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Civil Engineering and Geosciences, Delft University of Technology

Abstract

This document provides supplementary information regarding Cooke’s clas-
sical model and the developed MATLAB toolbox ANDURIL1. The reader
can find a detailed description of the functions that constitute ANDURIL as
well as examples regarding the use of these developed functions, based on a
recent real-life application. Different advantages of ANDURIL as well as its
limitations and possible extensions are discussed.

1. Cooke’s classical model for Structured Expert judgment

In practice, engineers, scientists and decision makers are often confronted
with problems where sufficient relevant field data (measurements) are not
available. In these cases, modeling or expert judgments become an alterna-
tive source of valuable data. For these reasons, Cooke in [1] has developed
a method (i.e. Cooke’s classical model for structured expert judgment) to

1In order to avoid confusion of the minority of people, who are not familiar with the
universe of Lord of the Rings by J.R.R. Tolkien, the authors would like to clarify the
inspiration for the name of the developed Matlab toolbox. Andúril was the name of the
sword of Aragorn, the son of Arathorn, which was reforged from the shards of Narsil (the
sword that was used by Isildur to cut the One Ring from Sauron’s hand). Excalibur is
also the name of the legendary sword of king Arthur. Similarly to the sword, the source
code of EXCALIBUR software remained accessible only to a few worthy ones. Therefore,
the researchers and practitioners could only admire and use the software without being
able to further investigate and explore developments of the method. To change this, the
existing software had to be “broken to pieces” and then “reforged”. Naturally, the name
of the resulting new open-source Matlab toolbox is ANDURIL. Hopefully, this will help
in bringing peace to troubled researchers and practitioners of Cooke’s classical model.

Preprint submitted to SoftwareX July 6, 2018



aggregate expert judgments based on performance measures. Cooke’s classi-
cal model is the most widely used method in practice. It has been used in
many fields including the nuclear sector, chemical & gas industry, hydraulic
engineering, aerospace and aviation, occupational safety, health, banking and
volcanology to name some. Up to 2008 a total of 45 applications were col-
lected in a databese [2]. Since then, at least 33 more applications have been
performed [3].

In Cooke’s Classical model, the experts assess their uncertainty over two
types of continuous quantities. The first type corresponds to target variables.
These are variables whose uncertainty cannot be sufficiently described using
current models or field data and hence expert judgements are required. The
second type of variables queried in the classical model are the so called seed
variables. These are variables from the experts’ field which are known to the
(group) of analysts at the moment of the elicitation (or will be known to
them post hoc) but whose true values are not known to the experts at the
moment of the elicitation.

Experts are thus scored according to their performance in assessing un-
certainty over seed variables. Their opinions are weighted and later combined
on the basis of their performance. The purpose of the classical model is to
enable rational consensus. According to [1], any methodology for structured
expert judgment that aims at enabling rational consensus should comply
with the following requisites:

1. Scrutability: All data and processing tools are open to peer review and
results must be reproducible by competent reviewers.

2. Empirical control: Quantitative expert assessments are subjected to
quality controls.

3. Neutrality: The method for evaluating expert opinions should encour-
age experts to state their true opinions.

4. Fairness: Expert opinions are not judged, prior to processing the results
of their assessments.

In the majority of past studies the closed source software EXCALIBUR
(freely available at http://www.lighttwist.net/wp/excalibur) that is only avail-
able for Windows OS, has been used for the analysis and aggregation of ex-
pert judgments. Recently, a number of cross validation studies have been
conducted using Eggstaff’s MATLAB code [4, 3]. However, this code is not
publicly available and it still does not implement important features of the
model such as the item weighting scheme [3].

Precisely in the spirit of contributing to guarantee that the condition
of scrutability is further met, the MATLAB toolbox presented in this pa-
per was developed. We believe that it is important for researchers to have
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open access to a code that makes transparent the calculations of performance
measures and the aggregation of expert judgments, so that current methods
can be made more accessible and different approaches or extensions to cur-
rent methods can be further explored. Therefore, the purpose of ANDURIL
toolbox is to assist researchers or practitioners who are interested in Cooke’s
classical model, in applying the method or investigating further developments
to it irrespective of their choice of operating system.

Figure 1: Uncertainty Distributions for GHG emissions in Mexico for 2020 and 2030

For the purpose of our presentation we will use a recent example related
to estimation of uncertainty in green house gas (GHG) emissions presented
in [5]. Figure 1 presents uncertainty distributions for GHG emissions for
Mexico in 2020 and 2030 as obtained in [5]. These were constructed based
on uncertainty estimates obtained through structured expert judgment us-
ing Cooke’s classical model and the analysis was done using EXCALIBUR.
Output such as the one presented in Figure 1 are typical results from the
application of Cooke’s method.

For the remainder of this supplement in section 2 we present the main
theory in which Cooke’s method and hence EXCALIBUR and ANDURIL are
based on. Section 3 describes the main features of our developed MATLAB
toolbox ANDURIL. Section 4 compares the output of ANDURIL with the
one from EXCALIBUR for the data presented in [5]. Section 5 discusses
some features available in ANDURIL not available in EXCALIBUR. Section
6 summarizes our main findings and discussions.

2. Statistical Accuracy & Information

Although some good descriptions of this structured expert judgment
method can be found in literature, the main concepts of Cooke’s classical
model are summarized below. This with the purpose of making available to
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the reader the main elements of the method and the code. For details and
extensive discussion the reader is referred to [1] and supplementary material
for [3].

In Cooke’s classical model experts are asked to provide assessments of
their uncertainty concerning continuous quantities in the form of a number
of percentiles of their uncertainty distribution. Most commonly the 5th, 50th

and 95th percentiles are queried.
The percentiles are assessed for uncertain quantities which are in fact the

target variables (or variables of interest). These percentiles are also queried
for quantities whose value is known to the analysts (or will be known to the
analysts within the time frame of the research), but is not known to the
experts at the moment of the elicitation. These are called seed or calibration
variables and are used to ensure empirical control of experts’ uncertainty
assessments. Examples of a seed variable and a variable of interest concerning
the example study used in this paper for economic growth in Mexico are:

1. Seed variable: Quarterly growth rates of gross domestic product in
Mexico have been below -5% in four instances between the first trimester
of 1994 and the third trimester of 2013. What was the average value
of the 28-day Mexican Federal Treasury Certificates (CETES) interest
rate in these four trimesters? Indicate the 5th, 50th and 95th percentiles
of your uncertainty distribution.

2. Target Variable: Consider a scenario in which, at the end of 2020, the
Mexican (commercial) interest rate is between 3.5 and 4.0 percent, the
unemployment rate is between 5.4 and 5.6 percent, the inflation growth
rate is between 3.0 and 3.3, and growth rates of gross domestic product
in the USA are between 2.8 and 3.3 percent. Please provide your esti-
mates (5th, 50th and 95th percentiles of your uncertainty distribution)
of average gross domestic product growth rate in Mexico up to 2020.

Seed variables are used to compute two measures of performance: sta-
tistical accuracy or calibration and information. We discuss these measures
next.

2.1. Statistical accuracy

Assume we have answers from e = 1, . . . , E experts on i = 1, . . . , N
seed variables and 1, . . . , N1 target variables. Assume further that we assess
three quantiles: qi,5, qi,50 and qi,95 for the 5th, 50th and 95th quantiles of each
uncertain quantity. That is including the target variables. There are thus
j = 1, . . . , 4 interquantile bins. The procedures described next may be easily
extended by assuming more quantiles are assessed from each expert. For each
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quantity, each expert divides her belief range into four interquantile intervals,
for which the corresponding probabilities of occurrence p = [p1, . . . , p4] are:
p1 = 0.05 for a realization value ≤ 5th percentile, p2 = 0.45 for a realization
value ∈ (5th, 50th] percentiles, p3 = 0.45 for a realization value ∈ (50th, 95th]
bin, and p4 = 0.05 for a realization value > 95th percentile. The empirical
version of p = (p1, . . . , p4) for expert e, is denoted s(e) = (s1, . . . , s4), where
sj(e) is equal to the number of realizations of seed variables falling in the
jth interquantile assessed by expert e divided by the total number of seed
variables.

s1(e) =
Number of realizations ≤ 5th quantile

N

s2(e) =
Number of realizations ∈ (5th, 50th] quantile

N

s3(e) =
Number of realizations ∈ (50th, 95th] quantile

N

s4(e) =
Number of realizations > 95th quantile

N

One way to measure the difference between p and s(e) is through relative
information or entropy, which is a measure of the disagreement between them.

I(s(e), p) =
4∑
j=1

sj(e) ln
sj(e)

pj
(1)

Experts’ assessments are treated as statistical hypotheses. Consider for
each expert the null hypothesis H0 : The inter quantile interval containing
the true value for each variable is drawn independently from the probability
vector p.

The quantity 2NI(s(e), p) where I(s(e), p) is given in equation (1) is
asymptotically χ2

3 (the degrees of freedom are the number of interquantile
intervals minus 1). This quantity can be used to test H0 and it defines the
calibration score:

C(e) = P{2NI(s(e), p) > r} (2)

The probability in equation 2 can be evaluated by a χ2
3 distribution.

The calibration score C(e) is the probability that a deviation at least as
large as r could be observed on N realizations if H0 were true. Where r
is the percentile of interest in the χ2 distribution of interest obtained from
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evaluating 2NI(s(e), p) for the data corresponding to a particular expert.
Values of calibration close to zero mean that it is unlikely that the experts’
probabilities are correct.

2.2. Information

The information score measures the degree to which a distribution is con-
centrated (or spread out) with respect to a background measure. In the classi-
cal model and in EXCALIBUR the uniform or log-uniform background mea-
sures are used. An intrinsic range is calculated for each expert’s density. The
intrinsic range is obtained by adding a k% overshoot to the smallest interval
containing all quantiles and realizations (when available), where k is selected
by the analyst (typically k% = 0.1). The lowest (l) and highest (h) values for
the intrinsic range are li = min{qi,5(e), vi} and hi = max{qi,95(e), vi} where
vi is the realization of interest. Then qli = li−k(hi−li) and qhi = hi+k(hi−li).
The information score is then computed as:

I(e) =
1

N

N∑
i=1

[
ln(qhi − qli) + p1 ln

p1
q5,i − ql,i

+ . . .+ p4 ln
p4

qh,i − q95,i

]
(3)

Notice that the information score does not depend on the realizations
(other than in terms of calculating the intrinsic range when available) and
hence may also be computed for the target variables. When target variables
are also considered, the summation in equation 3 runs to N1 which includes
target variables. This is actually commonly done in the classical model and
implemented in EXCALIBUR and ANDURIL as will be seen later. Also
notice that in equation 3 a uniform Background measure is applied. For a
log-uniform background measure the log of q·,i would be used instead.

2.3. Combination

In the classical model the combination of experts’ assessments is called
a Decision Maker (DM). This is a weighted average of individual estimates.
When the weights are determined based on the performance of experts in
the seed variables, we speak of performance-based DM. The DM probability
densities fDM,i, for every item i, are thus:

fDM,i =

E∑
e=1

wα(e)fe,i

E∑
e=1

wα(e)

(4)
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Observe that the weighs for each expert wα(e) are given by the product
of calibration and information scores when a certain threshold in calibration
is attained. That is:

wα(e) = 1{C(e)>α}C(e)I(e). (5)

Where 1{A} denotes the indicator function for A. Values of C(e) < 0.05
would fail to confer the study the required level of confidence. Note that the
DM can also be evaluated in terms of calibration and information. For this
reason the DM is referred to as the ”virtual expert”. In the performance
based DM the value of α is chosen such that the calibration score of the
DM is maximized. The weights in Cooke’s model are weakly asymptotically
strictly proper. This property ensures that if an expert wishes to maximize
her long run expected weight then she should do this by stating her true
beliefs as answer to the seed variables [1].

EXCALIBUR and ANDURIL support four types of DMs. The simplest
ones are equal weighting and user-defined weights which fall outside of the
performance-based DMs. The Global Weights DM is computed as described
above while the Item Weights DM computes the scores in equation 5 using
the information score per item rather than the average information score
(equation 3). The difference between DMs will be discussed further in section
4.

Once the different combination schemes have been investigated with Cooke’s
method it is common practice to perform robustness analysis. This refers to
the process of excluding one seed variable or one expert at the time and
re-do the analysis with the methods described in this section. EXCALIBUR
supports excluding one expert or one item at the time. There is however
no reason to think about robustness as a ”leave one out at the time” pro-
cedure. This has been discussed extensively in the context of out of sample
performance of Cooke’s method in recent years [4, 3]. ANDURIL supports
robusntess analysis leaving k experts or items at the time. This will be
further discussed in section 4.

3. Description of ANDURIL

In almost all of the studies, which utilized the Cooke’s method, the analy-
sis and synthesis of expert opinions based on experts’ performance in judging
uncertainty were performed with the free software EXCALIBUR. Hence, the
value of EXCALIBUR over the past 25 years is undeniable. However, there
are some limitations that stem from the fact that EXCALIBUR is a closed
source software. First, EXCALIBUR being a closed source software makes
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the understanding of the method more difficult and time consuming to re-
searchers who are recently introduced to the method. Moreover, it is impos-
sible to modify it (for example) in order to expand its features or investigate
different approaches for combination of expert judgments. For these reasons,
the authors strongly believe that an open source software for Cooke’s classi-
cal model that is transparent and easily modifiable (such as ANDURIL) will
be of benefit for practitioners and researchers.

3.1. Software Architecture

ANDURIL does not have a user interface yet, but there is a main script
named ANDURIL Main that can be used by the user to enter the data and
run the desired analysis. The supported functionalities of Cooke’s classical
model by ANDURIL which can be accessed by ANDURIL Main as well as the
required inputs of this script are presented below.

ANDURIL Main

Description: This is the main script that can be used to apply Cooke’s clas-
sical model to analyze and synthesize expert judgments by using ANDURIL.
ANDURIL supports the following features:

1. Calculation of DM using global weights
2. Calculation of DM using item weights
3. Calculation of DM using equal or user defined weights
4. Optimization of DM
5. Robustness check itemwise
6. Robustness check expertwise
7. Plotting assessments itemwise
8. Plotting robustness results

Input(s): The inputs that are required in order to do the analysis of
expert judgments and combine their opinions are the following:

• Cal var: a three-dimensional array that contains the assessments of
three quantiles (in columns) of every expert (in rows) concerning every
seed item (in the third dimension of the array). For clarification, see
Figure 2.

• TQs: a three-dimensional array that contains the assessments of three
quantiles (in columns) of every expert (in rows) concerning every target
item (in the third dimension of the array). Similarly to Figure 2.

• realization: a cell array with as many entries as the realizations of
the seed items and as many empty cells as the target questions. Please
note that the order of this should be the same as the order of the items;
the first entry should be the realization of the first calibration variable.
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Figure 2: Structure of the three-dimensional arrays for Cal var and TQs

• back measure: a cell array that show the background measure (either
uni or log uni) of every item.

• weight type: a variable that indicates which weighting scheme should
be used to obtain the distributions of DM. It is possible to choose
between ’equal’, ’global’ and ’item’. See section 2 for a description
of different weighting schemes.

• alpha: significance level for the indicator function in eq. 5. It should
be noted that this value cannot be larger than the highest calibration
score observed in the pool of experts, because that would result in zero
weight for every expert.

• k: overshoot for the intrinsic range (see section 2.2). Typically equal
to 10%.

3.2. Components of ANDURIL

In this section an overview of the functions which constitute ANDURIL
is presented. These functions were grouped in the following subsections ac-
cording to their purpose.

3.2.1. Import values

ANDURIL supports two methods of importing data in the format re-
quired for the analysis. The function formulate data can be used in combi-
nation with import data interface of MATLAB for values which were exported
directly from EXCALIBUR or values which were saved in spreadsheets. The
function import ascii files can be used for importing data from the .dtt
and .rls EXCALIBUR files.

formulate data

Syntax: [Cal var, TQs] = formulate data(var excalib, realization,

N ex, N seed, N tqs)
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Description: A function that formulates the data which were exported
from EXCALIBUR (or saved in a spreadsheet) in the appropriate format to
perform the analysis with ANDURIL.

Input(s):

• A matrix (var excal) that contains the assessments of every expert
concerning all the items, in EXCALIBUR format. The user may ex-
port the assessments of every expert regarding every item from EX-
CALIBUR and import these in MATLAB.

• A cell array (realization) that contains the realization of every seed
question and as many empty cells ([ ]) as target variables. This cell
array should be created by the user.

• The number of experts N ex which participated in the study.

• The number of seed items N seed.

• The number of target items N tqs.

Output(s):

• A three-dimensional array (Cal var) that contains the assessments of
the experts for every seed item.

• A three-dimensional array (TQs) that contains the assessments of the
experts for every target variable.

import ascii files

Syntax: [Cal var, TQs, realization, back measure] =

import ascii files(filename quant, filename real)

Description: Another function to import data from EXCALIBUR is
available. This was developed to allow for reading the ascii input files from
EXCALIBUR so that older files can be easily imported into ANDURIL.
Please note that in order for this function to work, the descriptions for every
item should be erased from the .dtt and .rls files and these should be saved
as .txt files. Notepad++ is one of the tools that can be used to create the
required .txt files (without the descriptions of the items) easily.

Input(s):

• A string filename quant with the name of the .txt file (or its path
if the file is in a different folder) that contains the assessments of the
experts. This is the .txt file (without the descriptions of the items)
that was created from the .dtt file.
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• A string filename real with the name of the txt file (or its path) that
contains the assessments of the experts. This is the txt file (without
the descriptions of the items) that was created from the .rls file.

Output(s):

• A three-dimensional array (Cal var) that contains the assessments of
the experts for every seed item.

• A three-dimensional array (TQs) that contains the assessments of the
experts for every target variable.

• A cell array (realization) that contains the realization of every seed
question and as many empty cells ([ ]) as target variables.

• A cell array (back measure) that contains the background measure of
every item.

3.2.2. Analysis and synthesis of judgments

calscore

Syntax: CS = calscore(M, cal power)

Description: This function calculates the statistical accuracy (or cali-
bration score) of expert e over the set of seed items.

Input(s):

• An E × B matrix M that contains the number of the realizations cap-
tured in every bin that is formed by the quantiles (see section 2.1)
provided by every expert e. Where E is the number of the experts and
B the number of the bins formed by the provided quantiles.

• A scalar cal power with the power of the calibration test. The power
of the calibration test is defined as the ratio N ′/N , where N ′ < N . This
ratio subsitutes the number of seed questions N in eq. 2. Therefore,
the default value of the calibration power is equal to 1. However, the
user is able to choose a different value between [0.1, 1] to investigate
the influence on the calibration score.

Note: If this function is used to compute the calibration score of a DM that
was obtained from a case where only one expert had a non-zero weight and
one of the quantiles is exactly equal to the realization, attention should be
paid to the calculation of matrix M. Due to precision of the calculating engine,
it might occur that the resulting quantile from integrating the density has
a minor difference with the initial assessment that will result in different
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elements of matrix M and subsequently a different calibration score. To solve
this, the user could use digits or roundn MATLAB functions to set the
precision of the obtained quantiles such that it is relevant for the values of
the variables under consideration.

Output(s): A scalar CS with the statistical accuracy (or calibration
score) of expert e over the set of seed items.

calculate information

Syntax: [Info score real, Info score tot] = calculate information(Cal var,

TQs, realization, k, back measure)

Description: This function calculates the relative information (or infor-
mation score) of expert e over the set of seed items.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• A three-dimensional array TQs that contains the assessments of the
experts for every target variable.

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables.

• k overshoot.

• A cell array back measure with the background measure of every item.

Output(s):

• Information score over the seed variables Info score real

• Information score over all items (i.e. seed variables and target variables)
Info score tot

calculate information seed

Syntax: Info score real = calculate information seed(Cal var,

TQs, realization, k, back measure)

Description: This function is a modified version of calculate information

function, with the purpose to be used within the DM optimization function.
This function has the same inputs as the calculate information function
and it calculates only the required information score of every expert over the
seed items Info score real, in order to reduce computation time.
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global weights

Syntax: W = global weights(Cal var, TQs, realization, alpha,

background measure, k)

Description: The function global weights calculates the calibration
score, the information score over the seed items and subsequently the weight
of every expert e.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• A three-dimensional array TQs that contains the assessments of the
experts for every target variable.

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables.

• Significance level alpha.

• A cell array back measure with the background measure of every item.

• k overshoot.

Output(s): A table W with the calibration score (first column) the in-
formation score over all the items (second column), the information score
over the seed items (third column), un-normalized weight (fourth column),
normalized weight (fifth column) for every expert (in a different row of this
table).

global weights for opt

Syntax: W = global weights for opt(Cal var, realization, alpha,

background measure, k)

Description: This function is a modified version of global weights func-
tion, with the purpose to be used in the optimization function. This func-
tion calculates the calibration score, as well as the global weight of every
expert by using the calculate information seed function to compute only
the required information score of every expert over the seed items, in or-
der to reduce computation time. This function has the same inputs as the
calculate information, excluding the three dimensional matrix with the
assessments regarding the target variables.
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calculate DM global

Syntax: [f DM, F DM, X, DM, W incl VE] = calculate DM global(Cal var,

TQs, realization, w, k, back measure, alpha)

Description: This function calculates the distribution of the DM for
every item, using the global weights or equal weights weighting schemes.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• A three-dimensional array TQs that contains the assessments of the
experts for every target variable.

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables.

• A row vector w with the normalized weights of every expert. In case that
global weight are used for calculating the DM, this vector is the trans-
posed 5th column of table W that was produced from global weights

function. If equal weights are used to calculate the DM, then a row
vector with equal weights for every expert should be provided.

• k overshoot.

• A cell array back measure with the background measure of every item.

• Significance level alpha. It should be noted that this variable must have
the same value as the alpha that was used as input to global weights

function.

Output(s):

• A cell array f DM that contains the density of the DM for values X.

• A cell array F DM that contains the cumulative probability of the DM
for values X of every item.

• A cell array X that contains all the unique values provided by the ex-
perts with non-zero weights for every item.

• A matrix DM with the quantiles of the obtained DM. This matrix has
the qli, 5%, 50%, 95% and qhi quantiles of the DMs distribution for
every item i.
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• The table W incl VE. This is actually the table W updated with the
obtained DM (in the last row).

item weights

Syntax: [unorm w, W itm, W itm tq] = item weights(Cal var, TQs,

realization, alpha, back measure, k)

Description: This function calculates the item weights of every expert e
for every item. The main difference with the global weights weighting scheme
is that the weights are different for every item. In this way the opinion of
every expert has a different weight for every item. This is achieved by using
the relative information of every particular item.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• A three-dimensional array TQs that contains the assessments of the
experts for every target variable.

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables.

• Significance level alpha.

• A cell array back measure with the background measure of every item.

• k overshoot.

Output(s):

• Unormalized weights unorm w. This E×N matrix contains the weights
of every expert e for every seed item i, where e = 1, ..., E and i =
1, ..., N .

• A E ×N matrix W item with the normalized weights of every expert e
for every seed item.

• A E×Ntq matrix W item tq with the normalized weights of every expert
e for every target item itq, where e = 1, ..., E and itq = 1, ..., Ntq.

calculate DM item

Syntax: [f DM, F DM, X, DM, W incl VE] = calculate DM item(Cal var,

TQs, realization, W itm, W itm tq, k, back measure, alpha)

16



Description: This function calculates the distribution of the DM for
every item using the item weights weighting scheme.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• A three-dimensional array TQs that contains the assessments of the
experts for every target variable.

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables.

• A E ×N matrix W itm with the normalized weights of every expert e
for every seed item i.

• A E ×Ntq matrix W itm with the normalized weights of every expert e
for every target item itq.

• k overshoot.

• A cell array back measure with the background measure of every item.

• Significance level alpha.

Output(s):

• A cell array f DM that contains the density of the DM for values X.

• A cell array F DM that contains the cumulative probability of the DM
for values X of every item.

• A cell array X that contains all the unique values provided by the ex-
perts with non-zero weights for every item.

• A matrix DM with the quantiles of the obtained DM. This matrix has
the qli, 5%, 50%, 95% and qhi quantiles of the DM’s distribution for
every item.

• A table W incl VE that contains the global weights for all the experts
including the item weights DM. This is actually the table W updated
with the obtained DM (in the last row).
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DM optimization

Syntax: [F DM opt, X DM opt, DM opt, W opt, W withDM, new alpha]

= DM optimization( Cal var, TQs, realization, k, back measure, weight type)

Description: This function calculates the distribution of the DM for
every item using the significance level alpha that optimizes the DM in terms
of statistical accuracy.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• A three-dimensional array TQs that contains the assessments of the
experts for every target variable

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables

• k overshoot.

• A cell array back measure with the background measure of every item

• A string weight type that indicates which weighting scheme should be
used to obtain the distributions of the DM. This can be either ’global’
or ’item’.

Output(s):

• A cell array F DM opt that contains the cumulative probability of the
optimized DM for values X of every item.

• A cell array X that contains all the unique values provided by the ex-
perts with non-zero weights for every item.

• A matrix DM that contains the quantiles of the obtained optimal (in
terms of statistical accuracy) DM. This matrix has the qli, 5%, 50%,
95% and qhi quantiles of the optimal DM’s distribution for every item
i.

• An E × 5 matrix W opt containing the calibration score (1st column),
the information score over all the items (2nd column), the information
score over the seed items (3rd column), the un-normalized weight (4th

column) and normalized weight (5th column) for every expert e.
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• A matrix W withDM that is an updated version of W opt containing
the scores and weights of every expert when the virtual expert (DM)
enters the pool of experts. The values of performance measures and
the weights which concern the optimized DM are presented in the last
row of W withDM.

• The value of significance level new alpha that optimizes the statistical
accuracy of the DM.

3.2.3. Post-processing

Checking Robustness items

Syntax: Robustness table = Checking Robustness items(Cal var,

TQs, realization, k, alpha, back measure, N max it, weight type,

optimization, incl cal power)

Description: This function calculates the performance measures (cal-
ibration score, information score over seed variable and over all variables
with respect to the background measure) of the DM that occurs when up to
N max it seed item(s) are excluded at most. It calculates the performance
measures for every possible combination, starting from excluding one up to
N max it seed items at a time.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• A three-dimensional array TQs that contains the assessments of the
experts for every target variable

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables

• k overshoot.

• The significance level alpha.

• A cell array back measure with the background measure of every item.

• The maximum number of items to be removed N max it for investigat-
ing robustness.

• The weighting scheme weight type that was considered to obtain the
distributions of DM. It can be either ’global’ or ’item’
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• A sting optimization that can be either ’yes’ or ’no’ showing if the
DM under investigation is optimized in terms of statistical accuracy or
not.

• A string incl cal power that indicates whether or not the calibration
power should be taken into account while computing the calibration
score of the ”perturbed” DM. If this sting is ’yes’, the calibration power
is taken into account when the calibration score of the ”perturbed” DM
is computed. Otherwise, the calibration power remains equal to the
initial one, as it was defined by the user in the ANDURIL Main. The
default value of calibration power is equal to one. See also section 4.3

Output(s): Robustness table is a cell array that contains the perfor-
mance measures for every possible combination, starting from excluding one
up to N max it seed item(s) at a time. The 1 × 4 cell array of every row
presents: the id number of the excluded seed item(s) (1st column), the infor-
mation score over all items with respect to the background measure for the
obtained DM (2nd column), the information score over the seed items with
respect to the background measure for the obtained DM (3rd column) and
the calibration score of the obtained DM (4th column).

Checking Robustness experts

Syntax: Robustness table ex = Checking Robustness experts(Cal var,

TQs, realization, k, alpha, back measure, N max ex, weight type, optimization)

Description: This function is the same as Checking Robustness items

function but it calculates the performance measures of the DM that occurs
when up to N max ex expert(s) are excluded at most. It must be mentioned
that incl cal power is not included because the number of items N remains
the same.

plotting itemwise

Syntax: plotting itemwise(Cal var, TQs, realization, DM set, DM str,

ystr)

Description: This function produces as many plots as the total number
of items (i.e. seed and target items). Every plot presents the assessments
(i.e. 5th, 50th,95th percentiles) of every expert e as well as every DM, for
every particular item i.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.
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• A three-dimensional array TQs that contains the assessments of the
experts for every target variable.

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables.

• A three-dimensional array DM set that is structured as the Cal var and
TQs arrays and contains the quantiles of the DMs that were calculated.

• A string DM str that contains the color and the type of the markers for
the DMs (Example: DM str = ’c-s’,’g-p’,’r-o’)

• A string ystr that contains the names of every expert and DMs that
will be shown on the y-axis of the plots (Example: ystr2 = {’’,’Exp.
1’,’Exp. 2’,’Exp. 3’, ’Exp. 4’,’Exp. 5’, ’DM1-global’, ’DM2-item’,

’DM3-equal’, ’Realization’, ’’})

robustness plots

Syntax: robustness plots(Cal var, Robustness table, W incl DM,

N max it)

Description: This function produces three box-plots. Each plot cor-
responds to one measure of performance in judging uncertainty. Namely
statistical accuracy, information score over all items and information score
over seed items. Each box-plot presents how the values of every measure vary
with the number of excluded items (x-axis). In these plots a horizontal line
is also plotted, that shows the values of the DM whose robustness is under
investigation. Finally, a magenta marker shows the geometric mean for every
number of removed items.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• The Robustness table obtained from Checking Robustness items

function.

• The table W incl DM of the DM whose robustness was investigated using
the function
Checking Robustness items.

• The maximum number of excluded seed item(s) that was used to ob-
tain the Robustness table.
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alter calc DM global

Syntax: [f DM, F DM, X, DM, W incl VE] = alter calc DM global(Cal var,

TQs, realization, w, k, back measure, alpha, alter calc)

Description: This function is a modified version of calculate DM global

function. It was created to investigate the effect of obtaining the distribution
of global weight DM for every item when calculating the intrinsic ranges of
every item by: i) taking into account the realization and the judgments of
experts with non-zero weights and ii) taking into account only the judgments
of the experts with non-zero weights.

Input(s):

• A three-dimensional array Cal var that contains the assessments of the
experts for every seed item.

• A three-dimensional array TQs that contains the assessments of the
experts for every target variable.

• A cell array realization that contains the realization of every seed
question and as many empty cells ([ ]) as target variables.

• A row vector w with the normalized weights of every expert. In case that
global weight are used for calculating the DM, this vector is the trans-
posed 5th column of table W that was produced from global weights

function. If equal weights are used to calculate the DM, then a row
vector with equal weights for every expert should be provided.

• k overshoot.

• A cell array back measure with the background measure of every item.

• Significance level alpha. It should be noted that this variable must have
the same value as the alpha that was used as input to global weights

function.

• A string alter calc that indicates how the intrinsic range of each
item will be calculated. It can be either ’exp realz’ that calculates
the intrinsic range of every item based on the quantiles of the experts
with non-zero weights and the realizations or ’exp only’ that calculates
the intrinsic range of every item based only on the quantiles of experts
with non-zero weights.

Output(s):

• The density of the DM f DM for values X.
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• The cumulative probability of the DM F DM for values X.

• The values X of the DM for every item.

• A matrix DM with the quantiles of the obtained DM. This matrix has
the qli, 5%, 50%, 95% and qhi quantiles of the DMs distribution for
every item i.

• The table W incl VE. This is actually the table W updated with the
obtained DM (in the last row).

4. Illustrative Example for Validation

ANDURIL is a newly developed open source toolbox, therefore it should
be validated with EXCALIBUR. For this purpose a recent SEJ study con-
cerning the estimation of GHG emissions in Mexico for 2020 and 2030 [5]
was used as a test case (Figure 1). The part of the study that is used to
validate ANDURIL is the one concerning the estimation of Gross Domestic
Product. In this study 9 experts participated and provided the 5th, 50th and
95th percentiles of their uncertainty distribution regarding 13 seed variables
and 6 target variables. In the following subsections (4.1, 4.2 and 4.3), the
results obtained from applying ANDURIL to the test case are presented and
compared with those obtained from EXCALIBUR. These results can be re-
produced by using the ANDURIL example script and the dtt and rls files of
EXCALIBUR provided as a supplement.

4.1. Distributions of obtained DMs

Five different DMs were calculated using ANDURIL. DM1 was calcu-
lated using the function calculate DM global, DM2 was calculated using
the function calculate DM item, DM3 was calculated using the function
calculate DM global with equal weights to every expert, DM4 was cal-
culated using the function DM optimization and DM5 was calculated using
the function calculate DM global with user-defined weights to every expert.
As far as the user-defined weights are concerned, experts 5 and 6 received
a weight equal to 0.4 and 0.6 respectively, while the remaing experts were
assigned a zero weight. The details of every DM are summarized in Table
1. Also, it should be noted that the background measure for every item is
uniform. However, the same DMs were calculated and validated when log-
uniform background measure was used for every item (except seed item 3,
because the 5% quantile of an expert was negative for this particular item
and hence a log-uniform measure cannot be used).
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The comparison of the obtained quantiles using ANDURIL and EXCAL-
IBUR is presented in Table 2. As it can be seen, there are very small differ-
ences most probably due to differences in precision of the calculating engine.
The maximum difference is 0.0005 in absolute value.

Furthermore, Figure 3 and Figure 4 show the comparison of the obtained
plots for every individual expert and DMs concerning seed item 5 and target
item 1 respectively. The plots of ANDURIL were produced using the func-
tion plotting itemwise and show that the same results are obtained with
EXACLIBUR.

Name Type of weights Optimization Significance Level (alpha)
DM1 global weights No 0.05
DM2 item weights No 0.05
DM3 equal weights - 0.00
DM4 global weights Yes -
DM5 user weights - 0.00

Table 1: Overview of details of calculated DMs.

EXCALIBUR ANDURIL
Name q5 q50 q95 q5 q50 q95
DM1 3.02 5.431 8.000 3.0201 5.4311 8.000
DM2 3.063 5.327 8.000 3.0633 5.3275 8.000
DM3 2.297 4.684 7.463 2.2971 4.6840 7.4626
DM4 3.021 5.44 7.999 3.0209 5.4395 7.9994
DM5 3.098 6.026 7.928 3.0978 6.0263 7.928

Table 2: Comparison of the four DMs’ quantiles regarding seed item 5 using ANDURIL
and EXCALIBUR.

4.2. Measures of performance and weights

In this subsection the obtained measures of performance and the weights
of every expert (including DMs) are compared with the results from EXCAL-
IBUR. We present in this section results concerning the different Decision
Makers. Table 3 (and 4, 5, 6 and 7) presents results obtained with the out-
put W withDM for the global weights DM (item, equal and global optimized
respectively for tables 4 to 6) as calculated by ANDURIL. Similarly, Figure
5 and 6, 7, 8 and 9 present equivalent tables obtained from EXCALIBUR.

It can be seen that the resulting measures of performance as well as the
weights present again small differences as before due to precision. Also, it
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Figure 3: Comparison of obtained plots for the assessments of all experts and DMs con-
cerning seed item 5.

Figure 4: Comparison of obtained plots for the assessments of all experts and DMs con-
cerning seed item 5.

must be mentioned that the column entitled ”Normalized weights without
DM” that is presented in Figures 5 (and 6 to 8) from EXCALIBUR was
also obtained from ANDURIL using the global weights and item weight

functions. That is, before the virtual expert entered the pool of experts.
The column is however not included in Tables 3 (and 4 to 6) in order to be
consistent with the output as provided by ANDURIL’s functions.

4.2.1. DM1: Global weights

The code that was used to calculate DM1 is the following:

W = g l o b a l w e i g h t s ( Cal var , TQs , r e a l i z a t i o n , alpha ,
back measure , k ) ;

[ f DM1 , F DM out1 , X out1 , DM1, W incl DM1 ] =
ca l cu la te DM globa l ( Cal var , TQs , r e a l i z a t i o n ,
W( : , 5 ) ’ , k , back measure , alpha ) ;
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Expert ID Calibration
Score

Information
Score (All
items)

Information
Score
(Seed
items)

Un-
normalized
Weights

Normalized
Weights
incl. DM

Expert 1 5.03797e-
12

1.60819 1.93478 0 0

Expert 2 1.03264e-
05

1.03006 1.00562 0 0

Expert 3 9.21494e-
05

1.66612 1.65122 0 0

Expert 4 1.03264e-
05

1.30231 1.48421 0 0

Expert 5 0.00150 1.22279 1.300709 0 0
Expert 6 0.27665 1.08076 1.28486 0.35546 0.52529
Expert 7 0.00015 1.82512 1.94417 0 0
Expert 8 1.36251e-

05
1.69804 1.91298 0 0

Expert 9 0.05306 1.07772 1.28461 0.06816 0.10073
DM1 0.26503 0.80631 0.95483 0.25306 0.37397

Table 3: Table W including DM1 from ANDURIL.

Figure 5: Table from EXCALIBUR including DM1.

4.2.2. DM2: Item weights

The code that was used to calculate DM2 is the following:

[ unorm w , W itm , W itm tq ] = i tem weights ( Cal var , TQs ,
r e a l i z a t i o n , alpha , back measure ) ;

i f i s e q u a l (W itm ( : , 1 ) , zeros ( s ize (W itm , 1 ) , 1 ) )
error ( ’ S i g n i f i c a n c e Leve l va lue should be sma l l e r

than the h i ghe s t c a l i b t r a t i o n s co r e ’ )
end
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[ f DM2 , F DM out2 , X out2 , DM2, W incl DM2 ] =
calculate DM item ( Cal var , TQs , r e a l i z a t i o n ,
W itm , W itm tq , k , back measure , alpha ) ;

Expert ID Calibration
Score

Information
Score (All
items)

Information
Score
(Seed
items)

Un-
normalized
Weights

Normalized
Weights
incl. DM

Expert 1 5.03797e-
12

1.60819 1.93478 0 0

Expert 2 1.03264e-
05

1.03006 1.00562 0 0

Expert 3 9.21494e-
05

1.66612 1.65122 0 0

Expert 4 1.03264e-
05

1.30231 1.48421 0 0

Expert 5 0.00150 1.22279 1.300709 0 0
Expert 6 0.27665 1.08076 1.28486 0.355468 0.37107
Expert 7 0.000154 1.82512 1.94417 0 0
Expert 8 1.36251e-

05
1.69805 1.91298 0 0

Expert 9 0.05306 1.07771 1.284617 0.068165 0.071158
DM2 0.52856 0.84605 1.01086 0.534310 0.557767

Table 4: Table W including DM2 from ANDURIL.

Figure 6: Table from EXCALIBUR including DM2

4.2.3. DM3: Equal weights

The code that was used to calculate DM3 is the following:
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for i = 1 : s ize ( Cal var , 1 )
eq w ( i ) = 1/ s ize ( Cal var , 1 ) ;

end
a lpha eq = 0 ;
[ f DM3 , F DM out3 , X out3 , DM3, W incl DM3 ] =

ca l cu la te DM globa l ( Cal var , TQs , r e a l i z a t i o n , eq w ,
k , back measure , a lpha eq ) ;

Expert ID Calibration
Score

Information
Score (All
items)

Information
Score
(Seed
items)

Un-
normalized
Weights

Normalized
Weights
incl. DM

Expert 1 5.03797e-
12

1.60819 1.93478 9.747e-12 2.149e-11

Expert 2 1.03264e-
05

1.03006 1.00562 1.0385e-
05

2.2896e-
05

Expert 3 9.21494e-
05

1.66612 1.65122 1.5216e-
04

3.3548e-
04

Expert 4 1.03264e-
05

1.30231 1.48421 1.5327e-
05

3.3792e-
05

Expert 5 0.00150 1.22279 1.300709 0.0019568 0.004314
Expert 6 0.27665 1.08076 1.28486 0.355468 0.783728
Expert 7 0.000154 1.82512 1.94417 3.0029e-

04
6.6207e-
04

Expert 8 1.36251e-
05

1.69805 1.91298 2.6065e-
05

5.7467e-
05

Expert 9 0.05306 1.07771 1.284617 0.068165 0.150290
DM3 0.06317 0.33777 0.434773 0.02746 0.06055

Table 5: Table W including DM3 from ANDURIL.

4.2.4. DM4: Global weights optimized

The code that was used to calculate DM4 is the following:

we ight type = ’ g l o b a l ’ ;
[ F DM out4 , X DM out4 , DM4 opt , W opt , W withDM, new alpha ]=
Anduril DM Optimization ( Cal var , TQs , r e a l i z a t i o n ,
back measure , we ight type ) ;
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Figure 7: Table from EXCALIBUR including DM3

Figure 8: Table from EXCALIBUR including DM4

4.2.5. DM5: User-defined weights

The code that was used to calculate DM5 is the following:

user w = [ 0 0 0 0 0 .4 0 .6 0 0 0 ] ;
i f sum( user w ) not equal to 1

error ( ’ User de f ined weights should add up to 1 ’ )
end
alpha ud = 0 ;
[ f DM user , F DM user , X DM user , DM user , W incl DM user ]=
ca l cu la te DM globa l ( Cal var , TQs , r e a l i z a t i o n , user w ,
k , back measure , alpha ud ) ;

4.3. Robustness analysis

This subsection presents the tables for robustness analysis concerning
DM1 (i.e. DM with global weights, 0.05 significance level and uniform back-
ground measure for every item), when one seed item is excluded at a time.
The obtained table for robustness using the Checking Robustness items

function of ANDURIL is presented in Table 8. The robustness analysis table
from EXCALIBUR is presented in Figure 10. It can be seen that the results
are almost identical with the maximum absolute difference being equal to
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Expert ID Calibration
Score

Information
Score (All
items)

Information
Score
(Seed
items)

Un-
normalized
Weights

Normalized
Weights
incl. DM

Expert 1 5.03797e-
12

1.60819 1.93478 0 0

Expert 2 1.03264e-
05

1.03006 1.00562 0 0

Expert 3 9.21494e-
05

1.66612 1.65122 0 0

Expert 4 1.03264e-
05

1.30231 1.48421 0 0

Expert 5 0.00150 1.22279 1.300709 0.0019568 0.0019706
Expert 6 0.27665 1.08076 1.28486 0.355468 0.357981
Expert 7 0.000154 1.82512 1.94417 0 0
Expert 8 1.36251e-

05
1.69805 1.91298 0 0

Expert 9 0.05306 1.07771 1.284617 0.068165 0.0686476
DM4 0.6140 0.77970 0.92401 0.56738 0.571399

Table 6: Table W including DM4 from ANDURIL.

Figure 9: Table from EXCALIBUR including DM5

0.0004, concerning the Information Score over all items with respect to the
background measure. Notice however that if the calibration power is taken
into account when calculating the calibration score of the ”perturbed” DM
when 1 item is excluded at a time the results of ANDURIL are different than
those of EXCALIBUR. In other words, EXCALIBUR does not consider the
calibration power in performing robustness analysis. For these reasons, it
was decided to give the option to the user to decide if he/she wants to take
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Expert ID Calibration
Score

Information
Score (All
items)

Information
Score
(Seed
items)

Un-
normalized
Weights

Normalized
Weights
incl. DM

Expert 1 5.03797e-
12

1.60819 1.93478 9.747e-12 9.4478e-
12

Expert 2 1.03264e-
05

1.03006 1.00562 1.0385e-
05

1.0065e-
05

Expert 3 9.21494e-
05

1.66612 1.65122 1.5216e-
04

1.4748e-
04

Expert 4 1.03264e-
05

1.30231 1.48421 1.5327e-
05

1.4856e-
05

Expert 5 0.00150 1.22279 1.300709 0.0019568 0.001896
Expert 6 0.27665 1.08076 1.28486 0.355468 0.344542
Expert 7 0.000154 1.82512 1.94417 3.0029e-

04
2.9106e-
04

Expert 8 1.36251e-
05

1.69805 1.91298 2.6065e-
05

2.5263e-
05

Expert 9 0.05306 1.07771 1.284617 0.068165 0.06607
DM5 0.6894 0.74695 0.8785 0.6056 0.5870

Table 7: Table W including DM5 from ANDURIL.

into account a different calibration power (equal to N ′/N) when robustness
of items is investigated.

Excluded item Information Score (All items) Information Score (Seed items) Calibration Score
Excluded seed item 1 0.8057 0.9936 0.2982
Excluded seed item 2 0.8377 1.0135 0.2982
Excluded seed item 3 0.8112 0.9913 0.3509
Excluded seed item 4 0.8459 1.0257 0.2982
Excluded seed item 5 1.1334 1.3808 0.3111
Excluded seed item 6 0.8261 0.9963 0.1776
Excluded seed item 7 1.0746 1.2926 0.3111
Excluded seed item 8 0.6480 0.7418 0.5213
Excluded seed item 9 0.7183 0.8345 0.2982
Excluded seed item 10 1.0138 1.2014 0.1776
Excluded seed item 11 0.7362 0.8515 0.5419
Excluded seed item 12 0.8120 0.9932 0.3509
Excluded seed item 13 0.8090 0.9938 0.3509

Table 8: Robustness table from ANDURIL regarding DM1 excluding one item at a time.

In the next section we present some aspects that we believe ANDURIL
has improved over EXCALIBUR and some limitations of our toolbox.
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Figure 10: Robustness table from EXCALIBUR regarding DM1.

5. Improvements and limitations

5.1. Improvements using ANDURIL

As it was mentioned before, the value of EXCALIBUR software is un-
deniable. However, the fact that EXCALIBUR is a closed source software
causes some limitations for researchers and practitioners of Cooke’s classical
model. These limitations can be investigated by using ANDURIL. In this
subsection, it is illustrated how limitations regarding intrinsic range, item
weights, distributions of DMs and robustness can be overcome.

Intrinsic Range. The bounds of the intrinsic range for every item i (i.e.
qli and qhi introduced in section 2.2) are calculated by considering the as-
sessments of every expert, even the ones with zero weights. Moreover, the
intrinsic range for a calibration item takes into consideration the realization
of the seed variable. One could argue that for the calculation of the DM’s
distribution only the assessments of the experts with non-zero weights could
be used. This is not possible to be investigated using EXCALIBUR.

For this reason, the calculate DM global function of ANDURIL was
modified in order to investigate the effect of calculating the intrinsic ranges
of every item by: i) taking into account the realization and the judgments of
only those experts with non-zero weights (that produces DM1 alt1) and ii)
taking into account only the judgments of the experts with non-zero weights
(that produces DM1 alt2). This new function was named alter calc DM global.
It should be noted that in order to investigate the effect of this alternative
calculation on the DM2, the calculate DM item should be modified simi-
larly. The code that was used to calculate DM1 alt1 and W incl DM1 alt1 is
as follows:
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W = g l o b a l w e i g h t s ( Cal var , TQs , r e a l i z a t i o n , alpha ,
back measure , k ) ;

[ f DM1 alt1 , F DM1 alt1 , X alt1 , DM1 alt1 , W incl DM1 alt1 ]=
a l t e r c a l c D M g l o b a l ( Cal var , TQs , r e a l i z a t i o n ,W( : , 5 ) ’ ,
k , back measure , alpha , ’ e x p r e a l z ’ ) ;

The code that was used to calculate DM1 alt2 and W incl DM1 alt2 is as
follows:

W = g l o b a l w e i g h t s ( Cal var , TQs , r e a l i z a t i o n , alpha ,
back measure , k ) ;

[ f DM1 alt2 , F DM1 alt2 , X alt2 , DM1 alt2 , W incl DM1 alt2 ]=
a l t e r c a l c D M g l o b a l ( Cal var , TQs , r e a l i z a t i o n , W( : , 5 ) ’ ,
k , back measure , alpha , ’ exp only ’ ) ;

Tables 10, 11 and 12 present the quantiles ofDM1, DM1 alt1 and DM1 alt2

respectively. Some differences can be observed, especially (as expected) in
quantiles qh and ql of every item. Particularly, the maximum absolute dif-
ference between DM1 and DM1 alt2 concerns the qh quantile of seed item
8. One may investigate whether these small differences between DM1 and
DM1 alt2 (or DM1 alt1) concerning q5, q50 and q95 quantiles would result or
not in differences in the measures of performance of the DMs. To investigate
this, in Table 9 the measures of performance in judging uncertainty are pre-
sented for each DM. Some expected small differences can be observed in the
information scores, because the intrinsic range of every item reduces when
the quantiles of the experts with zero weights are not taken into account.
However, a large absolute difference (equal to 0.189) was observed when
comparing the calibration score of DM1 with that of DM1 alt1 or DM1 alt2.
The reason of this 71.3% increase in calibration score, is that the changes in
Q5 of DM1 alt1 and DM1 alt2 regarding seed item 10 caused the realization
to fall into the first interquantile range. The calibration score in equation 2
is a fast function. Small changes in the model may lead to changes in orders
of magnitude of the score. Especially when the number of seed variables is
low as is usually the case in applications. It should be mentioned that such
large differences in values for the intrinsic range may not be always observed
in different applications. Nor the consequences of choices for intrinsic ranges
in performance measures should necessarily follow the same pattern as in our
presentation. This issue has not been discussed in literature for example in
those related to out of sample performance of Cooke’s model [4, 3]. This is
a subject that could be further explored with the aid of ANDURIL.
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Calibration
Score

Information
Score (All
items)

Information
Score(Seed
items)

Un-
normalized
Weights

DM1 0.2650 0.8063 0.9548 0.2531
DM1 alt1 0.4540 0.8366 0.9920 0.4504
DM1 alt2 0.4540 0.8413 0.9988 0.4535

Table 9: Measures of performance of DMs.

ql q5 q50 q95 qh
Seed Item 1 -4.7 3.35 27.46 59.67 87.7
Seed Item 2 -1.15 16.40 36.06 49.83 54.65
Seed Item 3 -10.1 25.89 52.10 89.44 99.1
Seed Item 4 0.2 4.33 10.84 19.86 21.8
Seed Item 5 1.4 3.02 5.43 8.00 8.6
Seed Item 6 1.00 50.00 74.46 99.69 109
Seed Item 7 1.2 4.00 5.35 6.00 10.8
Seed Item 8 -5.957 5.01 5.95 6.99 103.927
Seed Item 9 -1.92 1.80 2.44 3.50 30.72
Seed Item 10 2.1 5.17 6.03 8.60 12.9
Seed Item 11 0.03 0.95 1.35 1.50 9.27
Seed Item 12 1.49 2.51 3.74 5.19 6.41
Seed Item 13 0.344 0.48 0.88 0.95 1.016
Target Item 1 0.77 1.79 3.37 4.10 5.93
Target Item 2 0.675 1.23 2.44 3.20 4.575
Target Item 3 1.6 3.90 4.58 6.00 6.4
Target Item 4 0.86 3.00 3.88 4.50 4.94
Target Item 5 0.67 1.60 2.79 3.70 4.63
Target Item 6 1.17 3.14 4.85 5.90 6.33

Table 10: Quantiles of DM1.
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ql q5 q50 q95 qh
Seed Item 1 -2.7 3.39 27.46 59.47 65.7
Seed Item 2 12.6 16.95 36.05 49.82 53.4
Seed Item 3 18.5 27.15 52.10 89.40 96.5
Seed Item 4 2.4 4.49 10.84 19.86 21.6
Seed Item 5 2.5 3.03 5.43 8.00 8.5
Seed Item 6 45 50.00 74.46 99.65 105
Seed Item 7 3.8 4.00 5.35 6.00 6.2
Seed Item 8 -3.977 5.01 5.95 6.99 103.747
Seed Item 9 1.63 1.80 2.44 3.48 3.67
Seed Item 10 4.6 5.36 6.03 8.27 9.4
Seed Item 11 0.84 1.01 1.35 1.45 1.56
Seed Item 12 2.2 2.52 3.74 5.10 5.8
Seed Item 13 0.345 0.48 0.88 0.95 1.005
Target Item 1 1.24 1.85 3.37 4.10 4.36
Target Item 2 0.78 1.25 2.44 3.20 3.42
Target Item 3 3.69 3.90 4.58 6.20 6.21
Target Item 4 2.85 3.00 3.88 4.50 4.65
Target Item 5 1.28 1.66 2.79 3.70 3.92
Target Item 6 2.71 3.27 4.85 5.90 6.19

Table 11: Quantiles of DM1 alt1.
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ql q5 q50 q95 qh
Seed Item 1 -2.7 3.39 27.46 59.47 65.7
Seed Item 2 12.6 16.95 36.05 49.82 53.4
Seed Item 3 18.5 27.15 52.10 89.40 96.5
Seed Item 4 2.4 4.49 10.84 19.86 21.6
Seed Item 5 2.5 3.03 5.43 8.00 8.5
Seed Item 6 45 50.00 74.46 99.65 105
Seed Item 7 3.8 4.00 5.35 6.00 6.2
Seed Item 8 4.8 5.08 5.95 6.88 7.2
Seed Item 9 1.63 1.80 2.44 3.48 3.67
Seed Item 10 4.6 5.36 6.03 8.27 9.4
Seed Item 11 0.84 1.01 1.35 1.45 1.56
Seed Item 12 2.2 2.52 3.74 5.10 5.8
Seed Item 13 0.345 0.48 0.88 0.95 1.005
Target Item 1 1.24 1.85 3.37 4.10 4.36
Target Item 2 0.78 1.25 2.44 3.20 3.42
Target Item 3 3.69 3.90 4.58 6.20 6.21
Target Item 4 2.85 3.00 3.88 4.50 4.65
Target Item 5 1.28 1.66 2.79 3.70 3.92
Target Item 6 2.71 3.27 4.85 5.90 6.19

Table 12: Quantiles of DM1 alt2.

Item Weights. When the item weights weighting scheme is used to combine
the expert judgments, the information score of the obtained DM and the
weight that is presented in the output table from EXCALIBUR are calculated
using global weights [1]. For illustration, see Figure 6. Therefore, it is not
possible for the user to know the exact weights that were used per item.

On the other hand, the item weights function of ANDURIL provides
the user with tables W itm and W itm tq which contain the weights of each
expert concerning the seed variables and target variables respectively. The
code that was used is as follows:

[ unorm w , W itm , W itm tq ] = i tem weights ( Cal var , TQs ,
r e a l i z a t i o n , alpha , back measure , k ) ;
[ f DM2 , F DM out2 , X out2 , DM2, W incl DM2 ] =
calculate DM item ( Cal var , TQs , r e a l i z a t i o n , W itm , . . .
W itm tq , k , back measure , alpha ) ;

The normalized weights W itm for every expert per seed item (which were
used to obtain DM2) are presented in Table 13. The experts with statistical
accuracy below the significance level alpha will have a weight equal to zero.
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It.
1

It.
2

It.
3

It.
4

It.
5

It.
6

It.
7

It.
8

It.
9

It.
10

It.
11

It.
12

It.
13

Exp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 3 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 4 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 5 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 6 0.450 0.661 0.698 0.523 0.613 0.707 0.846 0.844 0.808 0.951 0.898 0.886 0.959
Exp. 7 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 8 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 9 0.550 0.339 0.302 0.477 0.387 0.293 0.154 0.156 0.192 0.049 0.102 0.114 0.041

Table 13: Table with weights of every expert per item regarding DM2.

The experts with statistical accuracy above the significance level will have
an un-normalized weight equal to the product of the statistical accuracy and
the information score of each variable. In this test case, it can be seen that
although only experts 6 and 9 have non-zero weights, the weights of these two
experts differ significantly from item to item (e.g. item 1 and item 13). This
type of information could be valuable to the analyst, in order to visualize the
impact of informativeness of every expert on the weight per item.

Distributions of DMs. The cumulative distribution of a DM is calculated by
integrating the density of the DM (equation 4). To achieve this, all the values
of the quantiles of the experts with non-zero weights are taken into account
and the cumulative probability of every unique value is computed. Hence,
the qi,5, qi,50 and qi,95 quantiles of the DM are obtained. In EXCALIBUR
the output distributions of the DMs are calculated by linear interpolation be-
tween these three quantiles (i.e. qi,5 , qi,50 and qi,95) of the DM. This may lead
to differences between the distributions obtained by integration (Case 1 in
figure 11) and the distributions that are obtained by interpolating in between
quantiles (Case 2 in the same figure). Functions calculate DM global and
calculate DM item of ANDURIL provide the user with the DM distribu-
tions containing the quantiles of experts with non-zero weights. After using
these functions for each DM, the code presented below can be used to plot
and compare the distributions of DM1 regarding seed item 5.

% example concerning g l o b a l w e i g h t s DM, DM1
f igure ( )
% by i n t e g r a t i n g the d e n s i t y o f the DM
plot ( X out1 {5 ,1} , F DM out1 {5 ,1})
hold on
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% by l i n e a r i n t e r p o l a t i o n
plot (DM1( 5 , : ) , [ 0 . 0 0 2 5 0 .05 0 .5 0 .95 0 . 9 9 7 5 ] )

Figures 11a, 11b and 11c present the two different distributions of DMs
concerning seed item 5, combined with global, item and equal weights weight-
ing schemes respectively. From these plots, it can be seen that interpolating
linearly between qi,5, qi,50 and qi,95 to obtain a distribution for the DM may
cause significant variations in the resulting distributions, especially when the
equal weight combination is considered. The integrated cumulative distri-
bution contains more linear components since every percentile provided by
every expert is considered in the density.

(a) Global weight DM (b) Item weight DM (c) Equal weight DM

Figure 11: Comparison of output cumulative distributions obtained by integration (Case
1) and interpolation (Case 2) concerning (a) global weights, (b) item weights and (c) equal
weights.

Robustness itemwise. When investigating the robustness of the obtained DM,
EXCALIBUR supports the exclusion of only one item at a time for re-
calculation. Hence, it is not possible to investigate how the performance mea-
sures (i.e. Statistical accuracy and Information scores) vary as more than one
item are excluded at a time. For this reason, Checking Robustness items

and robustness plots functions of ANDURIL were developed. The latter
produces three box-plots. Each plot corresponds to one measure of per-
formance in judging uncertainty. Namely statistical accuracy, information
score over all items and information score over seed items. Examples for
our demonstration case are presented in Figures 12, 13 and 14 for statistical
accuracy, information score (over all items) and information score (over seed
items) respectively.

Each box-plot presents how the values of every measure vary with the
number of excluded items (horizontal axis). In these plots a green horizontal
line that shows the values of the initial DM whose robustness is under inves-
tigation. A magenta marker shows the geometric mean for every number of
removed items.
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It should be noted that when the number of excluded seed items increases
there is the possibility that for some combinations (of excluded seed items)
the calibration score of all experts reduces below the significance level alpha,
resulting in zero weights for every expert. Hence, these combinations are not
considered.

As it can be seen in Figures 12, 13 and 14 although the interval containing
95% of the recalculated scores increases as more items are removed at a time,
the median remains close to the original value (shown by the green horizontal
line) for every measure of performance.

Figure 12: Robustness of calibration score with respect to the number of excluded seed
items.

Figure 13: Robustness of information score over the seed items with respect to the number
of excluded seed items
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Figure 14: Robustness of information score over all items with respect to the number of
excluded seed items

5.2. Limitations of ANDURIL

ANDURIL should not be seen as a replacement of EXCALIBUR. This is
a first step towards a toolbox that will facilitate practitioners and researchers
working further with Cooke’s classical model. ANDURIL does not include
yet all the features that EXCALIBUR does. In particular, ANDURIL does
not support the following:

• Using more than three quantiles or different ones than the 5%, 50% and
95% quantiles. In the majority of the studies that have been conducted
in the past three quantiles (5th, 50th and 95th) have been used. How-
ever, supporting more than these three quantiles, would be a valuable
addition to the tool.

• Missing values for certain items. It may occur that some items are not
assessed by a particular expert(s). In this case, at the moment, this
particular item should be excluded from the calculation of calibration
and information score in ANDURIL while in principle the scores could
be computed with the remaining items.

• Plotting the range graphs of each variable per expert (i.e. expertwise).
The function plotting itemwise could (relatively easily) be modified
in order to support this standard EXCALIBUR feature.

• A graphical user interface (supported by EXCALIBUR) which for some
practitioners may be more accessible than a command line of matlab.

• Discrepancy analysis which is supported by EXCALIBUR.
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• Bayesian combination which is very seldom used but is supported by
EXCALIBUR.

• ANDURIL does not support elicitation of multivariate uncertainty [6].
This feature is also not available in EXCALIBUR.

6. Final Comments

A MATLAB toolbox named ANDURIL was developed to support de-
cision making under uncertainty, when expert judgments are combined by
applying Cooke’s classical model for structured expert judgment. The main
purpose for developing this toolbox is to create an open source software that
can be used by practitioners and researcher who are interested in applying or
further developing Cooke’s method. The developed tool was validated with
the closed source software EXCALIBUR. For this purpose a recent study
concerning green house gases emissions in Mexico was used as a test case. It
was shown that ANDURIL can reproduce accurately the results of EXCAL-
IBUR.

The advantages of having a transparent open source software for apply-
ing Cooke’s method were discussed. The developed toolbox can be used
to investigate different ways of calculating the intrinsic range of the aggre-
gated opinions that may result in differences in the performance measures of
the obtained DMs. Moreover, it is possible to provide the analyst with the
weights of each expert per item when the item weights weighting scheme is
considered. Also, it gives the opportunity to the user to calculate the inte-
grated cumulative distribution of the DM considering in the density every
percentile provided by every expert with non-zero weights, rather than just
interpolating in between the 5th, 50th and 95th percentiles of the DM. Finally,
the robustness of the obtained DM can be investigated while excluding more
than one seed item at a time. Surely, other possibilities than the ones dis-
cussed in this paper may be explored further by researchers interested in the
method.

Concluding, the authors want to stress that the developed tool constitutes
a first step towards an open source version of Cooke’s classical model. Despite
the limitations of the current version of ANDURIL, it is to the authors belief
that the developed toolbox will be valuable to those who are interested in
further investigating and applying the method. Some possible extension of
the toolbox currently available in EXCALIBUR and not in ANDURIL have
been discussed. It is the ambition of the authors to extend ANDURIL also
with the more recent techniques of elicitation of multivariate dependence.
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