

Delft University of Technology

Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth
via Asymptotic Matrix Parameters

Groenland, Carla; Mannens, Isja; Nederlof, Jesper; Piecyk, Marta; Rzążewski, Paweł

DOI
10.4230/LIPIcs.ICALP.2024.77
Publication date
2024
Document Version
Final published version
Published in
51st International Colloquium on Automata, Languages, and Programming, ICALP 2024

Citation (APA)
Groenland, C., Mannens, I., Nederlof, J., Piecyk, M., & Rzążewski, P. (2024). Towards Tight Bounds for the
Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters. In K.
Bringmann, M. Grohe, G. Puppis, & O. Svensson (Eds.), 51st International Colloquium on Automata,
Languages, and Programming, ICALP 2024 Article 77 (Leibniz International Proceedings in Informatics,
LIPIcs; Vol. 297). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.
https://doi.org/10.4230/LIPIcs.ICALP.2024.77
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4230/LIPIcs.ICALP.2024.77
https://doi.org/10.4230/LIPIcs.ICALP.2024.77

Towards Tight Bounds for the Graph
Homomorphism Problem Parameterized by
Cutwidth via Asymptotic Matrix Parameters
Carla Groenland #Ñ

Delft Institute of Applied Mathematics, The Netherlands

Isja Mannens #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Jesper Nederlof #Ñ

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Marta Piecyk #

Warsaw University of Technology, Poland

Paweł Rzążewski #

Warsaw University of Technology, Poland
University of Warsaw, Poland

Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V (G) to V (H).
In the graph homomorphism problem, denoted by Hom(H), the graph H is fixed and we need to
determine if there exists a homomorphism from an instance graph G to H. We study the complexity
of the problem parameterized by the cutwidth of G, i.e., we assume that G is given along with a
linear ordering v1, . . . , vn of V (G) such that, for each i ∈ {1, . . . , n − 1}, the number of edges with
one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn} is at most k.

We aim, for each H, for algorithms for Hom(H) running in time ck
HnO(1) and matching lower

bounds that exclude c
k·o(1)
H nO(1) or c

k(1−Ω(1))
H nO(1) time algorithms under the (Strong) Exponential

Time Hypothesis. In the paper we introduce a new parameter that we call mimsup(H). Our main
contribution is strong evidence of a close connection between cH and mimsup(H):

an information-theoretic argument that the number of states needed in a natural dynamic
programming algorithm is at most mimsup(H)k,
lower bounds that show that for almost all graphs H indeed we have cH ≥ mimsup(H), assuming
the (Strong) Exponential-Time Hypothesis, and
an algorithm with running time exp(O(mimsup(H) · k log k))nO(1).

In the last result we do not need to assume that H is a fixed graph. Thus, as a consequence, we
obtain that the problem of deciding whether G admits a homomorphism to H is fixed-parameter
tractable, when parameterized by cutwidth of G and mimsup(H).

The parameter mimsup(H) can be thought of as the p-th root of the maximum induced matching
number in the graph obtained by multiplying p copies of H via a certain graph product, where p

tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of
H. Such parameters play a central role in, among others, algebraic complexity theory and additive
combinatorics. Our results tightly link the parameterized complexity of a problem to such an
asymptotic matrix parameter for the first time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases graph homomorphism, cutwidth, asymptotic matrix parameters

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.77

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://doi.org/10.48550/arXiv.2312.03859 [31]

EA
T

C
S

© Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 77; pp. 77:1–77:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:C.E.Groenland@tudelft.nl
https://cgroenland.wordpress.com/
https://orcid.org/0000-0002-9878-8750
mailto:i.m.e.mannens@uu.nl
mailto:j.nederlof@uu.nl
https://webspace.science.uu.nl/~neder003/
https://orcid.org/0000-0003-1848-0076
mailto:marta.piecyk.dokt@pw.edu.pl
https://orcid.org/0000-0001-9162-8300
mailto:pawel.rzazewski@pw.edu.pl
https://orcid.org/0000-0001-7696-3848
https://doi.org/10.4230/LIPIcs.ICALP.2024.77
https://doi.org/10.48550/arXiv.2312.03859
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

77:2 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

Funding This work was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 853234 for CG, IM,
JN and grant agreement No. 948057 for PRz). MP was funded by Polish National Science Centre,
grant no. 2022/45/N/ST6/00237.

Acknowledgements The authors are grateful to Koblich for enlightening discussions about commu-
nication complexity.

1 Introduction

The study of the fine-grained complexity of NP-hard problems parameterized by width
parameters has recently received an explosive amount of attention. In this study one aims
to determine, for a given computational problem, a function f such that (1) the problem
can be solved in f(k)nO(1) time on given instances formed by an n-vertex graph along with
an appropriate decomposition with width k, and (2) any improvement to f(k)o(1)nO(1) or
even f(k)1−Ω(1)nO(1) time would violate a standard hypothesis, typically being respectively
the Exponential Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis
(SETH). Characterizing this complexity tightly often gives a deep insight in the combinatorial
structure of the problem at hand, in particular about the relation that indicates when two
“subsolutions” (for some definition of “subsolutions”) combine into a global solution. An
example where such insights had major consequences is Hamiltonian Cycle and the
Traveling Salesperson Problem [4, 17,50].

In contrast to the study of such fine-grained complexity, on the other side of the spectrum,
a celebrated meta-theorem by Courcelle [13] shows that every graph property definable in
the monadic second-order logic can be decided in time f(k) · n on n-vertex graphs given
with a tree decomposition of width k. While this is extremely general, it is not precise at
all in the sense that the functions f(k) given by Courcelle’s theorem are typically doubly-
exponential or more, while more tailored algorithms with single-exponential functions exist.
This begs the question: Could there be such a meta-theorem that gives a more fine-grained
upper bound akin to the ones sought after above? Unfortunately, such a fine-grained meta-
theorem still seems out of reach, and many recent works apply some highly non-trivial
problem-specific insights to actually get the combination of tight algorithms and lower
bounds [4, 5, 15,16,37,38,43,46,57,60].

An intermediate step towards more general results such as Courcelle’s theorem is to
consider general problems that capture many natural well-studied problems as special
cases. Such a step was already taken for certain locally checkable vertex subset problems,
which capture natural problems including Independent Set and Dominating Set [25]. A
particularly rich and elegant family of such problems can be defined via graph homomorphisms.
A homomorphism from G to H is a mapping φ : V (G)→ V (H) such that for every uv ∈ E(G)
we have φ(u)φ(v) ∈ E(H). If H is the complete graph on k vertices, such mappings φ

are exactly proper k-colorings, and this is why these mappings are often referred to as a
H-colorings of G. For a fixed graph H, by Hom(H) we denote the computational problem in
which one needs to determine whether there is a homomorphism to H from an input graph
G. The complexity dichotomy for Hom(H) was provided by Hell and Nešetřil [34]: Hom(H)
is polynomial-time solvable if H is bipartite, and NP-hard otherwise. So the cases relevant
to our work are when H is non-bipartite.

There has been impressive work on the complexity of Hom(H) in various settings [7,
9, 11, 12, 14, 19, 20, 29, 58]. From the fine-grained perspective, a lot of attention was put in
the parameterization by treewidth of the instance graph [21, 23, 26, 53, 54]. In particular,

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:3

for Hom(H) and some of its close relatives we exactly understand the fastest possible (up
to the SETH) running time of algorithms parameterized by treewidth. Perhaps even more
interestingly, the techniques developed in this line of research led to a deep understanding of
combinatorial properties of Hom(H) and its variants, and the results obtained on the way
can be used far beyond the bounded-treewidth case.

Typically, the lower bounds for (a variant of) Hom(H) are shown by a reduction from
(a variant of) q-Coloring, where the choice of q depends on H. In particular, Marx,
Lokshtanov, and Saurabh [44] showed that for any q ≥ 3, the q-Coloring problem on every
instance G cannot be solved in time (q− ε)tw(G) · |V (G)|O(1) for any ε > 0, unless the SETH
fails (here tw(G) is the treewidth of G). Similar lower bounds for q-Coloring are also
known for other parameters, like cliquewidth [40], feedback vertex set number [44], vertex
cover number [35], or component-order-connectivity [23]. A common element in all these
results is that the constant in the base of the exponential factor in the complexity bound is
an increasing function of the number q of colors.

However, it appears that this is not the case for all natural width parameters. For a linear
ordering v1, v2, . . . , vn of vertices of a graph G, its width is the maximum number of edges
between the sets {v1, . . . , vi} and {vi+1, . . . , vn}, over all i ∈ {1, . . . , n− 1}. The cutwidth of
G, denoted by ctw(G), is the minimum width of a linear ordering of V (G).

In stark contrast to the results listed above, Jansen and Nederlof [36] showed that for
every q, the q-Coloring problem on instances G given with a linear ordering of width k

can be solved in randomized1 time 2k · |V (G)|O(1). In particular, the base of the exponential
factor does not depend on q.

This phenomenon appears to be very fragile, e.g., it no longer occurs for the counting
variant of q-Coloring [32]. In the context of the discussion above, it is very natural to ask
about the situation for Hom(H), i.e., whether the natural dynamic programming approach
that works in time |V (H)|k · |V (G)|O(1) can be improved. In particular, whether there exists
an absolute constant cH , such that for every graph H, the Hom(H) problem on n-vertex
instances of cutwidth k can be solved in time ck

H · nO(1). This question was answered in the
negative by Piecyk and Rzążewski [56], who showed that the base cH of the exponential
factor in the complexity bound (seen as a function of H) grows to infinity even if we restrict
ourselves to cycles. More specifically, they show that cH is lower-bounded by the number of
edges in a maximum induced matching2 in H, multiplied by 2.

Note that a maximum induced matching of a clique has only one edge, so this lower
bound matches the running time of the randomized algorithm for q-Coloring [36].

However, Piecyk and Rzążewski [56] failed to provide an algorithm matching this lower
bound, even functionally, i.e., an algorithm with running time f(p, k) · nO(1), where f is any
function of the size p of a maximum matching in H and the cutwidth k of the instance. Thus,
while the size of a maximum induced matching in H certainly plays some important role
in the complexity of Hom(H) parameterized by the cutwidth, it is far from clear whether
it indeed determines the base of the exponential factor. The discussion above leads to the
following.

▶ Open Problem 1. Describe, for any fixed non-bipartite graph H, a constant cH such that:
1. There is an algorithm that, for all k, n ∈ N, given an n-vertex graph G with linear ordering

of width k, solves Hom(H) in time ck
H · nO(1), and

2. Assuming the SETH, for any ε > 0, there is no algorithm that, for all k, n ∈ N, given an
n-vertex graph G with linear ordering of width k, solves Hom(H) in time (cH−ε)k ·nO(1).

1 A slightly slower deterministic algorithm was also given.
2 An induced matching of a graph is a set M of edges such that the graph induced by the endpoints of M

is a matching.

ICALP 2024

77:4 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

Recall that when H is bipartite, Hom(H) is already known to be solvable in polynomial
time. Therefore, we restrict ourselves to non-bipartite graphs.

Moreover, for each graph H we have cH ≤ |V (H)|, as a straightforward dynamic pro-
gramming algorithm works in time |V (H)|k · nO(1).

Our contribution. We make significant progress towards Open Problem 1. In particular, for
each non-bipartite graph H we define a constant cH which we conjecture to have the desired
properties. We prove, for almost all graphs, that Hom(H) in n-vertex instances given with a
linear ordering of width k cannot be solved in time (cH − ε)k · nO(1) for any ε > 0, assuming
the SETH. Moreover, we give a dynamic programming approach of which we show the table
sizes can be compressed to ck

H · nO(1) (see the paragraph on representative sets below for
more details). This can be interpreted as an upper bound, for each i ∈ {1, . . . , n− 1} on the
amount of information of the graph G[{v1, . . . , vi}] needed to decide Hom(H) based on only
G−G[{v1, . . . , vi}]. Unfortunately, this is an existential result and we do not yet know how
to efficiently perform this compression. We give partial progress towards such a computation,
yielding an algorithm with running time exp(2cHk log k)nO(1).

For a 0/1-matrix A, we define mim(A) as the largest r for which A has an r×r permutation
submatrix.3 The aforementioned work [56] shows that cH needs to be at least mim(AH), if
AH is the adjacency matrix of H. However, one of our main insights is that, as the cutwidth
k increases, the accurate parameter for measuring the aforementioned amount of needed
information on G[{v1, . . . , vi}] is actually mim(A⊗k

H), where A⊗k
H denotes the result of taking

the Kronecker product of k copies of AH . Specifically, we introduce a new asymptotic rank
parameter, called mimsup, defined by

mimsup(A) = lim sup
k→∞

mim(A⊗k)1/k.

For a graph H, we define mimsup(H) to be mimsup(AH), where AH is the adjacency matrix
of H. We remark that mimsup(H) can be also defined in a purely graph-theoretic way, in
terms of the size of a maximum matching in a certain graph product. See Section 2 for more
thorough definitions and details. We prove the results above for cH equal to mimsup(H)
(modulo some standard preprocessing of H).

The parameter becomes especially clean and elegant if H is a projective core; such graphs
play a prominent role in the study of graph homomorphisms [29, 42, 54]. Their definition
is somewhat complicated, we refer the interested reader to the full version of the paper (in
Appendix). Let us just mention that this class captures almost all graphs [33, 45]. Formally,
let pn denote the probability that an n-vertex graph, chosen uniformly at random, is a
non-bipartite projective core. Then pn tends to 1 as n tends to infinity. Furthermore, up to
some conjectures from algebraic graph theory from the early 2000s [41,42], every graph H

that cannot be simplified by the above-mentioned preprocessing is actually a projective core.
We refer the interested reader to [54] for more information.

Going back to our setting, if H is a non-bipartite projective core, then we simply have
cH = mimsup(H). The first evidence that cH is indeed the “right” choice of the parameter
is the following lower bound4.

3 It is easily seen that mim(A) equals the maximum size of an induced matching in the bipartite graph
that has A as biadjacency matrix. If A is symmetric, it is the adjacency matrix of a graph H and
mim(A) equals twice the maximum size of an induced matching in H.

4 Full proofs of statements marked with (♠) can be found in the full version of the paper [31]

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:5

▶ Theorem 1 (♠).
1. There exists δ > 0, such that for every non-bipartite projective core H, there is no

algorithm solving every instance G of Hom(H) in time mimsup(H)δ·ctw(G) · nO(1), unless
the ETH fails.

2. Let H be a connected non-bipartite projective core. There is no algorithm solving every
instance G of Hom(H) in time (mimsup(H)− ε)ctw(G) · |V (G)|O(1) for any ε > 0, unless
the SETH fails.

We next elaborate on the mentioned dynamic programming approach along with the
table size compression via which we aim to match these lower bounds.

Representative Sets. A crucial technique in our arguments is that of representative sets.
This is a method that allows us to considerably speed up dynamic programming algorithms
by sparsifying the associated tables. Specifically, dynamic programming algorithms generally
define a space of possible partial solutions S, and a dynamic programming table stores a
subset A of partial solutions that are valid in the given instance. A binary compatibility
matrix M with rows and columns indexed by S indicates whether two partial solutions
combine into a global solution. Generally speaking, a representative set of a set A ⊆ S is a
subset A′ such that for each j ∈ S we have that there exists i ∈ A with M [i, j] = 1 if and
only if there exists i′ ∈ A′ with M [i′, j] = 1; see Section 3.1 for details more specific to the
setting of our paper.

The power of representative sets lies in that (i) by definition, in any dynamic programming
algorithm we can replace the set A with the smaller set A′ without missing solutions, and
(ii) for many matrices M , surprisingly small representative sets are guaranteed to exist. This
underlies, for example, fast algorithms for the k-Path problem [48] or connectivity problems
parameterized by treewidth [4,27]. However, a serious bottleneck in these algorithm is the
computation of such representative sets: It withholds us, for example, for getting faster
algorithms for connectivity problems such as Traveling Salesperson (both parameterized
by treewidth [4,17] and the classic parameterization by the number of cities [50, Theorem 3]),
and polynomial kernelization algorithms for Odd Cycle Transversal [39].

This already led some researchers to design faster algorithms for finding representative sets
in special settings. A natural setting that comes up, for example for connectivity problems
parameterized by treewidth, is to find representative sets for sets of partial solutions with a
certain product structure. In [28], the authors show that representative sets for such families
can be found faster than known for general families.

In this paper, the computation of representative sets is also a major bottleneck; in fact,
modulo the standard conjectures discussed above, it is the only issue that withholds us from
solving Open Problem 1 completely. Specifically, we show:

▶ Theorem 2 (Informal statement of Theorem 6). In the context of the natural dynamic
programming algorithm for Hom(H) parameterized by cutwidth k, there exist representative
sets of size at most mimsup(H)k.

Thus, by the definition of representative sets, any algorithm that computes these repres-
entative sets fast enough would imply a mimsup(H)ctw(G)nO(1) time algorithm for Hom(H)
and thus solve Open Problem 1. We view this as strong evidence that our lower bounds
cannot be improved. Indeed, state-of-the-art hardness reduction techniques (like [44]) for
problems parameterized by width parameters encode assignments to decision variables as
states of dynamic programming tables and gradually check constraints on global consistency
of these assignments throughout the graph. Our proof of existence of small representative

ICALP 2024

77:6 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

0 0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1 0
0 1 1 0 0 0 0 1 1
1 0 1 0 0 0 1 0 1
1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 0 0 0

Figure 1 Illustration of a maximum induced matching (or equivalently, induced permutation
submatrix) of size mim(A⊗2

H) shown in red, where AH =
(

0 1 1
1 0 1
1 1 0

)
and H = K3. More generally,

the proof from [36] for determining the chromatic number of a graph shows that whenever H is a
complete graph, mim(A⊗k

H) = 2k and thus mimsup(H) = 2.

sets means the number of assignments that need to be considered in order to find a global
solution is also small, which means that this kind of approach to design lower bounds hits a
natural barrier at our lower bound.

Coping Algorithmically with the Mimsup Parameter. Matrix or graph parameters that
are defined in terms of large powers are sometimes called asymptotic rank parameters, and
they are notoriously hard to compute. For example, the value of the asymptotic rank of the
matrix multiplication tensor [8] (also known as ω) or the Shannon capacity of the cycle on 7
vertices [30] remain elusive. Unfortunately, mimsup(H) seems no exception. Similarly to the
Shannon capacity [1, Question 6], it is even not clear whether its computation is decidable.
For mimsup(H), even for simple graphs such as H = Kq, determining its value is non-trivial
as well. As an illustration we depict the maximum induced matching in the second Kronecker
power of the adjacency matrix of K3 in Figure 1. One of the main insights of the 2ctw(G)nO(1)

time algorithm for the chromatic number from [36] shows that mimsup(Kq) in fact equals 2.
Even when the existence of small representative sets is guaranteed because mimsup(H) is

small, it is still challenging to find them quickly. Since mimsup is about products of graphs,
one may expect that this product structure can be used algorithmically. Indeed, product
structure has been exploited to compute representative sets in previous work [28], but there
the family that needs to be represented has some (Cartesian) product structure. In our
setting, this is not guaranteed and it is much less obvious how to proceed.

Nevertheless we show that, with some loss in precision (and hence, running time), we can
work with graphs with small mimsup, by approximating it with another (easier to compute)
value that we call the maximum half induced matching number him(H). For a matrix A, we
define him(A) as the largest r for which A has an r × r triangular submatrix with ones on
its diagonal.5 For a graph H, we define him(H) to be him(AH), where AH is the adjacency
matrix of H. We show that him(AH) approximates mimsup(AH) in the following sense:

▶ Theorem 3. For every non-bipartite graph H with adjacency matrix AH and k ∈ N,

him(AH) ≤ mimsup(AH) = lim sup
k→∞

mim(A⊗k
H)1/k and mim(A⊗k

H) ≤ k(him(AH)+1)k.

5 A submatrix of a matrix A is any matrix that can be obtained from A by removing and reordering any
of its rows and columns.

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:7

The parameter him(AH) is easily computable in time 2O(|V (H)|). While the lower bound
on mimsup(A⊗k

H) is relatively easy, the upper bound uses an argument similar to the
“neighborhood chasing” argument for the upper bounds on multi-colored Ramsey numbers [22].
This argument can in fact be made algorithmic in the sense that it can be used to compute
representative sets for Hom(H) of size at most O(khim(H)k) in time O(k2him(H)k). Combining
this result with the dynamic programming algorithm for Hom(H) for graphs of small cutwidth
yields the following.

▶ Theorem 4. For any graphs G and H, where G is given with a linear ordering of width k,
in time O(k2k·mimsup(H) · |V (H)|4|V (G)|) one can decide whether G admits a homomorphism
to H.

Let us compare the running time in Theorem 4 with the naive approach; recall that its
complexity is |V (H)|k · |V (G)|O(1). If we treat H as a constant and k as a parameter, then
the latter one is faster. However, we emphasize here that in Theorem 4 we do not assume
that H is a constant, so these two algorithms are incomparable. In particular, Theorem 4
shows that the homomorphism problem, where the input consists of both G and H, is
fixed-parameter-tractable when parameterized by the cutwidth of G and mimsup(H).

It should be noted that a similar notion of half-induced matching of a compatibility
matrix was already introduced in previous work in the context of representative sets of the
AntiFactor problem [47] parameterized by treewidth and list size. However, in that setting,
the authors were only able to provide a lower bound for their problem, and they did not
manage to make the connection with half-induced matchings algorithmic. Additionally, their
compatibility matrix has a very specific structure: it is indexed with integers and the value
of an entry only depends on the sum of the values associated with the row and column.

Comparison of Mimsup With Other Rank Parameters. One of our main conceptual
contributions is the introduction of the mimsup parameter in the context of parameterized
algorithms. It is actually the first asymptotic rank parameter shown to be relevant in this
context. Our mimsup parameter is very similar to the asymptotic induced matching number
studied by Arunachalam et al. [2] which was introduced for k-partite, k-uniform hypergraphs
(and so, in the graph setting, only for bipartite graphs). Various asymptotic variants of
rank parameters have been studied for tensors. For example, this has been done for rank
parameters such as subrank, tensor rank and slice rank. However, for matrices (2-tensors)
these are equal to the “standard” rank for matrices and so have no interesting asymptotic
aspects.

That being said, it is only natural to compare the mimsup parameter with different
related rank parameters from the literature. We will discuss this now, and provide proofs
that formally support this discussion in the Appendix. The approach from [36] naturally
extends to solve Hom(H) quickly for all graphs H where the so-called support-rank [18, 49]
of the adjacency matrix of H is small. The following sequence of inequalities holds for every
matrix A:

mim(A) ≤ him(A) ≤ mimsup(A) ≤ support-rank(A) ≤ rank(A).

We believe all of the inequalities can be strict. When A is the (r × r)-matrix with ones
on and above the diagonal and zeros below the diagonal, then mim(A) = 1 < r = him(A)
for r ≥ 2. This means that mim is not functionally equivalent to him nor mimsup. We
use random matrices to show that him and mimsup may take very different values (see
Theorem 13 for a formal statement). In the Appendix we find a connection of support-rank
to a parameter called graph dimension (or Prague dimension) [51,52]. We also show there

ICALP 2024

77:8 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

that him is not functionally equivalent to support-rank. This shows that our algorithm
from Theorem 4 can be significantly faster than the discussed natural generalization of [36].
We leave it as an interesting open problem if mimsup is functionally equivalent to him or
support-rank.

The aforementioned (well studied) Shannon capacity has a definition that is very similar
to the mimsup parameter: It is defined in terms of the maximum size of an independent set
(also called the independence number) in an appropriate graph product, and the size of a
maximum induced matching of a graph equals the independence number of the square of
its line graph. Unfortunately, because the definitions of mimsup and Shannon capacity use
different graph products, the relation between the two is somewhat loose; see Appendix for
details. Nevertheless, based on their similarity, one may expect that Shannon capacity shares
some of its peculiarities with mimsup, such as an unpredictable behaviour of the value in
graph powers [1].

2 Preliminaries

For an integer n, by [n] we denote the set {1, 2, . . . , n} and for integers a, b we write
[a, b] = {a, a + 1, . . . , b}. For a set X, by 2X we denote the family of all subsets of X. For
i, s ∈ N, the multinomial coefficient(

is

s, . . . , s

)
= (is)!

s!, . . . , s! = i(1+o(1))is

is the number of partitions of [as] into a parts of size s.
For a graph G and V ′ ⊆ V (G) (resp. E′ ⊆ E(G)), by G[V ′] (resp. G[E′]) we denote

the subgraph of G induced by V ′ (resp. E′). We say two graph parameters p and q are
functionally equivalent if there are functions f, g : R → R such that p(G) ≤ f(q(G)) and
q(G) ≤ g(p(G)) for all graphs G.

Homomorphisms. For graphs G and H, a homomorphism from G to H is a mapping
φ : V (G) → V (H) such that for every uv ∈ E(G) we have φ(u)φ(v) ∈ E(H). If φ is
a homomorphism from G to H, we denote it by writing φ : G → H. If G admits a
homomorphism to H, we denote is shortly by G→ H.

In the Hom problem we are given a pair (G, H) of graphs, and we ask whether G→ H.
In the Hom(H) the graph H is considered to be fixed and we ask whether a graph G given
as an input admits a homomorpshism to H.

We will always assume that H is a connected graph. Indeed, each component of G must
map to a single component of H, so the problem can be solved component-wise.

Cutwidth. Let G be a graph and consider a linear ordering σ = (v1, . . . , vn) of its vertices.
For i ∈ [n− 1], the i-th cut is the partition of V (G) into sets {v1, . . . , vi} and {vi+1, . . . , vn}.
The width of such a cut is the number of edges with one endvertex in {v1, . . . , vi} and the
other in {vi+1, . . . , vn}. The width of σ is the maximum width of a cut of σ. Finally, the
cutwidth of G, denoted by ctw(G), is the minimum width of a linear ordering of the vertices
of G.

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:9

Associated bipartite graphs. In order to define the main parameters of our paper, we will
use a notion of associated bipartite graphs. For a graph G, the graph G∗ is defined as follows.

V (G∗) = {u′, u′′ | u ∈ V (G)},
E(G∗) = {u′w′′, u′′w′ | uw ∈ E(G)}.

Induced matchings and half-induced matchings. A set M ⊆ E of edges of a graph
H = (V, E) forms an induced matching if the edges in M are vertex disjoint and no edge in
E is incident with two edges from M . We may also view this as two sequences of distinct
vertices v1, . . . , vm and u1, . . . , um where viuj ∈ E if and only if i = j. For a bipartite graph
H, by mim(H) we denote the size of a maximum induced matching in H. For non-bipartite
H, we define mim(H) := mim(H∗).

A half-induced matching of a graph H consists of two sequences v1, . . . , vm and u1, . . . , um

of distinct vertices where viui ∈ E for i ∈ [m] and uivj ̸∈ E if 1 ≤ i < j ≤ m. For a bipartite
graph H, we denote the size of the largest half-induced matching in H by him(H). We
extend the definition to graphs H that are non-bipartite via him(H) = him(H∗). This notion
has been studied under the name constrained matching (a subset with a unique matching,
see e.g. [10, 55, 59]), but we decided to use the name which appeared more recently in a
similar setting to ours [47], since the word “constrained matching” has also been used for
various other purposes in the algorithmic community.

Mim and him for matrices. Let A ∈ {0, 1}n×n be a matrix. Given a sequence r ∈ [n]a of
distinct row indices and c ∈ [n]b of distinct columns indices, for some integers a, b ∈ [n], we
write A[r, c] for the a × b matrix with entries A[r, c]i,j = Ari,cj

for i ∈ [a] and j ∈ [b]. We
refer to any matrix which arises in such a manner as a submatrix after permutation of A.

We write mim(A) for the maximum r for which A has the r × r identity matrix as
submatrix after permutation (equivalently, the largest permutation submatrix). We write
him(A) for the largest r for which A has an r × r triangular matrix with 1’s on the diagonal
as submatrix after permutation. We will also refer to such a submatrix as half induced
matching. (A matrix is called triangular if either all entries below the diagonal, or all entries
above the diagonal are 0.)

For bipartite graphs H = (U, V, E), the bi-adjacency matrix B is indexed by rows from U

and columns from V where B[u, v] = 1 if uv ∈ E and B[u, v] = 0 otherwise. For a bipartite
graph H, there is a one-to-one correspondence between induced matchings of H of size m

and m×m permutation submatrices of the bi-adjancency matrix of H. In particular, for a
bi-adjacency matrix B of H, mim(B) = mim(H). Similarly, him(B) = him(H).

For a non-bipartite graph G, if AG is its adjacency matrix, then AG is also the bi-
adjacency matrix of G∗. This means that for non-bipartite H with adjacency matrix AH ,
mim(H) = mim(AH) and him(H) = him(AH).

Mimsup. For a matrix A, we define

mimsup(A) = lim sup
k→∞

mim(A⊗k)1/k.

Here ⊗ denotes the Kronecker product of the matrix. Given an n × m matrix A =
(ai,j)i∈[n],j∈[m] and a matrix B, the Kronecker product is given by

A⊗B =

a1,1B a1,2B . . . a1,mB

a2,1B a2,2B . . . a2,mB

. . .

an,1B an,2B . . . an,mB

 .

ICALP 2024

77:10 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

Since mim(A⊗B) ≥ mim(A) mim(B), Fekete’s lemma [24] applies to show that (♠)

lim sup
k→∞

mim(A⊗k)1/k = lim
k→∞

mim(A⊗k)1/k = sup
k∈N

mim(A⊗k)1/k.

For a non-bipartite graph H, with adjacency matrix A, we set

mimsup(H) = mimsup(A).

When H is bipartite with bi-adjancency matrix6 B, mimsup(H) = mimsup(B). The para-
meters can also be defined in purely graph theoretical terms, as we now explain.

For a bipartite graph H with bipartition classes X, Y , and for k ∈ N, we define H⊗k to
be the graph on vertex set Xk ∪ Y k where there is an edge (x1, . . . , xk)(y1, . . . , yk) in H⊗k if
and only if xiyi ∈ E(H) for every i ∈ [k]. With this definition of graph product ⊗, we define

mimsup(H) =
{

lim supk→∞ mim(H⊗k)1/k if H is bipartite,
mimsup(H∗) otherwise.

The following property of mimsup is straightforward.

▶ Observation 5. If H is an induced subgraph of G, then mimsup(H) ≤ mimsup(G).

For bipartite graphs, mimsup coincides with the parameter asymptotic induced matching
number studied by [2]. Although asymptotic rank parameters (e.g. asymptotic subrank,
asymptotic tensor rank and asymptotic slice rank) have been widely studied for tensors, the
“non-asymptotic” parameters are usually equal to the matrix rank for matrices, which has no
interesting asymptotic behaviour since rank(A⊗n) = rank(A)n. In particular, the subrank in
some sense looks for the largest “identity subtensor”, similar to our mim, but since it allows
row operations to be applied (instead of merely permutations), this notion is the same as the
usual rank for matrices and the same holds for the asymptotic subrank.

3 Solving Hom with representative sets

In this section we discuss how we can use representative sets to create fast algorithms for
Hom. We start by giving a definition of a representative set in our setting. Intuitively we
want a representative set A′ of A to carry all the important information from A, while being
smaller in size. In practice, being able to find small representative sets corresponds to having
to compute less entries in a dynamic programming algorithm. So this gives the following
natural extremal problem: how small of a representative set are we always guaranteed to
find, that is, what is the largest size of a set which has no smaller representative set? After
giving the definition, we explain why mimsup exactly determines the answer to this question
in our setting.

Finally, we give a general framework for solving Hom instances; it consists of an algorithm
that takes as input some reduction algorithm R that produces small representative sets and
uses it to solve Hom on input graphs G and H. In Section 4 we give examples of such
reduction algorithms.

6 Note that mimsup is invariant under row and column permutations. This means that the choice of
bi-adjacency matrix does not affect the mimsup and thus mimsup on bipartite graphs is well-defined.

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:11

3.1 Definition of Representative Set
Given a 0/1 matrix M , with rows indexed by a set R and A ⊆ R, we are interested in
knowing whether for a column c, there is a row r ∈ A with M [r, c] = 1. In our case,

each row represents a coloring of the left-hand side of the cut;
all the colorings that can be extended to the left-hand side of the (input) graph are
contained in A;
each column represents a coloring of the right-hand side of the cut;
M [r, c] = 1 if and only if the colorings represented by row r and column c are compatible.

This makes the following definition very natural. We say that a subset A′ ⊆ A M -represents
A, if for any column j we have that if there is a row index i ∈ A such that M [i, j] = 1, then
there is also i′ ∈ A′ such that M [i′, j] = 1. Intuitively, this means that we do not “lose any
solutions” by restricting to A′.

We will also refer to A′ as an M-representative set of A. We may omit M if it is clear
from context.

We remark that representing is transitive: if A′′ represents A′ and A′ represents A, then
A′′ represents A.

Suppose we aim to solve Hom for input graphs G and H, where H is non-bipartite. We
will be interested in representative sets with respect to M = A⊗k

H for integers k, where AH

is the adjacency matrix of H. We assume that G is given with a linear order v1, . . . , vn of
width at most w. For an integer i ∈ [n], then G[{v1, . . . , vi}] is the “left-hand side of the
graph” with respect to the ith cut and

Xi := {v ∈ {v1, . . . , vi} | ∃v′ ∈ {vi+1, . . . , vn}, vv′ ∈ E(G)} .

is “the left-hand side of the i-th cut.” Suppose there are k edges crossing the ith cut:
{a1, b1}, . . . , {ak, bk} ∈ E(G) with a1, . . . , ak ∈ {v1, . . . , vi} and b1, . . . , bk ∈ {vi+1, . . . , vn}.
Let Li = (a1, . . . , ak) and Ri = (b1, . . . , bk). Note that {a1, . . . , ak} = Xi but some elements
may be repeated. A row r (seen as “index”) of the matrix M = A⊗k

H is a k-tuple (r1, . . . , rk) ∈
V (H)k, which corresponds to a coloring Xi → V (H) if rj = rj′ whenever aj = aj′ . If similarly
c ∈ V (H)k represents a coloring of the “right-hand side of the cut”, then M [r, c] = 1 if and
only if rjcj ∈ E(H) for all j ∈ [k], i.e. the colorings are compatible. So indeed we capture
the properties informally claimed above.

Since in our setting M will be the adjacency matrix of some graph H, we may refer to
H-representative sets rather than AH -representative sets.

3.2 Connection to Mimsup
When applied to the adjacency matrix AH of a non-bipartite graph H, the following result
shows that mimsup(H)k approximates how large a set A ⊆ V (H)k without smaller A⊗k

H -
representative set can be. This easily follows from the definitions but is still an important
conceptual contribution.

▶ Theorem 6. Let M ∈ {0, 1}h×h be a matrix with rows indexed by R.
For each integer k ∈ N, for any A ⊆ Rk, there is a subset A′ ⊆ A of size mimsup(M)k

that M⊗k-represents A.
Conversely, for each ε > 0, for each sufficiently large k, there is a A ⊆ Rk, for which no
A′ ⊆ A of size at most (mimsup(M)− ε)k can M⊗k-represent A.

Proof. Let A′ ⊆ A be of minimal size among the subsets that M -represent A. Then no
proper subset of it M -represents A. This means that for each a ∈ A′ it cannot be removed
from A′ to get a set that M -represents A. Thus, for each a ∈ A′ there is some µ(a) ∈ V (H)k

ICALP 2024

77:12 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

such that M [a, µ(a)] = 1, but for every a′ ∈ A′ \ {a} we have that M [a′, µ(a)] = 0. This
gives a permutation (|A′| × |A′|)-submatrix of M . This shows that |A′| ≤ mim(M⊗k). By
definition of mimsup, mim(M⊗k) ≤ mimsup(M)k.

Conversely, by definition of limit, for each ε > 0 there is a k0 such that mim(M⊗k) ≥
(mimsup(M)− ε)k for all k ≥ k0. Let k ≥ k0. Let A ⊆ R be the rows of a largest induced
permutation submatrix of M⊗k. Then |A| = mim(M⊗k) ≥ (mimsup(M)− ε)k and none of
the strict subsets of A can M⊗k-represent it. ◀

3.3 Exploiting Representative Sets in Dynamic Programming
The main idea behind the use of representative sets in an algorithmic setting is as follows.
We solve the problem with a standard dynamic programming approach, where the cells are
indexed by the elements of the set A. A representative set then forms a small subset of these
indices, which still carries enough information to solve the problem. By regularly applying
the reduction algorithm, we can effectively run our dynamic programming algorithm on only
a small subset of the cells in the table. We formalize this in the following theorem. Let us
emphasize that H is not assumed to be fixed here but rather given as an input.

▶ Theorem 7. Let H be a non-bipartite graph on h vertices. Let R be a reduction algorithm
that, given an integer k ≥ 2 and a subset A ⊆ V (H)k, outputs a set A′ of size size(H, k)
that A⊗k

H -represents A, running in time time(|A|, H, k). Then there exists an algorithm that,
given a linear ordering of an n-vertex graph G of width w, decides whether G→ H in time

O
((

size(H, w) · h + time (size(H, w) · h, H, w)
)
n

)
.

Proof. Let v1, . . . , vn be a linear ordering of G of width k. For i ∈ [n], by Ei we denote the
set of edges that cross the i-th cut, i.e., those with one endpoint in {v1, . . . , vi} and the other
in {vi+1, . . . , vn}. For i ∈ [n], let Xi be the set that contains all vertices from {v1, . . . , vi}
incident to an edge from Ei, i.e.,

Xi := {v ∈ {v1, . . . , vi} | ∃v′ ∈ {vi+1, . . . , vn}, vv′ ∈ E(G)} .

Note that we have |Xi| ≤ |Ei| ≤ w and X1 = {v1} (since G is connected). For a mapping
c : Xi → V (H), we define the table entry Ti[c] as true if there exists a homomorphism
φ : G[{v1, . . . , vi}]→ V (H), such that for all v ∈ Xi we have φ(v) = c(v). (In other words,
the keys are given by the H-colorings of Xi and the table entry is true if there is an extension
of the coloring of Xi to the left-hand side of the graph.)

This table can be easily computed in time hw+1 · nO(1) by the following naive dynamic
programming procedure. We initiate every entry Ti[c] to be false and every entry T1[c] to be
true. Then, for every i ∈ [2, n], every mapping c′ : Xi−1 → V (H), such that Ti−1[c′] is true,
and every u ∈ V (H), we check whether c : Xi−1 ∪ {vi} → V (H) defined as

c(v) =
{

u if v = vi,

c′(v) v ∈ Xi−1.
(1)

is a homomorphism from G[Xi−1 ∪ {vi}] to H. If so, we set Ti[c|Xi
] to true.

We first outline why this correctly computes the table entries (that is, that at the end
Ti[c] is true if and only if c extends to a coloring of G[{v1, . . . , vi}]) and then explain how
to improve on this naive algorithm. We prove the claim by induction on i. For i = 1, the
coloring only assigns a color to v1 and does not need to be extended (and is automatically
proper). Now suppose that the claim has been shown for i = 1, . . . j and let α : Xj+1 → V (H)

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:13

be a coloring. If this extends to a coloring ϕ of G[{v1, . . . , vj+1}], then Tj [c′] is true for
c′ = ϕ|Xj

(by the induction hypothesis) and we could obtain α as the restriction from c from
(1) with u = ϕ(vj+1) and i = j + 1. So Tj+1[α] is true. Vice versa, if Tj+1[α] has been set
to true, then there is a c′ : Xj → V (H) and u ∈ V (H) such that c (again defined as in (1))
is a homomorphism G[Xj ∪ {vj+1}] → H which restricts to α on Xj+1. By the induction
hypothesis, there exists a proper coloring ϕ′ that extends c′ to G[{v1, . . . , vj}] and we extend
this to a coloring ϕ of G[{v1, . . . , vj+1}] by setting ϕ(vj+1) = u. Then ϕ still restricts to α

and all of the edge constraints have been verified by c and/or ϕ′. In particular, G→ H if
and only if Tn[∅] is true, where ∅ denotes the empty mapping (Xn = ∅).

We will speed up this naive version of the dynamic program by computing a representative
table T ′ as follows. We first set T ′

1 = T1. For i = 1, 2, . . . , n− 1 we proceed as follows. Let
k = |Ei| ≤ w and M = A⊗k

H . Let {a1, b1}, . . . , {ak, bk} ∈ Ei be an enumeration of the edges,
with aj ∈ {v1, . . . , vi} for all j ∈ [k]. For each c : Xi → V (H) such that T ′

i [c] is set to true,
we put the k-tuple (c(a1), . . . , c(ak)) in Ai. When k ≥ 2, we apply the reduction algorithm
R to Ai, resulting in a set A′

i of size at most size(H, k) that A⊗k
H -represents Ai. When k = 1,

we set A′
i = Ai. We then compute the next table entries similarly as in the previous approach.

Each element of A′
i corresponds to a coloring c′ : Xi → V (H). For u ∈ V (H), we check

whether c : Xi ∪ {vi+1} → V (H) with c(vi+1) = u and c|Xi
= c′ is a homomorphism from

G[Xi ∪ {vi+1}] to H. If so, we set T ′
i+1[c|Xi+1] to true. We repeat this for all pairs (c′, u).

The procedure above is repeated for i = 1, . . . , n− 1, after which we return T ′
n[∅].

When |A′
i| ≤ size(H, k), we find that |Ai+1| ≤ size(H, k)h (for k = |Ei| ≤ w and

size(H, k) = h for k = 1). We may assume size is a non-decreasing function on each
coordinate. So the total running time is as claimed:

O
((

size(H, w) · h + time (size(H, w) · h, H, w)
)
n

)
.

The fact that the dynamic programming steps preserve representation follows from transitivity
of representation, but let us spell out the details.

Let Yi+1 be the set of endpoints on the right-hand side of the (i + 1)th cut and enumerate
the edges in Ei+1 as {x1, y1}, . . . , {xk, yk}, with xj ∈ Xi+1 and yj ∈ Yi+1. We will show that
for every i ∈ [n − 1], if A′

i represents the set Truei := {(c(x1), . . . , c(xk)) | Ti[c] = True},
then Ai+1 represents the set Truei+1. The same then holds for A′

i+1 since the reduction
algorithm is assumed to work correctly.

We started with setting T ′
1 = T1, so A′

1 indeed represents True1.
Let us first unravel the definitions to see what we need to show. Let i ∈ [n − 1] and

suppose that c : G[Xi+1]→ H extends to a homomorphism ϕ : G[{v1, . . . , vi+1}]→ H (i.e.
Ti[c] = True). For the definition of represents, we will then assume there is a homomorphism
d : G[Yi+1] → H for which c ∪ d respects all edges from the (i + 1)th cut (those in Ei+1),
i.e. this corresponds to a “one-entry in the compatibility matrix”. What needs to be shown
is that this “one-entry” can also be generated via a coloring coming from Ai+1, that is,
there is α : G[Xi+1] → H, such that (α(x1), . . . , α(xk)) ∈ Ai+1 and (α ∪ d)|G[Ei+1] is a
homomorphism.

By assumption, ϕ∪d respects all the edges with at least one endpoint in {v1, . . . , vi+1}, and
in particular those with one endpoint in {v1, . . . , vi}. Since A′

i is a representative set of Truei,
there must be c′ : G[Xi] → H such that (c′(x′

1), . . . , c′(x′
k′)) ∈ A′

i, for {x′
1, . . . , x′

k′} = Xi,
and where c′ ∪ ϕ|{vi+1} ∪ d respects all the edges with at least one endpoint in {v1, . . . , vi}.
We set α = (c′ ∪ ϕ|{vi+1})|Xi+1 . Then (α(x1), . . . , α(xk)) ∈ Ai+1, by definition of how we
obtain Ai+1 from A′

i. Moreover, α ∪ d is a homomorphism G[Ei+1]→ H, as desired. ◀

ICALP 2024

77:14 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

4 Computing representative sets via half-induced matchings

In this section we present one of our main technical contributions, i.e., an algorithm to
compute H-representative sets whose size is bounded in terms of him(H). Actually, our
approach is rather general since it finds representative sets non-trivially fast for any large
Kronecker power of a matrix with small him parameter.

We will show how to find a representative set that has one fewer element, by finding some
element that can be safely removed. We then use this intermediate result to find our final
reduction algorithm, which will result in the following lemma.

▶ Lemma 8. Let ℓ ≥ 1 and k ≥ 2 be integers. Let A ∈ {0, 1}h×h be a matrix with him(A) < ℓ,
and let A ⊆ [h]k. Then we can compute A′ ⊆ A that A⊗k-represents A with |A′| ≤ kkℓ in
time O(|A|2h2k2).

We will combine the reduction algorithm from Lemma 8 with Theorem 7 to find the
following result.

▶ Theorem 9. The Hom problem on an instance (G, H), where G is given with a linear
ordering of width k, can be solved in time O(k2k·(him(H)+1) · |V (H)|4|V (G)|).

We emphasize that the algorithm does not need to know the value of him(H).

Proof. Let h = |V (H)| and let AH be the adjacency matrix of H. Recall that him(AH) =
him(H) is always an integer. By Lemma 8 we have a reduction algorithm R that returns
a representative set of size size(H, k) ≤ kk·(him(H)+1) in time time(|A|, H, k) = O(|A|2h2k2).
Then

time(size(H, k) · h, H, k) = O
(

k2 · k2k·(him(H)+1) · h4
)

.

By Theorem 7 we find an algorithm that decides Hom(H) in time

O ((size(H, k) · h + time(size(H, k) · h, H, k))|V (G)|) = O(k2k·(him(H)+1)h4 · |V (G)|).

This completes the proof. ◀

Since him(H) ≤ mimsup(H) (see Lemma 11), we obtain Theorem 4 as a corollary from
Theorem 9. Lemma 8 and Lemma 11 also imply Theorem 3.

In order to prove the lemma, we will perform a recursive algorithm for which we want to
no longer treat all the coordinates symmetrically. We therefore define

gk(ℓ1, . . . , ℓk) =
(∑

i ℓi

ℓ1, . . . , ℓk

)
.

When ℓ1 = · · · = ℓk = ℓ, we have gk(ℓ, . . . , ℓ) =
(

kℓ
ℓ,...,ℓ

)
≤ kkℓ (= the number of partitions of

kℓ into k parts, which no longer need to have the same size). The lemma will follow easily
from the following more complicated statement.

▶ Lemma 10. Let k ≥ 2, ℓ1, . . . , ℓk ≥ 1 be integers. Let A ∈ {0, 1}h×h be a matrix and
let A ⊆ [h]k with |A| ≥ gk(ℓ1, . . . , ℓk). Suppose that for every i ∈ [k], for the set of rows
Ri = {ri | r ∈ A}, we have him(A[Ri, ·]) < ℓi. Then there exists v ∈ A such that A \ {v}
A⊗k-represents A. Moreover, v can be found in time O(

∑k
i=1 ℓi · |A|hk).

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:15

Proof. Note that |A| ≥ gk(ℓ1, . . . , ℓk) ≥ 1 for ℓ1, . . . , ℓk, k ≥ 1 so A is non-empty.
For i ∈ [k] and u ∈ [h], let

Ai
u = {v = (v1, . . . , vk) ∈ A | A[vi, u] = 0}

be the set of rows which cannot “represent” u in the ith coordinate. We choose v ∈ A
(arbitrarily). We then iterate over u ∈ [h] and i ∈ [k] to find if there is (u, i) for which

A[vi, u] = 1, and
|Ai

u| ≥ gk(ℓ1, . . . , ℓi − 1, . . . , ℓk).
This step can be performed in time O(|A|hk).

If we cannot find such (u, i) pair for v, then we return v as the row to be removed from
A (and the algorithm terminates).

Otherwise, we did find (u, i). If ℓi = 1, then since him(A[Ri, ·]) < ℓi, we know A[Ri, ·]
has all zero-entries and so A[vi, u] = 1 would not have been possible. This means that ℓi ≥ 2.
We apply the same process after updating ℓi ← ℓi − 1 and A ← Ai

u. Note that v /∈ Ai
u and

ℓi − 1 ≥ 1. We will show that
when v is returned, indeed A \ {v} A⊗k-represents A, and
when we recursively apply the algorithm, the conditions of the lemma are again satisfied,
for which it remains to show that him(A[R′

i, ·]) < ℓi − 1 for R′
i = {ri | r ∈ Ai

u}.
Since we reduce

∑k
i=1 ℓi by one in each recursive call, the algorithm will terminate. Moreover,

the number of recursive calls is at most
∑k

i=1 ℓi. This shows that assuming the claims above,
the time complexity is as stated.

Correctness. We first show the first claim: if the algorithm outputs v, indeed it can be
removed. Note that if for some subset A′ ⊆ A, it is the case that A′ \ {v} represents A′, then

A′ \ {v} ∪ (A \ A′) = A \ {v}

will also represent A. This means we only have to check the claims in the “base case”.
Suppose towards a contradiction that we wrongly outputted v ∈ A, so

there exists u ∈ [h]k such that A⊗k[v, u] = 1 yet A⊗k[v′, u] = 0 for all v′ ∈ A \ {v} (since
we “wrongly” outputted v, there needs to be a reason why we could not remove it),
for this u, for all i ∈ [k], |Ai

ui
| < gk(ℓ1, . . . , ℓi − 1, . . . , ℓk) (else the algorithm would have

“recursed” instead of outputting v).
The fact that A⊗k[v′, u] = 0 in the first condition, means that each v′ ∈ A\{v} is an element
of Ai

ui
for some i ∈ [k]. In particular,

|A \ {v}| ≤
k∑

i=1
|Ai

ui
| ≤

k∑
i=1

gk(ℓ1, . . . , ℓi − 1, . . . , ℓk)− k = gk(ℓ1, . . . , ℓk)− k,

which contradicts the assumptions of the lemma since k ≥ 2.
We now prove the second claim: the conditions of the lemma are satisfied when we

“recurse”. By assumption, ℓi ≥ 1 for all i and the new A is sufficiently large. Moreover,
him can also decrease when taking submatrices, so indeed we only need to show that
him(A[R′

i, ·]) < ℓi − 1 for R′
i = {ri | r ∈ Ai

ui
}. If there is a half-induced matching of size

ℓi − 1, induced on rows w1, . . . , wℓi−1 ∈ R′
i and columns z1, . . . , zℓi−1, then there is a half-

induced matching of size ℓi in A[Ri, ·] by considering rows w1, . . . , wℓi−1, vi ∈ Ri and columns
z1, . . . , zℓ−1, u. But by assumption this does not exist, so indeed him(A[R′

i, ·]) < ℓi − 1. ◀

ICALP 2024

77:16 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

Proof of Lemma 8. Suppose that |A| ≥ gk(ℓ, . . . , ℓ). For i ∈ [k], set Ri = {ri | r ∈ A}.
Then him(A[Ri, ·]) < ℓ for each i. By Lemma 10 we can find a row v in A such that A \ {v}
A⊗k-represents A in time O(ℓk · |A|hk) = O(|A|h2k2), where we use that ℓ ≤ h.

We repeat this at most |A| − gk(ℓ, . . . , ℓ) times until we find the desired representative
set in time O(|A|2h2k2). ◀

5 Comparing him and mimsup

In this section, we discuss the relation between the considered parameters.

▶ Lemma 11. Let A be a matrix. Then mimsup(A) ≥ him(A) ≥ mim(A).

Proof. The second inequality follows directly since each induced matching is a half-induced
matching. We prove the first inequality.

Let R = {a1, . . . , ai} and C = {b1, . . . , bi} be the rows and columns respectively of a
maximum half-induced matching in A. We may assume that these are ordered such that
A[aj , bj] = 1 for all j ∈ [i] and A[ak, bj] = 0 for all k < j. For integers s ≥ 1, we consider the
submatrix of A⊗is induced on the rows consisting of “balanced” sequences, and similarly for
the columns

{(r1, . . . , ris) ∈ Ris | |{ℓ : rℓ = aj}| =s, for every j ∈ [i]},
{(c1, . . . , cis) ∈ Cis | |{ℓ : cℓ = bj}| =s, for every j ∈ [i]}.

We claim this forms an induced matching of size
(

is
s,...,s

)
. By Stirling approximation,

(
is

s,...,s

)
=

i(1+o(1))is and so the claim implies that mimsup(A) ≥ i = him(A). Since the size is clear
from the definition, it only remains to check that it indeed forms an induced matching. To
show this, we explain why the row of

r = (a1, . . . , a1, a2, . . . , a2, . . . , ai, . . . , ai)

has a single one entry in column

c = (b1, . . . , b1, b2, . . . , b2, . . . , bi, . . . , bi).

The other cases follow by symmetry. It is clear that A⊗is[r, c] = 1. Any column c′ with
A⊗is[r, c′] = 1 must have A[a1, c′

j] = 1 for all j ∈ [s]. But A[a1, bj] = 0 when j > 1, so this
implies that {j : c′

j = b1} = [s]. Similarly, we require A[a2, c′
j] = 1 for all j ∈ [s + 1, 2s], but

c′ has already “used” all its b1’s and so {j | c′
j = b2} needs to be [s + 1, 2s]. Continuing

inductively, we find that {j | c′
j = bk} = [(k − 1)s + 1, ks] for all k ∈ [i], that is, c′ = c. ◀

We are now ready to prove previously claimed bounds.

▶ Theorem 3. For every non-bipartite graph H with adjacency matrix AH and k ∈ N,

him(AH) ≤ mimsup(AH) = lim sup
k→∞

mim(A⊗k
H)1/k and mim(A⊗k

H) ≤ k(him(AH)+1)k.

Proof. Lemma 11 shows the first inequality. The proof of Lemma 10 implies that for any
matrix A, mim(A⊗k) ≤ khim(A)k, since no smaller representative set can be found when the
rows induce an induced matching (with some set of columns). ◀

The following observation implies that sequences such as mim(A⊗2k)1/2k are non-decreasing.

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:17

▶ Lemma 12 (♠). Given two matrices A and B, mim(A ⊗ B) ≥ mim(A) mim(B). In
particular, mimsup(A⊗k) = mimsup(A)k.

The results above also imply that

mimsup(A) = lim sup
k→∞

him(A⊗k)1/k.

At first glance, it may be natural to conjecture that in fact mimsup(A) = him(A) for all
matrices A. This is however not true, as the following result shows.

▶ Theorem 13 (♠). For all sufficiently large integers h, there is a symmetric (2h × 2h)
matrix A with him(A) ≤ 10 log2 h and mimsup(A) ≥

√
h.

6 Conclusion

An obvious open problem is to fully resolve Open Problem 1. As discussed, to achieve this
goal we only lack a fast algorithm that computes representative sets for partial solutions to
Hom(H). A far more ambitious (and probably currently out of reach) goal is to provide
a (more) fine-grained version of the Courcelle’s theorem for deciding any graph property
definable in the monadic second-order logic. While being homomorphic to a given graph
H is of course only a very special sort of such a property, we find our progress on Open
Problem 1 encouraging in this respect and hope that eventually similar connections between
the complexity of more general computational problems and asymptotic rank parameters
can be made as well. In particular, we believe that mimsup (or a similar parameter that
tracks the asymptotic behavior under appropriate products) is likely to determine the limit
of dynamic programming approaches in other settings as well, especially those determined
by various graph width parameters.

Another suggested direction of research is purely combinatorial/algebraic: we expect that
mimsup is an interesting parameter for further study in its own right. We suggest following
questions. (i) What type of values can mimsup(H) take given a matrix H? Can it take
non-integer values? Similar questions have recently been investigated for asymptotic tensor
parameters, see e.g. [3,6]. (ii) What is the value of mimsup for a n×n random matrix, where
each entry of the matrix gets sampled independently to be 1 with probability p and to be 0
with probability 1− p? (iii) We showed that him and the support rank are not functionally
equivalent. Is mimsup functionally equivalent to either him or the support rank?

References
1 Noga Alon and Eyal Lubetzky. The shannon capacity of a graph and the independence

numbers of its powers. IEEE Trans. Inf. Theory, 52(5):2172–2176, 2006. doi:10.1109/TIT.
2006.872856.

2 Srinivasan Arunachalam, Péter Vrana, and Jeroen Zuiddam. The asymptotic induced matching
number of hypergraphs: Balanced binary strings. The Electronic Journal of Combinatorics,
27(3), 2020. doi:10.37236/9019.

3 Andreas Blatter, Jan Draisma, and Filip Rupniewski. Countably many asymptotic tensor
ranks. arXiv, 2022. arXiv:2212.12219.

4 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

ICALP 2024

https://doi.org/10.1109/TIT.2006.872856
https://doi.org/10.1109/TIT.2006.872856
https://doi.org/10.37236/9019
https://arxiv.org/abs/2212.12219
https://doi.org/10.1016/j.ic.2014.12.008

77:18 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

5 Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems
over tree decompositions. In Jiong Guo and Danny Hermelin, editors, IPEC 2016, volume 63
of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.IPEC.2016.8.

6 Jop Briët, Matthias Christandl, Itai Leigh, Amir Shpilka, and Jeroen Zuiddam. Discreteness
of asymptotic tensor ranks. arXiv, 2023. arXiv:2306.01718.

7 Andrei A. Bulatov and Amirhossein Kazeminia. Complexity classification of counting graph
homomorphisms modulo a prime number. In Stefano Leonardi and Anupam Gupta, editors,
STOC 2022, pages 1024–1037. ACM, 2022. doi:10.1145/3519935.3520075.

8 Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complexity theory. In
Grundlehren der mathematischen Wissenschaften, 1997.

9 Jin-Yi Cai and Ashwin Maran. The complexity of counting planar graph homomorphisms of
domain size 3. In Barna Saha and Rocco A. Servedio, editors, STOC 2023, pages 1285–1297.
ACM, 2023. doi:10.1145/3564246.3585173.

10 Airlie Chapman and Mehran Mesbahi. On strong structural controllability of networked
systems: A constrained matching approach. In 2013 American Control Conference, pages
6126–6131, 2013. doi:10.1109/ACC.2013.6580798.

11 Prasad Chaugule, Nutan Limaye, and Aditya Varre. Variants of homomorphism polynomials
complete for algebraic complexity classes. ACM Trans. Comput. Theory, 13(4):21:1–21:26,
2021. doi:10.1145/3470858.

12 Rajesh Chitnis, László Egri, and Dániel Marx. List h-coloring a graph by removing few vertices.
Algorithmica, 78(1):110–146, 2017. doi:10.1007/s00453-016-0139-6.

13 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

14 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
STOC 2017, pages 210–223. ACM, 2017. doi:10.1145/3055399.3055502.

15 Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting
Hamiltonian cycles via matrix rank. In Artur Czumaj, editor, SODA 2018, pages 1080–1099.
SIAM, 2018. doi:10.1137/1.9781611975031.70.

16 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, SODA 2016, pages 1650–1669. SIAM, 2016. doi:10.1137/1.9781611974331.ch113.

17 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

18 Ronald de Wolf. Nondeterministic quantum query and communication complexities. SIAM
Journal on Computing, 32(3):681–699, 2003. doi:10.1137/S0097539702407345.

19 MARTIN E. DYER and CATHERINE S. GREENHILL. The complexity of counting graph
homomorphisms. RANDOM STRUCT. ALGORITHMS, 17(3-4):260–289, 2000.

20 László Egri, Andrei A. Krokhin, Benoît Larose, and Pascal Tesson. The complexity of the list
homomorphism problem for graphs. In Jean-Yves Marion and Thomas Schwentick, editors,
STACS 2010, volume 5 of LIPIcs, pages 335–346. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2010. doi:10.4230/LIPIcs.STACS.2010.2467.

21 László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from bounded-
treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf Nieder-
meier and Brigitte Vallée, editors, STACS 2018, volume 96 of LIPIcs, pages 27:1–27:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.27.

22 Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio mathem-
atica, 2:463–470, 1935.

23 Baris Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List homomorphisms by
deleting edges and vertices: tight complexity bounds for bounded-treewidth graphs. CoRR,
abs/2210.10677, 2022. doi:10.48550/arXiv.2210.10677.

https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://arxiv.org/abs/2306.01718
https://doi.org/10.1145/3519935.3520075
https://doi.org/10.1145/3564246.3585173
https://doi.org/10.1109/ACC.2013.6580798
https://doi.org/10.1145/3470858
https://doi.org/10.1007/s00453-016-0139-6
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1145/3148227
https://doi.org/10.1137/S0097539702407345
https://doi.org/10.4230/LIPIcs.STACS.2010.2467
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.48550/arXiv.2210.10677

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:19

24 M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit
ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17(1):228–249, December 1923. doi:
10.1007/bf01504345.

25 Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp
Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating
sets in bounded-treewidth graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, SODA
2023, pages 3664–3683. SIAM, 2023. doi:10.1137/1.9781611977554.ch140.

26 Jacob Focke, Dániel Marx, and Paweł Rzążewski. Counting list homomorphisms from graphs
of bounded treewidth: tight complexity bounds. In Joseph (Seffi) Naor and Niv Buchbinder,
editors, SODA 2022, pages 431–458. SIAM, 2022. doi:10.1137/1.9781611977073.22.

27 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

28 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
families of product families. ACM Trans. Algorithms, 13(3):36:1–36:29, 2017. doi:10.1145/
3039243.

29 Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov.
The fine-grained complexity of graph homomorphism parameterized by clique-width. In
Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, ICALP 2022, volume
229 of LIPIcs, pages 66:1–66:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ICALP.2022.66.

30 Chris Godsil. Problems in algebraic combinatorics. Electr. J. Comb., 2, January 1995.
doi:10.37236/1224.

31 Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Pawel Rzazewski. Towards
tight bounds for the graph homomorphism problem parameterized by cutwidth via asymptotic
rank parameters. CoRR, abs/2312.03859, 2023. doi:10.48550/arXiv.2312.03859.

32 Carla Groenland, Isja Mannens, Jesper Nederlof, and Krisztina Szilágyi. Tight bounds for
counting colorings and connected edge sets parameterized by cutwidth. In Petra Berenbrink
and Benjamin Monmege, editors, STACS 2022, volume 219 of LIPIcs, pages 36:1–36:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.36.

33 Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Mathematics, 109(1-3):117–126,
1992. doi:10.1016/0012-365X(92)90282-K.

34 Pavol Hell and Jaroslav Nešetřil. On the complexity of H -coloring. J. Comb. Theory, Ser. B,
48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

35 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph
coloring problems. Discret. Appl. Math., 327:33–46, 2023. doi:10.1016/j.dam.2022.11.011.

36 Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph
decompositions via matrix rank. Theor. Comput. Sci., 795:520–539, 2019. doi:10.1016/j.
tcs.2019.08.006.

37 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters,
tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90–117, 2019.
doi:10.1016/j.dam.2018.11.002.

38 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
Algorithmica, 81(9):3655–3691, 2019. doi:10.1007/s00453-019-00592-7.

39 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

40 Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math.,
34(3):1538–1558, 2020. doi:10.1137/19M1280326.

41 Benoit Larose. Families of strongly projective graphs. Discussiones Mathematicae Graph
Theory, 22:271–292, 2002.

42 Benoit Larose and Claude Tardif. Strongly rigid graphs and projectivity. Multiple-Valued
Logic, 7:339–361, 2001.

ICALP 2024

https://doi.org/10.1007/bf01504345
https://doi.org/10.1007/bf01504345
https://doi.org/10.1137/1.9781611977554.ch140
https://doi.org/10.1137/1.9781611977073.22
https://doi.org/10.1145/2886094
https://doi.org/10.1145/3039243
https://doi.org/10.1145/3039243
https://doi.org/10.4230/LIPIcs.ICALP.2022.66
https://doi.org/10.37236/1224
https://doi.org/10.48550/arXiv.2312.03859
https://doi.org/10.4230/LIPIcs.STACS.2022.36
https://doi.org/10.1016/0012-365X(92)90282-K
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1016/j.dam.2022.11.011
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.dam.2018.11.002
https://doi.org/10.1007/s00453-019-00592-7
https://doi.org/10.1145/3390887
https://doi.org/10.1137/19M1280326

77:20 Towards Tight Bounds for Graph Homomorphism Parameterized by Cutwidth

43 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/
index.php/beatcs/article/view/92.

44 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

45 Tomasz Łuczak and Jaroslav Nešetřil. Note on projective graphs. Journal of Graph Theory,
47(2):81–86, 2004.

46 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity
results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, ICALP 2021, volume 198 of LIPIcs, pages
95:1–95:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ICALP.2021.95.

47 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-Factor Is FPT Parameterized by
Treewidth and List Size (But Counting Is Hard). In Holger Dell and Jesper Nederlof, editors,
IPEC 2022, volume 249 of Leibniz International Proceedings in Informatics (LIPIcs), pages
22:1–22:23, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.IPEC.2022.22.

48 Burkhard Monien. The complexity of determining paths of length k. In Manfred Nagl and
Jürgen Perl, editors, WG ’83, pages 241–251. Universitätsverlag Rudolf Trauner, Linz, 1983.

49 Jesper Nederlof. Algorithms for np-hard problems via rank-related parameters of matrices.
In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels,
and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 145–164. Springer, 2020.
doi:10.1007/978-3-030-42071-0_11.

50 Jesper Nederlof. Bipartite TSP in O(1.9999n) time, assuming quadratic time matrix multiplic-
ation. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, STOC 2020, pages 40–53. ACM, 2020. doi:10.1145/3357713.3384264.

51 Jaroslav Nešetřil and Aleš Pultr. A Dushnik - Miller type dimension of graphs and its
complexity. In Marek Karpiński, editor, Fundamentals of Computation Theory, pages 482–493,
Berlin, Heidelberg, 1977. Springer Berlin Heidelberg.

52 Jaroslav Nešetřil and Vojtéch Rödl. A simple proof of the Galvin-Ramsey property of the
class of all finite graphs and a dimension of a graph. Discrete Mathematics, 23(1):49–55, 1978.
doi:10.1016/0012-365X(78)90186-3.

53 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, ESA 2020, volume 173 of LIPIcs, pages 74:1–74:24.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.74.

54 Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of the graph homomorphism
problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487–508, 2021. doi:10.1137/
20M1320146.

55 D.D. Olesky, Michael Tsatsomeros, and P. van den Driessche. Qualitative controllability and
uncontrollability by a single entry. Linear Algebra and its Applications, 187:183–194, 1993.
doi:10.1016/0024-3795(93)90134-A.

56 Marta Piecyk and Paweł Rzążewski. Fine-grained complexity of the list homomorphism
problem: Feedback vertex set and cutwidth. In Markus Bläser and Benjamin Monmege,
editors, STACS 2021, volume 187 of LIPIcs, pages 56:1–56:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.56.

57 Michał Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In MFCS 2011, volume 6907, pages 520–531. Springer, 2011.

http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1145/3170442
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://doi.org/10.1007/978-3-030-42071-0_11
https://doi.org/10.1145/3357713.3384264
https://doi.org/10.1016/0012-365X(78)90186-3
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.1137/20M1320146
https://doi.org/10.1137/20M1320146
https://doi.org/10.1016/0024-3795(93)90134-A
https://doi.org/10.4230/LIPIcs.STACS.2021.56

C. Groenland, I. Mannens, J. Nederlof, M. Piecyk, and P. Rzążewski 77:21

58 Marc Roth and Philip Wellnitz. Counting and finding homomorphisms is universal for
parameterized complexity theory. In Shuchi Chawla, editor, SODA 2020, pages 2161–2180.
SIAM, 2020. doi:10.1137/1.9781611975994.133.

59 Maguy Trefois and Jean-Charles Delvenne. Zero forcing number, constrained matchings and
strong structural controllability. Linear Algebra and its Applications, 484:199–218, 2015.

60 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter
Sanders, editors, ESA 2009, volume 5757 of Lecture Notes in Computer Science, pages 566–577.
Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

ICALP 2024

https://doi.org/10.1137/1.9781611975994.133
https://doi.org/10.1007/978-3-642-04128-0_51

	1 Introduction
	2 Preliminaries
	3 Solving Hom with representative sets
	3.1 Definition of Representative Set
	3.2 Connection to Mimsup
	3.3 Exploiting Representative Sets in Dynamic Programming

	4 Computing representative sets via half-induced matchings
	5 Comparing him and mimsup
	6 Conclusion

