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SUMMARY

Transport of particles by a carrier fluid is an important, ubiquitous process. Few of many
obvious examples are the blood flow that feeds oxygen to the different parts of our bod-
ies, wind-assisted pollination, sediment transport in sand storms, avalanches, or rivers,
cloud formation, and pyroclastic flows. In industry one can think of the flocculation/sedi-
mentation processes in the treatment of drinking water, circulating fluidized bed reactors,
sediment transport in land reclamation works, and more.

The scientific community has been studying particle-laden turbulent flows, mostly for
cases where the flow is dilute and the particles are very small. For dense flows laden
with finite size particles — particles with a size larger than the smallest turbulent scales —
some basic, and yet very important questions remain unanswered. Questions like: ‘in a
turbulent suspension flow of finite size particles with given set of properties, what is the
power required to sustain the flow?’ and ‘Where do particles tend to accumulate?’.

The present work seeks to extend the current fundamental knowledge of these flows
with original results for a complex, and yet quite idealized case: turbulent channel trans-
port of dense, neutrally-buoyant finite size spheres. The mathematical properties of the
governing equations for this system require massively-parallel numerical simulations for
achieving the three-dimensional and time-resolved detail, necessary to shed light on the
research questions postulated above.

This thesis is divided in two parts. The first part deals with the development and val-
idation of a numerical algorithm capable of performing state-of-the-art numerical sim-
ulations of dense turbulent transport of finite size particles. In the second part, results
from numerical simulations are presented to understand the dynamics of turbulent chan-
nel transport of finite size particle suspensions.

The starting point was the second-order immersed-boundary method (IBM) described
by Breugem [18]. We implemented a new parallelization strategy that increased the com-
putational performance to such an extent so that high-fidelity numerical simulations with
©(107) Eulerian grid cells and O(1 0°) finite size particles were possible. We also devel-
oped a method for short-range particle-particle and particle-wall interactions, improved
the model for lubrication interactions, and incorporated a simple, yet realistic, model
for oblique particle-particle/-wall collisions. Three types of inter-particle interactions are
taken into account: (1) long- and (2) short-range hydrodynamic interactions, and (3) solid-
solid contact. The collision model was validated against several benchmark experiments.

We performed simulations of turbulent suspension transport. Our results allowed us to
extend well-know scaling laws for the mean velocity and overall drag as a function of the
flow governing parameters, derived by von Karman and Prandtl in the 1920s for single-
phase turbulent flow, to the case of a finite size particle suspension. The key is to split
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the suspension flow into two regions: the core region where it behaves like a fluid with an
effective viscosity higher than that of the suspending fluid, and a thin particle-wall layer
along each wall. In the particle-wall layer, particles highly influence the distribution of
wall shear stresses. This is characterized by extreme events (both much higher and much
lower than the mean). Based on these observations we provide a scaling for the particle-
to-fluid slip velocity as a function of the flow governing parameters. In regard to particle
dispersion, single-point dispersion is dominated by particle-turbulence (and not particle-
particle) interactions, while differences in two-point dispersion and collisional dynamics
are consistent with a picture of shear-driven interactions.



SAMENVATTING

Het transport van deeltjes door een vloeistof is een belangrijk en veel voorkomend proces.
Enkele van de duidelijke voorbeelden zijn de bloedstroom die zuurstof vervoert naar ver-
schillende delen van ons lichaam, door de wind gedreven bestuiving, sediment transport
in zandstormen, grondverschuivingen, of rivieren, de vorming van bewolking en een pyro-
clastische stroom. In de industrie kan men denken aan flocculatie/sedimentatieprocessen
in drinkwaterzuivering, het circuleren van een gefluidiseerde-bed-reactor, sediment trans-
port voor landaanwinning, enzovoorts.

De wetenschappelijke gemeenschap heeft turbulente stromingen geladen met deeltjes
met name bestudeerd in het geval dat de stroming verdund is en de deeltjes zeer klein zijn.
Voor geconcentreerde stromingen geladen met deeltjes met een eindige grootte — deeltjes
met een afmeting groter dan de kleinste turbulentieschalen — blijven een aantal basale,
maar zeer belangrijke vragen onbeantwoord. Vragen zoals: ‘Wat is de energie die nodig
is om een stroming van een turbulente suspensie met deeltjes van een eindige grootte met
een gegeven set aan eigenschappen voort te blijven stuwen?’ en 'Waar neigen deeltjes te
accumuleren?’

Het huidige werk zoekt naar het vergroten van de huidige fundamentele kennis van dit
soort stromingen door middel van originele resultaten voor een complexe, maar alsnog
tamelijk geidealiseerde casus: turbulent transport van een hoogbeladen suspensie van bol-
letjes met een neutraal drijfvermogen in een kanaal. De mathematische eigenschappen
van de geldende vergelijkingen van dit systeem vereisen intensieve parallelle numerieke
simulaties om het driedimensionale en tijd opgeloste detail te bereiken dat nodig is om
een licht te werpen op de onderzoeksvragen die hierboven zijn geformuleerd.

Dit proefschrift bestaat uit twee delen. Het eerste deel behandelt de ontwikkeling en
validatie van een numeriek algoritme dat in staat is om de modernste numerieke simulaties
van geconcentreerd turbulent transport van deeltjes met een eindige grootte uit te voeren.
In het tweede deel worden de resultaten van numerieke simulaties gepresenteerd, met als
doel het dynamisch gedrag van het turbulente transport van suspensies van deeltjes met
een eindige grootte in een kanaal te begrijpen.

Het startpunt was een tweede-orde nauwkeurig Immersed Boundary Method (IBM),
beschreven door Breugem [18]. We hebben een nieuwe parallellisatiestrategie geimple-
menteerd die de rekenprestatie dusdanig heeft verbeterd dat accurate numerieke simu-
laties met ©(10%) Euleriaanse roostercellen en O(10°) deeltjes met eindige grootte mo-
gelijk zijn. We hebben ook een methode ontwikkeld voor de deeltje-deeltje en deeltje-
wand interactie op korte afstand, het model voor lubricatie-interacties verbeterd, en een
simpel maar realistisch model voor deeltje-deeltje/-wand botsingen onder een hoek gein-
corporeerd. Drie typen interacties tussen deeltjes worden daarbij meegenomen: (1) lange-
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en (2) korteafstandsinteracties van hydrodynamische aard, en (3) direct contact tussen
vaste deeltjes. Het botsingsmodel is geverifieerd ten opzichte van een aantal referentie-
experimenten.

We hebben simulaties gedaan van turbulent transport van hoogbeladen suspensies. Onze
resultaten hebben ons in staat gesteld om bekende schalingswetten voor de gemiddelde
snelheid en de algehele weerstand als functie van stromingsgerelateerde parameters, afgeleid
door von Kdrmén en Prandtl in de jaren 1920 voor éénfasige turbulente stroming, uit te
breiden naar de casus van een suspensie met deeltjes van eindige grootte. Dit is gedaan
door de suspensiestroming in twee gebieden op te delen: de kern, waar de stroming zich
gedraagt als een vloeistof met een effectieve viscositeit hoger dan die van de suspen-
sievloeistof, en een dunne deeltjes-wandlaag langs elke wand. In de deeltjes-wandlaag
hebben deeltjes een grote invloed op de verdeling van de afschuifspanningen op de wand.
Dit wordt gekarakteriseerd door extreme gebeurtenissen (zowel veel hoger als veel lager
dan het gemiddelde). Op basis van deze observaties stellen we een schaling op voor de
gemiddelde slipsnelheid tussen de deeltjes en de vloeistof als functie van de geldende
stromingsparameters. Met betrekking tot de dispersie van deeltjes is de eenpuntsdisper-
sie gedomineerd door deeltjes-turbulentie (en niet deeltje-deeltje) interacties, terwijl ver-
schillen in de tweepunts-dispersie en botsingsdynamica consistent zijn met het beeld van
afschuiving-gedreven interacties.
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INTRODUCTION

1.1 BACKGROUND

PARTICLE-LADEN TURBULENT FLOWS

Panta rhei. This expression, attributed to the Greek philosopher Heraclitus (535-475 BC),
translates in English to everything flows, and intends to convey the idea that oneself and
the rest of the world is in continuous change:

We both step and do not step in the same rivers. We are and are not.!

We borrow this expression in a less philosophical sense and shape it to the purpose of this
introduction: anything can flow, provided that there is a driving force capable of making
the thing — matter — flow.

In the present work we consider particle-laden fluid flows. Particles — portions of matter
much smaller than the overall physical system of interest — travel in a carrier fluid, also in
motion. The system at stake is in a turbulent state, exhibiting both chaotic and multiscale
dynamics.

These flows are ubiquitous in nature. After all, turbulent is the natural state of most
of the flows present in nature?. Few of many popular examples are sediment transport in
rivers, sandstorms, pyroclastic flows, slurry transport in land reclamation processes, and
the flocculation and sedimentation processes in the treatment of drinking water, see fig-
ure 1.1. These examples and many others share two characteristics that are explored here.
First, the flow can be dense, meaning that the volume fraction of particles is sufficiently
high that particle-particle interactions are dynamically significant; and second, the parti-
cles can have a finite size, about the same size or larger than the smallest relevant length
scale of the fluid flow (e.g., the Kolmogorov microscale [82]).

In this case turbulence — as an unsolved problem of classical physics —is tightly coupled
to the particle dynamics, modifying and being modified by it. This results in a complex
problem, with an unbalance between the limited fundamental knowledge of its physics,
and its ubiquitous character.

It is imperative that we continuously improve our fundamental knowledge on particle-
laden flows. In industry, engineers strive to develop more efficient and sustainable pro-
cesses. Moreover, we would like to be able to anticipate potential natural disasters, and
once they cannot be avoided, to minimize the potential natural hazard. Think, for instance
about our capacity for predicting where human waste tends to accumulate in the ocean, or
of how the ashes from a volcanic eruption will disperse in space and time, and where they
can be hazardous to airline flights. Such predictions are inherently difficult to make, requir-
ing a significant amount of data, computing time, and a great deal of modeling. These are
impossible to make without some level of fundamental understanding of particle-laden
flows.

1 DK B49a (Diels-Kranz collection of Presocratic sources)
2 At least at scales that the human eye can see.
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There is a kaleidoscope of possible effects of particles on turbulence, and reciprocally of
turbulence to particle dynamics. Particles may vary in shape, size and physical/chemical
properties; the fluid can be non-Newtonian and the flow/particle dynamics influenced by
external fields (e.g. gravitational or magnetic). One can think of many more parameters
inspired by real applications that make the flow even more complex. Taking all these into
account at once in a specific problem makes it difficult to disentangle the fundamental
role that each parameter takes in the flow physics. In the framework of this thesis we will
consider particles that are of finite size, non-Brownian?, spherical, rigid, homogeneous,
and isotropic. As we will see, even in this “simplified” case there is a wide range of regimes
that are still subject of active research, and with practical applications®.

Here we focus on dense turbulent suspensions. The attributes dense and turbulent im-
pose respectively lower and upper bounds in the volume fractions that are considered.
Dense implies that the concentration of particles is sufficiently high such that particle-
fluid and particle-particle interactions are dynamically significant; turbulent obviously
implies that the flow is in a turbulent state. Consequently, the solid volume fraction can-
not be too high. Otherwise, turbulent coherent structures are completely destroyed by
particle collisions and the rigidity constraint of the zero rate-of-strain that the particle
boundaries impose on the flow dynamics. We therefore do not consider the more ex-
treme values of solid volume fraction typical of a granular flow. More qualitatively, apart
from relatively high flow Reynolds number, we require that the Bagnold number Ba =
4Repﬁ — a ratio between inter-particle inertial to viscous forces — is small enough.
A=1/(®max/D)"/3—1) is the linear concentration, @ qx = 0.74 and Rey, a particle
Reynolds number defined from the particle radius, local shear rate and fluid viscosity. The
range of Bagnold numbers that we consider are typically in the range 40 < Ba < 450 [5,
85].

TURBULENCE MODULATION BY THE PRESENCE OF PARTICLES

Noticeable changes in the turbulence dynamics require a dynamically significant number
of particles. Three main coupling regimes are often considered, depending on the volume
fraction (® = V/(V¢ + Vs)) and mass fraction (W = M /(M + My)) of solid par-
ticles in the flow, with V and M denoting total mass and volume, respectively, and the

Typically with diameter Dp 2 Tum.

Here is an example. Consider, sediment transport for land reclamation in the dredging industry (figure 1.1
(d)), a very important activity in The Netherlands. Here, characteristic velocities are of the order of 5m/s,
flowing through a suction pipe with a diameter of about Tm. Considering the kinematic viscosity of water
at the range of temperatures at stake (about 10°C) equal to v = 10~®m? /s, and a solid volume fraction
of 40%, we get a Reynolds number based on the pipe diameter and effective suspension viscosity [133] of

Rep ~ 10°. Estimating the Kolmogorov length scale in the bulk from the viscous wall unit 1 ~ DRe57/ 8

(assuming a friction factor f ~ ReB1 / 4) we get a value of N ~ 0.04mm, much smaller than the characteristic
size of the sediments that are being transported D ~ 0.1mm [60].
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4 INTRODUCTION

Figure 1.1:

Practical examples of sediment transport: (a) pyroclastic flow from the Mayon Volcano,
Philippines, 1984 (source: volcanoes.usgs.gov); (b) aeolian flow in a crest in the
Kelso Dunes in the Mojave Desert, California (source: wikipedia.org); (c) channel-
ing due to the erosion in a river flow in the Toklat River, Alaska (source: flickr.com);
(d) sediment discharge in land reclamation (d) (source: dragadoinfra.com).


volcanoes.usgs.gov
wikipedia.org
flickr.com
dragadoinfra.com

1.1 BACKGROUND

subscripts s and f denoting ’solid’ and fluid’, respectively. In this context, low ® and ¥
correspond to a regime where the global particle inertia is so small that the turbulence
dynamics is hardly modified by their presence, and the volume fraction of particles so
small that particle-fluid and particle-particle interactions are negligible. This is the so-
called /-way coupling regime, where particle dynamics is influenced by the turbulence
dynamics but the reciprocal influence is negligible. Increasing ¥ for fixed @ (e.g., by con-
sidering the same amount of particles in a lighter fluid) will eventually result in a regime
where the overall particle inertia becomes dynamically significant in turbulence modula-
tion, while particle-particle interactions are still unlikely. In this regime particle dynamics
modulate the turbulence, and vice-versa (hence called 2-way coupling). Finally, increas-
ing @ will eventually result in a regime where all the previous interactions are important,
plus particle-particle interactions: the so-called 4-way coupling regime. Of course, choos-
ing the modeling strategy to study these flows requires considering the type of coupling
regime. These regimes and the associated nomenclature were introduced in [41], where a
schematic like figure 1.2 is made. We note that the ratio of particle-to-turbulence response
times Tp, /Ty, presented along the vertical axis can be expressed in terms of the particle
mass fraction, and particle-to-fluid density ratio, large scale turbulent Reynolds number
Rer, and particle-to-turbulence size ratio D /L.

In figure 1.2 particle size and density influence the coupling regime similarly. But when
it comes to developing a modeling strategy, large particles, which interact directly with
flow scales, are more challenging.

MODELING STRATEGIES FOR TURBULENT DISPERSED MULTIPHASE FLOWS

The modeling approach depends, first of all, on the level of detail that is required, i.e.,
on which scales to resolve. Fully-resolved simulations compute the flow up to the small-
est scale — the microscale. By definition, this approach requires no closure models for
unresolved terms, often at the price of a large computational demand?.

At present, interface-resolved simulations of particulate turbulent flows are limited to
0(10° —10°) particles and relatively low Reynolds numbers, albeit many realistic appli-
cations deal with much higher figures. Predicting such large systems requires methods for
resolving scales down to a certain threshold, while modeling the spectrum of unresolved
scales. In this spirit, if information beyond the largest scales is required, while resolving all
the scales is unfeasible, one can resort to macroscopic models. In these models, a volume-
averaging procedure is typically applied to the governing equations, thereby deriving a
system of equations for conservation of mass and momentum of the mixture. Two types
of unclosed terms emerge from such averaging procedure. First, as in single-phase flows,
a subgrid-scale stress term. Second, terms related to exchange of momentum between

Hence denoted by some researchers in the field of kinetic models for multi-phase flows (private communica-
tion with the author) as the brute-force approach.
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heavy/large & dilute

1-way 2-way

light/ small & dilute

1078
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107 1074

o

10°

Figure 1.2: Coupling regimes as described in [41]. Tp /Ty, increases monotonically with any of
the following parameters: ¥, pp, /p¢, Dp /L or Rer, with L being the turbulence inte-
gral scale, and Rer the Reynolds number based on the large turbulence scales. For a
very dilute system, particles hardly influence the flow dynamics; only the flow dynam-
ics influence the particles. Increasing the volume fraction for fixed Tp /T results in
a stronger coupling: first 2-way and ultimately 4-way. The heavier or larger the parti-
cles are, the lower the volume fractions for which 2- and 4-way coupling effects are
important.
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kinetic theory

2-way coupling
(DNS/DEM with Euler-Euler
drag force closure)

interface-resolved
(DNS/DEM)

Figure 1.3: Schematic of a multi-scale modeling approach applied to a turbulent bubble column
(figures adapted from [122]). Moving from left to right requires more modeling and
less computing time (for fixed problem size). The finest level of detail is achieved
through interface-resolved DNS approach (left). Treating the bubbles as spherical par-
ticles with closures for inter-phase momentum transfer can result in savings in com-
puting time and allows for simulating bigger systems. Volume-averaging of the flow
governing equations results in an even less expensive (two-fluid) Euler-Euler approach,
which often can handle problems at the scale of industrial applications. With additional
assumption on the Reynolds-averaged and volume-averaged flow, the two-fluid model
can often be further simplified (e.g. from 3D to 1D).
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phases (e.g. drag and particle stresses). This results in a so-called Euler-Euler description
of the system, as both phases are treated as continua (see e.g. [42]). Insights on closure
problems can be obtained from microscale simulations. This approach requires much less
computational time, being important in many industrial applications that require prompt
results for large systems.

An increasingly popular approach consists on mesoscopic (or kinetic) models, which
can be seen as bridge between the micro and macroscopic approaches. Here, insights from
microscale simulations are used to formulate kinetic equations for mesoscale variables,
such as an equation for transport of particle number density; see e.g. [50, 101] for reviews.
In this case, it is still possible to model distributions of the dispersed phase in a Lagrangian
framework (see e.g. [22, 50]). A well-posed mesoscopic model should converge to the
macroscopic model when a proper averaging procedure is applied to its equations.

Approaches at different scales can be used in a strategy for upscaling a given problem up
to the engineering scale. Figure 1.3 presents an example of a multi-scale modeling strategy
[63, 122], which can be used to scale problems to sizes of a realistic application. At each
stage, some information is fed into the model to make the problem computationally less
expensive and easier to upscale for a larger system. See the figure caption for a detailed
explanation.

FULLY-RESOLVED SIMULATIONS — FROM POINT-PARTICLE TO INTERFACE-RESOLVED

The term fully-resolved always depends on the smallest relevant flow scale for the appli-
cation at stake. In DNS of heavy particles much smaller than the relevant flow length
scale, in a dilute regime, one can state that simulations with point-particle methods® pro-
vide a similar level of detail when it comes to the turbulence modulation as an interface-
resolved simulation, where the fluid-phase would be over-resolved. In the point-particle
limit, the particle dynamics is governed by the well-known Maxey-Riley-Gatignol equa-
tion [51, 100] for a spherical particle with radius R:

du, 1 R?_, piDu 1pf (Du Du, R?_,
dtnp<“—“v+6v“ oDt T2p, \Dt "Dt 107 )7
——

aq Qpg Qam

9 pr 1 [* 1 d R?_,
——— — (u— — d
Joo r—— (u up + 6Vu T

ah

(1.1)

6 This nomenclature can be misleading, as in fact the size of the particle is considered in the governing equations
of the particle motion. Point-particle approximation requires that the effect of particles in the flow is modeled
by point forces.
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with u}, being the particle velocity and u the velocity of the carrier fluid undisturbed by
the presence of the particles, evaluated at the particle location; T, the particle response
time in the Stokes limit: (2/9)pp R? /u. Term aq on the right-hand-side corresponds to the
Stokes drag, a, g results from the local fluid acceleration, aqm to the added mass force
required to displace carrier fluid as the particle moves, and ay, is the Basset history force
term due to an unsteady diffusion of vorticity in the boundary layer around the particle
[9]. Corrections for a non-uniform undisturbed flow field (x VZu) are known as Faxén
corrections for finite size effects.

Several studies have been uncovering the dynamics of small particles in many canoni-
cal turbulent flows. Even so, eq. (1.1), also incorporating the Faxén corrections for finite
size effects, still relies on a strict number of assumptions that loose the validity in 2- or
4-way coupling regimes, finite particle inertia, or particle size Dy, > 1, with ) being the
Kolmogorov microscale. First, the necessity of vanishing particle Reynolds number. Sec-
ond, relying on a 1-way coupling framework where an undisturbed flow field modifies the
particle dynamics but is not modified by it. Despite their limitations, 1-way coupling sim-
ulations have been providing insights on several canonical turbulent flows laden with solid
particles, such as homogeneous isotropic turbulence e.g. [21, 124, 138]), wall-bounded
flows [38, 125, 132], flows and jets [113].

The idea of the point-particle approximation for 2-way coupling is to model the effects
of the dispersed particles in the flow through a localized source/sink of momentum in
the discretized Navier-Stokes equations. Even without the need of accounting for 4-way
coupling effects, this approach poses problems. When implemented in the most straight-
forward manner (particle-in-cell method [30]), it cannot reproduce consistently the simple
benchmark of a particle settling in a quiescent fluid at low Reynolds number, while a 1-
way coupling model — presumably incorporating fewer physics — can. In the case of a
2-way coupling simulation, the flow forcing acts such that the local drag force on the par-
ticle is reduced, thereby imposing an artificial acceleration on the particle, as illustrated
in [57], who developed a more sophisticated 2-way coupling algorithm that overcomes
these issues. Obviously, in a 4-way coupling regime one needs to resort to approaches
that can account for short-range particle-particle interactions, which are very difficult to
tackle without interface-resolved simulations.

MODELING 4-WAY COUPLING AND FINITE SIZE EFFECTS

Particles with a diameter D that is about the same or larger than the smallest flow relevant
scale n (e.g. the Kolmogorov microscale, in turbulence) will be our definition of finite size
particles. Finite-size effects are therefore responsible for deviations in the flow dynamics
from the situation of particle size D/n < 1.
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Limitations of the point-particle approximation justify the need for interface-resolved
simulations. The exponential growth in computing power throughout the last decades’, in
addition to the development of efficient numerical methods, allow for massively-parallel
interface-resolved simulations of particle-laden flows. The current methods could be grouped
in three categories, depending on the strategy for applying boundary conditions at the
particle-fluid interface: body-fitted, fictitious domain, and meshless methods. We will
briefly address the features of these methods (see also [99] for a recent review), restricting
ourselves to approaches that couple a Navier-Stokes solver® to a certain number of solid
particles with finite size, through boundary conditions at the particle-fluid interface.

Body-fitted methods are those in which the computational grid conforms to the sur-
faces of all the particles (panel (a) of figure 1.4). They therefore employ an accurate de-
scription of the boundary conditions in the particle-fluid interfaces. Downsides of this
approach are computational overhead associated with (1) solving the Navier-Stokes equa-
tions on the resulting complex geometry, and (2) re-gridding every time step. This ap-
proach has been applied in the first reported interface-resolved simulations coupling the
motion of spherical particles to the Navier-Stokes equations [64, 72], in a finite-element
framework. At present, the most used method is by Hu, Patankar, and Zhu [65], where the
fluid flow is solved implicitly in a finite-element framework and the particle positions up-
dated implicitly. Recent developments of efficient grid-overset methods [20] give exciting
prospects for future interface-resolved body-fitted simulations, see [146]. These methods
use two grids. Each particle is discretized in a body-fitted structured orthogonal grid, over-
set on a background grid, and on grids pertaining to other particles. Interpolation schemes
are used to match numerical solutions of the two overlapping grids. From a computational
point of view, the ideal problem for these methods are dilute systems, where the cost of
regriding and slower Navier-Stokes solver is compensated by the flexibility in using an
irregular mesh with a much smaller number of grid points, as recently demonstrated in
[147].

Fictitious domain methods encompass most of the state-of-the-art methods that have
been able to simulate mobile particle-laden flows with resolved particle-fluid interface.
Several approaches have been developed and applied to particle-laden turbulent flows
throughout the last two decades. These methods solve the equations governing the car-
rier fluid dynamics over the entire flow domain, including the one occupied by the dis-
persed particles. Then, special treatment on the grid cells near the particle surface allow
for imposing boundary condition with satisfactory accuracy (see panel (b) of figure 1.4).
This therefore allows for exploiting relatively efficient Navier-Stokes solvers, in structured
Cartesian grids. The downside is a loss of accuracy in the imposition of boundary con-
ditions at the particle surface, often with a non-sharp particle-fluid interface boundary

Following Moore’s law [104].

At finite Reynolds number; therefore excluding several efficient methods based on the Stokes equations, such
as boundary integral methods [117], or Stokesian dynamics (when one is solely interested in the particle
dynamics) [14].
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condition. In the following we highlight some popular methods and explain in words their
concept.

* Distributed Lagrangian Multiplier (DLM) is an immersed-body method where the
flow inside the particles is forced to comply to their rigid-body motion [52, 110].
This is achieved by introducing a distributed Lagrange multiplier; physically the
additional force distribution required to impose these constraints.

* Viscosity Penalization methods (VPM) follow a conceptually simple approach: treat-
ing the flow inside the particles as a Newtonian fluid with viscosity vg > v [121,
144]. This poses some problems with respect to the Navier-Stokes solver that is be-
ing used. It should cope with large viscosity variations over few grid cells. If the
solver cannot handle variations in viscosity, and the difference in viscosity must
be decreased, then it can happen that the flow problem being solved becomes a
different one than the one of the flow conforming rigid particles.

 Direct Forcing Immersed-Boundary method (IBM) is probably the most used ap-
proach at present’. The idea is relatively simple. A body force is added in the
discretized momentum equations, computed such that no-slip and no-penetration
boundary conditions are fulfilled, see e.g. [43, 102, 142]. This method will be dis-
cussed in detail in chapter 3. Contrarily to some previous methods, the flow field in
the region inside the particles is not forced, and thus is not physically relevant for the
application that is being studied. These methods are relatively simple to implement
and allow for the use of very efficient Navier-Stokes solvers with direct solution for
the pressure Poisson equation. Typically, this comes at the price of a small error in
slip/penetration velocity when continuity is imposed following the fluid forcing, or
an error in mass conservation, if non-divergent-free forcing is applied after impos-
ing mass conservation.

* Physalis method [119, 134, 154] uses the fact that, very close to the particle sur-
face, the fluid flow field relative to it satisfies the Stokes equations. Canonical so-
lutions for the Stokes flow around a sphere are well-known in the literature (see
e.g. [81]). These use a multipole (Lamb) series expansion and can accommodate
any exterior flow condition. Typically, few low-order terms suffice for the relatively
small particle Reynolds numbers (< 150). The Stokes solution is used as boundary
conditions of a Navier-Stokes solver, and a few iterations between the Lamb solu-
tion and Navier-Stokes solver are performed. Advantages of this method are that it
keeps the sharpness of the particle-fluid interface, and that the terms of the multi-
pole expansion, needed for the calculation, have a clear physical meaning (e.g. drag,
stresslet, rotlet); they do not need to be computed a posteriori for post-processing.

9 This claim is based on the number of citations of the pioneering papers on the methodology used for particle-
laden flows in 2016, [142] for IBM, [52] for DLM, and others.
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The main disadvantage comes form the computational effort required for matching
the Stokes solution near the particle surface to the solution of the Navier-Stokes
solver. Moreover, since pressure points inside the domain are forced, the pressure
Poisson equation cannot be efficiently solved with direct methods. The most recent
developments regarding this method can be seen in [128].

* Lattice-Boltzmann methods formulate the governing equations at a mesoscopic scale,
in between the continuum (Navier-Stokes) and microscopic (molecular) descrip-
tions [23]. It solves the evolution of a particle distribution function on a lattice,
through a streaming step in between lattice points, and a collision step where the
local distribution relaxes a certain time scale towards an equilibrium. It can be
formally shown that this method solves the Navier-Stokes equations in a weakly-
compressible form. Being a particle-based method, it performs well in several
complex multi-physics problems, and allows for easy massively-parallel implemen-
tations: calculations are performed (almost) independently per particle, with little
inter-process communication. For particle-laden flows, these methods are often im-
plemented with a bounce-back boundary condition at the particle surface (typically
inaccurate [23]), or combined with an Immersed-Boundary method [155].

Finally, a third modeling approach that is denoted Lagrangian or meshless. In this case
both phases are described in a Lagrangian framework, as sketched in panel (¢) of figure 1.4.
This class of methods is advantageous when it comes to versatility: as it is meshless, diffi-
cult boundary conditions such as free surfaces, or immersed obstacles are straightforward
to implement. Its major downside is its current inability of simulating canonical single-
phase turbulent flows as accurately as Eulerian methods do. A popular method of this
class is smoothed particle hydrodynamics [103]. In these methods, the computational do-
main is discretized in terms of Lagrangian particles, in which the governing equations
and physical properties are obtained from a weighted average of surrounding particles
with the aid of a smoothing kernel. The form of each weight-averaged terms is derived
from the continuum equations for the fluid.

In the present work we adopted a fictitious domain method, suited for the type of prob-
lems that we will tackle: a large number of particles in relatively simple Eulerian domains
and standard no-slip and no-penetration boundary conditions for inter-phase coupling. We
will make use of the Immersed boundary method developed in [18]. Its suitability for the
type of problems that we will address becomes clear during the description of our method-
ology in chapter 2.

1.2 OBJECTIVES AND STRATEGY

Ultimately, we apply a state-of-the-art algorithm to study particle-laden turbulent flows.
Our objectives are therefore two-fold: (1) developing a numerical tool capable of simulat-
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Figure 1.4: Tllustration of the discretization strategy in a 2d domain for body-fitted (a), fictitious
domain (b) and meshless (particle-based) (c) methods. Volumes/particles in gray dis-
cretize the carrier phase and large blue particles correspond to the dispersed phase.

ing relatively large systems with respect to the current state-of-the-art interface-resolved
DNS; and (2) using it to study turbulent transport of dense finite size particle suspensions,
one of a wide range of interesting problems that can be tackled with it, see e.g. [58].

For the first objective we need:

« an algorithm with both phases parallelized such that up to O(10°) finite size parti-
cles can be simulated, with efficient data-handling and post-processing (chapter 2);

* aphysical model for short-range particle-particle/particle-wall interactions with lit-
tle effect on the computational performance of the code (chapter 3).

For the second objective we aim in particular at:

* using simulations that allow for insights at the microscopic level to explain several
macroscopic observables — upscaling;

* use this information to develop simple macroscopic descriptions of the mean turbu-
lent suspension flow (chapter 4);

* and to understand in detail finite size effects: what causes differences in flow dy-
namics with respect to the case where the particles can be treated as point-particles
(chapter 5).

As a starting point of this study, we used the code developed in [17, 18] for interface-
resolved simulations of particle-laden flows, which was employed in e.g. [84, 85, 112,
114]. The inherent numerical algorithm uses an immersed-boundary method with second-
order spatial accuracy, coupled to a standard second-order finite-volume numerical scheme
to solve the Navier-Stokes equations. This scheme was coupled to a soft-sphere collision
model used to model short-range particle-particle and particle-wall interactions, with ana-
Iytical corrections for lubrication interactions in the Stokes regime. Despite the successes
of the model, requirements of development in terms of the parallelization strategy and
modeling of short-range particle-particle/-wall interactions have been detected and in-
spired chapters 2 and 3 of this thesis.

13
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Subsequently we will apply the numerical algorithm to turbulent channel transport
of neutrally-buoyant, finite size particle suspensions; a case that only recently started to
be explored with accurate three-dimensional and time-resolved data. This inspired chap-
ters 4 and 5, and is the core of the thesis.

1.3 OUTLINE

Following this introduction, in chapter 2 we introduce the governing equations and method-
ology used in the present study, followed by some benchmark assessments. Chapter 3 de-
scribes in detail the collision model developed in the framework of this thesis. Chapter 4
presents scaling laws for the mean flow obtained from interface-resolved simulations of
turbulent suspension flows. Related to this, chapter 5 investigates finite size effects in tur-
bulent suspension flows. Finally, in chapter 6 we present concluding remarks and future
perspectives.
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Parts of this chapter will be included in J. Brindle de Motta et al. “Assessment of methods for fully resolved
simulations of particle-laden turbulent flows.” In: (in preparation) (2017).
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2.1 GOVERNING EQUATIONS

We aim at solving the Navier-Stokes equations for an incompressible, Newtonian fluid
with density p and kinematic viscosity v,

V-u=0, (2.1)
du 1 5
— + V- (uu) = —V(p+pe) +vV-y, (2.2)
dt )
where u is the fluid velocity vector, p + pe the fluid pressure with respect to an arbitrary
constant reference value; Vp, corresponds to a constant pressure gradient that may serve
as driving force for the flow. This set of equations is solved together with the Newton-Euler
equations governing the motion of a rigid spherical particle with mass m,, and moment
of inertia I,

mde2§ o ndA +F, (2.3)
Ipdﬂz§ rx (o-n)dA+ T, 2.4)
dt = Jav

where U and Q denote respectively the particle linear and angular velocity vectors, o0 =
—(p+pe)I+p (Vu + VuT) is the fluid stress tensor, r a position vector with respect
to the particle centroid, n the outward-pointing unit vector normal to the particle surface,
0V a parametrization of the surface area of the particle A, and F. and T, correspond
to external forces and torques associated with short-range inter-particle or particle-wall
interactions (such as solid-solid contact).

Egs. (2.1) — (2.2) and (2.3) — (2.4) are coupled through no-slip and no-penetration
boundary conditions at the particle surface:

U+Qxr=u V readV. (2.5)

The challenge is to couple the two sets of equations in an efficient and yet reasonably
accurate way, to allow for simulating relatively dense particle suspensions. In what follows
we will present our methodology, starting with the treatment of the fluid phase.
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2.2 NAVIER-STOKES SOLVER

The Navier-Stokes equations are solved with a pressure-correction method [1]. Consider-
ing for simplicity an explicit first-order time stepping with size At, it reads (P = p/p)

u* =u"+ At (A" + D" — VP — VP,) (2.6)
T
2 *
P=—_V. 2.7
v AV (2.7)
u™ ! = u* — AtVP (2.8)
prtl =pn 4 p (2.9)

where the subscript n and n + 1 denote two subsequent time levels, and u* is the so-called
prediction velocity. A = —V - (uu) and D = vV?u denote respectively the advective
and diffusive terms. The equations are discretized in space with a second-order finite-
difference method (with advective term in divergence form), in a regular, staggered grid
arrangement.

Typically the solution of the Poisson equation for the correction pressure P is most
computation-intensive part of fluid-flow solvers. Since further on we will elaborate on the
parallelization of this step of the numerical algorithm, we will briefly describe here the
method for solving the Poisson equation. The discretized Laplace operator in this standard
method, for grid cell (i, j, k) and uniform grid spacing Ax/y/z reads (dropping the tilde
from P for simplicity),

V2P =(Pio1ik — 2Pijx + Ptk ) /Ax*+
(Pij—1,k — 2Py + Pijs1k)/Ay*+
(Pijx—1—2Pij i + Pijis1)/AZ7. (2.10)

This results in a system described by a matrix with 7 non-zero diagonals. We take advan-
tage of the simplicity of our geometry and boundary conditions (e.g. periodic in at least
two directions), and the fact that we use at least in two directions a regular, Cartesian grid.
This allow us to and solve the Poisson equation with a fast (FFT-based) direct method (see
e.g. [126]). The underlying idea is to reduce the number of diagonals of the resulting sys-
tem of equations by applying eigenfunction expansions to the regular domain directions,
thereby reducing the system of equations into a tri-diagonal system, easily solvable with
Gauss elimination'. For periodic boundary conditions, two consecutive discrete Fourier
transforms can be applied in the periodic directions of the domain. Using the shift theo-

The system could also be solved by applying eigenfunction expansions in the other domain direction. However,
this is more expensive than solving a tri-diagonal system with Gauss elimination
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rem, it can be shown that the finite-difference equation with directions i and j in Fourier
space reduces to

P 5 PR A A A 5
\Y% P{,f,k = ()\{/AX + )\]A/Ay )P{,f,k + (P{,f,kf1 - ZP{,f,k + P{,f,k+1 )/Az
(2.11)

withi/) =0,1,---, Nj/j/2 for Ny /5 even; N /5 correspond to the number of grid points
in the i/j direction. The eigenvalues are given by A: = —2(1 — cos(2imt/Ny)) (ditto
for f). The solution procedure involves therefore 3 steps. First, applying a 2D Fourier
transform operator to the right-hand-side of the Poisson equation. Second, the solving
the resulting tri-diagonal system with Gauss elimination, and a solution for P is obtained.
Third, applying the respective inverse Fourier transform to P, yielding the final solution
of eq. (2.7). This procedure can also be applied to solve efficiently other combinations
of homogeneous boundary conditions, namely Neumann-Neumann, Dirichlet-Dirichlet
or Neumann-Dirichlet. We refer to [126] for the eigenfunction expansions pertaining to
other boundary conditions. We should note that this approach cannot be used for non-
uniform grid spacing or more complex boundary conditions (e.g. Robin). When that is
the case, iterative solvers (such as preconditioned conjugate gradient methods [53]) are
typically the most efficient choice.

2.3 IMMERSED-BOUNDARY METHOD

We use the direct forcing IBM developed in [18], briefly explained below. The IBM uses a
quasi-2D Lagrangian grid to discretize the particle surface (see figure 2.1), while the fluid
is discretized on a regular’ Eulerian mesh. The fluid prediction velocity is interpolated
from the Eulerian to a Lagrangian grid. There the force required for satisfying no-slip
and no-penetration is computed. Subsequently, the force is spread back to the Eulerian
grid. A regularized Dirac delta function 8 4 with support of 3 grid cells is used to perform
interpolation and spreading operations [123, 142]. The regularization of the particle-fluid
interface can result in a loss of spatial accuracy to first-order. Breugem [18] showed that
a slight inward retraction of the Lagrangian grid by a factor ~ Ax/3 (while the particle
governing equations are still solved considering its actual radius R) circumvents this issue
and allows for second-order spatial accuracy (figure 2.1(b)). The support of the interpo-
lation kernel is such that the same Eulerian grid point can be forced due to neighboring
Lagrangian grid points — reducing the accuracy of the imposition of BC. Errors in pen-
etration velocity arising from this are mitigated via a multi-direct forcing scheme [95]
(figure 2.1 (c)), which improves the calculation of the force distribution by iterating the

As implemented, the conservation of total force/torque of the interpolation kernel holds for a regular grid, our
direct fluid solver could accommodate one irregular direction and, at the cost of a more expensive calculation,
use the methodology in [115] or [70] for interpolation/spreading operations that conserve total force/torque
on irregular meshes.
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forcing scheme. We refer to [18] for more details on this IBM and Navier-Stokes solver. To
facilitate readability, we write below the numerical algorithm described therein. The so-
lution advances from time step n to n + 1 with the following pressure-correction scheme
and a third-order Runge-Kutta (RK3) temporal integration:
for qin1,2,3 do
u =ud! 4+ 2 (—(xg + Bq) VP2 + aqADY! 4 B ADI?)
sk, —1
Uy, =u
for sin0,1,--- ,N5 do
*k,8— 1 *%,5— 1 —1
U™ = Zijk uijks d4 <xijk — X{] ) AxAyYyAz
q—1/2,s _ +q—1/2,5—1 —1 sk, —1
F¢ —F + (U () — U Ja

f.qf1/2,s = Zl F?71/2's 5(1 (Xijk_xgi1) AVl

ijk
s = u* +Atfq—1/2,s
end for
2p _ P Lg%, Ny
V<P = (aqﬂsq)mv u

pa—1/2 —pda=3/2 4 p
integrate Newton-Euler equations
end for

where the Runge-Kutta step q corresponds to time step n for ¢ = 0 and n+ 1 for q = 3.
AD denote the advective and diffusive terms. Variables with capital case U and F corre-
spond respectively to velocities and forces in a Lagrangian grid point 1, while the respec-
tive lower case letters pertain to the same quantities in the Eulerian grid. AV, corresponds
to the volume of the Lagrangian grid cell, set to be as close as possible to the volume of
an Eulerian grid cell AxAyAz. u*** is the second prediction velocity at iteration step
s of the multi-direct forcing scheme, with Ny steps. The Runge-Kutta coefficients can
be found in e.g. Wesseling [150]: o7 = 32/60, 1 = 0, xp = 25/60, o = —17/60,
3 =45/60, 33 = —25/60. Sufficient condition for a stable temporal integration is given
by the following criterion:

1.65 Ax2 V3Ax >

) 2.12
12 v " maxjk (ul + v+ [wl) 212

At < min <

where the restriction due a viscous CFL-like criterion could be removed with an implicit
(e.g. Crank-Nicolson) discretization of the diffusion term, which in practice involves the
solution of a 3D Helmholtz equation for each domain direction [150]. We did not use such
approach, as this restriction was typically not the bottleneck for the cases simulated in this
work.

A straightforward integration of the Newton-Euler equation can become unstable for
low-density ratios. First, due to a singularity in their integration when rigid-body motion
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Figure 2.1: Sketch of the quasi-2D Lagrangian and 3D Eulerian grids, discretizing respectively
the carrier phase and the particle surface (a). Inward-retraction of the Lagrangian grid
(b) and illustration of a source of error in the imposition of boundary conditions due
to spreading operations to the Eulerian grid from different Lagrangian grid points (c);
figures from [18].

of the fluid inside the particle is indirectly taken into account, for p,, = p¢ (index p and f
correspond respectively to particle and fluid). When no special treatment for this singular-
ity is made, the solution becomes unstable at density ratios py, /p¢ ~ 1.2. This restriction
has been circumvented by directly accounting for the fluid inertia inside the particle [18,
77], integrating it through the Eulerian grid points inside the sphere with a second-order
level-set approach. Still, the temporal integration of the particle motion becomes unstable
for pp/pr ~ 0.3, which and has been attributed to an increasing importance of added
mass effects. Tschisgale, Kempe, and Frohlich [139] proposed a scheme that introduces
an added-mass-like term that allows for stable integration of the Newton-Euler equation
for relatively small particle densities. Circumventing this instability was not required for
the set of parameters that has been addressed in this work.



2.4 SHORT-RANGE PARTICLE-PARTICLE AND PARTICLE-WALL INTERACTIONS

The temporal integration of the Newton-Euler equations mentioned in the RK3 loop
presented above yields,

1 Atopg ~1/2,N;
ud =ud 1—\/——213? /2Ns Ay,
P p‘p 1

1 q q—1
+ __br J udvV, — J udVv
Ve Pp Ve Ve

9, 91!

Pf o‘q+f5q> <F°+C )
At 1—— At , 2.13
*lagtBa) ( pp>g+< 2 ooy 1)

Wl =wdT Aty T < F 2N Ay
P

q q—1
+ ot J rxudV, — J rx udV
Ip Vp VP

T + T
4 (%atBa At< ) (2.14)
2 I

where the last 4 terms in eq. (2.13) are obtained from Newton’s law at the discrete level
(and ditto in eq. (2.14) for conservation of angular momentum) and correspond respec-
tively to (1) the sum of the IBM force contribution (of the fluid on the particle) at the
particle surface, (2) the inertia of the fluid inside the particle, computed directly [77] and
not analytically from a requirement of rigid body motion [142], (3) buoyancy and (4)
short-range particle-particle/-wall interactions such as solid-solid contact or lubrication.

2.4 SHORT-RANGE PARTICLE-PARTICLE AND PARTICLE-WALL INTER

ACTIONS

Short-range hydrodynamic particle-particle and particle-wall interactions are also partly
reproduced by the IBM. However, since the method uses a fixed grid, a lubrication model
is needed for an inter-particle gap width smaller than the grid spacing. Our lubrication
model is based on asymptotic expansions of analytical solutions for canonical lubrication
interactions between spheres in the Stokes regime. Roughness effects are incorporated by
making the lubrication correction independent of the gap width for gap widths smaller
than ~ 1% of the particle radius. This correction is applied until the particles reach solid-
solid contact. Then, the corresponding contact force is modeled by a soft-sphere collision
model. This approach for short-range particle-particle and particle-wall interactions, de-
veloped in the present study, is described in chapter 3.
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2.5 COMPUTATIONAL IMPLEMENTATION AND PARALLELIZATION

Achieving massively parallel simulations of relatively large systems, larger than e.g. the
10% interface-resolved turbulent suspension in [112] required significant changes in the
original algorithm of Breugem [18].

The numerical algorithm has been implemented in a FORTRAN90 code using a Message-
Passing Interface (MPI) standard for distributed memory parallelization, together with a
shared memory (OpenMP) parallelization. Next we will explain some general, less obvious
features of the implementation of the resulting code, named InteRParts?.

2.5.1 FLUID FLOW SOLVER

The three-dimensional regular Eulerian grid is divided into several computational subdo-
mains. In most steps of the numerical algorithm, these share the total length of the domain
in one direction (the wall-normal, z), being of equal or smaller size than the domain length
in the other directions. This configuration is commonly denoted as two-dimensional pen-
cil-like decomposition. The finite-difference algorithm requires communication due to
the 2-cell width of the computational stencil. We use halo cells that store a copy of data
pertaining to the boundary of an adjacent subdomain, common practice in this kind of
numerical codes. This requires a simple pair-wise exchange of data (e.g. SEND_RECV) of a
derived type (VECTOR) describing data layout of the halo region, see figure 2.2. We refer
the reader unfamiliar with the nomenclature of the MPI standard to [49].

Poisson solver

The numerical algorithm takes advantage of a direct, FFT-based solver for the pressure
Poisson equation (eq. (2.7)), as described before. Its implementation steps are summarized
below.

3 Short for INTErface-Resolved PARTicle Simulations.
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Figure 2.2: Schematic of the exchange of information in the vertical direction (the same operation
is performed in the horizontal direction) for a 2D distributed memory parallelization.
Information pertaining to the boundary of task 0 is sent to the y-halo of task 1 and
vice-versa. Exchange of information can be achieved through a SEND_RECV call.

Algorithm 1 Steps taken to solve the Poisson eq. (2.7), together with the number of op-
erations. Total number of operations O(NxNyN_ (log NxNy)). For more details see e.g.
[126].
1: compute the right-hand-side (RHS) of the pressure Poisson equation (O(NxNyN_)
operations);
2: compute N, 2D discrete Fourier transform (DFT) of the RHS over two periodic di-
rections (O(Nz(NyNy log N, + NNy log Ny )) operations);
3: solve the resulting Nx Ny tri-diagonal systems for the pressure with Gauss elimina-
tion (O(NxNyN_) operations);
4: compute N 2D inverse DFT of the resulting pressure field (O(Nz(NyNy log N, +
NNy log Ny )) operations).

These computation steps must be implemented in a parallel framework. The RHS of
the Poisson equation is computed in the 2D pencil configuration. Subsequent communica-
tion steps for computing the Fourier transforms are required. The 2D DFT are computed
through two successive 1D DFT in each of the directions. Each DFT requires all the grid
cells for the direction at stake, making further communication operations unavoidable.

Two approaches were considered. The first one takes the following steps: (i) change the
data distribution from a 2D to a 1D slab-like configuration (see panel (a) of figure 2.3),
(ii) perform the 1D DFTs in both directions, (iii) change the distribution back to 2D to
(iv) solve the resulting tri-diagonal system with Gauss elimination and (v) perform the
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1D to 2D

T e ®

T yr T zox (b)

Figure 2.3: Illustration of data transposes in a 1D slab-like decomposition (a) and of a 2D pencil-
like decomposition (b). Each arrow involves in an all-to-all operation. Colors illustrate
different process IDs.

reciprocal operations on the obtained solution (now using inverse DFT) in order to ob-
tain the pressure field in physical space. The required communication for changing the
distribution from 1D/2D to 2D/1D can be achieved through a single (MPI) all-to-all op-
eration*. The disadvantage of this approach is that it is restrictive in terms of the number
of points in the direction perpendicular to the slabs: N, < N1N3, with Ny /> the number
of computational subdomains in direction 1/2.

Two workarounds for this restriction are as follows. First, one can combine the dis-
tributed memory with a shared memory parallelization (e.g. a hybrid MPI-0OpenMP imple-
mentation). This way, the domain can be distributed in MPI tasks such that maximum num-
ber of tasks is satisfied, and distribute the load further via shared-memory parallelization’.
This option can still be restrictive for relatively large systems, when more than O(10%)
tasks are required. The second approach keeps the 2D parallelization, and transposes the

Meaning communication from all, to all tasks.
Typically in large-scale supercomputing facilities the number of cores sharing memory ranges from 16-32,
see e.g. the top500.org list.


https://www.top500.org/

2.5 COMPUTATIONAL IMPLEMENTATION AND PARALLELIZATION

data distribution, such that it is shared in the direction of interest, see panel (b) of figure 2.3.
This requires more communication, as each transpose performs an all-fo-all operation.
However, the number of MPI tasks can now be larger than N . There is a still restriction
on the size of the computational subdomains, which should at most fit the computational
grid (i.e. NxNy < NyN2). Nevertheless, for the typical domain sizes and number of
tasks considered in our simulations, this does not pose problems. We use the data trans-
pose routines from the 2DECOMP&FFT libraries [90]. The algorithm for solving the Poisson
equation is summarized below:

Algorithm 2 Implementation of the Poisson solver in a distributed memory parallelization
(see also figure 2.3 (b)).

1: compute the RHS of the Poisson equation in the z-aligned pencil decomposition, and
transpose result to y-aligned pencil decomposition;

2: compute Ny N, 1D DFT in y, and transpose result to x-aligned pencil decomposition;

3: compute Ny N 1D DFT in x, and transpose result to z-aligned pencil decomposition;

4: solve Nx Ny linear tridiagonal systems with Gauss elimination; transpose result to
x-aligned pencil decomposition;

5: compute Ny N inverse 1D DFT in x, and transpose result to y-aligned pencil decom-
position;

6: compute Ny N inverse 1D DFT in y, and transpose result to z-aligned pencil decom-
position.

Algorithm 2 involves 6 all-to-all operations due to the transposing routines, in contrast
with the 1D slab decomposition, which involves 4. One should therefore resort to the 1D
alternative whenever N,modNN, = 0.

2.5.2 PARTICLE TREATMENT

The dispersed phase decomposition uses a master-slave technique, conceptually similar
to the one in [141]. The load due to particle-related computations is spread to the com-
putational subdomains containing the Eulerian data required for interpolation/spreading
operations, which is — like the fluid velocity data — distributed in a 2D pencil configuration.
The master process of a certain particle corresponds to the computational subdomain con-
taining its centroid, and slaves to other subdomains crossing the particle-fluid interface
(also accounting for the support of the IBM interpolation kernel). For ease of implemen-
tation, we require that no more than 4 different processes can handle the same particle,
see figure 2.4. Consequently, each particle contains one master process, and at most three
slave processes. This results in the following restriction to the number of subdomains in
direction 1:
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Figure 2.4: Schematic of master-slave parallelization for the dispersed phase in a 2D decompo-
sition. The numbers denote the task IDs, M — master and S — slave. The size of
the computational subdomains is must be larger than the particle size. When fur-
ther load distribution is required, a hybrid MPI-0OpenMP parallelization is adopted.
Ligm = V3Ax — digm, see eq. (2.15).

(;1) > Dp —digm + V34x, i=1,2; (2.15)
1

where v/3Ax accounts for the support of the regularized delta function used in the IBM,
and digp for the possibility of slight inward retraction of the Lagrangian grid [18]. To
overcome this restriction without complicating the distributed-memory parallelization, we
combine this master-slave technique with a shared-memory parallelization. Note that this
restriction is relaxed when shifting to a 3D domain decomposition, as the subdomains can
be bigger for the same number of tasks. The advantage of using 2D over 3D decomposition
is the wider range of applications for which load balancing is not compromised: 2D allows
for a direction with inhomogeneous particle distribution.

IBM forcing

Of all the operations required when including particles in the computation, the IBM forc-
ing scheme is the most intensive. Implementing it in a distributed-memory parallelization
requires some communication, as data required to perform interpolation/spreading op-
erations can be distributed over different computational subdomains. We recall that the
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following mathematical operations are to be performed, per Lagrangian grid point, per
particle:

U= Z uii8a (Xij K —X1) AVe, (2.16)
ik
Ui —Upa
Fl=— = 2.17
l At ’ ( )
fii0 = Fida (xijx—X1) AVy; (2.18)

1

the notation used above has been introduced in section 5.2. Two approaches were consid-
ered.

The first one consists of communicating the data in a Lagrangian framework, i.e. the in-
formation pertaining to a certain particle is gathered and processed by the master process,
which broadcasts the results to the slave processes, as explained below in algorithm 3:

Algorithm 3 Distributed memory implementation of IBM forcing with communications
in a Lagrangian framework.

1: forp in 1 .. pmax do > loop through particles
2 for 1 in 1 .. nldo > loop through Lagrangian grid points
3 if grid point inside computational subdomain then
4: compute partial sum of eq. (2.16) pertaining to this task for grid point 1
5: end if
6 end for
7: end for
8: forp in 1 .. pmax do
9: slaves communicate partial sums to masters (size of the communication package
o Ny)
10: master collects partial sums from slaves and adds them, thereby computing Uy in
eq. (2.16)
11: end for
12: forp in 1 .. pmax do
13: master broadcasts total force/torque sums per Lagrangian grid point to slaves
14: end for

15: forp in 1 .. pmax do
16: for1 in 1 .. nldo

17: compute eq. (2.17) and spread IBM force (eq. (2.18)) to the Eulerian grid
18: end for
19: end for

with pmax being the amount of particles for which task me is master/slave (< Np). The
advantage of this approach is that the associated load scales with the number of particles;
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Figure 2.5: Schematic of the Eulerian-based communication strategy that substitutes master-slave

communication during the IBM forcing scheme. In this 2D description, the large circle
denotes a particle, discretized by the black bullets throughout its boundary. Triangles
denote the velocity components in a regular mesh with staggered arrangement, and
the translucent red circle shows the support of the IBM interpolation kernel for a cer-
tain Lagrangian grid point. The kernel support is covered through 2-cell-spanned halo
regions containing a copy of the data from neighboring tasks.
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if there are no particles, no data is communicated. The flip side is that it requires, at least
in the most straightforward implementation, communication of O(n1) reals (nl being the
total number of Lagrangian grid points), even though only a small fraction of the partial
sums are performed by more than one task. The amount of communicated data only scales
down with increasing number of subdomains when a task is no longer master/slave of a
certain particle.

The second scenario is communicating the data in an Eulerian framework, through
halo regions that cover the support of the IBM kernel, see figure 2.5. The disadvantage
of this approach is evident: the amount of reals being communicated does not scale down
with decreasing number of particles. The advantage, other than its simplicity, is that the
amount of communicated data decreases with increasing number of tasks. Moreover, the
associated communication load is known a priori, and evenly distributed throughout all
the tasks. In this approach the task associated with the subdomain that contains a certain
Lagrangian grid point 1 will compute the total sum over the required Eulerian grid points,
meaning that now both masters and slaves process partial sums of data that was originally
distributed in different tasks. This allows for restricting the size of the loops through La-
grangian grid points to those that are actually contained in the subdomain. The algorithm
reads,

Algorithm 4 Distributed memory implementation of IBM forcing with communications
in an Eulerian framework.
1: copy data to IBM halos
2: forp in 1 .. pmax do > loop through particles
3: for L in 1 .. nl(p) do © loop through Lagragian grid points handled by that
subdomain (nl(p)<nl)

4: compute eq. (2.16) for grid point 1

5: compute IBM force (eq. (2.17)) for grid point 1

6: spread IBM force (eq. (2.18)) to the Eulerian grid, including the IBM halos
7 end for

8: end for

9:

communicate partial force/torque sums in IBM halos to the corresponding compu-
tational subdomain where they belong, and compute the total sum in each Eulerian
cell

We compared both Lagrangian and Eulerian approaches for communicating particle-
related data. The latter approach proved to perform much better, specially for dense cases.
As an example, for the turbulent suspension at 20% volume fraction presented in [112]°,
a speedup in particle treatment of 60%, yielding an overall speedup of 40%.

6 A turbulent channel flow with neutrally-buoyant spherical particles, with the fluid phase discretized with
~ 0.1 billion grid points, and ~ 7.5 million Lagrangian grid points discretizing the dispersed phase.
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Master/slave communication is still needed for computing sums over the entire La-
grangian grid, required for integrating the equations of motion of the particle (see eqs (2.3)
— (2.4)). This is achieved using the following non-blocking communication steps (me de-
notes the ID of the task):

Algorithm 5 Distributed memory implementation of a sum over the entire Lagrangian
grid. neighbor is an array listing the IDs of the 8 neighboring tasks.

1: forp in 1 .. pmax do

2 fornb in 1 .. 8do > loop through the neighboring tasks
3 if me is master and neighbor(nb,p) is slave then

4: non-blocking receive call

5: end if

6 if me is slave and neighbor(nb,p) is master then

7 non-blocking send call

8 end if

9 end for

10: synchronize > wait until messages have been received
11: end for

Only 6 scalars, namely the partial sums of force and torque acting on the Lagrangian
grid points, are communicated. Since particle-related data is distributed (i.e. not global),
the algorithm above requires that particle-related arrays are ordered by ID. Otherwise,
deadlocks can occur at the synchronize statement.

Data handling

Like the fluid data, particle-related data are distributed over the computational subdo-
mains. Each task me stores an array of a derived type particle. This choice is natural, as
master/slave communication is typically performed in terms of properties of a single par-
ticle, and not a single property for many particles. Each element of this array contains
the following information (circle bullets (o) represent data that is communicated between
tasks, and square bullets (m) data that is not):

*x,0,u, w, [udVe, F¢, Tg, etc.

This results in 24 4+ 10N  real numbers, stored contiguously in memory to facilitate
master-slave communication, N4 is the maximum number of particles colliding
with a single particle’;

* ID — an integer which absolute value abs (ID) is the global ID of the particle. It is
positive in case me is master of abs (ID) and negative in case task is a slave;

7 The model for the tangential collision force has memory, requiring storage of tangential inter-particle dis-
placements.
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m data pertaining to Lagrangian grid points, and integrals over the grid (12N + 6
reals);

m other relevant parameters pertaining to the particles’ physical/geometrical proper-
ties.

The order of the particle-arrays presented above is not arbitrary. It is such that data that
must be communicated over different tasks is contiguously stored in memory, and there-
fore one only needs to specify the address of the first element and the number of elements
to be communicated in order to have it communicated across tasks. For a memory-efficient
implementation, the size of an array of derived type particle solely contains information
of particles belonging to task me, having a size npmax < np. These arrays are static and
therefore npmax is an educated guess of the maximum number of particles that will be
contained on that computational subdomain.

Initialization of particle-related data

Following the temporal integration of the Newton-Euler equations (eq. (2.3) — (2.4)),
several steps should be taken before proceeding with the numerical algorithm, starting
by determining the new master/slave processes of each particle. The procedure can be
summarized in the following steps:

1. Determine if particle has a new master.

If so, a neighboring process was its master in the previous time step®. These two
processes exchange information.

2. To perform communications such as the ones in algorithm 5, the array of derived
type particle is ordered by increasing value of ID. Particles for which a task just
became slave at the current time level, and for which a task was already master/slave,
must be ordered. A binary search algorithm is used to find the position p (<pmax)
in the array corresponding to particle abs (ID) in the previous time level.

3. Initialize fields of the derived types for the masters and slaves. Some of these (e.g.
centroid position and velocity) are conveniently stored in both master and slave
processes.

4. Determine which Lagrangian grid points are within which process, and store their
ID in an array nla(1l:nl(p)), where nl(p) denotes the number of Lagrangian grid
points for particle p that task me is in charge of.

8 We assume the temporal resolution to be such that a particle cannot travel through more than 1 computational

subdomain in 1 timestep.
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Short-range particle-particle interactions

Each particle p mastered by task me requires a search for short-range particle-particle
interactions®. This search is only performed — first of all — only in particles contained in
me and the 8 neighboring tasks. There is still significant room for improvement at this
point: as we consider particles distributed over 2D pencils, there may be several inquiries
for collision that can be disregarded a priori for particles very far apart along the length of
the pencils. To narrow the search we define for each particle a list of neighboring particles,
that are inside a 2D, square box centered at the particle centroid. This list is recurrently
updated.

2.5.3 APPLICABILITY OF OUR METHOD

At this point we have all the information needed to comment on our method’s applicability
and preferred type of problems: dense, inertia-dominated'® flows laden with finite-size,
rigid, spherical particles. In particular,

* large particles, otherwise it is computationally difficult to use O(10) Eulerian grid
points conform to the particle diameter;

* inertia-dominated due to the explicit temporal integration of the diffusion term, and
the weak coupling between the equations of fluid and particle phases (i.e. there is
no iteration through fluid and particle solutions within one time step);

* mono-disperse, spherical particles (although the extension to poly-disperse and non-
spherical cases is straightforward and has been achieved in [3] and [86]);

* when moderately dense, there should be no more than 1 statistically inhomogeneous
direction, due to the 2D domain decomposition of the numerical algorithm.

2.5.4 VALIDATIONS AND SCALING PERFORMANCE
Our numerical algorithm has been extensively validated against several configurations,
including:

* Flow through a regular array of spheres at solid volume fraction of 6.5% for which
2nd order accuracy has been shown [18].

* Lubrication force between 2 spheres, and a sphere and a wall: accurate predictions
up to a gap width of 2.5% of the sphere radius at resolution D /dx = 32 [17, 18].

With regard to short-range solid-solid interactions, a wall is treated in the code as a particle with different
geometrical properties.

The particle Reynolds number should still be sufficiently small (< 100), as we cannot otherwise resolve the
thin boundary layer along the particle surface.
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* Head-on/oblique particle-wall collisions in a viscous fluid (coefficients of restitu-
tion/bouncing motion, etc) [27] (in chapter 3 of this thesis).

* Effective viscosity of a suspension of non-Brownian spheres [112, 114].
* Particle settling velocity versus time [135] in [85].

* Trajectory of a particle pair released in a simple shear flow, against data from other
numerical implementations, in [85].

* Jeffrey’s orbits and settling of non-spherical particles in quiescent environments

[3].

Scaling performance for particle-laden turbulent channel flow

We investigated the performance of our numerical algorithm in a case where the fluid and
particle-related load are of the same order of magnitude, and where the fluid-related load
is such that all-fo-all communications can compromise scaling. Table 2.1 summarizes the
most demanding communication steps in the numerical algorithm.

Table 2.1: Summary of the most demanding communication steps taken in the numerical algo-
rithm. Note that the IBM forcing scheme requires updates in the halo cells for each
velocity component, for interpolation and spreading operations, times the number of
iterations of the IBM forcing scheme N1gn. HCE stands for halo-cell exchange.

type mpi directive required by calls/RK step comments

1-point HCE  mpi_sendrecv finite-differences 4 (u, v, w and p)
2-point HCE mpi_sendrecv IBM forcing scheme 3 x 2 x Nigpm (U™, v, w*)

transpose mpi_all_to_all Poisson solver 6 see algorithm 2

Figure 2.6 quantifies the scaling efficiency of our numerical algorithm for a case with
the computational parameters in table 2.2. The simulations are performed in a three-
dimensional domain discretized in a regular grid; periodic boundary conditions are im-
posed in the streamwise and spanwise directions, together with no-slip/no-penetration
conditions in both walls. Both panels are normalized such that values above 0 mean a de-
terioration with respect to ideal scaling, and below 0 an improvement. A strong scaling test
keeps the same mesh and number of particles, while varying the number of computational
subdomains; weak scaling varies the number of computational subdomains and changes
the mesh and number of particles such that the number of Eulerian and Lagrangian grid
points per subdomain is fixed. Timings were computed with the function mpi_wtime(),
averaged for 50 timesteps of the numerical algorithm. Computations were performed in
the thin (Ivy Bridge) nodes of the Dutch national supercomputer Cartesius, in Amsterdam.
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Figure 2.6: Strong (a) and weak (b) scaling deterioration of the numerical algorithm for the case
in table 2.2. t and N denote the elapsed wall-clock time and corresponding number of
tasks. No = 24 and t correspond to the minimum number of tasks, and respective
elapsed wall-clock time. Values above the dashed line correspond to sublinear and
below to superlinear scaling.

We achieved, with a distributed-memory parallelization, satisfactory timings for the typi-
cal problem sizes that was interesting to tackle in this research. We therefore decided not
to analyze here the scaling performance of the hybrid MPI-OpenMP implementation.

Table 2.2: Computational parameters used for the scaling study. Weak scaling was performed by
changing Ny, Ny and N, such that Ny x Ny x Nz /(N7 x N2)and Ny, /(N7 x N3)
is constant. The resolution was set such Dy, /Ax = 16, corresponding to 746 Lagrangian
grid points. We recall that N7 and N, correspond to the number of computational
subdomains in x and y, respectively.

scaling test Ny X Ny x N, Np (Nyx/N7) x (Ny/N2) Np/(N7 xNj)
strong 768 x 768 x 384 22000 varied varied
weak (varied) x (varied)x 384  varied 768 x 768 22000

Overall the scaling performance of the code proves to be good, showing at most 3%
deterioration, and what seems to be a cache effect at around N/Ng = 16, corresponding
to a number of tasks N = 384. Both fluid- and particle-related computations eventually
show some performance deterioration with increasing number of CPUs. Performance de-
terioration in particle treatment is caused by the mpi_sendrecv calls for updating the 2-cell
halo regions, required by the IBM. Note that the multi-direct forcing scheme multiplies
the required number of calls by 6N halo exchanges per time step. This becomes clear in
the weak scaling tests — here the size of the computational subdomains remains fixed, and
the scaling of the particle treatment is close to ideal (even exceeding ideal performance,
likely due to cache effects). The same cannot be stated for the treatment of the fluid phase.
Here halo-cell exchange is not as demanding as in the IBM algorithm, as the regions only
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span 1 cell, and the associated directives are only called 4 times per RK3 step. The deteri-
oration in performance comes from the all-fo-all operations in the Poisson solver, clearly
the most communication-intensive part of the numerical algorithm. The solver low com-
putational demand, together with the communication load are such that its efficiency must
drop when the computational load per CPU is not sufficiently high.

Despite the loss in efficiency associated with the fast Poisson solver, the numerical
algorithm still shows close to ideal scaling for relatively large problems, and as will be
shown below, performs well compared to other state-of-the-art implementations.

2.5.5 BENCHMARK — NUMERICAL SIMULATION OF PARTICLE-LADEN DECAYING
HOMOGENEOUS ISOTROPIC TURBULENCE

We simulated particle-laden decaying homogeneous isotropic turbulence (HIT) laden with
finite-size particles. Our simulations are compared to the ones of different groups, which
simulated the same flow with different numerical approaches''. We use this as an assess-
ment of the computational performance of our numerical algorithm, as it is compared
with other state-of-the-art methods: a lattice-Boltzmann method (LBM) used e.g. in [36,
37] and a viscous penalization method (VoF-Lag) used e.g. in [107, 144]. We must note
that the version of the code used here is different from the one for which the scaling tests
were performed. At the time of this workshop, communication of particle-related data
through Eulerian halo regions was not implemented yet, and therefore particle treatment
was slowed down, and its scaling deteriorated.

The initial condition is a single-phase turbulent flow field computed from a pseudo-
spectral DNS code (with Taylor-based Reynolds number Re) = 87), linearly-interpolated
to our staggered mesh, and a pseudo-random distribution of particle positions. Particle
initial linear velocities were obtained from a trilinear interpolation from the fluid velocity
grid cells closest to its centroid, while angular velocity was set to zero. Other physical and
computational parameters are shown in table 2.3 and its caption.

Two cases were considered, with particle sizes varying by a factor of two, number of
grid points over the particle diameter fixed to D, /Ax = 12, while keeping the volume
fraction fixed to @ = 0.03 and mass density ratio p,/ps = 4, clearly a 4-way cou-
pling regime. We should note that the fluid-phase is over-resolved, thereby focusing dif-
ferences in observables to different approaches to particle-fluid/particle-particle coupling.
This case is particularly well-suited for our method as the grid can be regular without
over-/under-resolving the flow in a particular direction, and it is an inertia-dominated flow.

The simulations were performed in the framework of the workshop High Performance Computations for
Fluid Dynamics Interface treatment and finite size particles — Interface treatment and finite size particles
held in November 2014 in Toulouse. The workshop was organized by the Institut de Mécanique des Fluides
de Toulouse (IMFT) and the center CALcul en MIdi Pyrénées (CALMIP). Groups with different approaches
for simulating interface-resolved particle-laden turbulent flows simulated the same benchmark case.
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Hereafter we show some basic statistics, followed by some notes on the physical and com-
putational performance of the methods.

Table 2.3: Computational setup for DNS of decaying HIT laden with finite-size particles. Common
features of the laden cases are: a fixed volume fraction @ = 0.03, lubrication closures
switched off, frictionless particles, mass density ratio pp /ps = 4, and a dry normal
coeflicient of restitution eqry = 0.97.

case N3 N, Dp/n n/Ax
SPH-0512 5123 - - 0.81
SPH-1024 5123 - - 164

MPH-0512 10243 4450  19.7  0.81
MPH-1024 10243 36502 98 1.64

Figure 2.7 presents a visualization of the flow-field, where the particles are also ren-
dered. Isosurfaces of Q-criterion (Q being the second invariant of the fluid velocity gra-
dient tensor) and low pressure regions [66] to depict respectively small and large-scale
coherent structures (see the figure caption for details). The multiscale character of the
flow is evident, and the size of turbulence scales compares to the one of the particle size,
justifying the interface-resolved simulation.

The decay of particle linear ((u?)/2) and angular kinetic ((w?)/2) energy, normalized
by their maximum values are depicted in figure 2.8. Particles adapt relatively fast to the
initial vorticity field, reaching on average a maximum of angular TKE in about one eddy
turnover time. Larger particles reach this peak at later times due to their larger moment
of inertia. Notice the cross-over between the particle linear TKE for the two cases (see
the inset in the figure, where the difference between the two is computed). First, for suffi-
ciently high turbulence intensity, smaller particles loose energy faster than larger particles,
hinting on the effect that smaller particle inertia dominates over the smaller surface area.
At t ~ 2T, this tendency reverts: energy decays faster for the largest particles. Since
here viscous effects are dominant, larger surface area is the dominant factor determin-
ing the rate of decay. Decreasing importance of viscous effects can be appreciated in the
conditionally-averaged flow conforming a single-particle, computed from the following
procedure presented in algorithm 6, similar to [25, 107]. The contours of slip velocity
show a smaller magnitude (even scaled with the global particle velocity rms), and a wake
with a much less elongated shape. Clearly, at late times the particle Reynolds number is
sufficiently small that viscous effects are ought to be the main mechanism driving the
decay of TKE.
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Figure 2.7: Visualization of particle-laden decaying HIT. Particles are colored by their linear veloc-
ity (green-high and blue-low). Red denote iso-surfaces of constant Q, while translucent
yellow to iso-surfaces of low pressure regions.

Algorithm 6 Procedure for computing the average flow around a particle.

1: mask fluid flow inside particles with a phase-indicator function ¢;

2: interpolate ¢u and ¢ to a Lagrangian grid in a spherical shell with radius R, = 4R;

3: compute phase-averaged fluid flow velocity to the Lagrangian grid Us =
20U/ D

4: compute particle-to-fluid apparent slip velocity Us = Uy — Uy, with U, the particle
velocity;

5: define a spherical averaging volume, with origin aligned with Ug;

6: compute phase-averaged fluid velocity in this volume for all the particles, and
ensemble-average;

7. average result along the (statistically homogeneous) azimuthal direction.
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Figure 2.8: Temporal decay of particle linear and angular kinetic energy, both normalized by its
maximum value.The inset shows the difference between the decay of linear TKE of the
large and small particles (a). Conditionally-averaged profile of fluid velocity conform-
ing a particle (b) for t = 0.6T, (top), and t = 2.5T, (bottom). In a reference frame
moving with the particle, the flow is from right to left; blue—low and red-high.

Figure 2.9 presents the longitudinal 1D energy spectra for both laden and unladen cases
defined as:

Ni/2

1 D pii(Ax)e AT K =0,1,-++ ,Ny/2] (2.19)
n=0

Eii(k) = N.
with pi; being the longitudinal autocorrelation over direction i, and N; being the number
of grid points over the 1 direction. The spectra were averaged in space and over the three
domain components. Since the flow is relatively dilute, we computed the auto-correlation
function over the entire Eulerian field, even within the domain inside the particles. The
results show the same trend as observed in [93], that particles decrease the energy content
at large scales, observation attributed to increasing dissipation, and increase it at small
scales, due their energy-producing wakes. Notice that this change in trend occurs at wave
numbers K ~ Dy 1

Let us now compare some results for the different numerical approaches. First we in-
vestigate the decay of fluid TKE for single-phase flow. Curves pertaining to the IBM al-
gorithm show good agreement with the spectral simulations over the entire range of time
scales, despite an under-prediction at time scales smaller than one eddy turnover time.
Since the results seem to be already grid-independent, we attribute this difference to the
trilinear interpolation used to initialize the flow-field (provided in a collocated grid) in
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Figure 2.9: Longitudinal 1D energy spectra for cases MPH-0512 (a) and MPH-1024 (b), normal-
ized by the velocity variance. The wave number in the horizontal axis is made non-
dimensional by the particle size D,. sph —single phase cases, mph — multiphase cases.

a staggered MAC arrangement. The same under-prediction is more evident in the VoF-
Lag approach, which still captures well the final period of decay where viscous effects
dominate, well-fitted by (E) ~ (t/ T.)~'9/7 [12]. Since both methods are second-order
accurate in space, differences can be attributed to the different temporal discretization or
a less converged solution of the pressure Poisson equation for the latter approach (note
that the IBM approach uses a direct, and the VoF-Lag an iterative solver, with a tolerance
for residual of velocity divergence equal to 1073 of its r.m.s.). The results pertaining to
the LBM show the opposite trend: a good agreement at small time scales which degrades
at higher turnover times. Notice that the LBM approach uses a collocated grid, and there-
fore does not require any sort of interpolation of the initial velocity field. For this method,
differences to the spectral solver during the viscous region is largest, perhaps an effect of
formally solving a weakly-compressible formulation of the Navier-Stokes equations. De-
spite this, for the region where the turbulence intensity remains high, the LBM approach
also compares well to the spectral solution. As it can be seen in panel (b) of the same figure,
the decay for the particle-laden simulations is biased by these discrepancies. Therefore,
finer comparison between approaches, using e.g. conditional statistics like in figure 2.8(b)
should be performed in a future study.

Figure 2.11 compares the computational performance of the different approaches. For
the current configuration, the IBM approach performed best in terms of computing time.
Both the IBM and LBM do not achieve perfect scalability, even though the LBM code
seems to improve the computational performance at ~ 2000 CPU, resembling a cache
memory effect. In the IBM and LBM approaches the difference between the load due
to a single-phase and multi-phase simulation are of the same order of magnitude. The
VoF-Lag approach shows almost an order of magnitude difference between the laden and
unladen cases. The high computational cost for this method could be explained by two
factors. First, the semi-implicit iterative solver used to solve the mass and momentum
equations is more expensive than the time splitting used in classical Navier-Stokes solvers.
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Figure 2.11: Wall-clock time in seconds normalized by the number of cores N; Ideal scaling should
follow a horizontal line.

The advantage of this solver is that it can handle larger time steps, not being limited by
the viscous CFL number in very viscous flows. However, in this inertia-dominated flow,
the time-step is dictated by the advective stability restriction. Second, when the particle
laden case is considered, the CPU time becomes about one order of magnitude higher.
This increase is explained by two factors. First of all, for stability reasons the time step is
divided by a factor of two. Second, the update of the physical characteristics takes 67% of
the simulation. That includes the transport of the particles, update of the color function,
and the of the viscosity and density, equations.

To summarize, this is an example of a problem that is particularly well-suited for our
method. All the methods were able to simulate this complex flow successfully; achieving
such state-of-the-art simulations with O(10%) particles is a computational achievement
that only few groups can reach.
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This chapter is adapted from P. Costa et al. “Collision model for fully resolved simulations of flows laden
with finite-size particles.” In: Phys. Rev. E 92 (5§ Nov. 2015), p. 053012.
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3.1 INTRODUCTION

Studying flows laden with finite-size particles using interface-resolved direct numerical
simulations (DNS) has recently become possible with the development of efficient nu-
merical methods, such as immersed boundary methods [7], together with the continuous
increase in computing power. Such simulations provide detailed insight in the flow dynam-
ics at the particle scale and beyond. The governing equations for the fluid phase and the
particles are directly coupled with each other through the no-slip/no-penetration condition
at the particle surface (i.e., 2-way coupling), without the need of parameterizing the drag
force between the phases. Also, long-range hydrodynamic interactions between particles
(i.e., 4-way coupling) are naturally reproduced by these methods. However, when the par-
ticle volume fraction is high, additional models are required to account for short-range
hydrodynamic solid-solid interactions (lubrication forces) and solid-solid contacts. Oth-
erwise, the realism of the simulation may be compromised by a poor description of these
interactions. For instance, by under-predicting lubrication-enhanced clustering of inertial
particles, as observed for homogeneous isotropic turbulent flows [136]. The challenge is
to find a model able to reproduce short-range particle-particle and particle-wall interac-
tions with the required realism and with little effect on the computational efficiency of the
overall numerical algorithm.

We consider non-Brownian spherical particles, which are sufficiently large such that
inter-surface forces as the Van der Waals force and the electrostatic double-layer force
can be neglected [55]. Also, cohesive forces, which are relevant for wet granular media
[56], are disregarded. We restrict the applicability of the model to cases where 4-way
coupling is required, but where the solid volume fraction is not extremely high such that
good description of the macroscopic outcome of the collision (i.e., relative velocity prior
to and after contact) is sufficient to model the suspension dynamics.

Much work has been done in modeling of inter-particle (or particle-wall) collisions. Dis-
crete element methods (DEM) have been successfully used to account for inter-particle
collisions in simulations of gas-solid flows where hydrodynamic interactions between par-
ticles are negligible (e.g., [31], [140] and [63]). These collisions are often referred to as
dry collisions. More recently, some studies used these same collision models for reproduc-
ing particle-particle and particle-wall interactions in viscous liquids, commonly referred
to as wet collisions. In this case, fluid effects such as added mass, viscous dissipation and
history forces become important [54].

Typically, lubrication interactions in interface-resolved simulations cannot be resolved
by the overall numerical method (not without resorting to excessive grid refinement). This
lack of spatial resolution can be circumvented by a closure model for lubrication interac-
tions based on analytical solutions of these interactions in the Stokes regime (e.g., [135],
[17], [77] and [106]).

Many studies used variants of the soft-sphere collision model of Cundall and Strack
[31] to compute the contact forces, because of its computational advantages for simulating
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dense suspensions when compared to hard-sphere models [35]. In the soft-sphere model,
the normal force acting on the particle during a collision is computed from an equivalent
linear spring-dashpot system in which the spring stiffness and dashpot coefficients are
parameterized as function of the particle elastic properties. A limitation of this approach
when applied to particle-laden flows is that the collision must be resolved with a time step
that can be several orders of magnitude smaller than the time step of the Navier-Stokes
solver for the fluid flow. This happens because the characteristic time scale of solid-solid
contact is in general orders of magnitude smaller than the smallest time scale present in the
flow [61, 87]. However, it is possible to artificially stretch the collision time to a multiple
of the time step with which the particle motion is integrated. In some studies this was done
by decreasing the value of the spring stiffness and checking resulting the collision time in
a trial and error procedure [44]. This approach was avoided by others, who prescribed the
desired collision time and computed the corresponding collision parameters by solving
the equations of the spring-dashpot system (e.g., [17, 77, 106]).

Experimental studies have shown that fluid effects in the normal collision of a sphere
onto a plane wall can be quantified by an effective normal coefficient of restitution, e,
defined as the ratio of the magnitudes of rebound and impact velocities. In particular, when
experimental data of e /en g (Where ey, q is defined in an analogous way as e, but for
a collision in a dry system) are plotted against the particle impact Stokes number, St =
(1/9)ppUp Dy /1 (Where py, Up, Dy and u are respectively the particle mass density,
impact velocity, diameter and the fluid dynamic viscosity), the datasets for different fluids
and particle types collapse in the same curve [87]. This suggests that ey, en q and St
are key parameters to describe a head-on wet collision. Hence, reproducing this scaling
is an important test for which any numerical method for resolving the flow conforming a
particle combined with a collision model should pass.

Several authors have been able to reproduce it with different methodologies for re-
solving the particle-fluid interface, such as tensorial penalty methods [106], Lagrange
multiplier-based methods [2] or IBM [17, 68, 79, 91]. However, this benchmark relies on
a definition of impact and rebound velocities, which vary significantly in these references
[68]. Hence, if one solely resorts to this simple validation benchmark without careful
comparison with experimental data, it can happen that the definitions of the impact and
rebound velocities determined from the numerical simulation are not consistent with the
measured quantities.

The complexity of the problem increases when the collision is oblique. In this case, the
relative motion between the contact surfaces has a tangential component. Two different
kinds of motion can occur between the surfaces in contact: rolling and sliding. Rolling
occurs when a point of contact has zero relative velocity with respect to the contact sur-
face, otherwise sliding occurs. Moreover, when a particle flowing through a viscous liquid
approaches a planar surface obliquely, it experiences not only lubrication forces due to the
squeezing motion of the fluid through the gap, but also forces and torques due to relative
translational and rotational shearing (see e.g. [32] for a review). Finally, the frictional re-
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sistance of the contact surface in the presence of a viscous liquid can change abruptly due
to piezoviscous effects when smooth particles collide obliquely [73].

To the best of our knowledge, Kempe and Frohlich [77] report the only collision model
validated against experimental data of oblique particle-wall collisions in viscous liquids
and against bouncing trajectories of particles colliding onto a planar surface in a viscous
liquid. The latter benchmark validation is particularly interesting to reproduce, because
it does not rely on definitions of impact and rebound velocities. It therefore gives a finer
indication of the success of the model to reproduce the canonical case of a particle-wall
collision than reproducing data of e, /ey, 4 vs St. Kempe and Frohlich [77] computed the
normal collision force from a non-linear spring-dashpot system. This was done so that the
force-displacement relation agrees with Hertzian contact theory. The collision time was
stretched by using a numerical procedure to solve the resulting equations of the non-linear
oscillator. For the tangential component, they developed a model based on the assumption
that, throughout solid contact, a particle either rolls or slides, depending on the particles’
incidence angle. Although the approach of considering pure rolling for small incidence
angles does not reproduce collisions with recoil of the contact point, their methodology
can be easily adapted to account for it. Even though their model is able to reproduce
normal and oblique collisions in viscous liquids with satisfactory realism, the fact that it
needs an extra iterative procedure to deal with the non-linear spring when computing the
normal force may deteriorate its computational performance for denser concentrations.
Furthermore, the force law for the tangential component of the collision force depends
on the particles’ incidence angle, which is difficult to interpret, e.g., for cases in which
geometrical constrains force sustained contact.

We present a model for wet particle-particle and particle-wall collisions in fully-resolved
simulations of particle-laden flows. We show that a simple variant of a linear spring-
dashpot model capable of stretching the collision time [17, 63] suffices for computing
contact forces. This contact model can be seen as a linearized version of Hertz contact the-
ory, and its choice is motivated by a separation between time scales of solid-solid contact
and the typical particle response time. The advantage of using this model is that its pa-
rameters can be analytically determined from well-documented material properties and a
desired collision time, which is computationally attractive. Moreover, it accounts for stick-
slip effects at the contact point without requiring explicit definition of impact and rebound
angles. Oblique collisions with recoil are explicitly accounted for by using a tangential co-
efficient of restitution ey as input parameter. This contact force model is implemented in
an efficient and second-order accurate IBM for particle laden flows developed in [18] and
combined with a physical model for lubrication interactions and roughness effects. We
found the experimental data used by Kempe and Frohlich [77] to validate their approach
to be a good set of tests for which a physically realistic collision model should pass. We
therefore validated our collision model against those distinct experimental cases which
include the trajectory of a sphere colliding onto a planar surface in a viscous liquid [54],
head-on particle-particle collisions [151] and data on oblique particle-wall collisions [73].



3.2 DRY COLLISIONS

This chapter is organized as follows. Section 3.2 presents a brief overview of the physics
of dry collisions of elastic spheres (subsection 3.2.1) followed by the description of the
methodology for computing contact force/torques (subsection 3.2.2). Subsection 3.3 ad-
dresses the effects of the interstitial fluid in a wet collision and our modeling strategy for
lubrication interactions. The numerical implementation is addressed in section 3.4. Sec-
tion 5.3 explores the consequences of excessive and insufficient stretching of the collision
time and presents the validation of the model against several benchmark experiments. Fi-
nally, in section 3.6 the conclusions and outlook are given.

3.2 DRY COLLISIONS

3.2.1 PHYSICS

When head-on inter-particle collisions take place in the absence of a viscous fluid, only
the contact mechanics dissipate kinetic energy. This energy loss can be described by a
dry coeflicient of restitution, ey, q, defined as the ratio of the relative rebound to relative
impact velocities. The collision is referred to as oblique when the particles approach each
other with an incidence angle just prior to contact ¢, and bounce with a rebound angle
®out, as illustrated in figure 3.1. From these, it is convenient to define effective angles of

time =t -dt time=t_ +dt
col col

Figure 3.1: Schematic representation of an oblique inter-particle collision. For the sake of clarity
we considered in this figure a reference frame moving with the light grey particle,
which implies that the velocities sketched are relative velocities. F, and F¢ denote the
normal and tangential component of the collision force.
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incidence and rebound, respectively as,

u.
Win = —= =tan(¢in), and (3.1)
WUinn
u
qjout - outt =¢€n,d tan((bout)/ (3~2)
Winn

with the normal dry coeflicient of restitution e, g given by

g = Loutm (3.3)

WUinn

Maw, Barber, and Fawcett [98] explored this problem in detail. They used Hertzian contact
theory to obtain the normal component of the collision force and velocity. Moreover, they
assumed particles of the same material for which the contact area consists of stick and
slip regions, and that slip could be modeled by a constant coefficient of sliding friction,
lc. Their results show that three different types of impacts can occur, depending on the
value of the following normalized incidence angle,

2 1—v

Ur’inzi

> Yin, (3.4)
He2—V

and the material- and geometry-dependent parameter,

T\1T—v
=(14+—= ) —, 3.5
X < e > 2—v 3-5)
where v is the Poisson’s ratio and K the normalized particle radius of gyration (K> = 2/5
for ahomogeneous solid sphere). Figure 3.2 shows 14, as a function of i, as computed

in their model, where 1) ,¢ is the normalized rebound angle, defined analogously to {in
as,

2 1—v

1bout = 77\1]01&- (36)
He2—V

The numerical solution of this model yields three distinct regions denoted in figure 3.2
by I, IT and II1. First, for small incidence angles, \i;, < 1, the sphere sticks during contact
because the normal component of the load is much larger than the tangential component.
When the contact surface starts to shrink, small regions of micro-slip may occur due to
tangential elastic recovery, which can spread throughout the entire contact area, leading
to gross slip. Second, for an intermediate range of incidence angles, 1T < i, <4x—1,
the collision starts with gross slip, but the frictional stresses retard the tangential veloc-
ity, which rapidly drops to zero in the entire contact area (full stick). Finally, for higher
incidence angles, i, > 4x — 1, the tangential component of the load is even higher and
gross slip occurs throughout the contact time.
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== Theory [98]
B Experiments [46]

= = Walton’s model [148]

I\bout

Ibin

Figure 3.2: Numerical solution of the model of Maw, Barber, and Fawcett [98] for collisions be-
tween glass spheres, compared with experimental data of Foerster et al. [46] and the
model of Walton [148]. The curve and experimental data were extracted from a curve
Wout vs Win of [46] and rescaled to Pyt Vs Pin with the parameters of their ho-
mogeneous 3mm glass spheres, v = 0.22 and p. = 0.092. The two vertical dot-
ted lines delimit the three different types of impact and are given by i, = 1 and
Vin =4x—1=4.2.

Walton [148] proposed a simplified hard-sphere model with three parameters: (1) a
normal coeflicient of restitution, e, q; (2) a tangential coefficient of restitution for non-
sliding contact, e q, defined as,

Uout,t Yout . (3.7)

et,d =— - ’
Win,t \yin

and (3) a coeflicient of sliding friction, 1., to model the tangential component of the load
acting on the particle when it is sliding:

Fy = _HC|FTL|/ (3.8)

where F, is the normal component of the contact force. This model assumes that the
collision force acts at a single point and can be decomposed into a normal and tangential
component. Moreover, it assumes that throughout the collision time the regime is either
full stick or gross slip. From these three parameters, one can define the two lines which
dictate the collision regime:

w —ey,a¥in, Yin < Vi, (stick), (3.9a)
T\ Win — e (1 4+ 1/K2) (1 + e g), Win > W5, (slip), (3.9b)

where eq. (3.9a) is obtained directly from the definition of e q, and eq. (3.9b) by applying
the definition of coefficient of sliding friction to relate the normal and tangential momen-
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tum impulses. Y7, is the incidence angle above which the collision regime changes from
full stick into gross slip:

Yorsd W) = Yot (¥5) & ¥in =i (14 77 ) T e 3.10
The two models differ most significantly in the intermediate region of incidence angles,
for which there may be periods of full stick and gross slip throughout the contact. Despite
these differences, the simplified approach is able to reproduce experimental data reason-
ably well, as shown, e.g., in [148], [46] (figure 3.2) and [73]. The minimalistic nature
Walton’s model makes it an attractive choice for problems where a detailed description
of the contact mechanics is not required, which is in general the case for particle-laden
flows.

3.2.2 MODELING

Collisions of spherical particles in a viscous liquid were shown to have a contact time
larger but of the same order than the contact time in a dry system, predicted by Hertzian
contact theory, see Legendre et al. [87]. The authors also showed that this contact time
is four to five orders of magnitude smaller than the viscous relaxation time of the parti-
cle, depending on the impact Stokes number. This means that the particle experiences a
collision as a discontinuity in its motion. Even when the characteristic time scale of the
particle motion is not dictated by the viscous relaxation time, (e.g., due to geometrical
constrains in a flow with high volume fraction of particles) this clear separation of time
scales typically remains valid. Hence, we require that the collision dynamics are realis-
tically reproduced from a macroscale perspective, i.e., realistic approach and rebound
velocities and timescale small enough such that this separation of time scales is satisfied.
Hence, it is convenient to use a model capable of stretching the collision time, so that the
overall numerical algorithm is not significantly penalized by the overhead introduced by
the integration of the particle equations of motion. Furthermore, it is convenient to use
a model with parameters that can be easily measured experimentally, such as the param-
eters of Walton’s model. Joseph and Hunt [73] successfully used this model to describe
experimental data from wet oblique collisions of spherical particles onto planar surfaces,
further supporting its validity to describe collisions in a viscous liquid.

We found the variant of the soft-sphere contact model of Tsuji, Kawaguchi, and Tanaka
[140], described in [63] to be suitable for our problem. This approach has computational
advantages for dense suspensions when compared to other alternatives such as hard-sphere
models, and allows the collision time to be stretched. The model consists on a linear spring-
dashpot system in the normal and tangential directions, with a Coulomb friction slider
in the latter, as sketched in figure 3.3 (a). In the following we describe the model, with
differences in the definition of the tangential unit vector and in the value to which the
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tangential displacement is saturated. Figure 3.3 (b) illustrates the notation and reference
frame adopted.

Ml Sy
5k,
T
]' ! nn Z

@ 7 ()

Figure 3.3: Linear spring-dashpot model (a). Notation and reference frame adopted for an inter-
particle collision (b).

The normal force acting on particle i due to a contact with particle j, with a relative
velocity at the contact point given by

uij = (ui + Riw; X nij) — (uj +ij)' X n]'i) , 3.1

is the component of the collision force that acts along the direction of the line-of-centers
(figure 3.3 (b)),

Xj—Xj

Ny = - (3.12)
IIx; — x|l

This collision force depends on the overlap distance between the two particles,

Sijm = (Ri+ Ry —[Ixj — x¢[l) nyj, (3.13)
and the normal relative velocity of the contact point,

Wijn = (uij - nyj)ny, (3.14)
and is obtained from the equivalent linear spring-dashpot system:

Fijn = —kn8ijn —MnUijn, (3.15)

where k,, and 1, are the normal spring and dashpot coefficients, respectively. These are
computed by solving for the motion of a linear harmonic oscillator [63], and requiring
that there is no overlap at the end of the collision, t = NAt,

(8ijm - Mij) e=nat =0, (3.16)
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and that the velocity at the end of the collision is given by the definition of e, 4,

(uijm - nij) le=nat = —en,a (Wijn - Nij) le—o- (3.17)

Note that we define the collision time, T, as a multiple N of the time step of the overall
numerical algorithm, At. This is convenient because — as our results will show — the
outcome of a numerical simulation of a wet collision is more realistic if the fluid is allowed
to adapt itself to the sudden changes in particle velocity. In practice, because T,, should
be fixed during a collision, and At may vary in agreement with the stability criterion of
the fluid solver, one should define the collision time as a multiple of the estimated time
step of the numerical algorithm.
The coefficients read,

2 2
) :me (n +In en,d) , __2melnenq (3.18)
" mNagz T T (Nag |
where
—1
me = (mi "+ m;) G2

is the reduced mass of the particles.

This approach can be seen as a linearized version of Hertzian contact theory. Since we
model the collision as a discontinuity in the particle motion, it is sufficient to guarantee
that the conditions specified in eq. (3.16) and eq. (3.17) are fulfilled and NAt is small
enough that separation of time scales is satisfied. One advantage of using a linear system is
that the spring and dash-pot constants can be determined analytically and a priori, which
is computationally attractive. Notice that increasing the value of T, reduces the spring
stiffness, which makes the contact softer. This implies that excessive stretching of the
collision time results in a large overlap between solid surfaces and consequently in an
unrealistic delay of the particle rebound. On the other hand, the collision time should be
sufficiently stretched so that the collision force is accurately resolved in time. We require
that the maximum particle overlap, which is reached when the particles have zero relative

velocity, 6{‘].1;" = 6i—j,n|uij,nzo7 is much smaller than Dy,:
Dp —(arcsin(7t/a) /70)
ThT,=a e \arsmin/al/m (3.20)
(uij - nyj)li—o
where a = /72 + In? (en,a) [63]. Alternatively, if applicable, one can require that the

maximum overlap due to the particle’s submerged weight (6?;?"9 =|1—ps/ Pp lg/kn)
is much smaller than Dy,:

D a?
T, <TH9=, P2 = 321
T g 11— p¢/ppl (321)
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The tangential force is obtained analogously to Fj; , but now with a Coulomb friction
model to account for sliding motion:

Fij¢ = min (|| — k¢8ij,e —neuijell, || — weFijnll) ti (3.22)

where 845 ¢ is the tangential displacement and t;; the unit vector with the direction of the
test force:

k8ij,¢ +Mtwyj ¢
ke8i,¢ +MNeuije

ty = — . (3.23)

The coeflicients k¢ and 1 are obtained analogously by solving a harmonic oscillator for
the tangential direction, and requiring that the definition of the tangential coefficient of
restitution is fulfilled,

(uij,e - ty) lienat = —eqa (Wije - tij) le—o, (3.24)

and matching the collision times in both directions (Ty = T,,). The values of the coeffi-
cients read,

. _ Me,t (7‘[2 -+ lnz et,d) B 72me,t In et,d (3 25)
6= (NAt)2 =TT NAY '
where the reduced mass of the system is given by:
—1
Mer = (1+1/K?) " me. (3.26)

The tangential displacement of the contact point must be integrated in time from the immi-
nence of contact. Integrating the relative tangential velocity at the point of contact yields,

6?;/1:] =R- 5{;/( + Jtn Wij,t dt, (3.27)
where R is a rotation tensor which rotates 6{;,t to the new local coordinate system at time
level m 4 1.

The tangential force becomes independent of the tangential displacement of the spring
when the particle starts sliding (eq. (3.22)). If the tangential displacement is further incre-
mented when the particle starts to slide, unrealistic results can be obtained if the collision
regime changes subsequently to sticking [15]. Hence, the tangential displacement must
be saturated in order to comply to Coulomb’s condition whenever the collision is in the
sliding regime [94]:

i1 { 51T Pl < mellFy mll, (3.28a)
T =
Y (1/ke) (—rcllFijnlltyy —newije) o Fell > pellFinll- (3.28b)
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After computing the contact forces acting at the point of contact, we determine the
equivalent force-couple system acting in the particle centroid:

F{; = Fijt + Fijn, (3.29)
TS; = Rp (nyj x Fije) . (3.30)

The total collision force and torque are the sum of contributions of all the particles in
direct contact with the particle i:

F{ =) Ff, (3.31a)
j

T{ =) T§;. (3.31b)
j

Finally, a wall is treated as a semi-infinite spherical particle, which makes a particle-
wall collision the limit case of a spherical particle with finite-radius, R, colliding onto
a sphere with radius R; — oo. The parameters for particle-wall collisions are therefore
computed in an analogous way, but taking this limit. The reduced mass is now given by
me = my and the normal overlap by 8iy,n = (Ri — |[Xi —Xyl|) niy, where ny,, is the
unit-vector perpendicular to the wall and x,,, the coordinate of the point of contact on the
planar surface.

3.3 EFFECTS OF THE INTERSTITIAL FLUID

3.3.1 LUBRICATION EFFECTS

A particle immersed in a viscous liquid experiences lubrication effects when moving close
to and with finite relative velocity to another particle or wall. Assuming a drainage of
the intervening liquid film in the Stokes regime, the force acting on the particle has an
analytical solution that diverges when the non-dimensional gap-width, ¢ = 8ijn/Rp.,
tends to zero [16]. Our IBM is able to reproduce this and other analytical solutions until
a certain (small) value of e. For smaller gap-widths (< Ax) the IBM under-predicts this
force due to a lack of spatial grid resolution. An approach that has been adopted for these
cases is to keep the grid fixed and use lubrication models based on asymptotic expansions
of analytical solutions for the lubrication force in the Stokes regime to compensate this
lack of spatial grid resolution (e.g. [17, 77, 106, 135]). Taking these effects into account
has been proved to be important for computing realistic bouncing velocities in simulations
of head-on particle-wall collisions in viscous fluids [77].

Lubrication theory shows that ideally smooth particles would not reach actual solid-
solid contact. Even if one accounts for the particles’ surface deformation due to the abrupt
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increase of the pressure in the gap, the particles would not reach direct contact but a
finite closest distance of approach, hy, [33]. However, particles may interact through
their asperities, with typical size o, before reaching a gap distance of h,,. Joseph et al.
[74] observed larger scatter of their experimental data for wet head-on collisions of a
spherical particle onto a planar surface when o > h,,. They argued that the contact
occurs through the asperities (which are irregularly oriented) before elastohydrodynamic
lubrication effects become important. This reasoning justifies the approach used by several
authors of setting the lubrication correction to zero for small gap-widths (e.g. [135], [77])
or making it independent of the gap-width [17].

The most relevant component of the lubrication forces acting on the particle is the
squeezing force acting along the line-of-centers, because its dominant term is « 1/¢ in
contrast to translational and rotational shearing, which diverge slower (x In ¢) and even
for a value of ¢ close to surface roughness have a milder effect in the particle dynamics.
Test simulations showed that the latter mentioned lubrication corrections had little effect
on the results for immersed oblique, particle-wall collisions and therefore we decided to
neglect them in the present study.

We use a two-parameter model to account for normal lubrication interactions and rough-
ness effects, as illustrated in figure 3.4. When a spherical particle approaches a planar
surface/another particle, for a certain gap-width, €Ay, the IBM cannot resolve the lu-
brication force acting on the particle. Hence, for gap-widths smaller than ¢, we cor-
rect the lubrication force acting on the particle by adding to the Newton-Euler equations
AFup = —6TuRp Ui n (A(€) —A(eax)), where the Stokes amplification factor A is given
by [71]:

Lubrication fully resolved by IBM

STttt T T 4
1
panamsus I IBM +
, Lubrication correction EAX
1
| e eeeeeeeeeeeeeseeeeseemee——————
HEREHRERmaanemnaRnE/| EEsaianzanszaanzaz IBM +
| K Lubrication correction &
\ l / g / with roughness effects ] o
Y ol

i 4
/i ,+ Contact model takes over
il 1.

4

R4

3

Figure 3.4: Schematic representation of the lubrication model. We illustrate the case of particle-
wall interactions for the sake of simplicity. The model is analogous for particle-particle
interactions.
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1 9 3
App(€) :Z—%lns—%elns—i—O(U, (3.32)
Apw(€) :% —%hns—%elne—i—@(ﬂ, (3.33)

for lubrication interactions between two equal spheres, and between a sphere and a planar
surface, respectively.

The value of a5 can be determined by simulating the slow approach of a sphere to-
wards a planar surface [16] or between two spheres [26] and determining up to which point
the IBM is able to reproduce the lubrication interaction [17]. We illustrate this in figure 3.5
by comparing the analytical solution with the simulations without lubrication correction
and with lubrication correction. The corresponding values of € o4 for two different spatial
resolutions are given in table 3.1. To account for surface roughness, we saturate the Stokes

Table 3.1: Parameters for the lubrication model.

D, /Ax  Interaction €Ax
16 particle-wall 0.075
16 particle-particle 0.025
32 particle-wall 0.05
32 particle-particle 0.025

100 100
+ Dp/Az =16 + Dp/Az =16
Dyp/Azx = 32 Dp/Ax = 32
80 7 B Dp/Axz =16, corrected 80 7 B D,/Axz =16, corrected
§ ® Dp/Az =32, corrected § ® Dp/Ax =32, corrected
= 60 1 = Brenner 2 60 Cooley and O'Neill
e &
3 3
= IS
N N2
-~ -~
R k
0 T T T
0.0 0.1 0.2 0.3

6 © . . 0 . .

Figure 3.5: Lubrication corrections for the cases of normal particle-wall (a) and particle-particle
(b) interactions, respectively compared against the analytical solution of Brenner [16]
and Cooley and O’Neill [26]. Results shown for two different resolutions, D, /Ax = 16
and 32.

amplification factor for gap-widths below a threshold e sothat A(¢ < e5) = A€y ). This
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threshold value is related to the typical size of the asperities and was fixed to e = 0.001
for particle-wall interactions. We keep the Stokes amplification factor saturated until the
surfaces overlap; then the collision force takes over. Hence, the force acting on the particle
is corrected by AFyy1, given by:

)\(5) _)\(EAx)r £g L €< Eax

AFub
= = AMeo) —Aleax), 0<e<es (3.34)

—6TTURp U5 n
0, otherwise.

For particle-wall collisions, the normal fluid-induced forces are set to zero for overlaps
larger than the overlap due to the particle’s submerged weight, 6%/11 = lpp — PrlgVp/Kn,
in order to avoid artificial dissipation due to the stretching of the collision time of the
contact model. This procedure is not extended to particle-particle interactions, as it can
cause significant artificial increase in the particles’ acceleration for colliding particle pairs
due to a sudden decrease in drag force.

3.3.2 PIEZOVISCOUS EFFECTS

Joseph and Hunt [73] performed experiments on wet, oblique collisions of spheres onto
planar surfaces. They showed that the coefficient of sliding friction decreased by one order
of magnitude when their smooth steel spheres collide, whereas it remained of the same
order of magnitude (~ 15% higher) for the case of rough glass spheres. They suggested that
this abrupt decrease of the friction coefficient for smooth spheres was due to the fact that
a characteristic piezoviscous length scale [8], h., was larger than the average size of the
asperities and therefore ’contact’ occurs through the fluid, which is behaving like an elastic
solid. Also, the slight increase in the coefficient of sliding friction for rough spheres was
explained by the fact that the fluid introduces an extra resistance when the asperities have
relative motion in the tangential direction. Figure 3.6 illustrates this effect. They developed
amodel capable of predicting the coefficient of sliding friction of smooth spheres colliding
onto planar surfaces in a viscous liquid from elastohydrodynamic lubrication theory.

Hence, for the case in which piezoviscous effects are important, it does not suffice to use
input parameters from dry collisions and lubrication corrections for obtaining a physically
realistic result: the coefficient of sliding friction measured in a wet collision experiment,
or predicted by the model developed in [73], p¢,wet, should be used.

3.4 NUMERICAL IMPLEMENTATION

The governing equations for the solid particles are advanced in time with the same Runge-
Kutta scheme as used for the fluid phase, except for collision forces/torques and tangen-
tial displacement; these terms are integrated with a second-order Crank-Nicolson CN2
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.. >- I5n>hpv

s wet > y's,dry

Figure 3.6: Illustration of piezoviscous effects during an oblique contact between two spheres.
When the size of the asperities is smaller than the typical piesoviscous lengthscale,
0 < bpv, the effective coefficient of sliding friction ¢ wet decreases. Otherwise, the
Ue,wet remains of the same order, or even slightly larger, due to the increased frictional
resistance induced by the viscous fluid draining through the asperities.
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scheme that has proven to return a stable and accurate integration. This scheme requires
the contact force at the next time level, ¢, which depends on the values of the particle
position and velocity at the same level (eq. (3.15) and eq. (3.22)). We therefore compute
the contact force iteratively as a function of the particle position and velocity at q until the
new particle position converges. The particles’ position and velocity are initialized (k = 0)
with the values of the previous time level q — 1. The advancement follows directly the in-
tegration of the Navier-Stokes equations, within the RK3 time advancement loop with
a time step At which is allowed to be smaller than the time step of the Navier-Stokes
solver At to ensure that the contact forces and lubrication force corrections are accurately
integrated. The forces induced by the IBM are fixed in time while the sub-integrations are
performed. For sub-stepping ratios Ay = At/At, ranging from 1 to O(100), the extra
overhead introduced by the sub-stepping is negligible. The scheme is illustrated below.

k=0

do

for all particles j in contact with particle i do

q
compute 89 and 9% = R- 891 4 A—;1’—(uq’k +R- u9_1)

ymn ij,t ij,t ij,t ij,t
compute Ff‘)]:1 and Ff']],z
update F&* and TI*
end for
At FIF 4 F3
ud* = ud~" 4 (particle-fluid coupling terms [18]) + Spre Fre (3.35)
2 PpVp
At
Sl AR (336)
Atd TE* 18!
wg,k = w@‘l + (particle-fluid coupling terms [18]) 4 Tpcp% 3.37)
pip
errfier = Ixg* —x@ | (3.38)
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k=k+1

while err¥, . < eTTitermax

Atf)I = (ar + Br)Aty, varies according to the duration of the Runge-Kutta sub steps
and the coefficients can be found in Wesseling [150]: oc; = 32/60, 31 =0, &z = 25/60,
o =—17/60, x3 = 45/60, 3 = —25/60. The lubrication corrections are integrated
with the same scheme as the collision force. From this CN2 scheme, we expect second-
order accuracy for the linear momentum of the particle and consequently, third-order accu-
racy for the integration of the particle velocity. We verified the accuracy of the method by
reproducing, in simulations of dry collisions, the coefficients of restitution (e q and e¢,q)
that are used as an input in the collision model (not shown). For the simulations of the
present work 1 iteration sufficed for obtaining a small iterative error: err{t or > 108 Ax.

Unless otherwise stated, the particles are resolved with D, /Ax = 16 and a sub-stepping
ratio of rar = 50; the collision time set to T,, = 8At and the time step set a CFL value
of C=0.5.

3.5 RESULTS FROM COLLISION SIMULATIONS

3.5.1 BOUNCING MOTION OF A SOLID SPHERE COLLIDING ONTO A PLANAR SUR-
FACE IN A VISCOUS LIQUID

We simulated the bouncing motion of a solid sphere immersed in a viscous liquid and
colliding under gravity onto a planar surface. The trajectory of the point of the particle
closest to the surface and time evolution of its velocity are compared to the experimental
data of Gondret, Lance, and Petit [54]. This experiment is a useful benchmark for con-
firming that the lubrication corrections and collision model return a realistic bouncing
velocity, and that the collision is represented in good approximation as an instantaneous
event in the particle motion. Furthermore, there is no need for specifying impact and re-
bound velocities, which definitions vary significantly in literature [68]. Note that small
differences in rebound velocity are amplified after its temporal integration, and therefore
more noticeable in the particle trajectory.

The simulations were carried out in a domain corresponding to a closed container with
dimensions Ly /Dy, x Ly /Dy x L;/Dy, = 12 x 30 x 12. The particle is initially placed
aty/Dp = Ly —1.5R,,, centered in Ly /2 and L, /2. The motion is driven by a downward-
pointing gravitational acceleration of g = 9.81m/s>. The time step was fixed to the max-
imum allowed by the stability criterion at the maximum particle velocity (i.e., at impact),
multiplied by C to ensure a stable and accurate temporal integration. The physical and
computational parameters are listed in table 3.2.

Figure 3.7 presents the results for the trajectory and time evolution of velocity of a
steel sphere colliding onto a glass wall immersed in silicon oil RV10, corresponding to
Case St, = 152 of table 3.2 with, and without lubrication correction. The model is able
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Figure 3.7: Trajectory (a) and time evolution of the particle velocity (b) in the bouncing motion of
a steel sphere colliding onto a planar surface in silicon oil RV10.

to accurately reproduce this case. Also, the large discrepancy for the numerical solution
in the absence of lubrication model illustrates the importance of including it. Note that
at each impact the particle has a lower Stokes number: Sty, ;stp = 152, Sty ongp = 81,
Stn,grdb =23 and Stn,4thb =10.

Figure 3.8 (a) compares our simulations to the experimental data of Gondret, Lance,
and Petit [54] of the first bounce of steel spheres colliding onto planar surfaces in silicon
oil at different impact Stokes numbers. In the cases for which Ly was not sufficiently large
for the particle to reach its terminal velocity before colliding with the wall, we imposed an
initial velocity to the particle to ease the convergence of the velocity to its terminal value.
For extreme cases of a highly inertial St,, = 742 and highly viscous St, = 29 flow the
resolution was increased to Dy, /Ax = 32.

Table 3.2: Properties of the fluids and solid spheres used in the experiment of Gondret, Lance, and
Petit [54] and computational parameters of the numerical simulations.

Case D, [mm] pp,kg/m3] enq wlcP] pflkg/m3] D,/Ax C 71a¢ N
St, =742 5 7800 0.97 5 920 32 05 50 8
St, =152 3 7800 0.97 10 935 16 0.2 50 8
St, =100 4 7800 097 20 953 16 02 50 8
St, =29 6 7800 0.97 100 965 32 05 50 8

As expected and shown in figure 3.8 (b), the deviation from the experimental data for
the simulations without lubrication closure is more significant for smaller Stokes numbers
due to the increasing importance of viscous effects. Again, the simulations show good
agreement with the experimental data for this wide range of Stokes numbers.
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Figure 3.8: Trajectories obtained from simulations of particles colliding onto a planar surface in
silicon oil, for different impact Stokes numbers with (a) and without (b) closure for
lubrication interactions. Experimental data from Gondret, Lance, and Petit [54].

Sensitivity of the results to the collision time and, time step and sub-stepping

We explore the sensitivity of the model to the computational parameters that govern the
collision time and temporal integration of the fluid and particle motion. These parame-
ters are prescribed collision time, T,,, amount of sub-stepping, rat, and time step of the
overall numerical algorithm At. Let us consider the trajectory of figure 3.7 as the refer-
ence case for this sensitivity analysis, with focus on the first bounce (the subsequent will
be influenced by how realistically the first is reproduced). We performed a set of simula-
tions with parameters shown in table 3.3. Figure 3.9 (a) presents the outcome of this set

Table 3.3: Computational parameters used for the sensitivity study.

Case C At N 8M%%/Ax (%) Notes

ijn
REF 0.2 50 8 33.6 Reference case
SA1 06 50 5 63.0 Larger At, smaller N
SA2 0.2 1 8 33.6 No sub-stepping
SA3 0.2 50 1 4.16 Small N
SA4 0.025 50 8 4.16 Smallest At, same T,, as SA3
SAS 0.1 50 16 33.6 At between REF and SAS, same T,, as REF
SA6 0.025 50 64 33.6 Same At as SA4, same T,, as REF

of simulations. The trajectory corresponding to case SA1 compares well with the one of
REF, which shows that a collision which takes 5 Navier-Stokes can still be realistically
reproduced.
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The trajectories of cases SA2 and REF cannot be distinguished; this shows that sub-
stepping is not required to better resolve the collision and lubrication force corrections in
this case because the time step of the Navier-Stokes solver is sufficiently small.

In case SA3 the collision time takes exactly one time step of the Navier-Stokes solver,
which has the same value that the one of REF. Although the collision force and lubrication
corrections are resolved due to the sub-stepping, the trajectory obtained from this simu-
lation differs significantly from the reference case. This is mostly a consequence of an
over-estimation of the drag force from the IBM when the surrounding fluid does not adapt
itself gradually to the abrupt change in particle velocity due to a collision, as illustrated
hereafter.

Decreasing the time step of SA3 while keeping the stiffness fixed (SA4) allows the
fluid to adapt itself to the changes in particle velocity. However, the simulation also over-
estimates the drag force acting on the particle. We further show with cases SAS and SA6
that the over-estimation of the drag force is not consequence of an inconsistency problem,
because the simulations, for the same particle stiffness, converge monotonically to SA6
with decreasing time step.

The discrepancy of the solution for the stiff particle of case SA4 is caused by a loss of
conservation properties of the interpolation kernel used by the IBM when its stencil, for a
certain Lagrangian forcing point, overlaps with the one of another particle or with a solid
wall [76]. This issue becomes significant for considerably high particle stiffnesses, where
more problematic forcing points continue to perform interpolation/spreading operations
in an inconsistent manner throughout the entire collision time. Figure 3.9 (b) shows sim-
ulations for cases SA3* and SA4* with the same parameters as the ones of SA3 and SA4,
but excluding from the forcing scheme Lagrangian forcing points with a distance to the
wall smaller than Ax (procedure similar to what is suggested in [76]). Indeed, simulation
SA3* still yields an over-estimated drag force, whereas SA4* yields the realistic bouncing
trajectory with a difference in the peak of the trajectory of 2.5% from REF.

This illustrates that the realistic bouncing trajectory can only be obtained if the sur-
rounding fluid is allowed to adapt itself to the changes in particle velocity. Hence, we
decided to ensure that the fluid phase adapts itself to the changes in particle velocity by
avoiding excessively high values of particle stiffness. Note that for the reference case the
maximum overlap is already significantly small, about one third of a grid cell.

3.5.2 WET HEAD-ON COLLISIONS

The previous validation gives a fine validation of the approach used to simulate a wet head-
on collision. On contrary, the experimental curves of e /en q = f(St) — benchmark often
used to validate these models — depend on the definition of impact and rebound velocities
that are used to compute ey, . If, for instance, we define uin n as the terminal velocity, and
Uoutn as the maximum velocity after impact, for the case St, = 152 of table 3.2 we
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Figure 3.9: Sensitivity analysis to the time step, sub-stepping and stretching of the collision time
(a) and outcome of cases SA3 and SA4 when problematic Lagrangian forcing points
are excluded from the IBM forcing scheme (b). Computational parameters in table 3.3.

obtain e, = 0.85; considerably different from the experimentally measured value of 0.78.

To circumvent this problem one can define impact and rebound velocities which agree
with the frame rates used in the measurements [2]. We therefore use the impact velocity
and rebound velocities at the instants t —t. = Ff !, respectively; where f is a frequency
related to the temporal resolution of the experiment.

Particle-wall collisions

We simulated particle-wall collisions in a viscous liquid for several values of St,, and
compared the resulting normal coefficients of restitution e, to the experimental data of
Joseph et al. [74].

The computational domain has dimensions of Ly/Dy x Ly/Dp x L;/Dy = 12 %
24 x 12. Similarly to the previous cases, the particles are placed at a distance y/D,, =
Ly — 1.5R}, and their motion driven by gravity. We simulated steel spheres colliding onto
a planar surface in silicon oil RV20 (physical parameters are listed in table 3.2). The
Stokes number was varied by varying the particle diameters from 1.5 mm to T0 mm. We
used a value of f = 500 Hz, which complies to the frequency of image acquisition of
the experiment. Figure 3.10 shows the results. The numerical simulations agree with the
experiments for the entire range of impact Stokes numbers.

Particle-particle collisions

For inter-particle collisions we reproduced the pendulum experiment of Yang and Hunt
[151] by colliding a moving projectile particle with a steady target particle. Spheres of the
same size and material were centered in a computational box with dimensions L, /D, x
Ly/Dp x L;/Dp = 6 x 12 x 6 and separated in the y-direction by a distance of 4 D,.
Similarly to Simeonov and Calantoni [130], we force an acceleration g to the projectile
particle to mimic the release mechanism of the experiment.
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Figure 3.10: Normal, wet coefficients of restitution for particle-wall collisions. The experimental
data were normalized with the value e, ¢ = 0.97 measured in the reference.

The physical parameters are comparable to the experiments of head-on collisions of
steel spheres in aqueous solutions of glycerol: e, g = 0.97, p, = 7780kg/m?, D}, =
12.7mm, p = 45cP, p¢ = 1125kg/m?>. Yang and Hunt [151] defined the rebound and
impact velocities at instants corresponding to a value of f = 100 Hz.

The binary impact Stokes number, defined as Sti;n = (1/9)ppuijnDp/u for two
equal spheres of the same material, was changed by varying the projectile particle’s ac-
celeration from g/9.81 = 0.02 to 10 m/s. We used a value of ¢, = 107 to resolve the
lubrication interaction in the thin gap-width between these smooth particles. This value
agrees with the order magnitude of the size of the asperities (O(0.1) — O(0.01) um [151]).
These small values together with the fact that the target particle is freely mobile (numeri-
cal solution more sensitive to errors when compared to a collision with a wall or a fixed
particle) make this benchmark a valuable test for the overall methodology. Resolving the
lubrication layer of the interacting particles at such a small scale required a time step dic-
tated by C = 0.1 for a resolution of D, /Ax = 16, and a sub-stepping ratio of Ty = 1000.
For values of St,, higher than O(100), the resolution required to describe the dynamics
of the intervening film is higher. Hence, D}, /Ax was increased to 32, with a time step
dictated by C = 0.5.

Figure 3.11 (a) presents the trajectories of the particles’ contact points (results of the nu-
merical simulations shifted vertically for clarity). For very small impact Stokes numbers,
the momentum transferred to the target particle is not sufficiently high for it to overtake
viscous dissipation and travel with increasing relative displacement. Yang and Hunt [151]
observed that this is the case for Sti; , < 10, where the particles tend to move as a pair
with constant separation distance. This is shown in figure 3.11 (a) for cases St = 11.8
(measured experimentally) and St = 12.7 obtained from a numerical simulation. The
good agreement between the numerical simulation and the experiment gives a finer as-
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sessment of the lubrication closure. Furthermore, the simulations with values of binary
impact Stokes number considerably larger than 10, St = 21.5 and St = 34.3 do not show
this trend, consistently with the experimental observations.

Finally, figure 3.11 (b) compares the computed effective binary coefficient of restitution
from the numerical simulations to the experiments. The necessity of increasing the spatial
resolution of the simulation for a binary impact Stokes number of St = 135 is also illus-
trated by showing the outcome of this case with both resolutions. Increasing the resolution
becomes more important in this case than in particle-wall interactions due to the require-
ment of an accurate description of the interacting dynamics of the two particles through
short-range hydrodynamic interactions. The agreement with the experimental data is clear.
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LA ST . ot ™
1.2 st=215 N 0.8 L S’%‘f{ i
QQ- 1.0 H—* st=343 _ . .’fi’ "m
' = 0.6} IR -
= 08} 4 € :
S 06 < Lm v
| 2 7] s 04} ’»"é o+ 1
- 04 7/% O e
~— N . +  Yang and Hunt
00 ﬂ o B D/
. 7 D, /Ax =
—0.2 ] ] ] ] ] 1 0.0 L MR A. p./. 32
-2 -1 0 1 2 3 4 5 10* 102 103

t—te(s) x107% (a) St (b)

Figure 3.11: Trajectories of the particles’ contact points (results of the numerical simulations were
shifted vertically for clarity). The solid line was extracted from [151] (a). Wet coef-
ficients of restitution for particle-particle collisions (b). The experimental data were
normalized with the value e, ¢ = 0.97 measured in the reference.

We should note that extra computational overhead (C = 0.1 for D, /Ax = 16) was re-
quired for reproducing these results, when compared to particle-wall collisions.

3.5.3 OBLIQUE COLLISIONS

Finally, we validated our model for oblique particle-wall collisions in a dry system and
in viscous liquids. We use the experimental data of Joseph and Hunt [73] of oblique
particle-wall collisions in air and aqueous solutions of glycerol. The collisional proper-
ties parameters of the particles agree with their experiments and are described together
with the other physical parameters of the simulations in table 3.4. The computational
domain and particle’s initial position is the same of the previous simulations of particle-
wall collisions. The particle motion is driven by an imposed acceleration with direction
eg = —sin(dpin)ey —cos(Pin e, to yield the desired incidence angle. The magnitude
of the particle acceleration was set to g = 10 x 9.81 m/s? to ensure that the glass spheres
collide with an impact Stokes number of O(1000), comparable to the experimentally mea-
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sured values. The results for immersed collisions of steel spheres show little sensitivity
to the choice of the value of the acceleration due to the small value of the coefficient of
sliding friction. For clarity, figure 3.12 presents a visualization of the collision event.

Figure 3.12: Visualization of the approach (top-left), collision (top-right) and rebound (bottom-
left and -right) phases for a wet, oblique particle-wall collision. The sphere rotation
can be visualized through the color-code. The translucent iso-surface are of constant
vorticity magnitude, colored by the fluid pressure (yellow—high, blue—low), and the
black arrow denotes the centroid velocity.

Table 3.4: Physical and computational parameters for the simulations of oblique particle-wall col-
lisions.

Material Dy en,d €td Hc Hcwet Pp Pf H

steel ~ 25mm 0.97 034 0.11 002 7800kg/m3 998kg/m3 1cP
glass  25mm 097 039 010 0.15 2540kg/m3 998kg/m3 1cP

Figure 3.13 shows a comparison between the normalized incidence and rebound angles
obtained from oblique collisions between steel and glass spheres. The simulations agree
well with the experimental data for the entire range of incidence angles. This is an ex-
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Figure 3.13: Results of for oblique collision simulations in a dry system (a), and in a viscous liquid
(b). Experimental data of Joseph and Hunt [73].

pected consequence of the fact that the model uses the macroscopic properties of these
collisions as input parameters.

3.6 CONCLUSIONS AND OUTLOOK

We presented and validated a collision model for fully-resolved 4-way coupled simulations
of flows laden with finite-size solid particles. There are three types of particle-particle
or particle-wall interactions that must be reproduced in such simulations: (1) long-range
hydrodynamic interactions; (2) short-range hydrodynamic interactions; and (3) solid-solid
contact.

The long-range hydrodynamic interactions are computed by a Navier-Stokes solver
where we used an IBM for an efficient representation for the particles. Other approaches
that require a closure for small inter-particle/particle-wall distances (e.g., Lagrangian-
multiplier or Lattice-Boltzmann methods) could have also been used.

Short-range hydrodynamic interactions are also partly resolved by the IBM. However,
the discrete nature of these numerical methods together with the necessity of a computa-
tionally efficient implementation typically require a closure model for lubrication interac-
tions. For the cases addressed here, the only lubrication interaction that requires modeling
is the squeezing of fluid through the thin gap between two approaching particles or a par-
ticle approaching a wall. To achieve this we used a two parameter model: for normalized
gap-widths smaller than a value ea, we introduce a correction based on asymptotic ex-
pansions of analytical solutions of particle-particle/-wall interactions in the Stokes regime.
This value is obtained by determining the gap-width below which our numerical method
is unable to reproduce the interaction. The second parameter, €, accounts for roughness
effects for even smaller gap-widths.

Finally, solid-solid contact is modeled through a linear soft-sphere collision model capa-
ble of stretching the collision time, to avoid computational overhead in the calculation of
the collision force. The model constants are analytically related to the three input parame-
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ters of the model described by Walton [148], which are widely reported in the literature. It
can be extended to accommodate more complex mechanics such as adhesion or plasticity
for the normal force, or static and dynamic friction for the tangential force. However, these
features are in general not required in 4-way coupled simulations of flows with finite-size
particles at small/moderate solid volume fractions.

We validated our methodology against several benchmark experiments and the results
show a good quantitative agreement. The simulations of the bouncing trajectory of a spher-
ical particle colliding onto a planar surface [54] show that the lubrication force corrections,
combined with the collision model are sufficient for reproducing a realistic bouncing ve-
locity. Subsequently, we successfully reproduced experimental data for the normal coeffi-
cient of restitution as a function of the impact Stokes numbers for head-on particle-wall
[74] and particle-particle collisions [151]. Finally, our simulations of oblique particle-wall
collisions in dry and wet systems agree quantitatively with the experimental data of Joseph
and Hunt [73] for the entire range of incidence angles.

The physical realism and computational efficiency of our method allows for massive
fully-resolved simulations of particle-laden flows with 4-way coupling.
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This chapter is adapted from P. Costa et al. “Universal Scaling Laws for Dense Particle Suspensions in Tur-
bulent Wall-Bounded Flows.” In: Physical Review Letters 117 (13 Sept. 2016), p. 134501.
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Turbulent, wall-bounded suspensions appear widely in environmental and industrial
contexts. These suspensions are often dense, i.e. the volume fraction is sufficiently high
that particle-particle and particle-fluid interactions strongly influence the macroscopic
flow dynamics. In many cases, the suspended particles have a finite size — comparable to
or larger than the smallest scales in the flow, and particle inertia plays an important role
[6].

The flow of suspensions under laminar conditions has been thoroughly studied since
Einstein [40] analytically derived an expression for the effective viscosity of a suspension
of rigid spheres in the dilute and viscous limit: v¢/v = 14 (5/2)®, where v is the
kinematic viscosity of the suspending fluid, and @ the bulk solid volume fraction. In dense
cases, the rheology of laminar suspensions is usually characterized by semi-empirical
formulas for the effective viscosity [58, 133].

When the Reynolds number (which quantifies the importance of fluid inertial to viscous
effects) is sufficiently high, the flow becomes turbulent, exhibiting chaotic and multiscale
dynamics. Wall-bounded turbulent flows are characterized by at least one inhomogeneous
direction and by the constraint of vanishing velocity at the wall, which makes their analy-
sis even more complicated. For simplicity, we consider the canonical case of a pressure-
driven turbulent plane-channel flow laden with neutrally-buoyant particles, defined by the
bulk Reynolds number Re, = Uy 2h/v, where Uy, is the bulk velocity (i.e. averaged
over the entire domain) and h the half channel height. In the single-phase limit, the most
well-known results from classical turbulence theory are the scaling laws for the mean ve-
locity and the associated drag, or pressure loss. This is obtained by dividing the flow into
two regions: the inner layer, close to the wall, y < h, with relevant velocity and length
scales w and 9., and the outer layer, away from the wall, y > 6,,, governed by u. and
h; here ur = /Ty /p is the friction velocity, T, the wall shear stress, 8, = v/u. the
viscous wall unit and p the fluid mass density.

At high-enough friction Reynolds number, Rer = h/6, = u h/v = 100, correspond-
ing to Rep = 3000 [116], an overlap region exists, 6, < y < h. Here a logarithmic law
can be derived for the inner-scaled mean velocity profile, w/u, = (1/k)In(y/é,) + B,
and for the outer-scaled defect law (U, —u)/ur = —(1/k) In(y/h) + Bg, with U, the
centerline velocity, k &~ 0.41 the so-called von Kdrman constant, B ~ 5.2 and B4 =~ 0.2.
These simple scaling laws, derived in 1930 [75], have been confirmed by many numerical
and experimental studies (see e.g. [131] for a review). Their importance is unquestionable
to predict the overall drag [34] and as basis for many near-wall closure models currently
used in computational fluid dynamics [111].

At the very high Reynolds numbers typically encountered in practice, the suspended
particles are larger than the smallest turbulent scales (~ 0,,) and the single-phase approach
fails to reproduce the behavior of turbulent channel flows of dense suspensions even when
accounting for an effective suspension viscosity [97, 112, 118].

We propose scaling laws for turbulent wall-bounded suspension flows. These are char-
acterized by three parameters: the bulk Reynolds number Rey,, the bulk solid volume frac-
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Table 4.1: Physical and computational parameters of the DNS database (consisting of 20 simula-
tions). N, denotes the number of particles and S\S,ph (2, 5y) the viscous wall unit for
the corresponding single-phase flow at the same Rey,.

Case h/Dp, Dp/85P™ @ (%) Rep N,
D10 36 9.7 20 12000 640000
D20 18 19.4 20 12000 80000
D10_2 36 9.7 5 12000 160000
FP[112] 9 19.9 0—20 5600 0— 10000
IL [84] 5 207,324 0—30 3000,5000 0—2580

tion @ and the particle diameter Dy, /h. These laws are capable of predicting the mean
velocity and drag from dilute to dense cases, from large to relatively small particles and
for a wide range of Reynolds numbers.

We use data from interface-resolved Direct Numerical Simulations (DNS). The DNS
solve the Navier-Stokes equations for an incompressible Newtonian fluid in a plane chan-
nel with periodic boundary conditions in the streamwise (x) and spanwise (z) directions
over lengths of 6h and 3h respectively, and no-slip and no-penetration at the bottom
(y = 0) and top (y = 2h) walls. The flow solver is extended with an Immersed-Boundary-
Method to force the fluid velocity to the local particle velocity at the particle surface [18].
Lubrication closures are used for short-range particle-particle and particle-wall interac-
tions when inter-surface distances are smaller than a grid cell and a soft-sphere collision
model for solid-solid contacts [27, 83]. The method has been tested and validated against
several benchmark cases [27, 85, 114]. The flow is resolved on a uniform Cartesian grid
with size A = D, /16. The computational parameters are presented in table 4.1 where
we also report the cases from [84, 112] used here for comparison. The data are comple-
mented with an unladen single-phase reference (SPR) case at the same Rep, = 12000
and a continuum limit reference (CLR), i.e. the single-phase flow of a fluid with the ef-
fective viscosity v€ of a suspension with volume fraction ® = 0.2, corresponding to
Reg = Repv/v€ =~ 6400 in our case.

Unless otherwise stated, profiles of an observable o pertaining to a certain phase are
obtained from the following intrinsic volume average of a 3d flow-field:

Z’Lk O‘i.jk(xl U/ Z)Cb;/]f (X/ U/ Z)

f
2 ik d)ij/ks (xy,2)

()5 (y) = 4.1)
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Figure 4.1: Mean streamwise flow velocity, /1L, versus the wall-normal distance in inner scaling
y/d%. Vertical dashed lines depict a wall-normal distance of 1 particle diameter (y =
D) for cases D10 (closest toy = 0) and D20, see table 4.1. Maximum statistical error
within 95% confidence interval is +0.9%. The inset shows the same velocity profile
but with the wall-normal distance scaled with 0-,.

where ¢ (x,y, z) is a phase-indicator function (d)ifjk + d)fjk = 1). For simplicity, we will
drop in the profiles the () brackets. Profiles pertaining to the combined phase are obtained
in a similar fashion,

o () = = (065106 ¥ 2001 (%, Y, 2) + 0 (x,, 2)% (., 2) .
0) WY = . .
Zik <¢‘fjk(X,y, z) + d)fjk(x,y, Z))

Figure 4.1 shows the mean velocity profile for D, /8, =~ 10 (D10) and 20 (D20), com-
pared to the continuum limit reference (CLR). The comparison between the single-phase
and the two-phase flows requires a proper definition of the viscous wall unit in terms of v€¢,
here 05 = v¢/u-. Despite the improvement with respect to the use of the classical defi-
nition of 6,, = v/u, (see the inset of figure 4.1), the figure reveals that the particle-laden
flows show a clear deviation from the classical logarithmic law. The differences with the
continuum limit are higher for larger particles, and so is the measured increase in drag.
The abrupt change of the slope of the profile at a wall-normal distance of y ~ Dy, sug-
gests that the deviation from the continuum limit is caused by a change in the near-wall
dynamics. Studies of laminar wall-bounded flows laden with neutrally-buoyant spheres
report a structured arrangement of particles near the wall [59, 114, 152]. This layering is
attributed to the planar symmetry imposed by the wall and to stabilizing particle-particle
and particle-wall interactions. Though more pronounced under laminar conditions, this
phenomenon is also present in turbulent suspensions [84, 112]. Figure 4.2a presents the
mean local number density n, normalized with the corresponding bulk value N, for cases
D10 and D20 (see table 4.1). The particle layer is evident from the local minimum at a
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Figure 4.2: (a) Mean particle number density n divided by its bulk value N versus y/h in the
main panel and y/Dy, in the inset (Maximum statistical error within 95% confidence
interval is £0.8%). (b) Mean streamwise particle and fluid velocity. The inset shows
the fluid velocity, normalized with 1, (definition in the text) versus y/Ry,. The data
from [112] pertain to the case of ® = 20%. Vertical dashed lines depict a wall-normal
distance of 1 particle diameter (y = Dy,) for cases D10 (closest to y = 0) and D20,
see table 4.1.

distance of one particle diameter from the wall, as shown in the inset where the horizontal
axis is scaled with D,.

The apparent mean particle-to-fluid slip velocity is highest close to the wall and be-
comes negligible at wall-normal distances y 2 Dy, see figure 4.2b where we report the
wall-normal profiles of the mean particle and fluid velocity for two of the cases consid-
ered. Away from the wall, the complex interaction between the turbulent fluid motion and
the particles still result in approximately the same average value of streamwise velocity,
as if the two phases behave as a continuum. The layer of particles near the wall shows
an almost constant slip with respect to the fluid. This large slip indicates that continuum
models based on an effective viscosity are bound to fail.

The inset of figure 4.2b reports the fluid velocity divided by the particle-to-fluid slip
velocity at the wall, uy.,, versus the wall-normal distance in units of particle radius Ry,.
For the same volume fraction of 20%, results from different numerical simulations with
different Reynolds numbers and particle sizes collapse for wall-normal distances smaller
than a particle radius. It appears that, in dense suspensions, a particle-wall layer exists
that prevents a direct interaction between the turbulent suspension flow in the core and the
solid wall underneath the particle-wall layer. This serves as starting point for the scaling
arguments presented hereafter.

The former considerations motivate a modeling approach based on the separation be-
tween the dynamics of the particle-wall layer and of the turbulent flow region. We will
denote the latter as the homogeneous suspension region (HSR), meaning a well mixed sus-
pension. Let us therefore define the thickness of the particle-wall layer by the length scale
dpw- The previous discussion showed that 0., scales with Dy, at fixed volume fraction.
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In addition, 6y, should vanish in the single-phase limit, i.e. when ® — 0. We therefore
assume dp.y, (i) to be proportional to the solidity of the bulk suspension, measured as the
ratio between particle size and mean particle separation distance, and (ii) to scale with
the particle size. These hypotheses give the result above dp,, = C (D/ Dmax)'/3 Dy,
where the constant is set to C = 1.5 ! for all the cases addressed here and @, qx = 0.6.
Note that displacing the origin of the turbulent region has been successfully adopted in
turbulent flows over rough walls [69], but was not applied before to the case of turbulent
suspensions.

In the same spirit, we further assume that the total stress T = pu%ﬂ —y/h) acting
across the channel is due to two distinct mechanisms. In the HSR, the increment in stress
due to the particles is assumed to be well modeled by an effective suspension viscosity; in
the particle-wall layer, instead, the stress increases due to the large apparent slip velocity
near the wall. This is the main finite-size effect present in the flow. The stress in the HSR
(y > dpw) corresponds therefore to that of a single-phase turbulent flow of a Newtonian
fluid with viscosity v¢, in a channel with a wall origin at y = &, and half-height h —
dpw- The flow in this region experiences an apparent stress pui2 < pu%. In the particle-
wall layer (y < dpw) the stress increases linearly when approaching the wall from pui2
to puz = pur? + Atpw. Hence, the total stress, linearly varying across the channel [112],
is split into two contributions:

T = (pwi? + Atpw (1 —Y/8pw)) H(Spw —Y)
+ (pujﬂcz(h_y)/(h_ 5pw)) Hiy — 5pw)} (4.3)

where J{ is the Heaviside step function with the half-maximum convention. Evaluating
eq. (4.3) at y = dp,y yields the friction velocity in this region W} = w(1 — dpw/ h)'/2,
Given uy, v¢ and 0p,, we obtain the following laws for the inner- (u/u; = F[(y —
dpw)ui/v€]) and outer-scaling ((Ue —u)/ui = Gl(y —dpw)/(h—0pw)]) of the mean
velocity in the overlap region of the HSR:

v Ty <9‘ 5PW> T8, (44
ur K o™
U — 1 —5
L P (M”) +Bg, 4.5)
ux K h—3pw

with ul = u,(1— 6pw/h)1/2, 08" = v¢/uk; k, B and By retain the values of single-
phase flow; here v¢/v = (14 (5/4)®/(1 — ®/®Dmax))? [133]. Figure 4.3 reports the
mean velocity profiles from the present simulations and the cases from [112]. The figure
shows a collapse of the profiles in the logarithmic region, except for case FP [112] with
@ = 20% (see table 4.1). This is expected from our model, because it is the only case for

which the friction Reynolds number based on the scaling parameters of the HSR Rel?s =

1 Value obtained by fitting the agreement of the drag to the simulation results.
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Figure 4.3: Profiles of mean streamwise fluid velocity u/u% versus the wall-normal coordinate
(y —0pw)/8y", and defect law, (Ue —u)/uz, versus the distance to the wall in outer
units (y — dpw)/(h —dpw) (definitions in the text). The top panels correspond to the

unscaled profiles, accounting only for an effective suspension viscosity, i.e. dpw = 0.

Maximum statistical error is the same as in figure 4.1.

(h—08pw) /85" < 100. This implies that there is not a sufficient separation of the inner
and outer scales for the overlap region to exist [116], which is a necessary condition for
the logarithmic scaling of the velocity profile. The defect law is shown in outer scaling

in the inset of figure 4.3, where scaling in the logarithmic region can be clearly depicted.

Also for this quantity the improvement with respect to the case where the particle-wall
layer is not considered (6, = 0) is significant (not shown). In addition, figure 4.4 shows
the compensated profile Ki = (y—0pw) 11 33 for the present DNS. All the profiles have
a better agreement with the single-phase cases when corrected for the apparent wall origin
dpw. Notice that the local minimum of the profiles for the cases laden with small particles

(D10 and D10_2) occurs at the same wall-normal distance as in the single-phase cases.

Finally, the proposed scaling laws are used to derive the following drag law (i.e. the mean
wall shear stress T,, = pu%), expressed in terms of the friction Reynolds number:

Re. = ZIE{,?/)Z (l [In <ReTX &3/2> } + B+ Bd>_1 , (4.6)
PW
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Figure 4.4: Profile of LI (Yy—dpw) ! g—‘y* The thinnest dotted lines correspond to the uncor-

K* T ux
rected case where 0py, = 0 and the solid lines to the corrected case with 8,y =
1.5(®/Pmax)'/3Dyp.

where &,y = (1 —0pw/h) and x¢ = v/v€. Eq. (5.3) is derived in the same way as
well-known laws from single-phase flow are derived [34]: by integrating the defect law
(eq. (5.2)) over the entire HSR to relate the bulk and centerline velocities, and combining
eq. (5.1) and eq. (5.2) to relate the friction and bulk velocities. Note that eq. (5.3) reduces
to the well-known relation for single-phase flow when ® — 0. This derivation, together
with an alternative, simpler equation to predict the overall drag, are given at the end of
this chapter. Figure 4.5 compares the relative difference between the predicted values of
Re- and the values obtained from the DNS, ReS“S. The filled symbols correspond to
predictions where only the effective viscosity is taken into account, i.e. dp, = 0, and the
open symbols to predictions where both effects are accounted for. The estimates of the
drag improve for the three datasets and the difference with the DNS values is less than
4%. This supports the necessity of accounting for finite-size effects and further validates
the proposed scaling. We remark that the implicit formulation of the drag law given by
eg. (5.3) can be replaced by a simple explicit power law of Re as a function of Rey, less
sensitive to insufficient inner-to-outer scale separation, which yields similar (and consis-
tently, slightly more accurate at low Reynolds numbers) predictions for the drag; see the
last section of this chapter material.

The solution of eq. (5.3), normalized with the corresponding friction Reynolds number
for single-phase flow Rei]Dh = Re+|p—0, can be examined to draw general conclusions
on the suspension behavior. For constant volume fraction and Reynolds number we con-
clude that a finite particle size causes a significant increase in drag with respect to the
continuum limit due to the formation of a particle-wall layer. As expected, the drag in-
creases monotonically with the particle size (corresponding to an increase of dp.,) and
volume fraction (increasing 8, and v°).
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Figure 4.5: Relative difference to the theoretical prediction of friction Reynolds number (the
shaded area corresponds to a difference of £4%). Filled symbols correspond to values
that were not for corrected for the presence of the particle-wall layer (i.e. dpvw = 0).
The maximum statistical error in the computation of the overall drag (with 95% con-
fidence interval) from the DNS is below 1%. The corresponding (shifted) error bar is
also shown on the left-hand side of the plot legend.

To conclude, we presented scaling laws for the mean velocity and the velocity defect
in turbulent channel flow of neutrally-buoyant finite-size spherical particles, which also
enables us to accurately predict the total suspension drag. The model quantifies the main
finite-size effect present in the flow — a particle-wall layer which always causes an in-
crease in drag, by separating the dynamics of the flow in this layer and the homogeneous
suspension region in the core. Exploiting conservation of momentum, this effect can be
reduced to an apparent wall location y = dp, above which the flow is reasonably well
represented by a Newtonian fluid with an effective suspension viscosity v¢. We validated
our predictions for a reasonably wide range of the governing parameters.

DERIVATION OF DRAG LAW

In the single-phase case, one can relate the bulk velocity to the friction velocity from
the logarithmic scaling laws for mean velocity and velocity defect. A detailed derivation,
together with the inherent assumptions can be found e.g. in [116].

We aim at relating Re; to the parameters governing the flow in the overlap region: Rey,
® and Dy, /h. As for single-phase turbulent channel flow we assume for the homogeneous
suspension region that the bulk velocity is well approximated by integrating the velocity
defect over the height of the homogeneous suspension region (HSR). This approximation
is valid as long as (i) the Reynolds number is sufficiently high that the inner layer of the
HSR does not contribute significantly to the bulk velocity and (ii) the virtual wall origin
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dpw is sufficiently small that the flow inside the particle-wall layer contributes little to the
bulk velocity. Thus,

Uy =~ ] " d 4.7
LR - LPW”” ‘ &7

The bulk velocity is then estimated by integrating the defect law from &, to h (con-
sistency requires that the constant B 4, typically small, is set to 0),

*

u
Uy ~ (Uc — T) . (4.8)
K
Next, the two expressions for the log law, in inner and outer variables respectively, are
combined to relate the mean centerline velocity U, to the apparent wall friction velocity
uk, yielding:

Ue 1 (h—zspw

PR In ex
ur oK d¢

>+B+Bd (4.9)

Combining eq. (4.8) and eq. (4.9) we obtain the following expression for Uy, /w}:

Up 1 [m (*“W) _1] B4 B, (4.10)
ur oK d&*

Substituting wh = u (1 — (Spw/h)”z, and 0% = ve/ul in eq. (4.10) we get

Uy 1 v 6pw 3/2 6pw 172
— = - — - —1|+B+B -
. (K In (ReTVe <1 h > 1 d 1

(4.11)
After re-arranging, we finally obtain
Re 1 -
Rer= 10 ( [1n (ReTXea;i;é&) - 1} +B+ Bd> , 4.12)
2Epw \K

where &,y = (1 —8pw/h) and x® = v/v€. Eq. (4.12) can be solved numerically by
substituting 8y = C(®/Dmax)'/3Dyp and ve = (1+ (5/4)0/(1 — ®/Dmax))?v.
The constant C = O(1) was set to 1.5 for all the cases presented in this study, and @, o
to 0.6.

AN ALTERNATIVE CORRELATION FOR THE OVERALL DRAG

Figure 4.6 displays the same quantity as figure 4.5. The difference now is that the estimate
is based on an empirical correlation valid for single-phase flow (Re,sr]Dh 2 O.O9Re%88 [116]),
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Figure 4.6: Relative difference to the theoretical prediction of friction Reynolds number (the
shaded area corresponds to a difference of +£4%) when an empirical correlation is
used: Rer = 0.09(Reypx© Epw)o'ss/(és'/zxe). Filled symbols correspond to values
that were not for corrected for the presence of the particle-wall layer (i.e. 6w, = 0).The
maximum statistical error in the computation of the overall drag (with 95% confidence
interval) from the DNS is below 1%. The corresponding (shifted) error bar is also
shown on the left-hand side of the plot legend.

which is extended to the case of a turbulent suspension. For the homogeneous suspension
region we obtain:

“(h—5 Up (h— 8pw) | **
Renst — Wt =8pw) _ 59 <b( pW)> , (4.13)
ve ve
and from this we derive the following explicit, power-law expression for Re-:
0.09 (RepxEpw) 38
Re, = 207! X Eow) (4.14)
EpwX©

where &pvy = (1 —0pw/h) and X = v/v€. Figure 4.6 shows that the empirical cor-
relation given by eq. (5.4) yields similar predictions for the drag as eq. (4.12). In gen-
eral, the predictions from the empirical correlation are slightly more accurate (i.e., the
error is smaller), in particular for the data at the lowest values of ReMsT (see upward- and
downward-pointing triangles).

It is interesting to note that the explicit nature of eq. (5.4) enables us to estimate the
relative importance of the finite-size effect (£p,,) and effective suspension viscosity (x©)
at the given flow rate (quantified by Rey,):

0.88
Rey
ag.évzxe 0.12
The large exponent of &4, 0.62, confirms that the finite-size effect plays an important
role. At fixed particle size, however, the effective viscosity still plays a major role in these

Rer o (4.15)
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dense flows, as 1/x¢ ~ 1+ ® + O(®?) increases faster with @ than 1/ Epw ~ 1+
/3 4 O(v2/3).

<
&
M/
=
[a¥
<
s
O}




FINITE-SIZE EFFECTS IN TURBULENT SUSPENSION
TRANSPORT

0
jas
>
)
—
el
~
(9

This chapter is adapted from P. Costa et al. “Finite size effects in dense turbulent wall-bounded transport of
neutrally-buoyant spheres.” In: Journal of Fluid Mechanics (under review) (2017).
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5.1 INTRODUCTION

Throughout the years many studies on laminar shear flows laden with non-Brownian solid
particles have been reported. In these cases one can take advantage of the linearity of the
Stokes equations and achieve a rich variety of results by e.g. superposition of several
canonical solutions. An iconic example is the effective viscosity of a suspension of non-
Brownian spheres in the dilute and Stokes limit, derived by Einstein [39] to be pe /|t =
1+ (5/2)®, with p being the viscosity of the suspending fluid, and ® the bulk solid
volume fraction. Many studies followed throughout the years (see e.g. [19, 58, 133] for
more rheological studies).

Most of the experimental works on particle suspensions have been limited to integral
quantities, in particular the total wall shear. Often, the torque measured in a Taylor-Couette
system required to keep a certain shear rate is used to measure effective viscosities and
obtaining insight in the suspension rheology (see e.g. [5, 67, 133]). Although many im-
portant results have been extracted from this approach, more detailed measurements of
important features, such as the microscale organisation or the particle dynamics are chal-
lenging to obtain.

Lack of direct measurements at the microscale level gave room for important analytical
studies that relate the bulk suspension behavior to the particle dynamics. A well-known
example is the work of Leighton and Acrivos [88], who introduced the concept of shear-
induced migration due to irreversible inter-particle interactions, to explain the migration
of particles to the fluid reservoir in their Taylor-Couette experiments.

Great progress on the understanding of the flow dynamics at the particle scale has been
achieved through numerical simulations. Here one can measure directly the suspension
micro-structure and particle dynamics. In particular for flows in the Stokes regime, one
can use very accurate and relatively inexpensive particle-based methods such as Stokesian
dynamics [14] to understand in detail the bulk suspension behavior from a microscale
perspective. Recent advances in experimental techniques made also possible direct mea-
surements of a suspension micro-structure (see e.g. [13]).

When inertial effects become significant, the governing equations for the fluid phase are
non-linear and therefore analytical descriptions, numerical simulations and even experi-
ments become more challenging. Moreover, if the Reynolds number is sufficiently high,
the flow becomes turbulent, exhibiting chaotic and multi-scale dynamics. This makes the
understanding of these flows even more difficult.

Despite this, significant progress has been made with regard to wall-bounded particle-
laden flows in the turbulent regime, in the point-particle limit. Several studies have been
carried out analytically (e.g. [100, 120]), numerically [38, 125, 132] and experimentally
[45]. As a result, a deep understanding of the mechanisms e.g. leading to preferential
accumulation of particles smaller than the Kolmogorov scale depending on their inertia
and the local flow characteristics has been achieved. Similar maturity for the cases where
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the feedback of particles in the flow or finite size effects are relevant is still far from being
accomplished.

The previously mentioned challenges and limitations of experimental and theoretical
approaches makes the use of advanced numerical tools a necessity for obtaining detailed
information; despite the well-known limitations in terms of Reynolds numbers that can
be reached in simulations [118]. Lately, several groups have been successfully using nu-
merical algorithms for interface-resolved direct numerical simulations (DNS) of different
turbulent flows laden with finite size particles: examples are suspensions in isotropic tur-
bulence [93, 137], vertical channel flow [143], sedimentation [24, 47], bed load transport
[78, 145], channel transport of mono-dispersed particles [149, 153], and recently of poly-
disperse [86] and non-spherical particles [4]. Likewise, we use such simulations to study
turbulent channel transport of neutrally-buoyant finite size spheres.

Suspensions of neutrally-buoyant particles close to the onset of turbulence have also
been explored both experimentally [97] and numerically [92]. A common feature of the
results from these studies is the fact that solely an increase in effective viscosity of the
suspension does not explain the observed phenomenology, in particular for large particles.

In particle suspension flows a new mechanism for momentum transport emerges in the
form of a particle stress [11]. It therefore makes sense to follow the idea of Lashgari et al.
[84], who distinguished three different flow regimes, depending on the relative importance
of viscous, Reynolds and particle stresses to the total stress of the suspension: a laminar
(low Reynolds number and low volume fraction), turbulent (high Reynolds number and
moderate to low volume fractions) and inertial shear-thickening (high volume fractions),
the latest regime being characterized by a significant increase in wall shear that is not
accompanied by an increase in the magnitude of the turbulent stresses.

Recently, Picano, Breugem, and Brandt [112] presented detailed direct numerical sim-
ulations of turbulent channel flow laden with neutrally-buoyant finite size spheres. They
showed that, for fixed Reynolds number and particle size, particle stresses at a volume
fraction of about 20% are responsible for a non-monotonic behavior of the near-wall peak
in Reynolds shear stresses as a function of the volume fraction. The associated turbulence
attenuation is higher than what predicted only by accounting for an effective viscosity. The
decrease in the magnitude of the Reynolds stresses is accompanied by a more dominant
increase in particle-induced stresses, which ultimately results in an overall drag increase.

This observation is consistent with flow regime map of Lashgari et al. [84] and sup-
ported by the recent work of Costa et al. [28]. The authors built up upon the work in [112]
by extending the data set to higher Reynolds number and smaller particle sizes. They
showed that a layer of near-wall particles causes the suspension to deviate from the con-
tinuum limit, where its dynamics is well represented by an effective suspension viscosity.
Away from this layer, the suspension mean flow is shown to be well described by an ef-
fective suspension viscosity. Based on this idea Costa et al. [28] successfully derived the
scaling laws for the mean flow in the overlap region, and accurate correlations capable
of predicting the overall drag that the suspension experiences as a function of the three
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governing parameters: Rey,, @, and D, /h, respectively the bulk Reynolds number, solid
volume fraction and particle size ratio.

Here we investigate how finite size effects change the flow and particle dynamics near
the wall, and up to which point it is actually important to consider them in the bulk of the
channel. We related the observed mesoscale behavior to the local microscale dynamics.
This allowed us to present a clear picture of the sources of finite size effects in a dense
turbulent suspension, needed for future modeling efforts.

5.2 COMPUTATIONAL SETUP

The flow dynamics is governed by three parameters: the bulk Reynolds number Rey, =
Uy (2h)/v, the particle size ratio Dy, /h, and the bulk volume fraction of solid particles
® = N,V /V; (note that the particles are neutrally-buoyant), where Uy, is the flow bulk
velocity (forced to be constant in the numerical algorithm), h the half channel height, D,
the particle diameter, N, the total number of particles, and V}, and V; the volumes of a
particle and of the computational domain. In the present work the bulk volume fraction
of solid particles is fixed to ® = 20%, and the Reynolds number to Re, = 12000,
in order to ensure sufficient inner-to-outer scale separation [28]. Two different particle
sizes are considered as reported in table 5.1, together with other relevant physical and
computational parameters.

The simulations are performed in a domain with dimensions Ly/h x Ly/h x L,/h =
6 x 2 x 3, using a grid spacing dictated by the number of grid cells required to resolve the
flow conforming the spheres: Ax/D, = 1/16. Particles are considered to be frictionless,
with a dry coefficient of restitution ey 4y = 0.97. The interface-resolved simulations pre-
sented here are complemented with two single-phase reference cases: the unladen case at
the same bulk Reynolds number, denoted SPR (single-phase reference), and the contin-
uum limit where the flow dynamics can be reproduced by a single-phase fluid with the
effective viscosity of the suspension at ® = 20%, denoted as CLR (continuum limit
reference). This simulation corresponds thus to a single-phase flow with bulk Reynolds
number Rep,v/v¢ ~ 6400 and effective viscosity v¢ = v(1 + ®/(1 — ®/®D 1 qx))? ob-
tained from Eilers fit [133], with @ ;4 = 0.6. We note that data from these simulations
have been also presented in the previous chapter.

Due to the large size of these simulations, all spatial averages were computed during
run time and averaged in time a posteriori, with samples obtained from a time interval of
about 1500h/Uy,, spaced by 7h/Uy,. A total of about 7 million core hours in the super-
computer CURIE (thin nodes; B510 bullx) at CEA, France, and Beskow (Cray XC40) at
KTH, Sweden were used.
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Case Re, h/Dp D]D/éf‘,ph D (%) Ny x Ny x N, Np
D10 12000 36 9.7 20 3456 x 1152 x 1728 640000
D20 12000 18 194 20 1728 x 576 x 864 80000
SPR 12000 - - — 1728 x 576 x 864 0
CLR 6400 - - — 1152 x 384 x 576 0

Table 5.1: Physical and computational parameters of the DNS data sets. éf,ph (Z 6y) denotes the
viscous wall unit for the corresponding single-phase flow at the same Rey, estimated
from ReSP™ = 0.09Red38 [116). N denotes the number of particles, N denotes

the number of grid points in the x/y/z directions.

x/y/z

5.3 RESULTS

NEAR-WALL DYNAMICS — THE MAIN CAUSE OF FINITE SIZE EFFECTS

We will here refer to finite-size effects as the causes for the meso or macroscale-averaged
flow statistics to be different from those obtained from the continuum limit approximation
in which the suspension is modeled as a Newtonian fluid with an effective viscosity due
to the presence of the particles.

Costa et al. [28] showed that a layer of particles, flowing near the wall with significant
(apparent) slip velocity, is responsible for an additional increase in drag which cannot be
modeled by an effective suspension viscosity. By accounting for this effect, the authors
were able to scale the profiles of mean velocity and velocity defect (U, —u, where U, is
the mean centerline velocity) for a wide range of combinations of Rey,, ® and Dy, /h. The
theory in Costa et al. [28] assumes that the domain can be split into two regions, bounded
at a wall-normal distance y = dpy,: a region away from the wall, denoted homogeneous
suspension region (HSR) (y > &p.) where the mean flow of the suspension is well
represented by the continuum limit of a Newtonian fluid with effective viscosity v¢, and a
region close to the wall denoted particle-wall layer (PWL) (y < 0p) where the difference
between the mean flow of the two phases, at the mesoscale level, makes this assumption
invalid. By exploiting the stress budget, the authors could derive scaling laws for the mean
velocity and velocity defect in the HSR, provided that, like in a single-phase turbulent
channel, inner-to-outer scale separation is satisfied. In other words, the friction Reynolds
number based on the scaling parameters of the homogeneous suspension region needs to
be sufficiently high. These are a channel height corrected for a virtual-wall origin, h —

*

dpw. the friction velocity taken from the profile of the total stresses at y = dpw, Uy =
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Case Rer Re: Ref"
SPR (unladen) 350 350 350
D10 395 209 203
D20 406 215 203
CLR 201 201 201

Table 5.2: Friction Reynolds numbers for the different cases studied. Rer = uh/v is the typi-
cal friction Reynolds number defined from the wall friction velocity and fluid viscos-
ity, ReS = Re.Vv/v€ is instead defined from the suspension effective viscosity and
ReS" =u (11— 6pw/h)1/z(h— dpw)/vE =ReZ(1— 6]3,,\,/}1)3‘/2 is defined from a
wall friction velocity and channel height corrected for finite-size effects and the effective
suspension viscosity.

uZ(1—dpw/h) and the effective suspension viscosity v¢, yielding Re™ = u%(h —
dpw)/ V€. The relations derived in Costa et al. [28] read,

L <9_ 6PW> 4B, (5.1)
ur K o*
— 1 -9
Uemw T <ypw> 1By, (5.2)
ux K h—dpw

with 8§* = v€/uX; the coefficients k, B and B4 retain the values of single-phase flow
whereas the effective viscosity is obtained from Eilers fit v¢/v = (1 + (5/4)®/(1 —
® /D ax))? [133]. The virtual wall origin of the HSR is given by y = dpw = C(D/Dmax) ! /3Dp.
These scaling laws can be further used to derive a master equation that accurately predicts
the overall drag of the suspension, here expressed in terms of a friction Reynolds number:

Re 1 !
Rew = 258 (& I (Reasid) —1] e b))
pw

or, in an explicit form based on a similar correlation for single-phase flow from Pope [116],

0.09 (RepX€Epw)°®?

Rer = s , (5.4)

EpwX©

where &y = (1 —0pw/h) and X = v/v€.

Table 5.2 presents the mean wall shear, expressed in terms of the friction Reynolds
number Re;r = uh/v from the different simulations considered here. As expected from
eq. (5.3) and eq. (5.4), the addition of finite size neutrally-buoyant particles results in an
increase in drag with respect to the value of 350 of the single phase flow, which (when
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(a) (b)

(c) (d)

Figure 5.1: Instantaneous snapshots of the flow for cases D10 (a) and D20 (b). The contours
show the of magnitude of streamwise velocity (normalized by Uy,) in three mutually-
perpendicular planes. Particles are illustrated in part of the domain. The bottom plane
corresponds to a wall-normal distance of y = 1.5Dy, also shown in a 2D perspective
in panels (c) (D10) and (d) (D20).

fixing the other governing parameters) increases with increasing particle size. We first
note that the smaller the particles, the more the suspension friction Reynolds number
ReS = Re.Vv/v€ approaches the value obtained in the continuum limit, CLR; in other
words using an effective viscosity provides a better prediction of the total drag. This is a
consequence of the smaller finite-size effects that typically occur near the wall [28].
Finally, the third column in the table shows the suspension Reynolds number of the
HSR, Ret™ = Re% (1 —dpw /h)3/2, obtained considering both an effective suspension
viscosity and a virtual wall origin as explained above (with 8., computed with C = 1.5
and O = 0.6). The friction Reynolds numbers from the interface-resolved simulations
are, in this case, equal for both particle sizes and very close to the value of Re;v/v€ for
the CLR case. This strongly supports the proposed correction for finite-size effects.
Figure 5.1 displays snapshots of the flow for the two laden cases, D10 and D20. The
top panels show planar sections colored by the streamwise flow velocity, and particle po-
sitions only shown for streamwise locations smaller than 0.4], and wall-normal distance
Yy < h. The bottom plane (also shown in the two planar views, in the bottom panels)
corresponds to a wall-normal position y = 1.5D,,, corresponding to about y/6,, = 15
and 30 for cases D10 and D20. The figures show the typical near-wall low-speed streaks
found in single-phase wall-bounded turbulence, also present in these suspensions [112].
Differences in velocity contrast between the two cases can be attributed to the choice
of a plane at wall-normal distance that scales with the particle diameter, meaning that,
in viscous units, the plane corresponding to case D10 is closer to the wall. However, in
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both cases the maximum streak amplitude is achieved at relatively larger wall-normal
distances than what is expected for single-phase flows, as illustrated in figure 5.2. This fig-
ure depicts contours of autocorrelations of the streamwise suspension velocity (i.e. com-
puted from the fluid flow field with rigid body motion inside the particles) R%, (y, Az) =
(u'(y,z2)u(y,z+ Az)) / (u'?(y)), averaged in time and in the streamwise direction for
different spanwise separations. Panels (b) and (c) show the results for the interface-resolved
simulations D10 and D20. Clearly the near-wall minima — footprint of the low- and high-
speed streaks [80], and near-wall property that should scale in inner units — are shifted
upwards, and the larger the particles are, the larger this shift is. Figure 5.2 also shows that
the smaller the particles are, the closer the suspension dynamics resemble the continuum
limit, CLR. This can be seen when comparing panel (d), corresponding to the continuum
limit CLR to panels (b) — D10 and (c) — D20. There is a clear qualitative discrepancy
between the CLR and the bigger particles (D20), contrasting with a significant quanti-
tative agreement between CLR and the case with small particles (D10). For the case of
bigger particles (D20), the wall-normal minimum is located at such a large distance to
the wall (= 0.3h) that inner-to-outer scale separation is compromised. Also, the auto-
correlations for the interface-resolved cases show a non-monotonic trend at wall-normal
distances y < Dy, where the autocorrelation (for fixed y) reaches a local maximum close
to the wall. This can be even better observed from the profile of the integral length scale

Ly, = I+£ Z RZ% ., d(Az), indicated by the dashed lines in the figure. This confirms that
the flow dynamlcs in this region is qualitatively different from what a simple continuum
rheological description would predict.

FLOW DYNAMICS IN THE PARTICLE-WALL LAYER (PWL)

Next we investigate in more detail the flow dynamics in the particle-wall layer. Panel (a) of
figure 5.3 depicts the mean streamwise fluid velocity in inner units. Note that the viscous
wall unit used for inner-scaling is defined, for consistency, with the effective suspension
viscosity at the same volume fraction, as we are ultimately interested in the deviations of
the flow dynamics from the continuum limit. For wall-normal distances y 2 105, the
profile for the case D10 (smaller particles) clearly shows a logarithmic scaling, with a von
Karman constant k = 0.36. On the other hand, case D20 does not show a clear logarithmic
region because of the larger extent of the PWL [28].

Panel (b) of figure 5.3 presents the difference between the fluid- and solid-phase veloc-
ity profiles, expressed in terms of a particle Reynolds number Rep, = (u, —us)Dp/v.
Profiles pertaining to the solid phase are obtained by averaging over the rigid body motion
of the particles. Two regions can be clearly distinguished in the figure, roughly separated
by the line marking the wall-normal distance y = Dy,. Fory 2 Dy, the difference be-
tween the velocity of the two phases is small, whereas the profiles clearly deviate for
wall-normal distances y < Dy, reaching the highest (apparent) particle-to-fluid slip ve-



5.3 RESULTS 89

a
st
>
o
=
o
=
W

0
0O 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2
Az/h Az/h

Figure 5.2: Autocorrelations of streamwise velocity RZ, as a function of the wall-normal distance,
y, for spanwise separation distances Az (both scaled with h) for cases SPR (a), D10
(b), D20 (c) and CLR (d). The dashed lines denote the profile of integral scale Ly, (y).
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Figure 5.3: (a) Mean streamwise (inner-scaled) fluid velocity and (b) profile of particle Reynolds
number based on the (apparent) particle-to-fluid slip velocity Rep = (up —ug)Dyp /v.
Vertical dashed lines indicate the wall-normal distance corresponding to one particle
diameter. The inset shows the same quantities, but with a linear-linear scale, to high-
light the differences in particle Reynolds number in the bulk.

locity at the wall. This is a signature of particle layering due to the kinematic constraint
that the wall imposes on the particles. Particles flowing at the wall acquire most of their
linear momentum at wall-normal distances higher than their radius and this is transported
uniformly throughout their volume. Conversely, the fluid momentum must vanish at the
wall. An important result that figure 5.3 (b) shows (see also its inset) is that the particle
Reynolds number in the bulk is virtually zero for case D10, while it still assumes values of
O(1) for case D20. This evidence of finite particle inertia in the bulk can result in inertial-
shear-thickening effects, see [114]. We will come back to this when the dynamics of the
homogeneous suspension region are discussed.

The near-wall layer of particles impacts the scale separation on which the scaling laws
for mean velocity are based. It is therefore interesting to understand how the near-wall
inhomogeneity affects the particle structure, and how far this inhomogeneity extends in
the wall-normal direction. We can quantify this through the angular distribution function
at contact (ADF). The ADF measures the probability of finding a particle pair at a fixed
distance T, as a function of the polar (8) and azimuthal (¢) angles, normalized by the
values of a random particle distribution. Formally,

1 dZNe,(pL.n CN(N=T1)
r2sin(0) dode no | 0 2V

9(6,9) = (5.5)

where Ng , denotes the number of particles on a segment of a spherical surface of radius
T = Dy, /2, and polar and azimuthal angles within the ranges 8’ € [0,6] and @' € [0, @].
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Figure 5.4: Projection onto the x —y plane of the angular distribution function at contact for simu-
lation D10 (top) and D20 (bottom). Statistics are obtained within wall-normal slots of
size Dy, centered at y/Dp =1, 2 and, 3 (flow is from right to left). The curves on the
right are the profiles of the mean local volume fraction, ¢/® versus the wall-normal
distance y/Dp, with the markers denoting the locations where the ADF are sampled.

The ADF is computed from the simulation data using bins with wall-normal extent D,
centered at y/Dy, = 1, 2, and 3, i.e. at the same wall-normal distance if scaled with the
particle size.

The projection of the ADF onto the x —y plane is displayed in figure 5.4 for the two
cases under investigation. For a suspension in homogeneous shear, the particles tend to
be preferentially attracted towards each other when located in a compression region (neg-
ative local strain) and reciprocally repelled from each other when located in a stretching
region [105]. This results in a distribution with two planes of symmetry: two regions of
higher clustering in the xy > 0 quadrants and two of lower accumulation in the xy < 0
quadrants. The inhomogeneity introduced by the wall, bounding the particle trajectories,
induces a deviation from this picture. The wall-effect vanishes for wall-normal distances
y/Dp 2 3 for both simulations. Interestingly, both ADF agree quantitatively. As the
distance from the wall is normalized by the particle diameter, for fixed volume fraction,
the wall inhomogeneity affects the particle dynamics at distances proportional to Dy, de-
spite the different local behavior (different wall-normal location in viscous units) of the
suspending fluid.

Let us now investigate the influence of the particle-wall layer on the distribution of
wall shear-stress. To this end, we report in figure 5.5 contours of the instantaneous wall-
shear for the case D20, together with the particle positions close to the wall (shown with
transparency). The data reveal a strong correlation between regions of high shear and the
particle location. This can explain the increase in drag with respect to predictions from
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6.9

Figure 5.5: Contours of wall shear stresses (normalized with the corresponding mean value) for
case D20 (top). Mean wall shear conditioned to the locations of the near-wall particles
and normalized with the mean wall shear (bottom) for cases D10 (left) and D20 (right).
The data are extracted from the average of the top and bottom walls for one temporal
realization.
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Figure 5.6: (a) Probability density function and (b) corresponding cumulative distribution function
of wall shear stress (normalized with its global mean pu%) for cases D20, D10 and SPR

(a).

the continuum limit: high particle-to-fluid apparent slip velocity close to the wall corre-
sponds locally to events of high wall shear stress, which are not present in the ‘equivalent’
single-phase flow with a modified suspension viscosity. Panel (b) of the same figure shows
the mean wall shear conditioned to the particle positions. Results for small and large par-
ticles show a similar qualitative behavior: the shear is higher than the mean around the
particles, except close to the surface of the particle, in the spanwise direction. This is a
consequence of the reduction of streamwise velocity as the fluid moves around the parti-
cle. The contours of the shear stress for the smaller particles show a higher local increase
in shear stress, which is, on the other hand, more localized. In fact, the contribution of
these hot spots of shear stresses to the total shear is the same for both cases D10 and D20,
and quite high: 69%.

The probability density function (pdf) of the shear stress distribution for cases D20,
D10 and SPR, presented in figure 5.6, shows a clear difference between the typical dis-
tribution of shear stresses for a single-phase flow, and for the particle-laden cases. In the
presence of particles, the tails of the pdf are greatly widened, with very high probability
of finding values of the shear stress up to 4 times the mean value, and likewise for val-
ues lower than the mean, including negative events. We note there that it is reported for
single-phase flow that T,;"™° = 1™/ (1,,) ~ 0.4 and that the pdf typically follows
a log-normal distribution [109]. Indeed, we obtained a value of ;"™ = 0.39 for case
SPR, with a pdf well-fitted by a log-normal distribution (not shown). The hot-spots of
high shear cause a striking difference for the laden cases: T,;;"™° = 1.1 and 1.0 for cases
D10 and D20. Moreover, the pdf no longer fits a log-normal distribution. The hot-spots of
high wall shear induce a kink in the pdf for T > (t), resulting in a clear exponential tail,
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fitted by A exp(—At/ (1)) with A ~ 1. Further, case D10 shows higher probability of ex-
treme events, (which, again, are more localized). The largest values attained by the shear
stress that in single-phase flows do not contribute significantly to the mean shear, account
for about 10% of the total in particle-laden channel flows, as shown by the cumulative
probability distribution function (cdf) displayed in panel (b).

The results presented so far shed light on the relation between the wall slip velocity
Upw = up(y = 0) and the wall friction w, (recall figure 5.3 b). Assuming that (1) the
average shear in the hot-spots matches the average wall shear and (2) the particles impose
a mean shear that scales with Uy, / Dy, over an area Dy, Ly, (L, being the streamwise
extent of the hot-spot, which as seen in figure 5.5 is significantly larger than D), we can
write:

u
NpwDpLwp™ = puzlyLs, (5.6)
P

where Ny, is the number of particles in the particle-wall layer. Further noting that
NPWD3/(DPLXLZ) ~ @, we have

P
2

Il"u?;w - &, (5.7)
Dy Dy v

and finally, assuming that L,,, /D, scales as the mean-free-path in a two-dimensional layer
of particles, i.e., o @~ 1/2, we obtain

= CpwReP® /2 (5.8)
Ur

with Rek = uDp /v being particle friction Reynolds number. The data in figure 5.7,
including previous cases in literature, confirm the validity of this relation with Cy,,,, = 0.2.
The data points that do not follow the predicted scaling correspond to very large particles
(h/Dy = 5), for which the influence of the outer scales on the near-wall particle dynamics
compromises the first assumption above, and to low volume fractions.

HOMOGENEOUS SUSPENSION REGION (HSR)

The contribution of the different stresses to the suspension streamwise momentum trans-
port (i.e. the stress budget) can be derived from volume- and ensemble-averaging the
mixture streamwise momentum equation, see [96, 112]. It reads for plane channel flow

du
(1) = u? (1 — %) =(1—¢) (—upvi)+(1— q>)vd—yf + ¢ (—upvy) +1p, (5.9)
T, 5&_/ TTVP

where the terms on the right-hand-side denote the fluid Reynolds stresses TT,, the vis-
cous stresses Ty, the particle Reynolds stresses T, , and the particle stresses Ty, the latter
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Figure 5.7: Particle-to-fluid slip velocity Uy, normalized with the wall friction velocity wr vs
Re? ®—1/2 (see definition in the text). To support the validity of the proposed scaling,
data from Picano, Breugem, and Brandt [112] and Lashgari et al. [84] are also included.

related to the stresslet, moment of the material acceleration acting on a particle and inter-
particle collisions [58]; in the expression above, ¢ denotes the mean local solid volume
fraction. The wall-normal profiles of the different contributions to the total stress (obtained
dividing eq. (5.9) by u%ﬂ —1y/h)) are reported in figure 5.8. As also observed in [84, 85,
112] the profiles of particle stresses reach a maximum aty = Dy, /2, at the location of
the local maximum of the profiles of the local volume fraction (see figure 5.4), followed
by a minimum at y ~ 2D,,. Further away from the wall, the profiles follow a trend that
resembles the one of the shear-stress profile, suggesting a linear (Newtonian) scaling of
the particle stresses with the shear rate. The Reynolds stresses are relatively small in this
region, and therefore the local maximum/minimum of the particle stresses is compensated
by a local minimum/maximum of the viscous shear stresses. This is caused by the strong
shear that the first layer of particles, flowing with significant slip velocity, imposes on the
fluid above it.

The deviation from the continuum limit (CLR) can be examined by comparing the
sum of the particle and viscous stresses to the profile of viscous stresses in panel (d) of
figure 5.8 (note that an effective viscosity incorporates the effects of both viscous and
particle stresses). As expected, the case with smaller particles is much closer to this con-
tinuum limit than the case with larger particles (see also [28]). For the latter, while the
profile pertaining to the viscous contribution in the bulk is still close to the one of case
D10, the particle stress contribution is much larger. This difference can be attributed to
the inertial-shear-thickening mechanism due to excluded volume effects proposed in Pi-
cano et al. [114], as the particle Reynolds number based on the particle slip velocity for
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SPR (c) and CLR (d), see eq. (5.9). T1, = T, + T, denotes the contribution of the
Reynolds stresses of the combined phase.
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case D20 is much larger (recall figure 5.3 (b)). We should stress here the importance of
defining the viscous wall unit from the effective suspension viscosity: if the profiles of
cases D10 and D20 would be compared to CLR using the classical inner scaling (where
the fluid viscosity and wall friction velocity are used to scale the wall-normal distance)
these would not match, as the abscissa on the upper axis y/0¢ would have to be multiplied
by v¢/v = 1.89 in panels (a) and (b).

As for the other quantities presented so far, we expect the second-order Eulerian statis-
tics for the laden cases to approach those of CLR with decreasing particle size. These
are shown in figure 5.9 where we depict the profiles of the root-mean-square (rms) of the
fluctuating fluid velocity and Reynolds stresses from the different simulations. When com-
paring to the single-phase flow statistics we also observe, as reported in Picano, Breugem,
and Brandt [112], that the fluctuating fluid velocity close to the wall is enhanced by the
presence of the particles.

Let us take one step further and test the scaling arguments of Costa et al. [28] for the
second-order statistics. These can be compared directly to the case CLR, as it is meant to
be the same flow, finite size effects aside. We therefore correct the wall-normal distance
for the presence of the particle-wall layer through a virtual wall origin, 6,.v, and correct
velocity scale for inner-scaling, u; = uc(1 —dpw/ h)'/2 (panels a, ¢, e and g in the
figure). The magnitude of near-wall peaks in streamwise velocity rms, typically located
aty = 128, < Dy, are not recovered in the interface-resolved simulations. Despite
this, away from the wall (where the dynamics is only weakly affected by the particle-wall
layer due to sufficient scale separation) the profiles show good agreement. Particularly, the
profiles pertaining case D10 show a remarkable collapse over the entire outer region for
all three components of the velocity rms and Reynolds stresses, even without correction.
The same cannot be safely stated for the case with larger particles (D20) where finite size
effects, also present away from the particle-wall layer, have an influence on the statistics
in the bulk of the flow. Despite these small deviations for case D20, it is clear that, away
from the wall, the second-order statistics are described with good approximation by those
of a Newtonian fluid with an effective suspension viscosity.

PARTICLE DYNAMICS

Analyzing the mean flow solely in an Eulerian framework does not give direct insights
on the dynamics of individual particles. To understand the particle dynamics, we further
explore the DNS dataset by computing Lagrangian statistics. We first focus on the evolu-
tion of the single-point mean-square displacement of particles in the spanwise direction
to prevent biases due to statistical inhomogeneity in the wall-normal, and non-zero mean
flow in the streamwise direction (see also Lashgari et al. [85]). This is defined as

(az}) (Aty) = {(z(t+ A1) — z(1)?) (5.10)

97



98 FINITE-SIZE EFFECTS IN TURBULENT SUSPENSION TRANSPORT

* b

S

~

@

g

s

<

s

* b =
S s
~ ~
@ @
g g
& N
= =

. [ . 0.7 77 g
F.0.6 | "! — NﬁF 0.6 | ! —
<05l i}l - ~o05Hj -
?04 - i u ﬂb 0.4 ] 1
So3} | () 0.3 H; ™. (h) 1

02 i - 0.2 -

0.1} :,'.’ B 0.1 B

0.0 1 1 1 1 1 0.0 1 1 1 1

—02 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Y = Opw)/(h = Opw) y/h

Profile of rms of fluctuating streamwise, spanwise and wall-normal fluid velocity from
the different simulations. Classical scaling is used in panels (a,c,e,g), whereas the scal-
ing laws of Costa et al. [28] are used in panels (b,d,f,h).

Figure 5.9:



5.3 RESULTS

10' ¢ P 10t ¢ 1
g / i
100k ’ 100f
i 7y i
1071k / 1071
[a\] F -
= i S
—~ 1072 1072 7 <
N E F ~
a4 » =
-3 -3
~ 10 (a) 10 ?
—4 —a|
10 - — xAr 1077°F
----- o At F
1007wt St g
1072 10°! 10° 101" 102 107! 100 10t 0
Atur/h Atu, /h

Figure 5.10: Single-particle mean square spanwise displacement <Az%> (At,y) normalized with
the half channel height h2, for cases (a) D10 and (b) D20 versus time in units of the
integral time scale h/u~. The colors indicate different wall-normal distances.

where () denotes the time average over all particles located in a bin centered at a wall-
normal position y at time t and wall-normal extent D,. This observable is displayed in fig-
ure 5.10 versus time in units of a characteristic integral scale of the turbulent fluid motion,
h/1wc. One can observe two well-known regimes: the ballistic regime where the high tem-
poral correlation results in a mean square displacement <Az%> o At? and the diffusive
regime where the motion decorrelates from the initial sampling instant and <Az%> x At
(see e.g. Sierou and Brady [129]). In the ballistic regime, particles reach the fastest dis-
persion at the distance from the wall corresponding to the peak in particle velocity rms
(see figure 5.9). The diffusion coefficient (slope of the profile in the diffusive regime) is
nearly the same for the different cases, away from the wall. Two main mechanisms are
responsible for the spanwise particle displacements and the subsequent self-diffusion: (1)
short-range inter-particle interactions and (2) interactions with turbulent structures of di-
mension larger than the particle size. One can picture a sequence of these events as succes-
sive random-walk steps during the particle motion. Indeed, Lashgari et al. [85] observed
in the turbulent regime an increase of the diffusion coefficient with increasing Reynolds
number for fixed volume fraction, and a milder increase with increasing volume fraction
at fixed Reynolds number. The smaller diffusion coefficients observed near the wall can
therefore be explained by the constraint that the wall confinement imposes on the parti-
cle motion and by the reduction of the characteristic turbulent integral scale, estimated
as lin (y) ~ min(ky, 0.1h), with 1,,, being a mixing length [116]. The turbulent length
scales are hindered up to a point where 1, ~ Dy, the value below which turbulent fluctua-
tions have a weak influence on the particle kinematics. Despite the relatively small particle
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inertia, the temporal filtering due to the higher response time of the larger particles [62]
can also cause a decrease in diffusion coeflicient. We expect however the latter effect to
be milder, as increasing particle inertia through an increased mass density (while fixing
the other governing parameters) has a small influence on spanwise particle dispersion, as
shown in Fornari et al. [48].

The diffusion coefficient is larger for the flow with smaller particles (D10), even though
the collision probability is larger for the largest particles (as suggested by the asymptotic
limit of vanishing particle size at fixed volume fraction, and will be confirmed later). We
can therefore conclude that, at the volume fraction under consideration here, the turbulent
fluid motion is the main source of self-diffusion and, consequently, larger particles result
in slower dispersion. Note also that the diffusive regime is reached away from the wall at
times At = O(h/u<) of the same order as the turnover time of large eddies in the bulk,
consistently with this observation.

Further insight into the particle dynamics can be gained by examining the pair-dispersion
statistics. The two-point mean spanwise square displacement is displayed in figure 5.11
for two particles at contact at t = to,

(A23) (At y) = <(6z(to+At) —6z(to))2>, (5.11)

where &z denotes the spanwise interparticle distance and ty the instant at which the parti-
cles are in contact. For short time scales, lubrication dominates and the particles display
a highly correlated motion. The duration of this regime increases with the distance to the
wall. This slower relative dispersion is linked to the decreasing relative inter-particle veloc-
ity towards contact with increasing wall-normal distance, to be quantified later. The large
particles, case D20, show faster pair dispersion, also due to higher relative inter-particle
velocity towards contact: it turns out, as elaborated later when the collisional dynamics
is addressed, that this quantity scales with the particle Reynolds number. At later times,
the particle dispersion <Az§> o At%*, with 2 < o« < 3. Note that for tracer particles in a
homogeneous isotropic turbulent flow o« = 3 for separation distances within the inertial
subrange [124]. For larger separation distances the diffusive limit is recovered.

The mean square displacement of tracer particles in turbulence with sub-Kolmogorov
separation distance (i.e. in the dissipation subrange) grows exponentially in time as the
relative particle velocity and the separation are proportional [10, 124]: i.e. <62%> =
<6z(2)> e?At/te where t. is a characteristic inter-particle response time. Although in the
present study Dy, is O(10) times larger than the smallest turbulence scale, we observe a
clear exponential growth at short times, just after the first highly correlated regime when
<Az%> is approximately constant. The time at which this exponential regime sets in corre-

sponds to a mean square separation of about , /ZD% /3. This exponential regime is high-
lighted in the bottom panels of figure 5.11 where the time on the horizontal axis is divided
by At' = At|_ AZ3>=2D2/3 This growth is due to a different mechanism than the one
of tracer particles, possibly the combination of a uniform shear force (note that under uni-
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form shear 8z is proportional to the relative velocity) following a short-range lubrication
interaction.

Finally, we investigate the particle collisional dynamics. A collision event takes place
when (1) the particles are at sufficiently close distance and (2) their relative velocity drives
them towards contact. These two factors are investigated separately. The first by the radial
distribution function (RDF), which quantifies the probability of finding a second particle
at distance T normalized by the probability of a random distribution of particles:

1 dN, 1

= — 12
4rr2 dr no’ (5.12)

g(r,y)

where N, denotes the number of particle pairs in a spherical volume of radius r. Thus,
if g(r,y) assumes values larger than 1, particles are preferentially sampled. The second
observable is the distribution of the relative particle velocity projected in the direction of
the line-of-centers Av™ ™, given for two particles i, j with velocities u; /5 and positions

Xi/)’ by

AV (1,y) = max < 0, —(u; —uy) - B ; (5.13)
Ixj — x4

where the max{} operator samples the relative velocity towards contact, as the superscript
‘7 suggests. The product of these quantities measures the rate at which particles approach
each other. Its value for r = D, is the so-called collision kernel, k¢, the probability of a
collision event.

As for the dispersion statistics, we take into account the inhomogeneity in the wall-
normal direction by averaging in wall-parallel bins with wall-normal extent 2D,. Fig-
ure 5.12 presents the radial distribution function, negative particle relative velocity and
the approach rate at contact T = Dy,. The profile of Av™ ™ shows that the dominant mech-
anism driving particles towards each other is shear from particles at different wall-normal
locations. Note that the shear rate away from the PWL is similar for both simulations con-
sidered (see figure 5.8 and table 5.2). Assuming that particles are driven towards each
other by shearing a layered arrangement of particles:

AV ng: ~ Dy % (5.14)
with u/h an estimate of the shear rate in the bulk of the flow. This scaling is tested in
the inset of panel (b) and (c), yielding a better agreement of the profiles of Av™~ and
Kc, despite the differences in g(Dp,). Note that . /h is approximately the same for both
cases (table 5.2). The higher values of g at close distances for case D20 are also compatible
with this picture, as larger particles are more prone to be driven towards each other by a
shear-induced relative motion.

Figure 5.13 shows contour plots of the same quantities, as a function of the separation

distance r and of the wall-normal coordinate y. The contours of g show that this quantity
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Figure 5.11: Two-particle mean square spanwise displacement <Az%> (At,y) normalized with
the mean initial spanwise square distance at contact D%/S for (a) case D10 and
(b) case D20 versus time normalized with by the integral time scale h/u~. The dif-
ferent lines are color-coded to indicate the particle wall-normal distance. Panels (c)
and (d) illustrate the initial exponential scaling by plotting the same quantity versus
At = At <Az3>=2D2/3 (see discussion in the text). The dotted-lines indicate the

fitting function A exp(Bt) with A = 0.7 and B = 1.1.
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Figure 5.12: (a) radial distribution function g(Dy,) at contact; (b) normal relative velocity at con-
tact AV~ (Dp)/Uy and (c) collision kernel k. /Uy, versus the outer-scaled wall-
normal distance y/h. The insets of panels (b) and (c) show the same quantity scaled
with the velocity scale urDy, /h, see eq. (5.14).

is weakly dependent on the wall-normal coordinate, with local maxima at v/D, ~ 1
and 2, consistent with the presence of statistically significant particle pairs and triplets.
It is also interesting to notice that the global maximum of g occurs at a finite distance
to the wall. Comparing the two simulations, the maximum is located at the same wall-
normal distance when scaled with the particle diameter y ~ 3D, in agreement with the
observation above that wall-confinement effects are noticeable at distances proportional
to the particle diameter (see figure 5.4). The maxima of g(r) correspond therefore to the
optimal trade-off between high shear (driving particles at different wall-normal locations
towards each other) and low confinement; indeed further away from the wall, where the
mean shear is relatively low, g becomes almost independent of y. The maxima of g close
to the wall also suggest that larger particles have higher probability of forming particle
pairs, and lower probability of forming triplets.

Panels (c) and (d) of the same figure display contours of Av™~. For fixed separation
distance 1, the average inter-particle approaching velocity decreases with the wall-normal
distance, which can be explained by a decreasing local shear rate: the lower the shear, the
smaller shear-induced differences of the particle relative velocities. Notice also that the
variations of Av™™ with y are stronger close to the wall. The negative relative particle
velocity is larger for the largest particles, case D20, over the entire flow, consistent with the
scaling suggested in eq. (5.14). Finally, we report the rate-of-approach Av™ g in panels
(e) and (f). Clearly, the differences in g discussed above induce significant differences in
this quantity only close to contact. At larger separation, the behavior of Av™ ™ g is dictated
by Av™,
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Figure 5.13: Contour plot of radial distribution function, g (top), negative relative velocity
Av™~ /Uy (middle), and rate-of-approach gAv™~— /Uy, (bottom) for simulation D10
(panels on the left: a,c,e) and D20 (panels b,d.f) as a function of the wall-normal co-
ordinate (y) and separation (r) scaled with the particle diameter Dy,.
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5.4 CONCLUSIONS AND OUTLOOK

We performed interface-resolved direct numerical simulations of turbulent channel flow
of suspensions of neutrally-buoyant spherical particles. Two flow cases are considered,
with same Reynolds number and volume fraction, and particle size varied by a factor of 2.
The simulations are compared to two single-phase reference simulations: (1) the unladen
case and (2) the continuum limit of a Newtonian fluid with a viscosity corresponding to
the effective viscosity of the suspension under investigation in a laminar shear flow.

As observed in [28], the main finite size effect in the zero- and first-order Eulerian statis-
tics originate from the near-wall dynamics, in the near-wall particle layer. We show here
that the larger the particles are, the further away from the wall the effects of the particle
layer are significant. The near-wall inhomogeneity due to the geometrical constraints is
felt at distances that scale with the particle size at fixed volume fraction, seemingly in-
dependent of the local fluid flow dynamics. This results in a smaller inner-to-outer scale
separation for the flow with larger particles, clearly featured in several flow statistics.

Particles at the wall with significant particle-to-fluid slip velocity create hot-spots of
high local wall shear (on average about 4 times larger than the mean) which contribute
significantly to the mean wall-stress. These hot-spots show higher magnitude of the wall
stress for small particles, which are, consistently, more localized. Their contribution to the
mean wall shear is nearly the same for both particle sizes considered, about 70%. Also
interesting to note is the highly increased probability of local shear stresses lower than
the mean, and even negative (i.e., instantaneous flow reversal). These hot-spots change
considerably the distribution of shear stresses, resulting in a pdf with wide exponential
tails and rms values, T},"** ~ T, in contrast to what found in canonical single-phase
wall-bounded turbulent flows, where the pdf is well fitted by a log-normal distribution
and T,,"* ~ 0.471,,. To quantify, the probability of finding a value of the shear stress of
about 2 times the total mean is negligible in the reference single-phase flow, whereas it
becomes of the order of 10% in the particle-laden flows. These findings are used to derive
a scaling law for the wall particle-to-fluid apparent slip velocity as a function of the flow
governing parameters.

Profiles of particle Reynolds number based on the particle slip velocity present values
in the bulk of O(1) for the case with large particles, and very close to zero for the suspen-
sion with smaller particles. This finite particle Reynolds number for case D20 can explain
the significantly larger contribution of particle stresses to the total stresses with respect to
the continuum limit reference. This can be attributed to the inertial shear-thickening mech-
anism described in [114], where finite inertia effectively increases the particles’ excluded
volume.

Finite-size effects in the bulk of the flow are apparent in the second-order statistics,
as shown by the profiles of the fluid velocity rms and Reynolds stresses. For these, we
have tested the scaling arguments of [28] and found that accounting for the particle-wall
layer is a sufficient correction for the case with smaller particles, Dy, /6, ~ 10 (in fact,
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the finite size effects are relatively small in the bulk flow and using an effective viscosity
only can still provide reasonable estimates). The flow with larger particles (D, /8, =~ 20),
however, shows clear deviations from the continuum limit in the bulk of the channel also
with the proposed rescaling, despite the fact that the correction for the particle-wall layer
is sufficient for the lower-order statistics.

When investigating the particle dynamics, we compute statistics in wall-parallel bins of
small wall-normal extent to take into account the effects of an inhomogeneous mean flow.
Single-point dispersion statistics show that the spanwise particle dispersion coefficient is
fairly independent of the wall-normal location, except very close to the wall. The span-
wise particle dispersion is attributed to particle-turbulence interactions because of, first,
the smaller diffusion coefficient near the wall and second, the larger diffusion coefficients
for the smaller particles. The first effect is a consequence of the smaller spectrum of tur-
bulence scales capable of disrupting the particle motion, whereas the second to the wider
range of scales able to significantly displace the particles.

Conversely, the two-point dispersion statistics strongly depend on the wall-normal lo-
cation and thus on the local shear rate. Higher shear rates induce larger relative velocities
which result in faster dispersion. Even though the particles have a finite size, their dis-
persion statistics at short times show an exponential growth of the absolute displacement
with time — as observed for point-particles with sub-Kolmogorov separation distances.
The mechanism is, however, different. In this case short-range inter-particle interactions
are likely the cause. Faster pair-dispersion for the larger particles is linked to the larger
inter-particle interaction velocity.

Finally we investigated the particle collisional dynamics. Larger particles show higher
mean values of relative velocity towards contact, consistent with the picture of shear-
induced contacts. This also explains the higher probability of finding pair of larger par-
ticles at close distance. Wall-normal variations in collision probability are therefore a
consequence of the variations in local shear, and thus the larger particles collide more
frequently than the small particles.

In this work, we have explored the advantages of massively parallel simulations, which
allow for a multi-scale, three-dimensional and time-resolved picture of a system with
well-defined physical parameters. This and similar studies show that the community have
reached a point when simulations of interface-resolved particle-laden flows are possible.
Such simulations, yet computationally expensive, can serve as valuable tool for validation
of simpler two-way coupling algorithms and perhaps Eulerian models; we believe this
type of simulations will spawn several investigations aiming at better models.
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6.1 CONCLUSIONS

Our first objective was developing an efficient numerical algorithm for massively-parallel
interface-resolved simulations of particle-laden flows. Secondly, the algorithm had to be
complemented with a realistic and computationally efficient collision model for short-
range particle-particle and particle-wall interactions in viscous fluids. These were the two
ingredients required for achieving the main objective of this work: studying the physics
of turbulent suspensions of mono-dispersed, spherical and neutrally-buoyant particles.
With data obtained from DNS we could use insights at the microscopic level for explain-
ing the flow behavior at meso and macroscopic scales, which is typically interesting for
engineering applications. Let us wrap-up our main achievements/findings in what follows.

DEVELOPMENT OF A MASSIVELY-PARALLEL NUMERICAL ALGORITHM FOR INTERFACE-
RESOLVED SIMULATIONS OF PARTICLE-LADEN FLOWS

Starting point for this PhD thesis was a numerical algorithm capable of simulating up
to 10000 particles, which led to the work in [112]. Although possible, the simulation
required a significant computational effort due to limitations in the (1D) Poisson solver,
and memory handling in the particle treatment. For this reason the numerical code was
re-written, targeting these two main problems and achieving several performance improve-
ments along the way. The result was a memory-efficient and faster code, InteRPartS, de-
scribed in chapter 2; at this moment we can safely state that O(10°) particles can be
simulated; One of the simulations presented in this thesis achieved a number of particles
N, = 640000. General features of our algorithm, worth highlighting here, are:

* 2D parallel Poisson solver, implemented with the aid of the 2decomp&fft routines
[90]. This circumvents the restriction in terms of the number of mpi tasks per com-
putational subdomain inherent to a 1D Poisson solver (the number of grid points in
the wall-normal direction must be divisible by the number of tasks).

* Particle-related data is handled from the perspective of a particle, using FORTRAN de-
rived types. This greatly simplifies communication of particle information between
tasks.

* Efficient particle memory handling, by restricting the size of particle-related arrays
to a value close to the average number of particles in each computational subdo-
main.

* Communication of Eulerian fluid data required for forcing made through 2-cell halo
regions. This led to a major speedup and improved scalability with respect to an
implementation of particle-related communication in a Lagrangian framework.

* OpenMP extension, making hybrid calculations possible, if required.
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The distributed-memory parallelization performed well in terms of scalability, showing
good weak and strong scaling for problem sizes of the order that we are interested in
simulating (chapter 2). Moreover, the code performed well when compared to other state-
of-the-art implementations for the benchmark case of decaying homogeneous isotropic
turbulence laden with heavy, finite-size particles.

COLLISION MODEL FOR PARTICLE-PARTICLE AND PARTICLE-WALL INTERACTIONS

We have developed a model for short-range particle-particle and particle-wall interactions.
We were interested in capturing accurately the macroscopic behavior of particle-particle
and particle-wall collisions of large (i.e. non-Brownian) particles in viscous flows. In par-
ticular, for the type of flows of our interest, we were interested in accurately reproducing
lubrication interactions and solid-solid contact. Moreover, we aimed at implementing a
simple approach, that would not compromise the efficiency of the overall numerical algo-
rithm. We considered an approach that could reproduce basic important physical mecha-
nisms, though many extensions to more complex physics (such as rolling resistance, stat-
ic/dynamic friction and more) are straightforward to implement.

The model combines a linear soft-sphere collision model, widely used in e.g. gas-solid
or dry granular flows, ([63, 94]) with an analytical closure model for particle-particle/-wall
lubrication interactions. It allows the time step of the integration of the particle motion to
be stretched to a multiple of the time step of the Navier-Stokes solver. This was shown to be
required in order to reproduce realistically the bouncing motion of a sphere colliding onto
a wall, because the Navier-Stokes solution should be allowed to gradually relax during
the sudden change in particle velocity. If not, the drag force acting on the particle is over-
estimated. We validated it against several benchmark experiments, such as the bouncing
motion of a sphere immersed in a viscous fluid, colliding onto a planar surface, immersed
head-on particle-particle and particle-wall collisions, and oblique particle-wall collisions.

We should remark that although friction has been neglected (i.e. coefficient of sliding
friction in our model p. = 0) in our simulations of turbulent suspension flows, it can
be important in dense suspensions [127], or even for achieving a stable sediment bed in
a channel flow simulation with mobile particles subjected to gravity: if no wall friction
force acts on the particles touching the bottom wall, the bed would slide.

TURBULENT CHANNEL TRANSPORT OF NEUTRALLY-BUOYANT PARTICLES

We performed massively-parallel state-of-the-art simulations of turbulent channel trans-
port of neutrally-buoyant particles, in itself an achievement from a computational point
of view. The focus on this case study was two-fold. First — upscaling, which led to the ex-
tension of well-known scaling laws for single-phase turbulent channel flows to a particle
suspension. And second, describing finite-size effects.

109



110

CONCLUSIONS & FUTURE PERSPECTIVES/OUTLOOK

In regard to the scaling laws for turbulent particle suspensions, we derived the scaling
relations for the mean flow velocity and the velocity defect. From these we derived an
equation capable of predicting the overall flow drag. The velocity profiles and overall drag
measured from DNS showed excellent agreement with our model predictions. We note
that our simulations were complemented with the ones of references [84, 112], resulting
in a total of 19 DNS for which the new equation for predicting the overall flow drag was
tested.

It turns out that a relatively simple model can explain the observed mesoscopic flow
behavior. The key ingredient is to split the flow in two regions; a homogeneous suspension
region, where the mean flow behavior is close to that of a Newtonian fluid with an effective
suspension viscosity, and a particle-wall layer of particles flowing near the wall, where a
discrepancy between the phases causes a deviation from this continuum limit.

The study on finite-size effects focused on a flow for fixed Reynolds number and volume
fraction, a turbulent and moderately dense flow (20% solid volume fraction); the particle
size was varied by a factor of two. Inspired by the findings of the study on the mean flow
scaling, we investigated the dynamics of the particle-wall layer and the homogeneous sus-
pension region. It turns out that particles flowing near the wall with high apparent slip
velocity cause major changes in the pdf of wall shear stress, which is no longer described
by the well-known log-normal distribution for single-phase flow. Second-order Eulerian
statistics are consistent with the derived scaling laws for the mean velocity. Moreover, our
results show that particle-turbulence interactions are the main causes for particle disper-
sion, and not particle-particle interactions. The particle collisional dynamics are driven
by shear-induced particle interactions: particles with slight wall-normal offset in their po-
sition are brought together by local shear.

6.2 OUTLOOK

There are two types of recommendations for future work that should be stated here: im-
provements in the numerical method and its implementation, and flows that can be ad-
dressed in future research.

On the implementation side, there are a few parts of the algorithm with room for im-
provement. Although we do not provide solutions for all of them, it is worth pin-pointing
the problems:

* Due to the way the algorithm has been implemented, particles in each task must
be ordered by increasing global ID in each task, after their positions are updated.
This is needed for computing in parallel sums over the entire Lagrangian grid for
a certain particle. Although a binary search algorithm is used in order to make the
re-ordering more efficient, it still comprises a significant overhead. Changing the
way integrals over the entire particle are calculated in parallel, such that particles do
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not have to be ordered, would lead to a significant improvement in computational
performance.

¢ Improve communication of particle data for the forcing algorithm. As previously
mentioned, although efficient, the communication through 2-cell halos faces a spiky
downside: it does not scale down with decreasing number of particles. A more
clever (which likely will be more complex) implementation, which uses solely the
Eulerian points that are required for calculations, could be implemented, such that
only the data needed for performing interpolation/spreading operations are commu-
nicated.

* When it comes to halo-exchange and all-fo-all communication operations, one should
explore MPI-3 routines from which memory-sharing tasks can benefit. Two tasks
that need to communicate and share the same memory (e.g. corresponding to two
CPUs in the same node of a supercomputer) can simply access it directly without
copying it. The implementation scalability should benefit from this.

Throughout the course of this work, the developed numerical algorithm was applied to
turbulent suspension flows. In parallel, and in collaboration with other researchers, it has
been extended to non-spherical [3, 4] and poly-dispersed flows [86], albeit still neutrally-
buoyant particles. The effect of varying the particle-to-fluid mass density ratio in a tur-
bulent channel flow has also been studied in [48]. A natural step forward is to introduce
gravity, and study in an interface-resolved sense turbulent sediment transport. This has
been done in the framework of this work, and a small data base with fully-developed
flows was generated, but further post-processing is required. As a teaser for a future study,
figure 6.1 shows a visualization of the flow field for such a simulation.

In regard to the developed scaling laws, it would be good to measure experimentally
these flows to further scrutinize the theory, and to investigate if it still holds at higher
Reynolds number. Such experiments! are in reach of several groups. Moreover, it is also
relevant to have this scaling reproduced by other groups that can simulate this flow with
a different numerical method.

At the end of chapter 2, we presented the preferred type of problem for this method.
Some suggestions here can broaden the range of applicability of our algorithm without
compromising too much the computational efficiency (or even improving it). Interest-
ing feature that could follow are (i) implementing the IBM in non-uniform grids while
still enforcing the conservation of total force/torque acting on the particle after interpolat-
ing/spreading, as done in [70, 115], and (ii) including an added-mass-like term in the tem-
poral integration of the particle motion to improve the stability of the numerical method
for very light particles py, /p¢ < 0.3 [139]. The first feature would improve the computa-
tional efficiency of the algorithm when the resolution required to resolve the flow near the

Pressure drop measurements, and a methodology for measuring the mean velocity using index-matched par-
ticles and particle-image velocimetry.
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Figure 6.1: Flow visualization of an interface-resolved DNS of turbulent sediment transport. The
blue iso-surfaces correspond to a constant value of the second invariant of the velocity
gradient tensor Q, and particles are colored by their streamwise velocity (gray particles
have zero velocity with single floating-point precision). It consists of an open-channel
flow with Reynolds number based on the channel height of Re, = Uph/v = 3000,
laden with 512000 particles with density p, = 2.1p¢, size Dp/h = 1/32 and
total solid volume fraction of ® = 50%. The average bed height corresponds to
hp/h = 0.64 and the friction Reynolds number estimated from the extrapolation of
the Reynolds stress profile to the bed location is Rer = 357. The flow was resolved in
a computational grid with Ny x Ny x N, = 4096 x 2048 x 512.
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wall is larger than what is needed to resolve the flow around the particles. The second fea-
ture allows for studying turbulent flows with very light, rigid particles. This is relevant for
instance for spherical bubbles with surfactants, which tend to behave like a solid sphere
[89].
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