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Abstract

Over the past decade, model-based reinforcement learning (MBRL) has become a lead-
ing approach for solving complex decision-making problems. A prominent algorithm
in this domain is MuZero, which integrates Monte Carlo Tree Search (MCTS) with
deep neural networks and a latent world model to predict future states and outcomes.
Despite its effectiveness, MuZero is inherently limited by the sequential nature of its
search-tree construction during planning. In this work, we address this limitation by
introducing TransZero-Parallel, the first model capable of constructing MCTS with-
out any sequential constraints. This method replaces MuZero’s recurrent dynamics
model with a transformer-based network, enabling the computation of a sequence of
latent future states in parallel. We combine this with the MVC evaluator, which allows
the search tree to be built without depending on the inherently sequential visitation
counts. Together with small modifications to the MCTS algorithm, this enables the
parallel expansion of entire subtrees within the search tree. Experiments in MiniGrid
and LunarLander environments demonstrate that this combined approach yields up to
an eleven-fold reduction in wall clock time while maintaining sample efficiency. These
results highlight the potential of TransZero-Parallel to improve planning performance
and reduce training time in model-based RL—bringing the field closer to real-time,
real-world applications. The code is available through GitHub 1.
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Chair: Dr. J.W. (Wendelin) Böhmer, Faculty EEMCS, TU Delft
Committee Member: Dr. Tom Viering, Faculty EEMCS, TU Delft

1https://github.com/emalmsten/TransZero

emalmsten@tudelft.nl
https://github.com/emalmsten/TransZero


Preface

This work would not have been possible without the insight and encouragement of Wendelin
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Chapter 1

Introduction

Deep Reinforcement Learning has shown consistent success in various closed-domain en-
vironments, particularly in games. A notable milestone was AlphaGo [1], the first system
to reach superhuman performance in the game of Go, which is known for its vast state
space. It combined deep learning with Monte Carlo Tree Search (MCTS) [2] to guide and
evaluate moves. Its successor, AlphaZero [3], extended this achievement to multiple board
games, relying solely on self-play without incorporating human expert knowledge. In 2019,
MuZero [4] further advanced this line of research by attaining superhuman performance
not only in the same board games as AlphaZero but also in a wide range of Atari games.
This was accomplished by learning an implicit model of the environment without requiring
explicit access to the environment’s transition dynamics.

While MuZero has achieved notable results, it still has limitations. One of the main chal-
lenges lies in its sequential planning strategy. Specifically, MuZero unrolls action sequences
recurrently, as each predicted latent state depends on the previous one and must be com-
puted step by step using the model’s dynamics network. In addition, it can expand only one
promising node at a time in its search tree. This expansion is guided by visitation statistics.
Each step requires updating these statistics before continuing to the next expansion. This
inherently sequential process limits the efficiency and scalability of planning.

This research aims to overcome MuZero’s sequential bottleneck by enabling it to expand
multiple nodes in parallel during planning. Parallelizing the planning process improves both
speed and scalability, significantly reducing training and inference time. The goal is to make
MuZero more suitable for real-time decision-making in complex, dynamic environments
such as robotics and autonomous systems.

To our knowledge, this is the first work to construct MCTS without any sequential con-
straints. Our approach consists of three main parts. First, to eliminate MuZero’s reliance
on recurrent rollouts, we introduce TransZero, which is a MuZero architecture using a
transformer-based dynamics network. This model can perform an entire rollout in paral-
lel by leveraging the self-attention mechanism to model temporal dependencies. Second,
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1.1. Contributions

we adopt the Mean-Variance Constrained (MVC) evaluator from Jaldevik [5] to expand
promising actions independently of how the search tree was built, i.e., without relying on
visitation counts. Finally, we combine these two approaches, along with modifications to
the MCTS, into what we call TransZero-Parallel. This model can evaluate the nodes of
entire subtrees in parallel, allowing significantly faster planning than MuZero.

This research is guided by the following questions:

• How do the sample efficiency and computational speed of TransZero compare to
those of MuZero?

• Can the latent search tree in MuZero be expanded using MVC while preserving sam-
ple efficiency?

• To what extent can planning speed be increased using TransZero-Parallel without
sacrificing sample efficiency?

1.1 Contributions

The main contributions of this thesis are as follows:

• We propose a novel MuZero architecture in which the dynamics network is replaced
by a transformer.

• This is the first work to integrate the MVC evaluator, originally created for Alp-
haZero, into the MuZero framework.

• We introduce a novel method for expanding entire subtrees in parallel by combining
a transformer-based dynamics model with the MVC evaluator along with alterations
to the MCTS.

• We empirically evaluate all proposed architectures in the MiniGrid and LunarLander
environments.

1.2 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 gives the relevant background. It includes explanations of relevant rein-
forcement learning concepts, introduces how MuZero works, explains the general-
purpose tree evaluation framework, and provides an overview of transformer archi-
tectures relevant to this work.

• Chapter 3 presents our proposed method. It begins by detailing how we replace
MuZero’s dynamics network with a transformer-based architecture, followed by the
introduction of the MVC evaluator and the parallel expansion technique.

2



1.2. Outline

• Chapter 4 reviews related work. It covers the use of transformers in model-based
reinforcement learning, their application in AlphaZero and MuZero, and prior efforts
to parallelize Monte Carlo Tree Search.

• Chapter 5 describes our experimental setup. We introduce the agents used, the envi-
ronments tested, and the different types of experiments conducted.

• Chapter 6 presents the results. It evaluates the proposed transformer-based architec-
ture, the integration of the MVC evaluator, and the performance of the parallelized
version.

• Chapter 7 discusses the experimental findings and outlines future directions.

• Chapter 8 summarizes the contributions of this thesis and explains their significance.

3



Chapter 2

Background

This chapter begins in section 2.1 with a brief overview of reinforcement learning. Sec-
tion 2.2 details the MuZero algorithm, highlighting the components most relevant to this
work. In section 2.3, we describe tree evaluation techniques from Jaldevik [5] that decouple
value estimation from tree construction. Section 2.4 concludes with a summary of trans-
former networks.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a framework for training agents to make decisions through
interaction with an environment. At its core is the concept of a Markov Decision Process
(MDP) [6]. An MDP models the environment as a set of states. At each time step t, the
agent is in a state st , selects an action at , receives a reward rt , and transitions to a new state
st+1. The key principle is that the next state depends only on the current state and action,
not on the full history; this is known as the Markov property.

The agent often does not observe the full state directly. Instead, it receives an observation
ot , which provides partial information about the underlying state. In some environments,
the observation fully reveals the current state; this corresponds to a standard MDP, where
ot = st . In other environments, the observation only provides partial information about
the state. These cases are modeled as Partially Observable Markov Decision Processes
(POMDPs).

The main objective in both MDPs and POMDPs is to learn a policy π(s,a) — a rule for
choosing an action a given a state s — to maximize the agent’s expected return over time.
Formally, starting from state s, this return is captured by the value function:

Vπ(s) = Eπ

[
∞

∑
t=0

γ
trt

∣∣∣∣∣s0 = s

]
.

Here, Vπ(s) denotes the expected total reward the agent receives when it starts in state s and
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2.2. MuZero: Monte Carlo Tree Search in Latent Space

follows policy π. The discount factor γ∈ [0,1] weights the immediate rewards more heavily
than the future ones.

A common extension of RL is model-based reinforcement learning (MBRL), which incor-
porates a model of the environment’s dynamics. This allows the agent to simulate future
trajectories in a latent space and plan actions accordingly. The latent space is a lower-
dimensional learned representation of the environment that captures the most essential fea-
tures to make accurate predictions. This added structure typically improves sample effi-
ciency.

2.2 MuZero: Monte Carlo Tree Search in Latent Space

MuZero [4] is a Model-Based Reinforcement Learning (MBRL) algorithm that extends Al-
phaZero [3] by learning an implicit model of the environment’s dynamics from experience,
rather than relying on known dynamics. It combines this learned model with Monte Carlo
Tree Search (MCTS) [2] in latent space to plan future actions. MCTS is a popular heuris-
tic search algorithm for sequential decision-making problems. It combines principles from
search-tree algorithms — such as those used in Minimax [7] — with elements of Monte
Carlo sampling. In this thesis, we define a search tree as a structure in which each node x
represents a unique action sequence that starts from an initial state or observation.

In subsection 2.2.1, we describe how MCTS builds a latent search tree by rolling out la-
tent trajectories from an observation received from the environment. In subsection 2.2.2,
we explain how the algorithm selects an action to take in the real environment based on
the statistics generated by the latent search tree. Finally, subsection 2.2.3 discusses how
MuZero learns from the trajectories generated during this process.

2.2.1 Search-Tree Construction in Latent Space

In MuZero, the initial state is the observation ot , which is transformed into a latent space
using a representation network h, parameterized by θ:

s̃root = hθ(ot). (2.1)

The latent root state s̃root serves as the root node of the search tree. Throughout this work,
we use the terms latent state s̃ and tree node x interchangeably, as they represent the same
underlying concept in the search process. We denote Tx as the subtree rooted at node x.

The tree is built iteratively from the root node xroot by performing three main steps: selec-
tion, expansion, and backup. These steps are detailed below and illustrated in Figure 2.1.
Since the process is iterative, we assume that part of the search tree has already been con-
structed using this procedure. The three-step process is executed for a fixed number of sim-
ulations before selecting an action in the real environment, as described in subsection 2.2.2.

5



2.2. MuZero: Monte Carlo Tree Search in Latent Space

Figure 2.1: Overview of how MCTS works in MuZero. The selection stage (orange arrows)
shows which nodes and actions are chosen. In the expansion stage, an observation ot is
encoded into a latent state s̃root using the representation network hθ (blue arrow). The dy-
namics network gθ (green arrows) updates latent states from selected actions and previous
latent states. The prediction network fθ (pink arrow) outputs the policy, value, and reward
from the newly created latent state. During the backup stage, the value estimate V̂ is propa-
gated back through its ancestors (dashed orange arrows).

Selection

From the root node xroot, MuZero recursively selects actions in the search tree until it reaches
a leaf node, i.e. a node that has not yet been expanded (expansion is explained in sec-
tion 2.2.1). This selection process uses the PUCT formula, which balances exploration and
exploitation:

a∗ = ArgMax
a∈A

[Q(x⊎a)+U(x⊎a)] (2.2)

where:

• a∗ is the action selected within the search tree (as opposed to the real environment),

• A is the action space of the environment—that is, all actions available to the agent,

• x⊎a denotes the node reached by taking action a from node x,

• Q(x) is the estimated Q-value for node x,

• U(x) is an exploration bonus based on visit counts and prior probabilities.

6



2.2. MuZero: Monte Carlo Tree Search in Latent Space

The Q-value estimate Q(x⊎a) is computed as:

Q(x⊎a) = r(x⊎a)+ γ ·V̂ (x⊎a) (2.3)

where:

• r(x) is the reward predicted by the prediction network for node x. Note that it is
different from the actual reward received in a time step t, denoted rt .

• V̂ (x) is a value estimate of x, computed as a discounted average of value estimates
from the nodes in the subtree Tx. While Vπ(s) is the true expected return under policy
π from state s, V̂ (x) is MuZero’s internal estimate based on simulations in the latent
space. The computation of this value estimate will be detailed in section 2.2.1.

The exploration bonus U(x⊎a) is calculated as follows:

U(x⊎a) =Cpuct · p(x,a) ·
√

N(x)
1+N(x⊎a)

where:

• Cpuct is a constant that controls the degree of exploration,

• p(x,a) is the prior probability of taking action a from node x. It is predicted by the
policy network to guide the search toward the most promising actions.

• N(x) = |Tx| is the number of nodes in the subtree rooted at x, often referred to as the
visitation count. It includes x if x has been expanded (see section 2.2.1).

Expansion

When a leaf node xn is reached through the selection process, the algorithm moves onto the
expansion stage. A leaf node is defined as one that has not yet been expanded, which means
that predictions for value, reward, and policy priors have not been computed. The parent of
the leaf node to be expanded is xn−1 and we will denote it as x∗. To obtain these predictions,
we first compute the latent state representation by recursively applying the learned dynamics
function g, parameterized by θ, as follows:

s̃n = gθ(s̃n−1,a∗).

Here, s̃n−1 is the latent state representation of the parent node of xn, and a∗ is the action
selected by the selection process that leads from the parent node to xn.

The application of the dynamics function must start from the latent root state s̃root and
proceed recurrently. However, the intermediate latent states are cached at each node to
avoid redundant computation.

7



2.2. MuZero: Monte Carlo Tree Search in Latent Space

From the latent state s̃n, MuZero then uses its prediction network fθ, parameterized by θ, to
predict three outputs:

p(xn), v(xn), r(xn) = fθ(s̃n)

• p(xn) ∈ R|A| is the prior policy, a probability distribution over the action space A

when being in state sn i.e the state represented by s̃n. Note that ∑a∈A p(xn,a) =
1 and p(xn,a)≥ 0.

• v(xn) ∈ R is the value: the expected total return from state sn,

• r(xn) ∈ R is the reward: the immediate reward received for reaching state sn.

Backup

After expansion and prediction, the value estimates at the leaf nodes are backed up to update
the estimate values V̂ at each parent node along the search path. At the leaf node the initial
value is set such that:

V̂(x) = v(x) if leaf(x).

Here, V̂(x) denotes the value estimate at node x for this specific simulation, note that this is
different from V̂ (x) which is the running average over all simulations. The operator leaf(x)
returns true if x is a leaf node. This value estimate is then propagated upward through the
tree using:

V̂(x) = r(x⊎a)+ γ · V̂(x⊎a) if not leaf(x).

Finally, V̂(x) is used to update the running average estimate V̂ (x) at node x:

V̂ (x)← N(x) ·V̂ (x)+ V̂(x)
N(x)+1

.

2.2.2 Action Selection

After running a fixed number of simulations, MuZero selects an action to execute in the
real environment based on the search statistics generated by MCTS. Specifically, it defines
a policy π(st ,a) as follows:

π(st ,a) =
N(st ,a)1/τ

∑b∈A N(st ,b)1/τ
.

This policy is derived from the subtree visit counts N(xroot⊎a) for all a ∈A, which, outside
the context of MCTS, are denoted N(st ,a). Similarly, we refer to the value estimate V̂ (xroot)
as V̂ (st) outside the search. The parameter τ ∈ (0,∞) is a temperature that controls the level
of exploration. When τ > 0, the policy assigns non-zero probabilities to multiple actions,
encouraging exploration. This setting is typically used during training. In contrast, during
inference or evaluation, we let τ→ 0, which results in selecting the action corresponding to
the child node with the largest subtree:

8



2.2. MuZero: Monte Carlo Tree Search in Latent Space

lim
τ→0

π(st ,a) =

{
1 if a = PolicyMaxa′∈A N(st ⊎a′)
0 otherwise

.

We define the PolicyMax function to return a uniform distribution over all actions that share
the highest visit count. If only one action has the highest count, it is selected deterministi-
cally.

Once MuZero executes an action in the environment, it receives the next observation ot+1
and constructs a new MCTS using the process described in subsection 2.2.1.

2.2.3 Training the Model

MuZero improves its model by training on environment trajectories obtained by self-play.
Self-play refers to the agent generating trajectories through its own interaction with the
environment. Each trajectory is unrolled over K steps. Starting from the state st , it collects
environment data and search statistics up to st+K . MuZero uses its learned dynamics model
to reconstruct the trajectory in latent space. These latent states are generated recurrently,
just as during MCTS:

s̃0 = hθ(ot), s̃i+1 = gθ(s̃i,at+i) for i = 0, . . . ,K−1.

At each latent state s̃i, the prediction function fθ outputs the policy priors, reward, and value:

p(s̃i),r(s̃i),v(s̃i) = fθ(s̃i) for i = 0, . . . ,K−1.

For the reward targets, we use the true environment rewards ri at each unrolled time step:

rtarget
i = ri.

The policy targets are the normalized visitation counts produced by MCTS at each step:

ptarget
i =

N(si,a)
∑b∈A N(si,b)

∀a ∈A.

The value target is computed using a temporal-difference (TD) estimate:

vtarget
i =

nT D−1

∑
j=0

γ
jri+ j + γ

nT D ·V̂ (si+nT D)

where nT D is the number of TD steps.

The overall training loss at time step t is:

Lt(θ) =
K

∑
i=0

[
ℓv(v(s̃i), vtarget

i )+ ℓr(r(s̃i), rtarget
i )+ ℓp(p(s̃i), ptarget

i )
]
+λ · ||θ||2

9



2.3. General Tree Evaluation

• ℓv, ℓr, ℓp: loss terms for value, reward, and policy. In our implementation, these are
cross-entropy losses.

• λ: regularization coefficient.

2.3 General Tree Evaluation

In Jaldevik [5], the author proposes a method for evaluating the value of nodes in the MCTS
of AlphaZero that is decoupled from how the tree was constructed. In both AlphaZero and
MuZero, visitation counts are used to guide exploration and value estimation. However, this
reliance on visitation counts poses challenges if one wishes to modify the tree construction
strategy. For example, switching to breadth-first search would invalidate the use of visi-
tation counts, since they would no longer reflect a meaningful measure of node value or
exploration.

In subsection 2.3.1, we define the general framework for evaluating nodes in a search tree
independent of visitation counts. Then, in subsection 2.3.2 we introduce the Q-evaluator,
which focuses on maximizing estimated value. Next, in subsection 2.3.3 we present the
minimal variance evaluator, which minimizes uncertainty in value estimates. Finally, sub-
section 2.3.4 combines both goals through the MVC evaluator, which balances high-value
estimation with low variance.

2.3.1 Defining a Tree Evaluation Policy

Let π̃ denote a tree evaluation policy that operates over an extended action set:

Av =A∪{av}.

where av is a special simulation action that corresponds to directly evaluating a node, in the
case of MuZero, it is a neural-network value estimate. Since av cannot be taken in the real
environment, we can translate the tree evaluation policy π̃ into a usable environment policy
π by normalizing over the real action space:

π(x,a) =
π̃(x,a)

1− π̃(x,av)
∝ π̃(x,a).

Note that in this context, π(x,a) is a policy determined over a tree node x, not a state s.

We define the estimated value of node x under the tree evaluation policy π̃ as:

V̂π̃(x) = ∑
a∈Av

π̃(x,a)Qπ̃(x⊎a),

where Qπ̃(x) is given by
Qπ̃(x) = r(x)+ γ ·V̂π̃(x).

In this formulation, π̃(x,a) is a probability distribution over all actions in Av. For the special
simulation action av, we define its associated value directly using the network prediction:

Qπ̃(x⊎av) = v(x).

10



2.3. General Tree Evaluation

2.3.2 The Q-evaluator

When designing a statistical estimator for node values, two primary considerations are bias
and variance. In the context of search, bias occurs when the estimator systematically de-
viates from the true optimal value. One way to eliminate (negative) bias is by using the
Q-evaluator, defined as:

π̃Q(x) = ArgMax
π̃

V̂π̃(x).

This policy selects the action that yields the highest Q-value estimate:

π̃Q(x,a) = PolicyMax
A

Qπ̃(x⊎a).

However, a limitation of this evaluator is that the Q-values are empirically estimated and
may introduce significant variance. Because the Q-evaluator does not account for this vari-
ance, its value estimates may fluctuate considerably.

2.3.3 The Minimal Variance Evaluator

If the goal is to reduce the variance in the estimated value at each node, one can use the
minimal variance evaluator, defined as:

π̃var = ArgMin
π̃

V[V̂π̃].

To compute V[V̂π̃(x)], we make several assumptions: the environment is deterministic; re-
wards and simulation values are independent, and rewards across steps are uncorrelated.
Under these assumptions, the variance simplifies to:

V[V̂π̃(x)] = γ
−2V[Qπ̃(x)].

If we further assume that the variance of each simulation value is constant and equal to σ2,
we can express the variance of the Q-value estimate as:

V[Qπ̃(x)] = σ
2

∑
y∈Tx

Λπ̃(x,y,γ)2

π̃(y,av)2 ,

where Λπ̃(x,y,γ) is the discounted probability of reaching node y from node x under policy
π̃.

Based on this formulation, the minimal variance evaluator selects actions using the inverse
of the Q-value variance:

π̃var(x,a) =
V
[
Qπ̃(x⊎a)

]−1

∑bV
[
Qπ̃(x⊎b)

]−1 ∝ V
[
Qπ̃(x⊎a)

]−1
.

While this approach effectively reduces the variance in value estimates, it can lead to un-
derestimation of the optimal value.

11



2.4. Transformer Networks

2.3.4 Balancing Mean and Variance: The MVC Evaluator [5]

In practice, neither a purely variance-minimizing nor a purely Q-maximizing approach is
ideal. To interpolate between these extremes, one can use the Mean-Variance Constrained
(MVC) evaluator, which balances assigning probability to high-value actions while keeping
variance under control. This is achieved using a hyperparameter β > 0. The evaluator is
defined as:

π̃MVC = ArgMax
π̃

(
V̂π̃− 1

β
KL
(
π̃ , π̃Var

))
where KL(· , ·) denotes the Kullback–Leibler divergence. This optimization has a closed-
form solution:

π̃MVC(x,a) ∝ π̃Var(x,a)exp
(
βQπ̃(x⊎a)

)
. (2.4)

As β→ 0+, the MVC policy converges to the minimal-variance policy π̃Var; as β→ ∞, it
converges to the Q-evaluator π̃Q.

2.4 Transformer Networks

Transformers are a deep learning architecture designed to process sequential data. Unlike
recurrent networks, which handle sequences step by step, transformers use a self-attention
mechanism that allows them to consider all positions in the sequence simultaneously. In
subsection 2.4.1, we describe how the input sequence is constructed for the transformer
encoder. In subsection 2.4.3 masking is introduced. In subsection 2.4.2 we present the self-
attention mechanism, the core component of the transformer. In subsection 2.4.4, we extend
this mechanism to multi-head attention. Then, in subsection 2.4.5, we explain how these
components are integrated into the full transformer encoder. Finally, subsection 2.4.6 intro-
duces the Vision Transformer, which adapts the transformer architecture for visual tasks.

2.4.1 Creating the Input Sequence

The input sequence we wish to transform into a latent representation is denoted as X . It
consists of n elements, referred to as tokens. In our setting, the first token represents the ini-
tial latent state, and each subsequent token corresponds to one action in an action sequence.
Consequently, each token xi ∈ X can be interpreted as representing a node in the underlying
search tree of the MCTS. Each token is mapped to a vector of dimension dt through an em-
bedding process. Typically, a learned embedding layer is used for this purpose. We denote
the token embedding operator as Token Embed(·), which maps each token to a vector in
Rd

t .

Since transformers do not process inputs sequentially and do not use convolution, they
require an additional mechanism to encode the position of each token in the sequence. This
is achieved by adding positional encodings to the input embeddings. A common approach
uses fixed sinusoidal functions:

PE(pos,2i) = sin
( pos

F2i/dt

)
, PE(pos,2i+1) = cos

( pos
F2i/dt

)
.

12



2.4. Transformer Networks

Here, pos ∈ {1, . . . ,n} denotes the position index in the sequence, i ∈ {0, . . . ,dt/2− 1} is
the dimension index, and F is a constant controlling the frequency scale, typically set to
10,000. Sine functions are used for even indices 2i and cosine functions for odd indices
2i+1. These encodings assign a unique, continuous pattern to each position and enable the
model to infer both absolute and relative positions due to the linear properties of sinusoids.

If we add both the token embeddings and their corresponding positional encodings, we
obtain the input embeddings. Formally, for a sequence of n tokens x1, . . . ,xn, the input
embedding for the i-th token is given by:

Xemb = Input Embed(X) = [Token Embed(xi)+PE(Di)]
n
i=1 ∈ Rn×dt .

Here, Di denotes the position of token xi in the sequence, which in our setting corresponds
to the depth of node xi in the search tree. The resulting sequence of embedded tokens Xemb

will serve as the input to the first layer of the transformer encoder.

2.4.2 Self-Attention Mechanism

Given the embedded tokens Xemb, the self-attention mechanism computes projections for
the query (Q′), key (K′), and value (V ′) matrices as follows:

Q′ = XembWQ′ , K′ = XembWK′ , V ′ = XembWV ′

where WQ′ ,WK′ ,WV ′ ∈ Rdt×dk are learned projection matrices, and dk is the dimensionality
of the query and key vectors. Note that the term ”value” used in the context of transformers
refers to the input to the attention mechanism and is unrelated to the value used in MuZero.

The scaled dot-product attention is computed as:

Attention(Xemb) = softmax
(

Q′K′ T√
dk

)
V ′.

The product Q′K′⊤ ∈ Rn×n is the attention matrix. Each entry (i, j) is a raw score that tells
how much token j influences token i—this influence is what we mean by attention. These
scores are used to weight the value vectors V ′, which contain the actual information from
each token. In effect, token i builds its final representation by combining information from
all other tokens, with each one contributing according to its attention score. The division by√

dk is a scaling factor that keeps gradients stable.

2.4.3 Masking

In transformer architectures, masking is used to control which tokens can attend, i.e. influ-
ence, others during self-attention. A common form is the causal attention mask, denoted
Mcausal ∈ {0,1}n×n. This mask restricts the flow of information so that a token at posi-
tion i cannot attend any future positions j > i. Such masking is essential in autoregressive
settings, where predictions must not depend on future inputs.

13
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Formally, the causal mask is defined elementwise as:

Mi j =

{
1 if j ≤ i
0 otherwise.

This binary matrix is applied during the computation of scaled dot-product attention. Given
the projected queries Q′, keys K′, and values V ′, the masked attention is computed as:

Attention(Xemb,M) = softmax
(

Q′K′⊤√
dk

+ logM
)

V ′.

In practice, logM is not computed directly, since log(0) is undefined. Instead, positions
where Mi j = 0 are replaced by a large negative constant (e.g., −109) to approximate the
effect of log(0)→−∞. This ensures that the softmax assigns near-zero probability to those
positions, so each token only attends to itself and to previous tokens, as enforced by the
mask.

2.4.4 Multi-Head Attention

Multi-head attention runs several independent self-attention computations—called heads—in
parallel. Each head has its own learned projection matrices and can capture different types
of relationships between embedded tokens.

For each head i ∈ {1, . . . ,h}, we define separate projection weights:

WQ′,i, WK′,i, WV ′,i ∈ Rdt×dk .

Each head then computes:

Q′i = XembWQ′,i, K′i = XembWK′,i, V ′i = XembWV ′,i

headi = softmax

(
Q′iK

′⊤
i√

dk
+ logM

)
V ′i .

The outputs from all heads are concatenated and projected back to the original embedding
dimension using a final projection matrix WO ∈ Rh·dk×dt :

MultiHead(Xemb,M) = Concat(head1, . . . ,headh)WO.

This mechanism allows the model to learn attention patterns in multiple representation sub-
spaces and integrate them into a single output.

2.4.5 Transformer Encoder

The transformer encoder takes the embedded tokens Xemb and outputs an updated sequence
S̃∈Rn×dt , where each token’s representation has been refined based on information from the
entire sequence. This is done by passing Xemb through one or more stacked encoder layers.
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2.4. Transformer Networks

Each encoder layer consists of two main components: masked multi-head self-attention
and a feedforward network (FFN). Both are followed by residual connections and layer
normalization. The FFN is a two-layer MLP applied independently to each token. It allows
the model to transform features at each position without mixing information across tokens.
Each residual connection adds the input of a sub-layer (e.g., attention or feedforward) to its
output before applying layer normalization. This helps preserve information and improves
training stability.

Given input Xemb, a single encoder layer performs the following steps:

MHA = MultiHead(Xemb,Mcausal) (masked multi-head self-attention)

LN = LayerNorm(Xemb +MHA) (residual connection + normalization)

FFN = ReLU(LNW1 +b1)W2 +b2 (feedforward network)

S̃(l) = LayerNorm(LN +FFN) (second residual connection + normalization)

Here, W1 ∈ Rdt×dff and W2 ∈ Rdff×dt are weight matrices of the feedforward network, and
b1 ∈ Rdff and b2 ∈ Rdt are the corresponding bias terms. The intermediate dimension dff is
typically larger than dt and controls the capacity of the feedforward layer. The output of a
single encoder layer is denoted S̃(l) ∈ Rn×dt , where l refers to the layer index. Stacking Le

such layers produces the final encoder output S̃ ∈ Rn×dt , computed as:

S̃=TransformerEncoder(Xemb,Mcausal)=EncoderLayerLe
(. . .(EncoderLayer1(X

emb,Mcausal)) . . .).

2.4.6 Vision Transformer

The Vision Transformer [8] adapts the transformer architecture—originally designed for
sequential data—to image classification and related computer vision tasks. The core idea
is to treat an image as a sequence of fixed-size patches, analogous to tokens in a language
model.

Given an input image, it is first divided into a grid of n non-overlapping patches. These
patches are then flattened into vectors, forming a patch sequence. Each patch vector is
linearly embedded. As in the standard transformer, positional information is added to the
patch embeddings. In our case, we use a simplified variant of the Vision Transformer [9],
which employs a fixed 2D sinusoidal positional encoding that respects the original 2D spa-
tial layout of the image patches.

The resulting embedded sequence is passed through a standard transformer encoder, identi-
cal in structure to that described in subsection 2.4.5, but typically without causal masking,
as all tokens can attend each other. The simplified Vision Transformer then performs global
average pooling over the final layer’s patch embeddings to produce the final image repre-
sentation.

15



Chapter 3

The TransZero Algorithm

In section 3.1, we describe how the TransZero agent is created by replacing the dynam-
ics network with a transformer encoder. Then, in section 3.2, we introduce TransZero
with MVC, which uses the Mean Variance Constrained (MVC) evaluator to decouple tree
construction from node evaluation. Finally, in section 3.3, we present TransZero-Parallel,
which expands multiple nodes in parallel during MCTS, substantially accelerating the plan-
ning process.

3.1 TransZero

We create TransZero by replacing the dynamics network gθ in MuZero with a transformer-
based network, denoted gtrans

θ
. This modification enables the model to generate a new latent

state s̃n from an initial latent state s̃root and the sequence of actions that leads to the node
xn associated with s̃n. A figure illustrating the difference in the expansion stage when using
this new dynamics network is shown in Figure 3.1. In describing the process, we omit the
batch dimension for simplicity, i.e., the shapes are shown as if B = 1.

In subsection 3.1.1, we describe how the action sequence and root latent state are tokenized
and embedded to form the input to the transformer dynamics network. subsection 3.1.2
explains how this network generates latent states using self-attention. Finally, in subsec-
tion 3.1.3, we show how this setup enables parallel computation of the loss.
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Figure 3.1: Comparison of MCTS in TransZero and MuZero. The expansion step in
MuZero is the same as shown in Figure 2.1, and the backup and selection steps remain
unchanged in TransZero. In TransZero, the new dynamics network gtrans

θ
(green arrows)

generates latent states s̃1, s̃2, and s̃3 using the initial latent state s̃root (produced by the repre-
sentation network) and the sequence of selected actions (orange) that leads to the new node
x3. The prediction network fθ (pink arrow) operates as in the original MuZero.

3.1.1 Tokenization of Observations and Actions

We begin by defining our sequence of tokens X as:

X = [s̃root ∥ as̃root→xn ] ∈ Rn×dt .

Here, as̃root→xn denotes the ordered sequence of actions leading from the initial latent root
state s̃root to the target node xn that is to be expanded. The operator ∥ represents the con-
catenation of one element or a list with another list.

The latent root state s̃root is obtained using the representation network hθ, as previously de-
scribed by Equation 2.1. Since s̃root is already a vector in Rdt , it does not require further
embedding. Each action in the sequence is embedded using a learnable action embedding
layer and augmented with sinusoidal positional encoding to form the embedded token se-
quence Xemb:

Xemb = [ s̃root ∥ Input Embed(X1:n) ].

We use Python-style slice notation X1:n, which selects the subsequence from index 1 up to
(but not including) index n.
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3.1.2 The Transformer Dynamics Network

We define the new dynamics network gtrans
θ

to operate as TransformerEncoder(·) and apply
it to the embedded input sequence Xemb as follows:

S̃ = gtrans
θ (Xemb,Mcausal) ∈ Rn×dt ,

where S̃ = (s̃0, s̃1, . . . , s̃n), i.e., a sequence of latent states. The causal mask Mcausal is applied
to ensure that future actions do not influence past ones.

To obtain predictions for s̃n—the latent state corresponding to the node being expanded—we
apply the prediction network fθ to s̃n. This follows the standard expansion process described
in section 2.2.1. The backup process also remains unchanged from the description in sec-
tion 2.2.1.

An implementation detail is that we set the first latent state in S̃ to s̃root, which means that
the predictions are made using the output of the representation network rather than the first
latent state produced by the dynamics network.

3.1.3 Parallelizing the Loss Function

In standard MuZero, each node in the MCTS stores a cached latent state, which means that
the approach described in subsection 3.1.2 does not provide direct computational benefits
during planning. However, it does enable parallelization of the loss computation across the
unroll steps K. In the conventional setup, each new latent state is computed sequentially,
with each step depending on the previous one. This requires K sequential forward passes to
produce the full sequence of latent states. In contrast, TransZero processes the entire action
sequence in a single forward pass, producing all latent states S̃0:K simultaneously for the
full unroll.

3.2 TransZero with MVC

In this section, we describe the concrete steps taken to eliminate reliance on visitation counts
when constructing the MCTS. We refer to the resulting agent as TransZero with MVC since
we only evaluate it in combination with TransZero. However, it can also be used with
standard MuZero without requiring any additional modifications.

We begin by explaining how to compute the Q-value estimate and its variance in subsec-
tion 3.2.1, which allows us to use π̃MVC as the action selection policy. In subsection 3.2.2,
we discuss how the UCB score can be computed using the new Q-value estimate and its
variance. Next, subsection 3.2.3 introduces updated value and policy targets. Finally, we
describe a new caching strategy that accelerates the process in subsection 3.2.4.
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3.2.1 Calculation of the Q-Value Estimate and its Variance

Although Jaldevik [5] developed this method for AlphaZero, we can largely retain their
approach to calculating both V[Qπ̃(x)] and Qπ̃(x). In these computations, π̃ refers to π̃MVC,
and we assume the following constraint:

π̃(x,a) = 0 ∀ a ∈A if leaf(x).

If x is not a leaf, π̃(x,a) is calculated as described in Equation 2.4.

The Q-value estimate Qπ̃ is recursively computed as:

Qπ̃(x) = r(x)+ γ ∑
a∈Av

π̃(x,a)Qπ̃(x⊎a),

and the variance as:

V[Qπ̃(x)] = V[r(x)]+ γ
2 ·
(

π̃(x,Av)
⊤

π̃(x,Av)
)
V[Qπ̃(x⊎Av)].

The variance of the leaf is defined as:

V[Qπ̃(x)] = V[r(x)]+ γ
2 ·V[v(x)] if leaf(x).

In a deterministic environment, the reward variance is zero. As for the variance of the value
prediction V[v(x)], the original formulation sets this to 1

N(x) if the node x is terminal, and
to 1 otherwise. Since MuZero does not explicitly represent terminal nodes, we default to
using a value variance of 1 for all nodes. This results in a variance of γ2 at every leaf node.

3.2.2 PUCT Calculations using MVC

As described by Equation 2.2, PUCT is the sum of Q(x⊎ a) and U(x⊎ a). MVC already
defines a new Q-value estimate in the form of Qπ̃(x⊎a), so we replace Q(x⊎a) with that.
Since the calculation of U(x⊎a) is dependent on visitation counts, it also needs to be altered
for our implementation. The proposal from Jaldevik [5] was to replace N(x) with V[Qπ̃(x)]
since it was proved that the variance of the average return is inversely proportional to the
visitation count. This leads to the formulation

Uπ̃(x⊎a) =Cpuct · p(x,a) ·
√

V[Qπ̃(x)]−1

1+V[Qπ̃(x⊎a)]−1 .

3.2.3 Target Computation using MVC

The policy and value networks are trained using data generated by the visitation count pol-
icy. However, since the agent’s final policy is modified, the corresponding learning targets
must also be updated. Specifically, the target for the policy network should be the policy
derived from the tree evaluator, π̃MVC, rather than the one based on visitation counts. In the
original formulation by Jaldevik [5], the value target V̂ (x) is replaced by the predicted value
v(x). However, we argue that a more accurate target would be V̂π̃(x), as it better reflects the
estimated value under the same policy used during planning.
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3.2.4 Extended Caching

In Jaldevik [5], the authors computed and cached Qπ̃(x) and V[Qπ̃(x)] during action selec-
tion. These values were then discarded during the backup phase for every node encountered,
since value estimates propagate up the search tree. The affected nodes are the parents of
the new leaf node, those with dashed orange arrows that pass through them in Figure 2.1
(backup).

This caching mechanism effectively reduced computation. However, the initial implemen-
tation of TransZero with MVC still exhibited approximately a 6.5x slowdown in wall-clock
time compared to TransZero. To address this, we introduced two key improvements that
resulted in a 3.6x speedup relative to the original implementation. This reduced the overall
slowdown to 1.8x compared to the visitation count-based approach.

Our first improvement was to recalculate Qπ̃(x) and V[Qπ̃(x)] during the backup phase
instead of discarding them. This ensured that the depth of the search tree was traversed
only once during each simulation. Previously, the Q-value estimates and variances were
discarded during backup, and recalculating them later during action-selection required a
separate pass down to the newly introduced leaf node. Note that this recalculation applies
only to nodes where the Q-values and variances were discarded, not to the entire search tree.

Our second improvement was to cache each child’s Q-value estimate and variance directly
at its parent node. When a node is initialized, the estimated Q-values of its children are set
to 0, and the variances to γ2. During backpropagation, each child updates its corresponding
entry at the parent with its newly calculated Q-value and variance. This caching avoids the
need to initialize and populate an array by looping over the children to retrieve their values
when computing π̃(x,a).

3.3 TransZero-Parallel

By using a transformer, we can evaluate an entire action sequence in a single forward pass,
rather than unrolling it one action at a time. Additionally, the use of the MVC evaluator
decouples tree construction from node evaluation. Together, these two features—combined
with an alternative strategy for selection, generating action sequences, and masking, enable
the parallel evaluation of entire subtrees during planning. Although we expand a full sub-
tree during the expansion phase of MCTS, we still consider the combination of selection,
expansion, and backup a single simulation.

We refer to this agent as TransZero-Parallel. A visualization of the selection and backup
processes in this setting is shown in Figure 3.2, while expansion is shown in Figure 3.3.

In subsection 3.3.1, we describe how to construct action sequences that represent subtrees to
be expanded in parallel. Next, in subsection 3.3.2 we introduce a causal tree mask necessary
for parallel expansion. In subsection 3.3.3, we explain how the dynamics and prediction
networks process these sequences in parallel to generate value, reward, and policy estimates
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for entire subtrees. Finally, subsection 3.3.4 discusses how subtrees are stored and processed
efficiently during expansion and backup.

Figure 3.2: Selection and backup for MCTS in TransZero-Parallel. Expansion is shown in
Figure 3.3. The selection step in MuZero is roughly the same as shown in Figure 2.1, except
that we now select the entire subtree under x∗ instead of the most promising child node. The
backup is also the same except we now backup values relevant to the MVC-calculations.
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Figure 3.3: One expansion for MCTS in TransZero-Parallel. Backup and selection are
shown in Figure 3.2. The expansion step in MuZero is the same as shown in Figure 2.1,
except that we now expand the entire subtree under x∗ as well. We use the same dynamics
network gtrans

θ
as in TransZero (green arrows) to generate all latent states s̃1 until s̃4,4 using

the initial latent state s̃root and the sequence of selected actions (orange) leading to each
node. The prediction network fθ (pink arrows) operates as in the original MuZero, but
now processes all latent states in a single batch, outputting a corresponding batch of values,
rewards, and policy priors.

3.3.1 Action Sequence Construction for Trees

As in standard MCTS, we traverse the search tree by repeatedly selecting the child node
with the highest PUCT score. However, instead of expanding only the most promising child
of x∗ (i.e., xn−1), we expand an entire subtree rooted at x∗. Specifically, we aim to construct
and evaluate the latent states of all nodes in Tx∗ . The number of tree-layers Nl in Tx∗ is a
tunable hyperparameter, where a tree-layer refers to all nodes at the same depth relative to
x∗.

To construct the latent states for the entire subtree, we first build the token sequence X . This
sequence begins with the latent root state s̃root, as in previous sections. Next, we append
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as̃root→x∗ , which denotes the ordered sequence of actions leading from the root state s̃root to
the selected node x∗. Finally, we collect the sequences of actions required to reach every
node within Tx∗ and concatenate them into a list, denoted aT .

To obtain aT , we traverse the subtree in a breadth-first manner and add every encountered
action to a list. These actions correspond to the actions a without the ∗ marker in Figure 3.1.
In practice, this results in a sequence containing elements from the action space A repeated
Rl = ∑

Nl
i=1 |A|i times. This occurs because to reach every node in the first sublayer, we must

take all actions in A from the root of the subtree, and this pattern continues recursively for
each layer.

We now formally define the full token sequence X as:

X = [s̃root ∥ as̃0→x∗ ∥ aT] .

The embedded token sequence is then, just like in subsection 3.1.1, defined as:

Xemb = [ s̃root ∥ Input Embed(X1:n) ].

3.3.2 Causal Tree Masking

Since X is constructed via breadth-first traversal, its ordering naturally ensures that actions
associated with nodes in deeper tree-layers appear later in the sequence than those from
shallower layers. However, we must also enforce that an action can only attend its ancestors,
not to other unrelated nodes at the same or shallower depth. For example, in Figure 3.3, if
we consider the action a4,2, it should only be able to attend to a3,1, a∗2, a∗1, and s̃root. It must
not attend to sibling actions such as a4,1, even if they appear earlier in the sequence X .

To enforce this constraint, we define a causal tree mask Mtree causal ∈ {0,1}LX×LX , where
LX = |X | is the length of the token sequence. The mask is defined as:

Mtree causal i j =

{
1 if x j ∈ as̃root→xi ,

0 otherwise.

3.3.3 Parallel Expansion

To obtain predictions for multiple nodes in parallel, we first feed the embedded token se-
quence Xemb through the TransZero dynamics network gtrans

θ
:

S̃ = gtrans
θ (Xemb,Mtree causal) ∈ RLX×dt .

We then extract the last N(x∗) latent states from S̃, which correspond to the nodes in the
subtree Tx∗ . Technically, this number should be N(x∗)−1 since we should not include the
subtree-root x∗, but for simplicity, we use N(x∗). Formally, the subsequence of latent state
is the slice:

S̃T = S̃LX−N(x∗) : LX .
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We pass this batch of latent states through the prediction network fθ to obtain rewards,
values, and policy priors for all nodes in the subtree:

(vT,rT,pT) = fθ(S̃T) ∈ RN(x∗)×dt ,

where vT , rT , and pT denote the predicted values, rewards, and policy priors for each node
in the subtree T. Although we expand an entire subtree in parallel, we will still call this
process a single simulation.

3.3.4 Storing Subtrees as Nodes

Implementation-wise, we introduce a few additional changes to how nodes are represented
within the MCTS. In the original setup, each node was stored individually in a tree structure.
Here, we instead store each subtree as a flat list. Because each subtree is fully expanded,
we can index nodes directly and compute parent or child indices trivially. This change
significantly accelerates both the expansion and the backup phases.

In the classical setup, expanding a subtree of size N(x∗) would require N(x∗) separate node
lookups and assignments. With our new representation, we can assign the vectors vT , rT ,
and pT to the entire list in a single operation, eliminating the need for individual lookups
and repeated assignments.

For the backup phase, we process the subtree in bottom-up order, since each node’s esti-
mated Q-value and variance depend only on its children. Because nodes at the same depth
are independent of one another, we can calculate these values of all nodes within a tree-layer
in parallel on the GPU. As a result, the full backup procedure runs in

O(Nl),

instead of

N(x∗) =
Nl

∑
i=0
|A|i = 1−|A|Nl+1

1−|A|
∈ O(|A|Nl ).

This is under the assumption that parallel computation over a list is as fast as processing a
single node sequentially. In subsection 6.3.3 this is shown to hold true for the environments
we tested.
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Chapter 4

Related Work

We begin this chapter by discussing how transformers have been used in model-based re-
inforcement learning (MBRL) in section 4.1. Then, in section 4.2, we examine how trans-
formers have been applied in both MuZero [4] and AlphaZero [3]. Finally, in section 4.3,
we review other efforts to parallelize Monte Carlo Tree Search (MCTS).

4.1 Model-based Reinforcement Learning with Transformers

There have been several efforts to incorporate transformers into model-based reinforcement
learning (MBRL). One notable example is TransDreamer [10], which we discuss in sub-
section 4.1.1. It replaces the recurrent component in the original Dreamer architecture [11]
with a transformer-based design. Another example is IRIS (Imagination-based Reinforce-
ment Learning with transformers) [12], which trains a world model using an autoencoder
and a transformer. This work is covered in more detail in subsection 4.1.2.

4.1.1 Enhancing Dreamer with Transformer-Based World Models

Dreamer [11] follows three main steps that repeat until convergence: learning a world
model, training a policy, and interacting with the environment. First, it learns a dynam-
ics model of the environment and a reward function using data stored in an experience
replay buffer. Then, it trains an actor-critic policy using latent trajectories—simulated roll-
outs generated with the learned world model. Finally, the agent runs the trained policy in
the real environment to collect new data and update the replay buffer.

TransDreamer [10] replaces the recurrent component in the original Dreamer architecture
with a transformer-based model, referred to as a Transformer State-Space Model (TSSM).
Instead of relying on recurrence to maintain memory over time, the transformer processes
entire sequences of embedded past states and actions to capture temporal dependencies and
predict future states.

TransDreamer performs comparably to Dreamer on Atari tasks that do not require long-
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term memory, and it outperforms Dreamer on 2D and 3D navigation tasks that demand
long-term, complex memory interactions. This demonstrates that, in this context, trans-
formers are better suited for modeling long-range dependencies and complex temporal pat-
terns—especially in tasks where recurrent networks struggle to retain sufficient context.

4.1.2 Transformers are Sample-Efficient World Models

IRIS (Imagination-based Reinforcement Learning with Transformers) [12] is a model-based
reinforcement learning method that combines a discrete latent representation with an au-
toregressive transformer to model environment dynamics. While similar in motivation to
Dreamer, it employs a different architectural approach.

The model uses a discrete variational autoencoder to encode observations into sequences
of discrete tokens. A transformer is then trained to autoregressively model transitions in
this latent space, predicting rewards, terminal signals, and tokens of the next observation,
conditioned on past observations and actions. It also uses a decoder to decode tokens repre-
senting a future observation, from which the policy then predicts the next action. This setup
enables the agent to simulate long sequences in the latent space and optimize its policy
through latent rollouts.

IRIS was evaluated on the Atari 100k benchmark, where it achieved a mean human-normalized
score of 1.046 and exceeded human-level performance in 10 of 26 games. Notably, these
results were obtained without explicit planning or lookahead search, highlighting the ability
of transformer-based world models to capture useful dynamics directly through sequence
modeling.

4.2 Transformers in AlphaZero and MuZero

Some works have explored the use of transformers in AlphaZero and MuZero. Chess-
former [13], which we describe in subsection 4.2.1, replaces the convolutional neural net-
works (CNNs) in the representation network with a transformer, using a specialized atten-
tion mechanism to handle 2D inputs. In subsection 4.2.2, we describe the model proposed
by Pu et al. [14], called UniZero, which uses a transformer as the backbone in MuZero to
provide contextual support for the dynamics and prediction networks.

4.2.1 Chessformer

Chessformer [13] replaces the CNN in the representation network with a transformer, as tra-
ditional CNNs often struggle to capture the long-range dependencies inherent in chess due
to their limited receptive fields. Transformers, with their global self-attention mechanisms,
address this limitation by allowing the model to consider all parts of the input simultane-
ously.

The architecture uses an encoder-only transformer model with a context length of 64 to-
kens, corresponding to the 64 squares on a chessboard. The model employs the relative
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position encoding scheme proposed by Shaw et al. [15], which incorporates information
about the spatial relationships between pieces. This enhances the model’s ability to capture
the dynamics of the board. The transformer’s output is passed through separate policy and
value heads to produce the corresponding predictions. Unlike MuZero, AlphaZero does not
predict rewards; instead, it receives these signals directly from the environment.

Results show that Chessformer outperforms previous models. Notably, it surpasses Al-
phaZero in both playing strength and puzzle-solving ability while requiring significantly
fewer computational resources.

4.2.2 UniZero: Generalized and Efficient Planning with Scalable Latent
World Models

UniZero [14] puts all previous observations and actions through a transformer backbone to
create the latent root state of MCTS. It is similar to TransZero in that it creates tokens from
observations and actions, although it does not use the transformer to create future latent
states. It is feasible to combine aspects of this approach with TransZero, largely in the
manner described in subsection 7.3.4.

The motivation of UniZero is that the authors identify two core limitations in MuZero-style
architectures that hinder scalability and performance. First, the recurrent structure entangles
latent representations with historical information. Second, MuZero under-utilizes available
trajectory data during training by relying heavily on initial observations and recursive latent
predictions. Together, these issues reduce data efficiency and impair the model’s ability to
scale to complex, long-horizon, or multitask environments.

To address these limitations, UniZero introduces a transformer-based latent world model
that decouples memory from state representation and fully leverages available trajectory
data. At each timestep t, UniZero encodes the current observation ot into a latent state s̃t ,
and the action at into an action embedding. These, along with all previous latent states
and actions (s̃0:t ,a0:t), are inputted into a transformer encoder, which constructs an implicit
latent history ht . This history captures long-term temporal context and enables UniZero to
condition its predictions on the full sequence of past experiences.

The architecture consists of four main components:

• Encoders hθ: Encode observations and actions into latent states and embeddings.
The observation encoder is what we call a representation network and denote hθ, the
action encoder we have denoted as Input Embed(·).

• Transformer Backbone: Aggregates all past latent-action pairs to form the context-
rich history ht .

• Dynamics Head gθ: Predicts the next latent state s̃t+1 and reward r(s̃t), conditioned
on the full latent-action history.
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• Prediction Head fθ: Outputs the policy p(s̃t) and value v(s̃t) based on the same
history (excluding the current action).

This setup explicitly decouples the current latent state s̃t from memory, which is captured
in the transformer-based history ht . Unlike MuZero, which encodes only the initial obser-
vation of a trajectory (even if that observation is a stack of frames), UniZero utilizes all
observations and actions up to time t during training. This allows it to model long-term
dependencies more effectively.

The experimental results show that UniZero consistently outperforms the baseline methods
in various environments. It shows strong performance in both discrete and continuous con-
trol tasks, handles single-task and multitask learning effectively, and excels in environments
that require long-term memory.

4.3 Parallelizing MCTS

In Chaslot et al. [16], several strategies were proposed to parallelize MCTS: leaf, root, and
tree parallelization. Their approach differs from ours in that it creates multiple independent
instances of MCTS and later combines their results, rather than constructing a single MCTS
tree in parallel. As such, their method is not mutually exclusive with TransZero-Parallel; in
principle, many of the same techniques could be incorporated into our framework.

Leaf parallelization is the simplest approach. A single thread expands the tree to a leaf
node, after which multiple threads perform simulations from that point. Once all simula-
tions are complete, one thread updates the tree. This method is easy to implement and works
well on distributed systems, but since simulations do not share information and may vary in
length, the performance gains are often limited.

A simulation in pure MCTS is not quite the same as a network evaluation as is used in
MCTS for MuZero. Instead, a simulation involves selecting actions according to a policy,
traversing the search tree, and estimating the value of the resulting state, often using a rollout
to a terminal state. Unlike MuZero, this process interacts directly with the environment
instead of relying on a learned model.

Root parallelization creates a separate MCTS tree for each thread. Once the search time
is exhausted, the results from all trees are merged at the root. Since threads do not need to
share memory, this method avoids coordination overhead. It also helps prevent convergence
to local optima by exploring multiple independent search paths and often performs better
than running a single, longer search.

Tree parallelization is more complex. Here, several simultaneous games are played from
a shared tree. This differs from leaf parallelization, where all simulated games start from
the same leaf node. Since all threads operate on a shared tree, they must coordinate access
to avoid data corruption. This coordination is managed using mutexes (mutual exclusions),
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which are locks that control access to parts of the tree.

The tree parallelization approach comes closest to fully constructing the tree in parallel.
However, it cannot roll out an entire sequence of the search tree in parallel. We also theo-
rize that significantly increasing the number of threads could undermine the usefulness of
visitation counts and lead to coordination bottlenecks. Therefore, unlike our method, it still
imposes some sequential constraints.

Experiments show that root parallelization yields the best results, achieving a 14.9x speedup
with 16 threads. Tree parallelization, using local mutexes and virtual loss, reaches 8.5x,
while leaf parallelization performs worst at 2.4x.
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Chapter 5

Experimental Setup

In this chapter, we begin by discussing the environments used in section 5.1. Then, in
section 5.2, we describe the different agents used in the experiments. Lastly, in section 5.3,
we outline the configuration of the experiments conducted.

5.1 Environments

The experiments are conducted in two distinct environments: MiniGrid1 that we will de-
scribe in subsection 5.1.1 and LunarLander2 which we will describe in subsection 5.1.2.
Each environment was selected to evaluate different aspects of the agents’ behavior and
performance. In subsection 5.1.3, we outline the requirements to solve each environment.

5.1.1 MiniGrid

MiniGrid was selected for its simplicity and flexibility. It allows for easy scaling of com-
plexity through modifications such as grid size, number of obstacles, and randomness. Our
implementation generates a new random map at each episode, which will be further de-
tailed below.

Our specific MiniGrid implementation includes the following dynamics:

• Lava tiles reset the episode with a reward of 0.

• The goal tile rewards the agent between 5 and 10 points, depending on the optimality
of the path taken.

• Episodes end with no reward if the agent times out, i.e., takes more than the maximum
allowed number of steps.

1https://github.com/Farama-Foundation/Minigrid
2https://github.com/Farama-Foundation/Gymnasium
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5.1. Environments

We implemented three distinct MiniGrid maps. A random example of each is shown in
Figure 5.1.

Environment Lava Tiles Timeout (steps) Figure
3×3 map 2 15 5.1 (a)
4×4 map 3 18 5.1 (b)
5×5 map 4 25 5.1 (c)

Table 5.1: MiniGrid environment details

Each map initializes the agent’s position and orientation randomly, while the goal is always
located in the bottom-right corner. Lava tiles are placed randomly, but the environment is
guaranteed to include at least one viable path from the agent’s starting position to the goal.
The agent’s perspective is top-down, and it can take one of three actions: turn left, turn right,
or move forward. The environment is represented using one-hot encoding. Specifically,
there is one channel for lava, one for the goal, and four separate channels for the agent’s
possible orientations. At any given time, the agent occupies coordinates (x,y) in exactly
one of the orientation channels, while the remaining three contain no data at that position.

Figure 5.1: A random instance of each MiniGrid environment used to evaluate the different
agents: (a) 3×3 grid, (b) 4×4 grid, (c) 5×5 grid.

5.1.2 LunarLander

LunarLander provides an interesting testing environment due to its dynamics, which are
comparable to those found in Atari games. However, it also differs significantly from Mini-
Grid in several ways: it has a one-dimensional observation space, a continuous state space,
and greater complexity overall.

The objective is to safely land the vehicle between two designated flags while conserving
fuel. The available actions are: fire the left orientation engine, fire the right orientation
engine, fire the main engine, or do nothing. Key dynamic factors include gravity, inertia,
and fuel constraints, all of which increase the difficulty of landing maneuvers.
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5.1.3 Solving the Environments

LunarLander is considered solved when an average score of 200 is reached, although scores
exceeding this are achievable. In contrast, there is no official threshold for solving the
MiniGrid environments, as these were custom-designed for this study. We therefore define
an arbitrary target score of 7.5, corresponding to 75% of the maximum possible score of 10.
This target strikes a balance between a perfect score of 10 and the minimum score required
for success, which is 5. For both environments, we require the agent to achieve a rolling
average above the target score over 50 consecutive episodes. While this threshold is also
arbitrary, it ensures that performance is consistent and not the result of a few lucky episodes.

5.2 Agent Architectures

In subsection 5.2.1 and subsection 5.2.2, we describe two baseline agents based on the stan-
dard MuZero design. Then, in subsection 5.2.3, subsection 5.2.4, and subsection 5.2.5 we
present the setup for TransZero, TransZero with MVC, and TransZero-Parallel, respectively.

5.2.1 MuZero Agent

The standard agent, referred to as MuZero, follows the architecture described in the orig-
inal work by Schrittwieser et al. [4]. Our implementation is based on the muzero-general
repository on GitHub3.

The agent encodes the environment state using a convolutional network: a 3×3 convolution
is used for grid-based environments, while a 1×1 convolution is used for the LunarLander
environment due to its non-spatial (non-2D) input. This initial encoding is followed by
a series of normalization layers and a sequence of residual blocks. Each residual block
consists of two convolutional layers, each followed by batch normalization and activation
functions between and after the layers. The resulting root latent state is normalized to lie
within the range [0,1].

For the dynamics network, the one-hot encoded action is concatenated with the previous
latent state. This combined input is passed through an architecture similar to the represen-
tation network, producing the next latent state, which is then normalized.

Predictions for reward, value, and policy priors are obtained by applying a 1× 1 convolu-
tion to the latent state. The output is then flattened and processed by a multilayer perceptron
(MLP) to generate the final predictions. The reward predictions are based on the unnormal-
ized latent state, whereas value and policy prior predictions use the normalized version.

5.2.2 MuZero-FC Agent

The MuZero-FC agent uses a smaller and simpler architecture compared to the standard
MuZero agent. Both the representation and dynamics networks are implemented as MLPs

3https://github.com/werner-duvaud/muzero-general
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that operate on a flattened version of the input observation. Similarly, the prediction heads
for reward, value, and policy priors are also MLPs. This design maintains the core structure
of MuZero while significantly reducing architectural complexity.

5.2.3 TransZero Agent

The TransZero agent corresponds to the architecture described in section 3.1. We use a
Vision Transformer, as described in subsection 2.4.6, for the MiniGrid environments since
they are two-dimensional. However, for LunarLander, we use an MLP as the representation
network, as we believe that a Vision Transformer provides negligible benefit for a small, flat
observation like the one received from LunarLander.

5.2.4 TransZero with MVC Agent

This agent is referred to as TransZero with MVC, as it combines TransZero with the modifi-
cations required to support the MVC evaluator, detailed in section 3.2. We chose not to test
the MVC evaluator with MuZero, as we did not expect it to result in significantly different
behavior compared to its use with TransZero.

5.2.5 TransZero-Parallel Agent

Here we will describe the TransZero-Parallel agent. The workings of this agent are de-
scribed in section 3.3. For MiniGrid, we used Nl = 2, which means that in each simulation
two subtree layers of nodes were expanded. Using three layers failed to converge, while a
single layer did converge but led to slower training. We also used 4 simulations per MCTS,
resulting in a total of 1+12×4 = 49 nodes being expanded per search. This is nearly twice
the number used by the other agents (25 nodes), but it required approximately six times
fewer simulations.

For LunarLander, we used Nl = 3 for similar reasons: deeper trees failed to converge, and
shallower ones were slower. In this case, we used 2 simulations per MCTS, which resulted
in 1+84×2 = 169 nodes expanded per search. This is more than three times the number
expanded by the other agents, but required only a twenty-fifth as many simulations.

5.3 Run Configurations

In the experiments, we let each agent run for an equal number of environment steps. To
ensure fairness in wall-clock comparisons, all agents were run with identical configurations,
including batch size, number of self-play workers, and other speed-related parameters. Each
agent was run in the LunarLander environment for five different random seeds and on each
MiniGrid map for ten seeds. Henceforth, when we refer to runs with different random seeds,
we will simply say seeds.

All experiments were performed on an NVIDIA Tesla P100 GPU paired with an Intel Xeon
CPU (4 vCPUs). For measuring the speed of a single action selection, we used an NVIDIA
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GeForce RTX 4090 paired with an AMD EPYC 7542 CPU (64 vCPUs). We chose the RTX
4090 setup for this specific test because it better reflects the high-performance hardware
commonly used in industry. The Tesla P100 system was selected for the main experiments
because using the RTX 4090 system would have been prohibitively expensive.

See the associated GitHub repository (linked in the abstract) for all hyperparameter settings.
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Chapter 6

Results

This chapter presents the results of our study. In section 6.1, we present the results for
TransZero; in section 6.2, the results for TransZero with MVC; and in section 6.3, the
results for TransZero-Parallel.

6.1 TransZero Results

In subsection 6.1.1 we demonstrate that TransZero is at least as sample-efficient as MuZero,
and often performs better. In subsection 6.1.2, we show that TransZero is faster than
MuZero in terms of wall-clock time, but generally slower than MuZero-FC.

6.1.1 TransZero Sample Efficiency

In Figure 6.2 (top), we show the reward obtained by each agent as a function of the number
of environment steps taken. We observe that the sample efficiency of TransZero is not worse
than that of MuZero in any of the evaluated environments. TransZero even performs slightly
better during the initial training phase in all environments. Toward the end, it shows better
average performance, although the differences fall within the standard error. To establish
statistical significance, additional seeds would be required.

TransZero outperforms MuZero-FC across all MiniGrid environments. In the LunarLander
environment, MuZero-FC performs slightly better than TransZero during the first half of
training but reaches a similar performance toward the end.
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Figure 6.2: (Top) Average reward of the agents on MiniGrid 3× 3, 4× 4, 5× 5, and Lu-
narLander, as a function of environment steps. (Bottom) Same results plotted over relative
wall-clock time (compared to MuZero). The shaded area shows standard error. See sec-
tion 5.1 for environment details. 36
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Table 6.1 summarizes key metrics related to solving the environments. The upper rows
show the proportion of environment steps used to reach a solution, expressed as a percent-
age of the total available. The middle rows report the relative wall-clock time to solve it,
compared to MuZero. The bottom rows indicate how many of the seeds successfully solved
the environment. For LunarLander, an environment is considered solved when an average
score of 200 is achieved over 25 episodes. For MiniGrid, the threshold is an average score
of 7.5 over 50 episodes. More details about the evaluation criteria can be found in sub-
section 5.1.3. For seeds that did not solve the environment, we report the last timestep as
the point of solution. If 50% or more seeds failed to solve it - which only occurred for
MuZero-FC in the 4×4 and 5×5 MiniGrid environments - we omit the score, as it would
not accurately reflect the agent’s performance.

Percentage of Environment Steps and Relative Times to Solve the Environment

Model 3×3 4×4 5×5 Lunar

Environment Steps as a Percentage of Total
MuZero 33% (±3%) 46% (±4%) 80% (±4%) 61% (±10%)
MuZero-FC 45% (±5%) – – 45% (±4%)
TransZero 15% (±1%) 21% (±2%) 59% (±10%) 54% (±10%)
TransZero with MVC 17% (±1%) 24% (±3%) 49% (±8%) 51% (±3%)
TransZero-Parallel 28% (±3%) 31% (±4%) 73% (±8%) 56% (±8%)

Relative Time Compared to MuZero
MuZero 1.00 (±0.10) 1.00 (±0.10) 1.00 (±0.05) 1.00 (±0.14)
MuZero-FC 0.81 (±0.08) – – 0.39 (±0.02)
TransZero 0.37 (±0.02) 0.38 (±0.04) 0.61 (±0.11) 0.59 (±0.09)
TransZero with MVC 0.67 (±0.04) 0.67 (±0.09) 0.83 (±0.14) 1.25 (±0.07)
TransZero-Parallel 0.36 (±0.04) 0.26 (±0.03) 0.36 (±0.04) 0.070 (±0.01)

Percentage of Seeds Ran that Solved the Environment
MuZero 100% 100% 80% 100%
MuZero-FC 100% 50% 0% 100%
TransZero 100% 100% 80% 100%
TransZero with MVC 100% 100% 100% 100%
TransZero-Parallel 100% 100% 80% 100%

Table 6.1: Percentage of total environment steps to solve the environements(top), percent
of seeds that solved (middle), and wall-clock time relative to MuZero to solve (bottom).
Agents with < 80 % solved runs are omitted. Solving thresholds are defined in subsec-
tion 5.1.3.

From Table 6.1 (top), we see that TransZero reached the solving threshold in significantly
fewer steps than MuZero across the MiniGrid environments. In the 3× 3 and 4× 4 maps,
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it required approximately half as many steps. For LunarLander, the number of steps was
similar between the two, with differences falling within the standard error.

Compared to MuZero-FC, TransZero used approximately one-third as many steps to solve
the 3×3 MiniGrid. In the 4×4 MiniGrid, MuZero-FC solved the environment in only half
of the runs, and in the 5×5, it failed to solve it entirely. This can be seen in Table 6.1 (mid-
dle). MuZero-FC required on average fewer steps to solve LunarLander than TransZero,
although the difference was not statistically significant.

6.1.2 TransZero Wall-Clock Time Performance

In Figure 6.2 (bottom), we show the reward obtained by each agent as a function of the rel-
ative wall-clock time compared to MuZero. As seen in the plot, TransZero converges faster
than MuZero in all MiniGrid environments. This is further confirmed in Table 6.1 (middle),
where TransZero solves each environment significantly faster. Compared to MuZero-FC,
TransZero is faster in the 3×3 MiniGrid environment, but slower in LunarLander.

The differences between wall-clock time and sample efficiency arise from variation in the
time it takes each agent to process the same number of environment steps. In Table 6.2, we
report the time required to complete training (left) and the time required for planning, that
is, selecting an action, relative to MuZero (right). As shown, TransZero is approximately 20
percentage points faster than MuZero, but about 20 percentage points slower than MuZero-
FC in both training and planning speed.

Relative Total Time to Train the Model and Relative Time for One Action Selection

Model Rel. Total Time Rel. Planning Time
MiniGrid Lunar MiniGrid LunarLander

MuZero 1.0 (±0.01) 1.0 (±0.01) 1.0 1.0
MuZero-FC 0.57 (±0.01) 0.60 (±0.01) 0.60 0.59
TransZero 0.82 (±0.01) 0.76 (±0.01) 0.79 0.81
TransZero with MVC 1.3 (±0.02) 1.6 (±0.08) 1.1 1.3
TransZero-Parallel 0.41 (±0.0) 0.092 (±0.0) 0.27 0.089

Table 6.2: Comparison of the time to complete training (left) and the time it takes to do
planning, i.e. a single action selection (right) in MiniGrid and LunarLander. The times are
relative to the times it took for MuZero.

6.2 TransZero with MVC Results

When it comes to sample efficiency, Figure 6.2 (top) shows that TransZero with MVC per-
forms very similarly to TransZero in all environments. As seen in Table 6.1 (top), it solves
the MiniGrid environments with slightly fewer steps than MuZero and requires slightly
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more steps in LunarLander. However, none of these differences are statistically signifi-
cant. We therefore conclude that incorporating MVC does not degrade sample efficiency
compared to the baseline.

According to Table 6.2 (left), the use of the MVC architecture increases the training time by
an average of 80% compared to TransZero in the two environments. This overhead comes
from the additional computations required during each MCTS backup.

6.3 TransZero-Parallel Results

In subsection 6.3.1, we show that TransZero-Parallel is as sample-efficient as MuZero,
though not generally as efficient as TransZero with MVC. In subsection 6.3.2, we present
the substantial improvements in computational speed achieved with TransZero-Parallel. Fi-
nally, in subsection 6.3.3, we show that TransZero-Parallel could, in theory, be orders of
magnitude faster than MuZero in certain environments.

6.3.1 TransZero-Parallel Sample Efficiency

As shown in Figure 6.2 (top), TransZero-Parallel performs similarly to MuZero in all en-
vironments in terms of sample efficiency. This is further confirmed by the time required
to solve each environment, where the two agents perform within the standard error of each
other in all environments except 4×4 MiniGrid, where TransZero-Parallel is slightly better.
These results are visible in Table 6.1 (top).

Compared to MuZero-FC, TransZero-Parallel performs better on average across all Mini-
Grid environments, particularly during the early stages of training. In LunarLander, MuZero-
FC shows an initial advantage, although the difference is not statistically significant at the
end of training. When comparing time to solve each environment, TransZero-Parallel com-
pletes MiniGrid tasks significantly faster, while MuZero-FC solves LunarLander faster on
average, though the difference is not significant.

Compared to TransZero with MVC—the architecture most similar to TransZero-Parallel—we
observe slightly worse sample efficiency from TransZero-Parallel on average in MiniGrid.
However, the difference is only statistically significant in the 3×3 environment. TransZero-
Parallel also requires approximately 13% more steps on average to solve the MiniGrid envi-
ronments. In LunarLander, the two agents perform similarly, both in terms of time to solve
and overall sample efficiency across training.

6.3.2 TransZero-Parallel Wall-Clock Time Performance

The wall clock time is where TransZero-Parallel excels. As shown in Figure 6.2 (bottom), it
is significantly faster than MuZero and TransZero with MVC in all environments, with the
most notable speed-up observed in LunarLander. Compared to TransZero and MuZero-FC,
the advantage is slightly smaller but still substantial in the case of LunarLander.
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Looking at the total training time in Table 6.2 (left), TransZero-Parallel completes Lu-
narLander training approximately 11x faster than MuZero, 6.5x faster than MuZero-FC,
8.2x faster than TransZero, and 17x faster than TransZero with MVC. For MiniGrid, the
speedup is smaller but still notable—around 2.5x faster than MuZero and 1.4x faster than
MuZero-FC.

This increased speed is also reflected in the time required to solve each environment, as
shown in Table 6.1 (middle). TransZero-Parallel solves LunarLander approximately 14x
faster than MuZero and around 5.5x faster than MuZero-FC. It is also the fastest agent
across all MiniGrid environments, with the exception of the 3×3 case, where it shares the
top performance with TransZero.

The reason why TransZero-Parallel achieves greater relative speedups in LunarLander than
in MiniGrid is due to the difference in the number of simulations performed by each agent.
TransZero-Parallel runs 4 simulations per action selection in MiniGrid and 2 in LunarLan-
der, whereas the other agents run 25 and 50 simulations respectively. This means that,
relatively, TransZero-Parallel performs 6.25 times fewer simulations in MiniGrid and 25
times fewer in LunarLander. Although each simulation in LunarLander expands 84 nodes
(compared to 12 in MiniGrid), this does not significantly affect the per-simulation speed
since expansions are executed in parallel. We expect this performance trend to continue in
larger environments—the more simulations required, the greater the relative advantage of
TransZero-Parallel.

6.3.3 Limits of Parallel Node Expansion

From Table 6.3, we observe how many more nodes TransZero-Parallel can expand in the
time it takes MuZero to expand a single node, across different configurations of tree-layers
and simulations. For example, consider the case with an action space of 18 and two subtree-
layers. This results in a subtree with 342 nodes: 18 for the first layer and 182 = 324 for
the second. If 4 simulations are performed, a total of 4 · 342 = 1368 nodes are expanded
during a single action selection. As shown in the table, TransZero-Parallel performs this
action selection approximately 160x faster than MuZero would have performed an action
selection with 1368 simulations, even though an equal number of nodes were expanded.
These measurements were obtained by running action selection in isolation for the specified
configurations and do not correspond to any particular environment. For simplicity, we
omitted the root node of the MCTS in the column that shows the number of nodes in a
subtree.
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Comparative Node Expansions Between TransZero-Parallel and MuZero

Subtree Num. Nodes Node Expansions
Layers in Subtree 1 Sim. 4 Sim. 16 Sim.

Action Space = 4
1 4 3.0 2.4 1.8
2 20 11 9.2 7.6
3 84 34 31 28
4 340 150 120 100
5 1364 460 350 340
6 5460 300 280 280

Action Space = 18
1 18 11 8.8 7.9
2 342 180 160 150
3 6174 270 270 250

Action Space = 40
1 40 23 19 17
2 1640 560 530 520

Table 6.3: Number of nodes TransZero-Parallel can expand in the time MuZero expands
one, across different configurations. This is a controlled experiment measuring the time for
a single action selection

Up to approximately 1600 node expansions in a single subtree, we observe that increasing
the number of nodes expanded in parallel leads to greater speed gains. The maximum speed-
up is achieved when expanding two subtree-layers with a single simulation in an action
space of 75, resulting in up to a 560-fold speed increase compared to MuZero expanding
the same number of nodes. However, beyond 1600 node expansions, the relative speed
improvement begins to diminish. This slowdown is due to the quadratic complexity of the
transformer architecture.

As shown in Table 6.4, the time spent on MVC calculations increases roughly linearly,
about 0.4 ms per additional subtree-layer. In contrast, the time required for the network’s
forward pass rises sharply beyond approximately 1364 nodes. We also observe that GPU
memory usage remains low until this point, after which it increases roughly 15 fold. In
subsection 7.3.1, we propose a modified attention mechanism that may partially address
this computational bottleneck.
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System Profiling for TransZero-Parallel

Subtree Num. Nodes Network MVC- Peak GPU-
Layers in Subtree Pass (ms) Calculations (ms) Memory (MB)

1 4 2.5 1.0 18
2 20 2.5 1.4 18
3 84 2.5 1.8 18
4 340 2.5 2.2 26
5 1364 4.3 2.7 270
6 5460 50 3.0 4000

Table 6.4: Comparison of the time to complete training (left) and the time it takes to do a
single action selection (right) in MiniGrid and LunarLander. The times are relative to the
times it took for MuZero.

From Table 6.3 we also see that TransZero-Parallel is not dependent on the size of the action
space but on the number of nodes expanded. For example, expanding 20 nodes when the
action space is 4 is equally fast as expanding 18 nodes when the action space is 18. This
also applies to the 340 vs 342 nodes for the same action spaces.

We also observe that increasing the number of simulations makes the method relatively
slower, although the gap narrows as the total number of expanded nodes increases. This
is because each additional simulation requires recalculating more nodes. Moreover, since
we always expand as deep as possible—by repeatedly selecting the same action—this setup
represents a worst-case scenario. Therefore, performance under multiple simulations can
be seen as a conservative lower bound.

6.4 Additional Findings

In this section, we present findings that do not directly relate to the main comparisons of
the architectures in terms of sample efficiency and wall-clock time, but are still relevant to
understanding overall performance. In subsection 6.4.1, we compare the relative time spent
planning in relation to the total training time for each agent. In subsection 6.4.2 we discuss
the training step difference between the agents.

6.4.1 Action Selection Compared to Training Time

From Table 6.2, we observe a strong correlation between the relative total training time
(left) and the relative time required for a single action selection (right). This supports our
hypothesis that reducing action selection time is the key factor in decreasing overall training
time.

There are, however, some notable exceptions. For instance, we would expect the relative
action selection time for TransZero-Parallel in MiniGrid to more closely match its total
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training time, especially since this is the case for LunarLander. One possible explanation is
that, because TransZero-Parallel is faster in absolute terms, operations unrelated to action
selection account for a larger proportion of the total training time. This could include gen-
erating the random MiniGrid environment and verifying that a path exists from the agent to
the goal. Also, these operations would have been faster when doing a single action selection
since we used better hardware during those experiments compared to when we trained the
agents.

We further observe that TransZero with MVC shows relatively faster action selection times
compared to its total training time. We also believe this is due to the stronger hardware
used for the single action selection measurement, which likely accelerated the MVC com-
putations. The fact that TransZero with MVC is relatively slower in LunarLander compared
to MiniGrid is likely explained by the MVC computations as well. This is because deeper
search trees are created when using 50 simulations instead of 25, leading to more MVC
calculations per simulation during the backup phase.

6.4.2 Training Steps per Agent

In Table 6.5 (left), we show the relative total number of training steps each agent performs
during training compared to MuZero. On the right, we show the ratio of training steps to
environment steps. A training step corresponds to a single gradient update in the training
phase of the algorithm.

Looking at the ratio between TransZero and MuZero, we see that TransZero performs nearly
twice as many training steps per environment step. This is because training is asynchronous
from self-play, and TransZero’s training phase is substantially faster than MuZero’s. The
key reason is that TransZero can perform gradient updates in parallel over the entire rollout,
rather than recurrently as in MuZero—see subsection 3.1.3 for details. Self-play time, on the
other hand, is roughly similar between the two agents, since MuZero can cache previously
unrolled nodes.

The differences in training-to-environment step ratios for TransZero with MVC and TransZero-
Parallel can be attributed to their self-play speeds: TransZero with MVC is slower during
self-play, while TransZero-Parallel is faster. Their training procedures are otherwise identi-
cal to that of TransZero.

The difference in ratios between models is also reflected in the total number of training steps
they perform during training, which is conducted over a fixed number of environment steps.
On average across the two environments, TransZero with MVC performs approximately
3 times more training steps than MuZero and nearly twice as many as TransZero. Con-
versely, TransZero-Parallel performs significantly fewer training steps than both TransZero
and MuZero, particularly in LunarLander. These differences in the number of training steps
per fixed environment budget correlate somewhat with the observed sample efficiency in
MiniGrid, although not in LunarLander.
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Model Rel. Total Training Steps Tr. to Env. Step Ratio
MiniGrid LunarLander MiniGrid LunarLander

MuZero 1.0 (±0.00) 1.0 (±0.01) 0.47 (±0.00) 1.3 (±0.01)
MuZero-FC 1.2 (±0.00) 1.1 (±0.02) 0.55 (±0.00) 1.7 (±0.02)
TransZero 1.7 (±0.10) 1.4 (±0.01) 0.87 (±0.01) 1.8 (±0.02)
TransZero with MVC 3.2 (±0.02) 2.5 (±0.06) 1.6 (±0.01) 4.51 (±0.08)
TransZero-Parallel 0.81 (±0.01) 0.23 (±0.00) 0.39 (±0.00) 0.41 (±0.01)

Table 6.5: (Left) Relative total training steps across training compared to MuZero. (Right)
Training-to-environment step ratio.
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Chapter 7

Discussion

We begin this chapter in section 7.1 by interpreting the results obtained. In section 7.2,
we discuss the limitations of the study. Finally, in section 7.3, we outline potential future
improvements for both TransZero and TransZero-Parallel.

7.1 Interpretation of Results

In subsection 7.1.1, we examine the potential and limitations of parallel expansion. In
subsection 7.1.2, we discuss the discrepancies observed in some agents across the two en-
vironments.

7.1.1 Parallel Expansion Analysis

Potential of Parallel Expansion

In domains such as board games, MuZero employs up to 800 simulations [4]. A rough
estimate based on the LunarLander and MiniGrid environments suggests that TransZero-
Parallel requires expanding approximately two to three times as many nodes as MuZero. In
the case of chess, using a conservative estimate of four times as many node expansions, this
would correspond to 800× 4 = 3200 nodes. Referring to Table 6.3, for an action space of
40, expanding roughly 3200 nodes could be achieved by using two simulations where each
expands two subtree-layers (1640×2 = 3280).

According to the table, expanding 3280 nodes using TransZero-Parallel is approximately
530 to 560x faster than MuZero performing the same number of expansions; we con-
servatively estimate this speedup as 540x. Thus, if MuZero uses 800 expansions while
TransZero-Parallel performs 3280, the relative speedup is approximately 540÷ 4 = 135-
fold. Such a performance gain not only enables significantly faster decision-making during
inference, but also drastically reduces overall training time. For example, models that cur-
rently take 24 hours to train could be trained in slightly more than 10 minutes.
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However, this analysis is highly theoretical and may not generalize well across environ-
ments. For example, in an environment with an action space of 40, expanding two layers
of a subtree may lead to a broader expansion than is actually useful. Consider chess: its
action space is 4672, yet MuZero uses only 800 simulations. This means it cannot fully
expand even a single layer of the search tree. Instead, MuZero relies more heavily on its
prior policy prediction to guide deeper search. This suggests that expanding all actions at
every tree-layer may offer limited benefit in practice.

Limitations of Parallel Expansion

We observed that expanding more tree-layers led to a greater relative speedup compared
to using fewer layers with more simulations. However, expanding beyond three layers for
LunarLander and two layers for MiniGrid resulted in a decrease in sample efficiency. One
possible explanation comes from He et al. [17], who found that MuZero learns accurate
value predictions only for policies that remain close to its training distribution. In MuZero,
the prior policy helps guide action selection toward regions where the model is more accu-
rate, thus compensating for this limitation.

In contrast, TransZero-Parallel makes only minimal use of the prior policy. Although the
prior is applied at each selection step, each simulation still expands many more nodes than
are actually selected. For example, in the case of LunarLander, 84 additional nodes are
expanded beyond those chosen by the policy in each simulation. This significantly reduces
the influence of the prior in guiding the search. TransZero-Parallel appears to manage this
discrepancy when the tree is relatively shallow, but as the depth increases, the divergence
between the expanded nodes and the learned policy may become too large, potentially re-
ducing value accuracy and overall performance.

7.1.2 Discrepancies Between Environments

First, we observe that MuZero-FC performs significantly better in LunarLander than in
MiniGrid, despite LunarLander being the more complex environment. We hypothesize that
this is due to the lack of convolutional layers in MuZero-FC. In this architecture, the two-
dimensional observations are flattened and passed directly into the representation network,
removing the spatial structure present. Without convolutional layers to exploit spatial lo-
cality, the model lacks an inductive bias for spatial reasoning and must learn spatial de-
pendencies from scratch. This generally leads to slower generalization and reduced sample
efficiency, especially in environments like MiniGrid where spatial relationships—such as
agent position, obstacles, and goals—are critical for decision making.

We also observe in Figure 6.2 (top) that TransZero with MVC consistently achieves one
of the highest average performances in MiniGrid, yet one of the lowest in LunarLander.
We believe this is primarily due to hyperparameter settings rather than the action selec-
tion mechanism itself. This is supported by the fact that there is nothing inherent to the
LunarLander environment that should make it particularly ill-suited for the MVC evalua-
tor. Additionally, due to the high computational cost of running TransZero with MVC on
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LunarLander, we were unable to invest as much effort into hyperparameter tuning for this
agent compared to others.

One might assume that the hyperparameters used for TransZero would generalize to Tran-
sZero with MVC. Although this is partially true for architecture-related parameters, it does
not hold for those governing action selection. Specifically, parameters involved in the
UCB score calculation—such as the exploration constant Cpuct and the temperature used
for sampling actions—require separate tuning due to the differences between using visi-
tation counts and using the MVC evaluator. Furthermore, MVC introduces an additional
parameter, β, which also needs careful adjustment. These factors interact and influence the
exploration–exploitation trade-off, making the overall tuning process substantially different.

7.2 Limitations

This study has two main limitations. First, potential unfairness in the hyperparameter tun-
ing, which we cover in subsection 7.2.1. Second, the large standard error observed in the
MiniGrid plots, which we cover in subsection 7.2.2.

7.2.1 Hyperparameter Tuning

Model-based Reinforcement Learning (MBRL) is challenging to tune due to its reliance
on several interacting sub-components, each with design parameters that can significantly
affect overall performance [18]. This was evident in our study, where even small changes
in the hyperparameters had a substantial impact on the performance of all models. As
such, it is possible that some of the observed performance differences are due to suboptimal
hyperparameter choices.

Furthermore, the amount of time spent tuning each agent varied. For example, in the case
of LunarLander, we used a set of hyperparameters from a public GitHub repository for
MuZero-FC1. However, we do not know how much tuning effort was invested in those
parameters compared to the time we dedicated to tuning the TransZero architectures.

For MiniGrid, we used a custom training setup, which required us to tune the hyperparame-
ters for all agents ourselves. Reusing parameters from other environments was not feasible
as we found that each environment required its own distinct configuration. As a result, some
models received more tuning effort than others, either because they were more sensitive to
hyperparameter changes or because we happened to identify a suitable parameter set earlier
in the tuning process. Although further tuning could potentially affect the results to some
extent, we believe that significant performance differences are unlikely, given the level of
attention and tuning effort dedicated to each agent.

1https://github.com/alexZajac/muzero_experiments/tree/master

47

https://github.com/alexZajac/muzero_experiments/tree/master


7.3. Future Work

7.2.2 Large Standard Error

As shown in the MiniGrid results, the standard error for all agents is relatively large. This
makes it more difficult to determine whether the observed average performance differences
between agents are statistically significant. The main reason for this is that we only ran
each agent for 10 random seeds. The limited number of seeds was due to constraints in
GPU availability and the time required to run each experiment. For example, a single full
run across all MiniGrid environments and agents took approximately 48 hours.

However, we believe that this limitation does not affect the general conclusions of the the-
sis. It remains evident that TransZero and TransZero-Parallel achieve a level of sample
efficiency comparable to that of MuZero and MuZero-FC. In fact, their average perfor-
mances are extremely close—if not better in most cases. Additionally, it is unambiguous
that TransZero-Parallel offers a significant speed advantage, being many times faster than
MuZero.

7.3 Future Work

This section outlines five potential improvements. The first, described in subsection 7.3.1, is
a more efficient attention computation that could lead to exponential gains in the matrix op-
erations of TransZero-Parallel. The second, discussed in subsection 7.3.2, involves adopting
techniques proposed for EfficientZero [19], with the goal of increasing sample efficiency.
Next, in subsection 7.3.3, we explore ways to redesign the subtree expansion process, par-
ticularly for environments with large state spaces. In subsection 7.3.4, we discuss how
stacked observations could be implemented for TransZero. Finally, in subsection 7.3.5, we
outline additional environments that should be tested with TransZero and its variants.

7.3.1 New Attention Matrix

In TransZero-Parallel, some of the computations in the key-query attention matrix during
subtree expansion are redundant, due to the repeated presence of tokens with identical em-
beddings. Specifically, tokens that represent the same action and are located at the same
depth in the search tree receive the same learned embedding and identical positional en-
coding. These tokens are therefore functionally identical in the attention calculation. A
visualization of these nodes can be seen in Figure 7.1 (top); they are the nodes with the
same color in the same layer of the subtree.
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Figure 7.1: (Top) The subtree to be expanded in parallel. (Bottom) The resulting attention
matrix using our proposal in subsection 7.3.1.

49



7.3. Future Work

We define all nodes that share an identical embedding as belonging to an embedding class
u. Although this is not a literal form of containment, as being in u simply indicates that
the nodes share the same embedding, we adopt this terminology for ease of reference. The
nodes in question share an embedding because they represent the same action and occur at
the same depth in the tree.

In Figure 7.1 (top), we illustrate how the nodes at each layer are grouped into their respective
embedding classes: for example, the red nodes in a layer are grouped into the red class-
embedding for that layer, and similarly for the blue nodes. Red and blue correspond to two
different actions in an action space of size two. The full ordered list of these embedding
classes, taken from top to bottom in the search tree, is referred to as the embedding class
sequence U= (u1,u2, . . . ,un).

For each layer i (out of Nl layers) in the subtree we wish to expand, there are |A|i nodes.
However, only |A| distinct embedding classes exist per layer, since each node at a given
depth corresponds to one of the actions in A and shares its embedding with all other nodes
representing the same action at that depth. This implies that at layer 1, each embedding
class contains one node; at layer 2, each class contains |A| nodes; at layer 3, |A|2, and so
on.

The total number of nodes in the full subtree is given by

Nl

∑
i=0
|A|i = 1−|A|Nl+1

1−|A|
∈ O(|A|Nl ),

while the total number of embedding classes are

Nl

∑
i=0
|A|= Nl · |A| ∈ O(Nl · |A|).

This means that if we could restructure the attention computation to operate on the layer-
wise unique embeddings, at least in part, we could reduce the computational cost exponen-
tially.

Cross-Attention

For our first approach, we require the use of cross-attention. Up to this point, we have
been using self-attention, where the queries Q′, keys K′, and values V ′ are all derived from
the same embedded input sequence Xemb. In contrast, cross-attention allows the queries to
come from one sequence while the keys and values come from another. This means that
instead of using Xemb for all three components, we compute:

Q′ = Xemb
q WQ′ , K′ = Xemb

kv WK′ , V ′ = Xemb
kv WV ′ .

Here, Xemb
q and Xemb

kv are two distinct embedded input sequences.
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Using the Embedding Class Sequence for Keys and Values

Our first proposal is to set Xemb
q = Xemb and Xemb

kv = Uemb. A similar approach has been
proposed by Jaegle et al. [20] and is reminiscent of a recurrent neural network structure. A
visualization of the resulting attention matrix is shown in Figure 7.1. The nodes before x∗

are omitted from both the visualization and our descriptions for simplicity, the computations
of these will work as before and do not add significant computational complexity.

With this setup, the length of the keys and values becomes |K′|= |V ′|= O(Nl · |A|), while
the length of the queries remains |Q′| = O(|A|Nl ). The resulting attention matrix has the
size of:

O(|A|Nl )×O(Nl · |A|) = O(Nl · |A|Nl+1).

In comparison, standard self-attention applied to the same subtree has |V ′|= |K′|= |Q′|=
O(|A|Nl ), resulting in an attention matrix of size:

O(|A|Nl )×O(|A|Nl ) = O(|A|2Nl ).

This represents an exponential reduction in computational complexity. Furthermore, the
multiplication of the attention matrix with the value matrix V ′ yields an equal exponential
gain. We omit the hidden dimension dt from these calculations, as it remains constant for
both approaches.

From the first transformer layer, we obtain the output S̃(1), which can be used to compute
the query matrix Q′ for the next transformer layer. However, the question remains how
to compute the corresponding K′ and V ′ matrices. The most straightforward approach is
to cache K′ and V ′ and reuse them in all layers. This has the advantage of requiring the
projection matrices WK′ and WV ′ to be computed only once, reducing the total parameter
count. This approach was also suggested in Jaegle et al. [20].

The drawback of this method is that a fixed set of keys and values cannot adapt to informa-
tion processed in earlier layers. Since each layer attends to the exact same K′ and V ′, later
layers receive no additional contextual input, only the layer-specific query transformations
vary. This could potentially limit the model’s expressiveness, although an empirical study
would be needed to confirm this. An alternative is to learn new key and value projections at
each layer. Although this approach increases the parameter cost compared to caching, the
added expense is relatively modest due to the small size of these matrices. For both of these
methods, we would need to adapt training to use cross-attention in the same manner.

Masking the New Attention Matrix

We also need to construct a new attention mask, which we call Mset causal, to ensure that fu-
ture actions do not attend previous ones. This mask is conceptually similar to Mtree causal, but
adapted to operate at the level of embedding classes rather than individual nodes. Specifi-
cally, a node should attend to an embedding class u if, in the original tree-based setting, it
would have attended any node x contained in u when all tokens were nodes. Formally, we
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define:

Mset causal i j =

{
1 if ∃x ∈ as̃root→xi such that E(x) = u j,

0 otherwise.

Here, E(x) returns the embedding class u of node x. In other words, a node xi attends the
embedding class u j if there exists a node along the path from the root to xi that belongs to
that embedding class. The effect of the mask is visualized in Figure 7.1 where the black
dots show which tokens should attend which.

Growing the Embedding Class Sequence as Query

The reason we cannot use the embedding-class sequence U as input to both the queries and
the keys/values is that the network must be aware of which specific sequence it generates
outputs for. When using only the embedding-class sequence, the model lacks what we refer
to as ancestral information—it cannot infer the order in which actions occur. Furthermore,
the output would have dimensionality Nl · |A|, making it unclear how to map the results
back to the full set of nodes that we intend to expand.

However, an alternative approach could involve progressively expanding Uemb to the size
of Xemb over multiple transformer layers. This would produce an output with the correct
dimensionality, while gradually introducing more ancestral information across layers. In
such a setup, the early layers would operate on a compact representation, resulting in linear
computational complexity in tree depth, while the later layers would match the complexity
of the approach described in section 7.3.1.

Technically, this strategy could also be applied with Xemb used as input to the keys and
values (instead of Uemb). This would provide full ancestral information throughout the
transformer, but the computational benefits would be reduced. The model would start with
the same complexity as the approach in section 7.3.1 and eventually grow to match the full
complexity of TransZero-Parallel toward the final layers.

For the growth of Uemb, we believe that a smooth progression across transformer layers
is important. If growth occurs too quickly in the early layers, the amount of computation
saved would be minimal. Conversely, if the expansion happens too late, the network may
not have sufficient depth to learn enough ancestral information. Our proposal of how this
expansion could proceed over two iterations with |A|= 2 is visualized in Figure 7.2.

In the first transformer layer, we use Uemb directly as the input to the queries. At this stage,
the embedding classes corresponding to the first tree-layer map 1:1 to their associated nodes.
For the second tree-layer, each embedding class represents two nodes, resulting in a 1 : |A|
ratio. For the third layer, the ratio becomes 1 : |A|2, and so on. At this stage, the actions
completely lack ancestral information—they cannot distinguish which actions come earlier
in the sequence due to the fact that no masking is possible.

52



7.3. Future Work

Figure 7.2: Suggestion of how U can be grown between transformer-layers.

Before the second transformer layer, we project the embedding classes that do not yet have
a 1:1 correspondence with nodes by a factor of |A|. In the first transformer layer, the
projection is thus applied to all embedding classes except those corresponding to the first
tree-layer. In the second transformer layer, we further project all embedding classes except
those associated with the first two tree-layers, and so on. These projections are illustrated in
Figure 7.2 as striped lines and can be implemented, for example, using an MLP or copying.

What this approach essentially does is to progressively add ancestral information to the em-
bedding classes at each layer. After the first projection, the embedding classes associated
with the first tree-layer remain unchanged, as they already have a 1:1 correspondence with
the nodes in that layer. The embedding classes corresponding to the remaining tree-layers
are projected from size |A| to |A|2. As a result, all embedding classes now “know” which
first-level action preceded them, since irrelevant actions can now be masked out in the at-
tention matrix. However, they still lack information about the rest of the actions. This addi-
tional context is gradually revealed across the transformer layers, as we continue projecting
any embedding classes that do not yet have a 1:1 correspondence with nodes. Through this
process, one additional action becomes known at each transformer layer.
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One benefit of this method is that each projection increases the size of the embedding classes
by a factor of |A|, ensuring a smooth and incremental increase in representation capac-
ity—rather than a sudden expansion at the end. The growth of Uemb between transformer
layers is given by:

(Nl− i) · |A|i · (|A|−1)

where i denotes a specific transformer layer, with 1 < i ≤ Nl . This leads to exponential
growth when |A|> 2, which is computationally beneficial as the matrices will remain rela-
tively small until the last transformer layers.

We do not elaborate on the exact masking mechanism here, but it could be constructed as a
hybrid between Mset causal and Mtree causal. This is feasible since, at each transformer layer,
the available ancestral information is explicitly known. We also do not go into detail on how
the training procedure would change. In essence, it must mirror the progressive construction
described above, with additional ancestral information being revealed at each transformer
layer. This allows the model to learn the correct dependencies step by step.

The proposed progressive growth scheme assumes that the number of transformer layers is
exactly one less than the number of tree-layers. However, this constraint can be relaxed.
If the number of transformer layers is greater than or equal to the number of tree-layers,
we can simply omit projections between some layers. Conversely, if there are more tree-
layers than transformer layers, we can apply multiple projections between certain trans-
former layers—for example, expanding all affected embedding classes by a factor of |A|2.
Intermediate strategies are also possible, such as projecting only a subset of the embedding
classes.

7.3.2 EfficientZero Techniques for TransZero

EfficientZero [19] introduces three key modifications that improve sample efficiency com-
pared to MuZero. It achieved superhuman performance in 14 out of 26 Atari games, using
only as many environment interactions as a human would generate by playing for approx-
imately two hours. This section discusses how two of EfficientZero’s techniques—self-
supervised consistency loss and end-to-end prediction of the value prefix—could be adapted
for TransZero. The third technique, off-policy correction, is unaffected by the changes in-
troduced in TransZero, and can therefore be implemented in the same way as for MuZero.

End-To-End Prediction of the Value Prefix

In MuZero, the network attempts to predict the reward at each timestep, which presents
challenges due to the difficulty of identifying the exact frame or state that yields the reward.
This can result in compounding prediction errors during the recurrent rollout—a problem
referred to as state aliasing. EfficientZero addresses this issue by predicting the cumulative
reward over a window of timesteps in an end-to-end manner.
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More specifically, the predicted reward is used in the Q-value estimation:

Q(xt ⊎a) =
T−1

∑
i=0

γ
i · r(xt+i)+ γ

T · v(xt+T ),

where T is the number of recurrent steps taken during the rollout in latent space. This
formulation is equivalent to the one given in Equation 2.3. The prefix sum of rewards
∑

T−1
i=0 γir(xt+i) is referred to as the value prefix P, as it serves as the prefix to the full Q-value

computation. EfficientZero proposes a new method for predicting this prefix, formulated as
P = p f (st , s̃t+1, . . . , s̃t+k−1), where p f is a neural network architecture—specifically, an
LSTM in their case.

TransZero does not roll the dynamics model step-by-step, which reduces the drift associated
with repeatedly predicting what the next frame looks like. However, even with one-shot
rollouts, the model still needs to infer which latent state in the returned sequence encodes
the reward signal. This ambiguity is particularly problematic when rewards are delayed,
sparse, or noisy. To address this, we propose changing the reward prediction target to the
value prefix. That is, the reward network would predict P(s̃) instead of r(s̃). Then, during
search, the reward can be reconstructed as:

r(s̃n) = P(s̃n)− γP(s̃n−1).

If s̃n is the initial latent state, we define P(s̃n−1) = 0.

Self-Supervised Consistency Loss

The self-supervised consistency loss is designed to ensure that the model predicts state tran-
sitions accurately over time. It operates by comparing the next latent state s̃t+1, produced
by the dynamics network gθ, with the latent state s̃ ′t+1, obtained by passing the true obser-
vation ot+1 through the representation network hθ. To minimize the discrepancy between
s̃t+1 and s̃ ′t+1, EfficientZero uses an architecture inspired by the SimSiam feature learning
framework [21].

For TransZero, we would extend this approach by taking a sequence of observations ot , . . . ,ot+K

and processing them as a batch through the representation network to obtain the latent tar-
gets s̃ ′t , . . . , s̃

′
t+K . These can then be compared to the corresponding predictions s̃t , . . . , s̃t+K

generated by the TransZero dynamics model gtrans
θ

.

7.3.3 Alternate Expansion

Since the tree grows exponentially with respect to |A|, subtree expansion in TransZero-
Parallel becomes increasingly challenging as the action space increases. In chess, for ex-
ample, AlphaZero [3] used an action space of size 4672. Expanding just two layers of the
subtree would result in approximately 22 million nodes. As shown in Table 6.4, expanding
around 5500 nodes already consumes 4 GB of GPU memory, making the expansion of 22
million nodes computationally infeasible.
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To address this, one could consider expanding only the nodes for which all ancestors along
the path exceed a certain PUCT score threshold. If, on average, we wish to expand N̄n

nodes per layer, then a subtree of depth Nl would result in at most around N̄Nl
n nodes being

expanded in parallel. To apply this method efficiently, without recalculating the UCB score
for all nodes at each step, a caching mechanism similar to that used for Q-values and vari-
ances in MVC (see subsection 3.2.4) can be used. Specifically, PUCT scores can be cached
and updated along the path of the backup.

An issue with this approach is that the U-term of the PUCT score for a node is heavily
influenced by its sibling nodes. First, the prior policy is normalized to sum to one across
all child actions, meaning its scale depends on the quality of the sibling nodes. To mitigate
this, we could weigh the prior policy by the Q-value of the parent. This adjustment would
favor the exploration of promising children of high-value nodes over that of relatively strong
children of low-value nodes.

Additionally, the last term of Uπ̃(x⊎a) is√
V[Qπ̃(x)]−1

1+V[Qπ̃(x⊎a)]−1 .

This term also gives the node a score that is relative to its siblings. As an alternative, we
could combine the inverse variances of the parent and child—e.g., by multiplying them—to
produce a score that is more comparable across the search tree.

Another limitation arises in states where all available actions yield low rewards. In such
cases, all PUCT scores may fall below the fixed threshold, preventing any node from being
expanded. To address this, we propose a dynamic threshold based on the average PUCT
score. Specifically, we define the threshold as α times the average PUCT score, where
α > 0 is a tunable hyperparameter. This threshold could also be annealed over the course of
training: a higher α early on encourages broader exploration, while a lower α later allows
for more selective expansion as the network becomes more confident in its predictions.

This approach could also help address what we suspect was the reason deeper tree expan-
sions did not yield additional benefits in subsection 7.1.1. Specifically, MuZero relies on
the prior to guide action selection toward regions where the model is more accurate. In the
above method, the prior is used at every selection step, rather than only at the root of the
subtree being expanded.

7.3.4 Stacked Observations

In partially observable environments (POMDPs), the agent does not have full access to
the underlying state of the environment. To mitigate this, MuZero uses a stack of recent
observations to provide temporal context. Instead of feeding a single observation ot into the
representation network hθ, MuZero concatenates the past k observations into a single input:

ostacked
t = {ot−k+1, . . . , ot}.
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7.3. Future Work

This stacked observation ostacked
t is then encoded by the representation network:

s̃root = hθ(ostacked
t ).

To adapt this approach for TransZero, several strategies can be considered. One straightfor-
ward method is to create a token for each observation in the stack using the representation
network hθ, and prepend these tokens to the embedded action sequence. The positional
encoding for these tokens could simply follow an increasing sequence, starting with the
earliest observation in the stack. A drawback of this method is that the model must im-
plicitly infer the type of each token—whether it represents an observation or an action. To
address this, we can add an explicit type embedding to each token. The final token rep-
resentation would then consist of the sum of the action (or observation) embedding, the
positional encoding, and the type embedding.

Another approach is to extend the previous method by interleaving each stacked observation
with the action that led to it. In some scenarios, it may be beneficial for the model to know
which actions were taken to arrive at specific observations. To implement this, we follow
a similar process as before: each stacked observation is passed through the representation
network to produce a latent state. The interleaved actions are embedded in the same way
as other actions. In this setup, it is crucial that positional encoding distinguishes between
observations and actions. Otherwise, the model may misinterpret the interleaved action as
part of the latent state sequence, rather than as the transition leading to the next observation.
One solution is to use separate positional encoding schemes for observations and actions. In
addition, a type embedding can be included to make the token type explicit, further helping
the model to differentiate between observation and action tokens.

This approach could also be used beyond POMDPs, UniZero [14] uses a similar approach
to improve sample efficiency in MDPs. Although UniZero uses some additional techniques
in their transformer backbone, the principle of using a root state informed by previous ob-
servations remains the same.

7.3.5 More Environments

So far, we have only evaluated the agents in toy environments due to GPU and time con-
straints. It remains to be seen whether they would perform equally well in more complex
settings, such as Atari games. Although all TransZero agents scaled effectively to Lu-
narLander, which is more complex than MiniGrid, it is not guaranteed that this trend will
continue. This is particularly uncertain for TransZero-Parallel, as it is the agent that differs
most significantly from MuZero.

It would also be valuable to evaluate TransZero-Parallel in environments with even larger
state spaces to assess whether it maintains scalability in such settings. This would help
identify the practical limits of the proposed parallel subtree expansion and determine how
much speed-up can realistically be achieved.
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Chapter 8

Conclusion

This thesis presented TransZero-Parallel, a modified MuZero variant that enables parallel
planning in Monte Carlo Tree Search (MCTS). The approach builds on two earlier agents.
The first, TransZero, replaces MuZero’s recurrent dynamics model with a transformer, al-
lowing full rollouts to be computed in a single forward pass. The second, TransZero with
MVC uses the Mean-Variance-Constrained (MVC) evaluator [5] to decouple how the search
tree is built from how its nodes are evaluated. TransZero-Parallel combines both ideas with
minor additional modifications to the MCTS, allowing for parallel expansion of entire sub-
trees.

Experiments showed that TransZero achieved sample efficiency and wall-clock speed com-
parable to MuZero. The addition of the MVC evaluator maintained this performance, al-
though at the cost of increasing the planning time by 60%. TransZero-Parallel preserved
sample efficiency while decreasing the planning speed by up to 11x, with similar reduc-
tions in the total training time. Theoretical analysis suggests that much larger planning
speedups—over 100x—may be possible in certain cases, although how often this applies in
practice is still unclear.

Future work could focus on scaling this method to more complex environments. Reduc-
ing attention computation time—possibly exponentially—and exploring alternative subtree
expansion strategies are also promising directions. Lastly, incorporating techniques from
EfficientZero [19] might further improve sample efficiency.

The primary objective was to reduce the inference time, thus enhancing the applicability
of model-based reinforcement learning in settings where fast decision making is essential.
This research represents a strong step towards this goal.
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