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ABSTRACT
Immersive reality technologies, such as Virtual and Augmented
Reality, have ushered a new era of user-centric systems, in which
every aspect of the coding–delivery–rendering chain is tailored to
the interaction of the users. Understanding the actual interactivity
and behaviour of the users is still an open challenge and a key
step to enabling such a user-centric system. Our main goal is to
extend the applicability of existing behavioural methodologies for
studying user navigation in the case of 6 Degree-of-Freedom (DoF).
Specifically, we first compare the navigation in 6-DoF with its 3-
DoF counterpart highlighting the main differences and novelties.
Then, we define new metrics aimed at better modelling behavioural
similarities between users in a 6-DoF system. We validate and test
our solutions on real navigation paths of users interacting with
dynamic volumetric media in 6-DoF Virtual Reality conditions.
Our results show that metrics that consider both user position
and viewing direction better perform in detecting user similarity
while navigating in a 6-DoF system. Having easy-to-use but robust
metrics that underpin multiple tools and answer the question “how
do we detect if two users look at the same content?" open the gate
to new solutions for a user-centric system.

CCS CONCEPTS
•Human-centered computing→User studies; Virtual reality;
• Information systems → Multimedia streaming.

KEYWORDS
Point Cloud, User Behavioural Analysis, Data Clustering, 6-DoF,
Immersive Reality, Virtual Reality, Trajectory analysis
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1 INTRODUCTION
Immersive reality technology has revolutionised how users engage
and interact with media content, going beyond the passive para-
digm of traditional video technology, and offering more degrees of
presence and interaction in a virtual environment. Depending on
how much a user can move in the 3D space, immersive environ-
ments can be classified as 3- or 6-Degrees-of-Freedom (DoF). In a
3-DoF scenario, the de-facto multimedia content is the omnidirec-
tional or spherical video, representing an entire 360◦ environment
on a virtual sphere. The viewer is fully immersed in a virtual space
where they can navigate and interact thanks to an immersive device
– typically a head-mounted display (HMD), which enables to view
only a portion of the environment around themself, named viewport.
The media is displayed from an inward position, and the viewer can
interact with the content only by changing the viewing direction
(i.e., by looking up/down or left/right or tilting the head side to side).
In a 6-DoF system, the user can also change viewing perspective by
moving (e.g., walking, jumping) inside the virtual space. The scene
is therefore populated by volumetric objects (i.e., meshes or point
clouds) which are observed from an outward position. These extra
degrees of freedom bring the virtual experience even closer to real-
ity: a higher level of interactivity makes the user more immersed
and present within the virtual environment [4].

Despite their differences, the common denominator of both in-
teractive systems is the viewer as an active decision-maker of the
displayed content. This active role defines the user-centric era, in
which content processing, streaming, and rendering need to be tai-
lored to the viewer interaction to remain bandwidth-tolerant whilst
meeting quality and latency criteria [28, 45]. Media codecs need
to be optimised such that the quality experienced by the user is
maximised [34, 46]. Similarly, streaming should be tailored to users’
interactivity to ensure high-quality content and smooth navigation,
while remaining bandwidth-tolerant [13, 22, 39]. From here, the
importance to understand, analyse and predict users’ movements
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(i.e., user behaviour) within an immersive scenario [12, 26, 29, 43].
A better understanding of how the population behave when expe-
riencing immersive reality has an impact that goes beyond system
applications, leading to user similarities, i.e., user clustering/profiling
[23], which is essential for several purposes: from secure authenti-
cation [42] to medical application [17].

Thanks to the large availability of public datasets [14, 20, 25],
user navigation in 3-DoF immersive systems has been deeply inves-
tigated [30, 35], showing the importance of analysing and detect-
ing key behavioural aspects in interactive (user-centric) systems.
However, the 6-DoF counterpart has been scarcely considered in
the literature [1, 38, 47]. Due to the change in the viewing para-
digm (from inward to outward) and to more level of interaction
in 6-DoF, current studies in 3-DoF cannot be directly applied to
6-DoF domains [33]. Filling this gap is the main goal of this paper
by providing new metrics for user analysis in 6-DoF.

In this work, we focus on extending the applicability of clustering
methods to investigate users similarity (i.e., users sharing common
behaviours while interacting with the content) to 6-DoF environ-
ments. Specifically, clustering techniques usually rely on pairwise
similarity metrics, with similarity being in this case in terms of
6-DoF interaction. To the best of our knowledge, such metric has
not been proposed yet in 6-DoF context. Starting from the state-of-
the-art clustering algorithm developed in 3-DoF [27], and the main
limitations of the tool when extended to 6-DoF described in [33], we
investigate new methodologies for better modelling user similari-
ties and overcoming those limitations. First, we recall the definition
of user navigation trajectory in 6-DoF. Then, we present the exact
user similarity metric, which we will be considering as our ground
truth. Given its computational complexity, after an exhaustive study,
we propose a simpler and yet reliable proxy for it. More concretely,
we define and compare 8 similarity metrics which are based on
different distance features (i.e., user positions in the 3D space, user
viewing directions) and distance measurements (i.e., Euclidean, Geo-
desic distance). We validate and test our proposed similarity metrics
on a publicly available dataset of navigation trajectories collected in
a 6-DoF Virtual Reality (VR) scenario [39]. Results have shown that
similarity metrics based on more distance features are promising
solutions to correctly detect users with similar behaviour while
experiencing volumetric content.

Our work contributes to the overall open problem of behavioural
analysis in a 6-DoF system with the following main contributions:

• presenting the general problem of detecting behavioural sim-
ilarities in a 6-DoF system, and introducing novel similarity
metrics able to model the user behaviour in this scenario.
These are expressed as a function of various distance fea-
tures andmeasurements and we divide them into two groups:
single- and multi-features metrics;

• an exhaustive analysis of the different proposed metrics
aimed at capturing users’ trajectory similarity (in terms of
distance on the plane or from the object) and the ability to
approximate the ground truth. This analysis based on 6-DoF
VR trajectories reveals that the position on the floor alone
is not sufficient to characterise the user behaviour and that
the viewing direction cannot be neglected.

The remainder of this article is organised as follows: related work
on user behavioural analysis in both 3-DoF and 6-DoF systems are
reported in Section 2. The main challenges of detecting behavioural
similarities in a 6-DoF system and the importance of having a
tool that approximates such similarities are described in Section 3.
Our proposed similarity metrics are described in Section 4; while
Section 5 and Section 6 present experimental setup and validation
of our proposed metrics on real navigation trajectories collected
in a 6-DoF VR setting, respectively. Further discussion and final
conclusion are summarised in Section 7.

2 RELATEDWORK
We now describe how user behaviour has been analysed in 3-
DoF systems, showing also the benefit of this type of analysis in
user-centric systems. Then, we show which methods have been
used for the analysis in 6-DoF scenarios, highlighting the still out-
standing open challenges.

2.1 User Behaviour in 3-DoF environment
The user navigation within a 3-DoF environment has been intensely
analysed from many perspectives. Many studies have focused on
psychological investigations of user engagement and presence cor-
related to movements within the spherical content. In [15], a study
from a large-scale experiment (511 users and 80 omnidirectional
videos) showed a positive correlation between lower interactivity
level and higher engagement level (strong focus on few points of
interest). Similarly, a correlation between the perceived sense of
presence and the interactivity level was detected in [2], with more
random exploratory interactions for less immersed (and hence less
engaged) users. However, no objective metric to properly quantify
and characterise user behaviour has been presented in these works.

To further understand how people observe and explore 360° con-
tents, many public datasets of navigation trajectories have been
made available. Those datasets usually come with statistical anal-
ysis aimed at capturing average users behaviour, as a function of
maximum and average angular speeds under various video segment
lengths [5], exploration time [35] or eye fixation distribution [7]. A
deeper analysis was presented in [20] where the dataset has been
analysed through a clustering algorithm presented in [27], specifi-
cally built to have in the same cluster users who similarly explore
360° content. However, behavioural analysis based on such cluster-
ing tool mainly provides a general idea of similarity among viewers
without offering however a quantitative metric. To overcome such
limitation, authors in [30], showed the benefit of studying spatio-
temporal trajectories by information theory metrics, and thus the
possibility of identifying and quantifying behavioural aspects. Key
outcomes from this quantitative analysis were the study of simi-
larities between users when watching the same content, but also
the similarity of a given user when watching diverse content. The
importance of these behavioural insights has been then exploited in
different VR applications. For instance, authors in [21] proposed a
scalable prediction algorithm for user navigation, which considered
previous navigation patterns while in [19] a hybrid approach has
been presented based on both dominant user behaviour (detected
via a clustering approach) and the video content. Recently, authors
in [11] showed that behavioural uncertainty could lead to different
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navigation in the future even if previously presented similarity;
thus, a deep variational learning framework to predict multiple
plausible head trajectories was presented. Moreover, in order to ex-
tend publicly available navigation datasets, realistic synthetic head
rotation data were also generated using a deep learning algorithm
given similar data distribution over time [37]. Finally, the analysis
and understanding of user navigation in a VR environment have
shown promising results also in determining the mental health
issues of subjects (e.g., anxiety, autism spectrum disorder, eating
disorders, depression) and their treatment [9, 10, 18].

2.2 User Behaviour in 6-DoF environment
Extending such behavioural analysis to a 6-DoF environment is not
straightforward, due to the change in the viewing paradigm (from
inward to outward) and the addition of translation in 3D space. In
the past, user navigation in 6-DoF scenarios was studied in the con-
text of locomotion and display technology for CAVE environments
[24, 41]. A Cave Automatic Virtual Environment (CAVE) system
is an immersive room on which walls and floor are projected the
video content and viewers are free to move inside [6]. For instance,
the study in [41] focused on task performance analysis in terms
of completion time and correct actions. Authors in [24] compared
instead the effect of two different immersive platforms such as
CAVE and HMD on the user navigation. More traditional metrics,
such as angular distance and linear velocity, alongside completion
time, were also used to compare different navigation controllers
(i.e., joystick-based vs head-controlled navigation) in 6-DoF [3]. In
detail, the authors showed the superiority of head-controlled tech-
niques, allowing more sense of presence and better control with
less discomfort in the navigation. While the tools mentioned above
are highly informative to summarise the interaction of users within
a 6-DoF environment, they usually fail to provide other key in-
sights: which users navigate similarly, and which are the dominant
interaction behaviour among users.

Recently, the focus has been put on subjective quality assess-
ment based on different coding techniques of volumetric content,
both static [1] and dynamic [40]. These studies present a statistical
analysis of user movements in terms of mean angular velocity, the
ratio of frames viewed while in movement, most displayed areas
of the content showing an influence in the navigation due to the
perceived content quality, and point out a users’ preference to visu-
alise the volumetric object from a close and frontal perspective. A
behavioural analysis of user navigating in 6-DoF social VR movie
has been also presented in [32]. An investigation on how users
are affected by virtual characters and narrative elements of the
movie has been conducted through objective metrics, showing a
more static behaviour when an interactive task was requested, and
more exploratory movements during dialogues. Authors in [31]
present an exploratory behavioural analysis of users while display-
ing volumetric content within a 6-DoF environment focusing on
the understanding how the way of navigating is affected by the
content and its features, such as dynamics and quality, but also by
the intrinsic disposition of the single user. Finally, to encourage the
collection of navigation data in 6-DoF immersive experience, a new
tool was recently released in [44].

These preliminary studies are based on conventional metrics,
which consider only one user feature at a time, either position on

the floor or viewing direction but not together, suffering from the
major shortcomings highlighted before. In this paper, we aim to
overcome these limitations by proposing a general and efficient tool
for detecting similar viewers while experiencing 6-DoF content.

3 CHALLENGES
In this work, our main goal is to define a new pairwise metric able
to capture the (dis)similarity between two 6-DoF users (in terms of
displayed content). This metric needs to be reliable and yet simple
to compute. In the following, we first present our assumption of sim-
ilarity among users while navigating in a 6-DoF environment based
on [33]. Then, we show an exact user similarity metric highlighting
its limitations, and therefore the need to find a simpler proxy for it.
Finally, we emphasise the advantages of having a similarity metric
for behavioural analysis via a clique-based clustering approach
presented in [27], which identified users who are attending the
same portion of an omnidirectional content in a 3-DoF system. This
clustering technique relies on a pairwise similarity metric, and thus,
having a proper metric also for 6-DoF system would extend the
applicability of this state-of-the-art tool.

3.1 User Similarity in 6-DoF
Similarly to [33], we are interested in analysing user behaviour,
assuming that users interact similarly when they observe the same
volumetric content. The user behaviour can be identified by the
spatio-temporal sequences of their movements within the virtual
environment, namely navigation trajectories.

In a 3-DoF scenario, the trajectory of a generic user 𝑖 can be for-
mally denoted by the sequence of the user’s viewing direction over
time {𝑝𝑖1,𝑝

𝑖
2, .., 𝑝

𝑖
𝑛} where 𝑝𝑖𝑡 is the centre of the viewport projected

on the immersive content (i.e., spherical video) at timestamp 𝑡 . In
fact, the viewport centre alone is highly informative of the user
behaviour and can be used as a proxy of viewport overlap among
users [27]. In particular, the geodesic distance has been proved as
a reliable similarity metric such that a low value indicates high
similarity between 3-DoF users.

Differently in a 6-DoF setting, the more degrees of freedom are
given to the user, the more challenging becomes the system and
the description of user navigation within it. The viewport centre
alone is no more sufficient to characterise the user behaviour in a
6-DoF scenario since now the distance between the user and im-
mersive content can change over time due to the added degrees of
freedom. Figure 1 shows an example of two users navigating in a
6-DoF system. On the left side of the figure, there are navigation tra-
jectories of two users 𝑖 and 𝑗 projected on a 2-D domain (i.e., floor).
Each point 𝑥𝑡 represents the spatial coordinates (i.e., [x,y,z]) on
the floor of viewers while each associated vector symbolises the
viewing direction. In the right part of Figure 1, we have instead
a snapshot of a specific time instant 𝑡 . In more detail, the shaded
triangular areas represent the viewing frustum per user, which in-
dicates the region within the user viewport, and 𝑟𝑡 is the distance
between the user and the volumetric content. We have also depicted
the viewport centre 𝑝𝑡 projected on the displayed volumetric object.
Given the two users 𝑖 and 𝑗 at time 𝑡 , in the case of 𝑟 𝑖𝑡 ≫ 𝑟

𝑗
𝑡 , the

user 𝑗 (very close to the object) is visualising a very focused and
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Figure 1: Example of two 6-DoF trajectories projected in a 2D domain for user 𝑖 and 𝑗 . On the right side, a snapshot at time 𝑡 :
coloured triangles represent viewing frustum per user.

detailed part of it; conversely, user 𝑖 is pointing to the same area
but from a much further distance, thus the experienced content
is different with less defined details. Despite this difference, the
small distance 𝐷𝑡 (𝑖 , 𝑗) between viewport centres 𝑝𝑖𝑡 and 𝑝

𝑗
𝑡 might

suggest a high similarity between the users, which does not reflect
the reality in the case of 𝑟 𝑖𝑡 ≫ 𝑟

𝑗
𝑡 . Thus in this scenario, we cannot

rely on the viewport centre only to characterise the user behaviour.
The distance 𝑟 and the spatial coordinates on the virtual floor 𝑥
are also needed to formally define the navigation trajectory for
a generic 6-DoF user 𝑖 as {(𝑥𝑖1,𝑝

𝑖
1, 𝑟

𝑖
1), (𝑥

𝑖
2,𝑝

𝑖
2, 𝑟

𝑖
2), . . . , (𝑥

𝑖
𝑛 ,𝑝𝑖𝑛 , 𝑟 𝑖𝑛)}

[33]. This information is crucial to define a simple similarity metric
among users in this new setting.

3.2 Overlap Ratio as the ground-truth metric
Since we are interested in capturing viewers that are attending
similar volumetric content at the same time instance, following
the work presented in [33], the straightforward measure that could
show this behaviour is the overlap among viewports. Given two
users 𝑖 and 𝑗 shown in the right part of Figure 1, we denote their
displayed viewport as S𝑖

𝑡 and S 𝑗
𝑡 , respectively, defined as the set

of points of the volumetric content falling within their viewing
frustum. Then, we denote the overlap set by S𝑖

𝑡 ∩S 𝑗
𝑡 , the portion of

points displayed by both users. Equipped with the above notation,
we can now introduce a key metric for the analysis: the overlap
ratio 𝑂 (𝑖 , 𝑗). This is defined as the cardinality of the overlap set,
normalised by the cardinality of the set containing all points of
the volumetric content visualised by both users. More formally, the
overlap ratio in a specific time 𝑡 is:

𝑂𝑡 (𝑖 , 𝑗) =
|S𝑖

𝑡 ∩ S 𝑗
𝑡 |

|S𝑖
𝑡 ∪ S𝑖

𝑡 |
(1)

where S𝑖
𝑡 and S 𝑗

𝑡 are the displayed viewport of users 𝑖 and 𝑗 , re-
spectively. In particular, a high value of overlap ratio means high
similarity between users of the displayed content, and conversely.
Even if this metric is exact and a clear indicator of howmuch similar
users are with respect to their displayed content, its evaluation is
not trivial as it is intensely time-consuming. For instance, the over-
lap ratio between two users requires 0.8986 seconds per frame on
average on an Intel R machine with CPU E5-4620 at 2.10 GHz; the

operation needs to be computed for all the possible combinations
of users, leading to a large overhead which does not meet require-
ments for real-time and scalable applications. A new measure is
needed to perform real-time applications. In the rest of the paper,
we will use this metric as the ground truth of overlap among users
and investigate different weights as a proxy for viewport overlap.

3.3 Clustering as a tool for behavioural analysis
Being able to assess users similarities in an objective way might be
crucial for different applications such as behavioural analysis. As
shown in [27], a clique-based clustering algorithm is used to detect
users with similar behaviour. This requires a reliable graph to be
constructed in such a way that only the nodes that identify similar
users (i.e., who are displaying the same portion of the content)
are connected. Equipped with such a meaningful graph, the clique-
based clustering identifies optimal sub-graphs of all inter-connected
nodes, ensuring the identification of the largest cluster of users all
sharing a large viewport overlap. In more detail, given a set of users
who are experiencing the same content, we can represent their
movements in a time-window 𝑇 as a set of graphs {G𝑡 }𝑇𝑡=1. Each
unweighted and undirected graph G𝑡 = {V , E𝑡 ,A𝑡 } represents
behavioural similarities among users at time 𝑡 , where V and E𝑡
denote the node and edge sets of G𝑡 , respectively. Each node in V
corresponds to a user interacting with the content. Each edge in
E𝑡 connects neighbouring nodes defined by the binary adjacency
matrix A𝑡 . Assuming that users are connected if they are displaying
similar content, we can formally define the adjacency matrix A𝑡 as
follow:

A𝑡 (𝑖 , 𝑗) =
{
1, if 𝑔𝑡 (𝑖 , 𝑗) ≥ 𝐺𝑡ℎ

0, otherwise.
(2)

where𝑔𝑡 (𝑖 , 𝑗) is a similarity metric between user 𝑖 and 𝑗 and𝐺𝑡ℎ is a
thresholding value. On this final graph, the clique-based clustering
algorithm can be applied to identify a set of users all connected
(i.e., clique), and therefore with similar behaviour. In [27], this graph
construction is based on a pairwise similarity metric specifically
for the 3-DoF trajectories.
Identifying a generic and reliable metric 𝑔(𝑖 , 𝑗) that approximates

42



Extending 3-DoF metrics to model user behaviour similarity in 6-DoF immersive applications MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

Table 1: Definition of distance features and measurements.

Symbol Definition

𝑥 user position on the VR floor
𝑝 viewport center projected on the volumetric content
𝑟 relative distance between user and volumetric content
L(·, ·) difference of relative distance between two users
E(·, ·) Euclidean distance
G(·, ·) Geodesic distance

behavioural similarities among users who experience a 6-DoF con-
tent is a key step to enable user behavioural analysis via tools
proposed for 3-DoF scenario and the focus on the next section.

4 PROPOSED METRICS
In this section, we present eight similarity metrics and we provide
an exhaustive study to understand which one approximates at
the best the viewport overlap. Those metrics are expressed as a
function of various distance features and measurements considering
either users’ position on the floor (𝑥 ) or users’ viewing direction in
terms of the viewport centre projected on the volumetric content
(𝑝) or both. We divide the metrics into two groups: single-feature
and multi-feature metrics. For the sake of notation, we omit the
temporal parameter 𝑡 . Table 1 summarises the distance features
and measurements that we consider, while our proposed similarity
metrics are reported in Table 2.

4.1 Single-feature metrics to assess users
similarity

The first set of similarity metrics is based on one single distance
feature. We model the similarity functions via radial basis function
kernel. Specifically, we consider the Gaussian kernel [36] defined
as follows:

𝑘
(𝐷 )
𝛼 (𝑖 , 𝑗) = 𝑒−𝛼𝐷 (𝑖 ,𝑗 ) (3)

where 𝐷 (𝑖 , 𝑗) is the distance between two generic users 𝑖 and 𝑗 ,
while 𝛼 > 0 is a parameter to better regularise the distance. This
distance can be evaluated in multiple ways and we consider the
distance features and measurements taken into account in [33].
Specifically, the first two similarity metrics𝑤1 and𝑤2 are based on
the location of users in the virtual space with respect to the virtual
object or other viewers. The former metric is based on the Euclidean
distance E(𝑥𝑖 ,𝑥 𝑗 ) between user 𝑖 and 𝑗 on the virtual floor. Instead,
𝑤2 considers the difference in terms of the relative distance of users
to the centroid of the displayed content, L = | |𝑟 𝑖 − 𝑟 𝑗 | |. Specifically,
we define them as follows:

𝑤1 = 𝑒−𝛼E(𝑥
𝑖 ,𝑥 𝑗 ) = 𝑘

(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ); (4)

𝑤2 = 𝑒−𝛼 | |𝑟
𝑖−𝑟 𝑗 | | = 𝑘

(L)
𝛼 (𝑟 𝑖 , 𝑟 𝑗 ). (5)

The metrics𝑤3 and𝑤4 are instead based on the distance between
the two viewport centres 𝑝 of user 𝑖 and user 𝑗 projected on the
volumetric content. To take into account the heterogeneous shape
of the volumetric content, this distance in𝑤3 is measured in terms
of the Geodesic distance G(𝑝𝑖 ,𝑝 𝑗 ) while in 𝑤4 in terms of the

Euclidean distance E(𝑝𝑖 , 𝑝 𝑗 ). More formally, they are defined as:

𝑤3 = 𝑘
(G)
𝛼 (𝑝𝑖 ,𝑝 𝑗 ) = 𝑒−𝛼G(𝑝𝑖 ,𝑝 𝑗 ) (6)

𝑤4 = 𝑘
(E)
𝛼 (𝑝𝑖 ,𝑝 𝑗 ) = 𝑒−𝛼E(𝑝

𝑖 ,𝑝 𝑗 ) . (7)

4.2 Multi-feature metrics to assess users
similarity

As emerged in [33], both user viewing direction and position on the
virtual floor are relevant to detect similar behaviour among users.
Thus, the last set of proposed similarity metrics considers a combi-
nation of distance features. In detail, 𝑤5 and 𝑤6 are based on the
previous similarity metrics𝑤1 and𝑤2, but include also the distance
of their viewport centres 𝑝 projected on the volumetric content
in terms of Geodesic distance G(𝑝𝑖 ,𝑝 𝑗 ) and Euclidean distance
E(𝑝𝑖 ,𝑝 𝑗 ), respectively. More formally, we define𝑤5 as:

𝑤5 = 𝑘
(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) · 𝑘 (L)

𝛽
(𝑟 𝑖 , 𝑟 𝑗 ) · 𝑘 (G)

𝛾 (𝑝𝑖 ,𝑝 𝑗 )

= 𝑒−𝛼E(𝑥
𝑖 ,𝑥 𝑗 ) · 𝑒−𝛽 | |𝑟

𝑖−𝑟 𝑗 | | · 𝑒−𝛾G(𝑝𝑖 ,𝑝 𝑗 ) ;
(8)

while the second weight is equal to:

𝑤6 = 𝑘
(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) · 𝑘 (L)

𝛽
(𝑟 𝑖 , 𝑟 𝑗 ) · 𝑘 (E)𝛾 (𝑝𝑖 , 𝑝 𝑗 )

= 𝑒−𝛼E(𝑥
𝑖 ,𝑥 𝑗 ) · 𝑒−𝛽 | |𝑟

𝑖−𝑟 𝑗 | | · 𝑒−𝛾E(𝑝
𝑖 ,𝑝 𝑗 ) .

(9)

For the sake of clarity, 𝛽 and 𝛾 are regulators such as 𝛼 .
The preliminary analysis presented in [33] has also highlighted a
correlation between the viewport overlap of two users and their
relative distance from the volumetric content. The closer users are
to the volumetric content, the smaller and more detailed is the
portion of the displayed content; the farther they are, the bigger
but with fewer details becomes the displayed portion. Thus, in the
first case, the high overlap between displayed areas of two different
users is more difficult. To take into consideration this behaviour, we
model the relative distance via a hyperbolic tangent kernel. Given
the relative distance 𝑟𝑖 between the user 𝑖 and volumetric content,
we evaluate it as follows:

𝜂 (𝑟𝑖 ) = tanh (𝑟𝑖 ) . (10)

As previously, metrics𝑤7 and𝑤8 are based on both user distance in
the virtual floor E(𝑥𝑖 ,𝑥 𝑗 ), and on the volumetric content in terms
of Geodesic distance G(𝑝𝑖 , 𝑝 𝑗 ) and Euclidean distance E(𝑝𝑖 ,𝑝 𝑗 ),
respectively. More formally, we define𝑤7 as follows:

𝑤7 = 𝑘
(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) · 𝛽

[
𝜂 (𝑟 𝑖 ) + 𝜂 (𝑟 𝑗 )

]
· 𝑘 (G)

𝛾 (𝑝𝑖 , 𝑝 𝑗 )

= 𝑒−𝛼E(𝑥
𝑖 ,𝑥 𝑗 ) · 𝛽

[
tanh (𝑟𝑖 ) + tanh

(
𝑟 𝑗
) ]

· 𝑒−𝛾G(𝑝𝑖 ,𝑝 𝑗 ) ;
(11)

while𝑤8 is:

𝑤8 = 𝑘
(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) · 𝛽

[
𝜂 (𝑟 𝑖 ) + 𝜂 (𝑟 𝑗 )

]
· 𝑘 (E)𝛾 (𝑝𝑖 , 𝑝 𝑗 )

= 𝑒−𝛼E(𝑥
𝑖 ,𝑥 𝑗 ) · 𝛽

[
tanh (𝑟𝑖 ) + tanh

(
𝑟 𝑗
) ]

· 𝑒−𝛾E(𝑝
𝑖 ,𝑝 𝑗 ) .

(12)

5 EXPERIMENTAL SETUP
We now validate the above metrics using a point cloud dataset. We
now describe the navigation dataset and how we evaluate the per-
formance of our similarity metrics (Section 5.1 and 5.2, respectively).
Then, we run an ablation study to evaluate for each similarity metric
the best-performing set of regulators.
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Table 2: Similarity metrics: definitions, included distance features and measurements, regulator and threshold values.

Symbol Definition Distance Feature and Metric Regulator values 𝑆𝑡ℎ

𝑤1 𝑘
(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) E(𝑥𝑖 ,𝑥 𝑗 ) 𝛼 = 1 0.64

𝑤2 𝑘
(L)
𝛼 (𝑟 𝑖 , 𝑟 𝑗 ) L(𝑟 𝑖 , 𝑟 𝑗 ) 𝛼 = 1 0.80

𝑤3 𝑘
(G)
𝛼 (𝑝𝑖 , 𝑝 𝑗 ) G(𝑝𝑖 , 𝑝 𝑗 ) 𝛼 = 1 0.63

𝑤4 𝑘
(E)
𝛼 (𝑝𝑖 ,𝑝 𝑗 ) E(𝑝𝑖 , 𝑝 𝑗 ) 𝛼 = 1 0.84

𝑤5 𝑘
(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) · 𝑘 (L)

𝛽
(𝑟 𝑖 , 𝑟 𝑗 ) · 𝑘 (G)

𝛾 (𝑝𝑖 ,𝑝 𝑗 ) E(𝑥𝑖 ,𝑥 𝑗 ), L(𝑟 𝑖 , 𝑟 𝑗 ), G(𝑝𝑖 , 𝑝 𝑗 ) 𝛼 = 0.1; 𝛽 = 0.5; 𝛾 = 1 0.54

𝑤6 𝑘
(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) · 𝑘 (L)

𝛽
(𝑟 𝑖 , 𝑟 𝑗 ) · 𝑘 (E)𝛾 (𝑝𝑖 ,𝑝 𝑗 ) E(𝑥𝑖 ,𝑥 𝑗 ), L(𝑟 𝑖 , 𝑟 𝑗 ), E(𝑝𝑖 , 𝑝 𝑗 ) 𝛼 = 0.1; 𝛽 = 0.125; 𝛾 = 0.2 0.87

𝑤7 𝑘
(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) · 𝛽 [𝜂 (𝑟𝑖 ) + 𝜂 (𝑟 𝑗 )] · 𝑘 (G)

𝛾 (𝑝𝑖 , 𝑝 𝑗 ) E(𝑥𝑖 ,𝑥 𝑗 ), 𝑟 𝑖 ,𝑟 𝑗 , G(𝑝𝑖 , 𝑝 𝑗 ) 𝛼 = 0.25; 𝛽 = 0.5; 𝛾 = 0.5 0.60
𝑤8 𝑘

(E)
𝛼 (𝑥𝑖 ,𝑥 𝑗 ) · 𝛽 [𝜂 (𝑟𝑖 ) + 𝜂 (𝑟 𝑗 )] · 𝑘 (E)𝛾 (𝑝𝑖 ,𝑝 𝑗 ) E(𝑥𝑖 ,𝑥 𝑗 ), 𝑟 𝑖 , 𝑟 𝑗 , E(𝑝𝑖 ,𝑝 𝑗 ) 𝛼 = 0.5; 𝛽 = 0.5; 𝛾 = 0.5 0.62

(a) Long Dress
(PC 1)

(b) Loot (PC 2) (c) Red and Black
(PC 3)

(d) Soldier (PC 4)

Figure 2: Human Body Point Clouds [16] content used in the
collection of a public available dataset presented in [39].

5.1 Dataset and Methodology
Dataset. Existing datasets with user navigation collected while
displaying volumetric objects in a 6-DoF environment are still very
limited. In the following, we use the open dataset presented in [39].
This is comprised of navigation trajectories of 26 users participat-
ing in a visual quality assessment study in VR. For the study, four
dynamic point cloud sequences were employed [16], namely Long
dress (PC1), Loot (PC2), Red and black (PC3), Soldier (PC4) (Figure 2).
Each sequence was distorted at four different bit rate points with
two compression algorithms: the anchor used for the MPEG call
for proposals, and the upcoming MPEG standard V-PCC. Hidden
references were additionally employed in the test, for a total of 36
stimuli. Similarly to what is shown in Figure 1, a single object of
interest was placed in the VR scene, and users were instructed to
focus on the volumetric content for the duration of the session and
rate its visual quality. Therefore, the navigation data adheres to the
assumptions listed in Section 3.
Graph Construction. To implement the graph-based clustering
proposed in [27] based on our proposed similarity metrics, we need
to construct a binary graph following Equation (2), as described
in Section 3.3. To be noted, our proposed similarity metrics are
based on distance measurements. As shown in [27], the correlation
between overlap and distance is inversely proportional. This means
that high values of overlap (and thus, high similarity) correspond
to low distance. Therefore, the condition to construct the adjacency

metric A𝑡 based on our proposed similarity metrics becomes the fol-
lowing:𝑤 (𝑖 , 𝑗) ≤ 𝑆𝑡ℎ where𝑤 (𝑖 , 𝑗) is one of the similarity metrics
proposed in Section 4 and 𝑆𝑡ℎ a threshold value which identifies
similar users and thus, neighbours on the graph. In short, users
with a similarity metric below a threshold value 𝑆𝑡ℎ are neighbours
in the graph. Hence, the first step now is to identify 𝑆𝑡ℎ . Per each
proposed similarity metric, we empirically evaluate the Receiver
Operating Characteristic (ROC) curves based on the navigation
trajectories of the entire dataset above described and select the best
value of threshold as originally done in [27]. Specifically, we set
the thresholding values such that a good trade-off between True
Positive Rate (TPR) and False Positive Rate (FPR) is met. As ground
truth for the ROC, we assumed that two users are attending the
same portion of the content, and thus are classified as similar, if
their viewports overlap by at least 75% of their total viewed area.
The predicted event is instead evaluated using the eight metrics
presented in the previous section, and the corresponding threshold
values are selected in order to have TPR equal to 0.75. For the sake
of clarity, the ground-truth value of viewport overlap has been set
equal to 75% because ensures per each similarity metric a low prob-
ability to have a wrong classification (i.e., FPR below 0.4) without
compromising the probability of correctly classifying the similarity
event (i.e., TPR) which remains above 0.75. In the last column of
Table 2, we provide the selected 𝑆𝑡ℎ per each similarity metric that
will be used in the following.

5.2 Performance Evaluation Setup
To validate our proposed similarity metrics, we consider three per-
formance metrics: averaged overlap ratio per cluster, relevant clus-
tered population, and precision. The first two are more specific to our
navigation trajectory in a VR system, while the latter is a popular
index used to evaluate clustering algorithm performance.
Overlap ratio per cluster: as defined in Section 3.2, the overlap
ratio computes the portion in common of displayed content be-
tween two users. Therefore, to compare the performance of our
detected clusters with the different similarity metrics, we average
the overlap ratio among all users who are put in the same group.
More formally, given a detected cluster 𝐶𝑘 is defined as follows:

𝑂𝑘 =
1
𝑛𝑘

∑︁
𝑖 ,𝑗∈𝐶𝑘
𝑖≠𝑗

𝑂 (𝑖 , 𝑗) (13)
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Table 3: Parameter selections and their performance for multi-feature metrics (𝑤5 -𝑤8).

𝑤5 𝑤6 𝑤7 𝑤8

se
t1

[𝛼 , 𝛽 ,𝛾] [0.12, 0.125, 0.125] [0.12, 1, 0.25] [0.125, 0.5, 0.25] [0.25, 0.5, 0.2]
Overlap Ratio 0.63 0.64 0.66 0.69

Relevant Population 0.82 0.78 0.69 0.62
Precision 0.45 0.40 0.47 0.48

se
t2

[𝛼 , 𝛽 ,𝛾] [1, 0.05, 0.05] [0.5, 0.05, 0.05] [2, 0.5, 0.1] [2, 0.5, 0.05]
Overlap Ratio 0.58 0.59 0.60 0.63

Relevant Population 0.91 0.89 0.87 0.84
Precision 0.32 0.32 0.36 0.33

se
t3

[𝛼 , 𝛽 ,𝛾] [0.1, 0.5, 1] [0.1, 0.125, 0.2] [0.25, 0.5, 0.5] [0.5, 0.5, 0.5]
Overlap Ratio 0.63 0.63 0.65 0.66

Relevant Population 0.83 0.80 0.77 0.74
Precision 0.45 0.44 0.49 0.48

(a) Overlap Ratio (b) Relevant population (c) Precision

Figure 3: Example of parameter selection for𝑤7 with 𝛽 = 0.5. Values set 1 selected based on max overlap, set 2 max clustered
users, set 3 based on precision.

where 𝑖 and 𝑗 are two generic users,𝑛𝑘 is the cardinality of elements
bellowing to cluster𝐶𝑘 and𝑂 (𝑖 , 𝑗) the overlap ratio as in Equation 1.
Relevant clustered population: the more users are clustered
together with high viewport overlap, the more meaningful are our
clusters. Thus, we consider as relevant clustered population the sum
of users that have been put in clusters with more than 2 elements.
Precision: in a classification task, this index evaluates the portion
of elements that are classified correctly and has values between 0
and 1 [8]. More formally:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(14)

where True Positive (TP) (False Positive (FP)) is the number of view-
ers classified correctly (incorrectly) together in a cluster. In our case,
two users are identified positively if they are in the same cluster
and their viewport overlap is actually over the desired threshold.

5.3 Ablation Study
We finally present an ablation study to tune the best set of regulator
parameters that maximise the performance of each similarity metric.
Equipped with the threshold values given in Table 2, we run a frame-
based clustering to select the best regulators 𝛼 , 𝛽 and 𝜎 . We test
their performance in terms of the metrics above described in the
following range of values [0, 0.05, 0.1, 0.125, 0.2, 0.25, 0.5, 1, 2] based
on navigation trajectories collected in the entire dataset. Finally,
we average over time and across content the performance of each

cluster obtained by all the similarity metrics.
Single-feature metrics
For single-feature metrics (𝑤1−𝑤4), we notice a very small variance
in terms of performance. Thus, we selected 𝛼 = 1 for this set.
Multi-feature metrics
More challenging is instead the selection parameters for multi-
feature metrics (𝑤5 −𝑤8). Each similarity metric depends on three
parameters: 𝛼 , 𝛽 and 𝛾 . To overcome this, we first select three
sets of parameters taking into account only navigation trajectories
for reference content: one group of parameters (set 1) based on
the maximum overlap ratio, the second (set 2) on the maximum
relevant clustered population and the last group (set 3) as the one
reaching the highest precision. As an example, Figure 3 shows
the selection of these three sets of parameters for the metric 𝑤7.
Then, we test these on all the available trajectories included in
the analysed dataset to finally select the best set of parameters.
Table 3 provides all the performance of the multi-feature similarity
metrics obtained by the three selected sets of parameters. Since
there is no particular configuration that outperforms in terms of
overlap ratio, relevant population and precision, we decided to
select set 3. This configuration, besides ensuring the highest value
of precision, also guarantees acceptable values of overlap ratio and
relevant population for all the similarity metrics. For example for
𝑤7, selecting values of set 3 means that users are correctly clustered
in almost the 50% of the time (precision equal to 0.49); at the same
time the 77% of the population is put in clusters with more than

45



MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Rossi, et al.

(a) Ground-truth (𝑂𝑡ℎ = 75%) (b) 𝑤1 (single feature metric) (c) 𝑤2 (single feature metric)

(d) 𝑤3 (single feature metric) (e) 𝑤4 (single feature metric) (f) 𝑤5 (multi-feature metric)

(g) 𝑤6 (multi-feature metric) (h) 𝑤7 (multi-feature metric) (i) 𝑤8 (multi-feature metric)

Figure 4: Cluster results in frame 50 of sequence PC1 (Longdress). Each dot represents a user on the virtual floor while the blue
star stands for the volumetric content. In the legend in brackets, per each cluster with more than 2 users are reported: the
number of users in the same cluster, averaged pairwise viewport overlap and corresponding variance within the cluster.

the 2 users (relevant population equal to 0.77) and on average the
overlap of viewport between users in the same cluster is consistent
(overlap ration equal to 65%). These values are similar to the highest
value for𝑤7 of the relevant population and overlap ratio which are
0.87 and 0.66, respectively. Table 2 summarises the values used in
the following.

6 RESULTS
Equipped with the similarity metrics, the corresponding values of
regulators and thresholds in Table 2, we now conduct our validation
study, focusing on analysing navigation trajectories experienced
with non-distorted content.

6.1 Frame-Based Analysis
As first step, we implement a frame-based analysis (i.e., frame-based
clustering) to visually compare the detected clusters by the different
similarity metrics. Figure 4 shows the clusters detected using the
ground-truth metric𝑂 to construct the graph (Figure 4 (a)) with the
ones given based on each proposed similarity metric (Figure 4 (b-i)),
for frame 50 of sequence PC1. In particular, each user is represented
by a point on the VR floor which is coloured based on the assigned
ID cluster, whereas the volumetric content is symbolised by a blue
star. Per each relevant cluster (i.e., cluster with more than 2 users),
we provide in the legend the following results: the number of users
inside the cluster, the average and variance of the overlap ratio
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Table 4: Results in terms of averaged and standard deviation per each performance metric across the entire dataset.

Metrics 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8

PC
1 Overlap Ratio 0.68 ± 0.05 0.65 ± 0.04 0.66 ± 0.04 0.68 ± 0.07 0.70 ± 0.05 0.71 ± 0.05 0.70 ± 0.05 0.72 ± 0.06

Relevant Population 0.85 ± 0.04 0.94 ± 0.03 0.92 ± 0.05 0.84 ± 0.08 0.83 ± 0.06 0.83 ± 0.07 0.83 ± 0.06 0.83 ± 0.07
Precision 0.44 ± 0.06 0.35 ± 0.05 0.39 ± 0.07 0.30 ± 0.06 0.47 ± 0.07 0.49 ± 0.08 0.46 ± 0.07 0.44 ± 0.10

PC
2 Overlap Ratio 0.57 ± 0.08 0.53 ± 0.09 0.54 ± 0.12 0.54 ± 0.11 0.59 ± 0.08 0.58 ± 0.08 0.59 ± 0.12 0.60 ± 0.10

Relevant Population 0.80 ± 0.07 0.92 ± 0.06 0.83 ± 0.07 0.89 ± 0.06 0.80 ± 0.10 0.81 ± 0.07 0.72 ± 0.08 0.73 ± 0.06
Precision 0.45 ± 0.06 0.28 ± 0.08 0.31 ± 0.08 0.27 ± 0.08 0.47 ± 0.09 0.42 ± 0.08 0.54 ± 0.08 0.54 ± 0.12

PC
3 Overlap Ratio 0.65 ± 0.06 0.60 ± 0.07 0.64 ± 0.05 0.68 ± 0.06 0.65 ± 0.06 0.65 ± 0.06 0.68 ± 0.05 0.69 ± 0.05

Relevant Population 0.82 ± 0.07 0.93 ± 0.05 0.88 ± 0.06 0.82 ± 0.08 0.84 ± 0.06 0.81 ± 0.07 0.72 ± 0.07 0.70 ± 0.07
Precision 0.48 ± 0.11 0.36 ± 0.08 0.39 ± 0.07 0.39 ± 0.06 0.49 ± 0.11 0.49 ± 0.10 0.52 ± 0.08 0.55 ± 0.08

PC
4 Overlap Ratio 0.60 ± 0.04 0.52 ± 0.06 0.55 ± 0.03 0.59 ± 0.06 0.59 ± 0.04 0.58 ± 0.05 0.61 ± 0.04 0.66 ± 0.05

Relevant Population 0.82 ± 0.07 0.92 ± 0.05 0.90 ± 0.08 0.86 ± 0.08 0.83 ± 0.08 0.77 ± 0.07 0.80 ± 0.07 0.71 ± 0.08
Precision 0.35 ± 0.06 0.22 ± 0.04 0.31 ± 0.06 0.25 ± 0.07 0.38 ± 0.07 0.38 ± 0.09 0.42 ± 0.06 0.42 ± 0.07

A
ll
PC

s Overlap Ratio 0.62 ± 0.06 0.57 ± 0.06 0.60 ± 0.06 0.62 ± 0.07 0.63 ± 0.06 0.63 ± 0.06 0.65 ± 0.06 0.66 ± 0.06
Relevant Population 0.82 ± 0.06 0.93 ± 0.05 0.88 ± 0.07 0.85 ± 0.08 0.83 ± 0.07 0.80 ± 0.07 0.77 ± 0.07 0.74 ± 0.07

Precision 0.43 ± 0.07 0.30 ± 0.06 0.35 ± 0.07 0.30 ± 0.07 0.45 ± 0.09 0.45 ± 0.09 0.49 ± 0.07 0.48 ± 0.09

among all users within the cluster. Finally, we represent the re-
maining users which are in either single or couple-cluster as black
points; the total number of these users is also provided in the legend
as “Small clusters (total number of non-relevant clusters)".

Figure 4 (a) shows the clusters that we consider as our ground
truth since they are evaluated considering the overlap ratio 𝑂 as a
similarity metric. In this case, 5 main clusters are detected with an
average overlap ratio per cluster above 0.82. In particular, cluster
ID 1 has the highest number of users (8) but has a relevant value
of overlap ratio (0.84). Only 4 users in this case are put in single
clusters. The goal is to find a similarity metric that can detect similar
results. We can notice that single feature metrics, Figure 4 (b-e),
have the tendency to create very populated clusters but with a low
overlap ratio. For instance,𝑤3 and𝑤4 generate a main big cluster
with 18 and 19 users, respectively, while the corresponding overlap
ratio drops drastically to 0.62. The only exception is given by𝑤1,
which generates a variable set of clusters with consistent values
of overlap ratio, over 0.64. Let us now consider as an example the
users 13, 15 and 17, which in the ground-truth case (Figure 4 (a))
form their own cluster (i.e., ID 5) with a high overlap ratio (0.83),
and user 24, who is quite isolated from other users and belongs to
a single cluster. We can notice that𝑤2 and𝑤4 fail in detecting the
group of users 13, 15 and 17 as similar, dividing them instead in
different clusters. On the other hand,𝑤3 detects this similarity but
puts user 24 in a relevant cluster (ID 1). From these observations,
we can notice that the viewport centre on the volumetric content,
on which𝑤3 and𝑤4 are based, is not sufficient to correctly identify
similar users. Analogously, considering only the difference in terms
of the relative distance between the user and volumetric content,
as done in 𝑤2, does not allow the detection of similarity among
users. Thus, the most promising metric in this group seems to be
𝑤1, which is based on the user position on the virtual floor.
The last group of Figure 4 (f-i) shows clusters based onmulti-feature
similarity metrics. In all these settings, a total of four main clusters
are detected, except for𝑤6 which leads to three clusters, as shown in
Figure 4 (g). The latter detects the highest number of small clusters
(6) while being the only one that does not identify users 13, 15 and

17 within the same cluster. On the contrary, the other three metrics
𝑤5, 𝑤7 and 𝑤8 detect a main cluster and three smaller clusters
with a consistent overlap ratio. For instance, the resulting clusters
based on𝑤5 have an overlap ratio always bigger than 0.69 and only
two users fall into small clusters. Overall, multi-functional metrics
appear to be better suited to detect similar users than previous ones,
with the exception of𝑤6.

In Table 4, we extend our per-frame clustering analysis to the
entire dataset: we show the average and standard deviation of per-
formance metrics described in Section 5.2 obtained by our proposed
metrics. Clusters based on𝑤2 group in relevant clusters the major-
ity of the population in all the analysed PCs (reaching the maximum
value of 0.94 in PC1) to the detriment of precision, which falls to
values between 0.22 and 0.35. As shown also in the previous investi-
gation, the most promising similarity metrics in terms of precision
and overlap ratio are both𝑤7 and𝑤8 followed by𝑤5. These outper-
form the other weights in all PCs, ensuring an overlap ratio within
the same cluster with values in the range of 0.59 and 0.70 for 𝑤7,
0.60 and 0.72 for𝑤8. Similarly, the values of precision are always
over 0.42 for both𝑤7 and𝑤8. The only exception is in PC1, where
the best performing metric in terms of precision is𝑤6, which for
the other contents cases is always the worst performing metric.

6.2 Trajectory-Based analysis
Given the above remarks, we now analyse the performance metrics
over time, taking into account only 𝑤1, 𝑤5, 𝑤7, and 𝑤8. Indeed,
we decide to select the best-performing similarity metrics in the
previous investigation (𝑤5,𝑤7 and𝑤8). To have a fair comparison,
we also keep the most promising among the single-feature metrics,
𝑤1. We compute clique-based clusters over a time window of 1𝑠
(i.e., chunk) and a time similarity threshold of 0.8𝑠 . At each chunk,
we evaluate the average overlap ratio per relevant cluster, the aver-
age of the relevant population and the precision of detected clusters.
As an example, we show in Figure 5 the performance results per
sequence PC1 (Longdress) as functions of time per each similar-
ity metric. In Figure 5, we also add the performance of clusters
detected by the ground-truth metric 𝑂 (i.e., red line). The goal is
indeed to find a metric able to perform similarly to our ground-truth
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(a) Mean Overlap Ratio in Relevant Cluster. (b) Mean Relevant Users. (c) Precision.

Figure 5: Clustering over time (chunk = 1 sec.) results per sequence PC1 (Longdress): comparison between ground-truth 𝑂 and a
subset of proposed metrics (𝑤1,𝑤5,𝑤7 and𝑤8).

over time. All the similarity metrics reach an average overlap ratio
within clusters between 0.6 and 0.75 (Figure 5 (a)). However, clus-
ters based on𝑤1 have lower performance, while other metrics are
performing quite similarly, although with a slight predominance of
𝑤7. In terms of relevant users (Figure 5 (b)), it is worth noting that
all the proposed similarity metrics generate bigger clusters than
the ground-truth metric, which considers only half of the popu-
lation as relevant. In more detail, the clusters resulting from 𝑤1,
𝑤5 and𝑤8 put in relevant clusters 0.8 of the entire population for
all the sequence time. Finally, in terms of precision as highlighted
in Figure 5 (c) the only similarity metric that generated clusters
with P over to 0.4 in the entire sequence is𝑤7. These investigations
show that similarity metrics based on multi-feature, such as𝑤7 and
𝑤8, are more promising for detecting users with similar behaviour
while experiencing volumetric content.
In summary, from this validation analysis, we can conclude the
following:

• Overall, multi-feature metrics are more precise in detecting
users with similar behaviour (in terms of displayed content)
both in a frame- and chunk-based analysis;

• In particular, in spite of the slightly more complex formu-
lation, 𝑤7 and 𝑤8 are robust and easy-to-use metrics that
ensure a robust and reliable behavioural analysis via cluster-
ing tools;

• On the contrary, metrics based only on a single feature
(i.e., single-feature metrics) are not sufficient to correctly iden-
tify similar users;

• The only exception among single-feature metrics is𝑤1 which
is based only on the position of the user on the floor. Despite
its simplicity, this metric is comparable with multi-feature
metrics. Hence, it can be used for an easy-to-implement
preliminary behavioural analysis.

However, it is important to point out that these observations are
currently only valid for similar volumetric contents (i.e., human
body). We leave further analysis across multiple datasets and types
of content for future work.

7 DISCUSSION AND CONCLUSION
In this paper, we have summarised the main challenges of user
behavioural analysis in a 6-DoF system due to the new settings

and the added locomotion functionalities. Behavioural analysis of
6-DoF users is not considered in the literature yet; as such, there is
no reference metric available to detect viewers who are displaying
the same portion of the content. Thus, we considered a general
ground-truth user similarity metric, such as overlap ratio: the per-
centage of points displayed in common by two users. This is fairly
straightforward, albeit time-consuming, to compute for point cloud
contents, in which each point is rendered separately. For other
types of volumetric contents, determining the overlap ratio is not
as simple. Considering the number of vertexes that fall into a given
frustum could lead to misleading results when large faces between
sparsely distributed vertexes are present. Moreover, the metric re-
quires rendering each volumetric video at any given time and for
each viewer, making its computation not trivial and intensely time-
consuming. To overcome this issue and to assess users’ similarity
in a simple and objective way, we formulated and investigated sev-
eral similarity metrics considering different distance features and
measurements. We were interested in modelling similarities among
users observing the same volumetric content. In detail, we investi-
gated different features or combinations of them which consider
users’ location in the virtual space and their viewing direction. We
validated and tested our similarity metrics via a clique-based cluster-
ing tool proposed for 3-DoF scenario on real navigation trajectory
collected in a 6-DoF VR environment. Therefore, in this article we
advanced the state-of-the-art, proposing novel similarity metrics
taking into account the new physical settings and locomotion func-
tionalities given to users. Our results showed that solutions that
consider both user position and viewing direction are promising
to correctly detect users with similar behaviour while experienc-
ing volumetric content. Moreover, since these metrics are based
on simple operations of data that are typically already known in
a multimedia system (i.e., user position in the virtual space and
viewing direction), they can be evaluated on average in a hundredth
of a second. This makes our proposed metrics suitable for real-time
applications. In future work, we will further test the robustness
and versatility of these metrics on 6-DoF navigation trajectories
collected in a different virtual scenario, for example in Augmented
Reality (AR) applications [47].
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