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Abstract

Turbulence closure models will continue to be necessary in order to perform computationally affordable
simulations in the foreseeable future. It is expected that Reynolds-averaged Navier-Stokes (RANS) turbu-
lence models will still be useful with the further development of the more accurate, but computationally
expensive large eddy simulation (LES), especially in industry. The use of the robust but often inaccurate lin-
ear eddy viscosity closures is still widespread in industry. More complex closure models, such as Reynolds
stress models and nonlinear eddy viscosity models, provide a more general description of the underlying
physics of turbulent flows. Nevertheless, because of implementational difficulties or failure to provide con-
sistent improvements over the more robust linear models, RANS turbulence modeling is considered to have
reached a plateau. In the past few years, the availability of high-fidelity datasets, the increased accuracy of
machine learning algorithms, and the rise in computational power led to the proposal of several data-driven
approaches to turbulence modeling. The general idea is to use experimental and high-fidelity data to de-
velop or enhance RANS turbulence models, instead of employing an approach purely based on physics. As in
any emerging field, there are many possibilities for further developing the novel approaches to data-driven
turbulence modeling. Recent work combined machine learning with statistical inversion. First, a spatially
varying correction is applied to the RANS model and optimized by minimizing the discrepancy between the
RANS output and the data for several flows. Machine learning is used to approximate a function between a
set of flow features and the inferred corrections. The aim of this work is to further investigate this methodol-
ogy, called the paradigm of field inversion and machine learning, in a broader set of test cases by inferring a
spatially varying correction to the production term of the ω-equation in the k −ω model and to the eigenval-
ues of the Reynolds stress tensor. The gradients of this high-dimensional optimization process are obtained
by implementing the continuous adjoint of the k −ω model in OpenFOAM. Gaussian processes and random
forests are then used to approximate a function between mean flow features and the inferred corrections. It
was found that both formulations are able to accurately infer the mean velocities and related quantities of in-
terest, but that the inferred corrective terms are often non-unique or not physically interpretable. For several
flow cases, the corrective terms were able to generalize to unseen Reynolds number and flow geometries.
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1
Introduction

1.1. Background
Simulation of turbulent flows is an important topic of research, as it plays an important role in a broad range
of applications in science and engineering. The equations governing the behavior of turbulence, the Navier-
Stokes equations, can be solved without modeling the turbulence in direct numerical simulations (DNS).
However, this is excessively expensive in many cases of interest in science and engineering [116]. Therefore,
turbulence closure models will continue to be necessary in order to perform computationally affordable sim-
ulations in the foreseeable future [139]. In large eddy simulations (LES) the smallest scales of turbulence are
modeled, whereas the larger scales are solved for. Solving instead for the Reynolds averaged Navier-Stokes
equations (RANS) is still the most widely used approach in industry, mainly because of its relatively low com-
putational cost. It is expected that RANS turbulence models will still be useful with the further development
of the more accurate, but computationally expensive LES, especially in industry [47].

The most commonly used RANS models use the Boussinesq assumption, in which a linear relation be-
tween the Reynolds stress and the mean velocity gradients is assumed. These models perform well in certain
classes of flows, but fail to model flows which are often present in cases of engineering interest, such as curved
surfaces, rotating flows, and secondary flows in corners. The more general Reynolds stress models (RSMs) or
non-linear eddy viscosity models (NLEVMs) have not seen widespread use in industry because of difficulties
in their implementation or failure to provide a consistent improvement over linear eddy viscosity models.
This is one of the reasons why RANS turbulence modeling is considered to have reached a plateau [139].

Measurement techniques such as particle image velocimetry (PIV) and the use of DNS in academic set-
tings have provided high-fidelity datasets over the past decades. These datasets, combined with the increased
accuracy of machine learning algorithms and the rise in computational power, created an opportunity for
data-driven approaches to turbulence modeling. The general idea is to use experimental data and the results
from high-fidelity simulations to help develop or enhance RANS turbulence models, instead of employing
an approach purely based on physical reasoning. As in any emerging field, there are many possibilities for
further developing the novel approaches to data-driven turbulence modeling. For example, Weatheritt and
Sandberg [159, 160] use symbolic regression and gene expression programming to obtain analytical expres-
sions for the anisotropy tensor. Ling et al. [82] and Wang et al. [157] use a different method, and directly pre-
dict the Reynolds stress tensor or its discrepancy from the data. Another approach, proposed by Duraisamy
et al. [29], Parish and Duraisamy [107], combines machine learning with statistical field inversion. In this
method, called the paradigm of field inversion and machine learning, a spatially varying correction is applied
to a physical model. Using an optimization process, the optimal correction is inferred by minimizing discrep-
ancy between the model output and a high-fidelity dataset. After this field inversion phase is performed on a
number of cases, a machine learning algorithm is used to approximate a function between a set of mean flow
features and the corrective term. This paradigm will be the main focus of this work.

The paradigm of field inversion and machine learning has been developed and examined in a variety of
works [29, 34, 52, 106, 107, 152]. In most of these works, the spatially varying corrective term is applied to the
production term in the Spalart-Allmaras model, or the k- orω-equation in the k−ωmodel. A disadvantage of
this approach is that it does not cover the complete model form error introduced by the Boussinesq assump-
tion, but only corrects the eddy viscosity. There have been some investigations in inferring corrections to the

1



2 1. Introduction

eigenvalues. However, these were limited to simple flows cases such as fully-developed turbulent channel
flow. All these works used the discrete adjoint for the field inversion phase. Furthermore, most of the inves-
tigations in using the inferred corrective terms in a predictive setting have been performed only for different
Reynolds numbers or similar geometries. The novelty of this work is twofold: firstly, the continuous adjoint of
the k −ω model is used for the field inversion phase in the paradigm of field inversion and machine learning,
using both corrections to the production term in the ω-equation and the eigenvalues of the Reynolds stress
tensor. Secondly, it investigates the inferred corrective terms and corresponding quantities of interest for a
variety of canonical flows and studies the possibility of training random forests and Gaussian processes to
predict the corrective term on different flow cases.

1.2. Research objectives
Two research questions are divided into six sub-questions, and are formulated as follows.

• Q1 Can the paradigm of field inversion and machine learning in its current form, as proposed by Parish
and Duraisamy [107] and Singh et al. [138], be extended using the continuous adjoint of the k−ωmodel
for the field inversion phase?

– SQ1 How does the one-shot optimization compare to the complete approach in terms of conver-
gence and accuracy?

– SQ2 How does the paradigm perform in terms of quantifying the uncertainty in the inferred cor-
rective functions and the resulting quantities of interest in a computationally tractable manner?

• Q2 What are the strengths and limitations of formulating the corrective term as corrections to the pro-
duction term in the ω-equation and the eigenvalues of the Reynolds stress tensor?

– SQ3 Is it possible to accurately infer the mean velocities and other quantities of interest using the
given corrective term formulations?

– SQ4 How do the two formulations of the corrective term compare in terms of physical inter-
pretability?

– SQ5 Can the inferred corrective terms generalize to other Reynolds numbers and flow geometries
using machine learning algorithms?

– SQ6 Does including flow cases with similar flow features in the training set as are present in the
test case lead to a notable improvement in the accuracy of the machine learning prediction?

The research objective is

“To develop a new data-driven turbulence model based on the paradigm of field inversion and machine
learning using the continuous adjoint of the k −ω model and to investigate the formulation of the corrective
function in terms of their ability to infer the quantities of interest, interpretability, and generalizability.”

These research questions and the extent to which the research objective is accomplished will be discussed
in the conclusion.

1.3. Thesis outline
Chapter 2 gives a broad overview of the field of RANS turbulence modeling and the recent advances in data-
driven techniques. The chapter is concluded by a brief outline of the paradigm considered in this thesis. The
theoretical basis for the field inversion phase of the paradigm is given in chapter 3. Furthermore, a simple
model problem is introduced, which is used throughout the theoretical chapters to illustrate the most impor-
tant steps. Chapter 4 provides a theoretical background for the machine learning phase of the paradigm. The
flow cases used to train and test the framework are described in chapter 5. The theory of the first chapters
is used in chapter 6 to justify the choices made in this work. Furthermore, the expressions resulting from
the derivations and the details of the implementations are given. The results are divided into two chapters,
chapter 7 giving the results of the field inversion and chapter 8 those of the machine learning phase. Finally,
conclusions and recommendations for future work are described in chapter 9.



2
Turbulence modeling

This chapter gives a broad overview of the field of turbulence modeling, with the main focus on RANS turbu-
lence models. Section 2.1 gives a general introduction to the problems faced in simulating turbulent flows.
Common approaches to modeling turbulence and their strengths and shortcomings are described in sec-
tion 2.2. Section 2.3 describes the properties and representation of the anisotropy tensor, which will be used
later in the formulation of the corrective terms. Recent advancements in data-driven approaches to RANS
turbulence modeling are discussed in section 2.4, and the choice for the method considered in this thesis is
justified. The chapter is concluded by an introduction to the paradigm considered in this thesis in section 2.5,
before discussing the details in the coming chapters.

2.1. Problem formulation
Turbulent flows are characterized by a chaotic, unsteady nature over a wide range of length- and time-scales.
An important characteristic of turbulence is its ability to mix fluids better than laminar flows. Turbulent
flows are governed by the Navier-Stokes equations, which in incompressible form and without body forces
are given by

∂Vi

∂t
+V j

∂Vi

∂x j
=− ∂P

∂xi
+ν∂

2Vi

∂x2
j

, (2.1)

where Vi is the i -th component of the instantaneous velocity and P is the instantaneous pressure. In princi-
ple, the equations can be discretized and solved without modeling the turbulence. The Reynolds number is a
non-dimensional number defined by the ratio between the inertial forces and the viscous forces:

Re = U L

ν
, (2.2)

where U and L are the characteristic velocity and length, respectively, and ν is the kinematic viscosity. Kol-
mogorov’s hypotheses and the energy cascade state that kinetic energy enters a turbulent flow at the largest
scales of motion. The large scales then break down into smaller scales through inviscid processes until the
energy is dissipated at the smallest scales. The Kolmogorov scales, which characterize the smallest length-,
velocity-, and time-scales, can be derived using dimensional arguments and are given by

η=
(
ν3

ε

) 1
4

, uη = (εν)
1
4 , and τη =

(ν
ε

) 1
2

, (2.3)

respectively, where ε is the dissipation rate. Assuming that the dissipation rate ε is equal to the rate of produc-
tion of the kinetic energy, the dissipation rate can be related to the characteristic lengthscales of the largest
scales of motion,

ε∼ U 3

L
. (2.4)

The ratios between the smallest and the largest lengthscales can then be derived to be

η

L
∼ Re−

3
4 ,

uη
U

∼ Re−
1
4 ,

τη

T
∼ Re−

1
2 , (2.5)
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and thus scale with the Reynolds number. A computational mesh is required which both resolves the small-
est scales of motion and is large enough for the largest scales. Furthermore, the timestep should be small
enough to resolve the smallest timescales. Therefore, even with the increase in computational power, direct
numerical simulation of turbulent flows is infeasible for industrial applications, where the Reynolds number
can be of order 108.

2.2. Turbulence modeling
2.2.1. Large eddy simulation
In large eddy simulation (LES), a spatial filtering operation is applied to the velocity field. The resolved scales
of turbulence are simulated directly, whereas it is assumed that the subgrid-scales have a more universal
nature. A closure model is thus needed to model the effect of the small scales on the resolved larger scales.
The wavenumber at which this distinction is made is called the cut-off wavenumber. Usually, around 80% of
the kinetic energy is resolved [116, p. 560]. In very large eddy simulation (VLES), a large part of the energy is
is in the subgrid-scales, which allows for the use of coarser grids and thus a lower computational cost, often
at the expense of accuracy.

2.2.2. Reynolds-averaged Navier Stokes
Another option is to instead solve for the mean flow quantities. The Reynolds-averaged Navier-Stokes (RANS)
equations are obtained by decomposing the velocity into a mean and a fluctuating component, i.e. Vi =
vi + v ′

i . The mean is taken over time, such that

v(x) = 1

T

∫ T

0
V (x, t )dt . (2.6)

A similar approach is used for the pressure. The equations resulting from substituting the decomposed ve-
locity and pressure into (2.1) are the Reynolds-averaged equations and can be written as

∂vi

∂t
+ v j

∂vi

∂x j
=− ∂p

∂xi
+ ∂

∂x j

(
ν

(
∂vi

∂x j
+ ∂v j

∂xi

))
−
∂(v ′

i v ′
j )

∂x j
. (2.7)

The RANS equations are similar to the NS equations, with the exception of the extra term including the

Reynolds stress tensor Ri j = v ′
i v ′

j . This term originates from the mean of a fluctuating quantity being zero

(i.e. v ′ = 0), but this not being true in general for the mean of the product of two fluctuating terms (i.e. v ′v ′).
Therefore, the main goal of turbulence models is to model the Reynolds stress tensor to close the equations.
The isotropic and deviatoric parts of the Reynolds stress tensor can be separated as

Ri j = 2

3
kδi j +ai j , (2.8)

where k ≡ 1
2 v ′

i v ′
i is the turbulent kinetic energy. The anisotropic part of the Reynolds stress tensor can be

non-dimensionalized as

bi j ≡
ai j

2k
. (2.9)

For the remainder of this work, this tensor will be referred to as the anisotropy tensor.

Eddy viscosity models Eddy viscosity models relate the turbulent stresses to the mean velocity gradients,
introducing a proportionality constant νt called the eddy viscosity. When the Boussinesq assumption is used,
the anisotropy tensor ai j is related to the mean strain rate tensor Si j ,

ai j ≈−2νt Si j , (2.10)

where

Si j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
, (2.11)

in incompressible flows. There are various models for calculating the eddy viscosity, often classified by the
number of additional partial differential equations that are introduced.
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The most simple models are algebraic models. In these models, no additional PDEs are solved, and the
eddy viscosity is calculated using a specified turbulent mixing length. This length is analogous the mean
free path of molecules in a gas [163]. An advantage of these models is that they are simple to implement.
However, they are generally only accurate for simple flows against which they have been calibrated, as the
value of the mixing length depends on the flow under consideration. Two well-known algebraic turbulence
models are the Baldwin-Lomax model [7] and the Cebeci-Smith model [19]. In one-equation models, only
one additional PDE for a turbulent quantity is solved. An example is the Spalart-Allmaras turbulence model
[140], which solves for a modified eddy viscosity. A consequence of solving only one additional PDE is that
these models often have good numerical stability and have a low computational cost.

Two-equation models generally solve for the turbulent kinetic energy and a quantity related to a turbulent
length- or time-scale. The formulation of the k-equation usually starts from the exact equation of the turbu-
lent kinetic energy [90], as mainly the diffusion term needs modeling. The other equation (e.g. for ε orω) can
be derived exactly [147], but contain terms that are difficult to model. Therefore, these equations are usually
derived to have a similar form as the k-equation, using dimensional and intuitive arguments. Examples of
two-equation models are the k −ε model [74] and the k −ω model [162, 163]. The main shortcoming of the
k−εmodel is its lack of sensitivity to adverse pressure gradients [88]. In these circumstances, the shear-stress
levels it predicts are too high. This delays or prevents the onset of separation. In low Reynolds number mod-
els, the equations are integrated through the viscous sublayer. An example is the Launder-Sharma model
[74], which uses damping functions near the wall and solves for a modified version of ε. A common problem
with these low Reynolds number models is their numerical stiffness. The k−ωmodel generally performs bet-
ter under adverse pressure gradients than the k −ε model. Furthermore, it can be applied in a low Reynolds
number setting without modifications, as it does not use damping functions and has Dirichlet boundary con-
ditions at the wall. This also results in better numerical stability. An important shortcoming of the k−ωmodel
is its dependence on the freestream value of ω [89]. Many corrections to both models have been proposed by
several authors.

Advantages of the Boussinesq approximation are that it has a simple form and that it has relatively good
performance in flows where the mean velocity gradients change relatively slowly. Examples of these flows
include the mixing layer, round jet, channel flow, and boundary layers. However, these advantages come at a
significant cost. The Boussinesq approximation assumes a local relationship between the Reynolds stresses
and the rate of strain. Even simple experiments can show that this is not generally the case. For example,
the experiment performed by Uberoi [153] shows that the Boussinesq assumption predicts a constant or zero
Reynolds stress tensor in sections where the experiment shows that it varies significantly. This also follows
from the Reynolds stress equations, which show that the stresses are convected by both the mean and the
fluctuating velocities [115]. Additionally, the Boussinesq approximation assumes that the principal axes of the
Reynolds stress tensor and those of the strain rate tensor coincide. As a result, the eddy viscosity depends on a
variety of factors, e.g. the characteristics of the boundary, flow history effects, and the freestream turbulence
intensity. Examples of flows where the Boussinesq approximation fails are curved surfaces, rotating flows,
and ducts with secondary motions [163].

Reynolds stress models A different approach is taken in Reynolds stress models. In this class of models, no
eddy viscosity is used. Instead, transport equations for the Reynolds stress tensor are solved. As the Reynolds
stress tensor is symmetric, this involves solving six coupled partial differential equations. One additional
transport equation is solved in order to obtain a length- or time-scale [116, p. 387]. The transport equations
for the Reynolds stresses are given by

D

Dt
vi v j +

∂Tki j

∂xk
=Pi j +Ri j −εi j , (2.12)

where Tki j is the Reynolds-stress flux, Pi j is the production tensor, Ri j is the pressure-rate-of-strain tensor,
and εi j is the dissipation tensor. The convection and the production term are in closed form, but approxima-
tions are required for closing the dissipation tensor, pressure-rate-of-strain tensor, and the Reynolds stress
flux.

The most crucial tensor from a modeling point of view is the pressure-rate-of-strain tensor, which is given
as

Ri j = p ′

ρ

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (2.13)
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This tensor has zero trace, and redistributes the energy between the different components of the stress tensor.
It can be decomposed into three parts with different characteristics: the rapid part, the slow part, and the
harmonic part. The rapid part responds immediately to changes in the mean velocity gradients. The slow
part, on the other hand, describes the relaxation to the isotropic equilibrium state. It can, for example, be
modeled using the model proposed by Rotta [128]. Examples of models for the rapid term are the models
by Launder et al. [75] or Speziale et al. [141]. At high Reynolds numbers, the dissipation tensor εi j can be
modeled as an isotropic tensor due to local isotropy. This is less accurate at moderate Reynolds numbers.
However, the anisotropic part of this tensor can be absorbed into the model for Ri j . Finally, the Reynolds-
stress flux Ti j k can be decomposed into three fluxes: viscous diffusion, the pressure transport, and turbulent
convection. The viscous diffusion is in closed form, and is negligible outside of the viscous wall region. The
pressure transport is low near the walls, and is usually neglected or absorbed into the model for the turbulent
convection using a gradient-diffusion assumption. The turbulent convection is usually modeled assuming a
gradient transport process, using k, ε, and the Reynolds stresses.

An advantage of Reynolds stress models is that they are more general than eddy viscosity models, as the
turbulent viscosity assumption is not needed. The presence of convection and diffusion terms in the trans-
port equations for the Reynolds stress tensor naturally takes into account some of the flow history, which is
not accounted for in eddy viscosity models. Therefore, Reynolds stress models are expected to perform bet-
ter in flows with high anisotropy and non-local effects. However, due to the additional transport equations
these models have higher computational requirements and are harder to implement [91]. Furthermore, they
generally have worse convergence properties than eddy viscosity models.

Nonlinear eddy viscosity models In an attempt to combine the improved generality of Reynolds stress
models with the numerical robustness of eddy viscosity models, approximations can be made to the trans-
port terms in the Reynolds stress tensor equations to reduce them to a set of algebraic equations. This results
in a set of six algebraic equations in which the Reynolds stresses are related locally to the mean velocity gra-
dients, k, and ε. A model resulting from this derivation is called an algebraic Reynolds stress model (ARSM).
One example is the work of Rodi [127]. However, in this approach, the Reynolds stress is related implicitly
to the mean velocity gradients, which can cause problems with the numerical stiffness. In this case, the ad-
vantage over solving the Reynolds stress transport equations is lost. However, additional assumptions can
be made to make the relation between the Reynolds stress and the mean velocity gradients explicit. Such an
explicit model is called an explicit algebraic Reynolds stress model (EARSM). These models can be seen as
higher-order eddy viscosity models. One of the earliest attempts was by Pope [115], who formulated a more
general relation between the mean velocity gradients and the stress tensor. Assuming that the transport terms
in the Reynolds stress equations are negligible, it was shown that at sufficiently high Reynolds numbers the
Reynolds stress tensor can be expressed as a tensor polynomial with a finite number of terms. Another exam-
ple is the work of Craft et al. [24], who formulated a cubic eddy viscosity model based on the model by Wallin
and Johansson [154]. One major challenge in developing these algebraic models is determining the closure
coefficients. One approach is calibrating these coefficients using a set of basic flows [133]. An alternative
approach is to derive the values from the implicit relation from which the explicit model is derived [154]. An
advantage of this class of turbulence models is thus the numerical robustness resulting from the explicit rela-
tion between the Reynolds stress and the mean velocity gradients. However, these numerical properties come
at the cost of a loss of generality compared to RSMs. For example, the non-local effects taken into account in
RSMs are not represented in EARSMs.

2.3. Representation of the anisotropy tensor
As will be discussed later, several data-driven approaches to turbulence modeling apply corrections to the
anisotropy tensor, or predict it directly. However, finding a suitable representation for (corrections to) the
anisotropy tensor remains a challenge and is a topic of current research (e.g. Wu et al. [165]). In this sec-
tion, the properties of the Reynolds stress tensor and the anisotropy tensor are described. Furthermore, the
barycentric map is introduced, which is used for interpreting the eigenvalues and thus the realizable states
of a given turbulence model. Finally, several methods for correcting the eigenvectors are discussed and com-
pared.
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2.3.1. Properties of the Reynolds stress and anisotropy tensor
A symmetric n ×n real matrix A is positive semi-definite if

xT Ax ≥ 0, (2.14)

for any non-zero column vector x of n real numbers. The Reynolds stress tensor is constructed by taking the
outer product of the fluctuating velocity with itself,
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j , (2.15)

and applying Reynolds averaging. This matrix is always positive semi-definite, as

xT v ′v ′T x = (xT v ′)2 ≥ 0. (2.16)

This is still true after applying Reynolds averaging, as all samples satisfy this property. This positive semi-
definiteness guarantees that the eigenvalues are non-negative. Following from Schwartz’ inequality and the
fact that the velocities are real, Schumann [131] described that

v ′
µv ′

µ ≥ 0, v ′
µv ′

µ+ v ′
νv ′

ν ≥ 2|v ′
µv ′

ν|, and det
(
v ′

i v ′
j

)
≥ 0, (2.17)

for µ,ν ∈ {1,2,3}. The minimum and maximum values of v ′
µv ′

µ are 0 and 2k, respectively, where the maximum
bound follows from the definition of k.

From its definition, the Reynolds stress tensor is symmetric and therefore diagonalizable. Separating the
Reynolds stress tensor into its isotropic and deviatoric part and using the definition of the anisotropy tensor
yields

Ri j = 2k

(
δi j

3
+bi j

)
= 2k

(
δi j

3
+Vi kΛkl V j l

)
, (2.18)

where Vi j is a matrix of which the columns are the eigenvectors of the anisotropy tensor, andΛ≡ diag(λ1,λ2,λ3)
is a diagonal matrix with the eigenvalues of the anisotropy tensor on the diagonal. This representation of the
Reynolds stress separates its magnitude (the turbulent kinetic energy), shape (the eigenvalues), and orienta-
tion (the eigenvectors). The eigenvectors define a coordinate system called the principal coordinate system.
In this coordinate system, the Reynolds stress tensor is diagonal. From the bounds on the diagonal elements
of the Reynolds stress tensor discussed earlier, its eigenvalues φi are bounded by

0 ≤φi ≤ 2k. (2.19)

These eigenvalues are related to the eigenvalues of the anisotropy tensor by

λi = φi

2k
− 1

3
. (2.20)

From the definition of the anisotropy tensor, it can be derived that

− 1

3
≤ bµµ ≤ 2

3
, − 1

2
≤ bµν ≤ 1

2
, µ 6= ν. (2.21)

An thus the eigenvalues of the anisotropy tensor are bounded by −1/3 ≤λi ≤ 2/3.

2.3.2. Eigenvalues
Significant work has been performed for the representation of the eigenvalues. The three invariants of the
anisotropy tensor were discussed by Lumley [84], and are given by

I = bi i , II = bi j b j i , III = bi j bi nb j n . (2.22)

Banerjee et al. [8] represented the anisotropy tensor as a convex combination of one, two, and three compo-
nent limiting states of turbulence:

bi j =C1c b1c +C2c b2c +C3c b3c . (2.23)
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Figure 2.1: Barycentric map. Figure 2.2: RGB-colormap legend.

with C1c +C2c +C3c = 1 and C1c ≥ 0, C2c ≥ 0, and C3c ≥ 0. Componentiality in this case refers to the number
of non-zero velocity fluctuations. The barycentric coefficients are then related to the eigenvalues by

C1c =λ1 −λ2

C2c = 2(λ2 −λ3)

C3c = 3λ3 +1,

(2.24)

where the eigenvalues are ordered according to λ1 ≥ λ2 ≥ λ3. As the anisotropy tensor is represented as a
convex combination of limiting states, it is possible to map it to a position in a map defined by three vertices
(ξ1,η1), (ξ2,η2), and (ξ3,η3), displayed in fig. 2.1. The corners of the barycentric map correspond to the one-,
two-, and three-component limiting states, as indicated. The eigenvalues can then be bounded by consid-
ering their corresponding position in the barycentric map. Furthermore, corrections or perturbations to the
eigenvalues can be represented in terms of two barycentric coordinates.

2.3.3. Eigenvectors
Finding a suitable representation for the correction to the eigenvectors is a challenging task. First of all,
this is because, it is more difficult to bound the corrections to the eigenvectors, contrary to the eigenvalues.
Thompson et al. [148] used the Reynolds stress transport equations to constrain the eigenvectors based on
the eigenvalue bounds. Iaccarino et al. [55] tried to bound the eigenvectors using the value of the production
term. Wang et al. [156] used Euler angles to represent the perturbations in the eigenvectors. Secondly, in order
for the corrected anisotropy tensor to be realizable, the corrected set of eigenvectors should still be orthonor-
mal. One way to ensure this is by specifying the correction as a three-dimensional rigid body rotation. Finally,
the representation of the eigenvector corrections should be frame-independent and smooth. Wu et al. [166]
compares three methods for representing the corrections to the eigenvectors as a three-dimensional rigid
body rotation based on their invariance and smoothness properties. The first two representations use Euler
angles. Given a local coordinate system x − y − z which is initially aligned with the global coordinate system
X −Y − Z , the orientation can be represented as a rotation about the z-axis with angle φ1, a rotation about
the x-axis with angle φ2, and another rotation around the z-axis with angle φ3. The first representation is the
discrepancy in the absolute Euler angles representing the orientation of the original set of eigenvectors and
the corrected set of eigenvectors. This representation is non-smooth and depends on the reference frame.
The second property can be alleviated by specifying the discrepancy itself as Euler angles. However, for this
representation non-smoothness remains an issue [166]. The third representation defines the discrepancy be-
tween two sets of eigenvectors as a rotation axis defined by the unit vector n = [n1,n2,n3] and a rotation angle
θ. This rotation can be represented using a unit quaternion, defined as

q =
[

cos
θ

2
,n1 sin

θ

2
,n2 sin

θ

2
,n3 sin

θ

2

]T

. (2.25)

As n is a unit vector, then it is clear that ||q|| = 1. The representation of eigenvector discrepancies using unit
quaternions is frame independent and smoother than the relative Euler angles.
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2.4. Data-driven approaches to RANS turbulence modeling
The increase in computational resources and developments in experimental techniques have caused a rise
in the availability of high-fidelity data. In combination with the improvements in the effectiveness of ma-
chine learning techniques, this enabled a more data-driven approach to complement the previously largely
physics-based approach to turbulence modeling [28]. Machine learning was first used in turbulence mod-
eling in research aiming to identify and visualize flow structures in turbulent channel flows [85] and to re-
construct these flow features near the walls [92]. For RANS simulations specifically, the first steps towards
data-driven turbulence modeling have been set by using optimization and Bayesian inference approaches to
calibrate the RANS coefficients [20, 33, 78, 101]. An important shortcoming of these approaches is that they
only address the uncertainty in the RANS coefficients, and thus do not take into account the uncertainties
introduced due to the specific form of the closure model. Also, these methods are highly problem-specific,
i.e. they cannot be used for other flows than the ones they were analyzed for. This drawback has been slightly
alleviated by using Bayesian model-scenario averaging [32, 33], but this approach still does not allow for us-
ing several different cases sharing similar flow characteristics. An alternative approach was taken by Dow
and Wang [26], who used the adjoint method to infer the eddy viscosity field from DNS data and modeled the
discrepancy as a Gaussian random field.

The state of the art of machine learning in turbulence modeling can roughly be divided into three cat-
egories. Firstly, Weatheritt and Sandberg [159, 160] use symbolic regression and gene expression program-
ming to obtain tangible analytical expressions for the Reynolds stress anisotropy tensor. An advantage of
this approach is that these expressions provide valuable insight into the turbulence model and result in an
interpretable model. However, this might not be the case for more complex flow geometries [165].

Secondly, Ling et al. [82] and Wang et al. [157] directly predict the Reynolds stress tensor or its discrep-
ancy from the data. There are several ways in which the Reynolds stress tensor can be corrected. Tracey
et al. [151] used kernel regression to model only the eigenvalues of the stress tensor. Predicting the complete
Reynolds stress tensor corresponds to predicting the eigenvectors in addition to the eigenvalues. This is done
by Ling et al. [82], using a neural network architecture ensuring Galilean invariance [81]. The description of
the Reynolds stress tensor is complete if also the prediction of the turbulent kinetic energy is taken into ac-
count, as is done by Wang et al. [158]. However, when the turbulent kinetic energy is also predicted by the
machine learning algorithm, its transport equation and the physical reasoning behind it are not used at all.
This reduces the algorithm even more to a black-box model. One disadvantage of this group of approaches
is that the anisotropy tensor is needed from the data. It therefore depends on having accurate datasets from
DNS or highly-resolved LES simulations, which are not widely available for high-Reynolds number flows.

Thirdly, Singh et al. [137, 138] try to obtain a more generalizable method by training machine learning
algorithms to predict corrections applied to existing closure models. They follow the approach proposed by
Duraisamy et al. [29] and Tracey et al. [152], which combines machine learning with statistical inference. In
this approach, a spatially varying corrective term is inferred from a number of problems. Machine learning is
then used to find the relation between the machine learning features and the database of inferred functions.
This paradigm is called field inversion and machine learning (FIML). Subsequent work has further developed
the paradigm [106, 107, 135, 136, 138, 171], and compared the performance of neural networks and (mul-
tiscale) Gaussian processes to predict the inferred corrective term for several turbulence models and flow
geometries. There are several advantages to this paradigm. First of all, a relatively low number of inferred
fields are necessary to provide training data for the machine learning algorithm [28]. Secondly, the inferred
corrective term in itself provides valuable information to turbulence modellers. Finally, this approach can
also be applied when the observational data are sparse or noisy. This paradigm is the main focus of this work
and is further introduced in the next section.

2.5. The paradigm of field inversion and machine learning
As introduced in the previous section, the paradigm of field inversion and machine learning combines sta-
tistical inversion and machine learning. The first step is to apply a corrective function to a given forward
model. This forward model can in general be any physical system defined by a set of governing equations
and boundary conditions. In this work, the forward model corresponds to the RANS equations closed by
the k −ω turbulence model. The corrective function β is then applied to a point in the model aiming to di-
rectly address the model-form errors. It should be stressed that this corrective term can vary spatially and
temporally, and thus moves beyond merely tuning the closure coefficients. The choice of where to apply the
corrective term is flexible. For example, in this work it is applied to the production term in the ω-equation of
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the k −ω model and to the eigenvalues of the anisotropy tensor. Another example is the work of Tracey et al.
[152], where the corrective term is formulated as the source term in the Spalart-Allmaras turbulence model.

The spatially varying corrective function is found by a high-dimensional optimization problem aiming to
match a quantity of interest with that of a dataset. The discrepancy between the outcome of the augmented
forward model and the data is quantified by the objective function J . As for the definition of the corrective
term, there are many options for the choice of the objective function and the data. For example, in this work
the sum of squared differences in the mean velocity of the augmented k −ω model and DNS or LES data
is taken as the objective function. Duraisamy et al. [29] defined the difference in the wall shear stress as the
objective function. The objective function is thus chosen based on the available quantities in the dataset or on
the importance of a given quantity in the problem at hand. The data can come from high-fidelity simulations
such as highly resolved LES or DNS or from experimental simulations. Furthermore, the data can be spatially
distributed (e.g. a mean velocity field from a DNS) or a single or low number of scalar values (e.g. a force
measurement from an experimental study).

Now that the forward model, the correction applied to it, and the objective functions are defined, it is
necessary to find the corrective term which optimizes the objective function. This can be formulated as a
field inversion problem, where the value of the corrective term in each grid cell can be found to optimize the
objective function. This can be done for a variety of problems, resulting in a dataset of optimized corrective
terms. This concludes the first phase of the paradigm, which is visualized in the flowchart in fig. 2.3 by phase
1. In each iteration of the optimization, the outputs of the augmented RANS model are compared to the
data yielding a value of the objective function. The optimization algorithm then selects a new corrective
term, which is used in the augmented RANS model to yield updated outputs. This process is iterated until
convergence for several flow cases.

The second phase of the paradigm, the machine learning phase, aims to reconstruct the corrective term
on unseen flow cases. This phase can be divided into a training phase and a prediction phase, which are
also indicated in fig. 2.3. In the training phase, indicated by phase 2, a machine learning algorithm is used
to approximate a function between the input features and the corrective term. In the context of turbulence
modeling, input features are mean flow quantities which are available during the RANS simulation. For ex-
ample, this feature set can consist of combinations of the strain and rotation rate tensor or physical quantities
such as the wall-distance based Reynolds number of the streamline curvature. The dataset thus consists of
the features and corrective terms resulting from the field inversion phase for a number of flow cases. In the
prediction phase, the trained machine learning algorithm is used to predict the corrective term on unseen
flow cases, given the input features. This can be implemented in an iterative setting, where in each iteration
the flow solver provides the mean flow features to the machine learning algorithm. The algorithm then pre-
dicts the corrective term which is used in the flow solver to obtain an update of the features. This phase can
also be implemented as a single correction, in what is called the corrective approach.
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Figure 2.3: Flowchart of the paradigm of field inversion and machine learning.





3
Field inversion

This chapter provides the theoretical basis for the first part of the paradigm: the field inversion. Section 3.1
poses the problem statement of the field inversion phase. Section 3.2 describes the various optimization
techniques, gives an overview of their applications in CFD, and argues why gradient-based optimization is
the most relevant option for the problem at hand. An overview of gradient-based optimization algorithms
and methods to obtain the gradients are discussed in section 3.3. Furthermore, it justifies the need for adjoint
methodology for the computation of the gradient, which is further elaborated upon in section 3.4. Finally, the
theory given in this chapter will be illustrated using a simple model problem in section 3.5.

3.1. Problem formulation
The discussion in this chapter is based on the theory presented by Aster et al. [4], unless stated otherwise.
Broadly speaking, the goal of the field inversion phase is to find the corrective field of which, when it is used
in the RANS solver, the mean flow best approximates the high-fidelity data. More formally, the forward model
is denoted by h(β). Here, β is a spatially varying correction to the forward model. It is assumed that the data
d consists of the sum of the true data dtrue and measurement noise ε. Then, the goal of the field inversion
is to obtain βtrue from the data, such that h(βtrue) = dtrue. In this work, the forward model corresponds to
the RANS model augmented with the corrective function and the data corresponds to the high-fidelity (LES,
DNS, or experimental) data.

One approach is to assume that the data errors are independent and normally distributed and to use the
maximum likelihood principle to find the corrective field which maximizes the probability of the data given
the corrective field. It can be easily shown that this approach corresponds to a least-squares problem, where
the objective is to minimize the 2-norm of the difference between the forward model output and the data, i.e.

βMLE = argmin
β

||h(β)−d ||2. (3.1)

This approach comes with several challenges. First of all, if the forward model is non-linear, there might be
several local optima. Secondly, βtrue might not exist, for example because of an incorrectly specified model
or because of noise in the data. Thirdly, there might be multiple corrective fields which give an output cor-
responding to the data. In this case, the solution to the inverse problem is not unique. Finally, the problem
might be ill-conditioned, i.e. it is possible that a small change in the data causes a large change in the result-
ing model. These last two issues can be alleviated by adding a regularization term to the objective function,
for example Tikhonov regularization:

βMLE = argmin
β

||h(β)−d ||2 +α||β−β0||2, (3.2)

where α is the regularization parameter. The regularization term punishes values of β deviating too much
from β0. The regularization parameter weighs the relative importance of fitting the data and regularizing the
corrective term. Using regularization can thus help improve the conditioning of an inverse problem. There
are many types of regularization [11] and strategies for choosing the regularization parameter [48]. However,
different choices of regularization generally lead to different results.

13
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In this work, a Bayesian approach is adopted. This approach results in a probability distribution over
corrective fields rather than a single corrective field, as is the case with the maximum likelihood approach.
The posterior distribution over the corrective fields given the data is found using Bayes’ rule:

p(β|d ) = p(d |β)p(β)

p(d )
, (3.3)

where p(β) is the prior distribution and p(d ) is the evidence. Assuming that the data consists of the sum of
the forward model output and Gaussian noise,

d = h(β)+ε, (3.4)

where ε ∼ N (0,Cm) and Cm is the observational covariance matrix. Then, the likelihood is normally dis-
tributed:

d |β∼N (d −h(β),Cm). (3.5)

Also, it is assumed that β is normally distributed,

β∼N (βprior,Cβ), (3.6)

where βprior is the prior mean and Cβ is the prior covariance matrix. Then, the posterior is proportional to

p(β|d ) ∝ exp

(
−1

2
(d −h(β))T C−1

m (d −h(β))− 1

2
(β−βprior)T C−1

β (β−βprior)

)
︸ ︷︷ ︸

J

. (3.7)

Maximizing the objective function J (or minimizing its negative) thus finds the maximum a posteriori (MAP)
solution.

There are multiple options for choosing the observational covariance matrix. In the most simple option,
the datapoints are assumed to be independent with constant variance, i.e. the posterior covariance matrix
is a diagonal matrix with identical diagonal elements σ2

m . An extension to this model would be to represent
the observational covariance matrix by a diagonal matrix where each diagonal element contains the variance
of each observation. The variance of each element can, for example, be calculated from the statistics of the
dataset, given that multiple realizations of the same process are available. The only model in which covari-
ance between multiple elements is taken into account is when a full observational covariance matrix is used.
One example where this can be used is in particle image velocimetry (PIV), where the off-diagonal elements
of the observational covariance matrix depend on the overlap and the interrogation window sizes [5, 161].
For example, if multiple realizations of the same dataset D are available, the exact covariance matrix is given
by

Cm = E
[

(Di −Di )(D j −D j )
]

, (3.8)

where Di = E[Di ].
There are many ways to select the prior distribution in Bayesian statistics [18]. In the context of field inver-

sion, Parish and Duraisamy [107] suggest choosing a Gaussian prior with a constant diagonal prior covariance
matrix and determining the variance using the following procedure:

1. Assume the variance σ2
β

.

2. Sample from the Gaussian prior with the assumed variance.

3. Propagate the sampled corrective terms through the forward model.

4. Check whether the data lies between the ±2σ limits resulting from the propagated corrective term sam-
ples.

5. Adjust variance if necessary.

If the prior and the likelihood are specified using the simplest covariance matrices, i.e. Cm = 1/σ2
m I and

Cβ = 1/σ2
β

I , the objective function simplifies to

J = 1

σ2
m

N∑
i=1

(di −h(β)i )2 + 1

σ2
β

(βi −βprior,i )2, (3.9)
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where N is the number of grid cells. Optimizing this objective function corresponds to minimizing the sum
of squares between the model output and the data, while punishing values of the corrective function which
deviate too much from the prior. This corresponds to Tikhonov regularization with the equivalent regulariza-
tion parameter equal toσ2

m/σ2
β

. This parameter specifies the relative importance of the terms in the objective

function. For lower values, it is expected that the data is a better observation of the truth, and thus the likeli-
hood has a higher importance in the optimization problem than the prior, and vice versa.

There are several advantages to using a Bayesian approach. First of all, it allows for implementing prior
information into the model through the prior distribution. For example, the prior mean can be chosen to be
equal to the corrective term corresponding to the baseline RANS model. Secondly, the posterior distribution
can be used to obtain an estimate of the uncertainty of the MAP solution. It is possible to approximate the
posterior covariance matrix as the inverse of the Hessian of the objective function:

CβMAP = H−1∣∣
βMAP

=
[

δ2 J

δβiδβ j

]−1
∣∣∣∣∣
βMAP

. (3.10)

Using the Cholesky decomposition of the posterior covariance matrix,

RRT =CβMAP , (3.11)

it is then possible to sample from the posterior distribution,

β=βMAP +Rs, (3.12)

where s is a vector of independent standard normal variates. This is valid since

var[β] = var[βMAP +Rs] = Rvar[s]RT = RI RT =CβMAP . (3.13)

The sampled corrective terms from the posterior distribution can then be propagated through the forward
model to obtain an estimate of the variance in the quantities of interest.

The number of samples needed for determining the prior and posterior variance can be found using an
approximation of the standard error of the mean and variances. For n statistically independent samples, the
standard error of the mean and variances are given by

σx = σp
n

and σS2 =σ2

√
2

n −1
. (3.14)

Depending on the computational cost of solving the forward model, these procedures can be rather costly.
As will be explained in section 3.4.3, the most efficient way to compute the Hessian of the objective func-

tion still requires N RANS simulations. Therefore, the Hessian is approximated. This work employs the ap-
proach taken by Singh et al. [136] and Singh and Duraisamy [135], where the Hessian is approximated using
the Gauss–Newton approximation. If the objective function can be written as a sum of squares, i.e.

J (β) =
N∑

i=1
r 2

i (β), (3.15)

then the second derivative can be derived and simplified according to the Gauss-Newton approximation:

δ2 Ji

δβ jδβk
= 2

m∑
i=1

[
δri

δβ j

δri

δβk
+ ri

δ2ri

δβ jδβk

]
≈ 2

m∑
i=1

δri

δβ j

δri

δβk
. (3.16)

The impact of this assumption is thus low if the first term dominates the second term. One case where this
is true is when ri is small, the small-residual case [98, p. 260]. In the context of the field inversion phase, ri

represents the misfit between the model output and the data. The Hessian is usually only required for the
MAP solution, and thus near a (local) minimum where this misfit is expected to be small. Another case where
the assumption holds is when the functions ri are not highly nonlinear with respect to β, such that the sec-
ond derivatives are small. The validity of this case is harder to quantify for nonlinear inverse problems, for
example when the forward model is a CFD solver. The gradient in the remaining term in the Hessian ap-
proximation is constructed by running the adjoint solver considering only the i -th datapoint in the objective
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function. This can be done relatively cheaply using a converged solution of the adjoint equations as initial
condition.

In the derivation, it is assumed that the distributions are Gaussian. The impact of these assumptions can
be quantified using Markov chain Monte Carlo sampling. This is done by Parish and Duraisamy [107] for
the one-dimensional example problem. For that particular problem, the posterior agrees well with the MAP.
However, this is not necessarily the case for other non-linear problems.

3.2. Optimization techniques
Having outlined the problem of field inversion in the context of RANS turbulence modeling, the algorithms
used for the optimization of the objective function will now be discussed. This section gives an overview of
the various classes of optimization algorithms available and argues why gradient-based algorithms are the
most convenient choice for the problem at hand.

In gradient-based optimization methods, (an approximation of) the gradient is used to determine the di-
rection to step into [98]. For the computation of the gradient, it is necessary that the objective function is
sufficiently smooth. Furthermore, gradient-based methods only guarantee convergence when there exists a
single global minimum or if the initial guess is sufficiently close to the global minimum, given an appropriate
step size. Genetic algorithms, on the other hand, use an analogy of the theory of evolution to search for an op-
timal solution [9]. The optimization problem is parameterized into a set of genes, which are evaluated using a
fitness function. For each population (i.e. a step in the optimization), the genes are manipulated by a number
of processes. Genetic algorithms generally work for non-smooth objective functions with multiple local op-
tima, and do not require gradients. Also, genetic algorithms lend themselves naturally to optimization prob-
lems which include discrete parameters, for example the number of engines on an aircraft. However, genetic
algorithms suffer from relatively slow convergence. Generally, genetic algorithms use a significantly higher
number of function evaluations than gradient-based optimization methods [99]. Also, the high-dimensional
nature of the optimization problems considered in this paradigm would require a large population size, and
therefore a large number of cost function evaluations [73]. Another approach to solve the inverse problem is
to use an ensemble Kalman filter (EnKF) [56]. This statistical method has been applied in the scope of tur-
bulence modeling to tune model parameters [41, 69]. A drawback of this approach is that it requires a large
number of simulations, especially for high-dimensional problems [70].

Numerical optimization in computational fluid dynamics has mostly been discussed in the context of
aerodynamic shape optimization, which has been studied extensively, using a variety of optimization meth-
ods. Examples of works where genetic algorithms are used include Poloni and Mosetti [114], Quagliarella and
Della Cioppa [120], and Gage and Kroo [40]. Approximate objective function surface schemes have been used
by Toropov [150], Giunta et al. [44], and Chiandussi [21]. Finally, gradient-based methods have been applied
in a large number of works, for example in Narducci et al. [96], Baysal and Eleshaky [10], and Borggaard et al.
[13].

The goal of the field inversion phase is to infer a corrective term which varies throughout the whole do-
main. The infinite-dimensional nature of this optimization problem leads to a high number of variables to
be optimized in the discrete setting, with the dimensionality increasing with grid refinements. It could there-
fore be expected that, in the context of field inversion, gradient-based optimization algorithms will perform
better than genetic algorithms and ensemble Kalman filters, given that there is an efficient way to obtain the
gradient with respect to a high number of parameters. As will be discussed in the next section, adjoint meth-
ods provide a way to obtain the gradients of the cost function which is practically independent of the number
of variables to be optimized. Therefore, the optimization problems considered in this work lend themselves
most conveniently to gradient-based optimization, which will be the focus of the coming sections.

3.3. Gradient-based optimization
3.3.1. Optimization algorithms
The most simple gradient-based optimization algorithm is gradient descent. Gradient descent uses the gra-
dient as the direction in which to change the parameters at step k with a given or calculated stepsize αk . The
i -th element of the corrective term is then updated according to

βk+1
i =βk

i +αk ∂J k

∂βi
. (3.17)
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This step size can either be chosen to be constant or calculated using a line search. Choosing the step size
too small can slow down convergence, whereas choosing the step size too large can make the method fail to
converge at all. If the step size is found using an exact line search, each step is orthogonal to the previous
one. This results in a "zigzagging" behavior which can be inefficient, especially near a (local) optimum. This
behavior can be reduced by including a momentum term [119]:

βk+1
i =βk

i +αk ∂J k

∂βi
+µk (βk

i −βk−1
i ), (3.18)

where 0 ≤µk ≤ 1. Gradient descent has linear convergence.
The conjugate gradient method improves upon gradient descent by taking into account the history of

search directions. It requires subsequent search directions to be conjugate. For a quadratic objective func-
tion,

J = 1

2
βT Aβ−bTβ, (3.19)

a set of non-zero vectors {p1, . . . , pn} is conjugate with respect to A if

pT
i Ap j = 0, ∀i 6= j . (3.20)

It can be shown that this problem is equivalent to solving the system of linear equations Aβ = b, and that
conjugate gradient solves it in n iterations. If A is a diagonal matrix, the contours of the objective function
are ellipsoids with their axes aligned with the coordinate frame. Therefore, the optimization problem can
be solved in n iterations by solving a univariate optimization problem along each axis. If A is not diagonal,
these axes are not aligned. Introducing the conjugate directions corresponds to transforming the optimiza-
tion problem to a coordinate system in which the contours are elliptical again, as the transformed matrix
becomes diagonal due to conjugacy. The conjugate gradient method is generalized for non-linear optimiza-
tion problems in the Fletcher–Reeves nonlinear conjugate gradient method [35].

In contrast with the previous methods, Newton’s method uses the second-order derivative of the objective
function. The corrective term is updated according to

βk+1
i =βk

i −αk

[
∂2 J k

∂βi∂β j

]−1
∂J k

∂βi
. (3.21)

The term within brackets is the Hessian. Newton’s method converges quadratically. However, due to the
calculation of the Hessian it is significantly more costly than first-order methods for high-dimensional prob-
lems. Furthermore, Newton’s method can have problematic convergence far away from the optimum and
when the Hessian is singular [98, p. 135]. Quasi-Newton methods trade off the cost of computing the Hessian
and the increased convergence of quadratic methods by approximating the Hessian. Various methods can
be identified which differ in the way the approximated Hessian is updated, e.g. the Davidon-Fletcher-Powell
(DFP) method [25] or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [36]. Another approach aiming
to address the weaknesses of Newton’s method is used in trust region methods. These methods define a re-
gion in which the quadratic approximation is expected to be valid. This can result in an improved robustness
compared to Newton’s method [98, p. 262].

3.3.2. One-shot optimization
For optimization problems where the forward model is solved iteratively, there are several ways to implement
the optimization algorithm. In the first approach, which will be referred to as the complete approach, the
forward model is iterated until convergence, after which the corrective term is updated and the process is
repeated. In the second approach, the corrective term is updated in each iteration of the forward model. This
approach is referred to as the one-shot approach or tightly coupled optimization [144, 145].

The main reason for choosing the one-shot over the complete approach is that it can greatly reduce the
computational cost of the full optimization problem, as the forward model is not iterated until convergence
at each step of the optimization [144]. Using partially converged gradients can cause the optimization to
diverge [43]. However, by starting the optimization from a converged solution, smoothing the gradients at
each iteration, and choosing an appropriate step size, this problem can be alleviated to a large extent [61].
A possible practical advantage of the complete approach is that the forward model can be treated as a black
box, as the iterative process does not have to be modified.
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3.3.3. Sensitivity analysis
As noted before, gradient-based optimization methods require a calculation of the gradient of the objective
function at each step in the optimization. Furthermore, it was mentioned that for high-dimensional opti-
mization problems, the computation of the gradient can take up a large portion of the computational cost
of the optimization. There are several ways to calculate the gradient of the objective function. A simple but
naive approach would be to use finite differences, i.e.

δJ

δβ

∣∣∣∣
β0

≈ J (β0 +ε)− J (β0)

ε
− ε

2!

δ2 J

δβ2

∣∣∣∣
β0

. (3.22)

One disadvantage of this approach is that it requires a number of simulations equal to N + 1. Even for the
simplest two-dimensional flow geometries considered in this work, this approach is excessively expensive.
Furthermore, the computed gradient is only an approximation, becoming more exact with decreasing pertur-
bation magnitude. However, small perturbation magnitudes can lead to significant subtractive cancellation
errors. This trade-off between sources of error requires the evaluation of the sensitivity for various perturba-
tion magnitudes, and thus further increases the computational cost. One advantage of this approach is that
it treats the forward model as a black-box. This means that only the output for a given input is needed for
calculating the gradient.

Another approach to obtain the sensitivities is the complex variable method [142]. In this approach the
objective function is expanded as a Taylor series with a complex increment, i.e.

J (β0 + iε) ≈ J (β0)+ iε
δJ

δβ

∣∣∣∣
β0

− ε2

2!

δ2 J

δβ2

∣∣∣∣
β0

− iε3

3!

δ3 J

δβ3

∣∣∣∣
β0

. (3.23)

The gradient can then be approximated by considering the imaginary part of this expression:

δJ

δβ

∣∣∣∣
β0

≈ Im[J (β0 + iε)]

ε
+ ε2

3!

δ3 J

δβ3

∣∣∣∣
β0

. (3.24)

This approach has the advantage that it does not suffer from subtractive cancellation errors. However, the
program does need to be adjusted for accepting complex arguments in this case, and can therefore not be
treated as a black-box anymore. Furthermore, this approach still requires varying each of the optimization
parameters separately.

The third approach is the adjoint method. This method allows the calculation of the sensitivity of the
objective function at a computational cost which does not depend on the number of optimization variables.
In the context of field inversion, this approach is by far the most efficient approach and will be explained in
detail in the next section.

3.4. Adjoint methodology
In the adjoint approach, the calculation of the gradient of the cost function is decoupled from the sensitiv-
ities of the primal variables. As a result of this decoupling, the gradients can be obtained at a cost which is
practically independent of the number of optimization parameters. In the context of computational fluid
dynamics, the adjoint method has mainly been used in optimal design, for example in the works of Jameson
[59], Baysal and Eleshaky [10], Anderson and Venkatakrishnan [3], and Pini et al. [112]. In this setting, one
aims to optimize the lift-to-drag ratio, the pressure distribution, or another quantity of interest by optimizing
a (large number of) design variables parameterizing the geometry. Other applications include error analysis
[64, 124], mesh adaptation [164], uncertainty quantification [31], and data assimilation [50]. There are two
main variants of the adjoint methodology: the discrete and the continuous adjoint [43]. In the discrete ap-
proach, the governing equations are first discretized, after which the adjoint equations are derived. In the
continuous approach, the adjoint equations are first derived in continuous form and then discretized.

3.4.1. Discrete adjoint
In this discussion, i , j ∈ [1, N ] and k,m,n ∈ [1, M ], where N is the number of design variables and M is the
product of the number of grid nodes and the number of equations per node, following the derivation and no-
tation of Papadimitriou and Giannakoglou [104]. Let J (U (β),β) be an integral quantity of interest, in this work
the objective function of the optimization problem. The functional depends both on the primal variables U
and a set of parameters β. In this work, the primal variables are the mean velocity, pressure, and turbulence
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model variables and β is the corrective term. The gradient of the objective function can be written using the
chain rule:

dJ

dβi
= ∂J

∂βi
+ ∂J

∂Uk

dUk

dβi
. (3.25)

The partial derivatives can be derived directly from the definition of the objective function. Also, the set of
governing equations will be denoted as

Rm(U ,β) = 0. (3.26)

As changing the corrective term should not change the validity of the governing equations, the derivatives of
the governing equations with respect to the corrective term are also zero:

dRm

dβi
= ∂Rm

∂βi
+ ∂Rm

∂Uk

dUk

dβi
= 0. (3.27)

Again, the partial derivatives follow straightforwardly from the discretization of the governing equations. The
sensitivity of the objective function can be obtained by solving (3.27) for dUk /dβi and substituting it in equa-
tion (3.25). This corresponds to the direct approach, and requires N system solves. The adjoint approach
multiplies the gradient of the residuals with a Lagrange multiplier and adds it to the expression of the gradi-
ent of the functional, thereby obtaining the augmented functional L:

dL

dβi
= ∂J

∂βi
+ ∂J

∂Uk

dUk

dβi
+ΨT

(
∂Rm

∂βi
+ ∂Rm

∂Uk

dUk

dβi

)
(3.28)

= ∂J

∂βi
+ΨT ∂Rm

∂βi
+

(
∂J

∂Uk
+ΨT ∂Rm

∂Uk

)
dUk

dβi
. (3.29)

The adjoint equations are obtained by zeroing the expression between brackets,

RΨ
k = ∂J

∂Uk
+ΨT ∂Rm

∂Uk
= 0, (3.30)

thereby removing the need to calculate the sensitivity of the primal variables with respect to the corrective
term. Solving the adjoint equations requires one system solve. The obtained adjoint variable can then be
used to calculate the sensitivity according to

dL

dβi
= ∂J

∂βi
+ΨT ∂Rm

∂βi
. (3.31)

The calculation of the sensitivity of the functional is now reduced to one system solve, and is thus indepen-
dent of the number of optimization variables.

3.4.2. Continuous adjoint
In the continuous approach, the adjoint equations are first derived in continuous form and then discretized.
The first appearance of the continuous adjoint in the context of optimal design was in the work of Pironneau
[113]. Further introductions to the theory behind the continuous adjoint are given by Giles and Pierce [43] and
Jameson [60]. The derivation follows a similar procedure as that of the discrete adjoint. The adjoint variables
are introduced as Lagrange multipliers and the terms which depend on the derivatives of the primal variables
with respect to the corrective term are grouped. More precisely, the derivative of the augmented objective
function can be written as

δL

δβ
= δJ

δβ
+

∫
Ω
Ψ
δR

δβ
dΩ . (3.32)

Again, the derivative of the objective function can be rewritten using the chain rule and the resulting partial
derivatives can be derived straightforwardly from the definition of the objective function. By (repeatedly)
applying integration by parts and collecting the terms including the sensitivities of the primal variables with
respect to the corrective term, an expression of domain and boundary integrals is obtained. Equation (3.32)
can then be rewritten as

δL

δβ
=

∫
Ω

RΨ δU

δβ
dΩ+

∫
Γ

DΨ

(
δU

δβ

)
dΓ+G , (3.33)
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Approach Required number of solver calls
Direct-direct N (N +1)/2+N
Direct-adjoint N +1
Adjoint-direct 2N +1
Adjoint-adjoint 2N +1

Table 3.1: Comparison of direct and adjoint approaches for computing the Hessian [104].

where G is the resulting expression for the gradient, consisting of all terms which do not include the sensitivity
of the primal variables. By ensuring that

RΨ = 0 and DΨ

(
δU

δβ

)
= 0, (3.34)

the derivative of the augmented objective function does not explicitly depend on the derivatives of the primal
variables. The adjoint equations and boundary conditions are then obtained from (3.34).

There are several restrictions on the choice of boundary conditions and objective function, which are
derived by Giles et al. [42] and Jameson et al. [62]. The main restriction is that the part of the objective func-
tion which is specified on the boundary must be chosen such that the sensitivities of the primal variables in
the boundary integral of (3.33) can be cancelled. In this work, the objective function is only specified in the
domain, on which there are no restrictions [60]. Therefore, the restrictions pose no problems to the method-
ology considered here.

Continuous adjoint formulations have been derived for several common RANS turbulence models. The
continuous adjoint for the incompressible and compressible Spalart-Allmaras turbulence model have been
derived by Zymaris et al. [172] and Bueno-Orovio et al. [16], respectively. The continuous adjoint for the low-
Re Launder-Sharma k −ε turbulence model was derived by Papoutsis-Kiachagias et al. [105]. For the high-Re
version, the continuous adjoint formulation was developed by Zymaris et al. [173], deriving adjoint wall func-
tions for solving the adjoint equations. A hybrid approach is used by Taylor et al. [146], where the continuous
adjoint is used for the flow equations, and the discrete adjoint is used for the turbulence model. Finally, for
the k−ω SST model the continuous adjoint was derived by Kavvadias et al. [71]. Most of these studies include
an investigation into the effect of assuming that the turbulence model variables do not depend on the design
variables. This so-called frozen turbulence assumption is not relevant for this work, as the corrective term is
applied to the turbulence model.

3.4.3. Hessian computation
So far, adjoint methods have only been considered as a means to obtain the first derivatives of the objective
function. However, these methods can also be used to obtain the Hessian of the objective function with
respect to the corrective term. In the context of field inversion, the Hessian is necessary if second order
optimization algorithms are used in the field inversion phase. Also, its inverse can be used to approximate
the posterior covariance matrix in order to obtain uncertainty bounds on the MAP solution [4].

There are four ways in which the Hessian can be obtained, corresponding to all combinations of using di-
rect or adjoint methods to calculate the first and second derivatives. For the discrete adjoint, each approach
is derived in [104] and the most efficient one is used in the Newton method in order to compare the con-
vergence of the optimization with optimization methods using only first-order information. A similar study
was performed in [103] for the continuous adjoint. The computational cost of the various approaches are
compared in table 3.1, of which the direct-adjoint approach is the most efficient. However, it still requires
a number of system solves proportional to the number of grid cells. Therefore, it is not expected to scale to
the dimensions of the problems considered in this work, and approximations to the Hessian are expected
to be more feasible computationally. Also, the problems concerning the derivation, implementation, and
efficiency encountered in the adjoint for the first derivative become worse for higher derivatives [110].

3.4.4. Discussion
The theory introduced in the previous subsections raises the question of what approach to use for the field
inversion. The relative advantages of using the discrete or continuous adjoint to obtain the sensitivity of the
objective function have been discussed extensively, for example by Nadarajah and Jameson [95], Giles and
Pierce [43], and Peter and Dwight [110]. One advantage of the discrete adjoint is that it provides the exact gra-
dient of the discretized objective function, whereas the continuous approach approximates the continuous
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gradient. Therefore, during an optimization using the discrete adjoint, the gradient information is consistent
with the objective function evaluations. Giles and Pierce [43] argue that this difference is most relevant near
a local optimum. Also, it makes verifying the discrete adjoint using finite differences more straightforward.
Advantages of the continuous approach are that the physical meaning of the terms in the continuous adjoint
equations is more clear and that the adjoint code is simpler and requires less memory. Also, the continuous
approach generally lends itself more conveniently to the implementation in open-source CFD solvers (e.g.
OpenFOAM [63]). On the other hand, the discrete adjoint can be derived in a fully algorithmic manner using
automatic differentiation [123], whereas deriving the continuous adjoint equations is more mathematically
involved and often requires domain knowledge for the discretization. Also, accepting a small inaccuracy in
the gradients, the memory requirements of the discrete adjoint can be alleviated [30].

In the limit of an infinitely fine grid, given certain conditions required on the primal discretization, both
approaches converge to the same value of the gradient [43]. Discretizations with this property are called
adjoint or dual consistent [49]. It can therefore be concluded that, in the scope of the optimization problems
considered in this paradigm, the choice of adjoint method is mainly implementational [110]. In this work,
the continuous adjoint is used to obtain the gradients in the field inversion phase.

3.5. Model problem
In order to make the description of the paradigm more tangible, a one-dimensional model problem from
Parish and Duraisamy [107] will be used throughout this work to illustrate the most important steps. This
section introduces the problem and describes the steps relevant for the field inversion phase.

3.5.1. Problem description
The true data is generated by the following scalar non-linear ordinary differential equation, representing one-
dimensional heat conduction with a radiative and a convective term:

d2T

dz2 = ε(T )(T 4
∞−T 4)+h(T∞−T ). (3.35)

In this expression, z ∈ [0,1] is the spatial coordinate, the temperature of the surroundings T∞ can be a func-
tion of z, T is the temperature, h = 0.5, and

ε(T ) =
(
1+5sin

(
3πT

200
+e0.02T +N

(
0,0.12))) ·10−4. (3.36)

It is attempted to model this problem using

d2T

dz2 = ε0(T 4
∞−T 4), (3.37)

where ε0 = 5 ·10−4. This base model is imperfect because it neglects the linear term and approximates the
emissivity with a constant. The models are solved using second-order accurate finite volume discretization
on a uniform mesh with 31 points. The temperature profiles resulting from the true and the base model are
shown in fig. 3.1. An augmented model is obtained by multiplying the base model with the spatially varying
corrective term β(z):

d2T

dz2 =β(z)ε0(T 4
∞−T 4). (3.38)

Using the expressions for the true model and the corrected model, the corrective term corresponding to the
true model can be derived to be

βtrue =βr +βc = 1

ε0

(
1+5sin

(
3πT

200
+e0.02T +N

(
0,0.12))) ·10−4 + h

ε0

T∞−T

T 4∞−T 4 . (3.39)

Coming back to the problem definition for the inversion problem, the goal is to optimize β(z) such that when
it is used in the corrected model (3.38) the resulting temperature approximates the output of the true model
(3.35). Assuming Gaussian distributions for the likelihood and the prior, the objective function is given by

J = 1

2
(d −h(β))T C−1

m (d −h(β))+ 1

2
(β−βprior)T C−1

β (β−βprior). (3.40)
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Figure 3.1: Temperature profiles for T∞ ∈ {5,15,25,35,45,55}.

The dataset d consists of 100 realizations of the true model. The observational covariance matrix is con-
structed according to the three options described in section 3.1. For the diagonal covariance matrix with
constant variance, a variance of σ2

m = 0.02 was used. The prior for the corrective term is βprior = 1, reducing
the augmented model to the base model. Parish and Duraisamy [107] select the constant prior variance by
sampling the corrective term from the prior distribution and checking whether the observed temperature
profile falls between the resulting ±2σ bounds. The MAP solution for the particular choice of T∞ considered
in this section used a prior variance of σ2

β
= 0.2.

3.5.2. Discrete adjoint
The true model can be discretized and solved using the following iterative scheme:

Ti = 1

2

(
Ti−1 +Ti+1 − (∆z)2

(
ε(Ti )

(
T 4

i −T 4
∞,i

)
+h(Ti −T∞,i )

))
. (3.41)

Under-relaxation is used to stabilize the iterations. The base model and augmented model are discretized
in a similar manner. From these discretized models, the partial derivatives of the objective function and the
governing equations are straightforwardly calculated:

∂J

∂βi
= (C−1

β )i j (β j −βprior, j ), (3.42)

∂J

∂Ti
= (Hkl Tl −dk )(C−1

m ) j k H j i , (3.43)

∂Rα

∂βi
= 1

2
(∆z)2δαiε0(T 4

α−T 4
∞,α), (3.44)

∂Rα

∂Ti
= δαi

(
1+2T 3

α(∆z)2βαε0
)− 1

2
δα−1,i − 1

2
δα+1,i . (3.45)

where δi j is the Kronecker delta, summation is implied over i , j , k, and l , and α is excluded from the sum-
mation convention. To obtain the gradient, first use (3.30) to solve for the adjoint variable, i.e.(

∂Rm

∂Uk

)T

Ψ=−
(
∂J

∂Uk

)T

. (3.46)

Then, the resulting adjoint vector Ψ can be used to obtain the gradient using (3.31).

3.5.3. Continuous adjoint
For the continuous adjoint, the derivative of the augmented objective function can be written as

δL

δβ
= δJ

δβ
+

∫ 1

0
Ψ
δR

δβ
dz . (3.47)
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Taking the derivative of the primal equation, multiplying by the adjoint variable, and integrating over the
domain gives ∫ 1

0
Ψ
δR

δβ
dz =

∫ 1

0
Ψ

d2

dz2

(
δT

δβ

)
dz −ε0

∫ 1

0
Ψ

[
T 4 −T 4

∞(z)+4β(z)T 3 δT

δβ

]
dz . (3.48)

Applying integration by parts twice to the first term on the right-hand side and rearranging the terms gives

δL

δβ
=

(
Ψ

d

dz

(
δT

δβ

)
− dΨ

dz

δT

δβ

∣∣∣∣1

0

)
︸ ︷︷ ︸

DΨ
(
δU
δβ

)
−

∫ 1

0

(
Ψε0

(
T 4 −T 4

∞(z)
)− N∑

i=1

[
δ(z − zi )

(
β−βprior

)
(C−1

β )i j

])
dz

+
∫ 1

0

(
d2Ψ

dz2 −4Ψε0β(z)T 3 +
M∑

i=1

[
δ(z − zi )(HT (β)−d)(C−1

m H)i j
])

︸ ︷︷ ︸
RΨ

δT

δβ
dz .

(3.49)

Note that the Dirac delta function has been introduced because the data is known at discrete locations, while
the equations are still treated in continuous form. The Dirac delta functions disappear naturally when evalu-
ating the integral in the discretization step. The adjoint boundary conditions follow from setting the first term
to zero, and correspond to zero Dirichlet boundary conditions at both boundaries. The adjoint equation fol-
lows from setting the indicated part of the last term to zero, using one-point integration for the integral and
making use of the sifting property of the Dirac delta function:(

1

∆z

)
Ψi−1 +

(−2−2ε0∆zβi T 3
i

)
Ψi +

(
1

∆z

)
Ψi+1 = (HT (β)−d)C−1

m H . (3.50)

The remaining term provides the adjoint gradient. Again, making use of the sifting property of the Dirac delta
function and using one-point integration for the integral, the gradient can be rewritten as

δL

δβ
=−Ψiε0

(
T 4

i −T∞,i
4(z)

)
∆z − (

β−βprior
)

C−1
β . (3.51)

3.5.4. Hessian approximation
As discussed in section 3.1, the Gauss-Newton approximation can be used to approximate the Hessian, which
can be used to approximate the posterior covariance matrix. In order to investigate the impact of this assump-
tion, it is also used in this section to approximate the posterior covariance. Using diagonal observational and
prior covariance matrices with constant variance, the expression for the approximate Hessian can be derived
from (3.16) as:

δ2 J

δβ jδβk
≈ 1

σ2
m

N∑
i=1

δTi

δβ j

δTi

δβk
+ 1

σ2
β

δ j k . (3.52)

The first term can be obtained by calculating the adjoint gradient of the following objective function:

Ji =
Ti −Tobs,i

σm
, (3.53)

which changes the partial derivatives of the objective function as follows:

∂Ji

∂β j
= 0 and

∂Ji

∂T j
= 1

σm
δi j . (3.54)

The Hessian can then be approximated by solving the adjoint equations with this objective function for each
i ∈ [1, N ].

3.5.5. Results
A convenient way to verify the implementation of the adjoint equations before performing the optimization is
by using both the adjoint method and finite differences to obtain the gradients. The gradients for the model
problem at β(z) = 1 obtained using finite differences, the discrete adjoint, and the continuous adjoint, are
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Figure 3.3: Objective function during optimization using first- and second-order optimization algorithms.

presented in fig. 3.2. As expected from the discussion in section 3.3.3, choosing an excessively low or high
perturbation size for the finite difference calculation results in inaccuracies in the gradient. For intermediate
perturbation sizes, the gradients obtained from finite differences and the discrete and continuous adjoint are
practically indistinguishable.

The gradients can now be used in an optimization routine to calculate the MAP of the corrective term.
The convergence of the optimization is shown for two optimization methods in fig. 3.3. As discussed in sec-
tion 3.3.1, conjugate gradients (CG) only uses gradient information, whereas the Newton-CG algorithm ad-
ditionally uses the Hessian. In this case, the Hessian is calculated using the discrete direct-adjoint method.
The derivation can be found in appendix A. Both methods reduce the objective function by several orders
of magnitude and converge to the same solution. It can be seen that CG converges two orders of iterations
later than Newton-CG. It should be noted that each iteration consists of multiple system solves. However,
even taking into account the system solves needed for the gradient and Hessian evaluations, CG converges in
approximately 2000 function calls, whereas Newton-CG only takes around 600.

The results of the field inversion, using the three options for the covariance matrix mentioned in sec-
tion 3.1, are shown in fig. 3.4. The resulting temperature profile agrees with the true solution for all covari-
ance matrices. The same is true for the corrective term, except for the objective function where the diagonal
covariance matrix with constant variance was used. The standard deviation is only accurate when the full
observational covariance matrix is used. For the diagonal covariance matrix with constant variance, there is
a strong agreement between the standard deviation obtained using the Gauss-Newton approximation of the
Hessian with that calculated using the exact Hessian. This finding is of course not guaranteed to generalize
to more complex problems.

It can thus be concluded that an accurate description of the observational covariance is important for the
inferred corrective term to be physically meaningful, whereas the temperature distribution can be inferred
accurately as long as the confidence in the observations is high enough (i.e. the observational variance is
low enough). This is also true for the approximation of the posterior variance, which was only accurate for
the most detailed description of the observational covariance. The MAP solutions for all values of T∞ in the
dataset have been separated into the radiative and the convective term as defined in (3.39), and is shown in
fig. 3.5 for the three different covariance matrices. Uncertainty bounds are shown for the radiative term. Both
parts of the corrective term have been inferred correctly, especially for the full covariance matrix.
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Figure 3.4: Field inversion results (±2σ for the corrective term), T∞ = 50, σ2
β
= 0.8.
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4
Machine learning

This chapter will provide the theoretical basis for the second part of the paradigm - machine learning. In
section 4.1, a general description of the types of problems addressed by machine learning is given, and the
most important challenges and trade-offs are discussed. Section 4.2 gives an overview of the machine learn-
ing algorithms which are relevant in the context of data-driven turbulence modeling. For each algorithm, the
major strengths, shortcomings, and capabilities for its use in a probabilistic setting are discussed. Further-
more, examples of their use in the field of turbulence modeling are given. The input features are discussed in
section 4.3 and section 4.4 describes the process of model selection. Finally, in section 4.5 some of the points
are illustrated for the simple model problem introduced in the previous chapter.

4.1. Problem formulation
Machine learning can be defined as a method to discover patterns in data, which can then be used to make
predictions on unseen data [94]. A frequently made distinction is between supervised and unsupervised
learning. In the first, a mapping between inputs x and outputs y is approximated, given a dataset D =
{(xi , yi )}N

i=1. For classification tasks, the output consists of a set of classes y ∈ {1, . . . ,C }. In regression problems,

the output is real-valued. In the unsupervised case, the dataset only consists of a set of inputs D = {(xi }N
i=1.

The goal is then to discover patterns in this dataset. Besides supervised and unsupervised learning, rein-
forcement learning is a branch of machine learning which aims to find an optimal policy which translates
observed states into actions given an occasional award or punishment [143].

In practice, many machine learning algorithms can be made as complex as desired. However, models with
high complexity have the risk of learning non-existing patterns in noise in the training data. The model is then
said to have low bias but high variance, a phenomenon called overfitting. On the other hand, underfitting
occurs when models with insufficient complexity fail to fit even the basic trend in the data. The model is
then said to have high bias but low variance. This trade-off is therefore often referred to as the bias-variance
trade-off, and is an essential challenge in the development and use of machine learning algorithms.

Another important problem in machine learning is the curse of dimensionality. This problem arises in
high-dimensional spaces, i.e. in cases where a large number of features is used. With increasing dimen-
sionality, the volume of the feature space increases significantly, causing the data to sparsify. This causes
problems in methods using distance measures (e.g. k-nearest neighbours (k-NN), support vector machines
(SVM), etc.), significantly increases the number of samples needed to obtain a certain sampling density, and
poses challenges in optimization problems.

4.2. Overview of machine learning algorithms
This section gives a brief overview of the machine learning algorithms relevant to this work. The discussion
is mainly based on the theory presented in Murphy [94], unless stated otherwise.
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4.2.1. Kernel regression
Kernel regression is a simple algorithm which aims to compute the conditional expectation

f (x) = E[y |x] =
∫

y p(y |x)d y =
∫

y p(x , y)dy∫
p(x , y)dy

, (4.1)

using a kernel density estimate for the joint probability, i.e.

p(x , y) ≈ 1

N

N∑
i=1

κh(x −xi )κh(y − yi ). (4.2)

From the zero-mean property of the kernel and the fact that it integrates to one, it easily follows that

f (x) =
N∑

i=1
wi (x)yi and wi (x) ≡ κh(x −xi )∑N

j=1κh(x −x j )
. (4.3)

An advantage of kernel regression is that it is non-parameteric. Therefore, training the algorithm is restricted
to tuning the hyperparameters of the kernel. On the other hand, kernel regression has a relatively high com-
putational complexity in terms of memory demands and evaluation time. In the context of data-driven tur-
bulence modeling, kernel regression has been used by Tracey et al. [151] to construct a probabilistic model of
the error of RANS models using high-fidelity data.

4.2.2. Neural networks
Feedforward neural networks or multilayer perceptrons consist of a network of units which transform a linear
combination of their inputs through a non-linear activation function [45]. The network is usually made up
of an input layer, followed by a number of hidden layers resulting in an output layer. Each layer is made up
of a number of perceptrons. A perceptron takes the weighted input of the previous layer, adds a bias, and
applies an activation function. An example of a perceptron is shown in fig. 4.1. Note that the weight w1

multiplying the unit input is equivalent to adding a bias term. The gradient of the loss function with respect
to the weights and biases are calculated using the backpropagation algorithm. This algorithm consists of a
forward-phase, in which the data is propagated through the network and the outputs are calculated. The
discrepancy between these outputs and the training labels is quantified using a loss function. The gradients
are then calculated by repeatedly applying the chain rule, working backwards from the output layer.

Learning the weights of a neural network can be formulated as a maximum-likelihood estimation:

w MLE = argmax
w

p(D|w ). (4.4)

Neural networks can be used in a probabilistic setting using a Bayesian approach. In this case, one can define
probability distributions on the weights, and then find the maximum a posteriori given a prior on the weights:

w MAP = argmax
w

p(w |D) = argmax
w

{
log p(D|w )+ log p(w )

}
. (4.5)

A normally distributed prior on each weight corresponds to L2-regularization, whereas a Laplace prior cor-
responds to L1-regularization [46]. Due to the high number of weights in most neural network architectures,
calculating the posterior is intractable. Blundell et al. [12] assign a normal distribution to each weight of the
neural network, and use variational inference to infer the individual means and standard deviations. How-
ever, it is often assumed that there is no correlation between the weights. Furthermore, the quality of the
resulting uncertainty bounds can depend considerably on the architecture of the network. Advantages of
neural networks are their flexibility and their ability to learn complex non-linear functions. On the other
hand, the training time can be rather long and a relatively large amount of training data is required. Also,
because of its flexibility there are a lot of hyperparameters to tune and the results are hard to interpret.

A large part of the work done so far on data-driven modeling uses neural networks [29, 81, 138, 152, 171].
Most of these implementations use simple feedforward neural networks, but [82] proposes an architecture
with a layer with an invariant tensor basis to ensure Galilean invariance of the resulting turbulence model.

4.2.3. Support vector machines
Support vector machines (SVM) are a class of machine learning algorithms which aim to separate classes of
training data using a hyperplane described by

w · x −b = 0, (4.6)
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Figure 4.1: Diagram of a perceptron.

while maximimizing the margin between the hyperplane and the nearest datapoints [23]. Requiring that
each point in the dataset must lie on the correct side of the hyperplane, this can be written as the following
optimization problem:

minimize
w ,b

||w ||

subject to yi (w · xi −b) ≥ 1, i = 1, . . . ,n.
(4.7)

This is the so-called hard-margin SVM. In practice, there usually does not exist a hyperplane which can sep-
arate all data points. In this case, the data is not linearly separable. The soft-margin formulation allows some
datapoints to be misclassified. Furthermore, the input data can be efficiently mapped to a high-dimensional
space using kernels, allowing for learning non-linear decision boundaries. Another advantage is that only
the data points which directly influence the decision boundary, the support vectors, are used in the decision
process. This allows for efficient memory utilization. Support vector machines are mainly used for binary
classification, however, extensions to multiclass classification [54] and regression [27] are possible.

Support vector machines have not seen frequent use in data-driven turbulence modeling. An example is
the work of Ling and Templeton [80], where they are used to identify regions of high RANS uncertainty. How-
ever, it was found that random forests performed better in terms of performance and ease of implementation,
as support vector machines are more sensitive to irrelevant input features.

4.2.4. Gaussian processes
The goal of Gaussian processes is to infer a distribution over functions, given the data [125]. The main idea is
that datapoints which are close together in the feature space should have similar target values. This closeness
is quantified using a kernel function. Assume that the observed labels can be described by

y = f (x)+ε, where ε∼N (0,σ2
y ), (4.8)

and where f (x) is a function of the input data and σ2
y is the variance of the noise. In this work, σ2

y can, for
example, be chosen as the variances obtained from the MAP result. The covariance matrix of the labels is
given as

cov[y|X] = K+σ2
y I ≡ Ky , (4.9)

where K = κ(X,X) with training data X and a positive definite kernel κ. The test set will be written as X∗. The
posterior is then given by the multivariate Gaussian

p(f∗|X∗,X,y) =N ( f∗|µ∗,Σ∗), (4.10)

where

µ∗ = K T
∗ K −1

y y , Σ∗ = K∗∗−K T
∗ K −1

y K∗, (4.11)

and K∗ = κ(X∗,X), and K∗∗ = κ(X∗,X∗). A common choice for the kernel is the radial basis function (RBF)
kernel, given by

κ(xi , x j ) = exp

(
−||xi −x j ||

l 2

)
. (4.12)

In this case, the only hyperparameter to be tuned is the length scale l . This can be done by optimizing the log
marginal likelihood:

log p(y |X ) = logN (y |0,K y ) =−1

2
yK −1

y y − 1

2
log |K y |− N

2
log(2π). (4.13)
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The first term in this expression expresses the misfit between the outcomes and the data, the second term
penalizes an overly complex model, and the third term is a normalization constant. The gradients can be
readily computed from this expression, and it is thus convenient to use a gradient-based optimization algo-
rithm to tune the hyperparameters. However, it is also possible to use sampling methods such as MCMC for
this purpose.

Examples of Gaussian processes in data-driven turbulence modeling are the works by Parish and Du-
raisamy [107] and Zhang and Duraisamy [171]. Gaussian processes are easy to implement and are inherently
probabilistic. However, the naive implementation has a time complexity of O(N 3), where N is the number
of training samples. Quinonero-Candela et al. [121] give an overview of efficient approximations for Gaus-
sian process regression. Zhang and Duraisamy [171] and Zhang et al. [170] investigate multiscale Gaussian
process regression.

4.2.5. Tree-based methods
The main idea of tree-based methods is to segment the feature space into M regions R1,R2, . . . ,RM using
trained splitting rules [38]. A tree consists of several internal nodes connected by branches ending in a set of
terminal nodes, and is built by recursively finding the split of the input space which minimizes a given loss
function. Prediction samples falling into a given terminal node are given a constant value cm . The function
describing the decision tree is then given by

f (x) =
M∑

m=1
cm I (x ∈ Rm), (4.14)

where I is a function indicating whether x falls in region Rm . For example, cm can be chosen as the average of
all samples ending up in a given terminal node in a regression problem. This corresponds to finding the min-
imum sum of squares. Tree-based methods can be applied to both regression and classification problems.
Bias and variance can be traded off by varying the tree size, where larger trees have more tendency to overfit.
Advantages of using trees to are that they are easy to interpret, can handle a mix of discrete and continuous
features, and usually scale to large datasets [94].

A tree-based method therefore needs to find which features to use and where to apply the split at each
node in the tree. Furthermore, it needs to find the topology of the tree. Minimizing the sum of squares for all
combinations of features and splits generally has an excessively high computational cost. Therefore, a greedy
algorithm is used [38]. At a given node, the split at s in the feature space for feature j can be written as

RL( j , s) = {X |[X j ] ≤ s} and RR ( j , s) = {X |[X j ] > s}. (4.15)

The splitting feature j and splitting point s are then given by the following optimization problem:

min
j ,s

[
min

c1

∑
xi∈RL ( j ,s)

(yi − c1)2 +min
c2

∑
xi∈RR ( j ,s)

(yi − c2)2

]
. (4.16)

Generally, single trees perform significantly worse than other machine learning algorithms [38]. This is partly
cause by the unstable nature of trees: a small change in the input can change the tree completely. Trees
are thus generally high-variance estimators. However, individual trees can be combined into an ensemble
to reduce the variance and thus to improve performance. One option is to take repeated samples from the
dataset (i.e. bootstrapping) and training a model on each of the bootstrapped datasets. The prediction is then
obtained by aggregating the results of the individual models, for example by taking the mean for regression
or using a majority vote in the case of classification. Combining these models reduces the variance of the
prediction, given that the individual models are sufficiently different from each other. Building on this idea,
random forests aim to increase the diversity of the models by only allowing to consider m < p features for
each split, where p is the total number of features. This decorrelates the trees, as it discourages choosing a
small number of good predictors for the majority of the splits, thus allowing for greater variance reduction. A
third option is to improve trees in specific areas where the model is not performing well, by growing the trees
sequentially and fitting each model to the residuals of the previous model. This approach is called boosting.

Random forests are used by Ling and Templeton [80], Ling et al. [81], and Wang et al. [157]. A boosting
algorithm called Adaboost is used by Ling and Templeton [80]. Recent work has applied the concept of using
a tensor basis for neural networks [82] to random forests [67, 68].
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4.2.6. Other algorithms
There are several algorithms which are not discussed in detail in this section but which do appear in liter-
ature. One example is the work by the group of Weatheritt and Sandberg [159, 160], who use symbolic re-
gression and gene expression programming to obtain tangible analytical expressions for the Reynolds stress
anisotropy tensor. Another example is the study by Ray et al. [126], who formulate a nonlinear eddy viscos-
ity model and uses shrinkage regression to remove most of its terms, keeping only the most important ones.
Then, a Bayesian calibration using MCMC is performed to tune the model parameters. Sekar et al. [132] use
convolutional neural networks to obtain an airfoil shape given a pressure distribution.

4.3. Features

4.3.1. Feature engineering
The features to be used as input in the machine learning algorithm must be informative enough to distinguish
individual points in the feature space. Also, it must be possible to derive them from mean flow quantities, as
they have to be available during the RANS simulation. Furthermore, in order to aid generalization of the
predictions, the features should be Galilean invariant and should not depend on the geometry. For some
machine learning algorithms, the features should also be normalized. From the first applications of machine
learning in turbulence modeling to the more recent studies, the features moved from ad-hoc selected, variant
input features trained and tested on the same flows to systematically selected, invariant input features tested
on multiple flows.

Milano and Koumoutsakos [92] used the instantaneous velocity as input to predict the velocity in the near-
wall region. The method was trained and tested on the same flow configuration, thus it was not necessary
to use rotational invariant features. A more systematic approach to feature selection was used by Duraisamy
et al. [29], where the hill-climbing method proposed by Kohavi and John [72] was used to select the input fea-
tures from a feature set consisting of the velocity gradient tensor, the transported turbulent scalar quantities,
and three non-dimensional parameters. A first attempt to take into account rotational invariance was taken
by Lefik and Schrefler [79], who trained their algorithm on multiple rotations of the original dataset to try to
let the algorithm learn the invariance itself. This is a common technique in the domain of image recognition
[6]. Several points can be raised arguing that this approach to incorporating invariance in the system is sub-
optimal [81]. Firstly, the rotational invariance learned by the algorithm is not exact. In physical models exact
rotational invariance is desired, whereas in image recognition this can actually be undesirable. Secondly, in
physical models it is often possible to derive invariant input features. Not having to train the model on a large
number of variations of the original training data can thus save computational time in the training phase.

Invariant input features have been used in several studies [80, 151, 157]. However, the features were se-
lected based on physical reasoning and intuition. The risk of this approach is that important information is
excluded by not considering one or more invariants. This was improved upon in the work of Ling et al. [81],
by using a systematic approach to derive invariant bases to be used as input features.

4.3.2. Feature importance
One of the main strengths of decision trees is their high interpretability. The decision rules used to obtain the
regression value can be visualized in two-dimensional structure [38]. This advantage is lost when an ensem-
ble of decision trees is used. However, it is generally possible to obtain an estimate of the relative importance
of each of the features in the dataset. As discussed in section 4.2, the feature space is split according to the
maximal improvement of fit compared to assigning a constant value over the full region. These improve-
ments can be summed for each feature to indicate its relative importance. As the absolute values do not have
a meaning, the importances are usually scaled with the highest importance or such that all importances sum
to one. The squared relative importance for feature j is given by

I2
j =

1

T

T∑
t=1

M∑
m=1

[
MSERL+RR − 1

ns,RL +ns,RR

(
MSERL ns,RL +MSERR ns,RR

)]
, (4.17)

where T is the number of trees and M is the number of internal nodes where feature j was used to make the
split.
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T∞ σprior

5 20
10 2
15 1
20 1
25 0.5
30 1
35 1
40 1
45 1
50 0.8

Table 4.1: Settings used for the field inversions making up the dataset, taken from Parish and Duraisamy [107].

4.4. Model selection
In order to know how well a statistical method is performing or to tune its hyperparameters, an estimate of
the error on unseen data is needed. There are several approaches, differing in the computational cost and
the bias and variance of the estimate of the test error [38]. In the validation set approach, the model can
be trained on some portion of the complete dataset and tested on the remaining samples. This approach
is conceptually simple, but it generally overestimates the test error because the model is not trained using
all the available data. Furthermore, the estimate of the test error can vary significantly depending on which
samples are included in the test set. In leave-one-out cross-validation (LOOCV) only one sample is left out
of the dataset to estimate the test error, and the algorithm is trained on the remaining n − 1 samples. This
process is repeated n times, until each sample in the dataset has been used. With this method, almost the
complete dataset is used for the training, and thus the estimate of the test error is almost unbiased. However,
because the various training sets are similar they are highly correlated, and the estimate of the test error has
high variance. Furthermore, if the dataset is large or if the training time of the algorithm is high, this approach
can be computationally expensive. The bias and variance can be traded-off using k-fold cross-validation. In
this case, the dataset is split up into k approximately equally sized parts, and each part is excluded to estimate
the test error once. It has been empirically found that using k = 5 or k = 10 provides a good balance between
bias and variance [14].

4.5. Model problem
In the machine learning phase for this model problem, the machine learning features are T∞ and the result-
ing temperature distribution T from the base model. The goal is to approximate a function between these
features and the MAP result of a number of field inversions. The dataset used for the machine learning phase
thus consists of the inferred corrective terms for ten (constant) values of T∞. For each case, a prior ofβprior = 1
is used with a constant diagonal covariance matrix with variances as given in table 4.1. For all cases a full co-
variance matrix was used. For this machine learning phase, Gaussian processes were used. The noise added
to the kernel matrix, σy as in (4.8), was taken from the posterior covariance resulting from the field inversion
phase. Note that not the full posterior covariance matrix was used, but only the variances. The lengthscale of
the RBF kernel was optimized offline, resulting in l = 4.17. The resulting corrective function was propagated
once through the augmented forward model.

The Gaussian process can then be used to predict the corrective function for an unseen T∞. As a test case,
T∞(z) = 15+5cos(πz) was selected. This choice differs from the training data in the sense that T∞ now varies
with z, whereas it was constant for all training cases. Furthermore, the low values result in a relatively high
influence of the linear heat transfer term [107], which is missed by the base model. The predicted corrective
term is compared to the base model and the MAP result in fig. 4.2. The predicted corrective function roughly
agrees for z < 0.5, but varies considerably from the MAP result for the other end of the rod. Interestingly, the
machine learning result is closer to the true corrective term than the MAP solution near the ends of the rod.

The resulting temperature distribution for T∞(z) = 15+ 5cos(πz) is shown in fig. 4.3. The temperature
resulting from the augmented model is much closer to the true model than the temperature distribution
from the base model. Also, the posterior covariance accurately reflects the discrepancy between the results
from the true model and the augmented model, i.e. the standard deviation is higher where the discrepancy
is higher, and vice versa. At the endpoints of the domain, where the difference is zero, the posterior variance
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Figure 4.2: Predicted corrective function and samples of the Gaussian process.
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Figure 4.3: Resulting temperature profile T ±2σ of propagated machine learning predictions, T∞ = 15+5cos(πz).

goes to zero.
The relation between the standard deviation given by the propagated predictions of the corrective term

and the discrepancy between the predicted mean temperature and the true temperature is given in fig. 4.4.
There is a clear correlation between the error in the predicted temperature and the predicted variance. This
shows that, for this case, the variance from the propagated samples is a good indicator of the discrepancy in
the results. Similar correlation was observed for other test cases and is also reported by Parish and Duraisamy
[107].
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Figure 4.4: Relation between the temperature error and the standard deviation from the propagated Gaussian process
samples, T∞ = 15+5cos(πz).



5
Flow cases

This chapter introduces the five flow cases considered in this work, and discusses the sources which were
used for the high-fidelity data. For each case, the flow characteristics, quantities of interest, and boundary
conditions are described. An overview of the cases, their Reynolds numbers, and their abbreviations are given
in table 5.1. Furthermore, the results of the mesh convergence studies are shown for each case.

Case Abbreviation Reynolds numbers
Turbulent channel flow TCF 180, 395, 550, 590, 950, 2,000, 4,200
Square duct SD 1,100, 1,800, 2,400, 2,900, 3,500
Periodic hills PH 5,600, 10,595
Converging-diverging channel CDC 12,600
Backward facing step BFS 5,100

Table 5.1: Overview of flow cases.

5.1. Turbulent channel flow
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Figure 5.1: Mean velocity profile of the turbulent channel flow case (Reτ = 950).

The simplest flow case considered in this work is the flow between two parallel plates, both with infinite
dimensions in the streamwise and spanwise directions. The bottom and the top wall are located at y = 0
and y = 2δ, respectively, where δ is the channel half-height. Furthermore, it is assumed that the flow is fully
developed, i.e. the velocity statistics are independent of x. The Reynolds number is based on the channel
half-height and the friction velocity, defined by

uτ ≡
√
τw

ρ
, (5.1)

35
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where the density ρ = 1 throughout the domain and τw is the wall shear stress. Cyclic boundary conditions
are applied in the streamwise and spanwise directions and the flow is forced by a constant forcing term given
by

dpw

dx
=−u2

τ

h
, (5.2)

which can be easily derived from the properties of the flow domain [116, p. 266]. The results are often ex-
pressed in wall units, given by y+ = yuτ/ν and u+ = u/uτ. Furthermore, a no-slip boundary condition is
applied to the bottom wall and a symmetric boundary condition is applied to the midplane, such that only
one half of the domain is simulated. For all Reynolds numbers, the first grid node was place well into the
viscous sublayer. For the Reynolds numbers Reτ = 180, 395, and 390, the data was obtained from Moser et al.
[93], the cases Reτ = 550, 950, 2,000 from Hoyas and Jiménez [53], and the highest Reynolds number case in
which Reτ = 4,200 from the study performed by Lozano-Durán and Jiménez [83].

5.2. Square duct
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Figure 5.2: Mean velocity magnitude, square duct (Re = 3,500).

The simplest two-dimensional flow case considered in this study is the flow through a square duct. The data
for the square duct flow case is obtained from Pinelli et al. [111]. The Reynolds number ranges from 1,100 to
3,500, and is based on the bulk velocity and the semi-height of the duct. As this flow case is symmetric, only
one quarter of the flow domain is considered in the computations. An important feature of this flow case is
the so-called secondary flow motions. These motions are interesting because linear eddy viscosity models
are not able to calculate them. This can be easily shown by considering the source term in the streamwise
component of the Reynolds averaged vorticity equation:

ε1 j k
∂2Rkm

∂x j∂xm
= ε123

(
∂2R32

∂x2∂x2
+ ∂2R33

∂x2∂x3

)
+ε132

(
∂2R22

∂x3∂x2
+ ∂2R23

∂x3∂x3

)
=

(
∂2

∂x2∂x2
− ∂2

∂x3∂x3

)
R23 − ∂2

∂x2∂x3
(R22 −R33) = 0,

(5.3)

making use of the symmetry of the Reynolds stress tensor, the fact that the flow is fully developed, and the
fact that R22 = R33. Flows of engineering interest where secondary flow motions are important are for example
wing-body or hub-blade junctions. LEVMs predict too early separation in these geometries in the presence
of an adverse pressure gradient, partly because of the absence of secondary motions [91].

On the walls, no-slip boundary conditions are imposed, whereas symmetric boundary conditions are
used on the centerlines. Furthermore, a source term is added to the momentum equation, as the flow is
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Figure 5.3: Streamwise velocity in square duct along z = 0.95 for various mesh refinements (Re = 3,500).

periodic. The mesh contains 40 cells in each direction for the case where Re = 1100 and 60 cells for the case
where Re = 3500. For all meshes, the value of y+ was calculated using the OpenFOAM utility, and was kept
below a value of 1 along the walls. A grid convergence study was performed, of which the results are shown
in fig. 5.3 for Re = 3500. The figure shows the streamwise velocity along z = 0.95. The difference between the
streamwise velocities of the two finest grids is negligible.

5.3. Periodic hills
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Figure 5.4: Mean velocity magnitude, periodic hills (Re = 5,600).

For the periodic hill flow case, DNS and highly-resolved LES data from Breuer et al. [15] are used. The flow
is simulated using DNS at Reynolds numbers ranging from Re = 700 to 5,600 and using LES at Re = 10,595,
based on the bulk velocity at the inlet and the hill height. The flow case was first proposed by Mellen et al. [86],
as a simple geometry featuring both separation from a curved surface and reattachment on a flat plate. It was
investigated by Fröhlich et al. [39], after which it was further studied for a broader range of Reynolds numbers
in the work of which the data is used here. The flow case has been used to study the physical mechanisms of
separation and to improve the performance of various turbulence models [2, 57, 155]. The study of flow sepa-
ration over curved surfaces is relevant, as it occurs in many flows of practical interest [134]. Furthermore, the
geometry has well-defined boundary conditions and computations can be performed relatively affordably.

On the upper and lower walls, no-slip boundary conditions are imposed. Similarly to the square duct flow
case, a source term is added to the momentum equation and cyclic boundary conditions are imposed on the
inlet and the outlet. The number of cells in x and y directions for the case where Re = 5,600 are 140 and 130,
respectively. For the Reynolds number of 10,595, the number of cells in the y-direction was selected to be
160, with the same ratio between cells in the two direction as for the lower Reynolds number case. Again, a
mesh convergence study was performed by varying the number of cells while keeping the aforementioned
ratio the same. On both the upper and lower walls, the value of y+ was kept below 1. The results of the mesh
convergence study for the Re = 10,595 are shown in fig. 5.5.
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Figure 5.5: Wall shear stress for various mesh refinements, periodic hills (Re = 10,595).

The deficiencies in the predictions of RANS models in flows with a large separation region have been
studied extensively [2, 58, 90, 129]. The k −ω model usually underpredicts the eddy viscosity in the shear
layer, which causes insufficient mixing. Because of this, the flow reattaches too late and the separation region
is excessively large. Multiple ad-hoc fixes to this behavior have been proposed over the years. One example
is the work of Rumsey [129], in which a multiplier to the destruction term in the ω-equation is introduced
as a function of the production to dissipation ratio. The desired behavior of this term is to increase the eddy
viscosity in the shear layer such that the flow reattaches earlier.

5.4. Converging-diverging channel
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Figure 5.6: Mean velocity magnitude, converging-diverging channel (Re = 12,600).

Data for the converging-diverging channel case has been obtained from the study performed by Laval and
Marquillie [76]. The flow is calculated using DNS at a Reynolds number of 12,600, based on the channel half-
height and the maximum velocity at the inlet. The flow features a small separation bubble on the leeward
side of the hill. No-slip boundary conditions are imposed on the upper and lower walls. In order to obtain the
velocity and turbulent quantities at the inlet, a boundary layer was simulated using the same base model (the
k−ωmodel) and the same Reynolds number. At the outlet, a zero gradient boundary condition is imposed on
all variables except the pressure, which is fixed at a reference pressure. The mesh used in the field inversion
and machine learning phases has 125 cells in the y-direction and 600 cells in the streamwise direction. A
mesh convergence study was performed by varying the number of cells and keeping the ratio between the
number of cells in both directions the same. The results of the mesh convergence study are shown in fig. 5.7.
The separation and reattachment locations found in the DNS study are 5.8 and 6.6, respectively [76], and
are indicated in the figure. For a variety of RANS turbulence models, Campos et al. [17] reports separation
locations varying from 5.8 to 6.4 and reattachment locations varying from 9.1 and 9.6. In this case, the RANS
model is also highly inaccurate in its prediction for the separation location and the bubble length.
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Figure 5.7: Wall shear stress for various mesh refinements, converging-diverging channel (Re = 12,600).
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Figure 5.8: Mean velocity magnitude, backward facing step (Re = 5,100).

High-fidelity data for the backward-facing step was obtained from the study performed by Le et al. [77]. The
flow was simulated using DNS at Re = 5,100 based on the step height and the inlet velocity. Compared to
the periodic hills and backward facing step flow cases, the separation location is fixed in this case. Further-
more, the case features a more stronger separation than the aforementioned cases. In addition to the larger
clockwise-rotating separated region, a small region in the corner rotates counter-clockwise.

On the lower boundary, a no-slip boundary condition is applied. Similarly to the converging-diverging
channel, a boundary layer at the same Reynolds number was used for the inflow conditions. At the outlet,
the same boundary conditions are applied as for the converging-diverging channel. On the upper wall, a
slip boundary condition is imposed. The mesh was created with 90 cells in the y-direction and 225 cells in
the streamwise direction. A mesh convergence study was performed by varying the number of cells in the
y-direction and keeping the ratio between the number of cells in both directions the same. For all meshes in
the convergence study, the value of y+ was kept below 1 everywhere on the lower wall. The wall shear stress is
shown in fig. 5.9, for various mesh refinements. Between the two finest grids, the difference in reattachment
location is small. The reattachment location found in the DNS study by Le et al. [77] is shown to be at x = 6.0.
Again, it can be noted that the k −ω model overpredicts the size of the separated region considerably.
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Figure 5.9: Wall shear stress for various mesh refinements, backward facing step (Re = 5,100).



6
Methodology

This chapter describes the details of the implementation of the paradigm of field inversion and machine
learning. The steps involved in solving the forward model, i.e. the k −ω turbulence model, are given in sec-
tion 6.1. In section 6.2, the two formulations of the corrective term are described. The adjoint equations and
adjoint boundary conditions and their implementation in OpenFOAM are given in section 6.3. The details of
the two phases of the paradigm are given in section 6.4 for the field inversion and section 6.5 for the machine
learning phase. Finally, the computational cost of the full paradigm is briefly touched upon in section 6.6.

6.1. Base model
6.1.1. Governing equations and solution method
In this work, the k −ω model was selected as the baseline model. Because of the general nature of the
paradigm of FIML, it can be applied to a broad range of physical models (with certain restrictions on the
differentiability of the governing equations). Therefore, in the context of turbulence modeling, the choice for
the k −ω model was mainly based on practical considerations. First of all, a known issue of the adjoint equa-
tions is the numerical stability [130]. As the adjoint equations have a form similar to the primal equations, it
was expected to be convenient to choose a numerically stable baseline model. Therefore, an eddy viscosity
model has been chosen over a Reynolds stress model. Secondly, the k −ω model has simple governing equa-
tions and can be directly applied in a low Reynolds number setting. Therefore, the difficulties of deriving an
adjoint wall model such as in Zymaris et al. [173] can be avoided.

The standard high-Reynolds number k −ω turbulence model as described by Wilcox et al. [163] is used
as the base model, with the standard coefficients as shown in table 6.1. The RANS equations with the k −ω
model equations are given by

Rv
i = ∂(vi v j )

∂x j
+ ∂p

∂xi
+ 2

3

∂k

∂xi
− ∂

∂x j

(
(ν+νt )

(
∂vi

∂x j
+ ∂v j

∂xi

))
= 0, (6.1)

Rp =−∂v j

∂x j
= 0, (6.2)

Rk = ∂(v j k)

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂k

∂x j

)
−Pk +

2

3

∂v j

∂x j
k +Cµωk = 0, (6.3)

Rω = ∂(v jω)

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−γP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0, (6.4)

where

Pk = νt P = νt
∂vi

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (6.5)

The open-source C++ solver OpenFOAM [63] is used for all flow calculations. The SIMPLE algorithm [108] is
used for pressure-velocity coupling. This algorithm is implemented in the simpleFoam solver in OpenFOAM.
The kOmega turbulence model is used for the baseline simulations and is used as a basis for the adjoint tur-
bulence model. All convective terms were discretized using second-order schemes. Some studies suggest

41
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the use of first-order upwind schemes for the convective term in the adjoint momentum equation [50] in or-
der to improve the convergence of the adjoint equations. However, this did not have a considerable effect
for the flow cases considered in this work. In order to enhance the diagonal dominance of the steady state
calculations, under-relaxation is used for all equations.

The term in the momentum equation including the gradient of the turbulent kinetic energy originated
from the fact that, in OpenFOAM, the isotropic part of the Reynolds stress tensor is included in the pressure,
resulting in a modified pressure given by

p∗ = p + 2

3
k. (6.6)

In the expressions presented here, p corresponds to the mean pressure, i.e. the isotropic term is written
explicitly.

Cµ α γ σk σω
0.09 0.072 0.52 0.5 0.5

Table 6.1: Coefficients used in the base and augmented k −ω model.

6.1.2. Boundary conditions
At solid walls, a no-slip boundary condition is imposed on the velocity and a zero Neumann boundary con-
dition is imposed on the pressure. The turbulent kinetic energy is set to a low value (kwall = 10−15) in order to
avoid division by zero. The boundary condition for ω becomes singular at the wall. As suggested by Menter
[87], the value at the wall is set as

ωwall =
60ν

βd 2 , (6.7)

where d is the spacing of the first grid cell and β = 0.075. For all flow cases, the spacing of the first grid cell
was chosen such that y+ < 1 was satisfied along all solid walls. The boundary conditions at the outlet for the
non-periodic cases were set to zero Neumann, except for the pressure, which was set to zero. Because only
the pressure gradient occurs in the governing equations, its absolute value can be set to an arbitrary value at
an arbitrary reference location.

6.2. Corrective term formulations
In this work, two formulations for the corrective term are considered. Firstly, the form used in [107, 136,
138] in the context of turbulence modeling is analyzed, i.e. one single scalar corrective field multiplying the
production term of theω equation. Secondly, two scalar corrective functions are defined as corrections to the
eigenvalues of the anisotropy tensor. In addition, a preliminary investigation into the derivation of inferring
a full description of the Reynolds stress tensor (i.e. inferring corrections to the eigenvectors in addition to the
magnitude and the shape) will be given in appendix B.6.

In the first formulation, the corrective term is chosen to be a multiplication of the production term of the
ω-equation:

Rω′ = ∂(v jω)

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−βPγP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0. (6.8)

This choice changes the complete balance the turbulence model. As shown by Poroseva and Murman [117],
it is the complete balance between all terms in a turbulence model which determines the performance of the
model, not the accuracy of one specific term. Also, even if an optimal distribution of the corrective term was
found, the predictions would still be limited by the linear eddy viscosity assumption used by the base model.
These problems can be improved upon by applying the corrective term to an expression directly determining
the Reynolds stress tensor. This would take away the need to apply the corrective term to a single term of
a functional form of a turbulence model while at the same time allow for moving away from linear eddy
viscosity models (LEVMs). Therefore, the second formulation of the corrective term considered in this work
is applied to the eigendecomposition of the anisotropy tensor.

There are several options for the corrective function which allow to correct the full anisotropy tensor, i.e.
its magnitude, shape, and orientation. One option would be to infer the ten scalar coefficient of the tensor
basis used by Ling et al. [81]. This would result in a Galilean invariant representation of the Reynolds stress
tensor. However, as the anisotropy tensor is characterized by six quantities (one for the magnitude, two for
the eigenvalues, and three for the eigenvectors), this formulation would introduce additional redundancy
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into the problem. A more experimental option would be to infer source terms in the transport equations
for the barycentric coefficients proposed by Edeling et al. [34]. However, by introducing more primal equa-
tions, this would also result in more adjoint equations. Furthermore, this would complicate bounding the
inferred quantities and might further deteriorate the numerical stability of the solver. Finally, the corrective
terms could be formulated as direct corrections to the magnitude, shape, and orientation of the anisotropy
tensor. Representing the eigenvector correction as a three-dimensional rigid body rotation using unit quater-
nions ensures the realizability of the corrected anisotropy tensor. Furthermore, this will result in smoother
functions than other representations and be frame-independent [166]. For the eigenvalues, the barycentric
coordinates can be used to obtain an interpretable correction which can be bounded.

The eigendecomposition of the anisotropy tensor is given by b =VΛV T , where V is a matrix of which the
columns are the eigenvectors of b and Λ≡ diag(λ1,λ2,λ3). Then, the corrected anisotropy tensor is given by

b′ =V (Λ+B)V T =VΛV T +V BV T = b +V BV T , (6.9)

where B ≡ diag(∆λ1,∆λ2,∆λ3). In order for the corrective term to have a more interpretable meaning, the
eigenvalues are corrected by considering corrections in their barycentric coefficients, βC1c and βC2c instead
of inferring corrections to the eigenvalues directly. Note that only two functions have to be inferred due to
the restriction that the barycentric coefficients sum to one. From the explanation in section 2.3.2, it can be
derived that

B = diag(∆λ1,∆λ2,∆λ3) = diag

(
2

3
βC1c +

1

6
βC2c ,−1

3
βC1c +

1

6
βC2c ,−1

3
βC1c −

1

3
βC2c

)
. (6.10)

This correction affects both the momentum and the production term of the k-equation:
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Rk ′ = ∂(v j k)
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Again, it should be noted that using two spatially varying corrective terms instead of one has practically no
effect on the computational cost when an adjoint method is used to obtain the gradients.

The possibilities of inferring the complete representation of the Reynolds stress tensor, i.e. the magnitude,
shape, and orientation, has also been investigated. This considerably complicates the derivation of the con-
tinuous adjoint. This is because, in contrast to just inferring the eigenvalues, the correction cannot be added
as a source term to the momentum and k-equation when the corrections to the eigenvectors are inferred in
addition. The preliminary results of this investigation are described in appendix B.6.

6.3. Continuous adjoint of the k −ω-model

6.3.1. Governing equations

The derivation of the continuous adjoint for the k −ω turbulence model follows the same procedure as was
described for the general case in section 3.4.2, and follows, to some extent, the derivation of the continuous
adjoint for the k −ω SST model presented by Kavvadias et al. [71]. The solution to the field inversion is found
by minimizing the negative of (3.7). In this work, diagonal covariance matrices with constant variance are
used. The objective function is then given by

J = 1

2σ2
m

N∑
i=1

(di −h(β)i )2 +
M∑

j=1

1

2σ2
β

(β j −βprior, j )2. (6.13)
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A detailed derivation of the adjoint equations and boundary conditions can be found in appendix B. For the
sake of brevity, only the resulting equations are given here:
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It can be noted that the adjoint equations are similar to the primal equations, the main difference being the
presence of several additional source terms. Furthermore, it can be seen that terms with a spatial derivative
of odd order have switched signs whereas terms including an even-ordered spatial derivative have the same
sign as in the primal equations. The similarity between the primal and the adjoint equations allows for a
similar implementation, in this case in OpenFOAM.

When the misfit in the mean velocities is used in the likelihood, the only non-zero explicit derivative of
the objective function with respect to a primal variable (the first term for each adjoint equation above) is

∂JΩ
∂vi

= 1

σ2
m

(vi − vDNS,i ). (6.18)

Including the mean pressure in the objective function would complicate the implementation of the adjoint
equations, as the divergence of the adjoint velocity would be nonzero.

The adjoint equations presented above do not yet include the correction to the base model. The changes
which need to be made for the specific correction term formulations used in this work are also described in
appendix B. The gradient with respect to the production term correction is then given by
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For the eigenvalue corrections, the adjoint gradient is given by
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These gradients can be calculated straightforwardly after the primal and adjoint equations are converged.

6.3.2. Boundary conditions
At the boundaries where Dirichlet conditions are imposed on the primal velocity, k, and ω, the boundary
conditions for their adjoint counterparts are zero Dirichlet and zero Neumann for the adjoint pressure. At
the outlet, however, the specifications for the adjoint boundary conditions are more complex. Again, the
full derivation is given in appendix B. The boundary condition for the adjoint velocity is derived from the
tangential component of the boundary integral including the sensitivity of the primal velocity:
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(6.21)
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The boundary condition for the adjoint pressure is derived from the normal component of the boundary
integral including the sensitivity of the primal velocity, and is given by
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Finally, the boundary conditions for ka and ωa are derived from their corresponding boundary integrals:
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6.3.3. Hessian approximation
Similarly to the one-dimensional model problem in section 3.5, the Gauss-Newton approximation is used to
approximate the posterior covariance. Differentiating the objective function in eq. (6.13) twice with respect
to the corrective term gives

δ2 J

δβ jδβk
≈ 1

σ2
m

N∑
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δvi

δβ j

δvi

δβk
+ 1

σ2
β

δ j k , (6.25)

given that the mean velocity is used as the data in the likelihood. The derivatives in the first term can be
calculated using the adjoint equations with the following objective function:

Ji =
vi − vHF,i

σm
. (6.26)

Changing the objective function requires changing the source term in the adjoint momentum equation and
the expression of the partial derivative of the objective function with respect to the corrective term, i.e.

∂Ji

∂β j
= 0 and

∂Ji

∂v j
= 1

σm
δi j . (6.27)

This approach requires solving the adjoint equations for the N objective functions Ji . In practice, this can be
done relatively quickly using the converged adjoint variables as initial conditions.

6.3.4. OpenFOAM implementation
In order to implement the continuous adjoint equations, boundary conditions, and one-shot optimization
method, a new OpenFOAM solver based on simpleFoam was written. The current adjoint solver in Open-
FOAM is based on the work of Othmer et al. [102]. In this solver, a porosity term is introduced in the mo-
mentum equation. The main idea is that areas where the optimization yields low values of the porosity are
more fluid-like than areas where the porosity is high. This implementation uses the one-shot approach for
the optimization process. Furthermore, the frozen turbulence assumption is used. Therefore, the turbulence
is assumed not to change explicitly with changes in the porosity value and there is no corresponding adjoint
turbulence model.

The adjoint solver and adjoint turbulence model used in this work will be referred to as
adjointSimpleFoam and adjointkOmega, respectively. Due to the similarity between the primal and the
adjoint equations, a similar solution procedure could be used for the adjoint equations. The procedure is
illustrated in fig. 6.1. Each adjointSimpleFoam iteration starts with solving the primal velocity and pressure,
after which the adjoint velocity and pressure are solved. The equations for ka and ωa were implemented in
existing kOmega model. Therefore, the algorithm proceeds with solving the primal equations for k and ω,
after which their adjoint equivalents are solved. Now all adjoint fields are obtained, the adjoint gradients
can be calculated. The corrective term is then updated using a simple gradient descent update rule, after
which the objective function is calculated. The process is repeated until convergence of the objective func-
tion. Similarly to the primal equations, all adjoint equations use under-relaxation to enhance the stability
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Figure 6.1: Flowchart of adjointSimpleFoam.

of the iterative solver. In most cases, the under-relaxation factors for the adjoint equations could be set to
a value slightly lower than that of the primal equations. The most relevant sections of the code are given in
appendix C.

6.4. Field inversion
6.4.1. Implementation
For the complete approach, OpenFOAM was coupled with Python, in which the optimization routines im-
plemented in Scipy [65] were used. In the tests performed with the complete approach in the optimization
phase, the conjugate gradient method was used. Quasi-Newton methods such as L-BFGS did not provide an
advantage in convergence or robustness compared to the conjugate gradient method for the cases consid-
ered. In the complete approach, the primal and adjoint equations were solved using the corrective function
given by the optimization algorithm until a specified convergence criterion was reached. Then, the objective
function and adjoint gradient were returned to the Scipy optimization algorithm. Therefore, the solution pro-
cess as displayed in fig. 6.1 was used, with the one-shot gradient descent step size αk = 0. The convergence
speed, accuracy, and stability of the optimization process employing the complete approach can be traded-
off using the convergence criteria for the primal and adjoint equations. Setting the required minimum initial
residual to a lower value results in more simpleFoam iterations for each step in the optimization. Therefore,
the overall optimization procedure will take longer, but the gradients will be more accurate.

6.4.2. Parameter selection
For the field inversion phase, a decision needs to be made on whether the complete or one-shot approach
is more suitable. Furthermore, the step size used in the optimization, the observational covariance, and the
prior distribution need to be chosen adequately. First of all, the covariance in the observational data was
neglected, as discussed before. The observational covariance is thus given by Cm = σ2

m I . Similarly to Parish
and Duraisamy [107], the standard deviation was chosen to beσm = 10−10, reflecting a high confidence in the
accuracy of the high-fidelity data. The prior distribution is also chosen to be a multivariate Gaussian with a
constant diagonal covariance matrix. The mean corresponds to the base model, i.e. for the production term
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(a) Propagated prior samples, σβ = 0.5.
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Figure 6.2: Example of prior selection, turbulent channel flow (Reτ = 395).

correction βprior = 1 and for the eigenvalue correction βprior = 0. The standard deviation was determined
using the procedure proposed by Parish and Duraisamy [106]. Samples were taken from the prior using an
initial estimate of the variance. Then, these samples were propagated through the forward model. It is then
checked whether the quantity of interest of the high-fidelity data falls within the ±2σ bounds resulting from
the prior samples. This process is repeated until this is satisfied. The method is illustrated in fig. 6.2. Where
σβ = 1, the streamwise velocity profile from the DNS data falls within the uncertainty bounds with an exces-
sively large margin. When σβ = 0.5, this margin is considerably smaller, and the discrepancy in the buffer
layer drives the decision for the prior covariance.

The gradient descent step size was found for each case and correction term formulation by varying it
over a range of values of which the highest results in divergence and the lowest in (slow) convergence, as it is
expected that the optimal step size lies between these two extremes. Higher step sizes can lead to numerical
instabilities in the optimization process, as the accuracy of the adjoint gradient worsens. Below the value of
the step size for which the optimization was stable, the chosen value did not have an effect on the result of the
optimization process. The numerical stability of the optimization process was also improved using converged
primal and adjoint fields as initial condition. The effect of the gradient descent step size and convergence
criteria on the convergence of the optimization process is further discussed in section 7.1.2. In order to decide
whether to use the complete approach or the one-shot approach in the optimization phase, both approaches
were tested for a range of values of the one-shot gradient descent step size and the required minimum initial
residuals. Both parameters have a similar effect on the overall optimization process, i.e. trading off accuracy,
convergence, and stability. The results of this study will be discussed and further interpreted in section 7.1.2
for the converging-diverging channel flow case.

6.5. Machine learning
6.5.1. Implementation
The machine learning phase aims to approximate a function between the RANS features and the MAP results
for a number of flow cases. As discussed in section 2.5, two approaches can be distinguished in the way the
machine learning results are used in the RANS solver. In the first approach, the corrective approach, the
machine learning algorithm output is propagated through the flow solver once. In the iterative approach, the
algorithm is called in every iteration of the flow solver. So far, the corrective approach is still the most common
approach in literature [81, 168]. Investigating whether an iterative approach can converge and whether the
converged solution is accurate is an important topic for future research.

A short study was performed on the feasibility of predicting the corrective term every iteration of the
flow solver. A feedforward neural network with two hidden layers with 64 nodes each was trained on the
square duct flow case at four different Reynolds numbers ranging from Re = 1,100 to Re = 2,900. The neural
network was then used to predict the corrective term in an iterative manner for a higher Reynolds number
(Re = 3,500). This problem setting already proved to yield a considerable improvement when the corrective
approach was used with the same neural network. However, in the iterative setting this approach diverged
after a low number of iterations. It was attempted to improve this behavior using relaxation for the update of
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the corrective term, i.e. updating it according to

βk = (1−α)β̂k−1 +αβ̂k , (6.28)

at iteration k, where β̂ is the output of the neural network and α ∈ [0,1] is the relaxation factor. However,
this did not yield significant improvements in the numerical stability. Therefore, in this work, the corrective
approach is used. In cases where propagating the corrective term results in problematic numerical behavior,
it is also possible to use blending. For example, Duraisamy et al. [29] used the blending function

β= (1−α)βbaseline +αβML, (6.29)

to alleviate numerical problems. The blending factor α can then be gradually increased from 0 to 1, in which
βML is kept constant. The propagations used in this work did not cause any numerical problems and there-
fore no blending was used in the machine learning phase. Parish and Duraisamy [107] describe using an
additional Bayesian update step in order to improve the results in regions where the machine learning pre-
dictions are inaccurate. The final step is then given by

βpost = argmin
β

(
−1

2
(β−βML)T C−1

βML
(β−βML))− 1

2
(β−βprior)T C−1

β (β−βprior)

)
. (6.30)

In this optimization process moves the corrective term closer to the machine learning solution in areas where
the uncertainty is low. In other regions, the corrective term will be closer to the base model.

The training and prediction of the machine learning algorithm is done in Python, using the Scikit-learn
package [109] for the random forests and Gaussian processes. For preliminary experiments with neural net-
works, TensorFlow [1] was used. In the corrective approach, the output of the machine learning algorithms
was written to the OpenFOAM case file, after which it was propagated using the adjointSimpleFoam solver
with zero step size. For the iterative approach, an open-source library called frugally-deep [51] was used.
This library allows using a neural network trained in Python (using Keras [22]) to obtain predictions in C++.
The advantage of this method is that it allows flexible experimentation in Python for the design of the neu-
ral network architecture and hyperparameter tuning, while only the prediction is done in C++. This method
was implemented in the adjoint turbulence model adjointkOmega, where the features were calculated every
iteration and the corrective term was obtained from the neural network.

6.5.2. Algorithm choice
Preliminary investigations were performed in order to select the machine learning algorithm to be used in
the second phase of the paradigm. On the basis of the results from literature, three classes of algorithms
were tested: Gaussian processes, feedforward neural networks, and random forests. It was found that the
specific choice of machine learning algorithm did not have a significant effect on the accuracy of the results.
This finding is also supported by literature, where the main improvements in accuracy in a purely machine
learning based approach were made by incorporating physical principles as invariance in the algorithms [68,
81]. The use of these kinds of algorithms is beyond the scope of this work. Therefore, the choice of machine
learning algorithm is mainly driven by reasons related to the implementation, speed, and interpretability of
the results. For this reason, Gaussian processes were used for the turbulent channel flow experiments. For
the other flow cases, Gaussian processes could not be used due to the higher number of grid cells, resulting
in a larger dataset and thus higher memory requirements. For these cases random forests were used.

6.5.3. Machine learning features
This work uses the same features as used in the thesis of Kaandorp [67]. An overview of the features is given
in table 6.2. The first two feature sets make use of the features proposed by Wang et al. [158]. Feature set 1
contains the features based on the normalized shear rate tensor and rotation rate tensor, which are given by

Ŝi j = 1

2

k

ε

(
∂vi

∂x j
+ ∂v j

∂xi

)
and Ω̂i j = 1

2

k

ε

(
∂vi

∂x j
− ∂v j

∂xi

)
. (6.31)

Feature set 2 contains the features in which, in addition to the normalized shear rate tensor and strain rate
tensor, the gradient of the turbulent kinetic energy is used. The gradient of the turbulent kinetic energy is first
normalized using

p
k/ε. The tensor Ak is constructed by mapping the gradient of the normalized turbulent

kinetic energy to an anti-symmetric tensor, i.e.

Ak = I ×∇k, (6.32)



6.5. Machine learning 49

Feature set Features Normalization Notes
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Ω̂2 Ak Ŝ2∗, Ω̂2Ŝ Ak Ŝ2∗

-

FS3 1
2

(||Ω̂i j ||2 −||Ŝi j ||2
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Table 6.2: Features used in the machine learning phase (Kaandorp [67]). FS1 and FS2 originate from [158], FS3 from Wu
et al. [168]. For FS1 and FS2, the trace of the indicated tensors is taken. The asterisk (*) denotes that the trace of the

indicated term should be taken for all cyclic permutations of the anti-symmetric tensor.

where I is the rank 2 identity tensor and k is the normalized turbulent kinetic energy. The third feature set
contains a number of ad-hoc features with a physical interpretation and are obtained from Wu et al. [168].
For example, the first feature in this set is the Q-criterion. These features are normalized according to the
normalization factors indicated in table 6.2. It should be noted that not all features in this set are Galilean
invariant, as they include the pressure gradient and the velocity. For the cases considered in this work, this
was not problematic. However, when the difference between the training and test flow cases is larger these
features should be removed or reformulated.

When Gaussian processes are used for the machine learning case, the features are scaled to have zero
mean and unit variance. For the cases where random forests are used, scaling is not necessary. For each case,
multiple features are zero or contain little information because of a noisy pattern. Therefore, features in the
training set with a variance lower than 10−4 were not used in the training.

6.5.4. Hyperparameter tuning
Random forest Before using the random forest in the machine learning phase, the effect of three hyperpa-
rameters on the root-mean-square error of the predicted corrective term will be studied. The study is per-
formed using k-fold cross-validation with k = 5, on a database consisting of the inferred fields of the periodic
hills flow case at Re = 5,600 and Re = 10,595 and the converging-diverging channel flow case at Re = 12,600.
It should be noted that each hyperparameter was varied while keeping the others constant. This does not
take into account the effect of the interaction of the hyperparameters on the test error of the algorithm. How-
ever, for the hyperparameters considered in this section, a similar general trend can be expected for other
combinations.

The first hyperparameter is the number of estimators to use in the ensemble model. More trees generally
result in a better performance, but increase the time required to train the model. Furthermore, the strongest
performance improvement is usually observed below a certain critical number of trees, after which adding
more trees does not yield better results. The results of the study are shown in fig. 6.3. Indeed, the error
decreases most up until Nestimators = 20, after which the decrease in error is fairly low. As the computational
time for the machine learning experiments in this work using random forests was relatively low, a number
of estimators of Nestimators = 80 was chosen. The second hyperparameter to be investigated is the number
of features in the subset of the total feature set to consider during splitting. A low number of features leads
to more diverse trees, yielding a reduction in variance but an increase in bias. Therefore, it is important to
cross-validate the effect of this hyperparameter. Literature suggests setting the hyperparameter equal to the
number of features divided by three with a minimum of five for regression problems [38] and equal to the
square root of the number of features with a minimum of one for classification problems. The effect of this
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Figure 6.3: Mean effect of the number of estimators on predictive accuracy.
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Figure 6.4: Mean effect of the number of features selected in each split on predictive accuracy.

hyperparameter is shown in fig. 6.4. The total number of features in this experiment was 15. The estimation
of the test error is lowest for Nfeatures,split = 11. Therefore, this value was chosen for the machine learning
phase. Finally, the third hyperparameter considered was the minimum number of samples required in each
of the branches in order for the split to be performed. A higher number of samples has a smoothing effect,
which might be desirable in this specific application.

Gaussian process There are various approaches to model selection when using Gaussian processes. Choices
to make in the model selection are usually confined to the selection of the kernel and its hyperparameters
[125]. In contrast to other machine learning algorithms, e.g. neural networks, the number of hyperparame-
ters to tune in a Gaussian process is relatively low. Similarly to the hyperparameter selection for the random
forest, it is possible to do a grid search or to vary one hyperparameter at a time. However, in this work an
empirical Bayes approach is taken, which enables the use of optimization techniques. As introduced in sec-
tion 4.2, it is common to maximize the log marginal likelihood. The derivative with respect to the kernel
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Figure 6.5: Mean effect of the required minimum number of samples for splitting.
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parameters can be derived to be
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Then, a gradient-based optimization algorithm can be used to find the optimal kernel parameters. In this
case, the L-BFGS-B algorithm is used. As multiple local optima might be present, the optimization is started
several times, starting from randomly sampled kernel parameters.

An alternative approach to selecting the hyperparameters in a Gaussian processes is using Bayesian infer-
ence. Another alternative is multiple kernel learning, in which the weights of a weighted sum of base kernels
are optimized instead of the kernel parameters [122].

6.6. Computational cost
Given the various phases and subphases of the paradigm, it might be convenient to shortly discuss the com-
putational cost of each step in the method. The largest part of the computational cost of the paradigm is
associated with the field inversion phase. First of all, sampling the prior to determine the prior covariance
requires a relatively high number of forward solves. Sampling is also necessary to determine the posterior
distribution of the quantities of interest and, if a stochastic machine learning algorithm is used, to obtain an
estimate of the uncertainty of the machine learning output. The higher the desired accuracy of the mean and
the variance, the more samples are required. However, the sampling lends itself conveniently to paralleliza-
tion [107]. The calculation of the approximate Hessian requires N adjoint solves. This cost is excessively high,
even for the simplest two-dimensional cases.

The computational cost of the optimization performed in the field inversion phase depends, among other
factors, on the numerical stability of the considered case. In the most convergent cases, the optimization us-
ing the one-shot approach could be performed in a number of iterations comparable to one flow calculation,
given that the optimization started with converged primal and adjoint fields. In other cases, the convergence
of the optimization could take a considerably higher number of iterations, sometimes of O(100) forward
model computations. It should be noted that the efficiency of the optimization phase also depends on ade-
quate tuning of the relaxation parameters of the primal and adjoint equations, the step size in the one-shot
optimization, or the convergence criterion in the complete approach. Usually, several runs are required to
find the optimal settings.

A third phase to consider is the training of the machine learning algorithm. The computational cost as-
sociated with this process heavily depends on the choice of machine learning algorithm, the size of the flow
cases included in the training set, and the number of features used. For example, when neural networks were
used, the training took a longer time than when random forests or Gaussian processes were used. It should be
noted that all sources of computation time discussed so far are all performed offline. The only online process
in the paradigm is the prediction using the machine learning algorithm. For most algorithms, the cost of this
step is low.





7
Results - field inversion

This chapter presents the results of the field inversion phase. In section 7.1, the gradients resulting from
the adjoint solver are verified. Furthermore, the stability, robustness, and convergence of the one-shot and
complete approach are compared. Section 7.2 describes the inferred corrective terms and the resulting mean
velocities and other quantities of interest. The main questions to be answered in this chapter are whether
the corrective terms allow the quantities of interest to be inferred correctly and whether the results have a
physical interpretation.

7.1. Verification of the adjoint solver
7.1.1. Gradient verification
Similarly to the model problem considered in chapter 3 and chapter 4, the gradients resulting from the adjoint
solver are verified using finite differences before using the solver in the optimization phase. The gradients
resulting from the two methods are shown in fig. 7.1 for the turbulent channel flow case at a Reynolds number
of Reτ = 590. The gradients are evaluated at a production term correction corresponding to the base model,
i.e. βP = 1. The gradient calculated using the adjoint variables is practically equal to that resulting from finite
differences at all values of y . Furthermore, the finite difference gradients for both step sizes also coincide.
This suggests that the step size is selected appropriately.

In order to verify that the impact of the one-shot optimization on the accuracy of the gradients is within
acceptable bounds, the gradient is verified halfway the optimization process. The results are shown in fig. 7.2,
at a point in the optimization where the objective function has decreased approximately two orders of mag-
nitude. The discrepancy between the adjoint gradient and the gradient computed using finite differences
is slightly higher than at the start of the one-shot optimization. This can be explained by the fact that the
corrective term is changed every adjointSimpleFoam iteration, and thus the primal and adjoint equations
are not fully converged. However, the gradients still agree fairly well and are considered sufficiently accurate
for the optimization, as long as the optimization is started from converged primal and adjoint fields and the
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Figure 7.1: Gradient verification, turbulent channel flow (Reτ = 590).

53



54 7. Results - field inversion

100 101 102

y+

−750000

−500000

−250000

0

250000

500000

δ
J
/
δ
β

P

Continuous adjoint
Fin. diff. ∆β = 1e− 04

Fin. diff. ∆β = 1e− 06

Figure 7.2: Gradient verification, turbulent channel flow (Reτ = 590) - during one-shot optimization.
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Figure 7.3: Gradient verification, turbulent channel flow (Reτ = 590), Hessian approximation objective function.

gradient descent step size is sufficiently low. Again, the finite difference perturbation size has no visible effect
on the resulting gradient.

The adjoint solver used for the approximation of the Hessian uses a different objective function and thus
a different source term in the adjoint momentum equation. Therefore, the gradients are also verified for this
version of the solver. The resulting gradients are shown for the same flow case and the objective function
corresponding to i = 7 in fig. 7.3, using (6.26). The corrective term is equal to one for all y . Again, both
methods yield practically the same result and thus the implementation of the gradients used for the Hessian
approximation can be considered verified for this flow case.

In order to verify the correct implementation in the adjoint solver on a more complex case, the resulting
adjoint gradient is verified with finite differences for the periodic hills flow case at Re = 5,600. The gradient
was verified at multiple streamwise locations. The gradient is not verified for the full domain because of
the computational cost involved with the finite difference calculation, especially when this is performed for
multiple perturbation sizes. For the sake of brevity, only the results for one streamwise location and one
flow case are shown here. The adjoint gradient for the full domain is shown in fig. 7.4, indicating the line
along which the results of the gradient verification are shown. The comparison between the adjoint gradient
and the gradient computed using finite differences is shown in fig. 7.5. The gradient is zero in most of the
domain, in areas where the k −ω model provides satisfactory results or where the production term of the ω-
equation is not effective in matching the streamwise mean velocities. The gradients calculated using the two
different methods match fairly well, although a larger discrepancy is observed compared to the verification
of the gradient in the turbulent channel flow case. The discrepancy is of comparable magnitude as for the
continuous adjoints verified in previous works such as Schramm et al. [130], Zymaris et al. [172], or Kavvadias
et al. [71] for flow cases of similar complexity. It can therefore be expected that it is not caused by an error
in the implementation but that it is inherent to the use of the continuous adjoint. Nevertheless, the adjoint
gradient is considered to be accurate enough for the purpose of the optimization in the field inversion phase
and has been found empirically to perform well, as long as the adjoint equations are sufficiently converged
throughout the optimization. Similar results were obtained for the gradient verification at other streamwise
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Figure 7.5: Gradient verification, periodic hills (Re = 5,600), locations indicated in fig. 7.4.

locations and other flow cases.

7.1.2. Comparison between the one-shot and complete approach
As described in section 6.4, a study was performed in order to investigate the effect of the step size on the op-
timization using the one-shot approach and the effect of the convergence criteria on the optimization using
the complete approach. The results are shown in fig. 7.6. All simulations start from converged primal and ad-
joint fields for βP = 1. For the one-shot approach, it can indeed be seen that selecting a small step size slows
down convergence. On the other hand, a high step size results in a rapid decrease in the objective function
in the start of the optimization process, but diverges once the gradients become increasingly inaccurate. For
optimal convergence, it is necessary to find an intermediate value, trading off these effects.

For the complete approach, the markers indicate the adjointSimpleFoam iterations at which a new
corrective term was introduced by the optimization algorithm. The conjugate gradients (CG) optimization
method is used for the complete approach. A new corrective term is given by the optimization algorithm
once all primal and adjoint equations are converged below the indicated tolerance. As expected, a more le-
nient convergence criterion improves the convergence of the optimization process. However, similarly to
selecting a high step size, the resulting gradients are less accurate. Requiring a further converged result, on
the other hand, results in more accurate gradients but slows down the optimization process. Overall, it can
be seen that carefully chosen intermediate values yield similar performance for both methods. However, the
one-shot approach tends to decrease the objective function more reliably once the (local) minimum is ap-
proached. Surprisingly, as long as the optimization was started from converged primal and adjoint fields and
an accurate value for the step size was chosen, the one-shot approach was found to be more robust than
the complete approach in all flow cases. It would be expected that the complete approach would be more
robust, as one diverging simulation does not necessary lead to divergence of the full optimization, as is the
case for the one-shot approach. Furthermore, the complete approach demanded similar requirements on
the convergence of the primal fields for convergence.
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7.2. Maximum a posteriori results
Now the gradients resulting from the adjoint solver are verified and the behavior of the two optimization
methods is investigated, the results of the field inversion phase will be presented for each flow case. Per case,
the results of the correction to the production term in the ω-equation are presented first, after which the
results of correcting the eigenvalues are shown. The correction to the production term in the ω-equation will
from now on be referred to as the production term correction.

7.2.1. Turbulent channel flow
The simplest flow case considered in this work is turbulent channel flow, which was introduced in section 5.1.
The k −ω model is relatively accurate in predicting the mean velocity profiles in this flow. However, as data
is available for several Reynolds numbers it is still interesting to see how the inferred corrections scale with
the Reynolds number. Furthermore, because of the low computational cost, the posterior covariance can be
shown in addition to the mean inferred results.

The inferred velocity profile using the production term correction for Reτ = 395 is shown in fig. 7.7. There
is a strong agreement between the MAP solution and the data, showing that the production term correction
has correctly inferred the mean velocity at all wall distances. The corresponding corrective term is shown in
fig. 7.8, indicating the ±2σ limits, where the standard deviation is obtained using the approximate Hessian.
In the viscous sublayer (y+ < 5), turbulent production is low, and thus the corrective term is not effective
in this region. This is reflected well by the posterior distribution: the MAP of the corrective term collapses
to the value corresponding to the base model (βP = 1), and the posterior variance is high, matching that of
the prior distribution. Due to the low observational covariance, the mean velocity further away from the
wall is inferred accurately and the uncertainty is low. A similar pattern can be observed for all Reynolds
numbers considered, as can be seen in fig. 7.9. It is interesting to see that there is a clear scaling with the
Reynolds number, especially for the higher Reynolds number cases. This scaling is a desirable property for a
turbulence model to have and is often absent in turbulence models [107]. These kind of results might yield
valuable information for the development of new turbulence models. Investigating the eddy viscosity might
provide further insight in the resulting shape of the corrective function. The equivalent eddy viscosity can be
extracted from the DNS data using

νt ,DNS =− v ′
1v ′

2

∂v1/∂x2
(7.1)

The resulting profiles are shown in fig. 7.10. The eddy viscosity corresponding to the MAP solution and the
DNS data agree fairly well. Furthermore, multiple regions can be identified. Close to the wall, the eddy vis-
cosity predicted by the k −ωmodel is practically equal to the DNS data. In a region roughly corresponding to
the viscous sublayer, between 1 < y+ < 5.5, the k−ωmodel underpredicts the eddy viscosity slightly, although
the difference is too small to be observed in the figure. Moving further away from the wall, this is followed by
three regions in which the k −ω model shows an alternating pattern of overprediction and underprediction
of the eddy viscosity. These four regions in total roughly correspond to the four alternating peaks in the cor-
rective term in fig. 7.9. In regions where the k−ωmodel underpredicts the eddy viscosity, the corrective term
is slightly lower than one, and vice versa. This is consistent with the fact that the corrective term is applied to
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Figure 7.7: Velocity profiles using inferred βP, turbulent channel flow (Reτ = 395).
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Figure 7.8: Inferred corrective term βMAP ±2σ, turbulent channel flow (Reτ = 180), with σ obtained using the
approximate Hessian.

the production term in the equation for ω, which appears in the denominator of the expression for the eddy
viscosity.

The mean streamwise velocity profile resulting from the eigenvalue corrections is shown in fig. 7.11. The
inferred mean velocity shows a comparable agreement with the DNS data as for the production term correc-
tion. The inferred correction shows an improvement over the k −ω model in nearly all regions. The resulting
paths in the barycentric map are shown in fig. 7.12. Starting with the DNS data, it can be seen that there is
two-component turbulence near the wall. This can be derived by expanding the fluctuating velocities near
the wall. Following Pope [116, p. 283], for small y and for fixed x, z, and t , the following can be written:

v ′
1 = a1 +b1 y + c1 y2 + . . . ,

v ′
2 = a2 +b2 y + c2 y2 + . . . ,

v ′
3 = a3 +b3 y + c3 y2 + . . .

(7.2)

The no-slip and impermeability conditions require that a1 = a2 = a3 = 0. Another consequence of the no-
slip condition is that (∂u/∂x)y=0 and (∂w/∂z)y=0. Furthermore, from the continuity equation it follows that
b2 = 0. Approaching the channel centerline, the axisymmetric condition (b22 = b33) is met. The flow is still
anisotropic at this location, though to a lesser degree than in the log-law region [8]. As expected, the eigen-
values predicted by the k −ω model all lie along the plane strain line. The inferred corrections show a con-
siderable deviation from this plane-strain behavior. However, it can be seen that the inferred eigenvalues are
completely different than the eigenvalues corresponding to the DNS data. The MAP eigenvalues near the wall
correspond to isotropic flow. Moving away from the wall, the axisymmetric contraction line is followed. Near
the centerline, the path moves towards the middle of the barycentric map. This demonstrates an important
point: even though the quantity of interest has been inferred correctly, the corrective term does not corre-
spond to the ground truth. The reason behind this finding and its implication for (data-driven) turbulence
modeling will be further discussed at the end of this section.
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Figure 7.9: Inferred corrective terms for turbulent channel flow, all Reynolds numbers.
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Figure 7.12: Paths in the barycentric map, turbulent channel flow (Reτ = 180).
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Figure 7.14: Corrective term, square duct (Re = 2,400).

7.2.2. Square duct
The first two-dimensional flow case considered in this work is the square duct flow. As described in sec-
tion 5.2, the main phenomenon of interest are the secondary motions. These motions are absent in linear
closure, as they originate entirely in turbulence anisotropy. The objective function used for generating the re-
sults described for the production term correction only includes the discrepancy in the streamwise velocity, as
the in-plane velocities for the corrected model will be zero due to the Boussinesq assumption, independent
of the correction to the production term. The streamwise velocities for the base model, the MAP solution,
and the DNS data are shown in fig. 7.13 for Re = 2,400. The MAP solution shows a qualitative improvement
in the distribution of the streamwise velocity with respect to the velocities predicted by the k −ω model. The
most notable improvement is the increased streamwise velocity in the corner of the channel. The secondary
flows, which cause an increased momentum transfer to the corners, are absent in the baseline RANS model,
resulting in an underprediction of the streamwise velocity in the corner [91]. The corresponding streamwise
velocities can be found fig. 7.15, along various horizontal lines located at z = 0.1,0.3,0.7,0.9. Here, it can
be seen that the field inversion infers a corrective term which results in a streamwise velocity which closely
matches that of the high-fidelity data at almost all locations. A small discrepancy between the MAP and the
DNS results can be observed near the center of the channel (z = 0.1), around y = 0.5. At this location, the
streamwise velocity predicted by the k −ω model is actually closer to the DNS data than the MAP prediction.
This might be caused by the optimization being stuck in a local minimum. Another explanation might be
that better matching the streamwise velocity in another location forces the corrective term to a value which
causes a deviation from the DNS data in this location. To some extent, this behavior is inherent to optimizing
an integral quantity by varying a high-dimensional variable.

The corresponding corrective term is shown in fig. 7.14. Its value deviates from that of the base model in
a large part of the domain. This can be expected given the deficiencies of the base model in modeling the
underlying physics, which in this flow case affect the complete domain. This, in contrast to other geometries
considered in this work, such as periodic hills or the converging-diverging channel, where the RANS model
yields accurate streamwise velocities in large parts of the domain. This demonstrates an important aspect of
the paradigm: if the corrective term is not formulated in a manner which reflects the missing physics in the
base model, it is possible that the inferred corrective term does not yield any useful information. Surprisingly,
the relatively high absolute values of the production term caused no issues with numerical stability, as might
be expected in regions where the ω is pushed to high values and thus results in a low eddy viscosity. A sum-
mary of the resulting corrective terms for all Reynolds numbers is shown in fig. 7.16. No universal behavior
is observed with respect to the Reynolds number. Again, this can be attributed to the non-physical nature
of the corrective term in this specific flow case. It was found that the absolute value of the corrective term
would slowly keep increasing the longer the optimization was continued. Even with a lower prior covariance,
and thus a stronger regularization, this behavior was present. It is important to note that the behavior de-
scribed thus far for this flow case is caused by the fact that this corrective term formulation is still limited by
the Boussinesq assumption. Therefore, the in-plane velocities predicted for the MAP solution will always be
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Figure 7.15: Streamwise velocity profiles along various spanwise locations, square duct (Re = 1,100).

zero. A corrective term inferring all three velocity components correctly is thus non-existent in this formula-
tion. This is one example where the improved generality of formulating the corrective term as a correction to
the eigenvalues is beneficial.

For the production term correction, only the discrepancy in the streamwise velocity was included in the
objective function. In order to see whether the corrections to the eigenvalues are able to infer the in-plane
velocities, these are now also included in the objective function. However, simply including the in-plane ve-
locity components in the objective function did not yield accurate results for the inferred in-plane velocities.
This is to be expected, given the relative magnitudes of the velocity components. The streamwise velocity
is approximately two orders of magnitude larger than the in-plane velocities. Therefore, for the results pre-
sented in this section for the eigenvalue correction, the terms including the discrepancies for each velocity
component were weighted according to the mean absolute values of each velocity component in the data.
The in-plane velocities can be seen in fig. 7.17. In contrast to the production term correction, the correction
to the eigenvalues results in non-zero in-plane velocities. However, the inferred velocity field is asymmetric
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Figure 7.16: Inferred production term corrections for various Reynolds numbers.
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Figure 7.17: Spanwise velocity profiles, square duct (Re = 1,100), 1 = baseline k −ω model, 2 = MAP solution, 3 =
DNS data.

and actually shows another small circulating region near the wall. The velocity profiles in fig. 7.18 also show
that the in-plane velocities are inferred rather poorly.

In order to obtain more insight into what corrections to the eigenvalues the method is inferring, the eigen-
values of the anisotropy tensor are visualized using the barycentric map in fig. 7.19. As a result of the Boussi-
nesq assumption, all eigenvalues from the k −ω flowfield lie on the plane-strain line. The eigenvalues corre-
sponding to the MAP result, shown in fig. 7.19b, deviate from the plane-strain in most locations. However, the
inferred eigenvalues differ significantly from eigenvalues from the DNS data, shown in fig. 7.19c. For this flow
case, mainly one-component and three-component turbulence is present. Close to the wall, the fluctuations
in the streamwise direction case one-component turbulence. Near the center of the channel, the influence
of the walls is lower, and the turbulence is closer to the three-component limit. Again, the vast difference
between the inferred eigenvalues and those corresponding to the data will be discussed at the end of this
section.

7.2.3. Periodic hills
The third flow case for which the results will be presented is the periodic hills. This case differs from the
previous two cases in that the k −ω model is accurate in large regions of the domain. Furthermore, the flow
case features a large separated region, which is often inaccurately predicted by linear closures.

The optimized production corrective term for the periodic hills is shown in fig. 7.20 for Re = 5,600. The
correction to the production term is mainly active in the shear layer, where it is slightly lowered with respect
to the base value of one. The absolute values of the corrective term are significantly lower compared to those
of the square duct flow case. Contrary to the previous two flow cases, the corrective term corresponds to the
base model in most of the domain. This can partly be explained by the fact that the k −ω model provides
satisfactory results in terms of the streamwise velocity in these regions, in contrast to the square duct flow
case, where the absence of the secondary flows in the k −ω model affects the full domain. In order to see the
effect the corrective function has on the resulting eddy viscosity, the difference between the eddy viscosity
predicted by the k−ωmodel and that of the MAP result is shown in fig. 7.21. The eddy viscosity is considerably
higher in the downwind part of the shear layer. This is the same effect as was targeted by the ad-hoc fix by
Rumsey [129], in an attempt to increase mixing and thus attain an earlier reattachment of the separated flow.
Furthermore, the fact that the eddy viscosity of the MAP solution is higher than that of the base model is
consistent with the observation that the inferred corrective term is lower than or equal to one.

Before looking at the resulting velocity field and reattachment location, it is first interesting to shortly
discuss the turbulent kinetic energy. RANS models in periodic hill flow commonly underpredict the turbulent
kinetic energy in the shear layer [129]. The turbulent kinetic energy profiles are shown at various streamwise
locations in fig. 7.22. First of all, it can indeed be seen that the k −ω model underpredicts the turbulent
kinetic energy. This is also the case for the MAP solutions, although to a lesser extent, especially closer to the
downstream hill. It is also interesting to note that both formulations of the corrective term result in a similar
profile for the turbulent kinetic energy. The resulting streamwise velocity profiles are shown in fig. 7.23. The
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Figure 7.18: Spanwise velocity profiles along various spanwise locations, square duct (Re = 1,100).
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Figure 7.19: Barycentric maps, square duct (Re = 1,100).
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Figure 7.20: Inferred corrective function, periodic hills (Re = 5,600).
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Figure 7.22: Turbulent kinetic energy at various streamwise locations, periodic hills (Re = 5,600).

MAP solutions provide an improvement over the streamwise velocities predicted by the k −ω model in most
locations, especially near the walls. Again, there is no notable difference between the two formulations of
the corrective term. In the regions where the corrective production term is equal to one, the RANS model
already resulted in accurate streamwise velocities. Finally, the main quantity of interest for this flow case will
be discussed: the reattachment location. The wall shear stress is shown in fig. 7.24. For the DNS data, the flow
separates at x = 0.18 and reattaches at x = 5.09 [15]. The k −ω model is relatively accurate in predicting the
separation location. However, the small discrepancy which exists is not corrected in the inferred results. For
the reattachment location, the increased eddy viscosity in the shear layer observed in fig. 7.21 achieves the
desired effect, as the MAP result of the production term correction nearly matches the reattachment location
of the high-fidelity data. The inferred wall shear stresses of the two corrective term formulations agree fairly
well.

The corresponding visualizations of the eigenvalues using the RGB-colormap are shown in fig. 7.25. Start-
ing with the DNS data in fig. 7.25c, it can be seen that throughout the domain all limiting states are present.
The center of the channel features isotropic turbulence. At the bottom wall, there is mainly two-component
turbulence whereas the upper wall and the windward side of the downstream hill feature one component
turbulence. The latter can be explained by the splatting effect [39]: eddies originating from the shear layer
are convected to the downstream hill where they cause large fluctuations in the z-direction. The stress types
predicted by the k −ω model, visualized in fig. 7.25a, are significantly different. This is due to the anisotropy
present in the flow case which cannot be represented by the RANS model. For example, the b33 component
of the anisotropy tensor will always be zero, as in the linear model it will be related to ∂v1/∂x3 and ∂v3/∂x1,
which are both zero due to homogeneity in the z-direction.

7.2.4. Converging-diverging channel
The final geometry considered in this work is the converging-diverging channel. Similarly to the periodic
hills, the k −ω model is relatively accurate for large parts of the domain. However, the separated region is
much smaller. Nevertheless, the baseline k −ω model does not predict this region accurately in terms of its
location and its length.

The inferred production correction for the converging-diverging channel is shown in fig. 7.26, at a Reynolds
number of Re = 12,600. Similarly to the field inversion results of the periodic hills flow case, the production
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Figure 7.23: Inferred velocity profiles at various streamwise locations, periodic hills (Re = 5,600).
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Figure 7.25: Eigenvalue visualizations, periodic hills (Re = 5,600).



7.2. Maximum a posteriori results 67

0 2 4 6 8 10 12

x

0

1

2
y

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

β
P

Figure 7.26: Inferred βP , converging-diverging channel (Re = 12,600).
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Figure 7.27: Inferred velocity profiles at various streamwise locations, converging-diverging channel (Re = 12,600).

term correction is unity in most of the domain, reducing the augmented model to the uncorrected k −ω
model. Around the narrowest part of the channel, the production term is slightly increased near the walls,
whereas the production term is decreased slightly downstream of these locations. It might be hypothesized
that this increase in the corrective term is necessary for correcting the separation location. In this flow case,
the prediction of the separation location is less accurate than for the periodic hills, where the increase in the
corrective term was not observed. The lines along which the velocity profiles will be shown are indicated.
Again, this shows that in regions where the base model is sufficiently accurate in terms of the quantities of
interest, no correction is applied. The corresponding streamwise velocity profiles are shown in fig. 7.27. First
of all, it should be noted that the k−ωmodel is quite accurate in predicting the streamwise velocities at most
locations. Only at the leeward side (around x = 8.0) the velocity near the bottom wall is inaccurate for the
RANS model. Again, at this location, the streamwise velocity is correctly inferred by both corrective term
formulations.

The spatial variation of the stress types are displayed using the RGB-colormap in fig. 7.29. Again, the DNS
data, shown in fig. 7.29c, shows a large amount of anisotropy, which is not predicted by the base model. As
expected, there is mainly three-component turbulence in the center of the channel. On a large part of the
upper wall and in the separated region on the hill, one-component turbulence is present. In the region with
a favorable pressure gradient (approximately 3 < x < 5) and downwind of the hill, two-component turbu-
lence can be observed. The stress types corresponding to the inferred eigenvalues are shown in fig. 7.29b.
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Upstream of the hill, the inferred stress types are practically the same as those predicted by the base model.
On the windward side of the hill, unrealizable turbulence is predicted. In this region, the correction to the
eigenvalues is also negligible. From the earlier observation that the streamwise velocities predicted by the
k −ω model are close to those of the DNS data, this is not surprising. In the diverging part of the channel
however, the MAP eigenvalues differ more from the RANS result. However, again, the resulting paths in the
barycentric map do not resemble those of the DNS data.

For most flow cases considered in the this section, it was observed that both corrective term formulations
were able to infer the mean velocities accurately. However, the inferred Reynolds stress fields did not resem-
ble those corresponding to the high-fidelity data. This can be explained by the many-to-one mapping which
exists from the Reynolds stress tensor to the mean velocities [169], i.e. a given mean velocity field can corre-
spond to many different Reynolds stress fields. This can partly be attributed to the fact the Reynolds stress
tensor enters the momentum equation through the divergence [169]. Furthermore, it makes intuitive sense
that the mean velocity data only is insufficient to correctly infer the high-dimensional stress field. As the op-
timizations performed in the field inversion phase always started from the primal fields from the k−ωmodel,
the optimizations converged to a local minimum close to these baseline results. The optimized eigenvalues
are thus still close to those corresponding to the RANS results. This local minimum was sufficiently accurate
in terms of the quantities of interest for most of the flow cases.

Wu et al. [167] defines the model conditioning as the sensitivity of the calculated fields resulting from
solving the model (e.g. the mean velocities) to the modeled terms, in this case the Reynolds stress tensor. A
natural question to ask next is what the impact is of the ill-conditioning of the RANS models using Reynolds
stress closures. Ill-conditioning can cause the errors in the Reynolds stresses to be amplified in the veloc-
ity fields or other observed quantities. It can therefore be problematic for both data-driven and traditional
approaches to modeling the Reynolds stress tensor. This was shown, for example, in Thompson et al. [149].
Accurate Reynolds stresses were propagated for a turbulent channel flow at various Reynolds numbers. It
was found that the resulting mean velocity profiles show a considerable discrepancy compared to the DNS
data at higher Reynolds numbers. These findings were confirmed by Poroseva et al. [118]. In the context
of the paradigm of FIML, inferring the eigenvalues of the Reynolds stress tensor can still be considered as a
feasible approach. There is an advantage in generality compared to inferring a correction to the production
term in theω-equation, where effectively only the magnitude of the Reynolds stress tensor is addressed. Fur-
thermore, from the perspective of uncertainty quantification, the correction is introduced to the main source
of uncertainty in the RANS equation [100]. The number of possible Reynolds stress fields may be further
constrained by considering more restrictive prior distributions. However, it is unlikely that this will result in
significant improvements in the inferred eigenvalues [167].
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Figure 7.29: Eigenvalue visualizations, converging-diverging channel (Re = 12,600).





8
Results - machine learning

In the previous chapter, it was found that it was possible in most cases to accurately infer the quantities of
interest using a correction to the base model. In general, it was found that these corrective functions are
not always interpretable or unique. This chapter will investigate another desirable property of the corrective
terms, namely their capabilities in generalizing to other Reynolds numbers, which is investigated in sec-
tion 8.1, or flow cases, described in section 8.2, using machine learning algorithms. The effect of applying a
second machine learning correction is shortly discussed in section 8.3. The chapter will be concluded by a
brief discussion on the relative feature importances given by the random forests, in section section 8.4. For
the results presented in this chapter, the production term correction is used.

Experiment Training cases Test case Algorithm JML−JRANS
JRANS

×100

I TCF180-950, TCF4200 TCF2000 GP −69.7%
II SD1100, SD1800, SD2400, SD2900 SD3500 RF −81.0%
III PH5600, PH10595, CDC12600, TCF180-4200 BFS5100 RF −48.6%
IV CDC12600, TCF180-4200 BFS5100 RF −13.1%

Table 8.1: Machine learning experiments.

8.1. Reynolds number generalization
8.1.1. Turbulent channel flow
In the first experiment, both the training and the prediction is done for the turbulent channel flow case. The
Gaussian process is trained on all available Reynolds numbers except for Re = 2,000, which is excluded from
the training set. After pre-processing, the selected features are [F1.1, F1.3, F1.5, F2.1, F2.3, F3.2, F3.3, F3.5,
F3.6, F3.8, F3.9]. The similarity between the datapoints is quantified using a radial basis function kernel. Op-
timizing the log-marginal likelihood resulted in a lengthscale of l = 1.89. The sampled corrective term predic-
tions are compared to the MAP solution in fig. 8.1a, including ±2σ uncertainty bounds. It can be noted that
the prediction agrees well with the MAP solution in most regions. The main discrepancy is located around
y+ = 1, and is well reflected in the uncertainty bounds.

The mean velocity profiles resulting from propagating the sampled corrective term predictions is shown
in fig. 8.1b, where they are compared to the k −ω model, the MAP solution, and the DNS data. The machine
learning result provides an improvement over the base model for almost all distances from the wall. The
discrepancy with respect to the data is slightly higher compared to that of the MAP solution and the data.
The main difference is observed near the center of the channel, where it slightly overpredicts the streamwise
velocity. Again, the predicted uncertainty is consistent with the discrepancy between the velocity profile
resulting from the corrective term predicted by the Gaussian process and that of the MAP solution. Close to
the wall, the corrective term is not effective and the baseline model is accurate. This is well reflected by the
low uncertainty in this region. Near the center of the channel, the high uncertainty is consistent with the
relatively large discrepancy in mean velocity. It is only in the log layer that the uncertainty is excessively high,
given the relatively low discrepancy with the data. For this case, Gaussian processes can thus be concluded
to perform well in terms of predictive accuracy, uncertainty quantification, and computational complexity.
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Figure 8.1: Reτ = 2000, model trained on Reτ ∈ {180,395,550,590,950,4200}.
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(a) Inferred corrective term.
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(b) Machine learning predicted corrective term.

Figure 8.2: Corrective term for square duct (Re = 3,500), random forest trained on square duct (Re = 1,100−2,900).

8.1.2. Square duct
In experiment II, the same approach as presented in the previous section is now applied to the square duct
flow case. The machine learning algorithm is trained on Reynolds numbers varying from Re = 1,100 to
Re = 2,900, and predicted on Re = 3,500. In this case, the higher number of features and the higher di-
mensionality of the dataset resulted in a larger dataset than in experiment I. Therefore, random forests were
used from this experiment onward. The corrective term corresponding to the MAP solution is compared to
the machine learning prediction in fig. 8.2. At least qualitatively, the two corrective terms are similar. It can
be seen that the result predicted by the random forest is quite noisy compared to the inferred corrective term
and the corrective term predicted by the Gaussian process for the turbulent channel flow. This might be im-
proved by selecting a higher value for the minimum number of samples per leaf node. However, as the flow
solver does not need to differentiate the production term, this does not result in problems in the numerical
stability when propagating the machine learning prediction through the solver. It is expected that this is more
difficult in the case where the machine learning is applied to the eigenvalue corrections, which are differen-
tiated when the corrected anisotropy tensor is used in the momentum and k-equation. Figure 8.3 shows a
quantitative comparison between the MAP solution for the corrective term and the machine learning predic-
tion. The corrective terms match fairly well and there is no clear variation in discrepancy at specific values of
the corrective term. From this is can be concluded that random forests can reproduce the corrective term for
an unseen Reynolds number fairly accurately for this flow case.

The mean velocity profiles resulting from propagating the corrective term predicted by the machine learn-
ing algorithm is shown in fig. 8.4. It follows a similar trend to the MAP solution. Near the center of the channel,
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Figure 8.3: Comparison of inferred and predicted corrective term, square duct (Re = 3,500), random forest trained on
square duct (Re = 1,100−2,900).

the velocity profile corresponding to the machine learning predicted corrective term does not provide a con-
vincing improvement over the base model. However, closer to the walls, it is closer to the data than the base
model. The higher axial velocity near the corner, which in the physical case originates from the increased
momentum transfer due to the secondary motions, is still captured by the machine learning result. From this
experiment it can be concluded that, even when the corrective terms have no direct physical interpretation,
it may sometimes still be possible to use them in a machine learning setting within the same flow geometry.
It could however be expected that the corrective functions obtained from this flow case do not generalize to
other flows.

8.2. Geometry generalization
The ability of the corrective functions to be generalized across various flow geometries is investigated in ex-
periments III and IV. The backward-facing step is used as test case, as it shows more severe separation than
any of the cases in the training data. For this test case, the field inversion was not performed. However, the
high-fidelity data can still be used to quantify the performance for the quantities of interest. Before present-
ing the results on the backward-facing step, it should first be noted that investigations using the square duct
flow case in either the training or test set did not provide any improvements over the base model in any com-
bination of test and training cases. This can again be explained by the fact that the corrective terms obtained
from the square duct flow case do not have a physical meaning, and thus cannot be generalized beyond their
usage for different Reynolds numbers on the same case.

The corrective term predicted by the random forest for experiment III in table 8.1 is shown in fig. 8.5. It
can be seen that the corrective term is equal to one away from the shear layer. The predicted correction to the
production term is largest in the shear layer, with a value below that corresponding to the base model. This is
comparable to the inferred corrective terms of the cases in the training set, namely the periodic hills and the
converging-diverging channel. One notable difference with respect to the inferred fields is that the predicted
field is considerably less smooth. This again illustrates the advantage of applying the corrective term to the
production term in the ω-equation. The fact that the corrective function is mainly decreased with respect to
the value corresponding to the base model is consistent with the hypothesis that one effect of increasing the
corrective term is to correct the separation location, as was the case for the converging-diverging channel.
As the separation location is fixed in this case, the corrective term is decreased, similar to the inferred results
for the periodic hills. The predicted corrective function is higher than one only in very specific locations. It
might therefore be expected that more careful postprocessing of the predictions (e.g. applying a filter) might
improve the results. The difference between the eddy viscosity resulting from propagating the corrective term
predicted by the machine learning algorithm and that of the base model is shown in fig. 8.6. The noisy pattern
of the corrective function is not reflected by the resulting eddy viscosity field. As expected, the main effect of
the corrective function is to increase the eddy viscosity in regions where there is insufficient mixing. Again,
this is in the region where the flow is separated, as the size of this region is overpredicted by the k −ω model.
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Figure 8.4: Velocity profiles resulting from propagation of predicted corrective term, square duct (Re = 3,500).
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Figure 8.5: Predicted corrective function, backward-facing step (Re = 5,100).
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Figure 8.8: Effect of a second machine learning correction in experiment III, the marker indicates the iteration at which
the second correction is introduced.

Finally, the skin friction coefficient resulting from propagating the machine learning prediction is shown
in fig. 8.7. The result is compared with the result from the k −ω model and experimental data by Jovic and
Driver [66]. The main quantity of interest, the reattachment location, is located at x = 6.28 for the DNS study
by Le et al. [77]. The value found in the experiment is x = 6±0.15. The propagated machine learning result
provides a clear improvement in the reattachment location with respect the base model. The skin-friction
coefficient is especially improved near the reattachment location.

An interesting observation can be made when comparing experiment III with experiment IV, where the
prediction is done for the same flow case but the periodic hill flow cases have been left out of the dataset.
It could be hypothesised that including the periodic hill flow cases provides information about the relation
between the machine learning features and the corrective term in regions where the flow is separated. This
information is not expected to be present, or to a lesser extent, in the converging-diverging channel flow
case, where only a small region of separation exists. It can indeed be seen that training the algorithm on only
the converging-diverging channel results in only a small improvement when the predicted corrective term is
propagated in the backward-facing step flow case, which features a large separated region.

8.3. Effect of performing multiple machine learning corrections
In all experiments described above, the corrective term predicted by the machine learning algorithm was only
propagated through the flow solver once. As discussed in section 6.5, the iterative approach poses consider-
able challenges to the stability of the propagation solver. However, in some cases it was found that multiple
corrections could give slightly better results than a single correction. In these cases, the new correction was
only introduced after the equations including the preceding correction had been sufficiently converged. The
convergence of the objective function is shown for experiment III in fig. 8.8, where the second correction is
applied at the indicated iteration. It can be seen that the second correction yields a slight improvement. A
third correction did not result in a further decrease in the objective function.
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Figure 8.9: Squared relative importances for random forest trained on periodic hills (Re = 5,600 and 10,595) and
converging-diverging channel (Re = 12,600).
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Figure 8.10: Squared relative importances for random forest trained on square duct (Re = 1,100−2,900).

8.4. Feature importance
As discussed in section 6.5, random forests allow the computation of the relative feature importance of each
feature. The squared relative importances for the random forest trained on the periodic hills at both Reynolds
numbers, the converging-diverging channel, and the turbulent channel flow at all Reynolds numbers (exper-
iment III) are shown in fig. 8.9. The expression corresponding to each feature name is given in table 6.2. The
two most important features both come from feature set 1. Furthermore, all features from feature set 3 were
selected and have a relatively high importance. This illustrates the importance of including features con-
structed from physical reasoning. It can also be noted that a relatively low number of features from feature
set 2 are selected. The relative feature importance for the random forest trained on the square duct flow case
at various Reynolds numbers (experiment II) is shown in fig. 8.10. The number of selected features is consid-
erably smaller than those for experiment IV. One reason for this is that the pressure is ill-defined for this flow
case. Therefore, the features based on the pressure gradient (F3.4 and F3.6) do not provide useful informa-
tion. Furthermore, many features in feature set 1 and feature set 2 are zero or each others negatives because
of the zero velocity derivatives of the square duct flow case. It can also be noted that, in contrast to the other
case, there is one main feature while the other features have a relatively low importance. This feature (F3.3)
is the wall-distance based Reynolds number.



9
Conclusions and recommendations

9.1. Conclusions
Q1 Can the paradigm of field inversion and machine learning in its current form, as proposed by Parish
and Duraisamy [107] and Singh et al. [138], be extended using the continuous adjoint of the k −ω model
for the field inversion phase?

The continuous adjoint of the k −ω model was derived and implemented in OpenFOAM. The similarity
between the primal and adjoint k −ω model allowed for a convenient implementation based on the imple-
mentation of the primal model. The adjoint model showed good convergence properties. Comparing the
one-shot and complete approach for the optimization phase, it was found that the one-shot approach was
both faster and more robust for the cases considered. For the machine learning phase, it was found that
the iterative approach did not show convergent behavior in cases where the corrective approach yielded a
significant improvement in the mean velocities and related quantities of interest.

The paradigm was evaluated on the possibility of quantifying the uncertainty in the corrective term and
the resulting quantities of interest. For the production term correction in the turbulent channel flow case, it
was found that a high uncertainty was predicted in regions where the production term was not effective and
where thus no reliable quantity could be inferred. However, multiple assumptions and approximations are
made of which the impact on the uncertainty bounds is unclear for the more complex cases. Furthermore,
there are still challenges in making the uncertainty quantification computationally tractable. In the field in-
version phase, even with a Gauss-Newton approximation for the Hessian, obtaining the posterior covariance
is relatively expensive. In the machine learning phase, Gaussian processes were used for their ability to quan-
tify the uncertainty in the predictions. The resulting uncertainty bounds were consistent with the discrepancy
between the velocity resulting from propagating the machine learning prediction and the data. However, this
algorithm does not scale well to larger flow cases.

Q2 What are the strengths and limitations of formulating the corrective term as corrections to the produc-
tion term in theω-equation and the eigenvalues of the Reynolds stress tensor?

For most cases, it can be concluded that the optimization process resulted in accurately inferred veloci-
ties and related quantities of interest. No significant differences were observed between the two considered
formulations in terms of the accuracy. It was only in the cases where the discrepancies with the data were
inherent to the forward model formulation that the more general corrections to the eigenvalues yielded a
significant improvement over the production term correction. This was demonstrated in the square duct
flow case, where the secondary flows are caused by the differences in normal stress, which cannot be mod-
eled using LEVMs. However, even with ad-hoc modifications to the objective functions, the inferred in-plane
velocities were still rather inaccurate.

A second criterion on which the corrective terms were evaluated was their physical interpretability. In
cases where the corrective term did not improve upon the deficiencies in the base model of modeling the
underlying physics, the resulting corrective function did not provide any interpretable information, as the
corrective term is optimized to compensate for an effect which is not covered by the correction term. In other
cases, the production term caused the augmented model to reduce to the base model in regions where it was
sufficiently accurate. For the corrections to the eigenvalues, the resulting componentiality of the turbulence
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could be compared with that of the data. It can be concluded that in all cases, there was a large discrepancy
between the inferred eigenvalues and those of the stress tensor from the data. This can be explained by the
non-unique relation between the eigenvalues of the stress tensor and the resulting mean velocities. It was hy-
pothesised that this might be improved upon by considering a more accurate description of the observational
covariance.

Thirdly, it was investigated whether the corrective terms would generalize in a machine learning setting.
For the turbulent channel flow and square duct, a machine learning algorithm was trained on a variety of
Reynolds numbers. It was observed that the production term correction could be predicted on an unseen
higher Reynolds number fairly accurately. Propagating the corrective term through the flow solver yielded
improvements in terms of the mean velocities. Generalizing the corrective term to other flow geometries
proved to be more challenging. The corrective terms can therefore be concluded not to be learnable in all
cases. However, in several flow cases the propagated machine learning prediction yielded an improvement
in the mean velocities. Also, it was found that including in the training set a case with similar flow features as
the test case improved the results significantly.

9.2. Recommendations for future work
Field inversion In the field inversion phase, there are several choices which can be further investigated in
future work. In this work, only the discrepancy of the mean velocities was considered in the objective func-
tion. It would be interesting to see how different formulations of the objective function influence the results of
the field inversion. Apart from the quantities of interest included, the choice of the observational covariance
matrix and the prior also affect the objective function. In the preliminary investigations in the model prob-
lem, it was seen that an accurately formulated observational covariance matrix had a considerable influence
on the physical interpretability of the corrective term and the accuracy of the posterior covariance. Investiga-
tions into methods to construct a more accurate observational covariance matrix from DNS or experimental
data might therefore be interesting to include in future research. Inspiration might be taken from the work of
Wieneke and Sciacchitano [161] or [5]. Furthermore, more detailed specifications of the prior distributions
might help ensure realizability of the result of the inversion process. For example, for quantities which can
be bounded physically a distribution with finite support could be used to ensure realizability. One example
would be to use a Beta or Dirichlet distribution as a prior for the eigenvalues or barycentric coordinates.

Another area of the paradigm which might benefit from further research is the uncertainty quantification.
In the field inversion phase, this mainly concerns the approximation of the Hessian. Even for the simplest
two-dimensional cases considered in this work, the approximation used in this work was excessively expen-
sive. Furthermore, it is difficult to quantify the impact of the assumptions made and it is expected that the
computational savings do not weigh up to the accuracy decrease. Nevertheless, it would be interesting to
study the impact of the Gauss-Newton assumption on more complex flow cases.

The options for the formulations of the corrective term are practically endless. One example of a sug-
gestion for future research would be to also infer the correction to the eigenvectors. If the magnitude and
the shape would also be corrected, this would allow to infer corrections to the complete Reynolds stress ten-
sor. A possible formulation which includes the correction to the eigenvectors and ensures realizability of the
corrected Reynolds stress tensor is introduced in appendix B.6.

Machine learning The problems with scaling the uncertainty quantification which occurred in the field
inversion also exist in the machine learning phase. Gaussian processes are convenient because of their in-
herently probabilistic nature. However, this algorithm is not computationally feasible in larger flow cases.
One way to alleviate this issue would be the use of hierarchical Gaussian processes [121, 170, 171]. Further-
more, the use of other stochastic machine learning algorithms could be investigated. An example could be
Bayesian neural networks [12].

Apart from the probabilistic capabilities of the machine learning algorithms, it could be also be interest-
ing to consider the recent developments in machine learning algorithms for data-driven turbulent modeling
taking into account invariance in the machine learning phase. For example, tensor basis neural networks
proposed by Ling et al. [82] or tensor basis random forests described by Kaandorp and Dwight [68] could
be used. Furthermore, the field of data-driven turbulence modeling might benefit from further research in
the iterative approach. This would allow moving from data-driven models being just one corrective step to a
more integrated approach between the base model and the data-driven enhancement.

A natural next step for the complete paradigm would be to test it on a more complex or more diverse set
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of training and test cases. This could result in complications in several parts of the paradigm. For example,
whereas the one-shot approach in the optimization phase had a robust and convergent performance for the
cases considered in this work, more robust alternative may be needed for more complex cases. Modifications
to the one-shot approach could be the use of gradient smoothing, which has been shown by Jameson and
Vassberg [61] to improve the convergence of the optimization. Another option would be to further investi-
gate the complete approach coupled with a more robust optimization algorithm. For the machine learning
phase, the improved mean fields might benefit from more elaborate post-processing of the predicted cor-
rective functions. For the random forests, it was observed that the predicted corrective terms were relatively
noisy. Especially if corrections to the anisotropy tensor are used in the machine learning phase, this might
pose difficulties when propagating the predictions in the solver.





A
Discrete direct-adjoint Hessian

This appendix gives the derivation of the Hessian using the discrete direct-adjoint approach, as it is used
in the model problem in chapter 3. The derivation and notation is based on the work by Papadimitriou
and Giannakoglou [104]. The general derivation given in appendix A.1 is applied to the model problem in
appendix A.2.

A.1. General derivation
The derivative of the objective function and the governing equations can be rewritten using the chain rule:
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Similarly, the second derivative can be rewritten as
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Introducing a new augmented objective function Ĵ and a new vector of adjoint variables Ψ̂,
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Substituting the derivatives on the right hand side from (A.3) and (A.4) and rearranging the terms gives
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By satisfying the adjoint equation
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the Hessian is given by
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where dTk /dβi is obtained by solving (A.2)

A.2. Model problem
For the one-dimensional model problem introduced in chapter 3, the second explicit derivatives can be de-
rived straightforwardly from (3.42)–(3.45). The resulting expressions are:
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B
Continuous adjoint of the k −ω model

B.1. Adjoint derivation
First, the adjoint equations will be derived for the governing equations without any corrective terms. After the
adjoint equations have been obtained, the additions due to the corrective terms will be derived separately.
The governing equations are given by
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The objective function J is decomposed into a domain and a boundary integral.
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In contrast to applications of adjoint theory in shape optimization, in this application the geometry is inde-
pendent of β. The sensitivity of the augmented objective function can then be written as
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The sensitivity of the objective function J can be expanded as∫
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The sensitivity of the production terms and the eddy viscosity can be derived as
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∂x j
+ ∂v j

∂xi

)
∂

∂x j

(
δvi

δβ

)
, (B.11)

83
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δP

δβ
= 2

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂

∂x j

(
δvi

δβ

)
, (B.12)

and

δνt

δβ
= δ

δβ

(
k

ω

)
= 1

ω

δk

δβ
− k

ω2

δω

δβ
. (B.13)

The term in (B.8) involving the momentum equation can now be derived by considering the sensitivity of the
momentum equation.

δRv
i

δβ
= ∂vi

∂x j

δv j

δβ
+ v j

∂

∂x j

(
δvi

δβ

)
+ ∂v j

∂x j

δvi

δβ
+ vi

∂

∂x j

(
δv j

δβ

)
+ ∂

∂xi

(
δp

δβ

)
− ∂

∂x j

(
δνt

δβ

(
∂vi

∂x j
+ ∂v j

∂xi

))
− ∂

∂x j

(
(ν+νt )

(
∂

∂x j

(
δvi

δβ

)
+ ∂

∂xi

(
δv j

δβ

)))
= 0

(B.14)

Multiplying by the adjoint velocity and integrating over the domain gives∫
Ω

ui
δRv

i

δβ
dΩ=

∫
Ω

ui
∂vi

∂x j

δv j

δβ
+ui v j

∂

∂x j

(
δvi

δβ

)
︸ ︷︷ ︸

I

+ui
∂v j

∂x j

δvi

δβ
+ui vi

∂

∂x j

(
δv j

δβ

)
︸ ︷︷ ︸

II

+ui
∂

∂xi

(
δp

δβ

)
︸ ︷︷ ︸

III

−ui
∂

∂x j

{
(ν+νt )

[
∂

∂x j

(
δvi

δβ

)
+ ∂

∂xi

(
δv j

δβ

)]}
︸ ︷︷ ︸

IV

−ui
∂

∂x j

[
δνt

δβ

(
∂vi

∂x j
+ ∂v j

∂xi

)]
︸ ︷︷ ︸

V

dΩ .

(B.15)

The terms which need to be expanded using integration by parts are indicated, and are derived below.

I =
∫
Γ

ui v j n j
δvi

δβ
dΓ−

∫
Ω

∂(ui v j )

∂x j

δvi

δβ
dΩ (B.16)

II =
∫
Γ

ui vi n j
δv j

δβ
dΓ−

∫
Ω

∂(ui vi )

∂x j

δv j

δβ
dΩ (B.17)

III =
∫
Γ

ui ni
δp

δβ
dΓ−

∫
Ω

∂ui

∂xi

δp

δβ
dΩ (B.18)

IV.A =−
∫
Ω

ui
∂

∂x j

(
(ν+νt )

∂

∂x j

(
δvi

δβ

))
dΩ

=−
∫
Γ

ui n j (ν+νt )
∂

∂x j

(
δvi

δβ

)
dΓ+

∫
Ω

∂ui

∂x j
(ν+νt )

∂

∂x j

(
δvi

δβ

)
dΩ

=−
∫
Γ

ui n j (ν+νt )
∂

∂x j

(
δvi

δβ

)
dΓ+

∫
Γ

∂ui

∂x j
(ν+νt )n j

δvi

δβ
dΓ−

∫
Ω

∂

∂x j

(
(ν+νt )

∂ui

∂x j

)
δvi

δβ
dΩ

(B.19)

IV.B =−
∫
Ω

ui
∂

∂x j

(
(ν+νt )

∂

∂xi

(
δv j

δβ

))
dΩ

=−
∫
Γ

ui n j (ν+νt )
∂

∂xi

(
δv j

δβ

)
dΓ+

∫
Ω

∂ui

∂x j
(ν+νt )

∂

∂xi

(
δv j

δβ

)
dΩ

=−
∫
Γ

ui n j (ν+νt )
∂

∂xi

(
δv j

δβ

)
dΓ+

∫
Γ

∂ui

∂x j
(ν+νt )ni

δv j

δβ
dΓ−

∫
Ω

∂

∂xi

(
(ν+νt )

∂ui

∂x j

)
δv j

δβ
dΩ

(B.20)

V =−
∫
Ω

ui
∂

∂x j

[
δνt

δβ

(
∂vi

∂x j
+ ∂v j

∂xi

)]
dΩ

=−
∫
Γ

ui n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
δνt

δβ
dΓ+

∫
Ω

∂ui

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
δνt

δβ
dΩ

=−
∫
Γ

ui n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
1

ω

δk

δβ
dΓ+

∫
Γ

ui n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
k

ω2

δω

δβ
dΓ

+
∫
Ω

∂ui

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
1

ω

δk

δβ
dΩ−

∫
Ω

∂ui

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
k

ω2

δω

δβ
dΩ

(B.21)
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A similar procedure is used for the remaining governing equations. Starting with the continuity equation, the
derivative can be written as

δRp

δβ
=− ∂

∂x j

(
δv j

δβ

)
. (B.22)

Multiplying by the adjoint pressure, integrating over the domain, and applying integration by parts gives∫
Ω

q
δRp

δβ
dΩ=−

∫
Ω

q
∂

∂x j

(
δv j

δβ

)
dΩ=−

∫
Γ

qni
δvi

δβ
dΓ+

∫
Ω

∂q

∂xi

δvi

δβ
dΩ . (B.23)

The sensitivity of the ω equation with respect to the corrective function can be written as

δRω

δβ
= ∂ω

∂x j

δv j

δβ
+ v j

∂

∂x j

(
δω

δβ

)
+ ∂v j

∂x j

δω

δβ
+ω ∂

∂x j

(
δv j

δβ

)
− ∂

∂x j

(
σω

∂ω

∂x j

δνt

δβ

)
− ∂

∂x j

(
(σωνt +ν)

∂

∂x j

(
δω

δβ

))
−γδP

δβ
+ 2

3
γω

∂

∂x j

(
δv j

δβ

)
+ 2

3
γ
∂v j

∂x j

δω

δβ
+2αω

δω

δβ
.

(B.24)

The resulting expression is multiplied by the adjoint specific turbulent dissipation rateωa and integrated over
the domain.∫

Ω
ωa

δRω

δβ
dΩ=

∫
Ω
ωa

∂ω

∂x j

δv j

δβ
dΩ+

∫
Ω
ωa v j

∂

∂x j

(
δω

δβ

)
dΩ︸ ︷︷ ︸

I

+
∫
Ω
ωa

∂v j

∂x j

δω

δβ
dΩ+

∫
Ω
ωaω

∂

∂x j

(
δv j

δβ

)
︸ ︷︷ ︸

II

−
∫
Ω
ωa

∂

∂x j

(
σω

∂ω

∂x j

δνt

δβ

)
dΩ︸ ︷︷ ︸

III

−
∫
Ω
ωa

∂

∂x j

(
(σωνt +ν)

∂

∂x j

(
δω

δβ

))
dΩ︸ ︷︷ ︸

IV

−
∫
Ω
ωaγ

δP

δβ
dΩ︸ ︷︷ ︸

V

+
∫
Ω

2

3
ωaγω

∂

∂x j

(
δv j

δβ

)
dΩ︸ ︷︷ ︸

VI

+
∫
Ω

2

3
ωaγ

∂v j

∂x j

δω

δβ
dΩ

+
∫
Ω

2ωaαω
δω

δβ
dΩ

(B.25)

The indicated terms are now rewritten using integration by parts.

I =
∫
Γ
ωa v j n j

δω

δβ
dΓ−

∫
Ω

∂(ωa v j )

∂x j

δω

δβ
dΩ (B.26)

II =
∫
Γ
ωaωn j

δv j

δβ
dΓ−

∫
Ω

∂(ωaω)

∂x j

δv j

δβ
dΩ (B.27)

III =−
∫
Γ
ωan jσω

∂ω

∂x j

δνt

δβ
dΓ+

∫
Ω

∂ωa

∂x j
σω

∂ω

∂x j

δνt

δβ
dΩ

=−
∫
Γ
ωan jσω

∂ω

∂x j

1

ω

δk

δβ
dΓ+

∫
Γ
ωan jσω

∂ω

∂x j

k

ω2

δω

δβ
dΓ+

∫
Ω

∂ωa

∂x j
σω

∂ω

∂x j

1

ω

δk

δβ
dΩ−

∫
Ω

∂ωa

∂x j
σω

∂ω

∂x j

k

ω2

δω

δβ
dΩ

(B.28)

IV =−
∫
Γ
ωan j (σωνt +ν)

∂

∂x j

(
δω

δβ

)
dΓ+

∫
Ω

∂ωa

∂x j
(σωνt +ν)

∂

∂x j

(
δω

δβ

)
dΩ

=−
∫
Γ
ωan j (σωνt +ν)

∂

∂x j

(
δω

δβ

)
dΓ+

∫
Γ

∂ωa

∂x j
(σωνt +ν)n j

δω

δβ
dΓ−

∫
Ω

∂

∂x j

(
(σωνt +ν)

∂ωa

∂x j

)
δω

δβ
dΩ

(B.29)

V =−
∫
Ω

2ωaγ

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂

∂x j

(
δvi

δβ

)
dΩ

=−
∫
Γ

2ωaγ

(
∂vi

∂x j
+ ∂v j

∂xi

)
n j
δvi

δβ
dΓ+

∫
Ω

∂

∂x j

(
2ωaγ

(
∂vi

∂x j
+ ∂v j

∂xi

))
δvi

δβ
dΩ

(B.30)
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VI =
∫
Γ

2

3
ωaγωn j

δv j

δβ
dΓ−

∫
Ω

∂

∂x j

(
2

3
ωaγω

)
δv j

δβ
dΩ (B.31)

Finally, the sensitivity of the k-equation can be written as

δRk

δβ
= ∂k

∂x j

δv j

δβ
+ v j

∂

∂x j

(
δk

δβ

)
+ ∂v j

∂x j

δk

δβ
+k

∂

∂x j

(
δv j

δβ

)
− ∂

∂x j

(
σk

∂k

∂x j

δνt

δβ

)
− ∂

∂x j

(
(σkνt +ν)

∂

∂x j

(
δk

δβ

))
− δPk

δβ
+ 2

3
k
∂

∂x j

(
δv j

δβ

)
+ 2

3

∂v j

∂x j

δk

δβ
+Cµk

δω

δβ
+Cµω

δk

δβ

(B.32)

Again, the expression is multiplied by the adjoint turbulent kinetic energy ka and integrated over the domain.∫
Ω

ka
δRk

δβ
dΩ=

∫
Ω

ka
∂k

∂x j

δv j

δβ
dΩ+

∫
Ω

ka v j
∂

∂x j

(
δk

δβ

)
dΩ︸ ︷︷ ︸

I

+
∫
Ω

ka
∂v j

∂x j

δk

δβ
dΩ+

∫
Ω

kak
∂

∂x j

(
δv j

δβ

)
dΩ︸ ︷︷ ︸

II

−
∫
Ω

ka
∂

∂x j

(
σk

∂k

∂x j

δνt

δβ

)
dΩ︸ ︷︷ ︸

III

−
∫
Ω

ka
∂

∂x j

(
(σkνt +ν)

∂

∂x j

(
δk

δβ

))
dΩ︸ ︷︷ ︸

IV

−
∫
Ω

ka
δPk

δβ
dΩ︸ ︷︷ ︸

V

+
∫
Ω

2

3
kak

∂

∂x j

(
δv j

δβ

)
dΩ︸ ︷︷ ︸

VI

+
∫
Ω

2

3
ka
∂v j

∂x j

δk

δβ
dΩ+

∫
Ω

Cµkak
δω

δβ
dΩ+

∫
Ω

Cµkaω
δk

δβ
dΩ

(B.33)

In order to isolate the sensitivities of the primal variables, the indicated terms are rewritten using integra-
tion by parts.

I =
∫
Γ

ka v j n j
δk

δβ
dΩ−

∫
Ω

∂

∂x j

(
ka v j

) δk

δβ
dΩ (B.34)

II =
∫
Γ

kakn j
δv j

δβ
dΓ−

∫
Ω

∂

∂x j
(kak)

δv j

δβ
dΩ (B.35)

III =−
∫
Γ

kan jσk
∂k

∂x j

δνt

δβ
dΓ+

∫
Ω

∂ka

∂x j
σk

∂k

∂x j

δνt

δβ
dΩ

=−
∫
Γ

kan jσk
∂k

∂x j

1

ω

δk

δβ
dΓ+

∫
Γ

kan jσk
∂k

∂x j

k

ω2

δω

δβ
dΓ+

∫
Ω

∂ka

∂x j
σk

∂k

∂x j

1

ω

δk

δβ
dΩ−

∫
Ω

∂ka

∂x j
σk

∂k

∂x j

k

ω2

δω

δβ
dΩ

(B.36)

IV =−
∫
Γ

kan j (σkνt +ν)
∂

∂x j

(
δk

δβ

)
dΓ+

∫
Ω

∂ka

∂x j
(σkνt +ν)

∂

∂x j

(
δk

δβ

)
dΩ

=−
∫
Γ

kan j (σkνt +ν)
∂

∂x j

(
δk

δβ

)
dΓ+

∫
Γ

∂ka

∂x j
(σkνt +ν)n j

δk

δβ
dΓ−

∫
Ω

∂

∂x j

(
(σkνt +ν)

∂ka

∂x j

)
δk

δβ
dΩ

(B.37)

V =−
∫
Ω

ka

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂vi

∂x j

δνt

δβ
dΩ︸ ︷︷ ︸

A

−
∫
Ω

2kaνt

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂

∂x j

(
δvi

δβ

)
dΩ︸ ︷︷ ︸

B

(B.38)

V.A =−
∫
Ω

ka

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂vi

∂x j

1

ω

δk

δβ
dΩ+

∫
Ω

ka

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂vi

∂x j

k

ω2

δω

δβ
dΩ (B.39)

V.B =−
∫
Γ

2ka

(
∂vi

∂x j
+ ∂v j

∂xi

)
n j
δvi

δβ
dΓ+

∫
Ω

2
∂

∂x j

(
kaνt

(
∂vi

∂x j
+ ∂v j

∂xi

))
δvi

δβ
dΩ (B.40)
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VI =
∫
Γ

2

3
kakn j

δv j

δβ
dΓ−

∫
Ω

2

3

∂(kak)

∂x j

δv j

δβ
dΩ (B.41)

The sensitivities of the primal variables can now be isolated. This gives an expression of the following
form.

δL

δβ
=

∫
Ω

(
∂JΩ
∂β

+Ru
i
δvi

δβ
+Rq δp

δβ
+Rka

δk

δβ
+Rωa

δω

δβ

)
dΩ

+
∫
Γ

(
∂JΓ
∂β

+Du
i
δvi

δβ
+Dq δp

δβ
+Dka

δk

δβ
+Dωa

δω

δβ

+P u
i j

∂

∂x j

(
δvi

δβ

)
+P k

j
∂

∂x j

(
δk

δβ

)
+Pω

j
∂

∂x j

(
δω

δβ

))
dΓ

(B.42)

The adjoint equations are obtained by setting the expressions multiplying the sensitivities of the primal vari-
ables in the domain integral to zero.

Ru
i = ∂JΩ

∂vi
− ∂ui v j

∂x j
− v j

∂u j

∂xi
− ∂

∂x j

(
(ν+νt )

(
∂ui

∂x j
+ ∂u j

∂xi

))
+ ∂q

∂xi
−k

∂ka

∂xi
−ω∂ωa

∂xi

+2
∂

∂x j

(
(ωaγ+kaνt )

(
∂vi

∂x j
+ ∂v j

∂xi

))
− 2

3
γ
∂(ωaω)

∂xi
− 2

3

∂(kak)

∂xi
= 0

(B.43)

Rq = ∂JΩ
∂p

− ∂ui

∂xi
= 0 (B.44)

Rka = ∂JΩ
∂k

− ∂(ka v j )

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂ka

∂x j

)
+ ∂ka

∂x j
σk

∂k

∂x j

1

ω
+ ∂ωa

∂x j
σω

∂ω

∂x j

1

ω
+ ∂ui

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
1

ω

−ka

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂vi

∂x j

1

ω
+ 2

3
ka
∂v j

∂x j
− 2

3

∂ui

∂xi
+Cµkaω= 0

(B.45)

Rωa = ∂JΩ
∂ω

− ∂(ωa v j )

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ωa

∂x j

)
− ∂ωa

∂x j
σω

∂ω

∂x j

k

ω2 + 2

3
γωa

∂v j

∂x j
+2αωaω− ∂ka

∂x j
σk

∂k

∂x j

k

ω2

+ka

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂vi

∂x j

k

ω2 +Cµkak − ∂ui

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
k

ω2 = 0

(B.46)

The terms in the boundary integral will be used for the derivation of the boundary conditions.

Du
i = ui v j n j +u j v j ni + (ν+νt )n j

(
∂ui

∂x j
+ ∂u j

∂xi

)
−qni +ωaωni −2ωaγ

(
∂vi

∂x j
+ ∂v j

∂xi

)
n j

+ 2

3
γωaωni +kakni −2kan j

(
∂vi

∂x j
+ ∂v j

∂xi

)
+ 2

3
kakni

(B.47)

Dq = ui ni (B.48)

Dka =−ui n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
1

ω
−ωan jσω

∂ω

∂x j

1

ω
+ka v j n j −kan jσk

∂k

∂x j

1

ω
+ ∂ka

∂x j
(σkνt +ν)n j (B.49)

Dωa = ui n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
k

ω2 +ωan j v j +ωan jσω
∂ω

∂x j

k

ω2 + ∂ωa

∂x j
(σωνt +ν)n j +kan jσk

∂k

∂x j

k

ω2 (B.50)

P u
i j =−ui n j −u j ni (B.51)

P k
j =−ka(σkνt +ν)n j (B.52)

Pω
j =−ωa(σωνt +ν)n j (B.53)
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B.2. Boundary conditions
B.2.1. Inlet and wall
On the inlet and no-slip walls, Dirichlet boundary conditions are applied on the primal variables, i.e.

δvi

δβ
= 0,

δk

δβ
= 0, and

δω

δβ
= 0. (B.54)

Therefore, in order to zero the remaining boundary integrals, impose

Dq = 0, P u
i j = 0, P k

j = 0, and Pω
j = 0. (B.55)

From this follows,

Dq = ui ni = un = 0, (B.56)

ni P u
i j =−ui n j ni −u j ni ni =−unn j −u j =−u j = 0. (B.57)

Therefore, all components of the adjoint velocity are zero. The remaining expressions give

P k
j =−ka(σkνt +ν)n j = 0

ka = 0,
(B.58)

and

Pω
j =−ωa(σωνt +ν) = 0

ωa = 0.
(B.59)

Therefore, zero Dirichlet boundary conditions are applied on the adjoint velocity, ka , and ωa . The inlet and
wall boundary conditions for the adjoint pressure do not follow from these equations. [172] suggests to use a
zero Neumann boundary condition.

B.2.2. Outlet
On the outlet, zero Neumann boundary conditions are applied on the primal velocity and the primal turbu-
lent variables, and a zero Dirichlet boundary condition is imposed on the primal pressure.

∂

∂x j

(
δvi

δβ

)
= 0,

δp

δβ
= 0,

∂

∂x j

(
δk

δβ

)
= 0, and

∂

∂x j

(
δω

δβ

)
= 0. (B.60)

Again, to zero the remaining boundary terms, impose

Du
i = 0, Dka = 0, and Dωa = 0. (B.61)

The boundary condition for the adjoint pressure can be derived from the normal component of the expres-
sion for Du

i .

Du
i ni = un vn +u j v j + (ν+νt )ni n j

(
∂ui

∂x j
+ ∂u j

∂xi

)
−q +ωaω−2ωaβγ

(
∂vi

∂x j
+ ∂v j

∂xi

)
ni n j + 2

3
γωaω+kak

−2kani n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
+ 2

3
kak = 0

q = un vn +u j v j +2(ν+νt )n j
∂un

∂x j
+ωaω−2ωaβγ

(
∂vi

∂x j
+ ∂v j

∂xi

)
ni n j + 2

3
γωaω+kak

−2kani n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
+ 2

3
kak

(B.62)
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Similarly, for the tangential component,

Du
i −Du

k ni nk = ui v j n j −uk nk v j n j ni + (ν+νt )n j

(
∂

∂x j
(ui −uk nk ni )+ ∂u j

∂xi
− ∂u j

∂xk
nk ni

)
−2ωaβγn j

(
∂

∂x j
(vi − vk nk ni )+ ∂v j

∂xi
− ∂v j

∂xk
nk ni

)
−2kan j

(
∂

∂x j
(vi − vk nk ni )+ ∂v j

∂xi
− ∂v j

∂xk
nk ni

)
= vnu∥i + (ν+νt )n j

(
∂u∥i

∂x j
+ ∂u j

∂x∥i

)
−2ωaβγn j

(
∂v∥i

∂x j
+ ∂v j

∂x∥i

)
−2kan j

(
∂v∥i

∂x j
+ ∂v j

∂x∥i

)
.

(B.63)

The boundary conditions for the adjoint turbulent variables can be derived from the last two boundary terms.

Dka =−ui n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
1

ω
−ωan jσω

∂ω

∂x j

1

ω
+ka v j n j −kan jσk

∂k

∂x j

1

ω
+ ∂ka

∂x j
(σkνt +ν)n j = 0

ωa =
−ui n j

(
∂vi
∂x j

+ ∂v j

∂xi

)
1
ω +ka v j n j −kan jσk

∂k
∂x j

1
ω + ∂ka

∂x j
(σkνt +ν)n j

n jσω
∂ω
∂x j

1
ω

(B.64)

Dωa = ui n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
k

ω2 +ωan j v j +ωan jσω
∂ω

∂x j

k

ω2 + ∂ωa

∂x j
(σωνt +ν)n j +kan jσk

∂k

∂x j

k

ω2 = 0

ka =
−ui n j

(
∂vi
∂x j

− ∂v j

∂xi

)
k
ω2 −ωan j v j −ωan jσω

∂ω
∂x j

k
ω2 − ∂ωa

∂x j
(σωνt +ν)n j

n jσk
∂k
∂x j

k
ω2

(B.65)

B.2.3. Slip wall
On a slip wall, the normal component of the primal velocity is zero, and zero Neumann boundary conditions
are applied to the primal pressure and the turbulence variables, resulting in

δ(n j v j )

δβ
= 0,

∂

∂x j

(
δk

δβ

)
, and

∂

∂x j

(
δω

δβ

)
, (B.66)

As only the normal component of the velocity is zero at the wall, it is still necessary to set Du
i to zero. There-

fore, impose
Du

i = 0, Dq = 0, Dka = 0, Dωa = 0, and P u
i j = 0 (B.67)

From Dq and P u
i j , it follows that

P u
i j =−ui n j −u j ni = 0

ni P u
i j =−ui ni n j −u j = 0

=−Dq n j −u j = 0

=−u j = 0.

(B.68)

Therefore, the adjoint velocity is zero on the slip wall, and the adjoint pressure and turbulence variables are
determined in the same way as for the outlet.

B.3. Objective function
The objective function derived from the maximum a posteriori is given by

J = 1

2
(dRANS −dHF)T C−1

m (dRANS −dHF)+ 1

2
(β−βprior)T C−1

β (β−βprior). (B.69)
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In the simple case where a two single scalar variances are used for a diagonal observational and prior covari-
ance matrix,

Cm =σ2
m I and Cβ =σ2

βI , (B.70)

the objective function then reduces to

J = 1

2σ2
m

(dRANS −dHF)T (dRANS −dHF)+ 1

2σ2
β

(β−βprior)T (β−βprior) (B.71)

= 1

2σ2
m

Nd∑
i=1

(dRANS,i −dHF,i )2 + 1

2σ2
β

N∑
j=1

(β j −βprior, j )2, (B.72)

such that

JΩ = 1

2σ2
m

Nd∑
i=1

δ(x −xi )(dRANS,i −dHF,i )2 + 1

2σ2
β

N∑
j=1

δ(x −x j )(β j −βprior, j )2. (B.73)

As explained in section 3.5.3, the Dirac delta functions are included because the data is only known at discrete
locations (in this case the cell centres) while the objective function is still treated in a continuous manner. The
Dirac delta functions disappear when the expressions are integrated. For the first term, this happens in the
adjoint momentum equation. For the second term this is done in the derivation, such that only the sum over
the grid cells needs to be implemented in the solver.

B.4. Production term correction
In this approach, the corrective term is applied to the production term in the ω equation, i.e.

Rω = ∂(v jω)

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−βγP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0. (B.74)

The required changes to the adjoint equation and the adjoint gradient can be derived from the production
term.

−βγP =−γβ∂v j

∂xi

(
∂vi

∂x j
+ ∂v j

∂xi

)
δ(−βγP )

δβ
=−γ∂v j

∂xi

(
∂vi

∂x j
+ ∂v j

∂xi

)
−2γβ

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂

∂x j

(
δvi

δβ

)
∫
Ω
ωa(−βγP )dΩ=−

∫
Ω
ωaγ

∂v j

∂xi

(
∂vi

∂x j
+ ∂v j

∂xi

)
dΩ−

∫
Ω

2ωaγβ

(
∂vi

∂x j
+ ∂v j

∂xi

)
∂

∂x j

(
δvi

δβ

)
dΩ

=−
∫
Ω
ωaγ

∂v j

∂xi

(
∂vi

∂x j
+ ∂v j

∂xi

)
dΩ−

∫
Γ

2ωaγβ

(
∂vi

∂x j
+ ∂v j

∂xi

)
n j
δvi

δβ
dΓ

+
∫
Ω

∂

∂x j

(
2ωaγβ

(
∂vi

∂x j
+ ∂v j

∂xi

))
δvi

δβ
dΩ

(B.75)

Collecting the terms, the adjoint gradient for this formulation is thus given by

δL

δβ
=−

∫
Ω
ωaγP dΩ , (B.76)

excluding the term originating from the prior, which is the same for all corrective term formulations. Further-
more, the corrective terms should be included in the adjoint momentum equation and the adjoint boundary
conditions corresponding to the latter two terms of (B.75).

B.5. Eigenvalue corrections
The eigendecomposition of the anisotropy tensor is given by

b =VΛV T , (B.77)
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where Λ is a matrix with the eigenvalues on the diagonal and V is a matrix of which the columns are the
corresponding eigenvectors. The perturbed anisotropy tensor is given by

b′ =V (Λ+B)V T =VΛV T +V BV T = b +V BV T , (B.78)

where

B = diag(∆λ1,∆λ2,∆λ3) = diag

(
2

3
βC1c +

1

6
βC2c ,−1

3
βC1c +

1

6
βC2c ,−1

3
βC1c −

1

3
βC2c

)
. (B.79)

The derivative of this matrix with respect to the corrective terms is then given by

δB

δβC1c

= diag

(
2

3
,−1

3
,−1

3

)
, (B.80)

and

δB

δβC1c

= diag

(
1

6
,

1

6
,−1

3

)
. (B.81)

Looking at (B.78), this formulation has the convenient property that the unperturbed anisotropy tensor can
be absorbed into the original expression of the momentum and k-equation. The correction can thus simply
be added as a source term in both equations. Before deriving the relevant expressions, it can first be shown
that the corrected turbulent kinetic energy is equal to the baseline turbulent kinetic energy.

k ′ = 1

2
tr

(
R ′

i j

)
= k +k tr

(
V BV T )= k +k tr

(
V T V B

)= k +k tr(B) = k (B.82)

This follows from the fact that bi i = 0 by definition and the trace is invariant under cyclic permutations. As
bi j is a real symmetric matrix, V is an orthogonal matrix and thus V T V = I . The trace of B is zero by inferring
only two of the barycentric coordinates and calculating the third. From the corrected anisotropy tensor, it
can be derived that the corrected momentum equation is given by

Rv
i
′ = v j

∂vi

∂x j
+ ∂p

∂xi
+ 2

3

∂k

∂xi
− ∂

∂x j

(
(ν+νt )

(
∂vi

∂x j
+ ∂v j

∂xi

))
︸ ︷︷ ︸

Rv
i

+∂(2kVi nBnl V j l )

∂x j
= 0. (B.83)

Similarly, the corrected k-equation is given by

Rk ′ = ∂(v j k)

∂x j
− ∂

∂x j

((
σ∗νt +ν

) ∂k

∂x j

)
−νt

∂vi

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
+2k

∂vi

∂x j
Vi nBnl V j l +Cµωk = 0. (B.84)

For the momentum equation, the adjoint terms resulting from the additional source term can be derived as
follows.

δ

δβ

(
2
∂

∂x j

(
kVi nBnl V j l

))= 2
∂

∂x j

(
Vi nBnl V j l

δk

δβ

)
+2

∂

∂x j

(
k
δVi nBnl V j l

δβ

)
∫
Ω

ui
δ

δβ

(
(2

∂

∂x j

(
kVi nBnl V j l

)
)

)
dΩ=

∫
Ω

2ui
∂

∂x j

(
Vi nBnl V j l

δk

δβ

)
dΩ+

∫
Ω

2ui
∂

∂x j

(
kVi n

δBnl

δβ
V j l

)
dΩ

=
∫
Γ

2ui n j Vi nBnl V j l
δk

δβ
dΓ−

∫
Ω

2
∂ui

∂x j
Vi nBnl V j l

δk

δβ
dΩ

+
∫
Ω

2ui
∂

∂x j

(
kVi n

δBnl

δβ
V j l

)
dΩ

(B.85)
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Similarly, for the k-equation:

δ

δβ

(
2kVi nBnl V j l

∂vi

∂x j

)
= 2Vi nBnl V j l

∂vi

∂x j

δk

δβ
+2k

∂vi

∂x j
Vi n

δBnl

δβ
V j l +2kVi nBnl V j l

∂

∂x j

(
δvi

δβ

)
∫
Ω

ka
δRk

δβ
dΩ=

∫
Ω

2kaVi nBnl V j l
∂vi

∂x j

δk

δβ
dΩ+

∫
Ω

2kak
∂vi

∂x j
Vi n

δBnl

δβ
V j l dΩ

+
∫
Ω

2kakVi nBnl V j l
∂

∂x j

(
δvi

δβ

)
dΩ

=
∫
Ω

2kaVi nBnl V j l
∂vi

∂x j

δk

δβ
dΩ+

∫
Ω

2kak
∂vi

∂x j
Vi n

δBnl

δβ
V j l dΩ

+
∫
Γ

2kakVi nBnl V j l n j
δvi

δβ
dΓ−

∫
Ω

∂

∂x j

(
2kakVi nBnl V j l

) δvi

δβ
dΩ

(B.86)

Collecting the terms not including the sensitivities of any primal variables, the adjoint gradient is given
by

δL

δβ
=

∫
Ω

2ui
∂

∂x j

(
kVi n

δBnl

δβ
V j l

)
dΩ+

∫
Ω

2kak
∂vi

∂x j
Vi n

δBnl

δβ
V j l dΩ+ 1

σ2
β

(β−βprior). (B.87)

B.6. Complete Reynolds stress tensor correction
B.6.1. Overview
When both the eigenvalues and the eigenvectors are corrected, the perturbed anisotropy tensor is given by

b′ =QV (Λ+B)V T QT , (B.88)

where B is a diagonal matrix containing the respective corrections to the eigenvalues, as introduced in the
previous section, and Q is the rotation matrix corresponding to the corrective rotation of the set of eigenvec-
tors. If unit quaternions are used to represent this rotation, this matrix can be written as

Q =

 1−2(q2
j +q2

k ) 2(qi q j −qk qr ) 2(qi qk +q j qr )

2(qi q j +qk qr ) 1−2(q2
i +q2

k ) 2(q j qk −qi qr )
2(qi qk −q j qr ) 2(q j qk +qi qr ) 1−2(q2

i +q2
j )

 . (B.89)

Three additional corrective terms then need to be formulated: βn1 and βn2 specifying the axis of the rotation,
andβθ specifying the rotation angle. Then, the derivatives of Q with respect to the rotation of the eigenvectors
can be written as

δq11

δβθ
=−2sin

θ

2
cos

θ

2

(
n2

2 +n3
2)

δq12

δβθ
= 2n1 sin

θ

2
n2 cos

θ

2
−2n3 cos2 θ

2
+n3

δq13

δβθ
= 2n1 sin

θ

2
n3 cos

θ

2
+2n2 cos2 θ

2
−n2

δq21

δβθ
= 2n1 sin

θ

2
n2 cos

θ

2
−2n3 cos2 θ

2
+n3

δq22

δβθ
=−2sin

θ

2
cos

θ

2

(
n1

2 +n3
2)

δq23

δβθ
= 2n2 sin

θ

2
n3 cos

θ

2
−2n1 cos2 θ

2
+n1

δq31

δβθ
= 2n1 sin

θ

2
n3 cos

θ

2
+2n2 cos2 θ

2
−n2

δq32

δβθ
= 2n2 sin

θ

2
n3 cos

θ

2
−2n1 cos2 θ

2
+n1

δq33

δβθ
=−2sin

θ

2
cos

θ

2

(
n1

2 +n2
2)

(B.90)

And similarly for the rotation axis:

δQ

δβn1

=

 0 2n2 sin2 θ
2 2n3 sin2 θ

2
2n2 sin2 θ

2 −4n1 sin2 θ
2 −2sin θ

2 cos θ
2

2n2 sin2 θ
2 −2sin θ

2 cos θ
2 −4n1 sin2 θ

2


and

δQ

δβn2

=

−4n2 sin2 θ
2 2n1 sin2 θ

2 2sin θ
2 cos θ

2
2n1 sin2 θ

2 0 2n3 sin2 θ
2

2n1 sin2 θ
2 −2n3 sin2 θ

2 −4n2 sin2 θ
2


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The momentum equation with the perturbed anisotropy tensor can be written as

Rv
i = ∂vi v j

∂x j
+ ∂p

∂xi
+ 2

3

∂k

∂xi
− ∂

∂x j

(
ν

(
∂vi

∂x j
+ ∂v j

∂xi

))
+ ∂

∂x j

(
2k(QV (Λ+B)V T QT )i j

)= 0. (B.91)

The main difficulty in this derivation is that in this case the anisotropy tensor and its correction cannot be
separated. Therefore, the complete corrected anisotropy tensor must be formulated as a source term in the
momentum and k-equation. Again, the required changes to the adjoint equations and the expression for the
gradient can be derived from the last term.

δ

δβ

(
∂

∂x j

(
2kb′

i j

))
= ∂

∂x j

(
2QV (Λ+B)V T QT δk

δβ

)
+ ∂

∂x j

(
2k

δ

δβ

(
QV (Λ+B)V T QT ))

∫
Ω

ui
δ

δβ

(
∂

∂x j

(
2kb′

i j

))
dΩ=

∫
Ω

ui
∂

∂x j

(
2QV (Λ+B)V T QT δk

δβ

)
dΩ

+
∫
Ω

ui
∂

∂x j

(
2k

δ

δβ

(
QV (Λ+B)V T QT ))

dΩ

=
∫
Γ

2ui n j QV (Λ+B)V T QT δk

δβ
dΓ−

∫
Ω

2
∂ui

∂x j
QV (Λ+B)V T QT δk

δβ
dΩ

+
∫
Ω

ui
∂

∂x j

(
2k

(
δQ

δβ
V (Λ+B)V T QT +QV (Λ+B)V T δQT

δβ
+QV

δB

δβ
V T QT

)
i j

)
dΩ

+
∫
Ω

ui
∂

∂x j

(
2k

(
QV

δΛ

δβ
V T QT

)
i j

)
dΩ︸ ︷︷ ︸

I

+
∫
Ω

ui
∂

∂x j

(
2k

(
Q
δV

δβ
(Λ+B)V T QT

)
i j

)
dΩ︸ ︷︷ ︸

II

+
∫
Ω

ui
∂

∂x j

(
2k

(
QV (Λ+B)

δV T

δβ
QT

)
i j

)
dΩ︸ ︷︷ ︸

III
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The first two terms contribute to the adjoint k boundary condition and the ka-equation, respectively. The
third term is the expression for the adjoint gradient for this particular corrective formulation. In order to
complete the derivation, it is necessary to expand the last three terms such that they can be expressed as
boundary and domain integrals of expressions containing sensitivities with respect to the primal variables.
The sensitivity of the unperturbed anisotropy tensor can be straightforwardly derived to be

δbi j

δβ
= 1

2ω2

(
∂vi

∂x j
+ ∂v j

∂xi

)
δω

δβ
− 1

2ω

(
∂

∂x j

(
δvi

δβ

)
+ ∂

∂xi

(
δv j

δβ

))
. (B.93)

Therefore, if it is possible to find the sensitivities of the eigenvalues and eigenvectors in terms of the sensitivity
of the anisotropy tensor, the derivation can be completed.

B.6.2. Eigenvalue derivatives
The derivation in this section follows the work of Fox and Kapoor [37], Nelson [97]. For the α-th eigenvalue
and eigenvector, the following is true:

bvα =λαvα. (B.94)

Considering the derivative with respect to the corrective functions,

δb

δβ
vα+b

δvα
δβ

= δλα

δβ
vα+λα δvα

δβ
. (B.95)

Imposing that the eigenvectors have unit length gives vT
α vα = 1, and

δ

δβ

(
vᵀ
αvα

)= 2vα1
δvα1

δβ
+2vα2

δvα2

δβ
+2vα3

δvα3

δβ
= 2vα · δvα

δβ
= 0, (B.96)
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as a variation in β should not change the length of the eigenvectors. Then, (B.95) simplifies to

vᵀ
α

δb

δβ
vα+ vᵀ

αb
δvα
δβ

= δλα

δβ
. (B.97)

Also,
vᵀ
αb = vᵀ

αbᵀ = (bvα)ᵀ = (λαvα)ᵀ =λαvᵀ
α. (B.98)

Therefore,

δλα

δβ
= vᵀ

α

δb

δβ
vα. (B.99)

B.6.3. Eigenvector derivatives
In order to derive the derivatives of the eigenvectors, define

Fp ≡ b −λp I . (B.100)

Then,

Fp vp = bvp −λp I vp = bvp −λp vp = 0. (B.101)

Taking the derivative,

Fp
δvp

δβ
=−δFp

δβ
vp . (B.102)

The combination of this expression with (B.96) gives[
Fp

2vT
p

]
δvp

δβ
=

[
−δFp

δβ

0

]
vp

[
Fp vp

][
Fp

2vT
p

]
δvp

δβ
= [

Fp vp
][

−δFp

δβ

0

]
vp

[
Fp Fp +2vp vT

p

] δvp

δβ
=−Fp

δFp

δβ
vp

δvp

δβ
=−

[
Fp Fp +2vp vT

p

]−1
Fp

δFp

δβ
vp

(B.103)

These expressions can then be used in (B.92), after which the derivation of the adjoint equations can be
completed in a manner similar to the other formulations. This derivation has yet to be implemented and
tested in OpenFOAM.



C
OpenFOAM implementation

This appendix gives the essential code for the implementation of the paradigm in OpenFOAM. The primal
and adjoint implementation of the SIMPLE algorithm is given in listing 1. The relevant sections of the code
are annotated. A more elaborate explanation of its workings is given in section 6.3.4 and fig. 6.1. The ad-
joint momentum equation is implemented in listing 2. The primal and adjoint equations for k and ω are
implemented in adjointkOmega. The equations for ka and ωa are shown in listing 3.

1 #include "IOmanip.H"
2

3 #include "fvCFD.H"
4 #include "singlePhaseTransportModel.H"
5 #include "turbulentTransportModel.H"
6 #include "simpleControl.H"
7 #include "fvOptions.H"
8

9 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
10

11 int main(int argc, char *argv[])
12 {
13 #include "postProcess.H"
14

15 #include "setRootCase.H"
16 #include "createTime.H"
17 #include "createMesh.H"
18 #include "createControl.H"
19 #include "createFields.H"
20 #include "createFvOptions.H"
21 #include "initContinuityErrs.H"
22

23 turbulence->validate();
24

25 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
26

27 Info<< "\nStarting time loop\n" << endl;
28

29 while (simple.loop())
30 {
31 Info<< "Time = " << runTime.timeName() << nl << endl;
32

33 // Calculate the eigenvectors from the anisotropy tensor (this only done when the eigenvalues are
corrected),→

34 #include "eig.H"
35

36 // Solve the primal velocity and pressure
37 {
38 #include "UEqn.H"
39 #include "pEqn.H"
40 }
41

42 // Solve the adjoint velocity and pressure
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43 {
44 #include "UaEqn.H"
45 #include "paEqn.H"
46 }
47

48 laminarTransport.correct();
49

50 // Solve the primal and adjoint k and omega (this is done in adjointkOmega.C
51 turbulence->correct();
52

53 // Calculate the objective function
54 #include "calcJ.H"
55 Info << setprecision(15);
56 Info << "J: " << J << endl;
57

58 // Get the adjoint gradients from the adjoint turbulence model
59 volScalarField gradAdjointMag = turbulence->db().objectRegistry::lookupObject<volScalarField>

("gradAdjointMag");,→
60 volScalarField gradAdjointC1c = turbulence->db().objectRegistry::lookupObject<volScalarField>

("gradAdjointC1c");,→
61 volScalarField gradAdjointC2c = turbulence->db().objectRegistry::lookupObject<volScalarField>

("gradAdjointC2c");,→
62

63 // Add the contributions from the prior
64 gradAdjointMag += 1.0/sqr(sigma_betaCorrMag)*betaCorrMag;
65 gradAdjointC1c += 1.0/sqr(sigma_betaCorrC1c)*betaCorrC1c;
66 gradAdjointC2c += 1.0/sqr(sigma_betaCorrC2c)*betaCorrC2c;
67

68 // Gradient descent step (one-shot implementation)
69 betaCorrMag -= gradAdjointMag*lrMag;
70 betaCorrC1c -= gradAdjointC1c*lrC1c;
71 betaCorrC2c -= gradAdjointC2c*lrC2c;
72

73 runTime.write();
74

75 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
76 << " ClockTime = " << runTime.elapsedClockTime() << " s"
77 << nl << endl;
78 }
79

80 Info<< "End\n" << endl;
81

82 return 0;
83 }

Listing 1: Primal and adjoint SIMPLE algorithm - adjointSimpleFoam.C.
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1 volVectorField dataTerm(1.0/sqr(sigma_m)*(U-UHF));
2

3 forAll(dataTerm, i)
4 {
5 dataTerm[i].x() *= 1.0/mesh.V()[i];
6 dataTerm[i].y() = 0.0;
7 dataTerm[i].z() = 0.0;
8 }
9

10 dataTermTest = dataTerm;
11

12 tmp<fvVectorMatrix> tUaEqn
13 (
14 fvm::div(-phi, Ua)
15 - (U & fvc::grad(Ua))
16 + turbulence->divDevReff(Ua)
17 ==
18 - velocityTerm
19 - fvc::div(velocityTermLapl*dev(twoSymm(fvc::grad(U))))
20 - dataTerm
21 + fvOptions(Ua)
22 );
23

24 fvVectorMatrix& UaEqn = tUaEqn.ref();
25

26 UaEqn.relax();
27

28 fvOptions.constrain(UaEqn);
29

30 if (simple.momentumPredictor())
31 {
32 solve(UaEqn == -fvc::grad(pa));
33

34 fvOptions.correct(Ua);
35 }

Listing 2: Adjoint momentum equation - UaEqn.H.
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1 tmp<fvScalarMatrix> omegaaEqn
2 (
3 fvm::div(-alphaRhoPhi, omegaa_)
4 - fvm::laplacian(alpha*rho*DomegaEff(), omegaa_)
5 ==
6 (fvc::grad(omegaa_) & fvc::grad(omega_))*alphaOmega_*k_/sqr(omega_)
7 + (fvc::grad(ka_) & fvc::grad(k_))*alphaK_*k_/sqr(omega_)
8 - fvm::SuSp(((2.0/3.0)*gamma_)*divU, omegaa_)
9 + (fvc::grad(Ua) && dev(twoSymm(fvc::grad(U))))*k_/sqr(omega_)

10 - ka_*P*k_/sqr(omega_)
11 - Cmu_*ka_*k_
12 - fvm::Sp(2.0*beta_*omega_, omegaa_)
13 + fvOptions(alpha, rho, omegaa_)
14 );
15

16 omegaaEqn.ref().relax();
17 fvOptions.constrain(omegaaEqn.ref());
18 omegaaEqn.ref().boundaryManipulate(omegaa_.boundaryFieldRef());
19 solve(omegaaEqn);
20 fvOptions.correct(omegaa_);
21

22

23 tmp<fvScalarMatrix> kaEqn
24 (
25 fvm::div(-alphaRhoPhi, ka_)
26 - fvm::laplacian(alpha*rho*DkEff(), ka_)
27 ==
28 - (fvc::grad(ka_) & fvc::grad(k_))*alphaK_/omega_
29 - (fvc::grad(omegaa_) & fvc::grad(omega_))*alphaOmega_/omega_
30 + ka_*P/omega_
31 - fvm::Sp(Cmu_*omega_, ka_)
32 - (fvc::grad(Ua) && dev(twoSymm(fvc::grad(U))))/omega_
33 - fvm::SuSp((2.0/3.0)*alpha*rho*divU, ka_)
34 + fvOptions(alpha, rho, ka_)
35 );
36

37 kaEqn.ref().relax();
38 fvOptions.constrain(kaEqn.ref());
39 kaEqn.ref().boundaryManipulate(ka_.boundaryFieldRef());
40 solve(kaEqn);
41 fvOptions.correct(ka_);
42

43 velocityTerm_ = - omega_*fvc::grad(omegaa_)
44 - k_*fvc::grad(ka_)
45 - 2.0/3.0*gamma_*fvc::grad(omegaa_*omega_)
46 - 2.0/3.0*fvc::grad(ka_*k_)
47 ;
48

49 velocityTermLapl_ = 2.0*omegaa_*betaCorr_*gamma_ + 2.0*nut*ka_;

Listing 3: Adjoint k −ω model - adjointkOmega.C. For the sake of brevity, only the implementation for the production
term correction is given.



Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL https://www.tensorflow.org/. Software available from tensorflow.org.

[2] K. Abe, Y.-J. Jang, and M. A. Leschziner. An investigation of wall-anisotropy expressions and length-
scale equations for non-linear eddy-viscosity models. International Journal of Heat and Fluid Flow, 24
(2):181–198, 2003.

[3] W. K. Anderson and V. Venkatakrishnan. Aerodynamic design optimization on unstructured grids with
a continuous adjoint formulation. Computers & Fluids, 28(4-5):443–480, 1999.

[4] R. C. Aster, B. Borchers, and C. H. Thurber. Parameter estimation and inverse problems. Elsevier, 2018.

[5] I. Azijli, A. Sciacchitano, D. Ragni, A. Palha, and R. P. Dwight. A posteriori uncertainty quantification of
PIV-based pressure data. Experiments in Fluids, 57(5):72, 2016.

[6] H. S. Baird. Document image defect models. In Structured Document Image Analysis, pages 546–556.
Springer, 1992.

[7] B. Baldwin and H. Lomax. Thin-layer approximation and algebraic model for separated turbulent flows.
In 16th aerospace sciences meeting, page 257, 1978.

[8] S. Banerjee, R. Krahl, F. Durst, and C. Zenger. Presentation of anisotropy properties of turbulence,
invariants versus eigenvalue approaches. Journal of Turbulence, 8:N32, 2007.

[9] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic programming: an introduction, volume 1.
Morgan Kaufmann San Francisco, 1998.

[10] O. Baysal and M. E. Eleshaky. Aerodynamic sensitivity analysis methods for the compressible Euler
equations. Journal of Fluids Engineering, 113(4):681–688, 1991.

[11] M. Benning and M. Burger. Modern regularization methods for inverse problems. Acta Numerica, 27:
1–111, 2018.

[12] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks.
arXiv preprint arXiv:1505.05424, 2015.

[13] J. Borggaard, J. Burns, E. Cliff, and M. Gunzburger. Sensitivity calculations for a 2D, inviscid, supersonic
forebody problem. Identification and control of systems governed by partial differential equations, pages
14–24, 1993.

[14] L. Breiman and P. Spector. Submodel selection and evaluation in regression. the x-random case. Inter-
national statistical review/revue internationale de Statistique, pages 291–319, 1992.

[15] M. Breuer, N. Peller, C. Rapp, and M. Manhart. Flow over periodic hills–numerical and experimental
study in a wide range of Reynolds numbers. Computers & Fluids, 38(2):433–457, 2009.

[16] A. Bueno-Orovio, C. Castro, F. Palacios, and E. Zuazua. Continuous adjoint approach for the Spalart-
Allmaras model in aerodynamic optimization. AIAA journal, 50(3):631–646, 2012.

[17] A. Campos, K. Duraisamy, and G. Iaccarino. Towards a two-equation algebraic structure-based model
with applications to turbulent separated flows. In 21st AIAA Computational Fluid Dynamics Conference,
page 2719, 2013.

99

https://www.tensorflow.org/


100 Bibliography

[18] B. P. Carlin and T. A. Louis. Bayesian methods for data analysis. CRC Press, 2008.

[19] T. Cebeci and A. Smith. Analysis of turbulent boundary layers academic. New York, 1974.

[20] S. H. Cheung, T. A. Oliver, E. E. Prudencio, S. Prudhomme, and R. D. Moser. Bayesian uncertainty
analysis with applications to turbulence modeling. Reliability Engineering & System Safety, 96(9):1137–
1149, 2011.

[21] G. Chiandussi. Development of a shape optimization technique based on a response surface method-
ology. Publication CIMNE, (138), 1998.

[22] F. Chollet et al. Keras. https://keras.io, 2015.

[23] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[24] T. Craft, B. Launder, and K. Suga. Development and application of a cubic eddy-viscosity model of
turbulence. International Journal of Heat and Fluid Flow, 17(2):108–115, 1996.

[25] W. C. Davidon. Variable metric method for minimization. SIAM Journal on Optimization, 1(1):1–17,
1991.

[26] E. Dow and Q. Wang. Uncertainty quantification of structural uncertainties in RANS simulations of
complex flows. In 20th AIAA Computational Fluid Dynamics Conference, page 3865, 2011.

[27] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. Support vector regression machines.
In Advances in neural information processing systems, pages 155–161, 1997.

[28] K. Duraisamy, G. Iaccarino, and H. Xiao. Turbulence modeling in the age of data. arXiv preprint
arXiv:1804.00183, 2018.

[29] K. Duraisamy, Z. J. Zhang, and A. P. Singh. New approaches in turbulence and transition modeling using
data-driven techniques. In 53rd AIAA Aerospace Sciences Meeting, page 1284, 2015.

[30] R. Dwight, J. Brezillon, and D. Vollmer. Efficient algorithms for solution of the adjoint compressible
Navier-Stokes equations with applications. In Proceedings of the ONERA-DLR aerospace symposium
(ODAS), Toulouse. Citeseer, 2006.

[31] R. Dwight and Z.-H. Han. Efficient uncertainty quantification using gradient-enhanced kriging.
In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th
AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA No, page 2276, 2009.

[32] W. Edeling, P. Cinnella, and R. P. Dwight. Predictive RANS simulations via Bayesian model-scenario
averaging. Journal of Computational Physics, 275:65–91, 2014.

[33] W. Edeling, P. Cinnella, R. P. Dwight, and H. Bijl. Bayesian estimates of parameter variability in the k −ε
turbulence model. Journal of Computational Physics, 258:73–94, 2014.

[34] W. Edeling, G. Iaccarino, and P. Cinnella. A return to eddy viscosity model for epistemic UQ in RANS
closures. arXiv preprint arXiv:1705.05354, 2017.

[35] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The computer journal, 7
(2):149–154, 1964.

[36] R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[37] R. Fox and M. Kapoor. Rates of change of eigenvalues and eigenvectors. AIAA journal, 6(12):2426–2429,
1968.

[38] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer series
in statistics New York, NY, USA:, 2001.

[39] J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman, and M. A. Leschziner. Highly resolved large-eddy
simulation of separated flow in a channel with streamwise periodic constrictions. Journal of Fluid
Mechanics, 526:19–66, 2005.

https://keras.io


Bibliography 101

[40] P. Gage and I. Kroo. A role for genetic algorithms in a preliminary design environment. In Aircraft
Design, Systems, and Operations Meeting, page 3933, 1993.

[41] X. Gao, Y. Wang, N. Overton, M. Zupanski, and X. Tu. Data-assimilated computational fluid dynamics
modeling of convection-diffusion-reaction problems. Journal of computational science, 21:38–59, 2017.

[42] M. Giles, N. Pierce, M. Giles, and N. Pierce. Adjoint equations in CFD-duality, boundary conditions and
solution behaviour. In 13th Computational Fluid Dynamics Conference, page 1850, 1997.

[43] M. B. Giles and N. A. Pierce. An introduction to the adjoint approach to design. Flow, turbulence and
combustion, 65(3-4):393–415, 2000.

[44] A. A. Giunta, J. M. Dudley, R. Narducci, B. Grossman, R. T. Haftka, W. H. Mason, and L. T. Wat-
son. Noisy aerodynamic response and smooth approximations in HSCT design. In Proc. 5-th
AIAA/USAF/NASA/ISSMO Symp. on Multidisciplinary and Structural Optimization, pages 1117–1128,
1994.

[45] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[46] A. Graves. Practical variational inference for neural networks. In Advances in neural information pro-
cessing systems, pages 2348–2356, 2011.

[47] K. Hanjalic. Will RANS survive LES? a view of perspectives. Journal of fluids engineering, 127(5):831–
839, 2005.

[48] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. SIAM review, 34(4):
561–580, 1992.

[49] R. Hartmann. Adjoint consistency analysis of discontinuous galerkin discretizations. SIAM Journal on
Numerical Analysis, 45(6):2671–2696, 2007.

[50] C. He, Y. Liu, and L. Gan. A data assimilation model for turbulent flows using continuous adjoint for-
mulation. Physics of Fluids, 30(10):105108, 2018.

[51] T. Hermann. frugally-deep. https://github.com/Dobiasd/frugally-deep, 2018.

[52] J. R. Holland, J. D. Baeder, and K. Duraisamy. Towards integrated field inversion and machine learning
with embedded neural networks for RANS modeling. In AIAA Scitech 2019 Forum, page 1884, 2019.

[53] S. Hoyas and J. Jiménez. Reynolds number effects on the Reynolds-stress budgets in turbulent chan-
nels. Physics of Fluids, 20(10):101511, 2008.

[54] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEE trans-
actions on Neural Networks, 13(2):415–425, 2002.

[55] G. Iaccarino, A. A. Mishra, and S. Ghili. Eigenspace perturbations for uncertainty estimation of single-
point turbulence closures. Physical Review Fluids, 2(2):024605, 2017.

[56] M. A. Iglesias, K. J. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems. Inverse
Problems, 29(4):045001, 2013.
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