femoral contact location on the insert. A phantom experi-
ment was done to determine the influence of these sources, using
inserts with abrasive wear.

2. Materials and methods

The volumetric wear measurement was conducted based on image pairs that
were acquired using a rontgen stereophotogrammetric analysis (RSA) setup with
the calibration box in vertical orientation (Kaptein et al., 2003). The image pairs
were analyzed with model-based RSA software (v3.32, Medis Specials, Leiden, The
Netherlands) to estimate the poses of the prosthesis components, which are
described with triangulated surface models (Kaptein et al., 2003). Since the insert
component does not produce clear image contours, its pose was derived from the
pose of the tibia model, as they have a fixed spatial relationship.

Volumetric wear was detected by calculating the 3-D overlap region between
the femoral and insert component models. A regular 2-D grid was defined
(0.8 x 0.8 mm cell size) that coincided with the tibial plateau. For each grid point
the overlap distance between the femoral component’s surface and the insert
surface was calculated. The wear volume was computed using a numerical
integration of these distance values based on Simpson’s rule.

3. Simulation experiments

The influences of pose estimation and insert thickness devia-
tions were determined in simulation experiments. We calculated
the difference in the detected volumetric wear as a function of the
relative pose of the femoral component with respect to the tibial
component. This pose is expressed as p=(x, , z, &, f, })', where x,
y, and z are the medial, caudal and anterior position parameters
and «, f and y are the corresponding Euler angles (Fig. 1).

The experiments were repeated with eight initial poses py;
(j=1...8), which were obtained from eight RSA data of patients
with size 4 Triathlon PS total knee prostheses (Stryker Europe,
Raheen, Ireland).

The effect of pose estimation error was computed in a Monte
Carlo Simulation. For each initial pose the detected volumetric
wear wp; was calculated and 500 new poses were generated as

Pij=Doj+dij. The pose errors d;ij=(dxij dyij, dzij duij, dpij, dyiJ)T

were drawn from a normal distribution with zero mean and a
standard deviation (SD) of (0.085 mm, 0.085 mm, 0.22 mm,
0.343°, 0.414°, 0.23°)". These SDs were derived from a clinical
validation study (Kaptein et al., 2007). For each pose the detected
wear volume w;; and measurement error e;;=w;;j—Wy; were
calculated.

Fig. 1. The coordinate system that was used in the simulation study.

The variation in insert thickness was simulated by varying the
caudal position parameter of the relative pose with Ad, resulting
in pj=po,;+(0, Ad, 0, 0, 0, 0)". The parameter was varied between
+0.12mm and -0.12 mm, which is in the range of the 95%
prediction interval assuming that the thickness among insert
components of the same type and size vary with an SD of
0.06 mm (Collier et al.,, 2003; Edwards et al., 2002; Psychoyios
et al., 1998).

4. Phantom experiment

The phantom experiment was conducted to assess the influence
of variation in the femoral-tibial contact location and the knee
angle to the volumetric wear measurement. We used a knee
prosthesis (size 4 Triathlon PS) with inserts containing a prede-
fined wear pool and determined how accurately these wear pools
could be reconstructed by the volumetric wear measurement.

The wear in the inserts was designed in SolidWorks CAD
software (Dassault Systemes, Paris, France). A femoral component
model (size 5 Triathlon PS) was placed in bearing contact with the
insert model and subsequently moved downward (into the
insert). This produced a 3-D overlap volume between the models,
which was removed from the insert model. Different sizes and
shapes of the wear pool were created (N=6) by varying the
flexion angle of the femoral component and the distance over
which it was moved into the insert. We used a larger size femur
component to simulate wear caused by the sliding motion of the
femoral component. The physical insert was manufactured by a
computer controlled milling device (Stryker Europe, Raheen, Ire-
land). We selected an insert for which the femoral-tibial contact
location was consistently found inside the wear pool in the
volumetric wear measurement (see Fig. 2). The data of all other
inserts is presented in Appendix A.

A total knee prosthesis was assembled with the selected insert
placed in the tibial component. For analysis and pose estimation
3-D scans of the insert, femoral and tibial components were
generated by means of reversed engineering (Introtech, Nuenen,
the Netherlands). Based on the insert scan, the shape and volume
of the true (predefined) wear pool were determined.

This especially prepared prosthesis was fixed into sawbones.
The tibia sawbone was placed in a vertical position on a tripod.
The femur sawbone could be positioned on top of the tibia in any
flexion angle, as a 7 kg balancing weight was used to stabilize the
set-up (see Fig. 3). The sawbones were placed in a horizontally
oriented RSA imaging setup. Five consecutive RSA image pairs
were obtained for three flexion angles (0°, 30° and 60°) resulting
in 15 image pairs totally. Before obtaining each of these image
pairs, the femoral component was remounted in such a position
that the predefined flexion angle was set (verified by a

Fig. 2. lllustration of the predefined wear pool (size=230 mm?). The shading
intensity of the blue area corresponds to the depth of the wear pool with respect
to the insert surface. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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Femur model
Detected wear pool

-------- Correctly detected wear

~  Falsely detected wear

Missed wear

Insert model

Fig. 4. Schematic cross-section of an insert with wear and the femoral-insert overlap measurement. This figure shows how correctly detected wear, falsely detected wear

and missed wear are defined.

goniometer) and its contact location resided inside the wear pool.
By this operation, variation in the femoral-tibial contact location
was introduced.

For each RSA image pair, the volumetric wear was assessed
and the detected wear pool was compared to the true wear pool,
defining both the correctly and falsely detected wear (Fig. 4). The
part of the true wear pool that was not detected was defined as
missed wear. The volumes of these quantities were calculated and
the means and SDs over the flexion angles were compared.

5. Results
5.1. Simulation experiments

Table 1 shows the results related to the pose estimation error
and the insert thickness variation. For the pose estimation error,
the mean wear was slightly larger than wy (8 mm?, p=0.001,
paired samples t test). This difference is caused by the non-linear
relation between the wear volume detected and the y-position.
The sizes of the prediction intervals (PI) ranged between 111 and
283 mm® and were positively and significantly correlated with wy
(Pearson’s p=0.96).

The effect of varying the thickness of the insert (Ad) on the
detected wear volume can be seen in Fig. 5. Their relation is not
entirely linear, as the size of the slope (measurement error as a
function of Ad) declined for increasing Ad. The 95% Pls ranged
between 74 and 174 mm (Table 1).

5.2. Phantom experiment

The bar plot in Fig. 6 presents the correctly and falsely
detected wear volumes for the 15 image pairs. Below the figure,
typical examples of these wear pools are shown per flexion angle.
As a reference, the leftmost bar shows the volume of the true
wear pool.

A comparison of the results per flexion angle is shown in
Table 2. The mean of both the correctly and falsely detected wear
volumes showed a significant difference between the flexion
angles (p <0.05, one-way ANOVA). The mean detected volume
for the flexion angle that was used to generate the wear pool (30°)
was only 50% of the true wear volume.

In all cases, the volume of falsely detected wear was small
(<15 mm?) compared to the true wear volume (230 mm?). At a
flexion angle of 30°, no falsely detected wear was found for all
RSA image pairs.

The standard deviation at 0°, 30° and 60° of knee flexion were
8 mm>, 7 mm? and 18 mm?>, respectively. The corresponding 95%
prediction intervals, which are a measure for influence of varia-
tion in the femoral positioning, ranged between 12% and 33% of
the volume of the true wear pool.

Table 1

Results of the simulations. wy is the wear volume corresponding to the initial pose
Do. For the pose estimation error the mean and 95% prediction intervals of the 500
detected wear volumes w;; are presented. For the insert thickness variation, the
95% prediction intervals of the wear volume are shown, which are defined as the
wear volume measured after adding + 0.12 mm to the y-position of the relative
pose. The size and relative size of the PIs with respect to the original wear are
presented.

Original Pose estimation error Insert thickness
wear (wp) variation
Mean 95% PI PI size/ 95% PI PI size/
wear size  wp size  wp
mm? mm? mm> mm? - mm? mm? -
51 60 (11-122) 111 (2.18) (21-95) 74 (1.45)
67 78 (21-154) 133 (1.99) (29-121) 92 (1.37)
84 93 (30-178) 148 (1.76) (42-138) 96 (1.14)
125 139 (60-235) 175 (1.40) (74-189) 15 (0.92)
157 166 (64-282) 218 (1.39) (95-234) 139 (0.89)
163 171 (87-273) 186 (1.14) (114-225) 111 (0.68)
172 181 (93-290) 197 (1.15) (110-246) 136 (0.79)
304 310 (185-468) 283  (0.93) (222-396) 174 (0.57)

Fig. 3. The set-up of the phantom experiment during the image acquisition. For each angle of knee flexion an image is shown.
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6. Discussion

We investigated the influence of the pose estimation error,
insert thickness deviation and variation of the femoral-tibial
contact location on the accuracy and precision of the volumetric
wear measurement We found that pose estimation was the
largest source of variation, producing a variation between 111
and 283 mm? (95% prediction interval). This equaled 100-200%
for smaller wear pools relative to the detected wear volume.

The 95% prediction interval due to insert thickness deviation
was between 74 and 174 mm?, which was smaller than the effect
of pose estimation error. An important difference between these
error sources is that pose estimation error influences each

measurement randomly, whereas the error due to insert thickness
deviation is constant per patient. So in relative measurements to
determine the wear progression, the error due to insert thickness
variation is negligible. Concerning variation due to femoral
positioning, the repeated measurements in the phantom experi-
ment (n=5) showed an average SD of 10 mm?, which is equiva-
lent to a PI of 40 mm?, i.e. 17% of the true wear pool volume.
The measurement accuracy in the phantom experiment was
very limited as even in the best case only 56% of the wear pool
volume was detected (129 of 230 mm?, 30° of flexion). Moreover,
for some of the inserts we were unable to detect any wear
(Appendix A). For some cases the low accuracy may be caused
by a large distance between the femoral-tibial contact location
and the center of the wear pool. A positive finding was that the
falsely detected volumes were low ( < 15 mm?), resulting in a low

.. 450 risk of overestimating the wear pool.
m
£ 400
£
- 350
% Table 2
g 300 The volumes (vol.) detected in mm?> per flexion angle (N=5). The means and
3 250 standard deviations (SD) for the total detected volume, correctly detected, falsely
- detected volume and missed volume are shown. The 95% prediction intervals give
3 200 the expected variation in practice and are calculated as 4 x SD of the total detected
= wear volume.
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Fig. 5. The volumetric wear detected as a function of changing the insert thickness Flexion=30° 122 (7) 122 (7) 0 (0) 109 (7) 28 (12%)
(Ad). The eight inputs are presented with separate lines. The limits Flexion=60° 17 (19) 11 (20) 7(3) 220 (20) 76 (33%)
Ad= +0.12 mm equal the 95% PI interval of the manufacturing process.
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Fig. 6. The wear volumes detected for each of the fifteen RSA image pairs, compared to the true wear volume (bar on the left). The images on the bottom of the figure are
examples of the wear pools per flexion angle. The blue overlay indicates the true wear pool and the red overlay on top indicates the detected wear pool. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this article.)
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A limitation of our study is that the validation is based on
phantom and in silico data only, whereas the ideal validation
would be based on RSA data from patients shortly before insert
revision, ensuring that both the shape of the wear pool in the
retrieved inlay and the femoral-insert contact location in the pre-
op RSA image are representative. As such data was not available a
phantom experiment was utilized in which both the shapes of the
wear pool and the freedom of the femoral-tibial contact location
could be controlled to mimic clinical conditions. It is likely that the
underestimation of the wear pool size and limited reliability found
in this study are representative for clinical practice, as the created
wear pools were a reasonable reproduction of abrasive wear.

Gill et al. (2006) suggested superimposing assessments with
volumetric wear measurements at different flexion angles to get a
better detection of the wear pool. The findings in our phantom
study confirm that superimposing assessments can be beneficial,
as large differences were found in the detected wear volume
among the flexion angles. However, our simulation study also
showed that a single assessment already has a variation of 111-
283 mm?>. When several (almost) disjoint wear pools detected in
alternate flexion angles are superimposed, the total variation will
further increase. In practice, we expect a tradeoff between the
accuracy (underestimation) and the precision of the measure-
ment. Repeated measurements for each flexion angle could be
used to improve the precision, but then the required number of
RSA acquisitions quickly becomes impractical.

In summary, the accuracy of the volumetric wear measure-
ment was limited, as at most 56% of the true wear volume was
detected. In addition, the precision of the measurement was low,
mainly caused by the pose estimation. The prediction interval of
the volumetric wear measurement is at least as large as the
measurement outcome itself. This is an important limitation to
the applicability of the volumetric wear measurement in clinical
practice and further clinical validation is required.
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