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This paper proposes incremental nonsingular terminal sliding mode control for a class of multi-input 
and multi-output nonlinear systems considering model uncertainties, external disturbances, and sudden 
actuator faults. This method is free from singularity because it does not involve any negative fractional 
power. The convergence time in both reaching and sliding phases are proved to be finite. Moreover, 
by fully exploiting sensor measurements, the proposed incremental control method simultaneously 
reduces model dependency and the uncertainty remaining in the closed-loop system. The reduction of 
model dependency simplifies the implementation process and reduces the computational load, while the 
reduction of uncertainty decreases the minimum possible sliding mode control gains, which is beneficial 
to chattering reduction. These merits are verified by a quadrotor trajectory tracking problem. Simulation 
results demonstrate that the proposed method has better robustness against model uncertainties, gusts, 
and actuator faults than the model-based nonsingular terminal sliding mode control in the literature.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

Autonomous quadrotors have attracted considerable interests 
from academia and industry by virtue of their mechanical sim-
plicity and capability of hovering, vertically taking off and landing. 
They are promising platforms for aerial photography, monitoring, 
package delivery, pesticides spraying, etc. To make full use of the 
physical benefits of quadrotors, high-precision control laws that 
can cope with nonlinearities, model uncertainties, gusts, and ro-
tor failures become increasingly important.

Sliding mode control (SMC), as a special type of variable struc-
ture control [1,2], is promising in dealing with disturbances and 
faults. SMC design normally consists of two steps. First, a sliding 
manifold is designed based on the desired error dynamics. Then, 
the control input is designed to keep the system trajectories on 
the sliding manifold. Once the sliding manifold is reached and 
maintained, the closed-loop system becomes insensitive to model 
uncertainties and external disturbances [1,2]. Conventionally, lin-
ear sliding manifolds are used in SMC because of their simplicity. 
However, only asymptotic convergence can be achieved by linear 
sliding manifolds, which means that the time taken for the system 
trajectories converge to the equilibrium is infinity [1–3]. Terminal 
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sliding manifolds, which are nonlinear functions of tracking errors, 
can ensure finite-time convergence in spite of uncertainties and 
disturbances [4,5].

Control methods that achieve terminal sliding modes are par-
ticularly useful for high-precision tracking because they accelerate 
the convergence near the equilibrium point [4]. A terminal sliding 
mode control (TSMC) method was proposed for robotic manipula-
tors in [6], but it contains negative fractional powers, which may 
cause singularities around the equilibrium. A nonsingular TSMC 
method is proposed in [4] to overcome this issue. The method 
proposed in [4] uses the discontinuous signum function to ensure 
the reachability of the manifold, which however leads to the chat-
tering phenomenon. In order to reduce the chattering magnitude, 
the boundary-layer approximation is adopted in [4]. Nevertheless, 
this approximation leads to the loss of finite-time convergence, 
even for a nominal system [7]. In view of this, a continuous TSMC 
method is proposed in [7]. In the absence of perturbations, this 
method ensures that the convergence time from any initial condi-
tion to the sliding manifold and to the equilibrium are both finite. 
In the presence of bounded perturbations, this method guarantees 
finite-time convergence to a small neighborhood of the equilibrium 
point.

The TSMC method proposed in [7] is concluded to be chattering-
free because of its continuous control law. However, it will be 
shown in this paper that in spite of its continuity, this approach 
does lead to chattering in some faulty conditions. This paper con-
siders actuator faults, which were not addressed in [4,6,7]. Actuator 
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faults are challenging because if the sliding gains are not raised 
timely after a fault occurs, the resulting uncertainties or perturba-
tions may become unbounded, which further leads to instability 
of the system. Although amplifying the control gains may help 
to stabilize the system, it also amplifies the measurement noise 
and induces chattering. Even under the circumstances that the 
resulting uncertainties are bounded, to achieve the required perfor-
mance, the minimum possible sliding control gains are positively 
correlated to the absolute values of the uncertainties [3,4,7].

A widely used approach to maintain the boundedness of un-
certainties and to reduce their absolute values is to identify a 
physical model of the system online [3]. However, pursuing a per-
fect model is costly for many complex systems, including aircraft. 
Online model identification increases the onboard computational 
load, and the sufficient excitations required by it may also aggra-
vate vibrations [8,9]. These observations lead to a research ques-
tion: is it possible to simultaneously reduce model dependency 
and the resulting uncertainty?

The proposal of incremental sliding mode control (INDI-SMC) 
[10] provides a positive answer to this question. As a hybrid be-
tween incremental nonlinear dynamic inversion (INDI) [11] and 
sliding mode control (SMC), INDI-SMC replaces a part of the model 
information by sensor measurements, in which way it reduces the 
remaining uncertainty in spite of its reduced model dependency. 
Numerical simulations using a nonlinear F-16 aircraft model show 
that INDI-SMC can achieve desirable tracking performance in the 
presence of sudden actuator faults and structural damage [10]. 
However, the boundary-layer approximation used in [10] leads to 
not only loss of the finite-time reaching phase, but also to robust-
ness impairment. Moreover, Ref. [10] uses linear sliding manifolds, 
which only achieve asymptotic convergence to the equilibrium 
point. External disturbances are also not considered in [10]. Re-
cently, an incremental sliding mode control driven by sliding mode 
disturbance observers approach is proposed in [12] to handle an 
attitude tracking problem of a quadrotor with one partially im-
paired rotor. However, this approach also only uses linear sliding 
manifolds. Although gusts are included in the simulations of [12], 
the attitudes of a quadrotor are less sensitive to gusts than its 
trajectories. Considering trajectory control when an actuator fault 
occurs or when gusts are present is also more meaningful in prac-
tice.

This paper proposes an incremental nonsingular terminal slid-
ing mode control (INTSMC) method for second-order nonlinear 
uncertain systems. Lyapunov analyses show that the proposed 
method achieves finite-time convergence in both reaching and slid-
ing phases. It is also free from singularity. As compared to the 
model-based nonsingular terminal sliding mode control (NTSMC) 
in the literature, the proposed sensor-based approach can simul-
taneously reduce model dependency and the resulting uncertainty, 
which consequently decreases the minimum possible sliding mode 
control gains. When applied to a quadrotor fault-tolerant trajec-
tory tracking problem, simulation results show that the proposed 
method achieves high-precision control in the presence of model 
uncertainties, gusts, and successive actuator faults. A wide range 
of faults can be tolerated without using fault detection and diag-
nosis or online model identification, which simplifies the design 
and implementation processes.

The rest of this paper is organized as follows: The INTSMC 
method will be proposed in Sec. 2. This method will be used to 
solve a quadrotor fault-tolerant control problem in Sec. 3. The ef-
fectiveness of INTSMC will be numerically compared with NTSMC 
in Sec. 4. Main conclusions are drawn in Sec. 5.
2. Incremental nonsingular terminal sliding mode control

In this section, the NTSMC derived in [7] for robotic manip-
ulators will first be generalized for a class of nonlinear systems 
considering model uncertainties, external disturbances and sudden 
actuator faults in subsection 2.1. The INTSMC will then be pro-
posed based on NTSMC and INDI in subsection 2.2. Theoretical 
comparisons for the robustness of INTSMC and NTSMC will be pre-
sented in subsection 2.3.

Consider a class of multi-input/multi-output nonlinear uncer-
tain systems formulated by:

ẋ1 = G1(x1)x2 (1a)

ẋ2 = f 2(x1, x2, κ(t)) + G2(x1, x2, κ(t))u + d(t) (1b)

y = x1 (1c)

Define the state vector as x = [xT
1 , xT

2 ]T , with x1, x2 ∈ Rn . The 
input and output vectors are respectively u ∈ Rn and y ∈ Rn . f 2
and the columns of G1, G2 are smooth vector fields. d(t) ∈ Rn

represents the external disturbance vector.

Assumption 1. G1(x1) and G2(x1, x2, κ(t)) are nonsingular for all t .

Assumption 2. The external disturbance vector d(t) is bounded.

In Eq. (1), suppose G1 is known for controller design, whereas 
f 2 and G2 are perturbed by uncertainties and onboard faults, 
which are modeled as:

f 2 = f̄ 2 + ( f f − f̄ 2)κ(t) + �θ + η f (x, t),

G2 = Ḡ2 + (G f − Ḡ2)κ(t) + �θ + ηG(x, t) (2)

In Eq. (2), f̄ 2 and Ḡ2 are the estimated models used for con-
troller design, while f f and G f denote the post-fault dynamics. 
κ(t) ∈ R is designed as a step function to model the sudden fault 
at t = t f during flight. To be specific, t < t f , κ = 0 indicates the 
fault-free case, and t ≥ t f , κ = 1 denotes post-fault condition. �θ
and �θ represent parametric uncertainties, where the parame-
ter vector θ ∈ Rp is not necessarily constant. �(x), �(x) ∈ Rn×p , 
whose columns are smooth vector fields. η f , ηG ∈Rn are smooth 
vector fields denoting unmodeled dynamics. Under Assumption 1, 
the uncertainties considered in Eq. (2) satisfy the matching condi-
tion [3]. It will be shown in Sec. 3 that both the translational and 
rotational dynamics of a quadrotor can be modeled by Eqs. (1), (2).

Denote the output reference vector as yr = x1,r ∈ Rn , which 
should be at least twice differentiable, with bounded ẏr and ÿr . 
To stabilize the tracking error e = y − yr , NTSMC and INTSMC will 
be respectively designed in subsections 2.1 and 2.2.

2.1. Nonsingular terminal sliding mode control

The nonsingular terminal sliding manifold is given by [7]:

s = e + �sig(ė)γ = 0 (3)

where sig(ė)γ = [|e1|γ1 sign(e1), ..., |en|γn sign(en)]T , � = diag([λ1,

..., λn]T ), γ = [γ1, ..., γn]T , and λi > 0, 1 < γi < 2 for i = 1, ..., n. 
One feature that distinguishes this terminal manifold from those 
linear manifolds is that once si = 0 is achieved, for any given ini-
tial condition ei(t0), i = 1, ..., n, ei converges to zero in finite time 

ts,i = λ
(1/γi )
i

1− 1
γi

|ei(t0)|(1− 1
γi

)
[7]. It is noteworthy that Eq. (3) is essen-

tially equivalent [7,13] to the fractional-order nonsingular terminal 
sliding manifold proposed in [4].
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To utilize the attractive property of this sliding manifold, a feed-
back control law is needed to stabilize s = 0. A widely adopted 
control structure is u = ūeq + us , where ūeq is a model-based es-
timation of the equivalent control [1,14], and us is used to ensure 
the reachability of the sliding manifold. This model-based con-
trol structured is adopted by [14–21]. The physical meaning of the 
equivalent control is the control effort needed to maintain the slid-
ing motion on the manifold, which requires s = ṡ = 0 [1]. For the 
manifold given by Eq. (3), this requirement leads to:

ṡ = ė + ��diag(|ė|γ −1)ë = 0 (4)

where � = diag([γ1, ..., γn]T ), and |ė|γ−1 = [|ė1|γ1−1, ..., |ėn|γn−1]T . 
For the output tracking problem, substituting Eq. (1) into Eq. (4)
results in:

ė + ��diag(|ė|γ −1)

×
(

∂G1x2

∂x1
G1x2 + G1( f 2 + G2ueq + d) − ÿr

)
= 0 (5)

The exact value of ueq is unavailable since d is unknown; f 2
and G2 are also perturbed by uncertainties and faults. However, an 
estimation ūeq can be calculated based on the estimated models 
as:

ūeq = (G1Ḡ2)
−1

×
(

ÿr − �−1�−1sig(ė)2−γ − ∂G1x2

∂x1
G1x2 − G1 f̄ 2

)

� (G1Ḡ2)
−1

(
νeq − ∂G1x2

∂x1
G1x2 − G1 f̄ 2

)
(6)

νeq in Eq. (6) denotes the equivalent virtual control, which is 
independent of the model information. us is normally designed in 
form of us = (G1 Ḡ2)

−1νs , where the virtual control νs is inserted 
to achieve a desirable reaching law. In [4], the conventional design 
νs = −K ssign(s) is employed, which theoretically makes s con-
verge to zero in finite time if sufficiently high positive definite K s

is used. However, the sign function is discontinuous, which causes 
chattering in practice [1,3]. Although the boundary-layer method is 
adopted in [4] to alleviate chattering, the finite-time convergence 
property is consequently lost. Moreover, only ultimate bounded-
ness of s can be achieved [4].

In view of the limitations of using the boundary-layer method, 
the fast-terminal-sliding-mode-type reaching law is proposed 
in [7], where νs = −K 1s − K 2sig(s)ρ , K 1 = diag([k1,1, ..., k1,n]T ), 
k1,i > 0, K 2 = diag([k2,1, ..., k2,n]T ), k2,i > η > 0, and sig(s)ρ =
[|s1|ρ1 sign(s1), ..., |sn|ρn sign(sn)]T , 0 < ρi = ρ < 1, i = 1, ..., n. This 
νs design is continuous without using any approximation. It also 
builds a bridge between the discontinuous reaching law (if ρi = 0, 
which causes chattering but leads to finite-time reaching) and 
the linear reaching law (if ρi = 1, which only achieves asymp-
totical convergence but is continuous). By requiring 0 < ρi = ρ <

1, i = 1, ..., n, both finite-time reaching and continuity can be 
achieved [7]. In total, the NTSMC law for systems modeled by 
Eq. (1) is given by:

unt = ūeq + us = (G1Ḡ2)
−1

(
νeq + νs − ∂G1x2

∂x1
G1x2 − G1 f̄ 2

)

= (G1Ḡ2)
−1

(
ÿr − �−1�−1sig(ė)2−γ − K 1s − K 2sig(s)ρ

−∂G1x2 G1x2 − G1 f̄ 2

)
(7)
∂x1
The dynamics of the sliding variable s (Eq. (3)) under the con-
trol of Eq. (7) is given by:

ṡ = ė + ��diag(|ė|γ −1)

×
(

∂G1x2

∂x1
G1x2 + G1

(
f 2 + G2(G1Ḡ2)

−1(νeq + νs

−∂G1x2

∂x1
G1x2 − G1 f̄ 2) + d

)
− ÿr

)
� ė + ��diag(|ė|γ −1)(νeq + νs + εnt − ÿr)

= ��diag(|ė|γ −1)
(
εnt − K 1s − K 2sig(s)ρ

)
(8)

in which

εnt = G1( f 2 − f̄ 2) + (
(G1G2)(G1Ḡ2)

−1 − I
)

×
(
νeq + νs − ∂G1x2

∂x1
G1x2 − G1 f̄ 2

)
+ G1d (9)

represents the uncertainty vector remains in the closed-loop sys-
tem. I ∈ Rn×n is an identity matrix. This uncertainty/perturba-
tion term is always assumed to be bounded in the literature 
(e.g., [14,22–25]) as a precondition of sliding mode control design.

Generally speaking, sliding mode control which depends on the 
model-based estimation of the equivalent control has a contradic-
tion between the reduction of model dependency and the reduc-
tion of the resulting uncertainty. On the one hand, reducing the 
model dependency can simplify the implementation process and 
reduce the onboard computational load, but according to Eq. (9), 
a worse dynamic estimation leads to an increase in the remaining 
uncertainty. On the other hand, Eq. (9) shows that the reduction 
of uncertainty requires more accurate model estimations. Reducing 
the remaining uncertainty in the closed-loop system is important 
for SMC because the minimum possible SMC gains are positively 
correlated to the absolute values of the remaining uncertainties; 
reducing the SMC gains is beneficial to chattering reduction. This 
contradiction will be solved by a sensor-based design presented in 
the next subsection.

2.2. Incremental nonsingular terminal sliding mode control

This subsection proposes the incremental nonsingular terminal 
sliding mode control (INTSMC), which solves the contradiction in 
NTSMC by fully exploiting the sensor measurement. Denote the 
sampling interval as �t . The first step of the INTSMC design is to 
derive the incremental dynamic equation by taking the first-order 
Taylor series expansion around the condition at t −�t (denoted by 
the subscript 0) [11]. It can be seen from Eq. (1) that the relative 
degree [3,11] of the system equals two. Therefore, using Eqs. (1), 
(2), the incremental dynamics of ÿ are:

ÿ = ∂G1x2

∂x1
G1x2 + G1 f 2 + G1G2u + G1d

= ÿ0 + ∂[ ∂G1x2
∂x1

G1x2 + G1 f 2 + G1G2u + G1d]
∂x

∣∣∣∣
0
�x

+(G1G2)
∣∣
0�u + ∂[G1 f 2 + G1G2u]

∂κ

∣∣∣∣
0
�κ + G1,0�d + R1

(10)

where �x and �u indicate the state and control increments in �t . 
�κ = κ − κ0 denotes the changes of the fault indicator κ , while 
�d = d − d0 denotes the variations of the external disturbances d
in �t . R1 in Eq. (10) is the expansion remainder, using Eqs. (1), 
(2), the Lagrange form of the remainder is:
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R1 = 1

2

∂2[ ∂G1x2
∂x1

G1x2 + G1 f 2 + G1G2u + G1d]
∂2x

∣∣∣∣
m
�x2

+∂G1G2

∂x

∣∣∣∣
m
�x�u + ∂2[G1 f 2 + G1G2u]

∂κ∂x

∣∣∣∣
m
�κ�x

+∂G1

∂x

∣∣∣∣
m
�d�x + ∂G1G1

∂κ

∣∣∣∣
m
�u�κ (11)

in which (·)|m means evaluating (·) at a condition where x ∈ (x(t −
�t), x(t)), u ∈ (u(t −�t), u(t)), d ∈ (d(t −�t), d(t)), and κ ∈ (κ(t −
�t), κ(t)). In Eq. (11), R1 is not a function of �u2, �d2, �κ2, nor 
the coupling terms �κ�d, �u�d. This can be examined using 
Eqs. (1), (2).

Second, use the same sliding manifold as Eq. (3), and substitute 
Eq. (10) into Eq. (4) yields:

ė + ��diag(|ė|γ −1)

×
(

ÿ0 + ∂[ ∂G1x2
∂x1

G1x2 + G1 f 2 + G1G2u + G1d]
∂x

∣∣∣∣
0
�x

+(G1G2)
∣∣
0�u + ∂[G1 f 2 + G1G2u]

∂κ

∣∣∣∣
0
�κ

+G1,0�d + R1 − ÿr

)
= 0 (12)

Third, the equivalent control increments can be estimated from 
the algebraic Eq. (12) as:

�ūeq = ((G1Ḡ2)
∣∣
0)

−1
(

ÿr − �−1�−1sig(ė)2−γ − ÿ0

)
� ((G1Ḡ2)

∣∣
0)

−1(νeq − ÿ0) (13)

The equivalent virtual control νeq in Eq. (13) is the same as that 
in Eq. (6) for inserting the desired error dynamics.

Remark 1. In contrast to Eq. (6) which estimates the entire ūeq, 
Eq. (13) estimates the increments of ūeq. More importantly, Eq. (6)
relies on the estimated model f̄ 2, whereas Eq. (13) depends on 
ÿ0, which can be directly measured [26,27] or estimated [28,29].

Then, for ensuring the reachability of s = 0, the fast-terminal-
sliding-mode-type reaching law is adopted, with νs = −K 1s −
K 2sig(s)ρ .

Finally, the INTSMC law is proposed as

�uint = �ūeq + �us = ((G1Ḡ2)
∣∣
0)

−1(νeq + νs − ÿ0)

= ((G1Ḡ2)
∣∣
0)

−1
(

ÿr − �−1�−1sig(ė)2−γ − K 1s

−K 2sig(s)ρ − ÿ0

)
(14)

The entire control command for the actuator is uint = �uint +
u0, where u0 is the actuator position measured at t − �t [11]. Us-
ing Eq. (10), the dynamics of the sliding variable s (Eq. (3)) under 
the control of Eq. (14) is given by:

ṡ = ė + ��diag(|ė|γ −1)(νeq + νs + εint − ÿr)

= ��diag(|ė|γ −1)
(
εint − K 1s − K 2sig(s)ρ

)
(15)

εint in Eq. (15) is the lumped perturbation term, which is ex-
pressed as

εint = δ(x, κ,�t) + (
(G1G2)(G1Ḡ2)

−1
∣∣
0 − I

)
(νeq + νs − ÿ0)

+G1,0�d (16)
in which δ(x, κ, �t) is the closed-loop value of the variations and 
expansion reminder:

δ(x, κ,�t) =
[

∂[ ∂G1x2
∂x1

G1x2 + G1 f 2 + G1G2u + G1d]
∂x

∣∣∣∣
0
�x

+∂[G1 f 2 + G1G2u]
∂κ

∣∣∣∣
0
�κ + G1,0�d + R1

] ∣∣∣∣
u=uint

(17)

Using Eqs. (2), (10), the δ(x, κ, �t) is further derived as:

δ(x, κ,�t) = δb(x,�κ,�t) + δd(x,�t)κ0 + δκ (x)�κ (18)

where

δb(x,�κ,�t)

= ∂[ ∂G1x2
∂x1

G1x2 + G1( f̄ 2 + �θ + η f ) + G1(Ḡ2 + �θ + ηG )uint + G1d]
∂x

∣∣∣∣
0
�x

+R1|u=uint

δd(x,�t) = ∂[G1( f f − f̄ 2) + G1(G f − Ḡ2)uint]
∂x

∣∣∣∣
0
�x

δκ (x) = [G1( f f − f̄ 2) + G1(G f − Ḡ2)uint]|0 (19)

Assumption 3. In Eq. (19), ‖δb(x, �κ, �t)‖ ≤ δ̄b , while ‖δd(x, �t)‖
≤ δ̄d .

Since x is continuously differentiable, lim�t→0 ‖�x‖ = 0. Then 
if the partial derivatives of f 2, G1 and G2 in Eq. (1) with respect 
to x, up to any order, are bounded, according to the expressions 
in Eq. (19), the norm values of δb and δd approach zero as the 
sampling frequency increases. Therefore, it is assumed that under 
sufficiently high sampling frequency, the norm values of δb and δd
are bounded.

Assumption 4. δκ (x) in Eq. (19) is bounded when t f ≤ t < t f +�t .

This assumption means during the first sampling interval after 
the fault occurs, the variations in system dynamics remain finite.

Proposition 1. Under Assumptions 1, 2, 3, and 4, if

‖I − (G1G2)(G1Ḡ2)
−1‖ ≤ b̄ < 1,

and if G1 is bounded, for sufficiently high sampling frequency f s , the 
residual error εint given by Eq. (16) is ultimately bounded.

Proof. Substituting Eq. (13) into Eq. (10) results in the closed-loop 
dynamics: ÿ = νeq + νs + εint, which is also valid at the previous 
time step: ÿ0 = (νeq + νs)

∣∣
0 + εint,0. Therefore, Eq. (16) is derived 

as follows:

εint = δ(x, κ,�t) + (
(G1G2)(G1Ḡ2)

−1
∣∣
0 − I

)
×(νeq + νs − (νeq + νs)

∣∣
0 − εint,0) + G1,0�d

� Eεint,0 − E�ν + δ(x, κ,�t) + G1,0�d (20)

where �ν = νeq + νs − (νeq + νs)
∣∣
0. Since �κ is only non-zero 

for t f ≤ t < t f + �t , then δκ�κ is bounded under Assump-
tion 4. Recall Eq. (18), under Assumptions 3 and 4, ‖δ(x, κ, �t)‖ ≤
‖δb(x, �κ, �t)‖ + ‖δd(x, �t)‖ · 1 + ‖δκ (x)�κ‖ ≤ δ̄b + δ̄d + δ̄κ � δ̄. 
Moreover, referring to Eq. (14), the virtual control terms νeq and νs

are continuous, thus there exists an f s such that ‖�ν‖ is bounded 
by a constant �ν . When G1 is bounded by Ḡ1, ‖G1,0�d‖ ≤
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‖G1,0‖‖�d‖ ≤ Ḡ1�d under Assumption 2. Because the variation 
terms are bounded under a sufficiently high f s , analogous to the 
proof of Theorem 2 in [12], εint in Eq. (16) is bounded at each time 
step, and is ultimately bounded by Ḡ1�d+�νb̄+δ̄

1−b̄
. �

Lemma 1. [7] Suppose a1, a2, ..., an are positive numbers, and 0 < p <
2, then (a2

1 + a2
2 + ... + a2

n)p ≤ (ap
1 + ap

2 + ... + ap
n )2 .

Lemma 2. [7] If a Lyapunov function V satisfies V̇ + αV + βV γ ≤
0, α, β > 0, 0 < γ < 1, then V = 0 will be reached in finite time 
T ≤ 1

α(1−γ )
ln αV 1−γ (t0)+β

β
.

Theorem 1. For system modeled by Eq. (1) with sliding manifold given 
by Eq. (3), using the INTSMC designed as Eq. (14), then

1. In the absence of the perturbation term εint, s and e will converge 
to zero in finite time.

2. If the perturbation term εint (Eq. (16)) is bounded, then the sys-
tem trajectories will converge to the neighborhood of s = 0 as si ≤
�int,si = (|εint,i |/k2,i − η)

1
ρi in finite time. Furthermore, the track-

ing errors will converge to |ei| ≤ 2�int,si , and |ėi| ≤ (�int,si /λi)
1
γi

in finite time.

Proof. Consider the Lyapunov function V = 1
2 sT s, the substitution 

of Eq. (15) yields

V̇ = sT (��diag(|ė|γ −1)(εint − K 1s − K 2sig(s)ρ)) (21)

1. When εint = 0, Eq. (21) yields

V̇ = −sT K 1s − sT K 2sig(s)ρ (22)

where K 1 = ��diag(|ė|γ−1)K 1 = diag([k1,1, ..., k1,n]T ) and 
K 2 = ��diag(|ė|γ −1)K 2 = diag([k2,1, ..., k2,n]T ) are positive 
definite matrices if ė �= 0. Since 0 < ρi = ρ < 1, using 
Lemma 1, then

V̇ ≤ −2k1 V − 2(ρ+1)/2k2 V (ρ+1)/2 (23)

where k1 = min{k1,i} and k2 = min{k2,i}. According to Lem-
ma 2, V will converge to zero in finite time T ≤
ln((k1 V (t0)

(1−ρ)/2 + 2(ρ−1)/2k2)/(2(ρ−1)/2k2))/(k1(1 − ρ)).
Equivalently, s = 0 will be reached in finite time. Recall Eq. (3), 
on the terminal sliding surface, e will converge to zero in fi-
nite time.
The above analyses are based on ė �= 0. If at the reaching 
phase, si �= 0, but ėi = 0, then by using Eqs. (1), (7) the closed-
loop system dynamics become:

ëi = −k1,i si − k2,isig(si)
ρ �= 0 (24)

which means ėi = 0 is not an attractor in the reaching phase. 
Therefore, the finite-time reachability of the sliding manifold 
is still ensured.

2. When εint �= 0, recall Eq. (22), Eq. (21) is written as:

V̇ = −sT K 1s − sT K ′
2sig(s)ρ

+sT [��diag(|ė|γ −1)(εint − (K 2 − ηI)sig(s)ρ)]
= −sT K 1s − sT K ′

2sig(s)ρ

+sT [��diag(|ė|γ −1)(diag(εint)diag−1(sig(s)ρ)

−(K 2 − ηI))sig(s)ρ ]
≤ −sT K 1s − sT K ′ sig(s)ρ ,
2
∀|si | ≥
( |εint,i|

k2,i − η

) 1
ρi
� �int,si (25)

where K ′
2 = η��diag(|ė|γ−1). Using Lemma 1 and Lemma 2, 

Eq. (25) demonstrates that if ė �= 0, si converges to the domain 
of si ≤ �int,si in finite time.
If ė = 0, using Eqs. (1), (14) the closed-loop system dynamics 
become:

ëi = −k1,i si − k2,isig(si)
ρ + εint,i (26)

which is nonzero outside the domain si ≤ �int,si . In other 
words, ėi = 0 is not an attractor in the reaching phase.
Furthermore, recall Eq. (3)

ei + λisig(ėi)
γi = si ≤ �int,si (27)

which can be rewritten as

ei +
(

λi − si

|ėi |γi sign(ėi)

)
|ėi |γi sign(ėi) = 0 (28)

Eq. (28) is still in the form of nonsingular terminal sliding 
mode if λi − si/|ėi |γi sign(ėi) > 0, which means in finite time, 
ėi will converge to the domain:

|ėi | ≤
(

�int,si

λi

) 1
γi

(29)

Furthermore, using Eqs. (27), (29), it is derived that the fol-
lowing inequalities are achieved in finite time:

|ei | ≤ λi|ėi |γi + |si | ≤ 2�int,si (30)

This completes the proof. �
Recall Eqs. (7), (8), the closed-loop system dynamics using 

NTSMC are: ṡ = ��diag(|ė|γ −1)
(
εnt − K 1s − K 2sig(s)ρ

)
, which is 

in a similar form as Eq. (15) except the perturbation value. There-
fore, the following Corollary of Theorem 1 can be derived for the 
model-based NTSMC:

Corollary 1. For system modeled by Eq. (1) with sliding manifold given 
by Eq. (3), using the NTSMC designed as Eq. (7), then

1. In the absence of the perturbation term εnt, s and e will converge to 
zero in finite time.

2. If the perturbation term εnt (Eq. (9)) is bounded, then the system 
trajectories will converge to the neighborhood of s = 0 as si ≤
�nt,si = (|εnt,i |/(k2,i − η))

1
ρi in finite time. Furthermore, the track-

ing errors will converge to |ei| ≤ 2�nt,si , and |ėi| ≤ (�nt,si /λi)
1
γi in 

finite time.

Although both NTSMC and INTSMC can make the system tra-
jectories converge in finite time, they have different model depen-
dency and robustness. These issues will be elaborated in the next 
subsection.

2.3. Comparisons between NTSMC and INTSMC

In this subsection, the model-based NTSMC method derived 
in 2.1 and the sensor-based INTSMC method proposed in 2.2 will 
be analytically compared.

First of all, by comparing Eq. (7) with Eq. (14), it can be seen 
that INTSMC replaces a part of the model information by sensor 
measurements. This reduction of model dependency can simplify 
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the implementation process, and reduce the onboard computa-
tional load.

Second of all, NTSMC and INTSMC result in different closed-
loop perturbation terms, i.e., εnt and εint. Generally speaking, the 
boundedness of the perturbation is the pre-condition of many ro-
bust control approaches, including sliding mode control. The suffi-
cient conditions for the boundedness of εint have been presented 
in Proposition 1. However, under the same conditions, the bound-
edness of εnt is undetermined. In view of Eqs. (7), (9), the bound-
edness of εnt requires G1( f f − f̄ ) + G1(G f − Ḡ)unt being bounded 
for all t , which is stricter than Assumption 4.

Third of all, even under the circumstances that both εnt and 
εint are bounded, εint has lower upper bound than εnt, which will 
be explained as follows:

Before a fault occurs, i.e., t < t f , κ0 = κ = 0; using Eq. (9), 
εnt = G1(�θ + η f ) + G1(�θ + ηG)unt + G1d; using Eqs. (16), (19), 
εint = δb +(

G1(�θ + ηG)
) ∣∣

0�uint +G1,0�d. For aerospace systems, 
‖�θ + η f ‖ is normally large because of the difficulties in model-
ing the aerodynamic and inertia properties. On the contrary, since 
‖�x‖ vanishes towards zero as �t approaches zero, according to 
Eq. (19), ‖δb‖ can become negligible under sufficiently high sam-
pling frequency. Moreover, when unt �= 0 and d �= 0, there exists 
an f s such that ‖�uint‖ ≤ ‖unt‖ and ‖�d‖ ≤ ‖d‖. Therefore, when 
t < t f , there exists an f s , such that the upper bound of εint is 
smaller than that of εnt.

After a fault occurs, i.e., t > t f , κ0 = κ = 1, Eqs. (9), (16) show 
that εnt is augmented by G1( f f − f̄ 2) + G1(G f − Ḡ2)unt, which is 
fault-case dependent. By contrast, only δd + G1(G f − Ḡ2)�uint is 
added to εint as compared to the pre-fault condition. In spite of the 
fault cases, both ‖δd‖ and ‖�uint‖ approach zero as �t decreases. 
In other words, as the sampling frequency increases, INTSMC be-
comes increasingly more robust to εint.

In summary, under perturbed circumstances, there exists an f s

such that εint has a lower upper bound than εnt, both before and 
after a fault occurs. As a consequence, recall Theorem 1 and Corol-
lary 1, if the same gains are used by NTSMC and INTSMC, the 
ultimate bounds of si and ei are smaller using INTSMC. Moreover, 
to achieve the same tracking performance, because of the smaller 
bound of εint, the required INTSMC gains are lower. εint is also 
less fault-case dependent than εnt. Based on the preceding discus-
sions, it can be seen that INTSMC can simultaneously reduce the 
model dependency and the remaining uncertainty in NTSMC, thus 
the contradiction presented in subsection 2.1 is solved. The main 
reason that INTSMC can achieve enhanced robustness in spite of 
its reduced model dependency is its sensor-based control struc-
ture. As can be seen from Eqs. (16), (19), the main influences of 
uncertainties, disturbances, and faults are included in the measure-
ments/estimations of ÿ0 and u0.

3. Quadrotor fault-tolerant control

In this section, the NTSMC and the INTSMC derived in Sec. 2
will be applied to quadrotor fault-tolerant control problems for ro-
bustness comparisons.

3.1. Quadrotor dynamics

Fig. 1 shows a Parrot Bebop quadrotor. FI : (O I , XI , Y I , Z I ) is 
the inertia frame, while FB : (O B , XB , Y B , Z B) indicates the body-
fixed reference frame. Assume O B is coincided with the center of 
mass. ω = [ω1, ω2, ω3, ω4]T indicates the rotor speeds with re-
spect to FB . Denote the position and translational velocity vectors 
of FB with respect to FI , expressed in FI , as P = [X, Y , Z ]T and 
V = [V x, V y, V z]T respectively, then the translational dynamics of 
the quadrotor expressed in FI are:
Fig. 1. The axes definition for a Parrot Bebop quadrotor.

Ṗ = V

mV̇ = mg + L I B F (κ) (31)

where g = [0, 0, g]T is the gravitational acceleration vector, m
is the mass, and L I B is the rotation matrix from FB to FI . 
F (κ) = F a(κ) + F c(κ), with F a indicates the aerodynamic force, 
and F c(κ) = [0, 0, −T (κ)]T denotes the rotor thrust vector. The 
parameter κ (the same as that in Eq. (1b)) is used to model the 
influences of rotor faults. The rotational dynamics of the quadrotor 
expressed in FB are:

η̇ = E(η)� (32a)

I v(κ)�̇ = −�̃I v(κ)� + M(κ) (32b)

where η = [φ, θ, ψ]T contains the Euler angles. � = [p, q, r]T is 
the angular rate vector expressed in FB . ˜(·) indicates the skew 
symmetrical matrix of the vector (·). I v(κ) is the inertia matrix. 
The matrix E(η) can be found in [30]. M(κ) = Ma(κ) + M g(κ) +
Mc(κ), with Ma, M g, Mc respectively represents the aerody-
namic, gyroscopic, and control moment vector.

The thrust and reactive torque of the rotors are approximately 
proportional to ω2 [28,31]. Denote the thrust coefficients of the 
four rotors as ki, i = 1, 2, 3, 4, and denote the reactive torque co-
efficients of the four rotors as λi, i = 1, 2, 3, 4. Using the geometry 
parameters shown in Fig. 1, Mc(κ) and the total thrust T (κ) are 
modeled by:⎛
⎜⎜⎝ Mc(κ)

T (κ)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−bk1 bk2 bk3 −bk4
lk1 lk2 −lk3 −lk4
λ1 −λ2 λ3 −λ4

k1 k2 k3 k4

⎞
⎟⎟⎟⎠ω2 � Gm(κ)ω2

(33)

3.2. Control structure

This paper considers quadrotor trajectory tracking control, 
namely the control aim is P → P r . The translational and rotational 
dynamics of the quadrotor obey the physical time-scale separation 
principle [8,21,32], which makes it feasible to design two cascaded 
control loops, as illustrated in Fig. 2.

Translational control:
The translational control considers Eq. (31), and aims at find-

ing a reference for F c such that P → P r in finite time. In view 
of Eq. (31), define x1 = P , x2 = V , and select utr = L I B(F c/m), 
then Eq. (31) is naturally in the form of Eq. (1) with n = 3, 
G1 = G2 = I 3×3, f 2 = g , d = L I B(F a/m). Moreover, G1 is bounded 
and Assumption 1 is satisfied. Therefore, the NTSMC (Eq. (7)) and 
INTSMC (Eq. (14)) can be applied. According to Theorem 1 and 
Corollary 1, these two control methods ensure P → P r in finite 
time in the absence of perturbations, while making P converges to 
the neighborhood of P r in the presence of bounded perturbations.
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Fig. 2. Block diagram for control structure.

Table 1
Inertia and geometric parameters of Parrot Bebop [31].

m [kg] Ix [kg·m2] I y [kg·m2] Iz [kg·m2] Ixz [kg·m2] I p [kg·m2] b [m] l [m] R [m]
0.389 0.000906 0.001242 0.002054 1.42E-05 3.39E-06 0.0775 0.0975 0.064
Command conversion:
The control command for Euler angles φr , θr and thrust Tr can 

be analytically solved from the algebraic equation utr = L I B(F c/m), 
where utr = [u1, u2, u3]T is designed by the translational con-
trollers. Using the expression of L I B [30], then

Tr = ‖utran‖2 =
√

u2
1 + u2

2 + u2
3

φr = arcsin

(
−

(
m

Tr

)
(u1 sinψ − u2 cosψ)

)

θr = arcsin

(−(mu1)/Tr − sinψ sinφr

cosφr cosψ

)
(34)

The heading angle command ψr can be assigned independent 
of the trajectory commands.

Rotational control:
The inner-loop control aims at η → ηr = [φr, θr, ψr]T and 

T /m → Tr/m. Eqs. (32b), (33) are incorporated as:(
�̇

T /m

)
=

( −I−1
v �̃I v�

0

)
+

(
I−1

v 03×1
01×3 1/m

)
Gmω2

+
(

I−1
v Ma + I−1

v M g

0

)
(35)

where 0p×q is a p × q dimensional zero matrix. The inner-loop 
control command is chosen as u = ω2 in this paper, which allows 
the uncertainties and faults in Gm (Eq. (33)) being considered in 
the controller design. By contrast, the common choice [5,15,17,33,
34] of u = [Mc, T ]T can only compensate for the uncertainties in 
I v and m. Eq. (35) is in the form of Eq. (1b) with x2 = [�, 

∫
T /m]T . 

The disturbance vector d equals [I−1
v (Ma + M g), 0]T . Eq. (32a)

belongs to Eq. (1a) when choosing x1 = [η,
∫∫

T /m]T , and G1 =
diag{E(η), 1}. It can be seen from the expression of E(η) [30] that 
G1 is nonsingular and bounded when the pitch angle θ ∈ (−π

2 , π2 ). 
Therefore, applying NTSMC (Eq. (7)) or INTSMC (Eq. (14)) control 
enforces (η −ηr) → 0,

∫∫
(T − Tr)/m → 0 in finite time in the ab-

sence of perturbations, while making η,
∫∫

T /m converge to the 
neighborhood of their references in the presence of perturbations. 
It is noteworthy that 

∫∫
(T − Tr)/m → 0 is a sufficient condition 

for T /m → Tr/m.
In this quadrotor flight control scheme, the number of inner-

loop states (�, 
∫

T /m) equals four, which is identical to the num-
ber of control inputs. If the number of control inputs is larger than 
four (e.g., hexacopters and octocopters), the current scheme can 
be used along with a control allocation method. If the number of 
control inputs becomes smaller than four (e.g., three-rotor aircraft), 
the present control scheme can be used along with the reduced-
attitude control strategy [29].
Table 2
Dynamics and control parameters used by NTSMC (Eq. (7)) and INTSMC (Eq. (14)).

Parameters Translational loop Rotational loop
G1 I 3×3 diag{E(η),1}
G2 I 3×3 diag{I−1

v ,1/m}
f 2 g [−I−1

v �̃I v�;0]
� �tr = diag([2,2,1]T ) �ro = diag([1,1,1,1]T )

γ γ tr = [7/5,7/5,7/5]T γ ro = [5/3,5/3,5/3,5/3]T

K 1 K 1,tr = diag([1,1,1]T ) K 1,ro = diag([15,15,7.5,15]T )

K 2 K 2,tr = diag([0.6,0.6,0.6]T ) K 2,ro = diag([5,5,2.5,5]T )

ρ ρtr = 0.6 ρro = 0.5

4. Numerical validation

In this section, the controllers designed in Sec. 2 and Sec. 3 will 
be tested in the Matlab/Simulink environment. Two Parrot Bebop 
models are used in this paper, namely one high fidelity model for 
simulations and another simplified model used for control design. 
The nominal geometric and inertia parameters of Parrot Bebop are 
summarized in Table 1. The high fidelity model contains the aero-
dynamic and gyroscopic effects identified from wind tunnel test 
data [31]. This model also includes actuator dynamics and nonlin-
ear limits. The actuator dynamics are modeled as first-order low-
pass filters with time constants of 0.02 s. The maximum and min-
imum rotational speed of the rotors are 1200 rad/s and 300 rad/s 
respectively. Moreover, the inertia, aerodynamic, and control effec-
tiveness parameters are all functions of κ(t) in the high fidelity 
model, such that the influences of sudden actuator faults are in-
cluded. The NTSMC (Eq. (7)) uses the estimated models f̄ 2 and 
Ḡ2, whereas the INTSMC (Eq. (14) only requires Ḡ2. By contrast, 
the simplified model ( f̄ 2, Ḡ2) used by the controllers excludes 
the aerodynamic, gyroscopic, and actuator effects, and is also kept 
invariant in the presence of rotor faults. In this way the robustness 
of the controllers to model uncertainties, disturbances and faults 
can be tested. The simulation sampling frequency is 500 Hz.

Based on the discussions in Sec. 3, both the translational and 
rotational dynamics of a quadrotor are in the form of Eq. (1), thus 
the NTSMC given by Eq. (7) and the INTSMC designed as Eq. (14)
can be applied. For fair comparisons, the control parameters used 
by NTSMC and INTSMC are first kept identical. Gain adjustments 
and their consequences will be discussed in subsection 4.4. The dy-
namic matrices and the control parameters used by the controllers 
are summarized in Table 2.

In the following subsections, the robustness of NTSMC and 
INTSMC to model uncertainties, gusts and sudden actuator faults 
will be evaluated. The simulation scenarios are summarized in Ta-
ble 3. In subsection 4.1, the quadrotor trajectory tracking in the 
presence of parametric uncertainties and unmodeled dynamics will 
be considered. The robustness of INTSMC and NTSMC will be com-
pared. The tracking difficulty increases in subsection 4.2, where 
gust disturbances present. In subsection 4.3, the trajectory track-
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Table 3
Simulations cases in subsections 4.1-4.4.

Sec. Simulation Scenarios Compare INTSMC with
4.1 Scenario 1: uncertainties and unmodeled dynamics NTSMC
4.2 Scenario 2: uncertainties, unmodeled dynamics, and gusts NTSMC
4.3 Scenario 3: uncertainties, unmodeled dynamics, gusts, and actuator faults NTSMC
4.4 Scenario 3: uncertainties, unmodeled dynamics, gusts, and actuator faults High-gain NTSMC

Fig. 4. Position responses in the presence of model uncertainties (Scenario 1).
Fig. 3. 3D trajectory responses in the presence of model uncertainties (Scenario 1).

ing becomes even more challenging, where sudden actuator faults 
occur during flight. It will be shown in subsection 4.3 that NTSMC 
leads to instability in Scenario 3, while INTSMC can execute the 
task in spite of actuator faults. To rescue the quadrotor using 
NTSMC, the control gains are raised in subsection 4.4. However, 
it will be revealed in subsection 4.4 that even though high-gain 
NTSMC can stabilize the system, corresponding side-effects also 
emerge.

4.1. Robustness to parametric uncertainties and unmodeled dynamics

Scenario 1: Trajectory tracking in the presence of parametric un-
certainties and unmodeled dynamics.

The unmodeled dynamics include the aerodynamics, gyroscopic 
effects and actuator dynamics, which are unknown by the con-
trollers. To model the parametric uncertainties, the parameters 
used by the controllers are equal to the nominal (in the hover con-
Fig. 5. Attitude and thrust tracking performance using NTSMC in Scenario 1.

dition without fault) parameters multiplied with uncertain coeffi-
cients. To be specific, in the following simulations, the estimated 
parameters are: Ī v = diag([1.5, 1.3, 0.7]T ) · I v , b̄ = 0.8b, l̄ = 0.6l, 
m̄ = 1.5m, λ̄i = 0.6λi, k̄i = 1.5ki, i = 1, 2, 3, 4.

Fig. 3 shows the three dimensional tracking trajectories under 
the control of NTSMC and INTSMC, with an initial position er-
ror ep(t = 0) = [−2, −2, −2]T m, and an initial velocity V (t =
0) = 0 m/s. As can be seen from Fig. 3, although both NTSMC 
and INSTMC can make the quadrotor follow the spiral trajec-
tory command in Scenario 1, INTSMC shows better tracking per-
formance. This conclusion is further supported by Fig. 4, where 
INTSMC accomplishes ‖eP = [ex, e y, ez]T ‖ ≤ 0.058 m within 5.9 s, 
and the sliding variables ‖sp = [sx, sy, sz]T ‖ ≤ 0.066 m within 
2.2 s, whereas NTSMC can only achieve ‖eP ‖ ≤ 0.50 m and ‖sp‖ ≤
0.58 m. The errors in the position tracking are mainly caused by 
the aerodynamic forces F a and model uncertainties.

The outer-loop control of NTSMC and INTSMC give different ref-
erences for the inner-loop controllers, as respectively displayed in 
Fig. 5 and Fig. 6. Although the inner-loop tracking performance, af-
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Fig. 6. Attitude and thrust tracking performance using INTSMC in Scenario 1.

Fig. 7. Gust velocities in the inertial frame.

ter t = 1.5 s are comparable in Figs. 5 and 6, the quadrotor using 
INTSMC responds faster in the transient phase. The heading angle 
command ψr is designed as smoothly combined sigmoid functions, 
which is independent of the position commands.

4.2. Robustness to uncertainties and external disturbances

Scenario 2: Trajectory tracking in the presence of parametric un-
certainties, unmodeled dynamics, and gusts.

In contrast to Scenario 1, gusts are included in Scenario 2. The 
airspeed of the quadrotor V a is a summation of ground speed V
and gust speed V w . “1-cos” gusts [35] are added along the x and 
y directions of the inertial frame, with ‖V w‖∞ = 6 m/s as shown 
in Fig. 7. The simulations use a high fidelity aerodynamic model 
identified from wind tunnel test data [31], and the resulting aero-
dynamic forces and moments are viewed as disturbances by the 
onboard controllers.

Fig. 8 reveals that the tracking performance of NTSMC is notice-
ably reduced by the wind disturbance, whereas the performance 
of INTSMC is hardly influenced. This is also verified in Fig. 9, 
which shows that the quadrotor equipped with NTSMC leads to 
max |sx| = 1.30 m, max |sy| = 1.41 m, max |sz| = 0.42 m, whereas 
the quadrotor using INTSMC remains in the region ‖sp‖ ≤ 0.091 m. 
The tracking error ep using NTSMC presents max |ex| = 1.15 m at 
t = 14.1 s, and max |e y| = 1.31 m around t = 21.5 s, as disturbed 
by the horizontal gust. On the contrary, INTSMC has better distur-
bance rejection ability since ‖ep‖ ≤ 0.059 m after t = 5.9 s.

The inner-loop tracking responses are plotted in Figs. 10 and 11. 
When compared to Figs. 5 and 6, the φr, θr in Figs. 10 and 11
present additional low frequency component in Scenario 2. These 
low frequency commands help the quadrotor to compensate for 
the influences of gusts. Although the gusts impose both disturbing 
F a and Ma on the quadrotor, Ma is less influential than F a [31]. 
Consequently, NTSMC and INTSMC show comparable inner-loop 
tracking performance in Scenario 2, as shown in Figs. 10 and 11.
Fig. 8. 3D trajectory responses in the presence of model uncertainties and gusts 
(Scenario 2).

The core of the better robustness of INTSMC has been revealed 
in subsection 2.3: the sensor-based feature of INTSMC makes the 
upper bound of εint smaller than that of εnt, in the presence of 
bounded disturbances. This argument is verified by Fig. 12, which 
presents the outer-loop residual errors εV x , εV y , εV z . By virtue of 
the sensor-based control structure of INTSMC, the main influences 
of external disturbances are contained in the measurements/esti-
mations of ÿ0 and u0, thus only �d presents in Eq. (16).

4.3. Robustness to uncertainties, external disturbances, and sudden 
actuator faults

When compared to Scenario 2, successive actuator faults are 
added to Scenario 3. To model a sudden fault of the i-th rotor 
during flight, for t ≥ t f , the corresponding effectiveness in Gm
(Eq. (33)) is scaled in the simulation model, i.e., k′

i = μiki, λ′
i =

μiλi, μi ∈ (0, 1] [36]. The aerodynamic and gyroscopic forces/mo-
ments are also influenced by rotor faults. For testing the robust-
ness, constant Ḡm and Ī v are consistently used by both controllers 
in spite of faults.

Scenario 3: Trajectory tracking in the presence of paramet-
ric uncertainties, unmodeled dynamics, gusts, and actuator faults. 
μ1−4 = 1 when 0 ≤ t < 10 s, μ1 = 0.5 , μ2−4 = 1 when 10 ≤ t <

15 s, μ1−2 = 0.5, μ3−4 = 1 when 15 ≤ t < 20 s, μ1−3 = 0.5, μ4 =
1 when 20 ≤ t < 25 s, and finally μ1−4 = 0.5 when 25 ≤ t ≤ 30 s.

Fig. 13 illustrates the tracking performance of NTSMC and 
INTSMC in Scenario 3. Fig. 13 shows that the quadrotor which 
uses NTSMC crashes, whereas INTSMC drives the quadrotor along 
the reference trajectory in spite of uncertainties, disturbances, and 
successive actuator faults. The responses of the outer-loop track-
ing and sliding variables are presented in Fig. 14, in which the 
quadrotor using NTSMC significantly losses height after the first 
rotor fault occurs at t = 10 s. For clarity, only the responses before 
t = 15 s are plotted for NTSMC. On the contrary, INTSMC makes 
‖eP ‖ ≤ 0.059 m within 5.9 s, and ‖sp‖ ≤ 0.068 m within 2.2 s in 
Scenario 3.

The inner-loop responses are presented in Fig. 15, which in-
dicates that the model-based NTSMC becomes unstable after the 
first rotor breaks at t = 10 s. By contrast, the sensor-based INTSMC 
is able to maintain stability and desirable tracking performance. It 
can be seen from Fig. 16 that only small ripples are present around 
t = 10, 15, 20, 25 s, and ‖eη‖ ≤ 0.071◦, |eT /m| ≤ 0.001 m/s2 can 
be recovered within 1.5 s after faults occur.

The instability of NTSMC is further illustrated in Figs. 17 and 18, 
where the rotor speed, and inner-loop residual errors have severe 
oscillations, and eventually diverge. As opposed to this, when us-
ing INTSMC, the damaged rotors speed up rapidly after faults occur 
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Fig. 9. Position responses in the presence of model uncertainties and gusts (Scenario 2).
Fig. 10. Attitude and thrust tracking performance using NTSMC in Scenario 2.

Fig. 11. Attitude and thrust tracking performance using INTSMC in Scenario 2.

(Fig. 17), which automatically compensates for the control effec-
tiveness losses. The inner-loop residual errors using INTSMC also 
remain bounded after faults occur, as illustrated in Fig. 18.

4.4. High-gain NTSMC

According to Corollary 1, in the presence of perturbations, 
NTSMC is stable if εnt is bounded. However, from Eq. (9), εnt
is a function of the control input u; therefore, its boundedness 
cannot be determined before the closure of the control loop. For 

Fig. 13. 3D trajectory responses in the presence of uncertainties, disturbances, and 
successive actuator faults at t = 10, 15, 20, 25 s (Scenario 3).
Fig. 12. Responses of εV x , εV y , εV z using NTSMC and INTSMC in Scenario 2.
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Fig. 14. Position responses in the presence of uncertainties, disturbances, and successive actuator faults at t = 10,15,20,25 s (Scenario 3).
Fig. 15. Attitude and thrust tracking performance using NTSMC in Scenario 3.

Fig. 16. Attitude and thrust tracking performance using INTSMC in Scenario 3.

the feasibility of controller design, εnt is assumed to be bounded 
in [14,22–25]. However, as can be seen from Fig. 18, εnt using the 
present control parameters becomes unbounded in Scenario 3.

In view of the preceding subsection, the instability of NTSMC is 
mainly caused by the inner-loop instability induced by rotor faults. 
An instinctive approach to rescue NTSMC is raising the inner-
Fig. 17. Rotor speeds using NTSMC (left) and INTSMC (right) in Scenario 3.

loop control gains. Selecting K 1,ro = c1 · diag([15, 15, 7.5, 15]T ), 
and K 2,ro = c2 · diag([5, 5, 2.5, 5]T ), where c1, c2 > 1. For Scenario 
3, based on the simulation results, the lowest gain coefficients that 
can result in a stable system are c1 = 12, c2 = 20, with the inner-
loop uncertainties shown in Fig. 19.

NTSMC with c1 = 12, c2 = 20 will be referred to as very-
high-gain (VHG) NTSMC. Fig. 19 shows εnt in the rotational loop 
becomes bounded using the VHG-NTSMC. Moreover, εnt shows 
steep variations at t = 10, 15, 20, 25 s. Referring to the analyses 
in subsection 2.3, these steep variations are caused by the term 
G1( f f − f̄ 2) + G1(G f − Ḡ2)unt. More importantly, Fig. 19 illus-
trates that ‖εint‖ is significantly smaller than ‖εnt‖ in Scenario 3, 
this verifies the analyses in subsection 2.3.

However, NTSMC with very high control gains has side-effects. 
As illustrated in Fig. 20, the rotor speeds using VHG-NTSMC show 
severe oscillations. These oscillations/chattering are present near 
the sliding surfaces, as can be seen from the inner-loop sliding 
variable responses in Fig. 21. It is worth noting that even though 
the control input given by Eq. (7) is continuous, chattering does 
occur when the very-high-gain controller is applied with limited-
bandwidth actuators. In practice, very high control gains also am-
plify measurement noise. The chattering phenomenon can be mi-
grated by introducing gain adaption mechanisms [37,38], such that 
the control gains can be automatically reduced near the sliding 
surfaces, and be increased when perturbations are large. Never-
theless, when εnt has steep variations caused by sudden faults 
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Fig. 18. Responses of εp , εq, εr , ε∫
T /m using NTSMC and INTSMC in Scenario 3.

Fig. 19. Responses of εp, εq, εr , εT /m using VHG-NTSMC and INTSMC in Scenario 3.
Fig. 20. Rotor speeds using VHG-NTSMC (left) and INTSMC (right) in Scenario 3.

Fig. 21. Responses of sp , sq, sr , s∫
T /m using VHG-NTSMC (left) and INTSMC (right) 

in Scenario 3.

(Fig. 21), a delayed adaption may lead to instability. Furthermore, 
since ‖εnt‖ is larger than ‖εint‖, the minimum possible [37,39]
control gains for NTSMC are also higher.

By contrast, INTSMC is able to passively resist the perturbations 
in Scenario 3 with much lower control gains. Gain adjustments or 
adaptations are not necessary. The resulting control commands are 
also smoother than that of VHG-NTSMC, as illustrated in Fig. 20. 
As shown in Fig. 19, εint only has spikes in the presence of sudden 
rotor faults, which is in accordance with analyses in subsection 2.3. 
‖sro = [sp, sq, sr, s∫

(T /m)]T ‖ ≤ 0.03 are reached within 0.8 seconds 
after faults occur, as presented in Fig. 21.
Fig. 22. Attitude and thrust tracking performance using VHG-NTSMC in Scenario 3.

The attitude and thrust tracking responses of VHG-NTSMC are 
shown in Fig. 22. It can be seen that although NTSMC using very 
high control gains can maintain stability, the tracking performance 
is inevitably reduced. Recall Corollary 1, if εnt is bounded, then 
|ei | ≤ 2�nt,si = 2(|εnt,i |/(k2,i − η))

1
ρi in finite time. Therefore, the 

performance of NTSMC can be improved by increasing k2,i and 
reducing ρi . The defects of raising k2,i have been explained ear-
lier. Reducing ρi however has the risk of inducing chattering, since 
|si |ρi sign(si) → sign(si) as ρi → 0.

On the contrary, because of the smaller ‖εint‖ (Fig. 19, subsec-
tion 2.3), INTSMC has better inner-loop tracking performance with-
out any gain adjustment, which can be seen by comparing Fig. 16
with Fig. 22. The better robustness of INTSMC is also verified in 
Fig. 23, where ‖eP ‖ ≤ 0.059 m within 5.9 s, and ‖sp‖ ≤ 0.068 m 
within 2.2 s. Conversely, even though the NTSMC with very high 
control gains can maintain stability, the performance is signifi-
cantly degraded by the perturbations.

5. Conclusions

This paper proposes incremental nonsingular terminal sliding 
mode control (INTSMC) for a class of nonlinear uncertain systems. 
This method adopts a continuous reaching law and a singularity-
free nonlinear sliding surface. It is proved that, in the absence of 
perturbations, INTSMC ensures the system trajectories converge to 
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Fig. 23. Position responses using very-high-gain (VHG) NTMSC in Scenario 3.
the equilibrium in finite time, while in the presence of bounded 
perturbations, INTSMC makes the system trajectories converge to 
a small neighborhood of the equilibrium in finite time. By fully 
exploiting the sensor measurements, the proposed method can si-
multaneously reduce model dependency and the remaining uncer-
tainty of the model-based nonsingular terminal sliding mode con-
trol (NTSMC) in the literature. The reduced model dependency can 
simplify the implementation process and alleviate onboard compu-
tational load, whereas the reduction of uncertainty decreases the 
minimum possible sliding mode control gains. These merits are 
numerically verified by a quadrotor fault-tolerant trajectory con-
trol problem. When the same control parameters are used, INTSMC 
shows better robustness to model uncertainties and external dis-
turbances than NTMSC. Moreover, in the presence of successive 
actuator faults, the quadrotor using NTSMC crashes because of the 
unbounded closed-loop perturbation term. Amplifying the switch-
ing gains of NTSMC helps to stabilize the impaired quadrotor, 
but induces severe chattering in the control input. By contrast, 
the sensor-based INTSMC method can tolerate a wide range of 
model uncertainties, gusts, and successive sudden actuator faults 
with much lower switching gains. In addition, the INTSMC input is 
smooth and free from singularity. Apart from quadrotor trajectory 
control, the proposed INTSMC method also has the potential to 
achieve robust and high-precision control of other nonlinear sys-
tems such as robotic manipulators and hydraulic rods.

Declaration of competing interest

There is no conflict of interest.

References

[1] J.-J.E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, 
NJ, 1991.

[2] C. Edwards, S.K. Spurgeon, Sliding Mode Control: Theory and Applications, 1st 
ed., CRC Press, 1998.

[3] H.K. Khalil, Nonlinear Systems, Prentice-Hall, New Jersey, 2002.
[4] Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid ma-

nipulators, Automatica 38 (2002) 2159–2167.
[5] X. Ai, J. Yu, Fixed-time trajectory tracking for a quadrotor with external distur-

bances: a flatness-based sliding mode control approach, Aerosp. Sci. Technol. 
89 (2019) 58–76.
[6] Y. Tang, Terminal sliding mode control for rigid robots, Automatica 34 (1998) 
51–56.

[7] S. Yu, X. Yu, B. Shirinzadeh, Z. Man, Continuous finite-time control for robotic 
manipulators with terminal sliding mode, Automatica 41 (2005) 1957–1964.

[8] P. Lu, E. van Kampen, C. de Visser, Q.P. Chu, Aircraft fault-tolerant trajectory 
control using incremental nonlinear dynamic inversion, Control Eng. Pract. 57 
(2016) 126–141.

[9] X. Wang, E. van Kampen, Q.P. Chu, R. De Breuker, Flexible aircraft gust load 
alleviation with incremental nonlinear dynamic inversion, J. Guid. Control Dyn. 
(2019) 1–18.

[10] X. Wang, E. van Kampen, Q.P. Chu, P. Lu, Incremental sliding-mode fault-
tolerant flight control, J. Guid. Control Dyn. 42 (2019) 244–259.

[11] X. Wang, E. van Kampen, Q.P. Chu, P. Lu, Stability analysis for incremental non-
linear dynamic inversion control, J. Guid. Control Dyn. (2019).

[12] X. Wang, S. Sun, E. van Kampen, Q.P. Chu, Quadrotor fault tolerant incremental 
sliding mode control driven by sliding mode disturbance observers, Aerosp. Sci. 
Technol. 87 (2019) 417–430.

[13] Y. Feng, X. Yu, F. Han, On nonsingular terminal sliding-mode control of nonlin-
ear systems, Automatica 49 (2013) 1715–1722.

[14] C.E. Hall, Y.B. Shtessel, Sliding mode disturbance observer-based control for a 
reusable launch vehicle, J. Guid. Control Dyn. 29 (2006) 1315–1328.

[15] Y. Yang, Y. Yan, Attitude regulation for unmanned quadrotors using adaptive 
fuzzy gain-scheduling sliding mode control, Aerosp. Sci. Technol. 54 (2016) 
208–217.

[16] L. Besnard, Y.B. Shtessel, B. Landrum, Quadrotor vehicle control via sliding 
mode controller driven by sliding mode disturbance observer, J. Franklin Inst. 
349 (2012) 658–684.

[17] A.R. Merheb, H. Noura, F. Bateman, Design of passive fault-tolerant controllers 
of a quadrotor based on sliding mode theory, Int. J. Appl. Math. Comput. Sci. 
25 (2015) 561–576.

[18] P.M. Tiwari, S. Janardhanan, M. Un Nabi, Attitude control using higher order 
sliding mode, Aerosp. Sci. Technol. 54 (2016) 108–113.

[19] M. Defoort, T. Floquet, A. Kokosy, W. Perruquetti, A novel higher order sliding 
mode control scheme, Syst. Control Lett. 58 (2009) 102–108.

[20] Z. Su, H. Wang, N. Li, Anti-disturbance rapid vibration suppression of the flexi-
ble aerial refueling hose, Mech. Syst. Signal Process. 104 (2018) 87–105.

[21] Y. Yu, H. Wang, N. Li, Fault-tolerant control for over-actuated hypersonic reen-
try vehicle subject to multiple disturbances and actuator faults, Aerosp. Sci. 
Technol. 87 (2019) 230–243.

[22] Y.B. Shtessel, I.A. Shkolnikov, Aeronautical and space vehicle control in dynamic 
sliding manifolds, Int. J. Control 76 (2003) 1000–1017.

[23] Y. Shtessel, J. Buffington, S. Banda, Tailless aircraft flight control using multiple 
time scale reconfigurable sliding modes, IEEE Trans. Control Syst. Technol. 10 
(2002) 288–296.

[24] Y.B. Shtessel, J.M. Buffington, S.S. Banda, Multiple timescale flight control using 
reconfigurable sliding modes, J. Guid. Control Dyn. 22 (1999) 873–883.

[25] X. Yin, B. Wang, L. Liu, Y. Wang, Disturbance observer-based gain adaptation 
high-order sliding mode control of hypersonic vehicles, Aerosp. Sci. Technol. 
89 (2019) 19–30.

http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4A65616Es1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4A65616Es1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4564776172647331393938s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4564776172647331393938s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4B68616C696Cs1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib46656E6732303032s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib46656E6732303032s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib416932303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib416932303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib416932303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib54616E6731393938s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib54616E6731393938s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib597532303035s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib597532303035s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4C7532303136s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4C7532303136s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4C7532303136s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313963s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313963s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313963s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313862s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313862s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313962s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313962s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313961s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313961s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E673230313961s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib46656E6732303133s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib46656E6732303133s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib48616C6C3230303661s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib48616C6C3230303661s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib59616E673230313664s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib59616E673230313664s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib59616E673230313664s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4265736E61726432303132s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4265736E61726432303132s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4265736E61726432303132s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4D65726865623230313562s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4D65726865623230313562s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4D65726865623230313562s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib54697761726932303136s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib54697761726932303136s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4465666F6F727432303039s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4465666F6F727432303039s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib53753230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib53753230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E675F597532303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E675F597532303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E675F597532303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536874657373656C32303033s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536874657373656C32303033s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536874657373656C32303032s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536874657373656C32303032s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536874657373656C32303032s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536874657373656C31393939s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536874657373656C31393939s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib59696E32303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib59696E32303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib59696E32303139s1


14 X. Wang et al. / Aerospace Science and Technology 95 (2019) 105514
[26] T. Keijzer, G. Looye, Q.P. Chu, E. van Kampen, Design and flight testing of incre-
mental backstepping based control laws with angular accelerometer feedback, 
in: AIAA Scitech 2019 Forum, January, American Institute of Aeronautics and 
Astronautics, San Diego, California, 2019, pp. 1–25.

[27] W. van Ekeren, G. Looye, R.O. Kuchar, Q.P. Chu, E.-J. Van Kampen Design, Imple-
mentation and flight-tests of incremental nonlinear flight control methods, in: 
2018 AIAA Guidance, Navigation, and Control Conference, January, American 
Institute of Aeronautics and Astronautics, Kissimmee, Florida, 2018, pp. 1–21.

[28] E.J.J. Smeur, Q.P. Chu, G.C.H.E. de Croon, Adaptive incremental nonlinear dy-
namic inversion for attitude control of micro air vehicles, J. Guid. Control Dyn. 
39 (2016) 450–461.

[29] S. Sun, L. Sijbers, X. Wang, C. de Visser, High-speed flight of quadrotor despite 
loss of single rotor, IEEE Robot. Autom. Lett. 3 (2018) 3201–3207.

[30] B. Etkin, Dynamics of Atmospheric Flight, Dover Publications, Toronto, 2005.

[31] S. Sun, C.C. de Visser, Q. Chu, Quadrotor gray-box model identification from 
high-speed flight data, J. Aircr. 56 (2018) 1–17.

[32] E.J.J. Smeur, G.C.H.E. de Croon, Q.P. Chu, Cascaded incremental nonlinear dy-
namic inversion for MAV disturbance rejection, Control Eng. Pract. 73 (2018) 
79–90.
[33] A. Modirrousta, M. Khodabandeh, A novel nonlinear hybrid controller design 
for an uncertain quadrotor with disturbances, Aerosp. Sci. Technol. 45 (2015) 
294–308.

[34] Z. Jia, J. Yu, Y. Mei, Y. Chen, Y. Shen, X. Ai, Integral backstepping sliding mode 
control for quadrotor helicopter under external uncertain disturbances, Aerosp. 
Sci. Technol. 68 (2017) 299–307.

[35] X. Wang, E. van Kampen, Q.P. Chu, Gust load alleviation and ride quality 
improvement with incremental nonlinear dynamic inversion, in: AIAA Atmo-
spheric Flight Mechanics Conference, American Institute of Aeronautics and 
Astronautics, Grapevine, Texas, 2017, pp. 1–21.

[36] Z. Song, K. Sun, Adaptive fault tolerant control for a small coaxial rotor un-
manned aerial vehicles with partial loss of actuator effectiveness, Aerosp. Sci. 
Technol. 88 (2019) 362–379.

[37] C. Edwards, Y.B. Shtessel, Adaptive continuous higher order sliding mode con-
trol, Automatica 65 (2016) 183–190.

[38] C. Edwards, Y. Shtessel, Adaptive dual-layer super-twisting control and obser-
vation, Int. J. Control 89 (2016) 1759–1766.

[39] V.I. Utkin, A.S. Poznyak, Adaptive sliding mode control with application to 
super-twist algorithm: equivalent control method, Automatica 49 (2013) 39–47.

http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4B65696A7A657232303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4B65696A7A657232303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4B65696A7A657232303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4B65696A7A657232303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib56616E456B6572656E3230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib56616E456B6572656E3230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib56616E456B6572656E3230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib56616E456B6572656E3230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536D6575723230313662s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536D6575723230313662s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536D6575723230313662s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib53756E3230313862s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib53756E3230313862s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib45746B696E3230313461s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib53756E3230313863s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib53756E3230313863s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536D6575723230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536D6575723230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536D6575723230313861s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4D6F646972726F7573746132303135s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4D6F646972726F7573746132303135s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4D6F646972726F7573746132303135s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4A696132303137s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4A696132303137s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4A696132303137s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E6732303137s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E6732303137s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E6732303137s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib57616E6732303137s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536F6E6732303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536F6E6732303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib536F6E6732303139s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4564776172647332303136s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib4564776172647332303136s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib456477617264733230313661s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib456477617264733230313661s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib55746B696E32303133s1
http://refhub.elsevier.com/S1270-9638(19)31329-X/bib55746B696E32303133s1

	Quadrotor fault-tolerant incremental nonsingular terminal sliding mode control
	1 Introduction
	2 Incremental nonsingular terminal sliding mode control
	2.1 Nonsingular terminal sliding mode control
	2.2 Incremental nonsingular terminal sliding mode control
	2.3 Comparisons between NTSMC and INTSMC

	3 Quadrotor fault-tolerant control
	3.1 Quadrotor dynamics
	3.2 Control structure

	4 Numerical validation
	4.1 Robustness to parametric uncertainties and unmodeled dynamics
	4.2 Robustness to uncertainties and external disturbances
	4.3 Robustness to uncertainties, external disturbances, and sudden actuator faults
	4.4 High-gain NTSMC

	5 Conclusions
	References




