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Abstract

In recent years, the idea of Open Data has gained popularity, mainly due to the
initiative of the president of the USA, Barack Obama. He started a promotion cam-
paign for an Open Government and ordered government data to be made available as
Open Data. In essence, Open Data is data published online which can be used and
republished without restrictions from mechanisms of control. It is believed that most
government data can be leveraged as fuel for innovation. A survey by TNO for the
Dutch policymakers concluded that Open Data, including government data, has big
economic value.

The motivation and intuition behind our research is that the publication of large
sets of (linked) Open Data may lead to unforeseen breaches in data sensitivity and
privacy. Therefore, we conducted interviews with policy makers who are responsible
for the publication of Open Data. From the interviews, we conclude that there is no
clear view on the possible issues surrounding the publication of Open Data. The data
publishing task is usually delegated to institutions such as Statistics Netherlands(CBS).
Moreover, a literature survey demonstrated that current research focuses solely on data
privacy, ignoring other forms of unwanted publication such as data sensitivity.

The unclear view on possible issues and the focus of literature on data privacy have
motivated us to propose a new data publishing process, supported by an automated
decision support tool. For this system we present an architecture and a reference im-
plementation. Furthermore, we propose a more extensive definition of data sensitivity.
We also present definitions for privacy and utility metrics and we use these metrics to
compare anonymization algorithms.

Keywords. open data, privacy, privacy preserving data publishing, framework, pub-
lishing process
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Preface

It has been a long journey but it finally came to an end. And a good one, I might add. Getting
started has not been easy. We started thinking about the privacy of data and eventually came
to talk about safely publishing sensitive government data as Open Data.

This work is part exploratory and part outrageous. It is exploratory because it is a new
direction for both TU Delft and IBM. In Delft, the experts use cryptography to keep data
sets safe. At IBM, they have an interest for the domain of anonymized open data publishing.
The funny thing is that this makes me – the one who needs to eventually be evaluated – the
expert in the field for this group. It is outrageous, because it points fingers at big things
already set in motion. Open Data, Linked Open Data and anything that is related to the
previous two. I see the point of having enriched, inter-linked and freely accessible data. It’s
good for research and it’s good for business. But, as always, we forget about things such as
privacy and safety. We can just protect those afterwards – right?

Open Data and Co. are already here. A lot of governments now start to open up their
data gates and flood the world with even more data. The only thing left for us to do is to
protect whatever we can before it is too late. The goal of this thesis is to lend a helping
hand in the process of sensitive data sanitization – through anonymization. We try to set
the context of how governments currently open up their data. We then propose a publishing
process which uses an automated decision support tool to help the data publisher mitigate
the risks. We give the design details for this system and test to see how it performs.

It might be weird to say it here, but it is especially valid for this situation: the road to
hell is paved with good intentions. Data which initially seems harmless and released for the
good of the people, can eventually be combined and misused to commit burglary and other
crimes. Everyone is so worried about privacy that they forget to stop and think if something
worse exists. It does and it’s called data sensitivity.
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Chapter 1

Introduction

In recent years, the idea of Open Data has gained popularity. In essence, Open Data is data
published online which can be used and republished without restrictions from mechanisms
of control. The movement started to gain popularity in the USA, as part of president’s
Barack Obama campaign for an Open Government. He wanted to increase government
transparency by making the public information more easily accessible. He ordered govern-
ment data to be made available as Open Data.

From [27] we can see that different countries have a different approach to the Open
Data, each with their own motivation for adoption. For The Netherlands, the goal is to
open up the Dutch Ministry of Economic Affairs and the Ministry of Interior and Kingdom
Relations data by 2015 [1, 24]. The right of the citizens to be able to request information
is mandated by the Freedom of Information Law (in The Netherlands this is called Wet
Openbaarheid van Bestuur). Having that data published online means that it is easier to
find, easier to access and should be computer readable.

The belief is that most government data can be leveraged as fuel for innovation [16].
A survey by TNO [27] for the Dutch policymakers concluded that Open Data, including
government data, has big economic value. To further increase this value over time, we
observe, from the Dutch Open Data website1, that they both open up data and encourage
people to use and to contribute to the existing database.

The motivation and intuition behind our research is that the increase in data availability,
by means of publishing large data sets, will lead to unforeseen breaches in data sensitivity
and privacy. To better understand the current situation, we conducted interviews with policy
makers who are responsible for the publication of Open Data. These include Rijkswaterstaat
(responsible for the roads, water and infrastructure in The Netherlands), Kadaster (responsi-
ble for parcel information), Amsterdam Economic Board (responsible for strategies for the
economic development of the Amsterdam region) and Statistics Netherlands - CBS (sup-
plier of most statistical information in The Netherlands). From the interviews, we conclude
that most institutions delegate the data publishing process to CBS. This is a consequence
of the fact that most institutions do not have a clear view of possible issues surrounding

1https://data.overheid.nl/
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1. INTRODUCTION

the publication of Open Data. But with a deadline for 2015 to open up a big part of the
government data, this creates a bottleneck on the publisher’s side (e.g. CBS).

Moreover, the literature survey we conducted [22] demonstrates that the current focus
of research is on data privacy, mostly ignoring other forms of unwanted publication such
as data sensitivity. We therefore propose the more extensive definition of data sensitivity.
This covers data privacy and other types of issues that might occur regarding the privacy
and security of legal entities or countries.

With the results of this thesis we lay the foundation to a new data publishing process,
supported by automated decision support. This system assists policy makers in assessing
the risk of publishing data sets.

1.1 Research Questions

Here we present our three main research questions. The first two questions can be answered
based on our literature survey [22], while the third question is the main focus of this thesis.

RQ 1 Why is privacy preserving data publishing necessary when dealing with Open
Data?

First, we would like to understand where publishing privacy sensitive data fits in the con-
text of Open Data. This will help us understand what the challenges are and why extra
precautions are necessary.

In order to properly open up the data, guidelines2 and laws3 have been created. As
we have observed from the different interviews presented in Appendix B, the current rules
are not enough to protect the data. The rules can only provide guidelines on how to act,
but since they need to cover as many cases as possible, they lack the ability of precisely
defining what should and what should not be published. Data sets vary greatly one from
another, making it is impossible for the law to properly handle every single situation.

In our literature review [22] we identified two types of publishable data: sensitive and
non-sensitive data (everything that is not sensitive). The type that require protection are the
former.

Sensitive data is information that might result in loss of an advantage or level of security if
disclosed to others. It may affect the privacy or welfare of an individual, trade secrets
of a business or even the security of a nation.

The problems occur when data sets are released that are minimally anonymized to sat-
isfy the legal requirements. The data set itself might then be safe, but the hidden threats may
appear when more data sets are combined. Possible problems include the creation of new
sensitive patterns in the data, re-identification of individuals by means of exclusion (every
record but one exhibit the characteristics a person does not have) or by isolation (the record
which has all the characteristics a specific individual has).

2Guidelines for The Netherlands: https://data.overheid.nl/handreiking
3In The Netherlands: Wet Openbaarheid van Bestuur
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Research Questions

Whether talking about individuals or legal entities, one needs to ensure that their iden-
tifying characteristics are not published. The situation can become more complex when
these entities and individuals can be grouped into hierarchical structures. Take for example
individuals in households, in universities, in schools or employees in enterprises.

To better understand how the data can be combined in a harmful way, we present two
examples. One related to sensitive data, the other to privacy sensitive data.

EXAMPLE 1. Our first example is about an app called “Makkie Klauwe”4. In essence
it shows burglars which houses are easy to break into and give a nice profit. The interesting
thing is that it combines relevant public data such as area value, reported problems in the
area and how much does the municipality can spend to improve an area. For example it
may suggest a house in a good neighbourhood where the streetlight is broken (easier for the
thief to break in without being detected).

EXAMPLE 2. Our second example is related to privacy and is the motivation of the
paper by L. Sweeney [26]. In Massachusetts the Group Insurance Commission collected
medical data about state employees and their families. They assumed the data were anony-
mous and made them available for research. Sweeney obtained this data set and also bought
the voter registration list for Cambridge Massachusetts; by combining these two data sets on
ZIP code, birth date and gender, she managed to uniquely identify the medical information
of the Governor of Massachusetts. These examples are meant to illustrate how data sets,
which on their own pose no threat, can create risks and privacy breaches when combined.

It is interesting to observe that Open Data is not the only data or information related
movement. The concern regarding data sensitivity is that most of these movements are
complementary, i.e. they increase the amount of available information. Looking into the
future, we can see that more data will be freely available, easier to access, and with inter-
links and semantics already included (e.g. Linked Data movement [5]). This means that
finding meaningful data set combinations becomes easier (to automate) due to the included
semantics.

To the best of the author’s knowledge, literature is currently focused on data privacy
[22] and does not consider data sensitivity. Sensitive data is information that might result in
loss of an advantage or level of security if disclosed to others. It may affect the privacy or
welfare of an individual, trade secrets of a business or even the security of a nation. We also
notice that most solutions only handle a single data set and do not consider what would hap-
pen if external information would be used. Breaches to data sensitivity and privacy can take
place by combining different data sets. In some cases it has been shown that anonymizing
just the current data set is enough, even if the adversary has external information; the only
question now is whether the data is still useful or not since the anonymization process has
an impact on data utility.

4http://www.bramfritz.nl/makkieklauwe/
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1. INTRODUCTION

RQ 2 How are decisions taken when publishing sensitive data as Open Data?

After the context has been set, we would like to understand how publishing privacy sensitive
data is currently being done. We need to understand what policy makers are currently
struggling with, how they overcome certain challenges and find the places where we can
improve the process.

From several interviews with representatives of different public institutions of The Nether-
lands (Appendix B) we see that transforming a data set into Open Data is not easy. The cur-
rent policy used for opening up data in The Netherlands is the “open tenzij” [24](tr. open
unless) rule. This implies that one may publish everything, unless it does not adhere to the
law or to the company regulations. We identify two reasons why this method is preferred
above data sanitization:

1. No risks - it is easier to just not publish and avoid any risks.

2. Lack of experts - not every company or institution has access to the experts who can
actually perform the cleaning and anonymization of the data.

So protection is assured, in most cases, through secrecy and not through anonymization.
The advantage of this approach is that the privacy of the not published data set is guaranteed.
When looking at data utility, we can conclude that it is equal to zero since the user has no
access to the data and cannot use it. Here we see the inversely proportional relation between
privacy and utility. Publish the raw data, then we have maximum possible utility and zero
privacy. Do not publish at all, then we have complete privacy and no utility. In short, the
law currently enforces secrecy. If the law would change, it might force the publishing of
data sets that were previously prohibited under the “open tenzij” rule.

The responsibility to open up the data usually belongs to the department that owns
the data, yet, as observed from our interviews (Appendix B), these departments do not al-
ways have the right knowledge to deal with the issues surrounding data publication. The
main rules these institutions have to follow in The Netherlands are given by the Wet Open-
baarheid van Bestuur (WOB)5 and by the Wet Bescherming Persoonsgegevens(WBP)6. In
some cases some internal guidelines/rules are also applied (e.g. Rijkswaterstaat) [22]. All
in all, these rules only create a minimal safety boundary. As mentioned above, there is an
increase in data availability. There are more sources of data which can be combined to cre-
ate a breach in privacy.

Currently, publishing is based on a combination of rules, experience and intuition [22].
There are three components that make data publishing a challenge:

1. lack of specialists for data publishing.

2. knowledge gap on how to handle the data sanitization process properly within organ-
isations.

5Open Data Law: http://wetten.overheid.nl/BWBR0005252/geldigheidsdatum_29-05-2013
6Privacy Law: http://wetten.overheid.nl/BWBR0011468/geldigheidsdatum_29-05-2013
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3. the volume of data that needs sanitization. There are only a few institutions which
have expertise in the domain (such as CBS, O&S). These institutions are already
active with publishing and the Open Data initiative will only increase their workload.

Data Publishing Guidelines To get a better understanding of the thought process behind
the current data publishing process promoted by the Dutch government7, we will be giving
a brief summary of each step below.

Step 1 - Why to start with Open Data The first step explains why to begin with Open
Data and what the advantages are of Open Data. Tips are also given on how to start and
promote this within the organization.

Step 2 - Data set selection The second step is about choosing the datasets to publish. It
contains questions which should get the data publisher thinking about the data, whether it
is worth publishing and what the risks surrounding the data might be.

Step 3 - The legal check The legal check is the next step. It is a very important step since
it can have a big legal impact on the publisher if, for example, there is a breach in someone’s
privacy.

Step 4 - Organise the publication process The fourth step in the process gives tips on
how to organize the publishing process. The point is that data publishing should not be an
ad-hoc activity, but should be part of the company’s workflow.

Step 5 - Make the data easy to find and accessible The last proposed step is about mak-
ing the data easy to find and accessible. Preferably the data should be in a machine readable
format, have an API and a contact person in case there are any questions about the dataset.

We observe that none of the steps above explain how to actually clean the data set. This
leads to our next research question.

RQ 3 How to anonymize the data?

This research question is the main focus of this thesis. Because a sensitive data set
cannot be released “as is”, it first needs to be sanitized by means of anonymization. The
problem is that different anonymizations provide different results. We need to investigate
what these differences are. Because the question is very broad, we have divided it into three
sub-questions.

A Which algorithms should be considered as candidates for anonymization for which
type of data, with respect to applicability in practice?

7https://data.overheid.nl/handreiking, retrieved October 26, 2013
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There are many algorithms for anonymization, each being able to sanitize a certain
type of data. We first need to make a selection of suitable (in practice applicable)
algorithms for each type of data

B How to interpret the measured values for privacy and utility and what guarantees do
these values provide?

The side effects of data anonymization are mainly loss of utility to the users and
increase in privacy levels. We need to measure these changes. To this end we need
metrics that give an interpretable results.

C How does privacy / utility change when the data set is combined with external sources?

The challenge of publishing large data sets was the increase in risk of a breach in data
privacy or sensitivity. We would like to be able to understand how this risk changes
as more information is available out there.

1.2 Contributions

The area of safe data publishing is very broad. As such, the focus of this thesis will be on
privacy. We define the base for a tool that can support the data publisher in the process of
publishing information as Open Data. In other words, a tool that gives insight on the risks
contained by the data and advice on how to anonymize such data, considering the desired
privacy and utility levels. Below a more detailed overview of our contributions.

New Data publishing process We present an improved data publishing process which
serves as the foundation towards automated data publishing. Automating the full process
cannot be done, since data publishing retains the human factor, but many steps can and
should be automated. We explain in the future work how to further automate parts of the
process.

Automated decision support system We present the design, architecture and implementa-
tion of an automated decision support tool which helps the data publisher better understand
the risks and gains. Instead of using one algorithm, the tool evaluates how many algorithms
perform on the given data set and let the data publisher make an informed choice.

Analysis of utility and privacy metrics To measure the privacy gain and utility loss, we
analyze various metrics and see whether they actually give useful values.

Comparison of anonymization algorithms We provide a more thorough analysis of the
algorithms used in the experiments. We explain why certain metric values are achieved
based on the inner workings of the algorithms.

6



Outline

1.3 Outline

The thesis is outlined as follows. Related work in privacy preserving data publishing is
shown in Chapter 2. In Chapter 3, the steps of the data publishing process are described.
The design and implementation details of our system are outlined in Chapter 4. Chapter 5
presents our experimental results. We conclude the thesis in Chapter 6 with a discussion,
conclusions to the research questions and future work.
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Chapter 2

Background

This chapter is dedicated to presenting background elements necessary for this thesis. For
the complete literature survey, please refer to [22].

For our experiments, we chose to use four anonymization algorithms: k-anonymity
[26], t-closeness [19], (n,t)-closeness [20] and (n,t)-closeness together with k-anonymity.
These have been selected because they are widely known, used and referred to in the liter-
ature. k-anonymity has two implementations. One is based on the Incognito [17] algorithm
while the other is based on the Mondrian [18] algorithm. The other algorithms have been
implemented by extending either Incognito or Mondrian as follows. The t-closeness al-
gorithm extends the Incognito implementation of k-anonymity, while (n,t)-closeness and
(n,t)-closeness with k-anonymity both extend the Mondrian algorithm. Below we briefly
present how these algorithms and their implementations work.

2.1 Incognito - How it works

The current implementation does a bottom-up global recoding of the QID combination
space (the Cartesian product of the domains of every QID attribute - the full domain of
possible QID values). Global recoding consists of replacing every value of an attribute
by that value’s one level higher generalisation. For example, given the taxonomy tree in
Figure 2.1, every value of 0, 1 and 2 in the data set would be replaced by [0,2].

Initially a search lattice in created with the base root equal to {0, 0, . . . , 0} where the
number of elements is equal to the QID size. The numbers represent the level to which a
value is generalized in the taxonomy tree of the corresponding attribute. For example, given
two attributes in the QID, the starting root node in the lattice is {0, 0}. The algorithm starts
to check if first {0,0}, then {1,0}, then {0,1}, then {1,1},. . . satisfy the privacy requirement.
From all the anonymizations that satisfy the privacy requirements, the algorithm chooses
the one that has the least number of generalisations.

Searching for all combinations is not very efficient. Because of that, heuristics exist
that reduce the lattice search space. In the worst case scenario, the heuristics cannot be
successful and the whole lattice needs to be searched.

Now, we discus the algorithms implemented using Incognito.
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Figure 2.1: Example Taxonomy Tree of an Attribute’s Values

Job Sex Age Disease
Engineer male 35 Hepatitis
Engineer male 38 Hepatitis
Lawyer male 38 HIV
Writer female 35 Flu
Writer female 35 HIV
Dancer female 35 HIV
Dancer female 36 HIV

Table 2.1: Patient table

Job Sex Age Disease
Professional male [35-40) Hepatitis
Professional male [35-40) Hepatitis
Professional male [35-40) HIV

Artist female [35-40) Flu
Artist female [35-40) HIV
Artist female [35-40) HIV
Artist female [35-40) HIV

Table 2.2: 3-anonymous patient table

2.1.1 k-anonymity

The algorithm works as follows. Let qid represent a QID value combination for a record in
a data set. k-anonymity only requires that every single qid value appears at least k times in
the data set. This means that the QID values of the records in the data set are generalised
in such a way that grouping by QID values generates bins called equivalence classes(EC)
of size at least k. We can see this in Table 2.1 and Table 2.2. For example {Engineer, male,
35} is generalised to {Professional, male, [35-40)}.

The effect of k-anonymity is that an attacker can link an individual to a record with a
maximum probability of 1/k.

2.1.2 t-closeness

The anonymization algorithm t-closeness also uses generalisation of QID values to achieve
its privacy requirement. But instead of requiring a minimum group size, it requires a max-
imum distance between two distributions. A data set is said to achieve t-closeness if for
every equivalence class, the distribution of the sensitive values in the EC is within t of the
distribution of sensitive values in the whole data set. The reasoning behind it is to limit the
information gain from an individual EC, compared to the information already gained from
the whole data set.

10
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2.2 Mondrian - How it works

The name of the algorithm is inspired by a painting of Mondrian (Figure 2.2). The painting
can be seen as a representation of how the algorithm works when clusters are creating in a
two-dimensional space.

Figure 2.2: Painting by Mondrian

As with the painting, the algorithm partitions a high-dimensional space into regions and
insures that a certain privacy requirement is guaranteed.

Initially, all the points(records) start off in one single bin (equivalence class). The al-
gorithm does three things: it selects a dimension to partition on, it selects a value on that
dimension to split on and it checks if the split results in a valid cut. A valid cut partitions
a region into two smaller regions, both of which adhere to the privacy requirement. In our
case, the value to split on is the median since it gives a more uniform partitioning [18].

2.2.1 (n,t)-closeness

(n,t)-closeness builds on top of t-closeness. The main advantage is that it distorts the data
less. It requires the distribution of sensitive values for every equivalence class to be within
t of a population of size at least n. This large enough population, of size at least n, needs to
be a natural superset of its respective EC.

A natural superset of an equivalence class(E1) is also an equivalence class(E2) which
contains the former by broadening the set value boundaries. Take for example E1 to be
the first EC in table 2.4. E1 is thus defined as (zipcode=’476**’, age=[20,29]). A natural
superset would then be (zipcode=’476**’, age=[20,39]) since it “naturally” contains it. If
E1 has a size greater than n, then it already respects the privacy requirement since it is its
own natural superset.
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2. BACKGROUND

Zipcode Age Disease Count
47673 29 Cancer 100
47674 21 Flu 100
47605 25 Cancer 200
47602 23 Flu 200
47905 43 Cancer 100
47904 48 Flu 900
47906 47 Cancer 100
47907 41 Flu 900
47603 34 Cancer 100
47605 30 Flu 100
47604 36 Cancer 100
47607 32 Flu 100

Table 2.3: Patient table

Zipcode Age Disease Count
476** 2* Cancer 300
476** 2* Flu 300
479** 4* Cancer 200
479** 4* Flu 1800
476** 3* Cancer 200
476** 3* Flu 200

Table 2.4: (1000,0.1)-closeness

2.2.2 (n,t)-closeness with k-anonymity

For this anonymization algorithm, Mondrian has been used as the base algorithm. The
requirement for the cut step, explained above, has to respect both the k-anonymity and the
(n,t)-closeness privacy requirements. This means that the EC have to be at least of size k
and to within t distance of a natural superset of size at least n.

12



Chapter 3

Stages of the data publishing process

Searching for an official, government supported, publishing process which considers data
sanitization did not yield any results. The only other data publishing process we have found,
that has at its core data sanitization, is the process of Statistics Netherlands (CBS). This is a
dutch institute responsible for reliable and consistent statistical information, that responds
to society’s demands in this respect. The data publishing process has been released in the
book Statistical Disclosure Control [14, Ch. 3, p. 24-35]. We decided to use this as the
foundation for our own Open Data publishing process because it is based on years of real-
life experience of individual and legal entity microdata publishing. Microdata is data on the
characteristics of units of a population, such as individuals, households, or establishments,
collected by a census, survey, or experiment [6].

CBS makes data available under various formats B.3:

• Public Use Files - PUF. These are the data sets published online, freely accessible,
constrained only by some type of General Public Licence (free, copyleft license for
software and other kinds of works, intended to guarantee your freedom to share and
change the concerned object).

• Microdata Under Contract - MUC. The user is constrained by contract to what he
may do with the data. Various levels exist.

• Remote access - the user is allowed to query the data, but not allowed to see the data.
A strict audit process is put in place.

In the case of Open Data we only have a more relaxed version of the PUF. The data is
published online, is freely accessible, but there are no constrains on the data. The concepts
presented in [14] are still viable and can be applied to Open Data. From a high level view,
there are two parts to the process:

1. The user performs an in-depth manual or semi-automated data analysis to understand
the characteristics of the data and the possible challenges.

2. The user select an appropriate method to sanitize the data and then publishes the
anonymized data set.
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Assess need for confidentiality protection

For the second part, CBS uses its own anonymization tool which only applies k-anonymity
and suppression to sanitize the data. Unfortunately, as our experiments show, k-anonymity
is not good enough to protect the data and applying suppression reduces utility by an un-
known amount. Instead, other algorithms should also be tested to see if they can provide
better privacy and utility guarantees. A data publisher should be able to choose between
several such algorithms. This makes it possible to release better anonymizations, which can
offer more utility with at least an equally good privacy level.

In the remainder of this chapter we will present a high level view of the data publishing
process. Sections 3.1 to 3.3 and 3.6 present steps from the CBS process. It corresponds to
point 1 mentioned above. Sections 3.4 and 3.5 represent our own replacement to the CBS
software automated steps. They correspond to point 2 mentioned above.

3.1 Assess need for confidentiality protection

The first step involves analysing the data set to see whether statistical units or variables are
present which require protection. The decision on what needs to be protected and what not
is based on the law and on common sense and experience. The legislation can vary greatly
per country, so a thorough analysis needs to be carried out by a legal department. In the
context of Open Data, publication of the data needs to adhere to several regulations: rules
of the data publisher’s company or institution (if any), the Dutch Law and any applicable
European Union law.

3.2 Identifying data characteristics and data usage

This step involves gaining a better understanding of the characteristics of the data charac-
teristics and how this data can and may be used by different parties. In our context of Open
Data, knowing exactly how the data will be used, is not clear. One can only estimate the
possible usage, but based on the open data principle, we would expect users to bring new
insights by combining the data sources in a novel way.

Control vs. No Control
At CBS, besides highly aggregated PUF files, data can also be anonymized towards certain
usage, based on who asks for the data. Statistical programs can be executed on the original,
but with high security and audit in place. With open data, publishing is mostly data driven
- ensuring no sensitive information about entities or individuals is leaked and providing
utility towards what the data publisher considers to be the most feasible usage. No control
mechanisms exist.

3.2.1 Identification of data characteristics

The first step is to look at how the data has been gathered (e.g. a questionnaire) and what
the data source is for the analyzed data set. The goal is to identify the type of the data (i.e.
is it administrative data, census data, operations data etc.), to understand the current level
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3. STAGES OF THE DATA PUBLISHING PROCESS

of public availability of the information (e.g. what already can be requested at a town hall)
and to understand what can be made public. Releasing just a sample of the data set might
be necessary due to one of the following reasons:

• the law might require a sampling process.

• one considers the disclosure risk too high for the full data set.

The next step is to look at the data itself.

1. determine if identifiers are present (e.g. passport number, name etc.). These need to
be removed since they provide a one-to-one identification.

2. determine which attributes are the quasi-identifiers (QIDs). These are aggregated into
coarser categories.

3. determine if any working variables (flags, checks, values derived from original at-
tributes) are present. These must be removed since they leak information.

The last step is the post-anonymization sanity check. This consists of checking whether
pre-anonymization attribute relationships are still preserved after the anonymization has
been applied. This is necessary to keep the data consistent.

3.2.2 Analysis of users’ need

It is not clear, beforehand, to know how the published data will be used, but it is expected to
provide value by combining different data sources in a novel way. This means that the data
publisher can only estimate how the data might be used. There are two reasons why this step
is necessary. First, it can give insight into how the data might be misused, discussed further
in Section 3.3. Second, based on the estimated usage, the importance of attributes can vary.
For example, if age would be considered very important, then this would be anonymized
less (finer aggregation groups, less perturbed values etc.). There are many sources where
one could obtain information about attribute importance:

• user groups are created to share information about certain types of data

• electronic libraries may contain papers which deal with the type of analyzed data

• project descriptions might contain information on how they use the data

• talking directly with the experts (statisticians, data analysts etc.) can give insight on
how they use the data and what level of detail is required.

3.2.3 Analysis of data publisher needs

If the data publisher works for a company or public institution, then he needs to adhere to the
internal rules for data publishing. He might be obliged to respect certain internal policies,
as identified in Section 3.1. Such rules may enforce a minimum level of anonymization for
certain pieces of information or that certain attributes should be removed completely.

Another aspect the data publisher needs to consider is consistency. If previous versions
of a data set (or part of) have already been published, the current data needs to be consistent
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and account for such history. As a general rule of thumb, a data set should be published
only once, since multiple versions increase the risk of information leakage (e.g. the data is
shared between users and inconsistencies might leak information). Finding and obtaining
previous publications can be a manually intensive process.

Determining which attributes are QIDs is the responsibility of the data publisher. In
the literature [22] we have seen that the QID choice has an impact on the risk level and
on the utility of the data. More attributes means more anonymized data and less utility.
Less attributes means a higher risk that a re-identification might occur based on the not
anonymized attributes.

3.3 Disclosure risk, definition and assessment

In this section we will be giving a brief overview of disclosure, disclosure risk, disclosure
scenario and methods to estimate the disclosure risk. For detailed information, please refer
to [14, Ch. 3].

3.3.1 Disclosure, disclosure scenario and disclosure risk

Disclosure

Disclosure relates to re-identifying an individual or a legal entity in the published data
and gaining sensitive or confidential information about them. There are several types of
disclosure: identity disclosure, attribute disclosure, inferential disclosure, table linkage.
These are defined in Appendix A.

Disclosure scenario

All the pieces of information about the data set, gathered by the data publisher up to this
point, can now be used to create disclosure scenarios. These are scenarios which demon-
strate how the data can be misused and how disclosures can occur. A disclosure scenario
includes reasoning about the quasi-identifiers and the ways in which these could be used.
In literature, there are two systems which can help with creating disclosure scenarios. First,
Elliot et al. [11] present a prototype tool called Key Variable Mapping System, which can
be used to identify the QID attributes. Second, Elliot and Dale [10] present a system for
analysing disclosure scenarios. For disclosure scenario examples, please refer to [14, Ch.
3]

Disclosure risk

The disclosure risk is a quantification of how rare a statistical unit is, in the data set but also
in the whole population. In general, disclosure risk is a function of the values of the QIDs.
Furthermore, we distinguish between two types of risk - individual and global. The former
refers to the risk of each individual unit in the data set. The latter is usually determined
based on the individual risk and represents the risk of the whole data set. Based on the type
of QIDs, three cases are possible: the QIDs are categorical, the QIDs are continuous or a
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3. STAGES OF THE DATA PUBLISHING PROCESS

combination of the previous two.

1. CATEGORICAL QID VALUES

In the case of categorical QIDs, risk is defined as the probability that a statistical unit can be
correctly re-identified from the data at hand. Three variations are possible for the definition
of risk:

• when considering microdata - if the entity is considered to be in the data set, if the
QID combination of the unit is too rare in the data, then the entity is at risk.

• when considering population characteristics - we look at QID combinations for the
statistical units of the data, which are rare in the whole population (e.g. the 18 year
old widow).

• when considering real external files - implies extensive tests (searching many databases)
to actually link the data set at hand with external sources.

2. CONTINUOUS QID VALUES

This case is more challenging than the previous because we are moving away from the
rareness of combinations and towards the rareness in the neighbourhood of the record (QID
values of an entity). Again, there are three variations.

• risk based on outlier detection strategies - intervals or thresholds are determined for
the QID values and the units that fall outside the interval or past the threshold are
considered at risk.

• risk based on clustering techniques - various clustering techniques are used to group
the data; a boundary is set and any unit outside the boundary is considered to be at
risk.

• risk based on record linkage - the original data is perturbed and then a linkage proce-
dure is applied between the original data and the perturbed data. The risk is defined
as the number of correct matches.

3. BOTH CATEGORICAL AND CONTINUOUS QID VALUES

This is the most challenging case of the three. One way to solve this problem is to group
the data using the categories of the categorical QIDs and then apply the continuous QIDs
solutions to each group (sub-population).
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3.3.2 Choice of method to measure/estimate disclosure risk

An overview of methods to estimate disclosure risk is presented bellow.

Threshold rule

This method requires that keys (QID value combinations) appear in the data set at least a
given amount of times. If the number of occurrences is below a given threshold τ, then the
unit is considered to be at risk. Having at least k > τ occurrences of each key ensures at
least a matching probability of at most 1

k .

Sampling weights

The general risk is formulated as 1
Fk

, where Fk is the population frequency of a certain
combination of QID values. Since Fk is unknown, it has to be estimated using the sampling
design weights. f1 . . . fK represent the data set counts. Using Fk and fk the individual risk
r̂k can be estimated. For further mathematical details please refer to [14, p. 44].

Because the sampling design is an important component of this method, if this is not
known for the data set, this estimation method should not be used.

Defining a global risk measure for the whole data set can be done in the following
manner. If rk is the probability of re-identification, then ∑

k
rk fk is the expected number of re-

identifications. The re-identification rate can be used for a data size independent measure:
R = 1/n∑

k
rk fk.

Using heuristics

Another way of estimating the disclosure risk is based on heuristics. One such heuristic is
the DIS-SUDA [12] method. It uses minimal sample uniques or MSUs for its computations.
An MSU is an unique variable set without any unique subsets. The SUDA [12] component
assigns a per record matching probability based on the size and number of MSUs contained
by the record. The DIS [9] component gives the conditional probability of a correct match
given a unique match. The combination of DIS and SUDA describes the confidence of an
intruder that a match is correct.

This method has been extensively tested [14]. It gives a good estimate of the disclosure
risk and does not require the assumption of the existence of an underlying statistical model.

Using record linkage

Disclosure risk can also be estimated using record linkage. This translates directly to the
number of records linked, given the number of total records. It is a computationally in-
tensive task since it requires thorough testing with various data. We distinguish between
distance based record linkage [28, 3] and probabilistic based record linkage [13, 15, 7, 25].
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3.4 Configuration of the automated decision support tool

In this step, the user needs to configure the system before it can run its analysis on the data.

Input/Output

The user chooses where to read the data from and where to store the intermediate and final
results. Input can be anything from a file to a database stored in the cloud.

Data pre-processing

This step involves modifying the data, making it suitable for processing and visualisation.
Examples of modifications include labeling of columns, data transformation - useful when
the part of the data exists in a format which is not suitable for the algorithms (split full
name in two columns or put date in another format or change the format of an interval) and
original data visualisation.

Choose the domain

Based on the previous analysis, it should be clear to the user what type of data he is dealing
with. Many types of data exist including relational data, tabular data, transaction data,
location data etc. The type of the data is important because it will later provide suggestions
on the algorithms and metrics to use.

Choose candidate algorithms

Here the user can either select from a list of existing algorithms (suggestions should be
made based on the type of data to be analysed) or he can select his own implementation.

Choose metrics

The user either picks implemented algorithms for privacy and utility or his own implemen-
tation.

Select QID & sensitive attributes

Selecting the QIDs and the sensitive attributes is important since most of the algorithms
require these (at least with respect to relational data algorithms). The attributes should have
already been identified is Section 3.2.

3.5 Selecting the algorithm to be used for publishing

In this step the user runs the automated software to analyze the data set. When complete,
he should receive information on all algorithms and how they performed given their Risk
Utility maps [8]. This is a plot which shows an algorithm’s performance, measured by the
privacy and utility metrics, when executed using different parameter values.
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Data audit and documentation

The data publisher selects which algorithm he considers best and that anonymization
will be selected for publishing. If needed, the user can execute post-anonymization data
processing. Examples include suppressing certain values or changing the format of the
data(e.g. if the date should follow a specific standard) before it is published. Finally, the
data is written out to the configured location.

3.6 Data audit and documentation

This last step is required in order to create valid expectations on behalf of the future data
users. The data publisher should choose which pieces of information can be released to the
public. Two important pieces of information are the results of the utility metrics and the
methods used to protect the data.

The first gives insight on how usable the data set can be towards certain tasks, depending
on the information provided by the used metrics.

The second should be made public for reasons of transparency. The data can be checked
by an external party for compliance with the regulations. The documentation needs to ex-
plain the legal or administrative reasons behind the data anonymization process. Further-
more, information about the anonymization process can help users understand what has
been changed (e.g. which variables and the process applied - suppression, perturbation,
generalisation etc) and what the impact could be on their data usage. This is important
because it is possible, for example, to calibrate data mining algorithms to account for mod-
ifications made by an algorithm such as k-anonymity.
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Chapter 4

System Architecture, Design &
Implementation

4.1 Overview

This chapter presents the architecture and technical details of our framework. The system
presented here corresponds in our process to the steps described in Sections 3.4, 3.5 and
3.6.

The goal of the system is to act as a decision support tool and an anonymization tool
for the data publisher. In the next sections we describe the high level logical architecture
of the system (4.2) and high level behaviour of data and information within the system
(4.3). Due to time constraints we designed the full system, but only implemented a part
thereof. The differences for the logical architecture are explained in Sections 4.2.2 and
4.2.3, respectively. The differences for the behavioral architecture are given in Sections
4.3.1 and 4.3.2.

4.2 Logical architecture

4.2.1 New code vs. code re-usage

Before starting the design of the current system, we analyzed if reusing existing tools could
speed-up the prototyping process. We had limited time to design and develop with respect
to the size of such a system. We found an existing tool [23] that was written in Java and for
which the source code was publicly available. The GPL allowed for free usage, it already
had several key algorithms already implemented. These can be seen in Figure 4.1. This
represents a high level description of how the reused system looks like. As seen in the
figure, several key characteristics exist:

• database abstraction layer of reading/writing the data

• existing implementations of algorithms based on Incognito [17] and Mondrian [18]

• good data abstraction (i.e. Anonymizer class)
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• a configuration file

• QID and Sensitive Attribute representations

The existing algorithms are Datafly, Anatomy, k-anonymity implemented in both Incog-
nito and Mondrian, `-diversity and t-closeness implementations in Incognito. The Lattice
and LatticeManager are necessary for Incognito.

EquivalenceTable and AnonRecordTable keep track of the created equivalence classes
and of the QID/Senstive attribute generalisations, respectively. The QIDAttribute and
SensitiveAttribute are representations of the previously mentioned attribute types.

Generally, there are two ways in which such a system works. It either treats everything
as strings of characters or it treats everything as numbers. In our case, everything is seen as
numbers or intervals. Categorical values are transformed to numbers by means specified in
the configuration file.

The configuration file is essential. This is where everything receives its meaning. The
following list describes the possibilities offered by the tool.

• input/output files - a database was not supported

• one algorithm to be executed on the data with required parameters

• categorical values translation to numbers (e.g. Male = 1, Female = 2)

• suppression values for different columns

• per column taxonomy tree

• definition of the QIDs

• definition of the sensitive attributes, though all existing algorithms only accept one
such column

4.2.2 The full module design

Having the basics covered (e.g. reading,writing, data abstraction) helped in quickly devel-
oping a working system. The existing system required improvements in order to meet the
requirements. The top priority requirements are the following:

• automated algorithm comparison and parameter variation

• can compare any number of algorithms

• can compute any number of utility and privacy metrics and display them

• modular

• easy to extend - new components, new algorithms, new metrics, new read/write loca-
tions

• GUI for the configuration
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• GUI for data pre- and post-processing

• GUI for results(plot) visualisation

• GUI for data and anonymized data inspection

In Figure 4.2 we can see the full system design. Some components have been introduced
only at concept level (the cloud-shaped components). These components require further
analysis and research to determine the structure. For example, data pre-processing still
needs to be researched to understand what users actually expect and need. Such research
can start from investigating what other tools do wright. The Anon toolbox component will
mostly stay as is, since the elements are already implemented and working.

core

The core module has been extended with a Runner. This allows for execution of any number
of algorithms and any number of parameter configurations. These configurations are parsed
by the Con f iguration class. For each detected algorithm, a RunCon f ig is created. This
stores the algorithm’s full qualified name (i.e. including the package name) and the list of
parameters (RunCon f igItem) and how these should vary. It can also generate all possible
parameter combinations for the algorithm.

mondrian

The mondrian module has been extended. First, in the original version, the Mondrian class
was actually the full k-anonymity implementation using Mondrian. We have removed the
specificity of k-anonymity from Mondrian into a separate class. In essence, a Mondrian
based implementation needs to do three things: choosing a dimension on which to partition,
choosing a value to split and checking if the split doesn’t violate the privacy requirements.
All these steps now can be modified by any subclass of Mondrian. Using these three entry
points one can implement virtually any algorithm based on the original Mondrian.

Two contributions of this project to the algorithmic side are the implementations of
(n, t)-closeness [20] (Mondrian NT) and (n, t)-closeness combined with k-anonymity (Mon-
drian KNT), both of which extend the base Mondrian class.

metrics

The metrics module has been introduced to allow the user to measure the privacy and utility
levels of a given anonymization. There are two types of metrics represented by two classes:
PrivacyMetric and UtilityMetric. They have the general methods getName() and getPriva-
cyLevel() or getUtilityLevel() respectively. The user can select from either existing metrics
or implement his own. As long as the getter for the name and level is present, one can even
execute system calls to let external tools compute the metrics.
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io

The io component is used to read, write and, if necessary, transform data. The key elements
are the interfaces DataReader and DataWriter. All they require is the ability to read in and
write out line by line.

The FromFileReader, as the name suggests, takes the data from a file. This was also
how the original tool read its data, but it was not easily extendable (e.g. replacing reading
from file with reading from database).

DataWriteGenVals, DataWriterGenValsDist and DataWriteAnatomy are the repre-
sentations of the data write possibilities of the original tool.

Pre-processing, Post-processing, GUI, Controller

As mentioned earlier, these components require further research to determine what the de-
sired structure should be. This has not been done in the current project due to time con-
straints and due to the fact that they have no added value to the goal of this thesis.

4.2.3 The implemented design

In this section we will be going more into the details of what has been implemented and
which improvements exist compared to the original tool. This can be seen in Figure 4.3 and
regards mostly the mondrian, metrics and core components.

Anon toolbox & sqlwrapper

This part of the system has remained mostly untouched. Improvements have been brought
to all the implemented algorithms so that they could be executed many times. The most
significant changes were made to how the data was read and stored, to make it compatible
with the general approach which is currently implemented.

io

This part of the system has not been implemented. The data is still read from a file and
written back to a file. The reading/writing responsibilities have been moved from the
Anonymizer class (original tool) to the Runner class, which oversees all executions.

Internally, data changes are still done using a SQLite database. However, since some
of the implemented metrics require external tools, the results of each anonymization is
temporarily stored in a file accessible to the external tool.

mondrian

We chose to implement (n, t)-closeness (the Mondrian NT class) based on several reasons.
First, it is an algorithm that works for relational data. Second, there is no publicly available
implementation of this algorithm. Third, literature criticizes t-closeness of significantly
reducing the utility of a data set. Literature also states that (n,t)-closeness is an improved
version of t-closeness w.r.t. utility. We decided to test this theory in our experiments.
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Mondrian KNT is our attempt to further improve the original (n, t)-closeness algorithm.
The implementations make full usage of the Mondrian abstraction, by modifying only

how we choose the value to split on and how to check if the split satisfies the privacy
requirements.

metrics

This module is a new piece of functionality added to the original tool. The metrics that
have been implemented have been chosen based on the literature [22] - they are the most
commonly used metrics to measure privacy and utility.

Utility

• CM - classification metric [4]

• DM - discernibility metric [4]

• ILBasedUtility - information loss metric [20]

• NormAvgECSize - normal average equivalence class size [21]

• ShannonEntropy - measure of uncertainty

Because CM and DM are dependant of the number of records in a data set, we decided
to develop their normalized counterparts.

NORMCM
The classification metric adds a penalty to each row of 0, 1 or 2.

f (x) =


1, if value is not majority in EC
1, if value is suppressed
0, otherwise.

(4.1)

A penalty of 2 is given when in an EC class the majority of values are not suppressed.
To normalize we thus consider only the rows which have received a penalty and divide the
CM value by the number of rows with a penalty.

NormCM =
CM

# rows with penalty
(4.2)

NORMDM
In the case of the discernibility metric, the normalization is more straightforward. Every
record in the dataset is penalized with a value equal to either the number of records in the
equivalence class or the number of records in the whole data set.

NormDM =
DM

# rows in data set
(4.3)
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Logical architecture

Privacy

• OneAboveK - k is the size of the equivalence class. It finds min(1
k )

• Global Re-identification risk (GlobalReID) - external call to R language script; based
on the sdcMicro package implementation [12]

The flexibility of the system when it comes to metrics is more or less proved by the
Global Re-identification risk metric. This has been implemented by placing an external
system call to a script which takes the anonymized data file as input and returns the com-
puted general privacy level.

core

Most of the new functionality lies in the core module. Initially, it was only possible to exe-
cute one algorithm with one set of parameters.

RUNABILITY

As previously mentioned, the Runner class allows for any number of algorithms to be ex-
ecuted with any number of parameter combinations (as long as memory allows it). The
Con f iguration class has been modified to parse these changes by means of Java reflection.
This makes adding a new algorithm easy. Simply implement and specify the full qualified
name (package.className) in the config.xml (main configuration file). This improves on
the previously hard-coded method.

When requesting a new algorithm, the user only needs to specify the algorithm name
and between which values (and by how much) each parameter should be varied. The Runner
then takes and generates a list of RunCon f ig with every possible combination for each spec-
ified algorithm.

DATA IO
Before, the data was read by the algorithm itself. Currently, the data is read by the Runner
class and stored in the internal SQLite database. Then each algorithm simply receives a
copy of the data. This method has been chosen to reduce from HDD reading time. We are
aware that this might not be the best case when the data source is a database itself, but as
previously mentioned, the data abstractization has not been implemented for this prototype.

PLOTTING

The Runner class is also responsible with calling the metrics and storing their results. Then
it writes these values to several files. These files are then used to plot the Risk Utility Maps
(RU Maps [8]). Each map contains all the algorithms and the results for one privacy and
one utility metric for all parameter variations. Again, due to time constraints, we opted to
use an external tool called jgnuplot in order to make plots in Java.
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4.3 Dynamic behaviour of architecture

In this section we will explain the flow of data and information through the system, on a
high level. As with the system design overview, we will first explain the idea for the full
module concept and then go into the details of what was actually implemented. The flow
described is related to the steps in sections 3.4 and 3.5.

4.3.1 The conceptual data flow

The high level data flow diagram can be seen in Figure 4.4. In essence, the system is quite
simple. It consists of 6 elements:

• Configure - the system configuration that needs to be done before execution.

• Controller - the key element of the system: coordinates algorithms, measurements,
plots, data I/O etc.

• Data - necessary for accessing writing and formatting of data.

• Anonymize - the sanitization process which cleans the data through anonymization.

• Measure - every anonymization needs to be measured in order to determine how the
algorithm performed.

• Visualise - visualising the data, the configuration, the pre/post-processing, the mea-
surements.

This general flow has been mapped to a more detailed flow, presented in Figure 4.5
and described below. The steps described contain between parentheses the name of the el-
ement that actually implements the component. An overview of this mapping is given in
Figure 4.6.

Configure system. (GUI) First, the user needs to configure the system. This is done by
means of a GUI to hide the complexity of the XML file from the user. This is the step where
the data sources, data output, algorithms and parameters are set.

Parse configuration. (core.Configuration) Next, after the user starts the tool, the config-
uration will be parsed and all necessary internal values will be set (e.g. algorithms, QIDs,
sensitive attributes etc).

Get input info. (core.Runner) The Runner class detects where the data should be read
from.

Read data. (io.DataReader) The source location is passed onto the implementation of the
data reader, which then retrieves and saves the data - depends on implementation. If neces-
sary, data transformations are applied at this step.
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Figure 4.4: General information flow

Figure 4.5: Functional data flow
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Get information. (core.Runner) The Runner class retrieves from the configuration the
information it needs to create the algorithm execution lists.

Create run list. (core.Runner) Runner adds for each algorithm and parameter combina-
tion one execution to the list.

Execute list (core.Runner) The Runner first clones the data and makes it available to the
algorithm to be executed. The data is then anonymized. If the algorithm is executed exter-
nally, transformations might be necessary to format the data such that the system can read it.

Metrics. (metrics.*) After the anonymization is complete, the specified privacy and utility
metrics are computed and stored.

Plot. (core.Runner, GUI) Once all the algorithms have been executed, the RU Maps are
created and shown to the user.

Choose anonymization. (GUI) Based on the presented information, the user can choose
the algorithm which he considers best for this data set. He might also require extra data
post-processing (omitted due to reasons explained above).

Write Out. (io.DataWritter) Finally, the user selects for the anonymized data to be written
to the specified destination.

4.3.2 The implemented data flow

The high-level data flow of the implemented system can be seen in Figure 4.7.

Data I/O. The first obvious difference lies in the fact that the Runner itself is doing the
reading and writing of the anonymized data. There are no DataReader and DataWriter
implementations.

Execute list. The run list behaves like two nested loops. The outer loop selects each algo-
rithm in sequence. The inner loop first creates all parameter permutations for the current
algorithm and then executes, in sequence, the algorithm with each parameter permutation.
This behaviour can further be improved by executing each algorithm, and maybe each pa-
rameter permutation, in parallel.

Within each internal loop, the anonymized data set is first stored to a temporary loca-
tion. This makes it possible to execute external metrics on the data. In our case the only
external metric is GlobalReID.

Choose anonymization Currently, the system only allows the user to see the plot. The user
cannot currently select an algorithm by clicking the plot (non-interactive) nor can he choose
the final anonymization as this would require a GUI (omitted due to time constraints and
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Figure 4.6: Functional to technical mapping

limited added value based on the goals of this thesis). The only way to do that, currently, is
by restarting the program with one algorithm and one set of parameters.
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Figure 4.7: Information flow of implemented system
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Chapter 5

Experiments & Results

In this chapter we present the results of applying the framework we have implemented,
which is described in Section 4.2.3. Several algorithms have been selected for testing:
k-anonymity [26], t-closeness [19], (n,t)-closeness [20] and (n,t)-closeness together with
k-anonymity. These are all widely known algorithms for relational data. We also present
the metrics used to evaluate the algorithms. This evaluation is motivated by the need to
understand the meaning of the information presented to the data publisher and to understand
how different algorithms behave in different scenarios.

We first look at each algorithm individually to understand how it behaves when the
parameters and the quasi-identifiers change. In essence, we analyze the behaviour of the al-
gorithm when more information becomes available. Afterwards, we compare the algorithms
with each other, when more data, and hence more information, is added to the scenario.

In both cases we have used the following four algorithms to anonymize the data set.

1. (Incognito K) An Incognito [17] based implementation of k-anonymity

2. (Incognito T) An Incognito based implementation of t-closeness

3. (Mondrian NT) A Mondrian [18] based implementation of (n,t-closeness)

4. (Mondrian KNT) A Mondrian based implementation of (n,t-closeness) with the k-
anonymity privacy constrain.

Of the four, we have implemented Mondrian NT and Mondrian KNT ourselves. The
Incognito based algorithms have been reused as is from the existing toolbox of University
of Texas at Dallas [23].

From the metrics mentioned in Section 4.2.3, we have measured utility using the nor-
malized classification metric (NormCM), the normalized discernibility metric (NormDM)
and the normalized average equivalence class size (NormAvgECSize). Privacy has been
measured using only the global re-identification risk (Global ReID Risk).

We chose the utility metrics based on our experiments. The three utility metrics men-
tioned above were the only ones that gave interpretable results. For the other metrics it was
hard to correlate the changes in the data to the metric values.
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The privacy metric chosen for the experiments is also used in practice [14]. This moti-
vated us to use it and to evaluate it.

5.1 Experimental Setup

5.1.1 The Data Set

For the experiments we have used the Adult data set1. The dataset is from the UC Irvine
machine learning repository. It consists of data collected from the US census. Records with
missing values have been removed, resulting in a data set consisting of 30162 records in
total. We chose this data set because it is widely used in literature.

Research Question 3C is about understand the change of privacy and utility when data
sets are combined. To simulate the effect of combining the data with external sources, we
experimented with various QID sizes: 4, 7 and 13. The intuition is that having more at-
tributes in the QID set increases the amount of available information. The same is valid
when one combines the data set with an external source, by joining on some common at-
tributes. The result is a bigger data set, with more columns and more information.

5.1.2 The Quasi-Identifiers

Attribute Type Nr Values VGH height
Age Numeric 74 4

Workclass Categorical 8 3
fnlwgt Numeric 20236 3

Education Categorical 16 4
Marital status Categorical 7 3
Occupation Categorical 14 3
Relationship Categorical 6 3

Race Categorical 5 2
Gender Categorical 2 2

Capital-gain Numeric 118 3
Capital-loss Numeric 90 4

Hours per week Numeric 94 3
Native country Categorical 41 5

Salary Categorical 2 1

Table 5.1: Adult data set attribute characteristics.

The experiments have been concluded using three sets of QIDs of the following size: four,
seven and thirteen. We shall represent these as QID4, QID7 and QID13 respectively. The
attributes contained in the data set and their characteristics can be seen in Table 5.1. The
three sets of QIDs are the following:

1http://archive.ics.uci.edu/ml/datasets/Adult
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• {Age, Occupation, Race, Gender}

• {Age, Education, Marital status, Occupation, Race, Gender, Native country}

• All except salary

The original data set also contained an attribute called Education-numeric. This was
however removed since it requires a post-anonymization consistency check with the at-
tribute Education. It is the numerical representation of the education attribute.

The Salary attribute presented in Table 5.1 has been used as the Sensitive Attribute.

5.1.3 The Servers

Due to the long run times, the execution has been manually parallelized on several machines
made available by the TU Delft. These can be seen in Table 5.2. The system is implemented
in Java and makes use of an internal SQLite library for data storage and processing.

# servers RAM(GB) # procs # cores Proc name Proc GHz
3 192 16 32 Intel(R) Xeon(R) CPU E5-2650 2.00
1 144 8 16 Intel(R) Xeon(R) CPU E5620 2.40
1 32 8 8 Intel(R) Xeon(R) CPU E5410 2.33

Table 5.2: Execution servers

Parallelization did improve the execution, time-wise, to a certain extent. However, it
was not parallelization in the true sense, since each execution can currently only run on
a single core. Some medium length executions took around 100 hours to complete. To
overcome this we chose to do 100 random 1% samples of the original data set and use those
values instead of single executions. This means that the runs were executed on 100 random
samples of 301 records each.

5.1.4 Execution

By one execution we mean one run of the framework using one algorithm with one set
of parameter values. Each type of algorithm has been executed using different parameter
values and combinations. We briefly summarize these below:

Mondrian KNT n: 50 to 150 increments of 50; t: 0.1 to 0.3 increments of 0.1; k: 10

Mondrian NT n: 50 to 150 increments of 50; t: 0.1 to 0.3 increments of 0.1

Incognito K k: 5 to 50 increments of 10

Incognito T t: 0.05 to 0.3 increments of 0.05

Where more than one parameter was required, e.g. Mondrian KNT, we used all possi-
ble combinations of the listed parameters, e.g. {n=50,t=0.1}, {n=50,t=0.2}, {n=50,t=0.3},
{n=100,t=0.1}, {n=100,t=0.2}, . . .
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5.2 Discussion

5.2.1 Metric interpretation

Before we can look at the metric plots, we first need to understand what the metrics them-
selves measure. We will be explaining what NormCM, NormDM, NormAvgECSize and
GlobalReIDRisk measure.

NORMCM
The classification metric is a measure of how well a classifier would operate on the data
set. It gives a penalty to each row which can decrease the accuracy of the classifier. This
happens when either a value in an equivalence class (or bin) is not part of the majority or
when the value is suppressed.

NORMDM
The discernibility metric is a measure of how much the records in a data set are distinguish-
able one from another. The optimal result is achieved when no anonymization has taken
place and no grouping exists. This implies that algorithms that aggregate records into bins
decrease discernibility.

NORMAVGECSIZE

The normalized average equivalence class size is a measure of aggregation group size. It
represents the value of the average bin size, normalized to a per record level. Normalization
is useful when comparing different data sets or different data set samples.

NORMCM & NORMDM
Because CM and DM are values that depend on the number of records, we decided to use
their normalized form in our experiments.

5.2.2 Baseline

Being able to interpret the results is very important. Giving meaning to the metric numbers
was hard to achieve. The problem is that we did not have a fixed baseline to compare them
against. To overcome this, we have defined a baseline for the metrics as the value of that
metric when applied to the original data set (ODS). The baseline for the Adult data set and
the used metrics can be seen in Table 5.3.

QID-4 QID-7 QID-13
NormCM 1 1 1
NormDM 38.42 6.95 2.99

NormAvgECSize 9.4 2 1
GlobalReIDRisk 0.054 0.08 0.00003

Table 5.3: Baseline values per QID size
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We observe that the original data set value for NormAvgECSize is 9.4 and 2 when the
QID set sizes are four and seven, respectively. This happens due to duplicates based on only
these four or seven attributes. On average, there are 9.4 identical record sets when the QID
size is four and 2 when the QID size is seven. Using 13 attributes seems to be enough to
create no duplicates.

We also see that the original data set has an initial re-identification risk of 5.4% and 8%
for QID4 and QID7, respectively.

5.2.3 Individual algorithm analysis

Mondrian KNT

NORMCM
In Figures C.1 to C.3 we can see that changing the size of the QID set or changing the
parameters has a limited impact on the CM value. On the Y axis we have the normalized
CM metric w.r.t. the ODS. We can see that the penalty of the anonymized data set can be
reduced down to 80% of the penalty given to the ODS. This is somewhat expected since ag-
gregation based anonymizations tend to remove any outliers or inconsistencies, improving,
theoretically, the accuracy of a classifier.

NORMDM
In the case of the discernibility metric (Figures C.4 to C.6) increasing t does increase utility,
since it relaxes the privacy requirements. When n = 50 we can see that values for t ∈ [2,3]
actually have a smaller penalty per record than the ODS. However, we notice that on this
data set, increasing the QID size from 4 to 7 increases the DM penalty by a factor of 5-6,
while increasing from 4 to 13 by a factor of 10-12. This is consistent with n = 100, n = 150,
but also with the changes in utility seen in the NormAvgECSize metric. The relation be-
tween the increase factors should be quadratic, but since the NormAvgECSize for the base-
line decreases when the QID set size increases, it becomes almost directly proportional.

NORMAVGECSIZE

We observe that for this metric (Figures C.4 to C.6), Mondrian KNT never achieves a value
less than 1. This means that the anonymized data set always has more record duplicates
(w.r.t. the QID attributes) than the ODS. Increasing the value of n has a very big impact
on the average EC size. Bigger values for n imply a stricter privacy requirement, which
results in more records being grouped together. When n has a value equal the total number
of records in the data set, Mondrian KNT becomes Incognito T.

PRIVACY

When looking at privacy, as expected, higher values for t mean that the risk of re-identification
is also higher. But higher values for n decreases the risk, but also the scatter of the metric
values. This can be explained by the fact that as the n value increases, the number of pos-
sible groups that have size greater or equal to n decreases, leading to less options when
partitioning.
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In (n,t)-closeness, the privacy guarantee states that for every EC g there exists a natural
superset G, of size at least n, and that the distance between the distribution of g and that of
G is at most t. The bigger G is, the more g has to anonymized in order to satisfy the distance
requirement.

We observe that in all visualisations (except CM), if we choose a fix value for utility
and then increase the QID size, that the privacy levels drop significantly. Take for example
Figure C.6. We fix the DM penalty at 5 times that of the original. From a) we can see that
this is possible for a re-identification rate of about 1%. From b) the risk increases to 3% and
in c) to 8%.

More QIDs in the set imply that the grouping of values will be courser and will have
a greater impact on utility. This is also known as the “Curse of dimensionality” [2]. So in
order to preserve utility, one has to sacrifice privacy.

Montdrian NT

NORMCM
Analyzing the normalized CM plots w.r.t ODS, Figures C.10 to C.12, we notice, again,
that the value of n has limited impact on the classification metric. As in the case of Mon-
drian KNT, a QID of size 7 and 13 makes it possible to anonymize the data such that the
CM penalty is only 80% of the ODS penalty. However, for QID4, the value for CM can
go down to 20% of that of the ODS. This can be explained by looking at how Mondrian
works. It looks on all possible dimensions to perform a slice of the range and selects the
best slice. Having less dimensions to slice on implies that the focus is greater on the same
dimensions. This results in a finer grained partitioning that is of higher quality, when the
goal is classifier training.

NORMDM
Here we notice that higher QID group size does not necessarily improve privacy, it only
decreases it’s range of variation. As explained above, more options when choosing the
dimension to slice on results in coarser bins. This means that privacy goes up and utility
decreases.

As noted before by Mondrian KNT, almost doubling the QID size results in doubling
the DM penalty.

NORMAVGECSIZE

Because (n,t)-closeness does not have an inferior limit such that of (n,t)-closeness with k-
anonymity, it can slice the data set into very small bins. This is especially true when n is
small. A small n means that the privacy requirement only needs to hold w.r.t a small neigh-
bourhood of records. This explains how it is possible to obtain a normalized average EC
size of up to two times that of the ODS. In the QID13 scenario, this translates to an average
EC size of two.

PRIVACY

On this data set, (n,t)-closeness can give good privacy guarantees, but at high utility costs.
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If one would like to use the data set to train a classifier, very good privacy and utility can
be achieved. If that is not the case, except for some rare situations where the distribution of
the sample allows for both good privacy and good utility (e.g. Figure C.13-c), it would be
very hard to achieve a privacy guarantee of less than 1% for small values for n, without the
highest utility costs.

Incognito T

Through our experiments for t-closeness we achieved three things. First, we have confirmed
the findings in our literature review [22] about t-closeness. It has indeed good privacy for
very bad utility. Second, we show how much the utility is degraded when compared to
the original data set. Third, we observed a limit on QID size for which the algorithm can
produce an anonymized data set without suppressing all the values.

As one can see in Figures C.19 to C.21, there are no plots for QID13. This means that
in our experiments, no reasonable value of t (less than 0.5) could find an anonymization for
QID13. The scenario involves a sample of 301 records and 13 attributes in the QID. We also
tried to increase the random sample to 10% (3016 records) and still the algorithm did not
manage to find a suitable anonymization. This implies that the QID space was too sparse
for the strict privacy requirements of t-closeness.

NORMCM
The CM penalty is from 75% to 100% of that of the ODS. We notice that for QID7, when
the privacy requirement t is stricter (less than 0.15), that we obtain a CM penalty of 20% to
30% of ODS with a good privacy guarantee (less than 0.5% re-identification risk). This is
caused by a more efficient grouping of the attributes when the goal is classifier training.

NORMDM
Where CM shows that the anonymized data is better than the ODS from a classification
point of view, DM shows the opposite when it comes to a more general utility definition. In
literature, a value of t < 0.15 is deemed acceptable [22]. Yet, with this data set, we notice
that higher values for t may achieve the same or slightly worse privacy guarantees, but with
much more utility.

NORMAVGECSIZE

Small QID set sizes produce acceptable ECs. Achieving a privacy guarantee of less than 1%
for QID4 implies an average bin size of 27 (ODS size of 9 times the factor 3 - Figure C.21).
For QID7 we have a size of about 120 for the same privacy guarantee. For QID13 we could
extrapolate to a size of about 500 for the same privacy guarantee. This means that a random
1% sample of size 301 is too small to produce one bin. A 10% sample would only have
room for about six bins. This, combined with the sparsity of the QID domain makes it
impossible to find an anonymization.
PRIVACY

For small values of t (less than 0.2), high privacy guarantees can be achieved of 0.5% to 1%.
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This comes, however, at a high utility cost when the data is not used for classifier training
purposes.

Incognito K anonymity

The k-anonymity algorithm had the same problem as t-closeness. It could not find a suitable
anonymization for QID13 (Figures C.22 to C.24). This relates back to the sparsity of the
QID space. From literature we know that increasing the QID size also increases the sparsity
of the QID space. This is called the curse of dimensionality [2].

NORMCM
For a small QID size (four) we obtain big improvements on the classification penalty. These
vary between 20% and 50% of the ODS penalty. This shows that good aggregations are cre-
ated when few attributes are analyzed. When we increase the number of attributes to 7, the
same pattern of 80% to 100% of ODS emerges, as seen for the previous algorithms.

NORMDM
Again, we see that a QID of size four can actually obtain an on par utility with that of the
ODS, iff one considers a re-identification risk of 4% acceptable.

NORMAVGECSIZE

Opposed to the other algorithms, the values for the normalized average equivalence class
size are quite stable. The normalization occurs by dividing the average bin size by the value
of k. For example, in Figure C.24-a we see that k = 50 gives a factor of about 5.3 for utility
w.r.t ODS. Since 9.4 is the average ODS bin size, this means that the average set size for
k = 50 is approximately 50. Because of how k-anonymity works, we know that the average
bin size will always be at least k.

PRIVACY

From the interviews B.5 we have learned that in practice, in the medical domain, a value
of k = 5 is considered to be a good choice for anonymizing a data set with k-anonymity.
From Figure C.23-a we understand why this is a desired value. The utility is in about 50%
of the cases on par with that of the ODS and only 2 to 2.5 times worse in the rest of the
cases. But looking at the privacy guarantee, we see that the chance for re-identification
varies between 2% and 4%. It comes down to the data publisher to decide what is a good
threshold for the risk. Given that there are 30162 records, a 2% to 4% re-identification
rate translates to one re-identification for every 25 to 50 records. This enforces the need
to actually suppress values, degrading the utility by an unknown factor. An acceptable
identification rate, depending on the dataset, could be between 1 in 500 to 1 in 1000 records
(a 0.2% to 0.1% global re-identification risk, respectively).

From our point of view, k = 5 is not the best choice for anonymization. k should either
be higher or a different algorithm should be used.

The spread of the k = 5 points also confirms the fact that it is really necessary to ana-
lyze the data, since the same algorithm with the same parameter can perform significantly
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different for different data samples.

5.2.4 Comparison of Algorithms

Figure 5.1: Example Comparison

The same data that was used for the plots discussed in the previous section has been merged
in order to be able to compare the algorithms head to head. This means that 100 1% sam-
ples have been used, which gives a good idea of how the algorithm behaves. Normally, the
data publisher would see significantly less points, as the execution of one single pass for
all the algorithms with their parameter variations over the data set. To show an example
we have plotted one run on a random 1% sample for all the algorithms. This can be seen
in Figure 5.1. As previously mentioned, from the three QID set sizes, the Incognito imple-
mentations could only find a valid anonymization for sizes four and seven.

NORMCM
In Figure C.25 we observe that for QID4, Incognito K and Mondrian NT offer the best
utility and second best privacy. Incognito T, as expected, offers the best privacy but at a
high utility cost. In this scenario, the worst case value for utility is on par with that of the
ODS.

For a QID set of size seven it becomes clear that Incognito T is the best choice. Because
Mondrian tries to slice the QID space as uniformly as possible, it does not provide optimal
aggregation of values and incurs a higher classification penalty for it’s two implementations.
k-anonymity is limited by the value of k to the minimum bin size. This makes it possible
for mixed values to be grouped together and incur a higher penalty. Incognito T manages
to achieve a grouping of values into smaller bins and yet preserve privacy.
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In the third scenario (Figure C.25-c) we can see that (n,t)-closeness without k-anonymity
provides, in the majority of configurations, a better anonymization.

NORMDM
In both cases where the QID set size was four and seven, all algorithm anonymizations
have, for a given parameter value, a global re-identification rate of 0.7% for approximately
the same utility value. We can only distinguish them when the QID set size is 13. First, the
Incognito implementations could not find any anonymization. Second, the Mondrian based
algorithms managed to find anonymizations with a better utility level than when the QID set
size was equal to four. KNT managed a factor of 5 w.r.t to the ODS while NT a factor of 1.3
to 2. The reason why NT outperforms KNT is that the former is not limited by a minimum
EC size of k.

NORMAVGECSIZE

We observe in Figure C.27 that Incognito T offers the best anonymization possible for
QID4. In QID7, Incognito T is on par with Mondrian KNT. Incognito T requires a taxon-
omy tree for every attribute in order to work. Having a better result than Mondrian KNT
means that the user defined taxonomy tree for QID4 is better than the Mondrian self gener-
ated partitioning. In QID7 we see that Mondrian KNT is able to find a similar partitioning
to that of Incognito T. In the last case, that of QID13, Mondrian NT outperforms Mon-
drian KNT again. The reason is the same as for the DM metric: there is no lower bound on
the EC size for Mondrian NT.

PRIVACY

If one would need to choose, then Incognito T would be the best choice for QID4 and
equally good as the Mondrian implementations for QID7. It seems that in this case, the
strategy for the balanced taxonomy trees for the Incognito algorithm performs better than
the median partitioning strategy for the Mondrian algorithms. In the case of QID13 how-
ever, the only distinction that can be made between Mondrian NT and Mondrian KNT will
be based on the utility offered, since both algorithms achieve a global re-identification rate
of less than 0.1%.

GENERAL REMARKS

We also noted, thought not specifically tested for, that Mondrian NT and Mondrian KNT
have a run-time that is 6 to 10 times faster than that of Incognito K and Incognito T, with
Mondrian KNT being the fastest. We believe that Mondrian is generally faster than Incog-
nito implementations since it stops when no more cuts can be performed along any dimen-
sion. On the other hand, Incognito could, in the worst case scenario, continue until it has
exhausted all the lattice search tree nodes. Mondrian KNT is also faster than Mondrian NT
since the k-anonymity requirement forces the algorithm to stop earlier with the partitioning.
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Chapter 6

Discussion and Future Work

In this chapter we discuss the answers to our research questions, significant findings and the
directions for future work.

6.1 Conclusions

We now present how our investigations and experiments give an answer to the proposed
research questions mentioned below.

RQ 1 Why is privacy preserving data publishing necessary when dealing with Open
Data?

From our literature survey [22] we have identified two types of data encountered when
publishing: sensitive and non-sensitive data. Sensitive data is information that might result
in loss of an advantage or level of security if disclosed to others. It may affect the privacy
or welfare of an individual, trade secrets of a business or even the security of a nation. It is
necessary for such data to be protected when a data set is released.

To the end of protecting sensitive data when publishing, guidelines1 and laws2 have
been created. These are, however, not enough. From interviews, presented in Appendix B,
we have learned that these rules only set boundaries meant to cover all possible scenarios.
The regulations lack the ability of precisely defining what should and what should not be
published.

This means that a special process in required when dealing with sensitive data, a process
which requires expert level knowledge of the possible problems that can arise.

RQ 2 How are decisions taken when publishing sensitive data as Open Data?

In The Netherlands, publishing data is done using the “open tenzij” [24](tr. open unless)
rule. If the data set contains sensitive data, as defined by law or the company regulations,
then this data is not published. We identify two advantages to this approach:

1Guidelines for The Netherlands: https://data.overheid.nl/handreiking
2In The Netherlands: Wet Openbaarheid van Bestuur
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• unpublished data presents no risks.

• not many experts are required - it is also the fact that there is a lack of experts who
can actually clean and anonymize the data before publishing.

This guarantees that the sensitive data is safe through secrecy. The biggest disadvantage
of this method is that unpublished data offers no value to anyone but the institution who
owns the data.

The alternative requires the data to be anonymized before release. This publishing pro-
cess is based on a combination of rules, experience and intuition [22]. The challenge can
be summarized as lack of knowledge. There are not enough specialists who can sanitize
the data. Most institutions do not have such specialists. The people who have the expertise
are already busy with such tasks. Forwarding the sanitization process to them would only
create a bottleneck.

RQ 3 How to anonymize the data?

A Which algorithms should be considered as candidates for anonymization for which
type of data, with respect to applicability in practice?

B How to interpret the measured values for privacy and utility and what guarantees do
these values provide?

C How does privacy / utility change when the data set is combined with external sources?

RQ 3A

To answer the first sub-question, Which algorithms should be considered as candidates for
anonymization for which type of data, with respect to applicability in practice?, we first have
a look at our literature survey [22]. There we have learned that the best candidates for our
data category type, namely relational data, are the following five algorithms: k-anonymity,
`-diversity, t-closeness, (n,t)-closeness and (n,t)-closeness with k-anonymity.

From our experiments we have concluded that there is no best algorithm. As expected,
it depends on the data set what the best anonymization is.

From our observations for the given data set, we conclude that Mondrian NT and Incog-
nito K have extremely good results for the CM metric in the case of QID4, while Incog-
nito T has extremely good results for the QID7 scenario.

RQ 3B

The second research sub-question, How to interpret the measured values for privacy and
utility and what guarantees do these values provide?, is concerned with the metrics. We
first tried to give the values of the metrics - classification metric (CM), discernibility metric
(DM) and the normalized average equivalence class size (NormAvgECSize) - a tangible
meaning. This was only possible for NormAvgECSize since it measures the average bin
size. The other required an extra step.
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In our second attempt we normalized the CM and DM metrics, NormCM and NormDM,
respectively. This gave data set size independent values. Though an abstraction to the initial
concept, it was still not possible to correlate it to the changes in the data.

In order to make the values meaningful we used the original data set (ODS) as a baseline
for the metrics. The plots report the value of the utility metric applied to the anonymized
data set, divided by the value of the same utility metric applied to the ODS. This factor can
have any positive value. A value less than 1 implies an improvement over the ODS, while a
value greater than 1 a decrease in utility. For example, in some cases we have a NormCM
value for some anonymization that is 0.2 times that of the value for the ODS. This means
that a classifier would have an increased accuracy using the anonymized data set, than when
it would be using the ODS.

NormDM translates to how different the records are after the anonymization than before.
A factor of one to two w.r.t. ODS would mean that the anonymization preserves, more or
less, the record diversity and hence their utility.

The used privacy metric represents the global risk that a record in the data set might be
re-identified. In our case, a re-identification rate of 1% translates to 301 records that could
be at risk, given that the data set has 30162 records.

Instead of trying to find meaning in the utility metric alone, we have also expressed
the meaning of the metric in terms of what happens when the anonymized data set is used
instead of the original one.

RQ 3C

We observed a rather surprising result for our third sub-question, How does privacy / utility
change when the data set is combined with external sources?. We expected that one can
find a balance between sacrificing utility and sacrificing privacy, without actually achieving
good values for both at the same time. From the experiments, however, it seems this is
possible, at least to the extent this can be expressed by the metrics.

The metrics used follow a less is better value ordering. This means that the best
anonymizations have points plotted close to the origin point (0,0). As one can see in the
plots in Appendix C, there are many points which have this property.

6.1.1 Other experimental findings

From the interviews, Appendix B.5, we have learned that in practice a value for k = 5 for
Incognito K is considered good enough. They further eliminate any remaining risks by
means of suppression. In our case, from Figure C.23 we can see that utility varies, but
always has a bad privacy guarantee. We consider 5-anonymity as a risky choice and would
recommend either a much higher value for k (e.g. > 10 for QID4 or > 50 for QID7), but
which would decrease utility significantly, or use a different algorithm.

What is a good value for the privacy metric? From [14] we conclude that it is data set
specific. It is up to the data publisher to decide what is an acceptable risk. This can vary,
for example, from 1 re-identification every 100 records to 1 re-identification every 1000
records. This is equivalent to a risk between 1% and 0.1%, respectively.
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6.2 Future Work

6.2.1 Extending the framework

There are many directions for future work. The first step should be extending the current
proposed framework. In our case, we have developed a solution for dealing with relation
data. But many other data types exist including, and not limited to the following: transac-
tional, location, social, graph.

The current framework is only a prototype. It lacks many modules including: a graph-
ical user interface (GUI), a data pre- and post-anonymization processing capabilities, more
modules for data I/O (reading and writing to and from a database or to and from other
sources). It also requires new algorithm implementations for other data types (transactional,
location etc), but also for relational data. In the future, we would like to add `-diversity to
the framework and compare it to the existing algorithms.

6.2.2 Correlation between CM and classifier accuracy

We are also interested in finding whether a correlation exists or can be automatically deter-
mined (in case it varies on a per data set basis) between classifier accuracy and the value
given by NormCM plot w.r.t. to ODS. We are interested, for example, to understand how a
0.8 value given by NormCM w.r.t ODS translates to classifier accuracy percentage.

6.2.3 Further automate the process

There are still many manual steps in the process presented in Chapter 3. We would like
to further investigate other tools which can be used to further automate this process. As
a starting point we would consider the following systems. Elliot et al. [11] present the
Key Variable Mapping System which can be used to identify the QID attributes in a data
set. Furthermore, Elliot and Dale [10] present a system which can be used for analysing
disclosure scenarios - the intruder’s perspective.

6.2.4 More on Sensitive Data

We consider that sensitive data is not researched thorough enough. We would like to investi-
gate this direction and identify ways in which sensitive data can be identified, how sensitive
data can be quantified and how sensitive data can be ranked - why is this data more sensitive
than the other. Another interesting question would be to investigate which combinations of
individually harmless data (i.e. neighbourhood welfare, problems on the street that need
repair, placement of trash bins etc.) can lead to the creation of sensitive data. See “Makkie
Klauwe” example in Section 1.1.
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Acronyms

EC Equivalence Class

EMD Earth Mover Distance

ODS Original Data Set

PPDP Privacy Preserving Data Publishing

QID Quasi-IDentifier

RQ Research Question
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Appendix A

Terminology and Definitions

In this section we define terminology necessary to understanding the contents of this thesis.
We start by defining what privacy protection is.

Privacy protection Access to the published data should not enable the attacker to learn
anything extra about any target victim compared to no access to the database, given
that the attacker has only a limited amount of background knowledge.

If privacy protection fails, then a disclosure takes place. There are several types of
disclosure possible.

Disclosure types Disclosure as a consequence of a linkage attack and as a consequence of
a probabilistic attack.

Linkage attack types: Identity disclosure or re-identification occurs when an individ-
ual’s or entity’s record is identified based on matching attributes. Attribute disclosure
occurs when only the sensitive attributes belonging to an individual or entity are re-
identified. For example, if everyone in a group has the same sensitive attribute. Table
linkage occurs when an individual or entity is re-identified as being part of or missing
from the data set.

Probabilistic attack types: also known as inferential disclosure, this implies that after
the data set has been published, an intruder can now infer some sensitive value of an
individual or entity with a higher probability than otherwise possible.

Below we present the type of possible attributes in a data set. These are identifiers,
quasi-identifiers, sensitive attributes and non-sensitive attributes.

Identifiers These are attributes, or a set there-of, that fully and non-ambiguously identify a
person (also referred to as “victim”) to some pieces of sensitive information in a data
set. Examples include SSN, passport number and name.

Quasi-identifiers(QID) Represent a set of attributes used for linking with external infor-
mation in order to uniquely identify individuals in a given anonymized table. These
include attributes which at first glance may seem harmless - postcode, gender, age.
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Sensitive attributes (S) These attributes contain values that are considered to be sensitive
to the victim. Examples of such attributes are salary and disease.

Non-sensitive attributes (NS) These attributes are composed of column in the table that
do not fall under any of the previously mentioned categories.

The order is which the attributes are determined to belong to a certain category is the
same as above: first identifiers, then QIDs, then sensitive attributes. The rest are then
considered non-sensitive attributes. One might ask that, since these attributes are sensitive,
why publish them at all. The problem lies in the fact that these values are most of the time
the reason why such a data set is published. Thus, the solution must rely on hindering an
attacker’s ability to link an individual to sensitive information.

All the anonymization algorithms used in this thesis rely on data generalisation to per-
form the anonymization. The attributes that are generalized are the QIDs. Through gen-
eralization, groups of records are created that have the same QID values. Such a group is
referred to as an equivalence class (EC).

Throughout this thesis we will be referring to the utility and privacy of data. We define
these as follows.

Data utility refers to the level of actual or perceived usefulness of a data set, from the point
of view of the user of that data.

Data privacy refers to how much guarantee can a data set offer w.r.t. not leaking any
private or sensitive information about an individual or entity. In other words, what is
the offered level of privacy protection.
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Appendix B

Interview transcripts

This chapter summarizes the discussions carried out with different people at public institu-
tions in the Netherlands.

B.1 Rijkswaterstaat (RWS)

This interview has been carried out with Aart van Sloten at RWS. Rijkswaterstaat is the
institution that handles the practical execution of public works and water management. They
have a lot of data in their databases which is either sensitive or non-sensitive. Very few
datasets are known to be somewhere in the middle.

The approach they use to publish data is very simple. If there is the slightest proof
that a data set contains some sensitive data, then do not publish (e.g. the data contains ad-
dresses of individuals). Examples of types of data that do not get publish include company
and competition data, country security, information about prisons, information on Defense,
full building layouts, technical details of tunnels, environment information (to prevent rare
specie hunting). What they usually publish and are not worried about is general geograph-
ical data (e.g. roads / waterways). One of the gray area data sets is about the NAP bolts.
These are copper bolts throughout the Netherlands which have a known (pre-measured) al-
titude. They are not sure whether to release the exact positions of these bolts due to several
simple reasons: copper can be stolen for money, some of the bolt lie on private properties
and are recorded as such (address, names).

Due to the nature of the institution, they do not have a lot of data about people. When
information needs to be published about such data sets (e.g. information on road accidents)
they ask CBS to correlate the data with other statistics (e.g. how many people actually went
to the hospital) and release general statistics about the incident (region level, big city level).

From the discussion we have noticed that RWS does not have a complex process for
reasoning about privacy. As such, there is no process to anonymize the data. Privacy is
protected through secrecy - non-disclosure. A framework could help in setting up a process
which deals with the anonymization of the data locally, instead of delegating the task to
third parties.
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B.2 Kadaster

At Kadaster we have interviewed Dick Eertink. Kadaster is the institution which manages
parcel information within the Netherlands. Each parcel has its own number, location, size,
type (building space / agricultural space). To this there are transaction documents linked
which define the last sell event. Who was the buyer, who was the seller, for what amount
was it sold and what mortgage has been used. From these documents one can retrieve the
name, address, postal code and city of the buyer/seller. The BSN is also stored, but that is
not released to the public.

The access to the data is allowed through the online interface. One can request infor-
mation about one parcel at a time. The only limitations in place are the licence agreement
(use the information just for yourself) and the fact that it costs 3.50 euro per inquiry. This
for example does not protect an individual if an attacker acts in a targeted manner.

They also give big datasets for different purposes, mainly internally to the government.
There are strict rules on usage (such as WBP - dutch privacy law) and they try to verify that
people respect these rules, but in practice it’s not that easy.

There are three types of data: parcel information, transaction information and owner/former
owner information. Access is given only to the newest information (no history given such
as past owners). Yet, with some effort, most of the history can be reconstructed. The CBS
(college bescherming persoonsgegevens) is currently debating on how to handle these cate-
gories. The desire is to eventually remove the costs of inquiry and make this Open Data.

Other information they manage includes:

• national topography

• address and building/land type for that address (mostly already public)

• act as an intermediary for information about cables and underground pipes

There is currently no process in place to anonymize the data and deciding on how to
publish sensitive data sets is not easy. The laws are not yet very specific w.r.t. types of data
they handle. They expect this year (2013) new versions for the Dutch and European privacy
laws.

B.3 Statistics Netherlands (CBS)

At CBS we had an interview with Peter-Paul de Wolf and Anco Hundepool. The goal of
CBS is to publish relevant and trustworthy statistics. They gather a lot of information from
individuals and companies and thus must handle it with great care. Most of the time they
deal with microdata of people and sometimes of companies. They said protecting company
microdata is not possible, in general, since companies are too easy to identify in the crowd.

They took part in the development of several tools in collaboration with other statistical
departments in Europe. What they mostly use for anonymizing data here in the Nether-
lands are the generalization and suppression techniques (present in the µ-argus tool). Other
methods include PRAM (post randomization method), which they tried a few times. The
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problem with this method is the sanitized data. It is very hard to use and one needs all sorts
of corrections to any statistical operation performed, in order to compensate for PRAM.

Their microdata can be released in three formats where data is aggregated into bins. k
represents the minimum size of the bins.

• public use files - accessible to all, the rules for this include having no less than 200000
respondents per region, and a k parameter of 10000.

• under contract data - given for research purpose only - somewhat less anonymized (k
is in the range of 100 to 1000)

• data that stays on CBS - again, for research only - even less anonymized if at all.

The third type is very interesting. Researchers either come on-site and use the dataset
based on the tools available on the premises (e.g. SPSS) or they access the data remotely,
but only get to see what the tool outputs on the screen. There is no dataset transferred. This
is becoming more and more popular and the request of anonymized datasets is becoming
less popular. To manage this, a strict screening process has been put in place. The results
are inspected and one must be able to show the steps performed to achieve those results.
Transparency is key.

Upon requesting some data sets, it was suggested that it would be easier to work with
synthetic data. The US has a reputation of generating quality synthetic data. It would be
easier since requesting data is too complex for my goal - requests need to be filed, then
approved, and at most, Type 2 data would be provided, which is not very useful for our
research goal.

The Anonymization Process

CBS uses the notion of key attributes (QIDs) which can be used to re-identify individuals.
Three categories of attributes can be distinguished: identifiable, more identifiable, the most
identifiable. Based on these three categories, they try to make combinations (2-3 up to
10-20 in mu-argus) that meet a certain non-uniqueness criterion (e.g. no less than 100 per
combination). It falls onto them to decide which attributes fall under which category. There
are some standard attributes and others are simply agreed upon within CBS - experience/gut
feeling plays a big role here.

Risk decision making is based on combination frequency. Usually, the data is based
on a representative population sample. Sometimes combining this with information from
GBA or some other administrative institution (not always possible) is required to be able to
reason about the sample. If the sample is not big enough, they use different techniques to
estimate the population. Once the population is known, it can be checked whether a certain
combination is frequent or rare.

During the generalisation process, choosing which column to generalize first is done
based on experience - their statistics department knows which columns are more important,
in general, to researchers. Even so, researchers are never happy with the data they get
(the data is always anonymized towards certain purposes). To prevent privacy breaches by
sequential release, they only anonymize a dataset once.
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Data types, thresholds and measurements

The data does not have to be numerical, since their program only looks at frequency of
combinations. Threshold value, k is usually 100. It has been determined based on experi-
mentation with the data. 10 is too little, 1000 is too much for the second type data.

When reasoning about utility, they do this more on feeling than on measurements. It is
hard to measure utility if you do not know the purpose of the data. One possible idea would
be to generate several utility measurements, aimed at different tasks ( data mining, query
answering etc).

One topic they have interest in is if there exists a better way to determine record/table
risk, other than combination frequency?

B.4 Amsterdam Economic Board (AEB)

At the Amsterdam Economic Board we had an interview with Ron van der Lans en Jasper
Soetendal. AEB tries to improve economic growth by bringing together people from differ-
ent institutions / organisations (CEO’s, managers, scientists, researchers etc).

From the discussion it was clear that the most person related data that they have is in
the Dienst Basisinformatie (DBI - basic information service). As we have observed from
previous interviews, they rely on an external party, this time O&S (a research and statistics
department of Amsterdam), to publish their data by means of aggregation. The aggregation
levels differ from regions to city regions to neighborhood combinations. Other rules that
apply are for example that there must be at least 3 to 5 people in every aggregation. The
only publicly available data sets are the ones about electricity and gas. The data in this case
is aggregated on building level.

They are in the process of opening up their data, but most of the time, one can simply
access this data by requesting it at the local town hall.

In determining what data has privacy issues, they rely on common sense, experience and
whether or not the data is about people. Usually, the data that AEB has is not so sensitive
(e.g. trashbins, lamp posts etc). There are currently about 160 datasets published1. In
the future, they will probably have more than thousands of datasets that will be published.
Some examples for which some security has been taken is data on fire alarms - the street
and approximate geo-coordinate has been released. They are also looking into how data on
public works should be released. It contains information (phone number, address and other
information) of the person in charge of the works.

B.5 IBM Ireland

Aris Gkoulalas-Divanis is one of IBM’s researchers that are currently working on privacy.
Other topics covered by his research include Dublinked and mobility data. Currently, he
is doing a postdoc on medical data (anonymizing medical data). For Dublinked, they try
improve on how to decide on the vulnerability of a data set. Currently, this is done based on

1amsterdamopendata.nl
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IBM Ireland

experience. They are manually inspecting data and the only automated tasks are generating
histograms for attributes and identifying unique combinations (e.g. if {sex=male,age=55}
is unique). On a macro level, he is researching ”knowledge hiding”, which is essence is
preventing people to understand patterns in data by reducing frequency of the patterns.

He has been experimenting with different kinds of data: relational, transactional, se-
quential data, each requiring a different approach to protect.

Regarding Open Data, it only makes the problem more complex. With the opening of
all the new data sets, the data could be used in unforeseen ways (combination with other
data sets).

They looked at the The Health Insurance Portability and Accountability Act (HIPAA)
and other similar regulations, but they only provides minimum requirements; it is not
enough to actually protect the data.

Talking about anonymization techniques, we have learned that an efficient anonymiza-
tion technique will only lead to less utility since it will cut corners on utility to finish faster;
the focus of such algorithms is on privacy. A good anonymization algorithm seems to be
Mondrian (does k-anonymity) by recursively partitioning the space. It achieves a good bal-
ance between privacy and utility.

As far as run time goes, he noted that slower algorithms take hours. From his experience,
a k value of 5 is enough for medical data. Most approaches can be parallelized which
reduces the overall computation time.

Anonymity levels - how they decide on parameters and data sensitivity:

• measure re-identification risk by studying which elements are unique in the dataset

• identify outliers

• reason based on this how sensitive the data is

Three types of utility measures that they use:

• IL (information loss): each generalisation increases the IL (general measure)

• based on workload (for which goal is the data anonymized): provides more utility for
specific tasks

• average aggregation query - what is the error on these queries (general measure)

Selecting the QID is done based on type of data. This reflects the need for prior experi-
ence. In the case of medical data, selecting a QID is relatively easy because the data and its
sensitivity is well defined. In other areas this is more difficult.

For visualizing the trade-off between risk and utility, R-U confidentiality maps can be
used. The metrics to be used to measure risk and utility vary, depending on the data type
and publication goal. In the case of Mondrian, one measure for risk can be for example 1/k
(most risky individual).

There are also two IBM products which handle data sanitization.
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B. INTERVIEW TRANSCRIPTS

• Infosphere Optim: implements masking approaches to protect sensitive data. It uses
auxiliary data dictionaries (for example to replace names). In essence, it generates a
new data set. Data masking is not the same as anonymization.

• Infosphere Guardium works with reduction. It automatically identifies data, identifies
sensitive words (patient names) and removes them. This may turnout to decrease
utility too much.
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Appendix C

Experiment plots

In this chapter one can find most experiment plots. We placed them here to accommodate
for the large number of figures.

• Mondrian KNT figs. C.1 to C.9

• Mondrian NT figs. C.10 to C.18

• Incognito T figs. C.19 to C.21

• Incognito K figs. C.22 to C.24

The comparisons between algorithms are structured based on the metric used:

• NormCM - fig. C.25

• NormDM - fig. C.26

• NormAvgECSize - fig. C.27
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.1: Mondrian KNT: normalized CM (n=50)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.2: Mondrian KNT: normalized CM (n=100)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.3: Mondrian KNT: normalized CM (n=150)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.4: Mondrian KNT: normalized DM (n=50)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.5: Mondrian KNT: normalized DM (n=100)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.6: Mondrian KNT: normalized DM (n=150)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.7: Mondrian KNT: normalized avg. EC size (n=50)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.8: Mondrian KNT: normalized avg. EC size (n=100)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.9: Mondrian KNT: normalized avg. EC size (n=150)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.10: Mondrian NT: normalized CM (n=50)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.11: Mondrian NT: normalized CM (n=100)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.12: Mondrian NT: normalized CM (n=150)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.13: Mondrian NT: normalized DM (n=50)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.14: Mondrian NT: normalized DM (n=100)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.15: Mondrian NT: normalized DM (n=150)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.16: Mondrian NT: normalized avg. EC size (n=50)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.17: Mondrian NT: normalized avg. EC size (n=100)
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.18: Mondrian NT: normalized avg. EC size (n=150)
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

Figure C.19: Incognito T: normalized CM
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(a) QID-4

(b) QID-7

Figure C.20: Incognito T: normalized DM
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

Figure C.21: Incognito T: normalized avg. EC size
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(a) QID-4

(b) QID-7

Figure C.22: Incognito K: normalized CM
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

Figure C.23: Incognito K: normalized DM
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(a) QID-4

(b) QID-7

Figure C.24: Incognito K: normalized avg. EC size
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.25: Normalized CM comparison
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(a) QID-4

(b) QID-7

(c) QID-13

Figure C.26: Normalized DM comparison
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C. EXPERIMENT PLOTS

(a) QID-4

(b) QID-7

(c) QID-13

Figure C.27: Normalized Avg. EC Size comparison
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