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Solar Sail Orbital Motion  

About Asteroids and Binary Asteroid Systems 

Jeannette Heiligers1  

Delft University of Technology, Delft, The Netherlands 

and 

Daniel J. Scheeres2 

University of Colorado Boulder, Boulder, CO, USA 

Solar radiation pressure (SRP) is a major orbital perturbation for missions to small 

bodies like asteroids and binary asteroid systems. This paper studies the utilization of SRP 

on a solar sail for asteroid mission applications, specifically to generate artificial equilibrium 

points (AEPs) and displaced periodic orbits in these systems. For the single asteroid case, 

contours of AEPs for constant sail acceleration magnitudes are found in the Hill + SRP 

problem as well as periodic orbits around these AEPs. The binary system is modeled by first 

adding a fourth-body perturbation to the Hill + SRP dynamics, demonstrating the effect of 

the smaller asteroid as an oscillatory motion superimposed on the unperturbed orbit. Truly 

periodic orbits are obtained in the bi-circular + SRP problem, showing the existence of so-

called pole-sitter-like orbits above the binary system’s orbital plane. Higher-fidelity 

dynamical effects are investigated for these pole-sitter-like orbits for binary system 1999 

KW4, showing feasibility of the orbits around aphelion. All results are generated for near-

term sail technology and for a simple, fixed sail attitude relative to the Sun. They therefore 
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enable operable and unique vantage points from where to monitor the asteroid(s) over 

extended periods of time. 

Nomenclature 

A   =  Oblateness coefficient 

sa   =  Solar sail acceleration vector, km/s2 or dimensionless 

a   =  Semi-major axis, km 

0a   =  Solar sail characteristic acceleration, km/s2 or dimensionless 

B   =  Non-Lambertian coefficient 

e    =  Eccentricity 

G   =  Universal gravity constant, km3/(kg  s2) 

i    =  Inclination, rad 

m̂   =  Unit vector along the solar sail acceleration vector 

m   =  Mass, kg 

n̂   =  Unit vector normal to the solar sail 

n   =  Mean motion of binary system’s heliocentric orbit, rad/s 

bn   =  Mean motion of binary system, rad/s 

rotP   =  Rotational period of binary system, s 

R   =  Body radius, km 

r    =  Solar sail position vector, km or dimensionless 

3r   =  Position vector of perturbing body, km or dimensionless 

4r   =  Position vector from solar sail to perturbing body, km or dimensionless 

r    =  Reflectivity coefficient 

0a
r   =  Heliocentric distance at which 0a  is defined, km 

Hr   =  Hill radius, km 
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Ŝ    =  Unit vector along the direction of sunlight 

s    =  Fraction of photons that are specularly reflected 

t̂    =  Unit vector tangential to the sail 

t    =  Time, s or dimensionless 

U   =  Effective potential, km2/s2 or dimensionless 

2JU   =  Dimensionless perturbing potential due to oblateness 

    

   =  Cone angle, rad 

    =  Emissivity coefficient 

    =  Continuation parameter 

   =  Cone half-angle, rad 

    =  True anomaly, rad 

   =  Unit of distance, km 

   =  Eigenvalue 

   =  Mass ratio of the circular restricted three-body problem 

    =  Gravitational parameter, km3/s2 

3   =  Gravitational parameter of perturbing body, km3/s2 

    =  Ratio of main binary asteroid mass and total binary asteroid mass 

   =  Magnitude of position vector projected on the  ,x y -plane 

Ω   =  Angular velocity vector of reference frame, rad/s or dimensionless 

S   =  Dimensionless angular rate of Sun around the binary system 

   =  Angular rate of binary system, rad/s 

 

Subscripts 

0      =  At the initial time 
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1     =  Referring to, or with respect to, main binary asteroid 

2      =  Referring to, or with respect to, smaller binary asteroid 

3      =  Referring to perturbing body 

b      =  Back of the sail 

f     =  Front of the sail 

max     =  Maximum value 

n      =  Along the n̂ -vector 

S    =  With respect to the direction of sunlight 

t      =  Along the t̂ -vector 

, ,x y z   =  Along the x̂ , ŷ , ẑ -axis 

 

̂    =   Denotes unit vector 

    =   Denotes first order derivative with respect to time 

    =   Denotes second order derivative with respect to time 

 

I.  Introduction 

OLAR sailing is a relatively new, but flight-proven form of low-thrust space propulsion [1, 2]. By exploiting the 

solar radiation pressure (SRP) on a large reflective membrane, solar sails can produce thrust without relying on an 

onboard supply of fuel [3, 4]. This unique capability allows solar sails to produce thrust over extended periods of time 

and build up large amounts of momentum over the mission lifetime. Solar sails are therefore particularly suited for 

long-duration and high-energy missions such as precessing an elliptical Earth-centered orbit to observe the Earth’s 

magnetotail over extended periods of time [5-8], hovering sunward of the L1-point to increase the warning time for 

space weather events [9, 10], and finally, and of importance to the current paper, using the sail for close-up 

observations of a range of small bodies in a multiple near-Earth asteroid (NEA) rendezvous mission [11, 12]. The 

capabilities of solar sails for visiting NEAs will be demonstrated by NASA’s proposed solar sail NEA Scout mission 

[13].  

S
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The NEA Scout mission, as well as other asteroid missions such as NASA’s ongoing OSIRIS-REx mission3, are 

only two of many examples that highlight the significant increase in the interest in small body missions over recent 

years. This interest originates from a scientific perspective, because small bodies hold key information to the 

understanding of the origin and evolution of our Solar System, but also from a planetary defense perspective as well 

as their potential as targets for future human space exploration activities. For close-up investigations of asteroids and 

other small bodies, a thorough understanding of the orbital motion around these bodies is key and abundant research 

in this field has demonstrated the challenge that solar radiation pressure poses to such small-body missions [14, 15]. 

However, instead of considering it an undesirable perturbation, we exploit SRP in this paper through the use of solar 

sails to create entirely new orbital opportunities in the vicinity of asteroids.  

The dynamics of a solar sail in close proximity to an asteroid have not yet been investigated in great detail. 

Previous work has mainly focused on terminator orbits [16] and the existence of hovering points at an asteroid [16-

20]. These hovering points originate when adding a solar sail (or any low-thrust propulsion system [21, 22]) to a 

three-body system: any three-body system exhibits the well-known Lagrange points which can be extended to three-

dimensional surfaces of artificial equilibrium points through a correct selection of sail acceleration and attitude. The 

purpose of the current paper is to complement these initial investigations with the existence of solar sail periodic 

orbits about these AEPs as well as extending the analyses to binary asteroid systems. In a binary system, constant 

surfaces of artificial equilibrium points cannot be obtained because the system is time-dependent: the binary 

asteroids orbit each other while also orbiting the Sun. However, stationary solutions to the dynamics at a particular 

time can be used to generate a well-informed guess for solar sail periodic orbits high above the binary asteroid’s 

orbital plane, so-called pole-sitter-like orbits. The orbits developed in this paper, either above a single asteroid or a 

binary asteroid pair allow unique, geostationary-equivalent vantage points from where the asteroid or asteroid pair 

can be observed over extended periods of time. 

For the analyses in this paper we will initially assume a spherical, point mass asteroid, a perfectly reflecting solar 

sail (“ideal” solar sail model), and a circular heliocentric orbit of the asteroid/binary system about the Sun. 

Furthermore, for the binary system, we will at first assume a zero inclination between the plane in which the two 

binary asteroids orbit each other and their heliocentric orbital plane. The effect of these assumptions will be 

                                                           

3 OSIRIS-Rex, NASA; data available online at https://www.nasa.gov/osiris-rex [retrieved June 2017]  
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demonstrated for the most promising and unstable orbits, i.e., the pole-sitter-like orbits, through a high-fidelity 

analysis, showing that the orbits still exist when considering the actual heliocentric orbit parameters and a more 

realistic solar sail reflectance model and shape of the binary asteroid pair. Finally, to greatly simplify mission 

operations, all orbits are generated for a simple solar sail steering law that assumes a fixed attitude of the sail with 

respect to the incoming sunlight. Such an attitude can, in theory, be achieved passively through a correct offset 

between the sailcraft’s center-of-pressure and center-of-mass.   

II.  Dynamical Models 

Depending on whether the solar sail motion about a single asteroid or a binary system is considered, either the 

framework of the Hill + SRP problem (single asteroid), the Hill four-body + SRP problem or the bi-circular + SRP 

problem (both binary system) is employed. Note that, for the single asteroid case, the Hill + SRP problem is required 

due to the very small mass of the asteroid with respect to the Sun and the expected close proximity of the spacecraft 

with respect to the asteroid [16].  

The reference frames involved in all three dynamical systems are illustrated in Figure 1. When considering the 

Sun-asteroid Hill + SRP problem or the Hill four-body + SRP problem, a rotating reference frame  1 ˆ ˆ ˆ, ,R x y z  is 

employed that is centered at the (main) asteroid with the x -axis along the Sun-asteroid line, the z -axis 

perpendicular to the asteroid’s heliocentric orbital plane and the y -axis completing the right-handed reference 

frame. When considering the binary asteroid bi-circular + SRP problem, again a rotating reference frame 

 2 ˆ ˆ ˆ, ,R x y z  is employed, now with the x -axis connecting the two asteroids of the binary system, the z -axis 

perpendicular to the binary system’s orbital plane and the y -axis completing the right-handed reference frame. The 

solar sail dynamics in either model is given by [3, 16]: 

 2 sU   r Ω r a  .  (1) 

In Eq. (1), r  is the solar sail position vector in either  1 ˆ ˆ ˆ, ,R x y z  or  2 ˆ ˆ ˆ, ,R x y z , ˆΩ z  with   either the 

asteroid’s orbit angular velocity around the Sun (Hill (four-body) + SRP problem) or the dimensionless angular 

velocity of the two asteroids around their common center-of-mass (bi-circular + SRP problem), U  is the effective 

potential and sa  is the solar sail acceleration vector. Note that in the case of the bi-circular + SRP problem a set of 

canonical units is used whereby the sum of the two asteroid masses, the distance between them ( ) and / 2rotP   
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are taken as the unit of mass, length, and time, respectively, where rotP  is the rotational period of the binary system. 

The definition of the effective potential is different for the three dynamical systems and is given by [3, 14, 16]: 
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Figure 1 Schematics of reference frames. a) Hill (four-body) + SRP problem. b) Bi-circular + SRP problem. 
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with   the gravitational parameter of the single/main asteroid, 3  the gravitational parameter of the perturbing, 

smaller asteroid in the binary system,  2 1 2/m m m    (with 1m  and 2m  the masses of ‘Asteroid 1’ and ‘Asteroid 

2’, respectively),   3 3 1 2/m m m    (with 3m  the mass of the Sun) and 1r , 2r , 3r  and 4r  the magnitude of the 

vectors  1 0 0
T r r ,  2 1 0 0

T  r r , 3r  the (dimensionless) position vector of the perturbing body, 

and 4 3 r r r , see Figure 1. The vector 3r  in either the Hill four-body or the bi-circular problem is defined as: 

 
 3

3

3

cos sin 0 Hill four-body problem

ˆ Bi-circular problem

T
r t t

r

  


r
S

. (3) 

Let’s first consider the parameters involved in the first line of Eq. (3), for the Hill four-body problem: 3r  equals 

the distance between the binary asteroids and   is the angular rate of the binary system in  2 ˆ ˆ ˆ, ,R x y z  (note that 

this is different from the binary system’s mean motion): 

 bn n     (4) 

where n  and bn  are the mean motions of the binary system’s heliocentric orbit and the binary system, respectively. 

Let’s now consider the parameters involved in the second line of Eq. (3), for the bi-circular problem: 3r  equals the 

dimensionless Sun-sail distance and Ŝ  is the direction of sunlight (see Figure 1b). Using the definitions in Figure 1, 

the unit vector Ŝ  can be defined as: 

 
 

   
1 0 0 Hill (four-body) + SRP problem

ˆ
cos sin 0 Bi-circular + SRP problem

T

T

S St t

 
    

S   (5) 

with S  the dimensionless angular rate of the Sun around the binary system, defined as: 

  1
S b

b

n n
n

     (6) 

The dimensionless period of the Sun around the binary system (hereafter referred to as the Sun’s synodic period) can 

then be expressed as 2 / S  . Finally, the solar sail acceleration vector , , ,

T

s s x s y s za a a   a  for an ideal solar 

sail, can be defined as: 

  2

0
ˆ ˆ ˆs a a S n n   (7) 
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with n̂  the unit vector normal to the sail membrane and 0a  the solar sail characteristic acceleration at the asteroid’s 

or binary system’s heliocentric distance (dimensionless for the case of the bi-circular + SRP problem). The 

characteristic acceleration is the acceleration produced by the sail when oriented perpendicular to the incoming 

sunlight, i.e., ˆˆ n S . The second column of Table 2 lists the characteristic accelerations at 1 AU for a range of 

previous and proposed solar sail missions. Because the expected asteroid-sail distances are small compared to the 

Sun-asteroid distance, Eq. (7) assumes a constant SRP (both in magnitude and direction) throughout the (binary) 

asteroid system. The produced solar sail acceleration thus does not depend on the location of the solar sail in 

 1 ˆ ˆ ˆ, ,R x y z  or   2 ˆ ˆ ˆ, ,R x y z . Equation (7) also takes into account the reduction in sail acceleration when pitching the 

normal to the sail away from the direction of sunlight through the term  2ˆ ˆS n . Finally, while the Sun is stationary 

in the Hill (four-body)  SRP problem, the Sun orbits around the binary system in the bi-circular + SRP problem and 

the smaller asteroid orbits around the main asteroid in the Hill four-body + SRP problem. In those cases, the vectors 

3r  and Ŝ   change over time, which introduces a time dependency into the dynamics, causing the last two systems of 

equations in Eq. (1) to be non-autonomous.  

III.  Artificial Equilibrium Points 

When considering the Hill + SRP problem, the approach in Reference [3] can be adopted to find artificial 

equilibrium points (AEPs) at a single asteroid. When setting  r r 0   in Eq. (1), it becomes clear that, to create 

AEPs, the solar sail acceleration vector needs to counteract the gradient of the effective potential: 

 sU  a . (8) 

The required direction of the sail acceleration can then be obtained by taking the cross product of both sides of 

Eq. (8) with n̂ , resulting in  

 ˆ 0U  n , (9) 

which gives 

 ˆ
U

U


 


n  .  (10) 

Furthermore, the characteristic sail acceleration required to maintain a particular AEP can be obtained by taking the 

scalar product of Eq. (8) with n̂ : 
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 0 2

ˆ

ˆ ˆ

U
a

 
 



n

S n
 . (11) 

The results in terms of solar sail acceleration contours required to transform a particular location in the  ,x z - or 

 ,x y -plane of the Hill frame into an AEP appear in Figure 2, which are in agreement with the results found in 

Reference [16]. Note that the distances on the horizontal and vertical axes are made dimensionless with respect to 

the Hill radius,  23 / 3Hr   , whereas the sail acceleration is made dimensionless with respect to the asteroid’s 

gravitational acceleration at the Hill radius, 2/ Hr  . Then, the figure can be applied to any asteroid at any 

heliocentric orbit radius. For example, the figure can be applied to asteroid Vesta, where details on the Hill radius 

and the actual required performance required from the solar sail can be found in Table 1 and Table 2, respectively. 

For example, at Vesta and for a Sunjammer-type solar sail, the normalized characteristic acceleration 0a  is 

computed as: 

2
6

0 2

0.2153 10
36.715

/ H

AU
a

a
r

    
  


 . The light-blue contours in Figure 2 ( 0a  30) can thus be 

achieved with a solar sail similar to the technology proposed for Sunjammer. Finally, note that AEPs do not exist in 

the regions indicated with ‘infeasible region’ as they would require a solar sail acceleration component in the 

direction of the Sun, which the sail is unable to generate [3]. The transition from ‘feasible’ to ‘infeasible’ is provided 

through the thick black lines. 

  

Figure 2 Solar sail acceleration contours to maintain AEPs in the Hill  SRP problem. 
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Table 1 Asteroid Vesta parameters (with assumptions). 

Parameter Value 

Gravitational parameter,    14.2568 

Semi-major axis, a   2.36 AU 

Eccentricity 0.08874  assumed to be 0 

Hill radius, Hr   116,365 km 

Gravitational acceleration at Hill radius 1.052910-3 mm/s2  

 

Table 2 Characteristic accelerations of previous and proposed solar sail missions.  

Dimensional values at 1 AU and normalized values. 

  Hill normalization Bi-circular normalization 

Mission 
Characteristic 
acceleration at 
1 AU, mm/s2 

Vesta 
“Condensed  
1999 KW4” 

1999 KW4 

At perihelion At 1 AU At aphelion 

IKAROS [1] 0.0059 1.006 444.84 5.792 0.2324 0.1979 

NanoSail-D2 [2] 0.0178 3.035 1,342.06 17.476 0.7012 0.5970 

LightSail-1 [23] 0.0652 11.118 4,915.86 64.013 2.5683 2.1869 

NEA Scout [13] 0.0593 10.112 4,471.02 58.221 2.3359 1.9890 

Sunjammer [10] 0.2153 36.715 16,232.89 211.380 8.4810 7.2215 

 

When applying the same approach to the bi-circular problem, the time dependency in the dynamics (through the 

vectors 3r  and Ŝ ) prevents us from finding constant surfaces of AEPs, i.e., AEPs that can be maintained over time 

with a constant sail attitude and sail characteristic acceleration. This will be illustrated for a particular binary system, 

1999 KW4, which has served as a test case in previous studies [24] and has well-documented characteristic [25, 26], 

see Table 3.  

When setting  r r 0   for a specific time t  in Eq. (1), the solar sail dimensionless characteristic acceleration 

contours of Figure 3 are obtained. Subplot a) holds at time 0t  , whereas subplot b) holds at 0.25 / St   , where 

the latter equals one eight of the Sun’s synodic period. Because the contours in Figure 3 are plotted for the 
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characteristic solar sail acceleration at the binary asteroid’s heliocentric distance, the figure holds at any Sun-binary 

distance. Again, as an example, looking at the conditions at perihelion and for a Sunjammer-type sail, the resulting 

normalized characteristic acceleration 0a  can be computed as: 
 

 

2

6

0 2

0.2153 10
1

211.380
/ / 2rot

AU
a e

a
P 

  
     . Note 

that the actual Sun-binary distance (which in reality varies significantly as the binary 1999 KW4 is on a highly 

elliptic orbit) will affect the required dimensional solar sail performance to maintain a particular AEP as well as the 

angular rate of the Sun around the binary system, S  (see Table 3).   

Table 3 Binary system 1999 KW4 parameters [24-26] (with assumptions). 

Parameter Value 

Binary system  

Total mass of system 1 2m m  2.472 1012 kg 

Ratio of primary body and total mass   0.9457 

Mass ratio  2 1 2/ 1m m m      0.0543 

Distance between bodies   2.54 km 

Average equatorial body radii (asteroid 1, asteroid 2) 1R  0.757 km, 2R  0.259 km 

Average polar body radii (asteroid 1, asteroid 2) 1, pR  0.674 km, 2, pR  0.175 km 

Rotational period of system rotP  17.458 hr 

Mean motion bn  9.9973 10-5 rad/s  

Rotation rate in  1 ˆ ˆ ˆ, ,R x y z      9.9774 10-5 rad/s ( a  1 AU; 0e  ) 

Heliocentric orbit  

Semi-major axis a  0.642 AU  assumed to be 1 AU 

Eccentricity e  0.688  assumed to be 0 

Inclination i  38.884 deg  assumed to be 0 deg 

Mean motion 
n  1.9911   10-7 rad/s ( a  1 AU) 

n  3.8707   10-7 rad/s ( a  0.642 AU) 

Dimensionless angular rate of Sun in  2 ˆ ˆ ˆ, ,R x y z  
S  0.9980 ( a  1 AU; 0e  ) 

S   0.9711 (at perihelion) 

S   0.9990 (at aphelion) 
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a)  

  
b)  

Figure 3 Dimensionless solar sail characteristic acceleration contours to maintain an AEP in the bi-

circular + SRP problem of binary system 1999 KW4. a) At time t = 0. b) At time t = 0.25/S. 

 

From comparing Figure 3a and Figure 3b it becomes clear that, as previously discussed, the required 

characteristic acceleration (as well as sail attitude) to maintain an AEP change over time. However, when plotting 

the contours on a plane perpendicular to the  ,x y -plane that co-rotates with the Sun, see the gray  , z -plane in 

Figure 4a, the location of some of the contours remains nearly fixed. This is demonstrated in Figure 4b that shows 

how the contours for 0a  10 evolve over time when projected onto the  , z -plane of Figure 4a. The color scale 

indicates the time,  0,2 / St   , but only the colors of the second half of the Sun’s synodic period are visible as 

contours overlap due to the symmetry of the problem. These insights will be used later in the paper to explore the 

existence of periodic orbits high above the binary system’s orbital plane.  



14 

 

a) b) 
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Figure 4 a) Schematic of (,z)-plane co-rotating with the Sun. b) Time-evolution of AEP contours at 

1999 KW4 for a0 = 10 projected on the (,z)-plane of subplot a). 

 

IV.  Solar Sail Periodic Orbits in the Hill + SRP Problem 

Rather than hovering at a specific AEP, the solar sail can also be inserted into a periodic orbit around the AEP. 

The existence of such periodic orbits and the techniques required to obtain these periodic orbits have already been 

proven in the Sun-Earth circular restricted three-body problem [27, 28]. Adapting the technique to the dynamics of 

the Hill + SRP problem, an initial guess for such solar sail periodic orbits can be obtained through the following 

approach (with details in Reference [28]): first, we fix the attitude of the sail to the one of the AEP, see Eq. (10); we 

then approximate the equations of motion of the Hill + SRP dynamics in the neighborhood of the AEP by 

linearization, but we expand the effective potential and solar sail acceleration terms to third order with a Taylor 

series; finally, we use the Lindstedt-Poincaré method to find the third-order solution to this approximated dynamical 

system. 

Because the resulting solar sail periodic orbits are only approximations to the solutions of the full non-linear 

system, the orbit quickly diverges when integrating these initial conditions in Eq. (1). A differential correction 

scheme [10, 28, 29] is therefore employed to correct the initial conditions and find true solar sail periodic orbits in 

the full non-linear system. 
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a)  

 
b) c) 

Figure 5 a) Families of solar sail periodic orbits around three AEPs in the Hill + SRP problem.  

b) Period as a fraction of the asteroid’s heliocentric orbital period. c) Linear stability.  

 

Families of such periodic orbits around randomly selected AEPs appear in Figure 5a. Note that two families of 

periodic orbits emanate from each AEP, one for each of the two pairs of the complex conjugate eigenvalues of the 

linearized system, but that for conciseness only one such family appears in Figure 5a. The grey orbit indicates the 

third-order approximation of the orbit while the black orbits are families of orbits that exist in the full non-linear 

system. These families are constructed through a continuation on the initial z -coordinate, 0z , with a step size of 

5x10-4
Hr   (with Hr  the Hill radius) . The family is truncated at a maximum total increase in 0z , 0z , of 0.25 Hr  or 

when the differential correction scheme does not converge for the given step size. Note that all orbits exist for a 

constant sail attitude with respect to the direction of sunlight, prescribed by the required attitude of the AEP, see 

Eq. (10). The periods of the orbits in Figure 5a are provided in Figure 5b, showing that the period is a significant 

fraction of the heliocentric orbital period of the asteroid about the Sun. Furthermore, Figure 5c provides the linear 
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stability of the orbits through the norm of the largest eigenvalue, 
max

 , of the monodromy matrix (the state 

transition matrix evaluated after one full orbit). If the norm of all six eigenvalues lie on the unit circle, i.e., 

max  1, the orbit is considered stable. For norm values larger than one, the orbit is considered unstable. From 

Figure 5c it is clear that all orbits are unstable, but with increasing stability for AEPs 1 and 2 for increasing z -

amplitudes, while the opposite holds true for AEP 3. Finally, while Figure 5 holds for any asteroid, Figure 6 

provides specific details for the orbits at asteroid Vesta. 

 

a) b) 

  

Figure 6 Families of solar sail periodic orbits around three AEPs at asteroid Vesta. a) 3D view.  

b) (x,y)-projection. 

 

V.  Solar Sail Periodic Orbits in the Hill Four-Body + SRP Problem 

The time dependency in the dynamics of the binary system, and therefore in the surfaces of AEPs, again prevents 

us from applying the approach in the previous section to the bi-circular + SRP problem. However, the Hill four-body 

+ SRP problem provides a suitable alternative framework to account for the perturbation from the smaller asteroid. 

Because the period of the solar sail orbits (see Figure 5b) and the period of the smaller asteroid around the main 

asteroid ( rotP  , see Table 3) are not commensurable, periodic orbits will no longer exist. However, by using 

techniques such as multiple shooting differential correction, trajectories may still be found that remain close to the 

periodic orbit. To that end, the following approach is adopted: at first, the total mass of the binary system is assumed 

to be condensed into a single asteroid, reducing the problem to the Hill + SRP problem for which the same solar sail 

periodic orbits exist as shown in Figure 5a with their periods and stability indicated in Figure 5b and c. In actual 
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dimensions, the size and location of the periodic orbits will depend on where the binary system is in its heliocentric 

orbit. For now, assuming the binary to be on a circular 1 AU heliocentric orbit, the results in Figure 7 are obtained. 

Note that, under conditions similar to those at perihelion, the orbits will exist closer to the asteroid and under 

conditions similar to those at aphelion, they will exist farther away from the asteroid. However, as the solar sail 

orbital period is a significant fraction of the binary asteroid’s heliocentric orbit period (see again Figure 5b), 

conditions will actually change along the orbit.  

 
 

Figure 7 Families of solar sail periodic orbits around three AEPs at an asteroid with mass equal to binary 
system 1999 KW4 on a circular 1 AU heliocentric orbit. 

 

Subsequently, a continuation is started to gradually distribute the total mass over the two asteroids, while at the same 

time gradually separating the two asteroids up to the total separation distance,   2.54 km (see Table 3). Denoting 

the continuation parameter as  0 1    , with   0.9457 the ratio of the main asteroid mass and the total 

system mass (see Table 3), the mass distribution during the continuation can be expressed as: 
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 .  (12) 

with G  the universal gravity constant. At each step of the continuation, a multiple shooting differential correction 

(MSDC) scheme is employed to find the trajectory that remains in close proximity of the periodic orbits in Figure 7. 

MSDC divides an initial guess of the trajectory into segments by defining patch points at appropriate locations. 

Subsequently, two differential correction ‘levels’ are applied to sequentially adjust the position of the patch points 

and the velocities at the patch points to find a trajectory that holds under the dynamics of the Hill four-body + SRP 

problem. Here, an accuracy on the mismatch in position at each patch point of 10-9 km is used and a mismatch in 

velocity of 10-9 km/s, summed over all patch points, is allowed. Note that such small accuracies are required to 

ensure that a reintegration of the trajectory from the very first to the very last patch point does not lead to 



18 

 

divergence. As initial guess for the very first step in the continuation (i.e., for a very small value for  ), the black 

periodic orbits in Figure 7 are used, i.e., the orbits with the largest out-of-plane amplitude. The result obtained from 

this first step in the continuation is then used as initial guess to solve for a slightly larger value for   and this 

process is repeated until  1   . Further details on the MSDC scheme and its implementation can be found in 

References [30-32]. 

  

  

  

Figure 8 Effect of smaller binary asteroid on the black periodic orbits in Figure 7 modelled in the 1999 

KW4 Hill four-body + SRP dynamics. The right column provides details of the figures on the left.  
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The result of the MSDC scheme is provided in Figure 8, which shows the original periodic orbit in the Hill + 

SRP problem (using a dashed grey line) and the perturbed orbits in the Hill four-body + SRP problem (in black). 

Here, the effect is evaluated for the duration of a single revolution of the original, periodic orbit. The black lines 

clearly show the effect of the binary system’s smaller asteroid as a short-duration oscillatory motion around the 

periodic orbits of the Hill + SRP problem. Again note that these results hold under the assumption that the binary 

asteroid is on a circular 1 AU heliocentric orbit. As mentioned above, under conditions similar to those at perihelion, 

the orbits exist closer to the asteroid and therefore the perturbing effect of the smaller asteroid will be more 

significant and vice versa at aphelion. 

VI.  Solar Sail Pole-sitter-like Orbits in the Bi-circular + SRP Problem 

Considering the smaller asteroid in the binary system as a perturbing body, as in the previous section, results in 

the non-periodic motion shown in Figure 8. This section aims at finding true periodic orbits above the binary 

system. In particular, so-called pole-sitter-like orbits will be investigated. 

An initial guess for these pole-sitter-like orbits can be obtained from the information provided in Figure 4 as well 

as the techniques previously developed to obtain pole-sitter orbits at Earth [33, 34] and other inner-Solar System 

planets [35]. The approach consists of assuming a particular shape for the orbit, inverting the equations of motion to 

obtain the required solar sail acceleration vector and using the resulting initial condition as an initial guess in a 

differential corrector scheme.  

The assumed orbit is schematically shown in Figure 9. The orbit lies on a cone with half-angle   around the z -

axis, maintains a constant distance from the binary system’s orbital plane and has an orbital period equal to the 

Sun’s synodic period of 2 / S  . As such, the position, velocity and acceleration in the orbit can be expressed as: 
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The initial condition (subscript ‘0’) can then easily be obtained by substituting 0t   in Eq. (13). Finally, as a guess 

for r  and   , the results for the AEP indicated with a round marker in Figure 4b are used: 
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a) b) 

Figure 9 Schematic of assumed pole-sitter-like orbit. a) Generic case. b) Initial condition. 

With the evolution of the states preassigned, the equations of motion in Eq. (1) can be inverted to find a guess for 

the required solar sail normal vector at the initial time: 
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Finally, we assume that the attitude of the sail with respect to the Sun co-rotating frame of Figure 4a, ˆ Sn , remains 

constant over time. Because at time 0t   the equality 0ˆ ˆS n n  holds, the normal vector in the  2 ˆ ˆ ˆ, ,R x y z -frame 

(see Figure 1b) at any subsequent instance of time, t , can be obtained from 

     0ˆ ˆ ˆz S S z SR t R t   n n n   (17) 

with  z SR t  the rotation matrix around the z -axis over an angle St . 

Due to, among others, the assumption of a constant sail attitude with respect to the Sun, the initial condition will 

not lead to a periodic orbit when integrated in the dynamics of Eq. (1). However, it can serve as a good initial guess 

for a differential corrector similar to the one described in Reference [36] for solar sail periodic orbits in the non-
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autonomous solar sail Earth-Moon system. Note that this differential corrector includes a constraint to ensure that 

the period of the orbits equals 2 / S   in order for the orbital period and the period of the Sun around the binary 

system to be commensurable and thus for the orbits to be repeatable over time. The results are presented in Figure 

10 to Figure 13, again for the assumption of a circular 1 AU heliocentric orbit. These figures show a variety of orbit 

families parameterized either by the solar sail cone angle, characteristic acceleration, the binary system’s 

heliocentric orbit radius or mass distribution. 

Starting with the results in Figure 10, these show a family of pole-sitter-like orbits for 0a  10 (see the 

penultimate column in Table 2 for corresponding sail performances) that are parameterized by the sail cone angle, 

   1 1ˆ ˆcos tan /z xn n    S n , see also Figure 9b. Figure 10a shows that the orbit can exist closer to the binary 

system’s orbital plane for smaller cone angles (smaller out-of-plane components of the sail acceleration vector). 

However, for cone angles smaller than 73 deg, the differential corrector did not converge. Furthermore, the closer to 

the binary system (i.e., the smaller the cone angle), the more unstable the orbits become, see Figure 10b.  

 
a) b) 

  

Figure 10 Family of pole-sitter-like orbits at 1999 KW4 for a0 = 10, parameterized by the cone angle, . 

a) Orbits. b) Linear stability. 

 
Instead of parameterizing by the cone angle, the orbits can also be parameterized by the required solar sail 

characteristic acceleration. For now, we assume a sail attitude equal to that of the orbit in Figure 10 at z  10 km           

(  85.4 deg). Such a large cone angle may not always fall within mission constraints [37], but is used here for 

illustrative purposes. Then, the family of orbits in Figure 11 can be obtained. Although the characteristic 

accelerations used to generate this family extend far beyond near-term sail technology, the figure shows that not 
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much can be gained from very high-performing solar sails: to halve the distance to the binary asteroid’s orbital plane 

(e.g., from 10 km to 5 km) the characteristic acceleration needs to be increased by an order of magnitude. 

  

Figure 11 Family of pole-sitter-like orbits at 1999 KW4 for  = 85.4 deg,  

parameterized by the characteristic acceleration, a0. 

A third way of parameterization is shown in Figure 12, where families of periodic orbits for different 

heliocentric orbit radii of binary system 1999 KW4 are provided. Note that once again the sail attitude is fixed to 

  85.4 deg and the sail performance is assumed to be 0a  10 at 1 AU. The figure shows that the pole-sitter-like 

orbits move farther away for larger heliocentric orbit radii, which is caused by the decrease in solar radiation 

pressure. An additional effect of an increased heliocentric orbit radius is a decrease in the orbit period because the 

Sun’s synodic period decreases ( S  in Eq. (6) increases because n  decreases) and approaches the binary system’s 

rotational period. This effect is demonstrated in Figure 12b. 

a) b) 

 

Figure 12 Family of pole-sitter-like orbits at 1999 KW4 for a0 = 10 and  = 85.4 deg, 

parameterized by the binary system’s heliocentric orbit radius. a) Orbits. b) Orbital period. 
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Finally, in Figure 13 the effect of the mass distribution between the two asteroids is demonstrated. The figure 

shows a family of pole-sitter-like orbits for 0a  10,   85.4 deg, and for a heliocentric orbit radius of 1 AU. While 

the mass distribution for binary system 1999 KW4 is set to   0.9457, Figure 13 shows the effect in case of errors 

in this value and takes it to the extreme where the mass distribution is inverted (‘Asteroid 2’ is more massive than 

‘Asteroid 1’). For a clear presentation of the results, the reference frame is now centered at the geometrical center of 

the binary system. Furthermore, the sizes of the asteroids in Figure 13 are not accurate as these sizes will most likely 

change for different values for  . However, what these results illustrate is how the orbit moves from hovering 

above ‘Asteroid 1’ (for   0.5) to hovering above ‘Asteroid 2’ (for   0.5).  

 

 

 

Figure 13 Family of pole-sitter-like orbits at 1999 KW4 for a0 = 10 and  = 85.4 deg,  

parameterized by the mass distribution between the two asteroids, .  

 

VII.  High-fidelity analyses 

The results throughout Figure 10 to Figure 13 have shown that pole-sitter-like orbits exist for a range of sail 

attitudes and sail acceleration magnitudes and that the existence and shape of the pole-sitter-like orbits do not break 

down for heliocentric orbit radii or mass distributions different from those of binary system 1999 KW4. However, 

other system parameters have been neglected so far, including the eccentricity of the heliocentric orbit and the 

inclination of the orbit with respect to the binary system’s orbital plane. Because these perturbations act on a 

different time-scale than the period of the pole-sitter-like orbits, periodic orbits are not expected to exist under the 

effect of the heliocentric orbit eccentricity and inclination. Other effects, such as non-ideal properties of the solar 

sail and the non-spherical shape of one (or both) of the asteroids do not interfere with the orbital period and periodic 
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orbits may still be found. This section investigates the influence of each of these perturbations on the pole-sitter 

orbits of Section VI. Note that the pole-sitter orbits are selected for these high-fidelity analyses as they show some 

of the most unstable orbits, exist closest to the binary asteroid and use very large cone angles. The effects of the 

aforementioned perturbations are therefore expected to be largest and most relevant to these orbits.  

A. Inclination of the heliocentric orbit 

The results throughout this paper have so far assumed that the plane in which the two binary asteroids orbit each 

other and their heliocentric orbital plane are co-planar. However, from Table 3 it is clear that the actual inclination 

between those two planes is i  38.884 degrees. This inclination will have a significant effect on the direction of 

sunlight, i.e., the unit vector Ŝ , which feeds into the solar sail acceleration vector, see Eq. (7), and the fourth body 

perturbation, see Eq. (3). Therefore, a more accurate definition for the unit vector Ŝ  in the bi-circular problem 

would be:  

      0

1 1
ˆ 0 0

0 0

T

x y z z b y z totS S S R n t R i R R 
   
             
      

S .  (18) 

A supporting schematic is provided in Figure 14. Equation (18) assumes that at the start of the orbital analyses, at 

time 0t   and when the binary system is at a certain true anomaly, 0 , in its heliocentric orbit, the projection of the 

sunlight-vector Ŝ  onto the  ,x y -plane points along the x -axis of the  2 ˆ ˆ ˆ, ,R x y z  reference frame. Furthermore, at 

this time, the Sun is assumed to be above the Earth-Moon plane, see again Figure 14. Then, three rotations are 

applied: the first rotation,  0zR   , around the z -axis over an angle 0  , accounts for the orbital motion of the 

binary system around the Sun; the second rotation,  yR i  accounts for the heliocentric orbit inclination; and the 

final rotation,  z bR n t  accounts for the rotation of the Ŝ -vector due to the rotation of the binary asteroids around 

their barycenter. Note that, since the dynamics are integrated in time, the true anomaly,  , in Eq. (18) is computed 

by numerically solving Kepler’s equation at each integration step.  
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Figure 14 Schematic supporting the definition of the sunlight-vector, Ŝ , for an inclination between the 

binary asteroids’ orbital plane and their heliocentric orbit. 

B. Eccentricity of the heliocentric orbit 

The next perturbation to account for is the eccentricity of the heliocentric orbit, e  0.688 (see Table 3). This 

eccentricity causes a continuous change in the position vector of the Sun, 3r , which feeds into the fourth-body 

perturbation in Eq. (2) and can be defined as [38]: 
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with Ŝ  from Eq. (18). The changing distance to the Sun also requires a continuous rescaling of the solar sail 

acceleration magnitude as the characteristic acceleration, 0a , is defined at a particular heliocentric distance. The 

scaling factor to be used is  
0

2

3a
r r where 

0a
r  is the heliocentric distance used to define the value for 0a .  

C. Non-ideal sail properties 

In the analyses up to this point, an ideal solar sail reflectance model has been assumed, which considers the sail 

to be a perfect mirror, resulting in a solar sail induced acceleration vector that acts perpendicular to the solar sail 

membrane, along the sail normal, n̂ . However, in reality, the sail will not be a perfect mirror and, as a result, the 
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acceleration vector will include a component tangential to the sail, t̂ , resulting in an acceleration vector acting in the 

direction m̂ , see Figure 15: 

 ˆˆ ˆs n t sa a a  a n t m . (20) 

By including absorption, specular and diffuse reflection, and thermal emission in the reflectance model (referred to 

as the “optical sail reflectance model”), the magnitude of the solar sail acceleration components along these normal 

and tangential directions are given by [3]: 

 
     

 

2
0

0

1
1 cos 1 cos 1 cos

2

1
1 cos sin

2

f f b b
n f

f b

t

B B
a a rs B s r r

a a rs

 
  

 

 

 
      

  

 

  



 . (21) 

In Eqs. (20) and (21), r  0.91 is the reflectivity coefficient that indicates the fraction of reflected photons, s  0.94 

indicates the fraction of photons that are specularly reflected, while the term  1 s  indicates the fraction of photons 

that are diffusely reflected; fB  0.79 and bB  0.67 are the non-Lambertian coefficients of the front (subscript 

‘ f ’) and back (subscript   ‘ b ’) of the sail, and f  0.025 and b  0.27 are the emissivity coefficients of the front 

and back of the sail, respectively. The values for these optical coefficients have recently been obtained for NASA’s 

proposed Near Earth Asteroid (NEA) Scout mission [37].   

 

Figure 15 Side-view schematic of non-ideal solar sail acceleration components.  

 

Continuing the assumption for the pole-sitter orbits of a fixed attitude of the sail with respect to the direction of 

sunlight, see Figure 15, the normal and tangential unit vectors with respect to the sunlight-direction (subscript ‘ S ’) 

can be defined as: 
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However, for use in the dynamics, the acceleration needs to be defined in the  2 ˆ ˆ ˆ, ,R x y z -frame, which is achieved 

through: 

  ˆˆs tot n S t SR a a a n t   (23) 

with totR  defined in Eq. (18).  

D. Oblateness of the binary asteroids 

The final perturbation accounted for is the fact that the two asteroids of binary system 1999 KW4 do not satisfy 

the assumption of spherically shaped bodies. In particular, Table 3 shows a significant difference between the 

bodies’ equatorial and polar radii, the effect of which can be included in the dynamics through the following 

perturbing potential for the oblateness of the two asteroids [39, 40]: 
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The gradient of this potential can then be added to the right hand side of Eq. (1). In Eq. (24), 1A  and 2A  are the 

oblateness coefficients, defined as: 
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where jR  and ,j pR  are the equatorial and polar radii of the two asteroids and   the previously defined distance 

between the two asteroids (see Table 3). Finally, the oblateness of the bodies also causes a change in the mean 

motion of the binary system, i.e., in the angular velocity of the  2 ˆ ˆ ˆ, ,R x y z -frame [39]: 

  
2 1 2

3
1

2J A A    . (26) 

E. High-fidelity dynamical system 

Combining all information of Sections VII.A to VII.D results in the following high-fidelity dynamical system 

defined in the  2 ˆ ˆ ˆ, ,R x y z -frame: 

 2 sU   r Ω r a    (27) 



28 

 

with 

    
2

2 2 2
12 2 3 2

3 3 3 2 3 2
1 2 4 3 1 1 2 2

11 1 3 3
1 1

2 2 2
J A Az z

U x y
r r r r r r r r

   
       

               
      

r r
. (28) 

In Eqs. (27) and (28), the variables  , 3 , r , 1r , 2r  and 4r  are as defined in Section II, while all other variables 

need to be redefined according to the information provided in Sections VII.A to VII.D: 3r  in Eq. (19), Ŝ  in Eq. (18)

, sa  in Eqs. (21)-(23), and 
2J , 1A , and 2A  in Eqs. (25)-(26). 

F. Results for single pole-sitter-like orbit revolution 

When considering the effect of the perturbations on a single pole-sitter-like orbit revolution, some assumptions 

can be made that allow the periodicity of the dynamics to be preserved such that periodic pole-sitter-like orbits can 

still be obtained even under the effect of the perturbations and that the differential correction scheme of Section IV 

can still be applied. In particular, because the orbit period of the pole-sitter is much smaller than the period of the 

heliocentric orbit, the out-of-plane component of the unit vector Ŝ  and the heliocentric orbit radius, 3r , can be 

assumed constant, removing the non-periodicity that these two elements introduce over longer periods of time.  

We furthermore consider two specific configurations: one where the binary system is at perihelion at time 0t     

( 0 0   in Figure 14) and one where the binary system is at aphelion at time 0t   ( 0  ). Combining these 

configurations with the previous assumption that the Sun is at its most out-of-plane location at the initial time, 

provides a conservative approach as from the Keplerian elements of 1999 KW4 (see Table 3) it is clear that the Sun 

is almost in the plane of the binary system at perihelion and aphelion. 

Changing from a 1 AU circular heliocentric orbit as used throughout Section IV to the conditions at aphelion and 

perihelion (but neglecting all other perturbations for now), results in the orbit families appearing in Figure 16. At 

aphelion, the heliocentric orbit radius is very close to 1 AU (1.084 AU), resulting in an orbit family very similar to 

the one found in Figure 10. However, the heliocentric orbital speed at aphelion is much smaller than in the 

previously assumed 1 AU circular orbit, resulting in a larger value for S  (see Table 3) and thus a slightly shorter 

pole-sitter-like orbit period. At perihelion, where the solar sail acceleration magnitude is a factor 25 larger than at 1 

AU, pole-sitter-like orbits only exist for very large cone angles. As mentioned previously, such large cone angles 

often do not fall within mission constraints [37]. Therefore, the analyses on the effect of the perturbations will focus 
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on the orbit family at aphelion and in particular on the orbit with the smallest cone angle of   71.1 deg that also 

exhibits the largest linear instability.  

a)  

  
b)  

  

Figure 16 Family of pole-sitter-like orbits and their stability parameterized by the cone angle, .  

a) At aphelion. b) At perihelion.   

 

The results for each of the remaining perturbations separately, as well as the effect of all perturbations combined, 

appear in Figure 17. To ensure convergence of the differential corrector scheme, each perturbation is introduced 

gradually through a continuation scheme similar to the one explained in Section V and the intermediate results are 

presented through the color schemes in Figure 17. The figure shows that each of the perturbations drives the pole-

sitter-like orbits towards Asteroid 1 with the largest impact from the heliocentric orbit inclination and the smallest 

effect from the oblateness of the asteroids. Finally, and interestingly, each perturbation has a stabilizing effect on the 

orbits. 
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a)   

  
b)   

  
c)  
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d)  

  

Figure 17 Effect of high-fidelity effects on one pole-sitter-like orbit revolution at aphelion with  = 71.1 

deg. a) Inclination of heliocentric orbit. b) Non-ideal solar sail. c) Oblateness. d) All perturbations combined.  

 

G. Results for multiple pole-sitter-like orbit revolutions 

While the results in the previous section only considered the higher-fidelity effects over a single pole-sitter-like 

orbit revolution and assumed a constant out-of-plane component of the unit vector Ŝ  and a constant heliocentric 

orbit radius, this section extends the analyses to multiple pole-sitter orbit periods. Then, the variations in the out-of-

plane component of Ŝ  and the changing heliocentric orbit radius due to the eccentricity can no longer be neglected 

and need to be accounted for. To once again stay as close as possible to the unperturbed orbit, the same multiple 

shooting differential algorithm as outlined in Section V is applied, using a continuation scheme to slowly introduce 

the perturbations starting from the unperturbed orbit. The result for 20 orbit revolutions (spanning 14.5 days) 

appears in Figure 18a and shows a trajectory that is very close to the single-revolution, fully perturbed orbit of 

Figure 17d. The distance over time between these single- and multi-revolution trajectories appears in Figure 18 and 

provides a measure for the effect of the changing out-of-plane component of the unit vector Ŝ  and heliocentric orbit 

radius around aphelion. 
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a)  

  
b)  

 

Figure 18 Effect of high-fidelity effects over 20 orbit revolutions of the pole-sitter-like orbit starting at 

aphelion with  = 71.1 deg. a) Orbit. b) Distance from orbit in Figure 17d. 

 

VIII.  Conclusions 

This paper has demonstrated the existence of solar sail artificial equilibrium points (AEPs) at asteroids and 

binary systems as well as solar sail periodic orbits above their orbital planes. For the single asteroid case, solar sail 

acceleration contours have been obtained in the Hill + SRP problem that allow the sailcraft to remain stationary with 

respect to the asteroid on either the Sun-lit or dark side of the asteroid and either in or above its orbital plane. 

Furthermore, families of solar sail periodic orbits around these AEPs have been generated, where each orbit within a 

family only differs in its out-of-plane amplitude. These orbits have been found for near-term sail technology and for 

periods equal to a significant fraction of the asteroid’s heliocentric orbital period. When taking asteroid Vesta as a 

test case, sailcraft-asteroid distances in the order of 104 km can be achieved. When adding a fourth body to the Hill + 

SRP dynamics to simulate a binary system, the smaller asteroid creates a small oscillatory motion around the 
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displaced orbits, causing non-periodic motion. When modelling the binary system in the bi-circular + SRP problem, 

AEPs and truly periodic solar sail orbits can be obtained, though the required sail attitude and characteristic 

acceleration to maintain a particular AEPs become time-dependent due to the changing direction of sunlight. Taking 

binary system 1999 KW4 as a test case, families of pole-sitter-like orbits above the binary orbital plane have been 

generated that can be parameterized, for example, by the required sail characteristic acceleration, the sail attitude, 

the heliocentric distance or even the mass distribution within the binary system. For large ranges in the values for 

these parameters, the existence of pole-sitter-like orbits above the binary system has been demonstrated at sailcraft-

binary distances in the order of 10 km for near-term sail technology. While all orbits presented (both for the single 

asteroid case and the binary system) are linearly unstable, they do allow a unique vantage point from where to 

observe the asteroid or asteroid pair. Furthermore, all orbits exist for a simple solar sail steering law where the 

attitude is fixed with respect to the Sun, which greatly simplifies mission operations. Finally, for the most interesting 

and unstable orbits, the pole-sitter-like orbits, the effect of higher fidelity effects have been investigated, including 

the 38.884 deg inclination of the binary system orbital plane with respect to its heliocentric orbit, the eccentricity of 

the heliocentric orbit, non-ideal properties of the solar sail and the oblateness of both binary asteroids. The net result 

is a shift of the pole-sitter-like orbits towards the binary asteroids. As these effects all act on different time scales, 

often not commensurable with the period of the pole-sitter-like orbits, non-periodic motion results, but through the 

use of a multiple shooting differential correction, the trajectory can be shown to maintain a pole-sitter-like shape for 

15 days starting from the binary system’s aphelion.  
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