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The ADOP and PDOP: Two Complementary
Diagnostics for GNSS Positioning

Kan Wang'; Peter J. G. Teunissen? and Ahmed El-Mowafy®

Abstract: Ambiguity dilution of precision (ADOP) and position dilution of precision (PDOP) are two popular scalar-diagnostics used in
Global Navigation Satellite System (GNSS) positioning. Where the ADOP is a predictor for carrier-phase ambiguity resolution performance,
the PDOP is meant to predict the receiver-satellite geometry’s capability for precise positioning. We will show, however, that although
the PDOP works well for code-based positioning, one has to exercise great care in using the PDOP for real-time kinematic (RTK) positioning.
We show that the ADOP and PDOP have distinct behaviors, an important consequence of which is that one can have time periods with
small PDOPs, and thus seemingly good geometry for precise positioning, but at the same time large ADOPs, thus showing that successful
ambiguity resolution and therefore precise positioning will not be possible. Also, the reverse situation may occur, i.e., having large PDOPs
with small ADOPs. In such a situation, the large PDOPs should not automatically lead to the conclusion of poor position performance,
because the large gain that ambiguity resolution brings will often still make precise positioning possible. We will analyze and explain this
complementary behavior of the PDOP and ADOP and demonstrate this both analytically and empirically. For this analysis we use real Global
Positioning System (GPS) single- and multifrequency signals and GPS/Quasi-Zenith Satellite System (QZSS), GPS/Navigation with Indian
Constellation (NAVIC) L5 signals of two baselines located in Perth, Australia. DOI: 10.1061/(ASCE)SU.1943-5428.0000313. © 2020
American Society of Civil Engineers.

Author keywords: Position dilution of precision (PDOP); Ambiguity dilution of precision (ADOP); Ambiguity success-rate (ASR);

Integer ambiguity resolution (IAR); Real-time kinematic (RTK); Instantaneous positioning.

Introduction

Ambiguity dilution of precision (ADOP) and position dilution of
precision (PDOP) are two popular scalar-diagnostics used in Global
Navigation Satellite System (GNSS) positioning (Langley 1999;
Gleason and Gebre-Egziabher 2009; Liu et al. 2017). The PDOP
is an easy-to-compute diagnostic to predict the impact of the
receiver-satellite geometry on the precision of positioning. Although
originally first used for Global Positioning System (GPS) single-
point positioning (Bogen 1974; Spilker 1996), the PDOP has found
its usage in a broad range of GNSS positioning applications (Betz
2016; Teunissen and Montenbruck 2017). The ADOP is an easy-
to-compute diagnostic to predict the success of carrier-phase integer
ambiguity resolution. Although originally introduced for GPS am-
biguity resolution (Teunissen 1997), the ADOP has found its usage
in various contemporary GNSS precise positioning applications
(Geng and Bock 2013; Odolinski et al. 2015; Li et al. 2016; Liu
et al. 2019).
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In this contribution, we will study the PDOP and ADOP in their
mutual relation, analytically as well as empirically, and show that
their distinct characteristics imply that one has to exercise care in
using the PDOP as a sole-means predictor for enabled precise po-
sitioning. We show that a small PDOP may not necessarily be good
for real-time kinematic (RTK) positioning, whereas a large PDOP
may not be necessarily bad for such positioning. We also demon-
strate this with real data. By highlighting the complementary char-
acteristics of the PDOP and ADOP, we show that they should be
used in tandem in order to have a realistic predictability of precise
positioning. As nowadays many commercial relative positioning
software report PDOP as an indicator for the positioning precision,
but rarely report ADOP to help users when planning and executing
their GNSS work, this paper attempts to analytically and empiri-
cally distinguish the natures of the PDOP and ADOP, and show
the importance of reporting ADOP in addition. As with PDOP, we
believe ADOP should also play a predictive role for planning the
GNSS work in the actual world.

This contribution is organized as follows. In the section “Model
Formulation” we first present our model formulation which forms
the basis of our analyses. Then in the section “Measurement Set
Up and Signal Analysis” we describe our measurement setup and
present our signal analysis. The data used comprises real GPS
single- and multifrequency signals, as well as GPS/Quasi-Zenith
Satellite System (QZSS) and GPS/Navigation with Indian Con-
stellation (NAVIC) LS5 signals of two baselines located in Perth,
Australia. In the section “Position Dilution of Precision: PDOP,”
we discuss the PDOP, analyze its characteristics, and in particular
show that it can be used to obtain a very good approximation to the
average RTK ambiguity-resolved baseline standard deviation. We
use real data to validate this by showing the good match between
formal and empirically determined standard deviations. Note that
here formal means the computation based on geometry and model,
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but not based on the real data. In the section “Ambiguity Dilution of
Precision: ADOP” we discuss the ADOP, analyze its characteris-
tics, and in particular explain why it provides a good approximation
to the probability of correct integer ambiguity estimation, i.e., am-
biguity success rate. We then demonstrate in this section that the
ADOP and PDOP have very distinct characteristics. We explain
this difference and show that as a consequence one should take
great care in using the PDOP as sole-means predictor for precise
positioning capability. In the section “Empirical Evaluation” we
then substantiate the formal findings of the previous section with
a real-data—based empirical evaluation, thereby showing the com-
plementary benefit of PDOP and ADOP for precise positioning.
This contribution is then finalized with our conclusions in the
“Conclusions.”

Model Formulation

The multifrequency GNSS, linearized short-baseline double-
differenced (DD) single-epoch observed-minus-computed (O-C)
code (p) and phase (¢p) observation equations can be formulated as

p DT'A 07[b
E = (1)
¢ DTA Alla
where b = baseline increment vector in units of distance; and a =
DD ambiguity vector in cycles, while E[-] = expectation operator.
The terms m, DT, A, and A are given as
f
m=>"k, @)
J=1
D! = blkdiag(D,T“, ...,DZ/) (3)
A:blkdiag()\llm,l, "")\fI,M/*I) (4)
A=, . .yt (5)

for which f = number of frequencies; and 11; = number of satellites
above the elevation mask transmitting signals on frequency j. Note
that m here denotes the sum of p ; over all frequencies, i.e., the
total number of phase or code observations, but not the number of
satellites. The same satellite transmitting signals on different
frequencies would thus have different indices inv* (s = 1, ..., m),
which is the satellite-to-receiver unit vector for the correspond-
ing observation. D;j is the differencing operator with DE/_ =

[_eu,v—l’lu,—l}
the size ;1; — 1 and the identity matrix with the size (y; — 1) x
(p; — 1), respectively. The wavelength on frequency j is denoted
by A;, and blkdiag(-) forms a block diagonal matrix using the ma-
trices contained in (-). Here, on the same frequency, multi-GNSS
satellites could be included in the observation model. In this study,
we assume the differential intersystem biases (ISBs) to be absent,
because the stations forming the baselines in our study used the
same type of receiver and antenna (Odijk et al. 2017). We therefore
select for each frequency and each epoch, one reference satellite
for all satellites of all systems. The Multi-GNSS Experiment
(MGEX) combined broadcast ephemeris (Montenbruck et al. 2014;
Montenbruck et al. 2017; MGEX 2018) was used to compute
satellite orbits.

, where €1 and 1 -1 are the vector of ones with
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Based on Eq. (1), the single-epoch variance-covariance matrix
of p and ¢ can be formulated as

207,0,,D,, 0
o170 wig] @
P 0 2D1,044D,,
with
Qpy = diag (o, - 03, )W (7)
Oy = diag(c?, ..ot YW (8)

where diag(-) forms the diagonal matrix with the diagonal elements
contained in (-), and D(-) is the dispersion operator. The terms
Opu and oy, o are zenith-referenced code and phase signal stan-
dard deviations of frequency j and system k assigned for the s-th
signal, respectively. The elevation-dependent weight matrix W is

given as (Euler and Goad 1991)
W = diag(w', ..., w™") 9)

N -2
WS = (1+10xexp<—%>> (10)

where e* is the elevation angle from the receiver to satellite in de-
grees, and exp(+) is the natural exponential function. The elevation
cut-off angle is set to 10°. Note that for the short RTK baselines
considered here, the elevation angles from both receivers to the
same satellite are assumed to be the same.

As mentioned previously, in this contribution, our analysis
will be based on both a single-GNSS multifrequency scenario
as well as a multi-GNSS single-frequency scenario. We use an
epoch-by-epoch processing whereby the ambiguity parameters
are estimated independently for each epoch and resolved with
the least-squares ambiguity decorrelation adjustment (LAMBDA)
method (Teunissen 1995) using the integer bootstrapping (IB) es-
timator. In the next section, the measurement set up is introduced
together with a signal analysis for the different GNSSs and their
different frequencies.

with

Measurement Set Up and Signal Analysis

In this study, two baselines located at Curtin University, Perth,
Australia, were used for the data analysis. The first baseline
CUAA-CUBB has a length of about 9 m and the second baseline
CUCC-SPAT has a length of about 352 m. All four stations use the
same type of receiver, i.e., JAVAD TRE_G3TH DELTA (Javad, San
Jose, California) and the same type of antenna, i.e., TRM59800.00
SCIS (Trimble, Sunnyvale, California). The data sampling rate
is 1 Hz.

As mentioned before, in this study, the GPS single- (L1), dual-
(L1, L2) and triple-frequency (L1, L2, L5) scenarios and the L5
multi-GNSS scenarios were used for the data analysis. The latter
case includes the L5 GPS/QZSS and the LS GPS/NAVIC scenarios.
Fig. 1 shows the skyplots based on the satellite geometry for station
CUAA with different scenarios on Day of Year (DOY) 328 and 343,
2018. In Fig. 1(a), 12 GPS IIF satellites marked with dashed lines
were transmitting L1, L2, and L5 signals, while 18 other GPS sat-
ellites from blocks IIR and I[IR-M were transmitting signals on L1
and L2. Note that the only operational GPS IIA satellite G18 was
not contained in the combined MGEX broadcast ephemeris on
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Fig. 1. Skyplots of (a) GPS satellites on DOY 328, 2018; and (b) GPS IIF, NAVIC, and QZSS satellites on DOY 343, 2018. Station CUAA was used

for the skyplots.

DOY 328, 2018. Although not plotted in Fig. 1(a) nor used in this
study, it is noted that the first GPS Block IIIA satellite was launched
on December 23, 2018. From Fig. 1(b) it can be observed that 4
QZSS satellites and 6 NAVIC satellites transmitting L5 signals
were also visible from CUAA. Among the four QZSS satellites,
JO7 is a geostationary (GEO) satellite, while the other three QZSS
satellites are in quasi-zenith orbits (QZOs). Among the 6 visible
NAVIC satellites, 103 and 107 are GEO satellites, while 102, 104,
105 and the newly launched 109 in April 2018 (ISRO 2018) are in
inclined geosynchronous orbits (IGSOs).

In order to minimize the effect of multipath on our analyses, the
processing was performed after multipath mitigation. Accordingly,
as the repeat cycles of the GPS, NAVIC and QZSS satellites are
around 1 sidereal day, the multipath-mitigated DD code (dp) and
phase (d¢) residuals were computed for each baseline at epoch ¢;
by forming day-to-day differences

o)~ i)~ [
SN imatel It

—_— =

where T = repeat cycle of the satellites, i.e., 23 h 56 min (which is
of sufficient accuracy for this application); and p = DD geometry
computed based on the satellite orbits and ground truth of both
receivers. The fixed day-to-day DD ambiguities é@(t;) —a(t; + T)
were computed based on the strong baseline-known model,
in which the receiver coordinates are fixed to known values
(Zaminpardaz et al. 2018; Wang et al. 2019). With the DD phase
and code residuals, the zenith-referenced standard deviations were
computed for each baseline and signal type with the least-squares
variance component estimation (LS-VCE) procedure (Amiri-
Simkooei et al. 2009). The computed code and phase signal stan-
dard deviations along the zenith direction, denoted as o, and o,
respectively, are given in Table 1 and used in the processing. The
data on DOY 325/326 and on DOY 328/329 were used for the
calculation and multipath mitigation of GPS signals for baselines
CUAA-CUBB and CUCC-SPA7, respectively. Additionally, the
data on DOY 345/346 and 335/336, 2018 were used for analysis
of the QZSS signals for baselines CUAA-CUBB and CUCC-SPA7,
respectively, and the observations from the former 2 days were used
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Table 1. Zenith-reference standard deviations for code (o ») and phase (o)
observations; for the computation and multipath mitigation, the day pairs
DOY 325/326 and DOY 328/329, 2018 were used for analysis of the GPS
signals for baselines CUAA-CUBB and CUCC-SPA7, respectively; data
on the day pairs DOY 345/346 and DOY 335/336, 2018 were used for
analysis of the QZSS signals of baselines CUAA-CUBB and CUCC-SPA7,
respectively; data on the day pair 345/346 were used for analysis of the
NAVIC signals for both baselines

CUAA-CUBB CUCC-SPA7
System Frequency o, (cm) 04 (mm) o, (cm) 0, (mm)
GPS L1 26 1 25 2
GPS L2 23 1 24 2
GPS L5 8 1 8 2
QZSS L5 8 2 8 2
NAVIC L5 29 1 29 2

for analysis of the NAVIC signals of both baselines. Note that the
factor of v/2 when forming the day-to-day differences was included
in the standard deviations that are given in Table 1.

Position Dilution of Precision: PDOP

The PDOP is a popular scalar diagnostic to infer the impact of the
receiver-satellite geometry on the precision of GNSS positioning
(Bogen 1974; Langley 1999). In the context of GNSS it was first
used for GPS code-based single-point positioning (SPP), where
by the PDOP values could give a general overview of the daily
positioning precision and its changes with time (Spilker 1996).
Also, other types of DOP values exist in addition to the PDOP,
e.g., GDOP (geometric), HDOP (horizontal), or VDOP (vertical).
For SPP, with [A, e,,] being its design matrix, all of these DOP val-
ues are based on different subsets of the diagonal entries of the
matrix [see section 1.2.4 in Teunissen and Montenbruck (2017)]

9nn Y9ne Y9nn Ynt

9en  Gee Gen e
(A.en]" WA e, ]) "t = | 7 T TR T )

9nn Y9he  Y9nh 9nt

9 e 49th 9u
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With the first three diagonal entries of this matrix corresponding to
north (n), east (e), and height (h), the PDOP is defined as
(Zaminpardaz et al. 2018)

PDOP = 9nn + Gee + )
= \/tr((ATPy, WA)) (13)

with projector P, = D,,(D},W~'D,,)"'D},W~', and where tr(-)
represents the trace of the matrix contained in (-). Note that the
second expression in Eq. (13) follows from having the normal
matrix [A,e,]"W[A,e,] reduced for the column of the receiver
clock error. Also note that D}, and W refer to the differencing op-
erator [Eq. (3)] and the weight matrix [Eq. (9)] in single-frequency
scenario.

In addition to SPP, the PDOP represents also in the context of
RTK a good scalar indicator for the impact of the receiver-satellite
geometry on positioning. Assuming the ambiguities are known,
it follows from solving Eq. (1) in a least-squares sense that the
variance-covariance matrix of the ambiguity-fixed baseline is
given as

Qs; =2(A"[Rp, 0y +Sp,QyylA) !
~ 20%(ATPp, WA)! (14)

m

with projectors Rp = D,,(D},0,,D,,)"'D},Q,, and Sp =

D, (D},044D,,)"'D},044. and whereby the approximation in
Eq. (14) follows from using @, < Q4 (Table 1) and oj =

éjk(s) /m. If we now define the average ambiguity-fixed

. - -~ > > > .
baseline standard deviation as oy = /(05 + 03 + oﬁ) /3, in the

single-frequency case, it follows from combining Eq. (13) with
Eq. (14) that

2
O',V)%PDOP-O'(%' 3 (]5)

For the multifrequency scenario, the right side of Eq. (15) is to be
divided by, e.g., v/f in the case that the same satellites are tracked
on each frequency.

Fig. 2 shows, for the baseline CUCC-SPA7 on DOY 343, 2018,
a representative example of how well this approximation works
for the L5 multi-GNSS case. With o around 1-2 mm (Table 1),
PDOPs below 12 or 6 would approximately correspond to an aver-
age formal baseline precision below 2 or 1 cm.

As Eq. (15) is concerned with the model-based formal precision,
we now verify how well the formal precision matches the data-based
empirically determined precision. In Table 2, the time-averaged for-
mal standard deviations of the ambiguity-fixed baseline are shown
together with their empirically determined counterparts, i.e., the
empirical standard deviations of the ambiguity-fixed baseline errors
in north, east and height directions. The data on DOY 328/329 and
DOY 325/326, 2018 were used for processing and multipath mit-
igation in GPS single- and multifrequency scenarios for baselines
CUAA-CUBB and CUCC-SPA7, respectively. The data on DOY
343/344, 2018 were used for the L5 multi-GNSS scenarios for both
baselines. The good correspondence between the formal and empir-
ical standard deviations indicates the good correspondence between
our model and the data.
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Fig. 2. (a) Average ambiguity-fixed baseline precision compared
with (b) its PDOP-based approximation [Eq. (15)]. The LS data of
baseline CUCC-SPA7 on DOY 343, 2018 were used for the plots.

Table 2. Empirical and time-averaged formal standard deviations (in
parentheses) for ambiguity-fixed baselines CUAA-CUBB and CUCC-SPA7

CUAA-CUBB (mm)  CUCC-SPA7 (mm)

System Frequency North East Height North East Height
GPS L1 22)  22)  465) 33) 32 6(6)
GPS L1/L2 22)  2(1) 4@ 32 32 6(5
GPS LI/L2/LS 21) 2(1) 43) 32 32) 64
GPS/QZSS L5 5(4) 11(11) 13(12) 6(5) 12(12) 14(14)

GPS/NAVIC L5 202) 33)  6(7)  43) 4@ 99)

Ambiguity Dilution of Precision: ADOP

In single-epoch RTK processing, successfully resolving the integer
ambiguities is crucial for improving the baseline precision to the
millimeter-centimeter level. While, PDOP reflects the influence
of the receiver-satellite geometry on the ambiguity-fixed baseline
precision, it is essential to first be able to assess when, where, and
under which processing scenarios the ambiguities can be success-
fully resolved. The ADOP is a popular scalar diagnostic that pre-
dicts such capability of the employed measurement scenario. The
ADOP, introduced by Teunissen (1997), is an easy-to-compute
scalar diagnostic that measures the intrinsic model strength for
successful ambiguity resolution. It is defined as

ADOP — \/|QT+’ (incycles) (16)

J. Surv. Eng.
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Fig. 3. PDOP and ADOP using GPS L1 signals. The data of baseline
CUAA-CUBB on DOY 328, 2018 were used for the plots. Note that the
circles and x-marks refer to ADOP as explained in the legend.

with Q;; as the variance-covariance matrix of the least-squares
estimated ambiguities and | - | denoting the matrix determinant.
Different from the PDOP, the determinant but not the trace is used
to compute the ADOP. As discussed in Teunissen (1997), this is on

50 !
X
----- ADOP<0.12 cyc
x ADOP>0.12 cyc
= = =0.12 cyc
« PDOP
0
be ©
a >
3 | S
Q25 0.5 a
o (]
[m)]
<
0
(a)
50 1 i i i
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o
2
% C)
Il o
o o
a
<<
____________________________ 0.12
oL 0

7.8 7.85 7.9 7.95 8 8.05 8.1
(©) Time of the day (s) x10%

the one hand because of the lack of Z-invariance when using the
trace of Q;;, and on the other hand because the high correlation
among the ambiguities cannot be taken into consideration when
using the trace, which is important for the ambiguity resolution.
As Q;,; is a square matrix with the size (m — f) x (m — f), raising
the inverse power of m — f to \/|Q;4| gives the ADOP in units of
cycles.

The ADOP has several important properties. First, it is invariant
against the choice of ambiguity parametrization. Because all
admissible ambiguity transformations can be shown to have a de-
terminant of 1, the ADOP does not change when one changes
the definition of the ambiguities. It is thus an intrinsic measure
independent of the arbitrary choice of ambiguity parametrization.
Second, the ADOP is also a measure of the probability mass of
the ambiguity confidence ellipsoid and corresponding ambiguity
search space (Teunissen et al. 1996). And third, the ADOP
equals the geometric mean of the standard deviations of the am-
biguities, in the case when the ambiguities are completely decor-
related. Since the LAMBDA method (Teunissen 1995) produces
ambiguities that are largely decorrelated, the ADOP approxi-
mates the average precision of the transformed ambiguities.
It therefore also provides for a good approximation to the in-
teger least-squares (ILS) probability of correct integer estimation
P(ay,s =a), i.e., the ILS ambiguity success rate (Odijk and
Teunissen 2008)

T T T T 0.7
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1 0.5
0
J
s | Y
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Fig. 4. PDOP and ADOP using (a) GPS/QZSS; and (b) GPS/NAVIC combined L5 signals. The data of baseline CUCC-SPA7 on DOY 343, 2018
were used for the plots. Note that the scales of the subfigures are different for a better illustration. Time periods from 77,949 to 81,050 s for (a) and

from 20,219 to 26,220 s for (b) were zoomed in (c and d), respectively.
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PlagLs = a) ~ [2@ (ﬁ) - 1]'"7"[ (17)

in which dyyg is the ILS ambiguity estimator of a and where ®(-)
is the standard normal cumulative distribution function. From
this approximation it follows that one can use ADOP = 0.12
cycles as a rule of thumb for an ambiguity success rate
(ASR) of 99.9% (Odijk and Teunissen 2008).

Table 3. Empirical and time-averaged formal ASRs for baselines CUAA-
CUBB and CUCC-SPA7; the data on DOY 328/329 and DOY 325/326,
2018 were used for processing and multipath mitigation in GPS single-
and multifrequency scenarios for baselines CUAA-CUBB and CUCC-
SPA7, respectively; the data on DOY 343/344, 2018 were used in the
L5 multi-GNSS scenarios for both baselines

CUAA-CUBB CUCC-SPA7

System Frequency Empirical Formal Empirical Formal
GPS L1 0.925 0.924 0.872 0.878
GPS L1/L2 1.000 1.000 1.000 1.000
GPS L1/L2/L5 1.000 1.000 1.000 1.000
GPS/QZSS L5 0.939 0.927 0.924 0.912
GPS/NAVIC L5 0.984 0.983 0.973 0.974
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We will now show that the ADOPs can have very distinct time
behaviors when compared to those of PDOP. Fig. 3 shows the
PDOP and ADOP patterns in the GPS L1 case. The data of the
baseline CUAA-CUBB on DOY 328 were used for the plots,
and the ADOP values below 0.12 cycles are marked with circles.
From Fig. 3 it can be observed that between about 76,400 and
81,800 s, the ADOP jumps to high values, while the PDOPs remain
relatively low, i.e., below 4. Thus here the PDOPs describes a
receiver-satellite geometry which is good for precise positioning,
but the ADOPs make clear that such a case is not achievable
due to the poor ambiguity resolution capability over these time
periods.

More distinct PDOP and ADOP patterns can be observed in
Fig. 4. GPS/QZSS and GPS/NAVIC combined L5 signals from
baseline CUCC-SPA7 on DOY 343, 2018 were used for the plots.
The ADOP values below 0.12 cycles are marked with dotted lines.
From Fig. 4(a) it can be observed that time periods with large
ADOPs at around 4,700 s, could have comparably small PDOPs
below 5. The sharply decreasing PDOPs from about 78,000 to
81,000 s correspond to rising ADOPs during this time period.
In Fig. 4(b), it can be seen that PDOPs rose sharply from about
20,200 to 22,800 s and drop from then to about 26,200 s with
PDOP varying from about 4.1 to 10.7. During this time period,
ADOP decreases from about 0.17 cycles to below 0.12 cycles.
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Ambiguity-float solutions
----- 95% formal confidence intervals
Ambiguity-correctly-fixed solutions
x Ambiguity-wrongly-fixed solutions
» ADOP
- - -ADOP of 0.12 cycles

Fig. 5. (a) North; (b) east; and (c) height errors. At the left side of the y-axis, the dots (the first item in the legend), solid lines (the third item in the
legend) and x-marks (the fourth item in the legend) represent the ambiguity-float, ambiguity-correctly-fixed and ambiguity-wrongly-fixed solutions,
respectively. The dotted lines (the second item in the legend) illustrate the 95% formal confidence intervals. At the right side of the y-axis, the ADOPs
(the fifth item in the legend) are illustrated as pentagrams with 0.12 cycles marked with dashed lines. L5 signals of GPS/NAVIC satellites for baseline
CUCC-SPA7 on DOY 343, 2018 were used for the plots. The data on DOY 344, 2018 were used for multipath mitigation.
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Thus here we have relatively large PDOPs, whereas the ADOPs
show that ambiguity resolution is possible.

To understand the shown behavior of the ADOPs, we will now
have a closer look at the constituents of the ADOP. From the de-
terminant factorization rule (Teunissen et al. 2006), also formulated
in Odijk and Teunissen (2008), it follows that |Q;;|Qaal =
|QaapllQ;5], Where Qs rtepresents the variance-covariance
matrix of the ambiguities when the baseline is fixed. Because

aap = 2071 (D},044D,,)A"" [Egs. (1) and (6)], it follows with

A= |A|m+f = (1_[{:1 N "_l)ﬁ being the geometric average of the

il
wavelengths and g, = /|(D},QysD,,)|"” the geometric average

of the DD phase precision, that the ADOP can be expressed as

ADOP:\@@ V1@ = )
A\ V1 (18)

This shows that the ADOP is a measure of the change in baseline
precision before and after ambiguity-fixing and thus not, as with the
PDOP, a measure of the geometric impact on the baseline precision
itself. This explains the distinct time behaviors of the ADOPs and
PDOPs. An important consequence of this difference is that one can
have time periods with small PDOPs, and thus seemingly good
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geometry for precise positioning, but at the same time large
ADOPs, thus showing that successful ambiguity resolution and
therefore precise positioning will not be possible. This shows that
without the ADOP, one cannot rely on the PDOP for predicting
precise positioning capabilities, in single-epoch RTK for instance.
This also holds true for the reverse situation, when one has time
periods with small ADOPs but large PDOPs. It is common practice
to discard positioning when the PDOPs are larger than 10, however
when small ADOPs are present, successful ambiguity resolution
could still give in such situations good enough positioning results.
A PDOP of 20, for instance, may still produce an average baseline
precision of around 3 cm. The important conclusion is therefore
that for the predictability of precise positioning in single-epoch
RTK processing, the evaluation of the ADOPs should take priority
over the PDOP evaluation.

Empirical Evaluation

In this section we will make an empirical evaluation, thereby
substantiating our ADOP-PDOP findings of the previous sections.
First, we will compare the empirical success rates with their formal
counterparts. As we performed ambiguity resolution with integer
bootstrapping (IB), the formal ambiguity success-rate (ASR),
denoted as Py, is given by Teunissen (1998)

ADOP (cycle)

(b) Time of the day [s] x10

Ambiguity-float solutions
----- 95% formal confidence intervals
Ambiguity-correctly-fixed solutions
x Ambiguity-wrongly-fixed solutions
~ ADOP
- - -ADOP of 0.12 cycles

Fig. 6. (a) North; (b) east; and (c) height errors. At the left side of the y-axis, the dots (the first item in the legend), solid lines (the third item in the
legend) and x-marks (the fourth item in the legend) represent the ambiguity-float, ambiguity-correctly-fixed and ambiguity-wrongly-fixed solutions,
respectively. The dotted lines illustrate the 95% formal confidence intervals. At the right side of the y-axis, the ADOPs are illustrated as pentagrams
(the fifth item in the legend) with 0.12 cycles marked with dashed lines. L1 signals of GPS satellites for baseline CUAA-CUBB on DOY 328, 2018
were used for the plots. The data on DOY 329, 2018 were used for multipath mitigation.
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Pm__ii(2¢<2;m>-—1> (19)

in which o is the ith conditional standard deviation of the ambi-

il
guities after decorrelation with / =1, ...,i — 1. The correspon-
dence between the time-averaged formal-ASR [based on (19)]

and the empirical-ASR is shown in Table 3 for both baselines used
in our tests. The empirical-ASR is hereby obtained as Pp = %,
where N and N denote the number of time epochs with correctly
fixed ambiguities and the total number of epochs, respectively.
The decision whether or not the single-epoch resolved ambiguities
were correct or not was made by comparing them to reference am-
biguities which were obtained using the baseline-known model
(Zaminpardaz et al. 2018; Wang et al. 2019). As Table 3 shows,
there is a very good agreement between the formal and empirical
results.

We now show our empirical coordinate time series (float and
ambiguity-fixed) and their relation to the ADOPs and PDOPs.
Fig. 5 shows the north, east, and height errors for baseline
CUCC-SPA7 on DOY 343, 2018 using GPS/NAVIC L5 observa-
tions. The processing was performed based on the observation
model described in the section “Model Formulation.” The data on
DOY 344, 2018 were used for multipath mitigation by forming
day-to-day differences of the DD observations, and with the known
DD receiver-satellite distance on the DOY 344, 2018 removed.
The dots (the first item in the legend), solid lines (the third item

North (cm)

2 4 6 8
(a) Time of the day [s] x10*

10

Height (cm)
o

-10

2 4 6 8

(c) Time of the day [s] x10%

PDOP

PDOP

in the legend) and x-marks (the fourth item in the legend) illustrate
the ambiguity-float, ambiguity-correctly-fixed, and ambiguity-
wrongly-fixed solutions with the values given at the left side of the
y-axis. The dotted lines (the second item in the legend) indicate the
95% formal confidence intervals. The pentagrams (the fifth item in
the legend) represent the ADOP values on the same day with their
values given at the right side of the y-axis. The dashed lines (the last
item in the legend) mark an ADOP of 0.12 cycles. From Fig. 5 it
can be observed that the ambiguity-float baseline errors have a
range up to a few meters with standard deviations at a few deci-
meters to around 1 m. The average formal and empirical standard
deviations correspond well with each other. Also, we see the pre-
dictability of the ADOP clearly at work. Wrongly fixed ambiguities
predominantly happen in the time intervals for which ADOP >
0.12 cycles. This is not only seen in Fig. 5, but also in Fig. 6, which
is based on using GPS L1 signals of baseline CUAA-CUBB on
DOY 328, 2018.

We can also demonstrate that the time periods with frequent
wrongly fixed ambiguities (see the x-marks in Fig. 5) do not
necessarily have larger PDOPs. The time period having the most
x-marks in Fig. 5, i.e., before about 1,500 s, from about 17,700 to
20,200 s, and from about 78,000 to 81,000 s, do not necessarily
have the largest PDOP over the day [Fig. 4(b)]. The highest PDOPs
appear between about 22,300 and 23,200 s, which also corresponds
to the large ambiguity-fixed height errors. The ADOP during this
time period is only slightly above 0.12 cycles with the ambiguities
mostly correctly fixed.

PDOP

2 4 6 8

(b) Time of the day [s] x10%

* Ambiguity-correctly-fixed solutions
----- 95% formal confidence intervals
* PDOP

Fig. 7. (a) North; (b) east; and (c) height errors in the ambiguity-fixed case. At the left side of the y-axis, the dots (the first item in the legend) and
the dotted lines (the second item in the legend) illustrate the ambiguity-correctly-fixed solutions and their 95% formal confidence intervals.
At the right side of the y-axis, the PDOPs are illustrated as pentagrams (the third item in the legend). L5 signals of GPS/NAVIC satellites for baseline
CUCC-SPA7 on DOY 343, 2018 were used for the plots. Data on DOY 344, 2018 were used for multipath mitigation.
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* Ambiguity-correctly-fixed solutions
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Fig. 8. (a) North; (b) east; and (c) height errors in the ambiguity-fixed case. At the left side of the y-axis, the dots (the first item in the legend) and the
dotted lines (the second item in the legend) illustrate the ambiguity-correctly-fixed solutions and their 95% formal confidence intervals. At the right
side of the y-axis, the PDOPs are illustrated as pentagrams (the third item in the legend). GPS L1 signals for baseline CUAA-CUBB on DOY 328,
2018 were used for the plots. Data on DOY 329, 2018 were used for multipath mitigation.

Fig. 7 shows the ambiguity-correctly-fixed solutions (dots, the
first item in the legend) with the corresponding 95% formal con-
fidence intervals bounded with dotted lines. The PDOPs are shown
as pentagrams (the third item in the legend) with values given at
the right side of the y-axis. Again, note that the time period having
the peak with the large PDOP still has good capabilities for precise
positioning within a few-centimeter accuracy. Similarly, we see in
Fig. 8 the ambiguity-correctly-fixed solutions for baseline CUAA-
CUBB using GPS L1 signals with the PDOP plotted at the right
side of the axis. As observed from Fig. 8, the PDOPs in the
GPS L1-only case are mostly between 3 and 4 for the tested base-
line and do not vary much during the entire day. Again, during
the time period with large ADOPs between about 76,400 and
81,800 s (Fig. 6), PDOPs are not observed to be especially large
in Fig. 8.

Conclusions

In this contribution, we studied the PDOP and ADOP in their
mutual relation. We showed, both formally and empirically, that
they have distinct characteristics and that a good understanding
of this difference is important for their proper usage in the context
of precise positioning. Their distinct time behaviors were explained
by showing that the ADOP is a measure of the change in baseline

© ASCE

04020008-9

precision before and after ambiguity-fixing, whereas the PDOP
is a measure of the geometric impact on the baseline precision
itself.

An important consequence of this difference is that one can
have time periods with small PDOPs, and thus seemingly good
geometry for precise positioning, but at the same time large
ADOPs, thus showing that successful ambiguity resolution and
therefore precise positioning will not be possible. Similarly, we
showed that a large PDOP may not necessarily be bad for such
positioning if the ADOP is small. The conclusion reads therefore
that for single-epoch RTK positioning, without the ADOP, one
cannot rely on the PDOP for predicting precise positioning capa-
bilities. As they are complementary, the ADOP and PDOP have
to be used in tandem in order to have a realistic predictability
of precise positioning.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available in a repository or online in accordance with
funder data retention policies (ftp:/ftp.cddis.eosdis.nasa.gov/gnss
/data/campaign/mgex/daily/rinex3/2018/brdm) [Combined broad-
cast ephemeris from the IGS MEGX campaign on CDDIS under
MGEX (2018); see also Montenbruck et al. (2014, 2017)].
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Some or all data, models, or code generated or used during the
study are available from the corresponding author by request (1 Hz
RINEX observation files of the tested stations on the test days).
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