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Abstract

Grocery e-commerce has been rapidly increasing in recent years, posing a new challenge
for retailers as groceries, unlike other goods, have a limited shelf life. Thus, customers
expect their orders to arrive quickly and undamaged. Currently, most processes between
a customer placing an order and the delivery are performed manually in a warehouse
making it labor-intensive and time consuming. The use of autonomous robots in these
environments can help improve operational efficiency and productivity while at the same
time reducing labor costs and accidents.

One specific process important for maintaining the desired quality of the customer’s
ordered items and fast delivery is item packing. For an autonomous robot to pack items
independently, it must learn and predict possible placement positions that are both
geometrically feasible and semantically plausible so that items maintain their desired
quality. Retail-related environments are heterogeneous environments containing many
different items. Thus, instead of the robot knowing what the item is, it is more beneficial
to know how an item can interact with a scene. This entails that robots must learn
interactions between items and the scene, which are called affordances, to place items
in plausible positions. These so-called object-object affordances describe how an object
can interact with another object.

In this thesis, object-object affordances are learned to predict where to place items
inside a box in an item packing task. With the use of a simulator called SAPIEN, item
packing is simulated, and large-scale interaction data is generated. A model is then
trained to predict a placement position by giving as input a complete pointcloud of the
item to be placed and a partial pointcloud of the scene. An item packing pipeline is then
built that can pack items using the trained model. Several item packing experiments
are performed to pack single items and a list of items. The results show that the model
successfully learns the semantic relationships between objects resulting in packing items
in stable and plausible positions. Several other experiments are performed to evaluate
whether the model is generalizable to novel items and real pointcloud data. Results
show that the model successfully predicts where novel items should be placed. The
model can also adapt to real pointcloud data of a box and predict where items should
be placed in a real box containing real items.

Keywords: Item packing, object-object affordances, pointcloud, SAPIEN simulator
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1. Introduction

1.1 Robotic item packing

Over recent past years, there has been a rapid increase in grocery e-commerce, and
customers will increasingly shop for groceries online in the years ahead [1]. However,
groceries have, unlike other goods, limited shelf life. This means that when a customer
orders groceries, they expect same-day delivery of fresh, high-quality produce. This
poses a challenge for retailers as there is a necessity to deliver orders as fast as possible
while maintaining the quality of easily damaged fresh items. In a retail warehouse, there
are three main processes between a customer placing an order and the delivery: order
picking, item packing, and delivery. In figure 1.1, these processes are shown.

Figure 1.1: Processes between a customer placing an order and delivery.
Envisioned robotic item packing is highlighted with a green dashed rect-

angle.

Currently, these three steps are often performed manually, making them labor-
intensive and time consuming. With the help of autonomous robots, these labor-
intensive tasks can be reduced, resulting in lower accidents and labour cost. At the
same time, operational efficiency and productivity can be increased. While there has
been much research into autonomous order picking using mobile manipulators and de-
livery using self driving vehicles [2], autonomous item packing is relatively unexplored.
Item packing must be performed carefully to maintain the desired quality of products as
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there are easily damaged items meaning that we can not place items randomly. First
of all, items must be placed in stable positions so that they do not tip over and get
damaged. Secondly, there are items that should preferably not be placed around other
items. For example, a soft item like bananas should not be placed next to a hard item like
bleach cleansers as it can damage the bananas. Another example is placing a hard item
like a sugar box on top of strawberries which is also not preferred. Not only must the
items be placed in stable positions that have enough space, i.e., geometrically feasible
positions. Items must also be placed around other items having the same categorical
labels, i.e., semantically plausible positions. Thus, for an autonomous robot to pack
items independently, it must learn and predict possible goal positions that afford place-
ment by considering both spatial and semantic relationships. One possible approach is
incorporating knowledge of all items, including a fixed position in the box. However,
retail-related environments are heterogeneous environments containing many different
items, and the combinations of items to be packed are never the same. This approach
thus makes it very hard to scale, and incorporating such knowledge does not capture
the essence of an item packing task. Instead of the robot knowing what the item is,
it is more beneficial to know how an item can interact with a scene. Robots must
learn interactions between items and the scene, which are called affordances, to place
items in their correct position. Using these object-object affordances, certain priors for
interactions between items can be learned based on the shape and appearance of the
items.

1.2 Related work

Current research on robotic item packing often focuses on the grasping part during item
packing. In these works, the focus lies on detecting objects and computing grasp poses,
after which the items are picked up and dropped randomly in a bin[3]. These works do
not focus on where to place the item after picking them up. Most of the research that
do focus on where to place items treat the problem as a bin packing problem in which
the objective is to pack multiple of the same item in a box tightly together[4]. They
do not consider various types of items and whether certain items can be placed nearby
each other or not, i.e., the semantic relationships between items. The works that use
affordance-based solutions to learning problems that can be useful in item packing also
focus primarily on grasping. Before discussing how affordances are being used, two types
of interaction affordances and their formal definitions are described below:

Agent-object interaction affordances describe how an agent might interact with an
object. This can be subdivided into three popular categories: Robot-object, Human-
object, and Hand-object. An agent-object affordance model accounts for a high-level
behavior modeling approach that learns the relationships between the agent, its actions,
and their effect on objects [5]. For a given object, an affordance AF represents a subset
of the state-action space (AF ⊂ S × A), that leads to the intended effect. Once
discovered, affordances might offer a kind of generalization across different objects
of the same class. High-level decision-making can utilize then affordances to achieve
desired goals/transitions in the environment in an efficient and effective manner.
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Object-object affordances describe how an object can interact with another object.
An example scenario is fitting an item inside a drawer. We humans can instantly un-
derstand if the object fits after a glance at the scene. This is because we humans
learn certain priors for interactions based on the shape and functionality of the objects.
However, robots do not have this capability, and object-object interaction affordances
provide understanding in these scenarios.

There is a lot of research on agent-object interaction affordances in prior literature.
Primarily in grasping affordances in both robot-object and hand-object interactions. [6,
7, 8] try to anticipate the success of a given grasp by formulating grasping as a visual
affordance detection problem. An affordance detection model is developed to predict
objects’ graspable areas from images or point cloud data for a robot gripper. [9, 10]
extend grasp affordances from a robotic gripper to human hands object interactions.
[11] predicts how a human would grasp one or several objects, given a single RGB image
of these objects. The disadvantage of most of this research is that they heavily depend
on annotated data for training. Therefore, recently some research has been developed
on obtaining visual affordances from human demonstration videos in a weakly-supervised
manner. [12] developed a model to extract features embedded in demonstration videos
of humans interacting with an object which allows predicting the interaction region
and the action label on an image of the same object. [13] proposes an approach to
learning human-object interaction hotspots from videos of a human interacting with an
object. Their approach allows inferring a spatial hotspot affordance map indicating how
an object would be manipulated in a potential interaction. While these works focus on
grasping items using affordances, the use of object-object affordances to learn where to
place items remains a challenge.
There is preliminary research on stable placements of items using object-object affor-
dances. In [14], the authors develop an affordance model that can predict positions in
a scene that afford stable placements to take place on different objects. Given a point
cloud of the object and a partial scene scan, their model can predict positions on the
scene that afford a placement to take place on the object. In [15], the authors develop
an affordance model that can predict stable placement positions for various objects in
a scene. Their model can predict stable placement positions using point cloud data
of the object and a placement area. That model learns by sampling placements, for
which several features are computed that indicate stability and support. A supervised
learning technique is then used to map these features to good placements. These two
works focus on predicting stable positions, which is necessary for item packing as well.
However, for packing items, these works are insufficient as items can not be placed in
only stable positions, as mentioned earlier.

1.3 Research objective

This thesis considers the problem of learning object-object affordances to predict where
to place grocery items in a box during an item packing task. Given as input a complete
6D pointcloud of the acting item to be placed along with a partial 6D pointcloud of an
existing scene, with each pointcloud consisting of XYZ coordinates and corresponding
RGB colors, the objective is to produce a point-wise affordance heatmap on the scene
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that measures the likelihood for each point on the scene point cloud of successfully ac-
complishing the task and being a plausible placement. The item will then be placed on
the predicted placement-position by picking the position of the point with the highest
predicted value. Hereby, it is important to show that the predicted positions are geomet-
rically feasible and semantically plausible. This means that the predicted positions must
both provide stability and enough space. At the same time, items must be predicted to
be placed in semantically plausible positions meaning that objects must be placed nearby
other objects that possess similar properties. Using the SAPIEN physical simulator and
3D shape datasets called ShapeNet and YCB, item packing scenarios are simulated to
generate data. By generating large-scale realistic interaction data, the model should
learn the semantic relationships between objects and place the items accordingly. One
important advantage of the proposed method is that it can reduce the search space for
downstream planning tasks. Another advantage is that it can deal with arbitrary scenes
meaning that the model can predict where an item should be placed in a box containing
an arbitrary number of items. At the same time, the proposed method increases gener-
alizability as it can deal with previously unseen items and real data. Lastly, the model
takes a partial pointcloud of the scene as input, which depth cameras can relatively
quickly obtain, like Intel RealSense, making the model suitable for deployment on a real
robot.

The main contributions are:

• Create a simulation environment in SAPIEN and use objects from the YCB dataset
to simulate item packing and collect synthetic interaction data.

• Create a pipeline to pack item(s) using the trained model.

• Show that the model learned spatial and semantic relationships between items
resulting in successful packing of single items and a list of items.

• Show that the model is successful in adapting to novel items and real data.

1.4 Thesis outline

The remainder of the thesis is structured as follows: Chapter 2 will contain the methods
section describing the used data, the method for data generation, the network archi-
tecture and the algorithmic item packing pipeline. Chapter 3 will include the results
in which various experiments will be performed to evaluate the model’s performance in
packing items. It will show comparisons with the baseline model and results for novel
items and real world data. Finally, chapter 4 contains the discussion and conclusions
summarising the work done and suggesting potential extensions.
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2. Methods

2.1 Data and methodology

The task of robotic item packing consists of packing retail-related various items inside
a carton box. The model of the carton box is obtained from the ShapeNet dataset[16],
a large-scale dataset of 3D shapes. The dimensions of the box are 0.4 × 0.4 × 0.3
(m) and the carton box is always open. The items that are used come from the YCB
dataset[17]. YCB is an object and model set designed for facilitating benchmarking in
robotic manipulation. It contains various objects of daily life with different shapes and
textures. The fourteen used items in this thesis come from the food-and kitchen item
set. From the YCB dataset, the object files in a .OBJ format are obtained for the
fourteen items that will be used.

To achieve the objective of packing items, first, large scale interaction data is gener-
ated. Then, a model is trained on the generated data after which an algorithmic pipeline
is built that uses the trained model to pack item(s). In figure 2.1 a blockdiagram is
shown containing three developed modules to achieve the goal of packing items: data
generation, model training and packing item(s). In the subsequent sections, the three
modules will be explained in detail.

Figure 2.1: Block diagram containing the three developed modules: data
generation, model training and item packing pipeline.
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2.2 Data generation

To collect interaction data to train the model on, a physics based simulation called
SAPIEN is used [18]. A simulator is used because synthetic data generation is faster,
more flexible, and more scalable. Generating large-scale interaction data of placing
items in boxes in real life would take a lot of time and effort, making the simulator
more efficient. The simulator is equipped with a carton box from the ShapeNet dataset.
In figure 2.2, the Sapien simulator window and the box are visualized. A camera is
positioned above the box in the simulator through which the complete inside of the box
can be observed. Fourteen grocery store items that are used are obtained from the YCB
dataset, and the complete pointcloud models of these items are visualized in figure 2.3.

Figure 2.2: SAPIEN simulator setup

Figure 2.3: Pointclouds of the used items from YCB dataset

The steps that are taken to generate interaction data are described below. First, a
list of scene objects to populate the box is generated by randomly sampling one to five
objects selected from the YCB dataset. All of the available objects are labeled with four
labels: hard/soft and stackable/nonstackable. An object is labeled as stackable if it can
be stacked on top of another object stably and if it allows another item to be stacked
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Objects hard/soft stackable/nonstackable
Cracker box hard stackable
Sugar box hard stackable
Chips can hard nonstackable

Bleach cleanser hard nonstackable
Pudding box soft stackable
Gelatin box soft stackable

Banana soft nonstackable
Apple soft nonstackable

Orange soft nonstackable
Lemon soft nonstackable

Strawberry soft nonstackable
Peach soft nonstackable
Pear soft nonstackable
Plum soft nonstackable

Table 2.1: Fourteen used item and their given labels for data generation.

on top of it. For example, items such as cracker boxes and sugar boxes are stackable.
Items are labeled soft when they are sensitive and hard if they are solid. Items such as a
bleach cleanser and a sugar box are labeled hard, while fruits such as bananas are labeled
soft, for example. In table 2.1 an overview of all the used items and their corresponding
labels is given.

The items in the scene object list are then sorted based on whether they are stack-
able. Stackable items are placed first. Every first item is placed in one of the four
corners inside the box, just like most humans would place the first item. Every second
item is automatically checked whether it belongs to the same hard or soft class; if it
does, it is placed near the already placed item. If it does not belong to the same class,
it is placed as far away as possible. This is accomplished by selecting the position on the
bottom surface that maximizes the euclidean distance between the item to be placed
and the previous item.

Every next item is placed around the already placed items belonging to the same
class. If the item is stackable and the same item is already placed in the box, it is placed
on top of it. In figure 2.4 several example generated scenes are shown. Once the scene is
populated with scene objects, the camera in the simulator takes a single snapshot from
above the scene to obtain a partial 6D scene pointcloud S ∈ Rn×6 containing XYZ
positions and RGB color information. Next, an acting item to be placed is fetched, and
a complete poincloud O ∈ Rm×6 is obtained. To capture the complete 6D pointcloud of
the item, a function is created that uses functions from the Trimesh library to load the
object file and sample m amount of points and their corresponding color values on the
surface. The pointcloud of the item is transformed to the same camera base coordinate
frame as the scene point cloud. m and n are defined to be 10000 meaning that the
scene and item pointclouds are represented with 10000 points containing XYZ positions
and RGB color values.
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(a) Box with 1 item (b) Box with 3 items (c) Box with 5 items

Figure 2.4: Example scenes

2.3 Simulated interaction trials

Once a scene is generated, a placement interaction is simulated. For each interaction
trial, a short hard-coded trajectory is executed for the fetched item to be placed. During
this trajectory, the item to be placed is dropped from a certain distance above the box.
Hereby, the trajectory is always in a straight line. The position at which the simulated
interaction happens must be semantically plausible and therefore it is based on the
categorical labels of the objects. If the item is a stackable object, the item is placed
on top of another stackable item belonging to the same class. If it is a non-stackable
item, it is placed nearby other items belonging to the same class. Furthermore, if
it is a soft item, the item can be placed nearby other soft items but also on top of
hard stackable items. These placements are achieved by keeping track of the positions
of the previously placed scene objects and placing the item a certain distance away,
depending on the object’s size. Thus, semantically plausible placements are made by
placing objects near other objects of the same categorical labels and placing stackable
items on top of each other. The result of the interaction is either successful or failed
for each interaction trial, measured by a metric. The metric measures whether the item
is placed stably without tipping over by measuring the orientation before placement
and after placement. If the orientation difference is within a certain bound, then it is
geometrically feasible, and the outcome is successful. Thus, by placing items according
to their labels and checking whether they remain stable after placement, interaction
data is generated that is semantically plausible and geometric feasible. The position at
which the item is dropped and whether the outcome is success or failure is saved and
used during model training, which will be explained in the next section.

2.4 Network architecture

2.4.1 Input and output

The O2O-afford model developed in [14] is used to tackle this learning problem and
taken as a baseline model. One disadvantage of this baseline model is that the focus lies
only on predicting stable placement positions as described in section 1.2. This baseline
model is trained on interaction data in which items are randomly placed on a surface and
checked whether it remains stable or not. Thus, it is expected that the baseline model
will only predict stable placement positions located on the bottom surface of the box
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without taking into consideration semantic relationships. This disadvantage has been
resolved by training the model on interaction data generated by the method described
in section 2.2. Another disadvantage of the baseline is that it takes as input only a 3D
partial pointcloud scan of the scene and a complete 3D pointcloud of the acting object to
be placed containing only XYZ coordinates. This positional information only captures
the shape of the object and the scene. Therefore, the model can only reason and
learn about the shapes and geometry, which is useful for learning geometrically feasible
placements. However, retail items consist of different colors, such as fruits having a
single brighter color, while boxes and other items consist of multiple colors. Because
items are placed in semantically plausible positions according to their categorical label,
their color can be a good feature to help reason about the placement during training,
as items with the same categorical labels have similar color properties. Therefore, this
baseline model has been extended further by incorporating additional RGB color to the
inputs of the scene’s and acting object’s pointcloud. Thus, rather than the points in
the pointcloud only containing XYZ coordinates, in the developed model, the points of
the input pointclouds consist of XYZ coordinates and RGB color values, making the
dimension 6D. The model has been adjusted to cope with this new input dimension.

The output of the model is a per-point affordance heatmap A ∈ [0, 1]m over the
scene point cloud S. Thus, for each point pi ∈ S, the model will predict a likelihood
ai ∈ [0, 1] of the acting object O being a good placement at pi which is semantically
plausible and geometrically feasible.

2.4.2 Architecture

The model works as follows: The input to the model is a 6D pointcloud of the scene
(S ∈ Rn×6) and item (O ∈ Rm×6). Two separate PointNet++ [19] networks are trained
to extract per-point features for the scene and item. PointNet++ is a network that
builds further upon PointNet [20]. Pointnet is a network that learns each point’s spatial
encodings and then aggregates all individual point features to a global point cloud feature
map. It fails to capture local structures and generalize to complex models. PointNet++
applies the PointNet network recursively on partitionings of the input pointcloud. It
uses additional learning layers to combine features from multiple scales. It extracts local
features from partitioning, which are further grouped into larger units and processed
to produce higher-level features. This happens recursively to obtain the feature of the
whole pointcloud. In figure 2.5 the architecture of the network can be seen. For the
scene, the network extracts a per-point feature map FS ∈ Rn×f1 . For the object, the
network extracts a per-point feature map FO ∈ Rm×f2 and a global feature Fg ∈ Rfg .

After the per-point feature maps are extracted, the model samples k number of
points (p1, p2, ..., pk) on the scene pointcloud using furthest point sampling(FPS). FPS
is a greedy algorithm that iteratively samples points from a pointcloud. It starts sampling
from a random point. Each iteration samples from the rest points that are the farthest
from the set of sampled points. Once the points have been sampled, the acting object
is used a kernel to slide over the points to perform a point-wise convolution operation.
In detail, the acting object is stridden over the sampled scene points to query the scene
feature map over the points of the acting object pointcloud, resulting in a scene feature
map FS|O,pi ∈ R

m×f1 . The scene feature map and extracted object feature map is
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then concatenated resulting in an aggregated feature map at every sampled point pi
FSO|O,pi ∈ R

m×(f1+f2). A PointNet network is then used to perform a convolution to
obtain the sampled point features FSO|pi ∈ R

f3 . For every sampled point, the sampled
point feature FSO|pi ∈ R

f3 , the global object feature Fg ∈ Rfg and the scene point feature
FS|pi ∈ R

f1 is aggregated and fed into an MLP with a sigmoid activation function to
obtain an affordance labeling ai ∈ [0, 1] for every sampled point pi . The per-point
affordance labeling for the sampled points is then interpolated back to all points on the
scene pointcloud to obtain a point-wise affordance heatmap over the scene point cloud.

Figure 2.5: Network architecture, adapted from fig. 3 [14]

2.4.3 Loss and training

The model is supervised by the simulated interaction trials, i.e., the position with a
successful or failed outcome. The standard binary cross-entropy loss between the out-
come of the position during the interaction trial and the predicted value for this position
is used to update the weights. During data generation, the scene and acting objects
are selected randomly from available objects. The acting objects are equally sampled
during data generation. It is empirically found that having around 5000 data samples
is essential for successful training. As mentioned earlier, n = m = 10000 is used and
f1 = f2 = f3 = fg = 64. Ten epochs are used during training and it is performed on a
GeForce RTX 3050 Mobile GPU graphics card.

2.5 Item packing pipeline

The trained model is used to make predictions and pack items on the position with
the highest predicted value. This is performed by creating a pipeline through which
the trained model can be used to pack items. The pipeline will be explained using
pseudocode, and in algorithm 1, the pseudocode for the pipeline is shown. The process
of the pipeline is explained below with each of the numbers below corresponding to the
line number in pseudocode 1.

1. , 2. First, the user can specify the scene object(s) to populate the box and the
acting object(s) to be placed. If not specified, it will be sampled randomly.
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3. Once the scene objects are specified, the scene will be generated by placing the
scene objects one by one, as described in section 2.2.

6. Once the scene is generated, the script will loop over the acting objects to be
placed in the specified order and perform the following steps:

7. For each acting object, first, the scene pointcloud is obtained using in-built func-
tions from the SAPIEN simulator. An inbuilt function called get_observation()
uses the camera in the simulator to take a snapshot of the scene to capture both
the depth and color. These two are merged together to obtain a pointcloud in
which the points contain both position and color.

8. Using a created function called generate_pointcloud() that takes the acting object
name as an argument, the complete pointcloud for the acting object is obtained.
The steps performed in this function are as follows: For every item used from the
YCB dataset, the object file is provided in a .OBJ format with its colormap. Then,
using the Trimesh library, the acting object is loaded into a Trimesh object. Finally,
with the use of another function from the Trimesh library called sample_surface(),
a preferred number of points are sampled on the surface of the mesh to obtain a
complete pointcloud of the object.

9. Once the partial pointcloud of the scene and complete pointcloud of the object
are obtained, they are fed as input to the model. The model outputs a prediction
in which every point of the scene pointcloud is labeled with a value between 0 and
1, with a higher value indicating a better placement.

10. To find the position with the highest value, the index of the point with the highest
predicted value is found, and the corresponding position of the point on the scene
is found.

12. Finally, using an inbuilt function from the SAPIEN simulator called load_object(),
the item is placed in the predicted position.

Algorithm 1 Pseudo code for placing a list of items

1: input: ActingObjects
2: input: SceneObjects
3: for SceneObject in SceneObjects do
4: place in box
5: end for
6: for ActingObject in ActingObjects do
7: scene_pc = cam.get_observation()
8: acting_object_pc = generate_pointcloud(ActingObject)
9: pred_result = network.inference_whole_pc(scene_pc, acting_object_pc)

10: index_pred_pos = argmax(pred_result)
11: pred_pos = scene_pc[index_pred_pos]
12: load_object(ActingObject, pred_pos)
13: end for
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3. Results

3.1 Experimental setup

Once the model has been trained, it is evaluated using the SAPIEN simulator again
with the box and items from ShapeNet and the YCB dataset, respectively. Several item
packing experiments have been performed using the item packing pipeline to evaluate
the performance. The performed experiments are listed below:

(i) Single known item in a scene: In these experiments, the pipeline is used to predict
and place a single known item in a box that already contains items. A comparison
will made with the baseline model to evaluate the differences.

(ii) Single unknown item in a scene: In these experiments the generalizability to novel
items is evaluated by using a novel item that the model has not seen during training
and predicting where it needs to be placed in a box that contains items.

(iii) Single known item in a real scene: in these experiments, the generalizability to real
data is evaluated by using pointclouds of a real box captured by a depth camera.
A single item is used to predict where it needs to be placed in a real scene.

(iv) List of items in a scene: in these experiments the model’s performance on packing
a list of items is evaluated. Various number of arbitrary items are predicted and
placed in an empty box. A comparison will be made with the baseline model as
well to evaluate the differences.

The experiments and their results will be discussed in sections 3.3, 3.4, 3.5 and 3.6,
respectively.

3.2 Performance metric

As described in section 1.3 containing the research objective, the model should make
predictions that are both geometrically feasible and semantically plausible. Thus, the
model should have learned semantic relationships during training and predict that items
must be placed on stable positions that lie nearby items belonging to the same categorical
label(class). For example, if the item to be placed is a chips can and if there are already
chips cans and bleach cleansers in the box, the model should predict that it must be
placed nearby them. To evaluate the performance of the model, two types of evaluations
will be performed. Firstly, empirical testing by observing the predicted heatmaps together
with the predicted position (position with the highest predicted value) and secondly, a
quantitative analysis by using a performance metric to evaluate whether the predicted
positions are semantically plausible.
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A qualitative evaluation is performed by observing where the red colored regions are
located on the predicted heatmaps. The model should label positions lying closer to
items belonging to the same class with a higher value resulting in red colored regions
lying close to items belonging to the same class.

A quantitative evaluation is performed by calculating whether the predicted positions
on which the items will be placed lie closer to items it belongs to. This is performed
by keeping track of the center positions of the placed scene objects in the box and
calculating the euclidean distance between the predicted position(xp, yp) and each scene
object. If the scene contains hard and soft scene objects, the minimum distance to the
object of the same class (MS) and minimum distance to object of a different class
(MD) is calculated. This is performed by equations 3.1 and 3.2 for MS and MD,
respectively.

MS = min
√
(xp − xi)2 + (yp − yi)2 for i = 1, 2, .., SC (3.1)

with SC = # scene objects of same class

MD = min
√
(xp − xi)2 + (yp − yi)2 for i = 1, 2, .., DC (3.2)

with DC = # scene objects of different class

If the model makes semantically plausible predictions, the predicted positions for the
items should lie closer to other items belonging to the same class compared to items
belonging to a different class. This means that the minimum distance to an object of
the same class should be smaller than the minimum distance of an object of a different
class. Thus, the following equation must hold:

MS < MD (3.3)

If this equation holds, it means that the model predicts positions that lie closer to
items belonging to the same class compared to items belonging to a different class
resulting in semantically plausible predictions. It is important to note that the class
refers to the hard/soft label given to the items during data generation shown in table
2.1.

In figure 3.1, the result is shown for a chips can in a scene that already contains
four items. In the box there are two hard items being the bleach cleanser and sugar box
and two soft items. The model should predict that a hard item like a chips can must be
placed nearby the other hard items. In figure 3.1b the predicted heatmap is shown with
the position with the highest predicted value highlighted with a dark blue dot. In figure
3.1d the distances between the scene objects and the predicted position on which the
chips can is placed are visualized with arrows. The MS is represented with the green
colored arrow and the MD is represented with a red colored arrow the image. This color
labeling of MS as green and MD as red will be valid for all other cases in the remaining
sections. In table 3.1, the calculated values are shown. It can be observed that the MS
is significantly smaller than MD. To verify that the model is indeed predicting correctly,
the model is tested ten times on the same acting object and similar scenes and the
values for the mean and standard deviations are computed.
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(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 3.1: Prediction result for a chips can. The model takes as input
the pointcloud of the acting object(a) and scene(c). The model outputs
a prediction heatmap(b) in which the position with the highest predicted
value is highlighted with a blue dot. The item is then placed on that
position resulting in scene(d) with MS and MD distances visualized with

a green and red arrow, respectively.

MS (in m) MD (in m)
Figure 3.1 0.109 0.309
Mean 0.135 0.291
SD 0.036 0.020

Table 3.1: Calculated distances MS and MD for the experiment in figure
3.1. The experiment has been performed ten times and the mean and

standard deviation for each distance is computed.

In appendix A, figures 1 and 2 several other prediction results for a chips can and
similar scene are shown. The mean value for MS is significantly smaller than for MD,
thus equation 3.1 is satisfied. The low standard deviations show that the model is
repeatedly successful in predicting that a chips can should be placed closer to the other
two hard items than to the soft items; there is low variance in the distances MS and
MD over ten trials. It can thus be concluded that the model is successful in predicting
stable semantically plausible positions for the chips can in this scene.
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3.3 Single items

This thesis builds upon the O2O-afford model that focuses on predicting stable place-
ment positions. The O2O-afford model is therefore taken as a baseline and comparisons
will be made between the predictions made by the baseline and the developed model.
To compare the performance of both models, the following experiments have been per-
formed: Several scenes are generated, each containing 1 to 5 scene objects inside the
box. For several acting objects, predictions are made with both the developed model
and the baseline O2O-afford model and compared using the metric explained in section
3.2. It is expected that the predictions of the model in this thesis are, first of all, ge-
ometrically feasible and, secondly, semantically plausible. In contrast to the developed
model, the baseline model only takes into consideration geometric feasibility. Their
model is trained on interaction data in which items are randomly placed on the surface
and checked whether it remains stable or not. Thus, it is expected that the baseline
model will only predict stable placement positions located on the bottom surface of the
box without taking into consideration semantic relationships that are imposed by the
method used in section 2.2.

Figure 3.2 shows the results of the model and the baseline model for the same acting
object; bleach cleanser in a scene already containing three items. The scene contains
two hard items being the sugar box and banana and one soft item; the banana.

MS (in m) MD (in m)
Figure 3.2c 0.259 0.174
Mean 0.195 0.206
SD 0.075 0.029

(a) Baseline

MS (in m) MD (in m)
Figure 3.2f 0.162 0.189
Mean 0.182 0.244
SD 0.055 0.069

(b) Model

Table 3.2: Calculated distances for the case in figure 3.2

Figure 3.2b and 3.2e show the prediction made by the baseline model and developed
model with the highest predicted position marked with a dark blue dot. It can be observed
that the heatmap of the baseline only consists of light yellow colored regions on the box,
meaning that the baseline had difficulty in making predictions with high confidence. The
baseline model had difficulty recognizing stable positions inside the box resulting in the
predictions having a low value. If the baseline model had performed better, the empty
spaces that provided enough space for the bleach cleanser would have been colored red.
This is observable in the heatmap of the developed model. In contrast to the baseline,
there are regions that are colored red inside the box positioned around the two other
hard items sugar box and chips can box. Figure 3.2c and 3.2f show the placement of
the bleach cleanser on the position with the highest predicted value for the baseline
and developed model together with the distances to the scene objects represented as
arrows. For the the baseline, the distance to the banana is smaller than the distance
to the chips can which is undesired. The model is successful in learning that a bleach
cleanser should be placed closer to the hard items than to the soft banana. The baseline
and developed model are tested ten times on the same acting object and similar scenes
to obtain the mean values and standard deviations. In appendix 4.2, figures 3 and 4
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(a) Acting object (b) Prediction baseline (c) Distances baseline.
MS = 0.259m,MD =

0.174m

(d) Scene (e) Prediction model (f) Distances model.
MS = 0.162m,MD =

0.189m

Figure 3.2: Comparison between baseline and developed model for a
bleach cleanser. The model takes as input the pointcloud of the act-
ing object(a) and scene(d). The baseline and developed model output
a prediction heatmap(b and e) in which the position with the highest
predicted value is highlighted with a blue dot. The item is then placed
on that position resulting in scene(c and f) with MS and MD distances

visualized with a green and red arrow, respectively.

several other results for the same acting object are shown. In table 3.2 the calculated
values are shown.

From these values it can be seen that the mean MS of the model is lower than
the mean MD meaning that the model is successful in making semantically plausible
predictions. At the same time, the mean MS is of the model is lower than that of
the baseline model, together with the standard deviation. A lower standard deviation
indicates a lower variance in the distancesMS, meaning it performs repeatedly well. The
baseline model predicts stable placement positions which can lie anywhere. Therefore,
the MS and MD distances of the baseline model have a higher standard deviation,
as observed. Furthermore, the mean MD of the model is higher than that of the
baseline, indicating that it places the item further away from items belonging to another
class. Based on the large difference between the baseline and the model, it can thus
be concluded that the model is successful in predicting semantically stable positions for
the bleach cleanser.

In figure 3.3 another comparison be seen. In this experiment, there are three items
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in the box from which two are hard stackable items: sugar box and cracker box, and one
is soft: apple. The acting object is an apple. As described in section 2.3, a soft item
can be placed nearby other soft items or on top of hard stackable items. This means
the predicted positions with a high value should lie on top of the two hard stackable
items and around the apple.

(a) Acting object (b) Prediction baseline (c) Distances baseline.
MS = 0.278m

(d) Scene (e) Prediction model (f) Distances model.
MS = 0.173m

Figure 3.3: Comparison between baseline and developed model for an
apple. The model takes as input the pointcloud of the acting object(a)
and scene(d). The baseline and developed model output a prediction
heatmap(b and e) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(c and f) with the MS visualized with a green arrow.

In figure 3.3b the predictions of the baseline model are shown. It can be observed that
the baseline model has difficulty in recognizing empty spaces as the predicted positions
are colored in light yellow. The position with the highest predicted value, highlighted by
a blue dot, is located at the top right away from the apple and two stackable items it can
be placed on. In figure 3.3e the prediction of the model is shown and the model predicts
regions located close to the apple and on top of the cracker box which is semantically
plausible. The position with the highest predicted value is located next to the apple. In
this case, the minimum distance to an object of a different class(MD) is invalid because
the apple can be placed on top of the two hard stackable items. Thus to evaluate the
performance, all of the scene objects are considered to be the same class. The minimum
distance for the baseline is calculated to be 0.278m and for the model it is 0.173m. In
appendix 4.2, figures 5 and 6 several other predictions are shown for the same acting
object and scene in which the model successfully predicts that the apple can be placed
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on top of hard stackable objects. It is observable that the model is successful in learning
that a soft item like an apple can be placed on top of hard stackable items or nearby
another soft apple.

3.4 Novel items

While the model is able to predict well for items that it has seen during training, it
is interesting to observe what happens for a previously unseen item. To test whether
the model generalizes to novel items, the following experiments are performed: for two
previously unseen items being an orion pie and a cleanser, random scenes are generated
and used to predict where they should be placed in the scene. In figure 3.4 the result is
shown for orion pie.

(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 3.4: Prediction for orion pie. The model takes as input the
pointcloud of the acting object(a) and scene(c). The model outputs a
prediction heatmap(b) in which the position with the highest predicted
value is highlighted with a blue dot. The item is then placed on that
position resulting in scene(d) with MS and MD distances visualized with

a green and red arrow, respectively. MS = 0.155, MD = 0.249

MS (in m) MD (in m)
Figure 3.4 0.155 0.249
Mean 0.131 0.287
SD 0.023 0.042

Table 3.3: Calculated distances for orion pie



Chapter 3. Results 20

The scene contains four items in the box with two being soft: pudding box and
apple and two are hard: bleach cleanser and chips can. The acting item to be placed
is orion pie which the model has never seen before. Orion pie is a soft sensitive item.
Therefore, it should be placed around the two other soft items. If the model is able to
generalize well to unseen items, it is expected that the model has learned that a soft
item like orion pie is more similar to the other soft items than the bleach cleanser and
chips can and that it predicts positions located around the two soft items.

In figure 3.4b the prediction is shown. It can be observed that the predicted position
marked with a blue dot is stable and lies around the two other soft away from the chips
can and bleach cleanser. In figure 3.4d, the cleanser is placed on the predicted position
and the distances to the scene objects are represented as arrows with MS and MD
colored in green and red, respectively. In table 3.3 the calculated values for MS and MD
are shown. The experiment is repeated ten times and the mean and standard deviations
are computed. In appendix 4.2, figures 7 and 8 two other results are shown for the same
acting object and similar scenes. The mean value for MS; µMS is significantly smaller
than the mean value for MD; µMD meaning that the model is able to learn that a new
item like orion pie possesses similar properties such as shape and color like the two other
soft items and that it should be placed near them. The low standard deviations show
that the model’s predictions have low variance and thus, it is repeatedly successful in
making plausible predictions.

Another novel item is a cleanser for which the model is also tested. In figure 3.5 the
result is shown for a cleanser bottle.

MS (in m) MD (in m)
Figure 3.5 0.104 0.296
Mean 0.152 0.298
SD 0.053 0.01

Table 3.4: Calculated distances for cleanser

The scene contains the same items as in the previous case. The acting object to be
placed is a cleanser which the model has never seen before. A bottle of cleanser is hard
and non-stackable. Therefore, it should be placed around the two other hard items. If
the model is able to generalize well to novel items, it is expected that the model has
learned that the cleanser is more similar to the other hard items than the soft items and
that it predicts positions located around the two soft items. In figure 3.5b the prediction
is shown. It can be observed that red colored regions lie around the hard items and the
predicted position lies closer to the hard items than to the two other soft items. In
figure 3.5d the distances to the scene objects are represented as arrows with MS and
MD colored in green and red, respectively. In table 3.4 the calculated values for MS
and MD are shown. The experiment is repeated ten times and the mean and standard
deviations are computed. In appendix 4.2, figures 9 and 10 two other results are shown
for the same acting object and similar scenes. Just like the experiment with the orion
pie, the mean value for MS; µMS is significantly smaller than the mean value for MD;
µMD. From these mean values together with their low standard deviation, it can be
concluded that the model is able to learn that a new item like a cleanser has similar
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(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 3.5: Prediction for cleanser. The model takes as input the point-
cloud of the acting object(a) and scene(c). The model outputs a predic-
tion heatmap(b) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(d) with MS and MD distances visualized with a green

and red arrow, respectively. MS = 0.104m, MD = 0.296m

properties such as shape and color like the two other hard items and that it should be
placed near them.

3.5 Real data

To test whether the trained model generalizes well to real data, the model is evaluated
on real data of boxes containing items. To capture real pointcloud data of boxes, an
Intel RealSense d415 depth camera is used. A square carton box is used that resembles
the one used during training, and various grocery store items are used, such as a chips
can, window spray, oranges, and a cracker box. Several scenes are created by placing
these items in the box. Using the Intel RealSense depth camera, a snapshot from above
the box is taken, and a pointcloud containing position and color is obtained. Once the
pointclouds are obtained, they are evaluated for various objects. In figure 3.6, 3.7, 3.8
three scenes are shown together with the predictions for the item to be placed. The
positions with the highest predicted value are colored in blue and highlighted by black
circle.

In figure 3.6a, the item to be placed is a bleach cleanser, and the item in the box
is a chips can. Thus, the model should predict that the bleach cleanser must be placed
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(a) Acting object and scene
(b) Prediction

Figure 3.6: Evaluation of a bleach cleanser on real scene containing a
chips can. The model takes as input the pointcloud of the acting object
and scene(a). The model outputs a prediction heatmap(b) in which the
position with the highest predicted value is highlighted with a black circle.

nearby the chips can as they are both hard items and nonstackable. In figure 3.6b the
prediction made by the model is shown. It can be observed that red regions lie around
the chips can, but they could have been less spread out. The highest predicted position
lies nearby the chips can.

(a) Acting object and scene
(b) Prediction

Figure 3.7: Evaluation of an orange on a real scene containing two
oranges, a cracker box and window spray. The model takes as input
the pointcloud of the acting object and scene(a). The model outputs a
prediction heatmap(b) in which the position with the highest predicted

value is highlighted with a black circle.

In figure 3.7, the item to be placed is an orange, and the box already contains
oranges, a cracker box, and a window spray. Because the orange is soft, it should
be placed near the other oranges or on top of the hard cracker box. In figure 3.7b,
the prediction is shown, and it can be seen that the model is predicting the regions
around the oranges and above the cracker box as suitable. However, there are also
incorrectly red colored regions on top of the window spray bottle, which is unsuitable
for placement. The position with the highest value lies nearby the oranges which is a
semantically plausible stable position.

In figure 3.8, the item to be placed is a chips can, and the box contains oranges, a
chips can, and a window spray. The chips can must be predicted to be placed nearby
the chips can and window spray, and in figure 3.8b, it can be seen that the predicted
position lies next to the chips can and window spray. However, in this case, the model
is also having difficulty as the red colored regions could have been less spread out.



Chapter 3. Results 23

(a) Acting object and scene

(b) Prediction

Figure 3.8: Evaluation of a chips can on a real scene containing two
oranges, a chips can and window spray. The model takes as input the
pointcloud of the acting object and scene(a). The model outputs a
prediction heatmap(b) in which the position with the highest predicted

value is highlighted with a black circle.

From these examples, it can be seen that the model is able to learn the relationships
between objects, and it is able to generalize to unseen real pointcloud data of boxes.
However, the model is also having difficulty as the prediced regions on the heatmaps
could have been less spread out, and some predicted regions laid on top of other un-
suitable items. The model having difficulty can be explained by a few factors: First of
all, the box used to obtain real data is not the same as the one the model has seen
during training in the simulator. Secondly, the real items used to generate real box
configurations are not seen before by the model during training. While they are similar,
they are not the same. Lastly, there are varying environmental conditions. The real
data was obtained during the daytime without the optimal lighting conditions that were
occurrent in the simulator. At the same time, the snapshot is taken from above at a
fixed position in the simulator. In the real case, the snapshot is taken by holding the
camera above the box using my hand which led to the varying angles compared to the
simulator.

3.6 Packing a list of items

While the previous sections show that the model is successful in packing a single item
in an arbitrary scene, the trained model is also tested to evaluate whether a list of items
can be packed according to their predicted positions. To test the model, the following
experiments are performed: an initial empty box is taken, and an arbitrary list of acting
items to be placed is generated. The model predicts a position for each acting item on
which the item is placed. The model is tested to pack a various number of items and
in figure 3.9, the result is shown for packing three items in a box.

The initial box is empty and the first item to be placed is a gelatin box which should
be placed in one of the corners. In the second image from top left it is shown that
the model has predicted a corner as a placement position and in the third image the
placement is shown. The next item to be placed is a chips can, which should be placed
away from the gelatin box. In the top right image it is observable that the model has
learned this and predicts the opposite corner. The third item to be placed is a bleach
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Figure 3.9: Packing three items using model. For each item to be
packed, the predicted heatmap is shown with the position with the high-
est predicted value highlighted with a blue dot. The MS and MD dis-
tances are represented with green and red arrows in bottom right image,

respectively.

cleanser which should be placed nearby the chips can. In the second image from the
bottom left, it can be seen that the model predicts to place the bleach cleanser nearby
the chips can. In the bottom right image the distances MS and MD are represented
as a green and red arrow, respectively. The calculated value for MS is found to be
0.153m and the MD 0.274m. From the observed placement and calculated distances it
is observable that the MS is significantly smaller than the MD. From this example, it
is observable that the model can successfully learn the semantic relationships between
items and place the three items accordingly.

The model is also tested on packing more items and in figure 3.10 the result is
shown for packing seven items in the following order: sugar box, apple, bleach cleanser,
pudding box, chips can, peach and orange, respectively. There are three items that are
hard: the sugar box, bleach cleanser and chips can. The rest of the items are soft.
For each of the items, the model should predict a position where the MS is smaller
than the MD. In the figure, the predicted heatmaps are shown in which the position
with the highest predicted value is highlighted with a dark blue dot. In the figure, also
images are shown where the object is placed on the predicted position together with
the distances to other scene objects represented as arrows. The MS and MD distances
are represented with a green and red arrow, respectively. For each acting object where
the MS and MD are applicable, the values are calculated and shown in table 3.5. By
looking at the table, it can be observed that the MS is smaller than the MD for each
acting object. The mean MS over all placed items is also smaller than the mean MD
meaning that the model is successful in packing seven items on plausible positions. It
has learned the semantic relationships between items and places similar items closer
together on stable positions.
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Figure 3.10: Packing seven items using model. For each item to be
packed, the predicted heatmap is shown with the position with the high-
est predicted value highlighted with a blue dot. The MS and MD dis-
tances, where applicable, are represented with green and red arrows,

respectively.

Acting object MS (in m) MD (in m)

Bleach cleanser 0.249 0.321
Pudding box 0.193 0.258
Chips can 0.121 0.153
Peach 0.053 n.a.
Orange 0.057 0.240
Mean 0.155 0.243

Table 3.5: Calculated distances MS and MD during placement using
developed model for the case in figure 3.10

The same order of items is also packed using the baseline model. In figure 3.11, the
results for the baseline model are shown. It can be observed that the baseline model
predicts empty spots lying around the middle for the first three items. However, the
baseline model has difficulty in recognizing empty spaces which can be seen by the lack
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of red colored regions on the prediction heatmap. One item, the pudding box is even
predicted to be placed on the edge of the box resulting in the pudding box falling down
inside the box. When looking at the calculated distances for MS and MD using the
baseline model in table 3.6, it can be observed that each of the items is placed closer
to an item of a different class than an item of the same class; the MS is higher than
MD for each item. This can also be concluded from the mean MS which is significantly
higher than the mean MD.

Figure 3.11: Packing seven items using baseline model. For each item
to be packed, the predicted heatmap is shown with the position with the
highest predicted value highlighted with a blue dot. The MS and MD
distances, where applicable, are represented with green and red arrows,

respectively.

When comparing the final scene with the developed model, it can be observed that
all of the items lie around the middle without soft and hard items being separated. The
developed model, however, is able to learn these relationships between objects and place
items stably accordingly.

The MS and MD distances are also calculated after placement of all items. Rather
than looking only at the distances during placement, the MS and MD distances are also
calculated for each item after placement of all items to see whether items belonging to
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Acting object MS (in m) MD (in m)

Bleach cleanser 0.175 0.109
Pudding box 0.296 0.241
Chips can 0.224 0.139
Peach 0.140 0.036
Orange 0.298 0.139
Mean 0.227 0.133

Table 3.6: Calculated distances MS and MD during placement using
baseline model for the case in 3.11

the same class lie closer to each other than to objects of a different class at the end. In
table 3.7, two tables are shown containing the calculated MS and MD distances after
placement of all items. It can be observed the mean MS for the developed model is
lower than the mean MD in table 3.7b. This shows that using the developed model,
the items are placed closer to items belonging to the same class resulting in a scene in
which items of the same class lie closer to each other than to items of a different class.
When comparing the developed model with the baseline, the mean MS for the developed
model is significantly lower than the mean MS for the baseline. The MS of the baseline
is also higher than the MD indicating that the baseline results in placements in which
items belonging to the same class do not lie closer to eachother than to items belonging
to a different class. These comparisons show that the developed model is able to learn
the relationships between objects and place items stably accordingly; items belonging to
the same class lie closer together and away from items belonging to a different class.
However, using the baseline, the items lie around the middle without soft and hard items
being separated.

Acting object MS (in m) MD (in m)

Sugar box 0.175 0.139
Apple 0.140 0.110
Bleach cleanser 0.175 0.110
Pudding box 0.220 0.189
Chips can 0.224 0.036
Peach 0.140 0.036
Orange 0.298 0.139
Mean 0.196 0.108

(a) Baseline

Acting object MS (in m) MD (in m)

Sugar box 0.217 0.230
Apple 0.057 0.207
Bleach cleanser 0.121 0.258
Pudding box 0.193 0.153
Chips can 0.121 0.153
Peach 0.053 n.a.
Orange 0.057 0.240
Mean 0.127 0.207

(b) Model

Table 3.7: Calculated distances MS and MD after placement for the
case in figures 3.10 and 3.11

The baseline and developed model are also tested on a more difficult scenario where
there are ten items to be packed of which eight are soft and two are hard. The initial
scene is empty and the order of items (from left to right) to be placed is shown in figure
3.12b. The bleach cleanser and chips can are hard, all other items are soft. In figures
3.12c and 3.12d the scenes after packing all ten items is visualized using the baseline
and developed model, respectively. In the figures the cluster center of hard items is
visualized with a blue dot and the cluster center for soft items with an orange dot.
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The cluster centers are computed by taking the average position of the hard items and
soft items. It can be observed that using the baseline model, the soft and hard items
are placed nearby each other. The items are spread over the surface with some items
lying closer to objects of a different class. In figure 3.12d it can be seen that using
the developed model, the soft and hard items are placed separately and nearby items
belonging to the same class. The cluster centers of hard and soft items are further
apart using the developed model. This can also be concluded from table 3.8 in which
the calculated distances MS and MD are shown after placement of all items. It can be
observed that for the developed model, all placed items lie closer to items belonging to
the same class than to items of a different class; the MS is smaller than MD for all
items. The mean MS for the developed model is also significantly lower than the mean
MD. This is not the case for the baseline model. The baseline model results in a scene
in which some items are placed closer to objects belonging to a different class. While
the mean MS for the baseline model is smaller than the mean MD, the difference is not
much compared to the developed model.

(a) Initial scene (b) List of items

(c) Resulting scene using base-
line

(d) Resulting scene using
model

Figure 3.12: Packing ten items using baseline and developed model.
The ten items (b) are packed one by one in the initial box (a) using the
baseline and developed model. The resulting scene after packing all ten
items are shown (c and d) in which the cluster center for soft items is
represented with an orange dot and the cluster center for hard items

with a blue dot.



Chapter 3. Results 29

Acting object MS (in m) MD (in m)

Apple 0.140 0.303
Orange 0.053 0.215
Apple 0.178 0.106
Bleach cleanser 0.156 0.106
Apple 0.142 0.125
Apple 0.053 0.221
Orange 0.181 0.082
Chips can 0.156 0.106
Peach 0.196 0.106
Peach 0.052 0.220
Mean 0.131 0.159

(a) Baseline

Acting object MS (in m) MD (in m)

Apple 0.115 0.199
Orange 0.122 0.271
Apple 0.053 0.167
Bleach cleanser 0.106 0.199
Apple 0.111 0.122
Apple 0.126 0.325
Orange 0.111 0.211
Chips can 0.106 0.122
Peach 0.115 0.275
Peach 0.053 0.212
Mean 0.102 0.210

(b) Model

Table 3.8: Calculated distances MS and MD after placement of all items
for the case in figure 3.12
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4. Discussion and Conclusion

4.1 Discussion

This thesis aimed to learn object-object affordances to predict where an item should be
placed in a box during an item packing task. Using a simulator called SAPIEN and ob-
jects from the YCB and ShapeNet dataset, large-scale interaction data simulating item
packing is generated. After generating large-scale realistic interaction data where items
are placed in stable and semantically plausible positions, i.e., placing items according
to their categorical labels, the developed model is trained. Using the developed model,
predictions are made where each point on the scene pointcloud is labeled with an affor-
dance value with a higher value indicating a better placement. The position with the
highest predicted value is then taken to be the predicted placement position. Hereby,
the predicted positions must be both geometrically feasible and semantically plausible.
By building an item packing pipeline that places an item on the predicted placement
position, several experiments are performed to analyze the model’s performance, com-
pare it with the baseline model and evaluate the generalizability of the model to novel
items and real data. The predictions made by the model are evaluated empirically by
observing the heatmaps and quantitatively using the minimum distance to object of
same class (MS) and minimum distance to object of a different class (MD) metrics for
the predicted position.

Results show that the model is successful in making predictions that are both stable
and semantically plausible, following the learned relationships between items it has seen
during training. The predicted positions where the items are placed lie closer to items
belonging to the same class and further away from items belonging to another class.
The model is also successful in learning cases where soft items can be placed on top of
hard stackable items or nearby similar items. The MS being smaller than MD and the
low standard deviations of the predictions indicate that the model successfully makes
semantically plausible stable predictions. While the predicted positions are plausible,
the predicted heatmaps could have been less spread out; red regions could have been
clustered closer to items it belongs to. Comparisons with the baseline model show
a significant difference in the predictions. While the baseline model is able to predict
stable positions, the model has learned the semantic relationships and places items stably
accordingly.

To evaluate whether the model can generalize to novel items, experiments with
two novel items are carried out. For two novel items, scenes are generated and using
the model, predictions are made repeatedly. Results show that predictions made by
the model lie closer to the items with similar properties than those without; the MS
is smaller than the MD. Based on the computed mean values for MS and MD and
standard deviations, it is found that the model is repeatedly making plausible predictions.



Chapter 4. Discussion and Conclusion 31

Thus, the model is successful in adapting to novel items.
To evaluate whether the model can generalize to real data, an Intel RealSense depth

camera is used to capture real pointcloud data of boxes. For several known items,
predictions are made on real world data. It can be observed that the predicted positions
lie closer to items belonging to the same class. However, the model is having difficulty
as the predicted heatmaps are more spread out than they could have been. There are
also red-colored regions unsuitably located on top of other items, which is undesired.
The reason for the model having difficulty on real pointcloud data of boxes is that the
used box and items inside the box are both novel for the model. While a similar box and
items are used during data generation in the simulator, they are not the same. At the
same time, there is a difference in the environmental conditions between the simulator
and the real world. Therefore, the model’s performance on real data is believed to
improve if real data is combined with the generated synthetic data during the training
of the model. Using this method, the training data can be enriched, and the model can
learn properties intrinsic to real data.

Experiments have also been performed in packing a list of items as opposed to single
items. In section 3.6, several item packing experiments are performed in which a list of
items in a random order is packed. The model has been tested on packing three, seven,
and ten items, respectively. It can be observed that the model’s predictions result in the
successful packing of items. The items are predicted and placed on positions that lie
closer to items belonging to the same class; The MS is smaller than MD. It can also
be observed that the model has learned that soft items can be placed near other soft
items and on top of hard stackable items. Comparisons with the baseline show that the
baseline results in placements in which soft and hard items are placed randomly on stable
positions. However, the developed model results in placements where items belonging
to the same class are grouped together away from items belonging to a different class.

4.2 Conclusion

The aim of this thesis was to learn object-object affordances to predict a placement
position in a box in an item packing task. Using a simulator called SAPIEN and objects
from the YCB and ShapeNet dataset, large-scale interaction data simulating item pack-
ing is generated. After generating large-scale interaction data where items are placed in
stable positions and on semantically plausible positions, i.e., placing items according to
their categorical given labels, a developed model is trained. The model takes as input
a complete 6D pointcloud of the item to be placed and a partial 6D pointcloud of the
box in which each point consists of XYZ coordinates and RGB colors. The output of
the model is an affordance heatmap where each point on the scene pointcloud is labeled
with a value between zero and one, with a higher value indicating a better placement.
The position with the highest predicted value is then taken to be the predicted place-
ment position. Thus, the predicted positions must be both geometrically feasible and
semantically plausible. By building an item packing pipeline that uses the trained model
to pack items, experiments are performed to evaluate the performance on packing single
items, novel items, real data, and packing a list of items.
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Results show that the model is successful in making predictions that are both stable
and semantically plausible. The predicted positions where the items are placed lie closer
to items belonging to the same class and further away from items belonging to another
class. The model has also successfully learned cases where soft items can be placed on
top of hard stackable items or nearby similar items.

Future work could be done to investigate how the predictions change with more items
and/or different boxes. For example, more items and/or different boxes can be used
rather than the selected fourteen items and a single box. At the same time, exploring a
variable orientation of the items can be interesting as they are kept fixed now.

Considering the performance on real data, another future work could be done by
adding real data to the training data set and investigating how the predictions improve.
Furthermore, it could also be explored how to deploy the built pipeline on a real robot.
Because of the usage of depth cameras like Intel RealSense, deployment on a real robot
is suitable.

Another interesting further research could be done in developing and incorporating
a cost function that maximizes the empty free space during placements. This could
help to decrease the distance between placed objects to pack the items more tightly
together and maximize the free space during item packing.
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Appendix A

(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 1: Prediction for chips can. The model takes as input the point-
cloud of the acting object(a) and scene(c). The model outputs a predic-
tion heatmap(b) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(d) with MS and MD distances visualized with a green

and red arrow, respectively. MS = 0.176m, MD = 0.296m
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(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 2: Prediction for chips can. The model takes as input the point-
cloud of the acting object(a) and scene(c). The model outputs a predic-
tion heatmap(b) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(d) with MS and MD distances visualized with a green

and red arrow, respectively. MS = 0.120m, MD = 0.269m
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(a) Acting object (b) Prediction baseline (c) Distances base-
line. MS = 0.214m,

MD = 0.232m

(d) Scene (e) Prediction developed
model

(f) Distances developed
model.MS = 0.140m,

MD = 0.221m

Figure 3: Comparison between baseline and developed model for a bleach
cleanser. The model takes as input the pointcloud of the acting object(a)
and scene(d). The baseline and developed model output a prediction
heatmap(b and e) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(c and f) with MS and MD distances visualized with a

green and red arrow, respectively.
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(a) Acting object (b) Prediction baseline (c) Distances baseline.MS =
0.112m, MD = 0.212m

(d) Scene (e) Prediction developed
model

(f) Distances developed
model.MS = 0.244m,

MD = 0.322m

Figure 4: Comparison between baseline and developed model for a bleach
cleanser. The model takes as input the pointcloud of the acting object(a)
and scene(d). The baseline and developed model output a prediction
heatmap(b and e) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(c and f) with MS and MD distances visualized with a

green and red arrow, respectively.
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(a) Acting object (b) Prediction baseline (c) Distances baseline.MS =
0.243m

(d) Scene (e) Prediction developed
model

(f) Distances developed
model.MS = 0.062m

Figure 5: Comparison between baseline and developed model for an
apple. The model takes as input the pointcloud of the acting object(a)
and scene(d). The baseline and developed model output a prediction
heatmap(b and e) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(c and f) with MS distance visualized with a green

arrow.
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(a) Acting object (b) Prediction baseline (c) Distances baseline.MS =
0.146m

(d) Scene (e) Prediction developed
model

(f) Distances developed
model.MS = 0.054m

Figure 6: Comparison between baseline and developed model for an
apple. The model takes as input the pointcloud of the acting object(a)
and scene(d). The baseline and developed model output a prediction
heatmap(b and e) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(c and f) with MS distance visualized with a green

arrow.
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(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 7: Prediction for orion pie. The model takes as input the point-
cloud of the acting object(a) and scene(c). The model outputs a predic-
tion heatmap(b) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(d) with MS and MD distances visualized with a green

and red arrow, respectively. MS = 0.221m, MD = 0.280m
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(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 8: Prediction for orion pie. The model takes as input the point-
cloud of the acting object(a) and scene(c). The model outputs a predic-
tion heatmap(b) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(d) with MS and MD distances visualized with a green

and red arrow, respectively. MS = 0.016m, MD = 0.333m
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(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 9: Prediction for cleanser. The model takes as input the point-
cloud of the acting object(a) and scene(c). The model outputs a predic-
tion heatmap(b) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(d) with MS and MD distances visualized with a green

and red arrow, respectively. MS = 0.143m, MD = 0.290m
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(a) Acting object (b) Prediction

(c) Scene (d) Distances

Figure 10: Prediction for cleanser. The model takes as input the point-
cloud of the acting object(a) and scene(c). The model outputs a predic-
tion heatmap(b) in which the position with the highest predicted value
is highlighted with a blue dot. The item is then placed on that position
resulting in scene(d) with MS and MD distances visualized with a green

and red arrow, respectively. MS = 0.209m, MD = 0.309m
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Figure 11: Packing 3 items. For each item to be packed, the predicted
heatmap is shown with the position with the highest predicted value
highlighted with a blue dot. The MS and MD distances are represented
with green and red arrows in the last image, respectively. MS = 0.137m,

MD = 0.362m
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