<]
TUDelft

Delft University of Technology

Coding Malware in Fancy Programming Languages for Fun and Profit

Apostolopoulos, Theodoros; Koutsokostas, Vasilios; Totosis, Nikolaos; Patsakis, Constantinos;
Smaragdakis, Georgios

DOI
10.1145/3714393.3726506

Licence
CCBY

Publication date
2025

Document Version
Final published version

Published in
CODASPY 2025 - Proceedings of the 15th ACM Conference on Data and Application Security and Privacy

Citation (APA)

Apostolopoulos, T., Koutsokostas, V., Totosis, N., Patsakis, C., & Smaragdakis, G. (2025). Coding Malware
in Fancy Programming Languages for Fun and Profit. In CODASPY 2025 - Proceedings of the 15th ACM
Conference on Data and Application Security and Privacy (pp. 18-29). (CODASPY '25). ACM.
https://doi.org/10.1145/3714393.3726506

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3714393.3726506
https://doi.org/10.1145/3714393.3726506

Check for
Updates

Coding Malware in Fancy Programming Languages
for Fun and Profit

Theodoros Apostolopoulos
University of Piraeus
Piraeus, Greece

Constantinos Patsakis
University of Piraeus & Athena
Research Center
Piraeus, Greece

Abstract

The continuous increase in malware samples, both in sophistica-
tion and number, presents many challenges for organizations and
analysts, who must cope with thousands of new heterogeneous
samples daily. This requires robust methods to quickly determine
whether a file is malicious. Due to its speed and efficiency, static
analysis is the first line of defense.

In this work, we illustrate how the practical state-of-the-art
methods used by antivirus solutions may fail to detect evident
malware traces. The reason is that they highly depend on very
strict signatures where minor deviations prevent them from de-
tecting shellcodes that otherwise would immediately be flagged
as malicious. Thus, our findings illustrate that malware authors
may drastically decrease the detections by converting the code base
to less-used programming languages. To this end, we study the
features that such programming languages introduce in executa-
bles and the practical issues that arise for practitioners to detect
malicious activity.

CCS Concepts

« Security and privacy — Malware and its mitigation; - Soft-
ware and its engineering — Compilers; General program-
ming languages.

Keywords

Malware, Evasion, Programming languages, Compilers

ACM Reference Format:

Theodoros Apostolopoulos, Vasilios Koutsokostas, Nikolaos Totosis, Con-
stantinos Patsakis, and Georgios Smaragdakis. 2025. Coding Malware in
Fancy Programming Languages for Fun and Profit. In Proceedings of the
Fifteenth ACM Conference on Data and Application Security and Privacy
(CODASPY °25), June 4-6, 2025, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3714393.3726506

This work is licensed under a Creative Commons Attribution 4.0 International License.
CODASPY ’25, Pittsburgh, PA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1476-4/2025/06

https://doi.org/10.1145/3714393.3726506

Vasilios Koutsokostas
University of Piraeus
Piraeus, Greece

18

Nikolaos Totosis
University of Piraeus
Piraeus, Greece

Georgios Smaragdakis
Delft University of Technology
Delft, The Netherlands

1 Introduction

In the past decade, malware has undergone significant changes.
The main drivers of these changes can be attributed to the vast digi-
tization of products and services and the development of a payment
system that allows anonymous transactions to bypass the protec-
tions of the traditional banking system. The former has boosted the
number of possible victims and the potential impact of malware.
Moreover, anonymous payment methods enable a wide array of
illicit transactions to be performed, which, in the case of malware,
is the apparent case of ransomware. Both the US Cybersecurity and
Infrastructure Security Agency (CISA) [46, 47] and the European
Union Agency for Cybersecurity (ENISA) [14] have recognized
malware as the top cyber threat. Indeed, malware attacks impact
our everyday lives by harvesting sensitive information, crippling
critical services, and causing significant damage to individuals and
corporations [46]. This has placed malware in a pivotal role in
the crime ecosystem and created an individual ecosystem with
independent roles operating in a business model called Malware-
as-a-Service [36].

The security industry’s response to the abovementioned threats
is collecting and analyzing malware samples. At a rate of around
280,000 malware samples per day in 2024 [7], which is more or less
similar to previous years, static analysis remains the most effective
and profound remedy to detect malicious files quickly. In this arms
race between malicious actors and defenders, the development of
malware has evolved into an underground industry to bypass secu-
rity controls by employing malware authors and monetizing the
infected hosts. Of course, bypassing static analysis does not grant
them a foothold to the targeted host. Nevertheless, it significantly
raises their chances of achieving their goal, as they often need to by-
pass behavioral checks. Although endpoint detection and response
systems usually apply such checks, and vendors often portray them
as silver bullets, there are several ways to bypass them [17]. In this
work, we limit our scope to static analysis.

Even though malware written in C continues to be the most
prevalent (see our analysis in Section 3), malware operators, primar-
ily known threat groups such as APT29 [28], increasingly include
non-typical malware programming languages in their arsenal. For
instance, APT29 recently used Python in their Masepie malware
against Ukraine [9], while in their Zebrocy malware, they used a
mixture of Delphi, Python, C#, and Go [42]. Likewise, Akira ran-
somware shifted from C++ to Rust [34], BlackByte ransomware

https://doi.org/10.1145/3714393.3726506
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3714393.3726506
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3714393.3726506&domain=pdf&date_stamp=2025-06-04

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

shifted from C# to Go [48], and Hive was ported to Rust [33]. Accord-
ing to the reports, the above changes exhibited increased resistance
to reverse engineering and a low detection rate or misclassification.

On other occasions, C-language malware families are not recre-
ated from scratch. Instead, malware authors write loaders, droppers,
and wrappers in "exotic" languages. This provides them with several
advantages, e.g., bypassing signature-based detection, so they can
effectively place their payloads in harder-to-detect shells that are
newly built. Thus, attackers continue to use the same initial pene-
tration vector and a significant portion of their methods, suggesting
that threat actors prefer to transfer the original malware code to
different languages instead of modifying their tactics, techniques,
and procedures (TTPs) to avoid detection. This approach allows
them to maintain the effectiveness of their attacks while remaining
under the radar of security systems. Since these languages may be
less widely recognized or understood, they add an extra layer of
obfuscation to malware, making it harder to detect and analyze.
Furthermore, security analysts have reported increased difficulty in
reverse engineering such malware samples due to reprogramming
efforts [32]. Thus, combining different languages and obfuscation
techniques complicates dissecting the malware’s structure, func-
tionality, and intent.

Our work explores the problem of detecting malware written in
uncommon languages using a data-driven approach. Rather than
merely reporting and examining this trend, we performed a targeted
experiment by writing malicious samples in different programming
languages and compilers and drilling down to the distinctive char-
acteristics. This analysis practically shows the unique features that
adversaries gain and highlights the emerging issues for malware
detection and analysis.

The above leads to the formulation of some interesting research
questions that have not been systematically studied in the academic
literature, and we try to answer them in this work:

RQ1: How does the programming language and compiler choice
impact the malware detection rate?

RQ2: What is the root cause of this disparity?

RQ3: What are the benefits of an attacker shifting the codebase to
less common pairs of programming language and compiler
beyond the detection rate by static analysis?

The remainder of this article is structured as follows. In the
following section, we provide an overview of the related work.
Next, we detail our motivation, formalize our research questions,
and define our methodology. Then, in Section 4, we present our
experiments and report our findings. The latter led us to examine
the intrinsic differences when reverse engineering a binary in a
non-standard programming language. We discuss our findings in
Section 5, and finally, the work concludes, summarizing our findings
and contributions and proposing ideas for future research.

2 Related work

Previous but sparse research has demonstrated how the runtime
mechanics of programming languages or compiler characteristics
have been exploited to evade static analysis and hinder reverse
engineering. For example, Wang et al. [51] introduced the concept
of translingual obfuscation, which leverages the unique features
of logic programming languages like Prolog to obscure both data

19

Theodoros Apostolopoulos, Vasilios Koutsokostas, Nikolaos Totosis, Constantinos Patsakis, and Georgios Smaragdakis

layout and control flow of C programs, complicating reverse en-
gineering efforts. Their tool, BABEL, translates C functions into
Prolog predicates, leveraging Prolog’s unification and backtracking
to create obfuscation layers resistant to static and dynamic analysis.
In [24], binary obfuscation has been achieved using Continuation-
Passing Style (CPS) transformation, which shares similar ideas with
the intermediate code produced by functional language compilers
such as Haskell. CPS transformation converts control flow into
continuations, which severely fragment control flow graphs (CFGs),
making static analysis and reverse engineering significantly more
complex. Similarly, Lambda Obfuscation proposed by Lan et al. [21]
uses lambda calculus to obfuscate program control flow and conceal
sensitive branch conditions. Replacing conditional instructions with
lambda expressions prevents adversaries from leveraging symbolic
execution tools to recover a program’s internal logic, hindering
reverse engineering efforts. In a similar train of thought, Wang et
al. [52] try to obfuscate the program execution flow by simulating
Turing machines under branch conditions. Pawlowski et al. [38]
obfuscate the control flow by making the execution probabilistic
so that the execution traces differ per execution, even on the same
input, confusing this way the analyst.

Romano et al. [40] partially translated parts of JavaScript to Web-
Assembly to make their malware evasive. Koutsokostas and Pat-
sakis [18] introduced another evasion method focusing on Python
malware packaged using PyInstaller. They illustrated how AV sys-
tems inherently struggle to detect Python bytecode, allowing mal-
ware authors to evade static analysis by exploiting the packaging
noise PyInstaller adds to executables. In another study [8], Casolare
et al. explored malware models that exploit the dynamic features of
languages like Java. By leveraging Java’s dynamic compilation, re-
flection, and class loading mechanisms, they managed to escape de-
vice antimalware software and signature detectors. Finally, in [39],
a comparative analysis of real-world malware written in C and Rust
is presented, and a dedicated framework that can easily analyze
Rust malware is proposed, stressing the lack of academic research
on Rust malware.

For years, ransomware groups have been switching to newer,
unconventional languages to make reverse engineering and detec-
tion more difficult. Moreover, various threat actors have used this
approach, employing a wide range of programming languages and
techniques to obfuscate their malicious code. In [26], Visual Basic
6 binaries were characterized as the "most hated binaries" among
security researchers due to the complexity of reverse engineering
the code to analyze malware as the tools to dissect such binaries
were scarce at that time. Visual Basic 6, despite being an older lan-
guage, introduced unique challenges in dissecting the malware’s
structure and functionality, hindering the efforts of researchers to
understand and mitigate threats. The Flame malware, discovered
in 2012, was dubbed "the most complex malware ever found" [44] at
that time. It used the Lua scripting language, which was relatively
uncommon in malware at that time. Incorporating Lua added a layer
of obfuscation, making the malware more challenging to analyze
and understand. The Duqu malware [10], also known as Stuxnet
2.0, was written primarily in C++. However, the unique assembly
patterns observed in the compiled code initially led researchers

Coding Malware in Fancy Programming Languages for Fun and Profit

to believe that it was written in an unknown high-level object-
oriented programming language. After seeking help from the com-
munity [19], Kaspersky Lab discovered that the unusual patterns
were due to an old C++ compiler used in legacy IBM systems, which
had generated the code. This revelation highlighted the challenges
researchers face in understanding this complex malware. A virus
called Grip contained a Brainfuck interpreter coded in Assembly to
generate its keycodes. Brainfuck is an intentionally minimalistic
and challenging-to-understand programming language. Another
extreme example is presented in [27], where attackers leverage RE-
BOL, a lightweight language, to establish a command-and-control
environment, allowing them to execute commands remotely. By
employing such obscure languages, threat actors further hindered
the efforts of security researchers to analyze and reverse engineer
their malicious code.

To obscure the first step of the infection process and avoid se-
curity measures that identify the most common types of malicious
code, malware authors can simply "wrap" commodity malware in
loaders and droppers written in exotic languages. Also, malware
developers can completely rewrite the code of current malware to
produce new varieties. For example, the RustyBuer [20] malware
variant is a new form of the Buer malware loader. Both of these
tactics are being abused by known threat actors. The Sednit group
- also known as APT28 [9], Fancy Bear, Sofacy, and STRONTIUM,
are among the groups that have adopted a multi-language kill chain
with uncommon languages in its development process on several oc-
casions. For instance, APT28 developed the Zebrocy backdoor in Go
and then rewrote its downloader in Nim in 2019 after it was initially
created in Delphi. APT28 continues to employ the same initial pene-
tration vector and many of the same methods, implying that threat
actors are more likely to change the original malware code to a
different language rather than change their TTPs to avoid detection.
Recently, the Tomiris APT group was spotted utilizing a polyglot
arsenal of programming languages, including some uncommon or
unconventional in malware development. This diversification ap-
proach appears to aim at equipping operators with “full-spectrum
malware” capable of evading security products. In several observed
instances, the actor persistently cycled through different language
malware strains until one was successfully executed on the targeted
machines [11].

Exotic programming languages provide extra levels of obfusca-
tion that go beyond traditional security procedures. Also, these
languages are less often used in malware, reverse engineers are
less experienced with their implementation, and malware analysis
tools and sandboxes have a hard time evaluating samples written
in them. Malware rewrites disrupt the static signature produced for
well-known malware families, and because there is no identifying
signature, malware written in obscure languages frequently escapes
unnoticed by antivirus software. Malware detection using signa-
tures relies on the presence of specific static characteristics within
a file that remain constant and do not require execution to be iden-
tified. When malware is built in a new language, static indicators
(for example, YARA rules) become irrelevant or ineffective [13].

Malware samples written in uncommon languages can multiply
the effort required for reverse engineering by a sufficient factor.
Many of these languages, particularly functional ones (e.g., Haskell,
Lisp), employ a vastly different execution model from traditional

20

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

malware development languages like C. In addition, these languages
often introduce a large number of functions to the executable as part
of their standard environment, resulting in a bloated binary that
makes even simple programs like "Hello world" contain thousands
of functions (e.g., Dart and Go). Moreover, using unconventional
programming languages also introduces additional challenges to
analysts, such as indirect function calls, different evaluation models,
error handling procedures, memory safety operations, and garbage
collectors. They also contain unique data structures and calling
conventions, "mangled” symbols, as well as unique stack and heap
management systems. Specifically, functional languages are char-
acterized by their use of immutable data structures, first-class func-
tions, and lazy evaluation, which can result in code that is difficult to
comprehend and reverse engineer. In addition, different compilation
options or compiler versions can make analysis even more challeng-
ing by breaking usual reverse engineering patterns. Furthermore,
each language’s macro and meta-programming capabilities can
help to further obfuscate the binary and slow down the analysis.
The combination of the aforementioned artifacts can easily confuse
the malware analyst and state-of-the-art tools, leading them to an
unproductive rabbit hole. According to [53], many security experts
consider that alternative languages like Golang, Rust, and Delphi
produce compiled programs that are significantly less straightfor-
ward to analyze compared to traditional C-based binaries. In fact,
as stated, many consider using such languages to be a novel eva-
sive technique and the lack of tools to deal with a rising problem,
as existing tools may produce less accurate results. Also, recent
actions like the project OxA11C [43] launched by Sentinel One
and Intezer Team, which aims to develop a methodology to make
reverse engineering of Rust malware more approachable, as well as
develop new tools to help researchers showcase the extent of the
problem in the malware analysis domain.

3 Motivation and Methodology

We used real-world public datasets to establish ground truth on
the usage of various programming languages and compilers by
malware authors. First, we used the latest export of the database of
Malware Bazaar [1]. We limited the dataset to compiled files and,
more precisely, Windows executables. At the time of writing, this
export contains 399,043 Windows executable files, adhering to the
portable executable format. In general, EXE files are consistently
the file format with the highest number of submissions and detec-
tions [50]. We queried these files with their hashes in VirusTotal,
collecting the detection rate and, where available, the programming
language and compiler. As shown in Figure 1, there are trends in
the usage of programming languages and compilers by malware
authors. These trends do not follow the trends of the TIOBE in-
dex [45], e.g., Python and Java, the two programming languages
most widely used, are not represented in the dataset. Nevertheless,
the differences are stiffer. For instance, the deviations in the detec-
tion rate by programming language and compiler are more than
apparent, Figure 2. One can clearly observe the deviation in the
detection rate from the first submission to the latest one. Moreover,
it is also apparent that this disparity is wider in the less-used pro-
gramming languages and compilers. Notably, this disparity appears
in both the original and latest detections. Even more alarmingly,

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

80000 = Borland Delphi

W Microsoft Visual C/C++

. MinGW
=== Other

VB.NET

e Visual Basic

70000

60000

50000

40000

Samples

30000

20000

10000

0
2019 2020 2021 2022 2023

2024

Figure 1: Distribution of the top 5 programming languages
of samples per year.

in this segment, we observe the lowest detection rate in the latest
detections, showing that even malware in well-known languages
has a low detection rate when a less common compiler is used.

Close investigation shows that the programming language and
compiler choice can significantly impact the detection rate; see Fig-
ure 2. While one would expect less used programming languages,
e.g., Rust and Nim, to have worse detection rates because the spar-
sity of samples would not allow the creation of robust rules, the use
of non-widely used compilers, e.g., Pelles C, Embarcadero Delphi,
and Tiny C, has a more substantial impact on the detection rate.

Then, we moved on to a more specific dataset. More precisely, we
used the dataset of Gonzalez-Manzano et al. [15], which is focused
on APTs, making our findings more focused. Limiting the dataset to
PE executables (2,190 samples), one can clearly observe in Figure 3
that the malware authors have shifted from coding only in Microsoft
C++ to using more languages and compilers. Indeed, as time goes by,
APTs choose more diverse programming languages and compilers,
e.g., Borland and Embarcadero Delphi, Borland and Microsoft C++,
or Purebasic. Apparently, these trends are aligned with the findings
of the larger Bazaar dataset.

To answer the research questions (see Section §1), we developed
a specific methodology and performed some very targeted experi-
ments. According to our methodology, first, we create a reference
dataset with malicious binaries. The intention is to make it as het-
erogeneous as possible in terms of programming languages and
compilers. Nevertheless, we deliberately add well-known payloads
that are immediately flagged by antimalware engines and do not
obfuscate the binaries. This way, we avoid possible biases that ob-
fuscation methods can introduce. Then, we submit the binaries to
VirusTotal to assess how detectable these samples are from com-
mercial antimalware engines (RQ1). We analyze the binaries to
determine their structural differences, use tools and custom scripts
to quantify their differences at the binary level (RQ2), and examine
the effort and drawbacks that a reverse engineer would have. The
latter, along with the known advantages of some frameworks and
programming languages, allow us to streamline the benefits of a

21

Theodoros Apostolopoulos, Vasilios Koutsokostas, Nikolaos Totosis, Constantinos Patsakis, and Georgios Smaragdakis

powershell -NoP -NonI -W Hidden -Exec Bypass -Command New-Object System.N |
et.Sockets.TCPClient($IP, $port);$stream=$client.GetStream();[byte[1]$
bytes=0..65535|%{0};while(($i=$stream.Read($bytes,@, $bytes.Length))
-ne 0){$data=(New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,@,$1);$sendback=(iex $data
2>&1 | Out-String);$sendback2=$sendback + 'PS ' + (pwd).Path + '>

'; $sendbyte=([text.encoding]: :ASCII) AGetBytes($sendback2);$stream.WriJ
te($sendbyte, @, $sendbyte.Length);$stream.Flush();};$client.Close()

rreeeree

Listing 1: Payload I - PowerShell reverse shell.

LPVOID addressPointer = VirtualAlloc(NULL, sizeof(shellcode), 0x3000, 0x40);
Rt1MoveMemory (addressPointer, shellcode, sizeof(shellcode));

HANDLE handle = CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)addressPointer,
< NULL, @, 0);

WaitForSingleObject(handle, -1);

Listing 2: Payload II - Vanilla shellcode execution in C.

malware author to shift her codebase into less-used programming
languages or use less common compilers (RQ3).

4 Experiment

In this section, we empirically show that the challenges posed by
uncommon programming languages create difficulties for malware
analysts during reverse engineering and affect automated detection
systems.

4.1 Setting Up the Experiment

We performed a scoped experiment to assess the robustness of static
analysis methods against malware written in uncommon (less-used)
programming languages and frameworks. To this end, we exper-
imented with common and uncommon programming languages
that can generate native standalone Windows PE files using either
a compiler or a packager. We selected the languages so that they
can interact with the Windows OS by exposing a system command
or by interacting with the Windows API via built-in libraries or the
Foreign Function Interface (FFI). From a macro perspective, inter-
action with the underlying OS is the bare bone of every malware,
alongside networking and cryptographic functionality.

Additionally, we tried to cover as many programming paradigms
as feasible, as long as the produced binaries were standalone and
dependent dynamically only on the native Windows DLLs or the
NET Framework. We created executables containing very simple
and well-known payloads to evaluate the detection rate of mal-
ware written in different programming languages. The payloads
were chosen from lists of online reports containing the most crit-
ical MITRE techniques used by adversaries [29], particularly the
T1059 Command and Scripting Interpreter [30] and the T1055 Pro-
cess Injection [31]. The first class of executables issues a system
command that calls Powershell to initiate a reverse shell via a well-
known piped command (see Listing 1). In contrast, the second class
executes shellcode using a standard sequence of Windows API func-
tions (see Listing 2). The actual shellcode invokes an executable
and acts as a loader. To keep the analysis consistent, we tried to
construct homogeneous and simple samples in terms of translation
from one language to another without employing any techniques
of obfuscation, anti-analysis, or compiler optimization. The code
and corresponding binaries are available on GitHub [6].

Coding Malware in Fancy Programming Languages for Fun and Profit

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

1.0+

0.8

o
o
\

Detection rate

o
IS
s

0.

N
N

0.01

I original_detection_rate

I detection_rate

%

i, 1

mmm Borland C++
mmm Borland Delphi

mmm Embarcadero Delphi Go
s FASM

*
é/
<
¥
<5

W Microsoft Visual C/C++

*

& &
¥ §
oé‘
o
EY

&

>
s
&

W Other
B PureBasic

= MinGW
= Nim

. VB.NET
s Visual Basic

2004

150 1

Samples

100 4

50 4

2008

2010 2012

2014

2016 2018 2020 2022

Figure 3: Distribution of top programming languages of APT samples per year from [15].

Then, we examine the binaries from two different standpoints.
First, from the static analysis perspective using state-of-the-art
antivirus engines and custom and open-source static analysis tools.
Second, from the perspective of automated reverse engineering.

4.2 VirusTotal Results

In this part of the experiment, we used 39 programming languages
and 50 different compilers or packagers to generate two samples
for each possible payload, producing 100 unique samples. Then, we
uploaded them to VirusTotal [49] and reported the detection results;
see Table 1. It should be noted that, despite many of these samples
being uploaded to VirusTotal for more than a year, a surprising
number of them still remains undetected to date, even after rescans.

One can observe a great variance in the detection rate of the
same payloads not only between different programming languages

22

but also between compilers for the same programming language
(see, for example, C/gcc vs C/dmc). Quite alarmingly, for the first
payload, there are 13 samples with zero detections from AVs and
19 samples that reported very low detection rate (less than 5 AV
engines), meaning that 32 of the 50 samples went undetected and
had an overall detection rate of 6%. In the case of the shellcode
payload, we had two samples with zero detections and 11 sam-
ples having very low detection rates with generic AV signatures
like Malicious(Moderate Confidence), W64.AIDetectMalware,
Unsafe, Python.Shell.6 (while not being a Python sample) and
Trojan.Malware.300983. susgen, a notorious false positive detec-
tion (linked with many well-known benign binaries having the
same false detection), while the overall detection rate was 21,7%.
Our results clearly illustrate the inefficiency of static methods in

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

detecting the most simple malicious samples, even without any at-
tempt to hide them. Figure 4 illustrates the variation of our samples
in terms of the number of sections, threads, loaded DLLs, number
of functions, and size. The figure clearly showcases that while all
samples perform the same tasks and are all PE executables, struc-
turally, they are radically different. The latter is also proven by the
fact that even in terms of functions, there is even greater variation.
More precisely, the number of functions ranges from 6 to 81,793;
note that the figure is on a logarithmic scale to illustrate the results
better.

4.3 Open Source Static Analysis Tools

In this part of the experiment, we utilize capa [25], a robust, open-
source capability-analysis tool developed by Mandiant widely used
in cybersecurity environments, particularly within incident re-
sponse teams, security operations centers (SOCs), and threat in-
telligence units. It can extract features from files, such as strings,
disassembly, and control flow, and find combinations of features
that are expressed in a common rule format. To gain ground truth,
we first ran capa on the Assembly and C samples as they were the
least bloated and straightforward and identified that a combina-
tion of the capa rules: allocate or change RWX memory, create
thread, and spawn thread to RWX shellcode was able to cor-
rectly identify the shellcode execution basic block(s). Regarding the
reverse Powershell payload, execute command,create process
on Windows, or accept command line arguments were the rules
that indicated system command invocation. Since some of these
rules can be flagged even if they are harmless, as they may be just
legal procedures inside the executables, we also verify them. For
each sample, we check the reported address from capa with a debug-
ger to determine whether it actually pointed to our malicious code,
eliminating false positives. For example, the Haskell binary may
report just allocate or change RWX memory, yet this was not
for our malicious code. What is interesting is how well the results
from VirusTotal correlate with the results from capa. Especially
in the case of shellcode samples, we have an almost one-on-one
correlation with the evasive samples, indicating that some unique
structural characteristics let those samples go undetected.

4.4 Shellcode Fragmentation

To assess how immune the binaries produced by different program-
ming languages are to shellcode pattern matching, and since there
is no intended obfuscation of the payloads, we conducted an ex-
periment utilizing a custom-developed pattern-matching script to
analyze the bytes from the raw binaries on disk. We allowed the
matching operation to search for chunks of shellcode by fine-tuning
two parameters for each binary, namely Maximum Gap and Min-
imum Chunk Size. For the former, we set the maximum allowed
gap between matched shellcode bytes to 60, allowing flexibility
for scattered patterns. For the latter, only matched sequences of at
least 4 bytes were considered valid, reducing false positives from
incidental matches of very small byte sequences and returning the
sequences with the highest matching ratio.

We also performed pattern matching in the reversed order of
bytes to identify possible stack-based shellcodes (for example,

23

Theodoros Apostolopoulos, Vasilios Koutsokostas, Nikolaos Totosis, Constantinos Patsakis, and Georgios Smaragdakis

Sections

2 ggegsEgT 28T Y ¢ 3 > 2 5 9
£ 5 2 582 + 32 & 8 2 8 3 s & 9
O o + 0 2 8 o S o 2 © #*
6] o (SR} C 3 ¢ O S}

5 c

& (G}

Scala-graalvm
Python-nuitka

(a) Variation on the number of sections per payload/language.

T £ g 2 &Y E T 2 Y Y L Xx®IS L+ T 2Q
£ 8 2 5= %3 eN2 5 E £ 32 £ 258
S g 3 3 o o o § T © @ 8 5 #*
3 g e] © = T oo
§ 5 2 5
a (9]
S
S
&

(b) Variation on the number of threads per payload/language.

Loaded Modules

10 — -
9 |
S TG T 5 > & & o) >
T2 v I EEZFEgE3EESE2L S 2EE
o I + 2 2 3 E £ < 2 &8 3 5 & 2 g £ 5
T+ 78 e w§ 4 8 g e 2 <
+ O © S
©° 15 3 © 8
O & 5
o <
3
(2]

(c) Variation on the number of loaded DLLs per language/lan-
guage.

Functions (Log Scale)

2 8382888388 ETR 85T SE S ¢
E o =83 g g ez g+ 2 g3 o g 4
o 2 O 2 5 3 a + 56 S =
a o [} 2 o
2] 2 © g £
& r £ E!

. 8

[

2

(d) Variation on the number of functions per language/language.

10°

Size (in KB) (Log Scale)

> Y U Y VU YT + T D v 8 2 5 O ¥ o # o
s 8 389 83 1¥IJELse g2 gy g
E O 83 2§ Y o + z B S 5 &5 2 9 8
O a ® & 0 - ® 2 U5 2 T 8 O
[o O O + c <1
o + T (GRS <
] 5 Q0 + © < O £
S 5 £
< I 8 o = £
Q o
o

(e) Variation on the size of executable per language/language.

Figure 4: Barplots to illustrate the variation of shellcode
samples.

Coding Malware in Fancy Programming Languages for Fun and Profit

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

Language Compiler/Packager VT1 Detection Sig 1~ Capa Detection 1 VT2 Detection Sig 2 Capa Detection 2
Ada GNAT 1/70 X 23/73 v v/
Assembly YASM/Golink 9/68 v v 29/68 v v
AutoHotKey Ahk2EXE 9/68 v v 5/72 v X
Autolt Au2EXE 12/70 v v 32/69 v v/
© DMC 4/69 4 v 22/71 v v/
C TinyC 5/70 v v 45/72 v v/
© BCC 6/68 v/ v 21/70 v v/
C mingw/gcc 22/72 v v 51/73 v v
C msvc/cl 17/73 v v 37/73 v v
C# bflat 7/71 v v 1/70 X
C# msc 0/69 X v 21/73 v v
C# csc 1/73 v 5/73 v v
C++ cl 17/70 X 34/73 v v
C++ icl 17/70 X 17/73 v v
C++ g+t 5/73 v v 36/73 v v
Clojure graal-vm 0/73 X X 15/73 v X
CommonLisp sbcl 0/72 X X 0/72 X X
Crystal crystal 3/73 X 15/73 v v
D dmd 5/66 X 6/73 v X
Dart dart 0/70 X X 5/69 v X
Eiffel ec 0/67 X X 11/68 v v/
F# fsharpc 3/71 v 22/72 v v
Fortran ifort 3/76 X 17/72 v v
GnuCobol cobc 4/72 4 v 23/73 v 4
Golang go 4/70 v X 16/69 4 X
Groovy Launch4j 2/66 4 4/62 4 X
Haskell GHC 0/71 X X 1/66 X
IronPython ipyc 2/67 4 2/67 X
Java graal-vm 1/73 X 2/73 X
Javascript deno 0/65 X X 0/68 X X
Jscript jsc 2/67 X 16/73 v 4
Kotlin graal-vm 2/63 X 1/73 X
Kotlin kotlin-native 0/68 X X 1/67 X
Lua luastatic 1/69 v 14/72 v X
Nim nim 0/70 X X 25/69 v X
ObjectiveC gee 2/68 v 25/69 v X
Pascal fpe 0/66 X v 11/66 v v
Perl par 3/70 X 1/71 X
Phix phix 10/72 v X 21/67 v X
PureBasic pbcompiler 1/68 v 23/67 v v
Python pyinstaller 6/67 v X 3/68 X
Python nuitka 0/69 v X 5/71 v X
Racket raco 0/64 X X 1/64 X
Red red 16/69 v v 22/66 v v
Ruby ocra/aibica 26/68 v X 2/71 X
Rust rustc 0/71 X X 16/72 v X
Scala graal-vm 0/73 X 1/73 X
Scala launch4j 4/67 X 5/63 v X
VB NET vbe 5/69 v v 13/70 v v
Zig zig 0/73 X X 19/68 v v

Table 1: VirusTotal and Capa results for various programming languages and compilers/packagers.

push <byte>). Since the objective of this experiment was to stati-
cally locate the raw dummy payload using static methods and not
actually locate the shellcode by any means necessary, we did not
use any dynamic analysis tools.

After executing the script, all identified patterns were manu-
ally reviewed using a debugger and a hex editor to confirm the
matches and eliminate false positives. This step ensured that only
genuine shellcode patterns were considered in the results. Table 2
categorizes the matches into four levels of fragmentation, namely:
(1) None: Shellcode bytes were sequential, indicating that there
was no fragmentation; (2) Medium: Shellcode bytes were scat-
tered but with gaps within a range; (3) Heavy: Shellcode bytes
were fragmented with scattered chunks of large distance, wherein
each chunk bytes was sequential or had fixed gaps within a range;
(4) N/A: The script was unable to confidently identify the shell-
code in the binary, indicating the highest level of fragmentation or
potential complex encoding.

The results showed considerable discrepancies in pattern match-
ing; for example, samples written in languages such as C and C++
retained, usually all shellcode bytes in sequential order or had a
fixed gap between the bytes, leading to relatively straightforward

24

detection. However, other languages demonstrated significant byte
fragmentation and variations in memory layout, complicating static
detection. For instance, our Rust implementation showed a complex
pattern with the shellcode bytes dispersed irregularly throughout
the binary at various offsets (e.g., starting with an initial block
of 192 bytes at 0x16570@ with no gaps, followed by a smaller, non-
sequential block with gaps of up to 13 bytes at @x4ee and continued
again with non-continuous blocks of shellcode at address 0x16630).
In the unique case of Phix, the shellcode was pushed on the stack
byte by byte. Finally, in languages like Lisp and Haskell, we could
not find any part of the shellcode with confidence. Another inter-
esting result is that most of the samples with low detection rates
also had their shellcode pattern unidentified within the binary, in-
dicating another correlation between their structure and evasive
behavior.

4.5 Reverse Engineering Metrics

In this section, we try to measure the shellcode binaries from the
runtime complexity perspective. Although reverse engineering dif-
ficulty is not easy to measure as it is heavily based on the human
element of intuition and expertise as well as on how fine-tuned

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

Language Compiler/Packager Fragmentation Section Stored Matched Ratio
Ada GNAT none .rdata 1
Assembly YASM/Golink none .data 1
AutoHotKey Ahk2EXE N/A N/A N/A
Autolt Au2EXE N/A N/A N/A
C DMC none CRT$XIA 1
C TinyC medium .text 1
C BCC none .data 1
C mingw/gcc none .rdata 1
© msvc/cl none .data 1
C# bflat none .rdata 1
C# msc none .sdata 1
C# csc none text 1
C++ cl medium text 1
C++ icl none .rdata 1
C++ g+ none .rdata 1
Clojure graal-vm none .svm_hea 1
CommonLisp sbcl N/A N/A N/A
Crystal crystal heavy .rdata 0.86
D dmd heavy .text 0.93
Dart dart heavy .text 0.62
Eiffel ec medium text 1
F# fsharpc heavy .text 0.31
Fortran ifort none .data 1.0
GnuCobol cobe none .rdata 1.0
Golang go none .rdata 1.0
Groovy Launchd4j N/A N/A N/A
Haskell GHC N/A N/A N/A
IronPython ipyc medium .text 1
Java graal-vm medium .text 1
Javascript deno N/A N/A N/A
Jscript jsc medium .text 1
Kotlin graal-vm medum “text 1
Kotlin kotlin-native medium text 1
Lua luastatic N/A N/A N/A
Nim nim none .data 1
ObjectiveC gee none .text 1
Pascal fpe medium .text 1
Perl par N/A N/A N/A
Phix phix medium .text 1
PureBasic pbcompiler none .data 1
Python pyinstaller N/A N/A N/A
Python nuitka N/A N/A N/A
Racket raco N/A N/A N/A
Red red none .data 1
Ruby ocra/aibica N/A N/A N/A
Rust rustc heavy .rdata/.text 1
Scala graal-vm medium .text 1
Scala launch4j N/A N/A N/A
VB .NET vbe medium .text 1
Zig zig none text 1

Table 2: Shellcode fragmentation through pattern matching
on binaries.

the used tools are, our high-level metrics indicate a connection
between our most evasive samples and their actual complexity. In
particular, we focused on the following key metrics (see Tables 3
and 4): number of functions, number of functions actually executed,
average function size of executed functions, unique basic blocks
executed, unique instructions executed based on the address they
were found, meaning that if a particular instruction of a basic block
is traversed more than once, it is not counted.

We also calculated the average cyclomatic complexity of the ex-
ecuted functions, the unique indirection calls and jumps executed,
as well as the number of threads spawned. To acquire our results,
we collected complete instruction traces of the executables with
the help of IDAPro and its PinTracer debugger without taking into
account traces from Windows dynamic libraries. We intentionally
focused on indirect jumps and calls while excluding other control
flow operands (for example, returns). This decision was motivated
by the desire to capture the control flow aspects that most sig-
nificantly impact program complexity and dynamic behavior and
create static analysis challenges. Indirect control flow transfers,

25

Theodoros Apostolopoulos, Vasilios Koutsokostas, Nikolaos Totosis, Constantinos Patsakis, and Georgios Smaragdakis

such as indirect jumps and indirect calls, are crucial in represent-
ing dynamic behavior in programs. They occur when the target
of a jump or call is determined at runtime, often through function
pointers, virtual method tables, or dynamic dispatch mechanisms.

By concentrating on indirect calls and jumps, we essentially
measure how much of the program’s control flow is determined
at runtime rather than at static analysis time. A high number or
a dense network of indirect branches can suggest more dynamic
behavior, code unintended obfuscation techniques, or pointer-based
dispatch tables, all of which add to reverse engineering difficulty.
To that end, we also constructed CFGs that capture the indirection
aspect of the shellcode samples where each node represented an in-
direct jmp or call and measure the total traversals, which indicate
how many indirections occurred in total during execution. A large
number of edge traversals can imply that the program frequently
relies on indirect control flow to reach various parts of the code, sug-
gesting that any attempt at reverse engineering must continuously
resolve these runtime-dependent branches. We further incorporate
an information-theoretic measure; Shannon’s entropy to capture
the unpredictability of edge transitions.

Entropy, computed from edge frequencies, quantifies how the
transitions are distributed among possible indirect edges. High
entropy indicates that the program does not favor a small set of
indirect branches but rather exercises many of them with similar
frequency, increasing uncertainty for the analyst. On the contrary,
a low-entropy graph may be complex in structure but predictable
in practice if only a few edges are predominantly taken.

We also need to mention that the sizes of the trace log files ranged
from a few kilobytes to almost 10 Gigabytes. We also did not include
in the analysis the NET languages except for the C#-csc sample,
which was the only sample that included the runtime environment,
since usually, NET compiled languages do not need to include
the runtime environment to be able to run in a target. Also, these
samples can be trivially reversed using dnSpy and .NET-focused
tools.

We observed that in almost all cases that reported low detection
scores, there were many indirections or large and complex func-
tions, showcasing how the runtime environment of each language
adds vast amounts of complexity to simple malicious code.

4.6 Case Study: Haskell Reverse Engineering

In this section, we chose to investigate the challenges posed by
reverse engineering one of our shellcode samples that had eva-
sive behavior, in particular the Haskell executable, focussing on
how the inherent characteristics of the GHC runtime and its exe-
cution model complicate traditional analysis techniques compared
to the corresponding C sample compiled with the Windows MSVC
toolchain. Our goal is to highlight some of the key differences we
observed that introduce substantial complexity and how static dis-
assembly or debugging struggles to provide accurate insights into
their execution. However, providing a complete analysis of the bi-
nary is beyond the scope of this work, as this would require a deep
dive into the GHC runtime and Lambda calculus.

In C, control flow is generally direct and imperative. Each in-
struction or function call follows in a predictable sequence, and
system calls, such as memory allocation through VirtualAlloc,

Coding Malware in Fancy Programming Languages for Fun and Profit

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

Language Compiler #Func #Func Exec AvgFuncSize #BB Hits #Instr Hits cc #Ind Jmps #Ind Calls

Ada GNAT 1695 92 171.08 493 2482 3,51 8 36

Assembly YASM/Golink 5 5 5 26 1 0 0

AutoHotKey Ahk2EXE 1464 147 1169.82 3606 15128 48.44 23 12

Autolt Au2EXE 2282 132 287.77 378 8441 9.65 0 4

€ DMC 69 34 106.53 186 902 4.94 0 0

c TinyC 15 10 215.3 10 500 1 0 0

© BCC 309 65 101.14 69 783 3.16 0 1

C mingw/gcc 79 13 98.24 18 482 4.03 0 5

© msvc/cl 436 47 129.43 91 1061 4.66 2 0

C# bflat 3718 349 166.68 683 9769 4.43 6 16

C# csc 17736 784 142.76 440 4354 8052 36 0

C++ cl 343 26 141.3 6 392 3.81 0 0

C++ icl 451 37 161.54 74 993 5.17 0 0

C++ g++ 79 33 98.24 93 445 4.03 0 5

Clojure graal-vm 7314 1042 1284.87 13436 133483 31.32 7 564

CommonLisp sbcl 781 195 560 2087 26931 134.4 1 101

Crystal crystal 3327 193 203.16 586 5682 6.98 4 6

D dmd 2409 1429 1645 720 10982 413 5 32

Dart dart 9251 916 308.88 2167 40830 6.86 13 141

Eiffel ec 4051 762 146.58 894 18068 2.97 0 4

Fortran ifort 914 291 492.85 2183 11009 1775 21 1

GnuCobol cobe 100 22 95.8 45 227 2.90 0 0

Golang go 1616 439 382.97 4478 35007 177 2 21

Groovy Launchd4j 162 130 131.31 364 4068 4.92 0 1

Haskell GHC 2974 2318 187.3 2200 22596 4.97 276 47

Java graalfvm 6969 996 969.05 12764 125244 23.35 6 413

Javascript deno 81792 1717 460.99 37475 280860 N 1521 0

Kotlin graal-vm 6902 981 973.44 12955 55424 23.4 5 431

Kotlin kotlin-native 1574 206 150.85 574 10582 4.67 3 26

Lua luastatic 1545 332 350.55 2821 16246 10.16 54 29

Nim nim 359 130 226.28 309 5343 2.26 0 24

ObjectiveC gee 52 24 113.2 43 291 2.27 0 0

Pascal fpc 429 145 128.86 305 4051 3.77 0 41

Perl par 2821 82 146.79 276 15570 471 5 431

Phix phix 167 82 522.39 390 1842 22.46 0 11

PureBasic pbcompiler 44 10 36.30 2 113 1.10 1 0

Python pyinstaller 819 117 302.7 577 6075 10.77 4 22

Python nuitka 370 79 670.63 1234 5841 12.92 3 19

Racket raco 116 49 148.71 328 2219 4.51 0 49

Red red 22 8 99.0 13 224 125 0 0

Ruby ocra/aibica 132 63 234.63 488 3077 5.98 0 48

Rust rustc 337 36 103.5 95 595 2.42 2 4

Scala graalfvm 7021 967 1019.57 13186 130330 23.61 B) 433

Scala launch4j 167 116 142.51 432 4050 4.79 0 1

Zig zig 639 12 374.8 1191 10269 2.05 4 11

Table 3: Reverse engineering metrics L.

lea rax, [rsp+i88htvar_148] On the other hand, reversing Haskell binaries presents significant
Lea o UIC7RRTEDACE 200 challenges due to the intricacies of its execution model. Going from
mov rdi, rax . . .
mov rsi, rex the call to VirtualAlloc to copying shellcode into the allocated
”r”;’; e Uty space involves more than 100 thousand instructions based on the
mov rod, 4eh ; '@ ; flProtect execution trace we got as opposed to the C sample, which was
o gzg f?gﬁh Zi’;igcatwmpe only five instructions. Throughout the disassembled code, user
xor ecx, ecx ; IP address code is blended with the STG-machine code that handles each own
call cs:VirtualAlloc o s .
mov [rspfisshBlpStartAddress], rax stack and heap, has sophisticated pointer management and garbage
o rgd, *[* bh+188h+ . collector, and also makes heavy use of indirection jumps because
ea rdx, [rsp: var_ . . . :
mov rex, [rspil8shilpstartAddress] of its lazy evaluation that defers computation until needed and
call sub_7FF7EDABFBA®

Listing 3: Disassembled snippet of C shellcode sample.

are explicit and immediately visible. For instance, in our sample,
the first thing an analyst would see in the disassembled code is that
the steps are linear (see Listing 3).

Furthermore, since the disassembled code is straightforward,
it can be analyzed statically in a few minutes. In (Listing 3), the
shellcode is loaded from the section in which it resides (.data) in
rcx, and then it gets copied in the stack space byte by byte. Then,
VirtualAlloc allocates some space, and the actual shellcode gets
copied from the stack to the fresh RWX allocated space.

26

continuation-passing.

A continuation is a callback function that expects the result of a
previous computation as an argument; in other words, it represents
‘what to do next. Closures and continuations are among the main
reasons Haskell reported such a high number of indirections. Here,
the shellcode is initialized from the raw binary written in heap
memory, then prepared for the interaction with the FFI, and inherits
a unique obfuscation scheme to execute the shellcode. The code
in Listing 4 shows how each byte of the shellcode is stored in the
raw executable and what is executed during the initialization of
our malicious shellcode in heap memory. Considering that rbp
and r12 are the equivalent of stack and heap registers in STG-
machine, the code after a series of memory checks goes through a
memory allocation routine using newCAF and allocateMightFail

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

Language #Nodes #Edges #Traversals #Tot.Ind Cals #Tot.IndJmps CFG Entropy
Ada 44 45 74 63 12 0.98
Assembly 0 0 0 0 0 0
AutohotKey 35 64 4973 1403 3571 0.66
Autolt 44 73 5983 1678 4305 0.57
C-bee 1 1 21 0 52 0
C-cl 2 2 3 0 4 0.91
C-gee 5 4 4 5 0 10
C-tee 0 0 0 0 0 0
C-dme 0 0 0 0 0 0
C#-bflat 22 34 24559 329 24321 0.53
Ci#-csc 36 127 237 0 237 0.43
C++-cl 0 0 0 0 0 0
C++-icl 0 0 0 0 0
Ctmgot 5 4 4 5 0 1.0
Clojure 571 890 19176 18853 324 0.53
CommonLisp 102 126 706 693 14 0.54
Crystal 10 18 2088 1032 1057 0.30
D 37 53 199 186 14 0.58
Dart 154 249 34673 14750 19924 0.41
Eiffel 4 7 41 42 0 0.74
Fortran 22 26 55 1 55 0.93
GnuCobol 0 0 0 0 0 0
Golang 23 69 6219 6057 163 0.34
Groovy 1 0 0 1 0 0
Haskell 323 652 8265 488 7778 0.66
Java 419 634 19879 19732 263 0.57
Javascript 1521 3427 403815 403815 0 0.56
Kotlin-graalvm 436 660 19917 19657 261 0.56
Kotlin-native 29 41 189 187 3 0.63
Lua 83 220 3753 869 2885 0.57
Nim 24 30 35 36 0 0.98
objC 0 0 0 0 0 0
Pascal 41 56 88 89 0 0.96
Perl 436 660 19917 19657 261 0.56
Phix 11 25 30967 30968 11 0.24
PureBasic 1 0 0 0 1 0
Python-pyinstaller 26 37 563 453 110 051
Python-nuitka 22 27 76 38 39 0.89
Racket 49 70 795 796 0 0.62
Red 0 0 0 0 0 0
Ruby 48 89 432 432 0 0.65
Rust 6 6 6 5 2 1.0
Scala-graalvm 438 669 20207 19945 263 0.55
Scala-launch4j 1 0 0 1 0 0
Zig 15 24 171 17 155 0.50

Table 4: Reverse engineering metrics II.

GHC functions. Finally, the instruction mov qword ptr [ri12],
OFCh stores the first byte of our shellcode (0xFC) at the address
pointed to by r12 in heap memory. During what we just described,
many other procedures occur, such as thread handling and garbage
collection, making the code even more incomprehensible than the
Assembly produced by C.

As we saw, the executable inherits from the actual language
runtime an obfuscation scheme where the shellcode is stored and
loaded dynamically byte by byte and is only fully assembled in
executable memory at runtime.

5 Discussion

Languages such as Java, Clojure, Scala, Kotlin, and JavaScript, which
embed substantial runtimes or rely on JIT compilation, consis-
tently produced large, complex binaries. These executables exhib-
ited extensive CFGs (high node/edge counts), numerous indirect
calls/jumps, and large numbers of functions. VirusTotal results
showed that such complexity often correlated with higher detec-
tion rates or initial false positives. Heuristic-based detection en-
gines frequently flagged these binaries as suspicious, likely due to
unfamiliar or intricate patterns in control flow and the presence
of runtime scaffolding code. Although subsequent passes or capa
reports sometimes clarified these detections, the initial suspicion
underscores the challenges static AV tools face when analyzing
runtime-heavy executables.

In contrast, binaries produced by traditional compiled languages
(C, Fortran, Ada) and straightforward compilers tended to have
simpler structures. With fewer functions, less fragmentation, and

27

Theodoros Apostolopoulos, Vasilios Koutsokostas, Nikolaos Totosis, Constantinos Patsakis, and Georgios Smaragdakis

lea rax, [rbp-20h]

cmp rax, ri15

jb short loc_40BE86

add r12, 1oh

cmp r12, [r13+358h]

ja short loc_40BE7B

sub rsp, 8

mov rcx, ri13

mov rdx, rbx

sub rsp, 20h

xor eax, eax

call newCAF

add rsp, 28h

test rax, rax

jz short loc_40BE79

mov qword ptr [rbp-10h], 43BFF8h
mov [rbp-8], rax

mov qword ptr [r12-8], 4C01C8h
mov qword ptr [r12], @FCh

lea rax, [r12-7]

mov r14d, offset base_GHCziWord_zdfNumWord8_closure
mov qword ptr [rbp-20h], 43D1AGh
mov [rbp-18h], rax

add rbp, OFFFFFFFFFFFFFFEQh

jmp base_GHCziNum_fromInteger_info

Listing 4: Disassembled snippet of Haskell shellcode sample.

minimal indirect control flows, these binaries were more trans-
parently analyzable. Their matched ratios were often perfect (1.0),
indicating easy alignment between the binary and static analysis
tools. As a result, detection outcomes were more predictable. Such
binaries were either not detected at all or consistently identified
as benign. When detections occurred, they were more easily inter-
preted, reducing the likelihood of persistent false positives.

Heavy fragmentation corresponded to lower matched ratios,
complicating static analysis and potentially increasing false-positive
rates. Fragmented code segments impeded effective disassembly
and structured understanding of the binary. As a result, AV engines
that rely on pattern matching or heuristic scanning may misinter-
pret such binaries as suspicious, even without known malicious
signatures.

The prominence of indirect calls and jumps in runtime-heavy lan-
guages serves as an additional complexity signal. Indirect branch-
ing complicates the control-flow analysis, challenging both AV
signatures and CFG extraction tools. The correlation between indi-
rect control-flow patterns and AV detections or FPs suggests that
complexity in flow redirection can raise the heuristic suspicion
threshold and lead to detections.

Finally, normalized entropy provided insights into the unifor-
mity of byte distributions. High entropy often occurs in packed or
obfuscated binaries, which can appear anomalous to AV engines
as most modern malware uses some packer. While not the sole
predictor of detection outcomes, elevated entropy combined with
fragmentation and complex control-flow patterns often coincided
with uncertain or cautious AV responses.

Our results highlight that no single metric conclusively de-
termines AV detection outcomes. Instead, a combination of fac-
tors—runtime complexity, fragmentation, control-flow intricacy,
entropy, and function-level distributions—influences how AV en-
gines classify binaries. Therefore, from the defender’s and analysts’
perspectives, understanding these correlations, creating more ro-
bust signatures, and extending the scope of tools to consider more
programming languages and compilers is imperative, as threat ac-
tors can easily exploit this gap. From an attacker’s perspective,

Coding Malware in Fancy Programming Languages for Fun and Profit

the findings indicate that complexity and indirect control flow can
serve as evasive techniques, potentially raising false alarms or com-
plicating detection. However, sustained complexity may also attract
scrutiny, highlighting a delicate balance between obfuscation and
detection risk.

6 Conclusion

Malware is predominantly written in C/C++ and is compiled with
Microsoft’s compiler. However, trying to answer RQ1 with our ex-
periments, our work practically shows that by shifting the codebase
to another, less used programming language or compiler, malware
authors can significantly decrease the detection rate of their binaries
but simultaneously increase the reverse engineering effort of the mal-
ware analysts. It is crucial to note that the malware authors do not
necessarily need to radically change their codebase, as, for instance,
the choice of another compiler, even for famous programming lan-
guages like C, can have the same impact. Our experimental results
illustrate that there are significant deviations in how programming
languages and compilers generate binaries, and that they can serve
as an additional layer of obfuscation for malware authors.

The root cause for the disparities that we raise (RQ2), as high-
lighted with our use case in Haskell and the metrics for each tested
pair of programming language and compiler, is that there are radi-
cally different ways that each of them reaches the same result. For
instance, different ways of storing strings and different approaches
in the internal representation of functions can render many static
detection rules useless. As a result, there is no "one-size-fits-all"
approach, so further research is necessary to systematically identify
these differences and group them.

Moreover, answering RQ3, this shift may come with additional
benefits for attackers. An obvious case is cross-compilation and
multi-platform targeting languages, which enable malware authors
to build a single malware variant and have it compiled for multiple
operating systems. This strategy can significantly reduce the time
and number of tools needed to achieve their objectives, thereby
expanding the scope of any hostile campaign. IoT devices, in par-
ticular, support a range of CPU environments, making it necessary
for malware targeting these devices to be compatible with not only
x86 and x64 architectures but also various other architectures such
as ARM, MIPS, m68k, SPARC, and SH4.

A typical example is Mirai [5], which uses GCC, yet one of
its successors, NoaBot [4], uses uClibc-based cross-compiler and
is statically built to target embedded Linux systems. In this re-
gard, other options could be more efficient. For instance, Go can be
cross-compiled to all major operating systems, as well as Android,
JavaScript, and WebAssembly. One of its advantages is that it pro-
vides statically compiled binaries by default, eliminating runtime
dependencies and simplifying deployment on target systems. Go
also features a robust package ecosystem that allows developers to
easily pull in code from other sources. In general, cross-compilation
in Go is as simple as setting two environment variables, making it
almost trivial to modify the build process to produce binaries for
every major platform. As a result, malware can be developed at a
faster rate, targeting a broader range of architectures and systems.
Indeed, HinataBot [3], a descendant of Mirai, is developed in Go
to take advantage of the above. The HinataBot was more difficult

28

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

to be discovered by detection systems. Unfortunately, the bar to
creating a new variant of Mirai using Go or other languages is low,
and criminal groups make their own variations [2].

Beyond cross-compilation, there are several other reasons to
witness more changes in the malware codebase. After all, malware
developers, like any other software engineers, have specific needs
when choosing programming languages and tools. Different lan-
guages offer various benefits for different scenarios, and the choice
of language can significantly impact the development and func-
tionality of malware. For instance, built-in security mechanisms
and type safety may be prioritized by ransomware authors who
want to avoid leaks of the encryption keys to guarantee that their
victims will not be able to develop decryptors. A typical example is
Rust, which offers built-in memory mechanisms to prevent common
vulnerabilities and type safety. Other aspects can include library
availability; facilitating interaction with the underlying operating
system and enabling critical malware functions, low-level access,
and control over memory layout; having full control over the mal-
ware’s behavior and performance but also direct compilation to
machine code; creating an executable file directly and use other
tools for obfuscation.

While shifting to another programming language may seem
complicated, especially when considering less popular ones, large
language models (LLMs) may come to the rescue; after all, they have
proven their capacity in generating code quite accurately [16, 22, 23,
35, 41] and various cybersecurity tasks [12, 37], and malicious actors
are abusing them. As a result, they can translate code from one
programming language to another, requiring little fine-tuning. This
way, malware authors can seamlessly develop loaders, droppers,
and other components in languages they may not be familiar with.

It is true that the malware that we examine in this work rep-
resents a small fragment of the total; nevertheless, it is stealthier
and introduces more bottlenecks for the reverse engineer. Given
that the APT groups are shifting their codebases and the malware-
as-a-service model facilitates the trading of malware so different
malware mixtures per campaign can be purchased, this diversifi-
cation is expected to continue. By disregarding these samples and
only focusing on traditional programming languages and compilers,
we provide malware authors with an effective hideout that they
can easily exploit. Therefore, we believe that a deeper analysis of
the executables produced by other compilers and programming
languages is needed to improve detection rates but also develop
better reverse engineering tools.

Acknowledgments

This work was supported by the European Commission under the
Horizon Europe Programme as part of the project SafeHorizon
(Grant Agreement no. 101168562). The content of this article does
not reflect the official opinion of the European Union. The responsi-
bility for the information and views expressed therein lies entirely
with the authors.

References

[1] Abuse.ch. 2024. Malware Bazaar. https://bazaar.abuse.ch/.

[2] Antonia Affinito, Stefania Zinno, Giovanni Stanco, Alessio Botta, and Giorgio
Ventre. 2023. The evolution of Mirai botnet scans over a six-year period. Journal
of Information Security and Applications 79 (2023), 103629.

https://bazaar.abuse.ch/

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

(3]

[4

(5

=

[10

[11]

[12]

[13

[14]

[15

[16]

[17]

[18

[19]

[20

[21

[22

[23]

[24]

[25
[26]

[27]

[28]

Akamai. 2024. Uncovering HinataBot: A Deep Dive into a Go-Based
Threat. https://www.akamai.com/blog/security-research/hinatabot-uncovering-
new-golang-ddos-botnet.

Akamai. 2024. You Had Me at Hi — Mirai-Based NoaBot Makes an Appear-
ance. https://www.akamai.com/blog/security-research/mirai-based-noabot-
crypto-mining.

Manos Antonakakis, Tim April, Michael D. Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Ristenpart
(Eds.). USENIX Association, 1093-1110.

Theodoros Apostolopoulos. 2025. https://github.com/nihilboy/Coding-Malware-
in-Fancy-Programming-Languages-for-Fun-and-Profit.

AV-ATLAS. 2024. https://portal.av-atlas.org/malware.

Rosangela Casolare, Giovanni Lacava, Fabio Martinelli, Francesco Mercaldo,
Marco Russodivito, and Antonella Santone. 2022. 2Faces: a new model of malware
based on dynamic compiling and reflection. Journal of Computer Virology and
Hacking Techniques 18, 3 (Sept. 2022), 215-230. d0i:10.1007/s11416-021-00409-8
CERT-UA. 2023. APT28: from initial attack to creating threats to a domain
controller in an hour (CERT-UA#8399). https://cert.gov.ua/article/6276894. (In
Ukranian).

Eric Chien, Liam OMurchu, and Nicolas Falliere. 2012. W32.Duqu: The Precursor
to the Next Stuxnet . In 5th USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET 12).

Pierre Delcher. 2023. Tomiris called, they want their Turla malware
back. https://securelist.com/tomiris- called-they-want- their-turla-malware-
back/109552/#jlorat.

Gelei Deng, Yi Liu, Victor Mayoral-Vilches, et al. 2023. PentestGPT: An LLM-
empowered Automatic Penetration Testing Tool. arXiv preprint arXiv:2308.06782
(2023).

ENISA. 2021. ENISA Threat Landscape 2021. https://www.enisa.europa.eu/
publications/enisa-threat-landscape-2021/.

European Union Agency for Cybersecurity (ENISA). 2023. Threat Landscape
Report 2023. https://www.enisa.europa.eu/publications/enisa-threat-landscape-
2023.

Lorena Gonzélez-Manzano, José M de Fuentes, Flavio Lombardi, and Cristina
Ramos. 2023. A technical characterization of APTs by leveraging public resources.
International Journal of Information Security 22, 6 (2023), 1567-1584.

Yuejun Guo, Constantinos Patsakis, Qiang Hu, Qiang Tang, and Fran Casino. 2024.
Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability
Detection. In Computer Security - ESORICS 2024 - 29th European Symposium on
Research in Computer Security.

George Karantzas and Constantinos Patsakis. 2021. An Empirical Assessment of
Endpoint Detection and Response Systems against Advanced Persistent Threats
Attack Vectors. Journal of Cybersecurity and Privacy 1, 3 (2021), 387-421.
Vasilios Koutsokostas and Constantinos Patsakis. 2021. Python and Malware:
Developing Stealth and Evasive Malware Without Obfuscation. doi:10.48550/
arXiv.2105.00565 arXiv:2105.00565 [cs].

Igor Kuznetsov. 2012. The mystery of Duqu Framework solved. https://securelist.
com/the-mystery-of-duqu-framework-solved-7/32354/.

Ravie Lakshmanan. 2021. A Rust-based Buer Malware Variant Has Been Spotted
in the Wild. https://thehackernews.com/2021/05/a-new-buer-malware-variant-
has-been.html.

Pengwei Lan, Pei Wang, Shuai Wang, and Dinghao Wu. 2017. Lambda Obfus-
cation. In Security and Privacy in Communication Networks - 13th International
Conference, SecureComm 2017, Niagara Falls, ON, Canada, October 22-25, 2017,
Proceedings (Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, Vol. 238). Springer, 206—224.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is
your code generated by ChatGPT really correct? Rigorous evaluation of Large
Language Models for code generation. Advances in Neural Information Processing
Systems 36 (2024).

Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. 2024.
No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation
by ChatGPT. IEEE Transactions on Software Engineering 50, 6 (2024), 1548-1584.
doi:10.1109/TSE.2024.3392499

Kenny Zhuo Ming Lu. 2019. Control flow obfuscation via CPS transformation.
In Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation (POPL ’19). ACM, 54-60. doi:10.1145/3294032.3294083
Mandiant. 2024. capa. https://github.com/mandiant/capa.

Marion Marschalek. 2014. Not old enough to be forgotten: the new chic of Visual
Basic 6. https://www.virusbulletin.com/virusbulletin/2014/07/not- old-enough-
be-forgotten-new- chic-visual-basic-6.

Oscar Minks. 2021. The REBOL Yell: A New Novel REBOL Exploit. https:
//frsecure.com/blog/the-rebol-yell-new-rebol-exploit/.

MITRE ATT&CK. 2024. APT29 Group. https://attack.mitre.org/groups/G0016/.

29

[29]

[30]

(31

[32

[33

[34

[35

[36

[37

'@
&

[39

[40]

[41

=
)

[43

[44]

[45

[46]

(47]

[53

Theodoros Apostolopoulos, Vasilios Koutsokostas, Nikolaos Totosis, Constantinos Patsakis, and Georgios Smaragdakis

MITRE Engenuity Center for Threat-Informed Defense. 2025. Sightings Ecosys-
tem v2.0.0. https://center-for-threat-informed-defense.github.io/sightings_
ecosystem/key-results/.

MITTRE ATT&ACK. 2024. Command and Scripting Interpreter. https://attack.
mitre.org/techniques/T1059/.

MITTRE ATT&ACK. 2024. Process Injection. https://attack.mitre.org/techniques/
T1055/.

Nathaniel Mott. 2022. Hacking in tongues: Malware authors shake up their pro-
gramming languages. https://readme.synack.com/hacking-in-tongues-malware-
authors-shake-up-their-programming-languages.

Microsoft Threat Intelligence Center (MSTIC). 2022. Hive ransomware gets
upgrades in Rust. https://www.microsoft.com/en-us/security/blog/2022/07/05/
hive-ransomware-gets-upgrades-in-rust/.

James Nutland and Michael Szeliga. 2024. Akira ransomware continues to evolve.
https://blog.talosintelligence.com/akira-ransomware-continues- to-evolve/.
Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. 2023. LLM is
Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
arXiv preprint arXiv:2308.02828 (2023).

Constantinos Patsakis, David Arroyo, and Fran Casino. 2024. The Malware as a
Service ecosystem. In Malware: Handbook of Prevention and Detection. Springer,
371-394.

Constantinos Patsakis, Fran Casino, and Nikolaos Lykousas. 2024. Assessing
LLMs in malicious code deobfuscation of real-world malware campaigns. Expert
Syst. Appl. 256 (2024), 124912. doi:10.1016/J. ESWA.2024.124912

Andre Pawlowski, Moritz Contag, and Thorsten Holz. 2016. Probfuscation: An
Obfuscation Approach using Probabilistic Control Flows. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 13th International Conference, DIMVA
2016, San Sebastian, Spain, July 7-8, 2016, Proceedings 13. Springer, 165-185.
Meghna Praveen and Wesam Almobaideen. 2023. The Current State of Research
on Malware Written in the Rust Programming Language. In 2023 International
Conference on Information Technology (ICIT). 266-270. doi:10.1109/ICIT58056.
2023.10226157

Alan Romano, Daniel Lehmann, Michael Pradel, and Weihang Wang. 2022. Wob-
fuscator: Obfuscating JavaScript Malware via Opportunistic Translation to We-
bAssembly. In 2022 IEEE Symposium on Security and Privacy (SP). 1574-1589.
doi:10.1109/SP46214.2022.9833626

Fardin Ahsan Sakib, Saadat Hasan Khan, and A. H. M. Rezaul Karim. 2024. Ex-
tending the Frontier of ChatGPT: Code Generation and Debugging. In 2024
International Conference on Electrical, Computer and Energy Technologies (ICECET.
1-6. doi:10.1109/ICECET61485.2024.10698405

SECURELIST by Kaspersky. 2019. Zebrocy’s Multilanguage Malware Salad.
https://securelist.com/zebrocys-multilanguage-malware- salad/90680/.
SentinelOne. 2024. SentinelOne and Intezer Team to Simplify Reverse Engineering
of Rust Malware. https://www.sentinelone.com/press/sentinelone-and-intezer-
team- to-simplify-reverse-engineering- of-rust-malware/.

sKyWlper Analysis Team. 2012. sKyWIper (a.k.a. Flame a.k.a. Flamer): A complex
malware for targeted attacks. https://ioactive.com/wp-content/uploads/2012/06/
skywiper.pdf.

TIOBE. 2024. TIOBE Index for December 2024. https://www.tiobe.com/tiobe-
index/.

US Cybersecurity and Infrastructure Security Agency (CISA). 2020. Cost of a
Cyber Incident: Systematic Review and Cross-Validation.

U.S. Cybersecurity and Infrastructure Security Agency (CISA). 2023. Cyber
Incident Reporting for Critical Infrastructure Act of 2022 (CIRCIA). https://www.
cisa.gov/circia.

Javier Vicente and Brett Stone-Gross. 2022. Analysis of BlackByte Ransomware’s
Go-Based Variants. https://www.zscaler.com/blogs/security-research/analysis-
blackbyte-ransomware-s-go-based-variants.

VirusTotal. 2024. Virtus Total Search Engine and APIL https://www.virustotal.
com/.

VirusTotal. 2024. VirusTotal Statistics. https://www.virustotal.com/gui/stats.
Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu. 2016. Translin-
gual Obfuscation. In 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). 128—144. d0i:10.1109/EuroSP.2016.21

Yan Wang, Shuai Wang, Pei Wang, and Dinghao Wu. 2018. Turing obfuscation.
In Security and Privacy in Communication Networks: 13th International Conference,
SecureComm 2017, Niagara Falls, ON, Canada, October 22-25, 2017, Proceedings 13.
Springer, 225-244.

Miuyin Yong Wong, Matthew Landen, Frank Li, Fabian Monrose, and Mustaque
Ahamad. 2024. Comparing Malware Evasion Theory with Practice: Results from
Interviews with Expert Analysts. In Twentieth Symposium on Usable Privacy and
Security (SOUPS 2024). USENIX Association, Philadelphia, PA, 61-80.

https://www.akamai.com/blog/security-research/hinatabot-uncovering-new-golang-ddos-botnet
https://www.akamai.com/blog/security-research/hinatabot-uncovering-new-golang-ddos-botnet
https://www.akamai.com/blog/security-research/mirai-based-noabot-crypto-mining
https://www.akamai.com/blog/security-research/mirai-based-noabot-crypto-mining
https://github.com/nihilboy/Coding-Malware-in-Fancy-Programming-Languages-for-Fun-and-Profit
https://github.com/nihilboy/Coding-Malware-in-Fancy-Programming-Languages-for-Fun-and-Profit
https://portal.av-atlas.org/malware
https://doi.org/10.1007/s11416-021-00409-8
https://cert.gov.ua/article/6276894
https://securelist.com/tomiris-called-they-want-their-turla-malware-back/109552/#jlorat
https://securelist.com/tomiris-called-they-want-their-turla-malware-back/109552/#jlorat
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021/
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021/
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
https://doi.org/10.48550/arXiv.2105.00565
https://doi.org/10.48550/arXiv.2105.00565
https://securelist.com/the-mystery-of-duqu-framework-solved-7/32354/
https://securelist.com/the-mystery-of-duqu-framework-solved-7/32354/
https://thehackernews.com/2021/05/a-new-buer-malware-variant-has-been.html
https://thehackernews.com/2021/05/a-new-buer-malware-variant-has-been.html
https://doi.org/10.1109/TSE.2024.3392499
https://doi.org/10.1145/3294032.3294083
https://github.com/mandiant/capa
https://www.virusbulletin.com/virusbulletin/2014/07/not-old-enough-be-forgotten-new-chic-visual-basic-6
https://www.virusbulletin.com/virusbulletin/2014/07/not-old-enough-be-forgotten-new-chic-visual-basic-6
https://frsecure.com/blog/the-rebol-yell-new-rebol-exploit/
https://frsecure.com/blog/the-rebol-yell-new-rebol-exploit/
https://attack.mitre.org/groups/G0016/
https://center-for-threat-informed-defense.github.io/sightings_ecosystem/key-results/
https://center-for-threat-informed-defense.github.io/sightings_ecosystem/key-results/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1055/
https://readme.synack.com/hacking-in-tongues-malware-authors-shake-up-their-programming-languages
https://readme.synack.com/hacking-in-tongues-malware-authors-shake-up-their-programming-languages
https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/
https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/
https://blog.talosintelligence.com/akira-ransomware-continues-to-evolve/
https://doi.org/10.1016/J.ESWA.2024.124912
https://doi.org/10.1109/ICIT58056.2023.10226157
https://doi.org/10.1109/ICIT58056.2023.10226157
https://doi.org/10.1109/SP46214.2022.9833626
https://doi.org/10.1109/ICECET61485.2024.10698405
https://securelist.com/zebrocys-multilanguage-malware-salad/90680/
https://www.sentinelone.com/press/sentinelone-and-intezer-team-to-simplify-reverse-engineering-of-rust-malware/
https://www.sentinelone.com/press/sentinelone-and-intezer-team-to-simplify-reverse-engineering-of-rust-malware/
https://ioactive.com/wp-content/uploads/2012/06/skywiper.pdf
https://ioactive.com/wp-content/uploads/2012/06/skywiper.pdf
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.cisa.gov/circia
https://www.cisa.gov/circia
https://www.zscaler.com/blogs/security-research/analysis-blackbyte-ransomware-s-go-based-variants
https://www.zscaler.com/blogs/security-research/analysis-blackbyte-ransomware-s-go-based-variants
https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/gui/stats
https://doi.org/10.1109/EuroSP.2016.21

	Abstract
	1 Introduction
	2 Related work
	3 Motivation and Methodology
	4 Experiment
	4.1 Setting Up the Experiment
	4.2 VirusTotal Results
	4.3 Open Source Static Analysis Tools
	4.4 Shellcode Fragmentation
	4.5 Reverse Engineering Metrics
	4.6 Case Study: Haskell Reverse Engineering

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

