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Summary 

Worldwide, over a million fatal road accidents occur each year. The majority of these crashes are 

caused by inadequate longitudinal control performance such as late braking and close following. 

Despite the fact that car driving is primarily a visual task, there is yet no clear understanding of 

how drivers control their vehicle in safety-critical conditions as a function of visual information. 

Understanding the visual information needs of drivers in different safety-critical conditions is a 

prerequisite for designing and validating interventions (e.g., support systems and training 

programs) that reduce the number and severity of collisions. 

Longitudinal and lateral control tasks of driving an automobile have been extensively studied as 

tracking control problems. However, studies of drivers’ behaviour in collisions have been scarce 

in general and particularly in terms of drivers’ control performance. Most of the driving 

behaviour research considers the brake reaction time as the main factor in assessing drivers’ 

behaviour in safety-critical conditions. Comparatively little is known about the performance of 

drivers after the brake onset, including the dosing and duration of the brake pedal input. In 

addition, previous studies did not clearly investigate the effect of visual/physical conditions such 

as the gap and the relative velocity between drivers and other road objects, and the visibility 

condition of the road on the performance and risk assessment of drivers.   

In current traffic systems, drivers are responsible for navigating the vehicle safely. A variety of 

technological interventions have been developed to assist drivers in collision prone conditions.  

These technological systems often use absolute visual information (e.g., distance, time headway) 

to control the vehicle without taking into account driver perception. Therefore, there may be a 

mismatch between what such systems do and what drivers expect from such systems to do. Little 

human factors knowledge is available about how to design driver support systems that improve 

longitudinal control performance of drivers.  

The first objective of this thesis is to understand how the availability and quality of visual 

information in safety-critical driving conditions shapes drivers’ longitudinal control 

performance. Following this, the second objective of this thesis is to design and investigate the 

effectiveness of a technological solution for improving longitudinal control performance. A total 
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of four driving simulator experiments were conducted that assessed the effects of degraded-

vision and augmented-vision conditions in safety-critical stopping and car following tasks.  

The first experiment (Chapter 2) examined the effect of visual information on braking 

performance of drivers faced with a decelerating lead car. Four lead-car braking conditions were 

created by varying the deceleration of the lead car (1.7 vs. 6.5 m/s2) and the distance between the 

participant’s car and the lead car (13.4 vs. 33.4 m). Three visual conditions were tested: lead-car 

brake lights, no lead-car brake lights, and visual occlusion at the onset of lead-car deceleration. 

The braking behaviour of drivers has been analysed by relating the braking input of the driver to 

the visual information of the driving condition. The results showed that an occlusion as short as 

0.4 s (about the duration of a glance on the speedometer) can dramatically increase crash risk. 

This implies that if following at a 0.5 s time headway (a short but not unrealistic headway), any 

off-road glance should be avoided. Brake lights were found to reduce brake reaction times when 

the lead-car deceleration was small (1.7 m/s2) but had little added value when the lead car 

engaged in an emergency stop (6.5 m/s2). In summary, the results of the first experiment indicate 

that an off-road glance when the most critical driving condition (short headway, high 

deceleration of the lead vehicle) occurs significantly increases the number of crashes. Even alert 

drivers require continuous visual information to be able to avoid collisions in very critical 

conditions. 

The second experiment (Chapter 3) investigated the braking performance of drivers when 

stopping at a stationary target as a function of the temporal demand of the braking event and the 

presence versus absence of visual information during braking. The access to visual information 

was manipulated by occluding the screen at the start of half of the braking trials, and the 

temporal demand was manipulated by changing the time-to-arrival (TTA) at the onset of braking. 

Contrary to expectations, it was found that the lack of visual information after the brake onset 

reduced the maximum brake force applied by drivers, especially in braking events with short 

TTAs (≤ 4 s). For the larger TTA values (≥ 6 s), participants in the occlusion condition stopped 

too early and at variable positions on the road as compared to the non-occluded condition. In the 

occlusion condition, participants were likely to apply an intermediate brake pedal depression, 

whereas in the non-occluded condition participants applied low or high pedal depressions. 
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Overall, the findings indicate that without vision, drivers underestimate the required brake input 

for optimum performance in safety-critical conditions. The availability of visual information 

during a stopping task improves performance, even when the stopping task is urgent. This is in 

line with the findings in Chapter 2 which showed that drivers need (continuous) visual 

information even when an ‘open loop’ braking action would in theory suffice. 

The third experiment (Chapter 4) investigated the underlying causes of the paradoxical 

phenomenon that drivers adopt short distance headways in fog compared to clear visibility 

conditions. The effects of visual information (fog vs. clear weather) and automation (adaptive 

cruise control vs. manual driving) on the subjective feeling of risk (measured during driving 

using a touch screen) and steering activity at different distance headways were examined. The 

results show that participants’ feeling of risk was lower in clear weather than in fog, especially 

when the headway was large. It is concluded that participants in fog try to keep the lead car just 

in sight, and that the lead car provides a guide resulting in reduced lateral control activity.  

In line with the findings of Chapters 2 and 3, a lack of visual information of the lead car was 

found to be detrimental for the performance of drivers. It is concluded that, having access to 

continuous visual information is so critical that drivers reduce their headway to improve the 

availability and quality of visual information. The results suggest that except for extremely short 

headways, keeping the vehicle at the edge of the visibility threshold reduces the perceived risk. 

The results also showed that extremely short headways induce elevated feelings of risk, even 

when the driving task is automated. It is argued that adaptive cruise control systems should either 

avoid extremely short headways or include a driver information system to reduce the level of risk 

that drivers perceive in very close following distances. 

In the final experiment (Chapter 5), a head-up display (dubbed Rear Window Notification 

Display, or RWND) was developed to improve the driver’s manual car-following performance 

by continuously visualizing the lead car’s acceleration and time headway on the rear window of 

the lead car. The effect of the system (RWND off vs. on) on the car following performance was 

determined when following a lead car driving with variable speed. The results showed that the 

RWND reduced both the mean and standard deviation of time headway, but did not increase the 

occurrence of potentially unsafe headways of less than 1 s. Using a linear car-following model, it 



xiii 

 

was shown that when assisted by the display, participants improved their performance by 

adopting higher control gains with respect to inter-vehicle distance, relative speed, and 

acceleration compared to when they were not assisted.  

In Chapter 6 a short literature review is provided on human factors issues of automated driving. 

It is shown that automation is no panacea and may actually lead to new types of risk compared to 

manual driving, such as overreliance, loss of skills, and behavioural adaptation. Several design 

solutions are proposed that inform and involve the human driver about the situation ahead and 

the automation status. Moreover, several design requirements are proposed for a cooperative 

adaptive cruise control (CACC) system that allows for platooning with short headways. The 

results of this chapter reinforce statements made in the earlier chapters that drivers need to be 

properly informed about the environment and automation status.  

In Chapter 7, the results are summarized and the findings of Chapters 2 to 5 are interpreted by 

means of perceptual control models. A comparison between the experimental results and the 

reviewed theoretical models suggests that the perceptual sensitivity of drivers improves when the 

distance headway decreases, which in turn improves the accuracy of drivers’ longitudinal control 

performance. The control models also support the performance results of the RWND system, 

where direct operational information about the acceleration and deceleration of the lead car 

provided bypasses the perceptual sensitivity threshold of drivers. Driving simulators have been 

considered as suitable tools with relative validity to test the effects of the availability and quality 

of visual information on longitudinal control of the vehicle in collision-prone conditions. Driving 

simulator provides an environment free of physical risk even when a driver fails to avoid a 

collision. The visual and kinematics conditions of simulated driving scenes are also controllable 

to a great extent. This chapter also further justifies the ecological validity of the tasks, and the 

kinematics and the frequency of the events tested in the previous experiments, and suggests 

several future research directions on related road safety issues.  

When a collision is imminent and there is a need for a rapid manoeuvre within a very small time 

frame (less than a few seconds), drivers who are not fully occupied by the driving task do not 

have their full attention resource available to intervene. Having an understanding of the 

limitations of drivers in these safety-critical conditions is a prerequisite for designing 
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technologies that aim to enhance the performance of drivers in such situations. This thesis 

generated knowledge on how drivers visually control their vehicle in safety-critical conditions by 

showing the critical role of visual feedback in such situations and how disturbances in visual 

information during these conditions affect longitudinal control performance. The thesis also 

showed how drivers reduce their following distance as an adaptation mechanism to cope with the 

performance decline when the quality of visual information is degraded. Such knowledge led to 

the development of a RWND that keep drivers ‘in the loop’ while benefiting from technological 

advances. The findings of this work highlight the deficiencies that exist in drivers’ control of the 

vehicle in safety-critical situations and demonstrated the viability of cooperation between the 

human driver technologies, such as the RWND, to support drivers’ intervention in situations 

prone to longitudinal crashes. The results suggest that the RWND can be used along with CACC 

to increase network capacity without degrading safety. Mental workload and distraction effects 

should be evaluated in further experiments, including on-road testing in a naturalistic 

environment and with a more diverse population. 
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1. The dangers of driving 

Since their appearance on the roads, automobiles have been perceived as a technology that 

provides individual freedom and mobility (Blanke, 2007). However, societies are now facing 

serious challenges, such as air pollution, congestion, and traffic injuries (e.g., Wald, 1999). 

About 1.25 million people are killed on roads every year and traffic collisions remain one of the 

main public health issues across the world (World Health Organization, 2015). When the first 

fatal car accident in the UK occurred in 1896, the coroner at that time was quoted as saying: 

“such a thing would never happen again” (McFarlane, 2010). More than 100 years later, the 

reality of road safety is far different from the ideal world of the coroner and many others. 

Road safety is the outcome of interactions between the vehicle, the roadway, and the driver. 

Among this triad, the driver has been identified as the causal factor in 90% and the sole cause in 

about 60% of collisions (Evans, 1996; Storie, 1977, Treat et al., 1979). The driver is responsible 

for remaining attentive and detecting adverse events, and for providing appropriate control inputs 

to mitigate collision. Improper lookout and distraction are among the most frequent causes of 

collisions (Klauer, Sudweeks, Hickman, & Neale, 2006; Treat et al., 1979). Additionally, high 

speed (Aljanahi, Rhodes, & Metcalfe, 1999; Finch & Kompfner, 1994; Svenson, Eriksson, & 

Gonzalez, 2012; Winter, 2008) and tailgating (Adell, Várhelyi, & Fontana, 2011; Chen, Shen, & 

Wang, 2013; Colbourn, Brown, & Copeman, 1978) are among the main causal factors in a 

substantial number of road collisions in general and rear-end collisions in particular. 

2. Longitudinal control: Critical to road safety 

Drivers can avoid a collision through appropriate lateral control (i.e., to change the direction of 

motion via the steering wheel) and/or longitudinal control (i.e., to change the speed via the brake 

pedal and accelerator). Drivers control the speed and direction based on the information that they 

receive. A control adjustment follows the driver’s perception of changes in the driving scene and 

whether these changes require drivers to intervene and compensate. Lateral and to a lesser extent 

longitudinal control tasks of driving an automobile have been extensively studied as tracking 

control problems (e.g., McRuer, Allen, Weir, & Klein, 1977; Nash, Cole, & Bigler, 2016; Steen, 

Damveld, Happee, Van Paassen, & Mulder, 2011). However, collision avoidance is not a classic 
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tracking problem, in particular if braking is the mechanism that the driver uses to avoid a 

collision. Most of the car following models consist of lumped parameters that produce the best fit 

between the model performance output and an existing driving performance dataset over a long 

driving period where braking is a small portion of the overall driving time (Gipps 1981; 

Markkula, Benderius, Wolff, & Wahde, 2012).  

The lack of integration of human behaviour insight has been mentioned as one of the limits of 

many car following models in general and braking models in particular. For example in the 

majority of the models, the lack of visual information (eye-off-road) is accounted for by a pure 

delay. The earlier version of these models did not consider any control during the response onset 

and assume an immediate reaction to the obstacle even at long distances (Bevrani, Chung, & 

Miska, 2012). Although some of these models assume pre-defined drivers’ behaviours, the 

empirical or theoretical validation basis of such assumptions are not well known. For example, 

one class of models assumed that drivers start their deceleration with a delay with respect to the 

stimulus and apply a constant deceleration (Brown, Lee, & McGehee, 2001; Fitch et al., 2008).  

The integration of the effects of viewing distance (near vs. far), the nature of the task (leader-

follower vs. stopping at an on-the-road position task), and the nature of the motion (slow vs. fast 

deceleration) into a space perception model of drivers is a necessary step to accurately predict 

the limits and capabilities of drivers and to develop systems that complement drivers perception 

and performance as the driving space changes. 

This thesis focuses on longitudinal control of the vehicle in collision-prone situations. 

Naturalistic driving studies have found that when trying to avoid an accident, about 85% of 

drivers only braked, 10% both braked and steered, and 5% only steered (Lee, Llaneras, Klauer, 

& Sudweeks, 2007, see also Cheng et al., 2011). Rear-end collisions account for 25% to 30% of 

motor vehicle injury accidents (Kiefer, LeBlanc, Palmer, Salinger, Deering, & Shulman, 1999; 

National Safety Council, 2011). Timely and proper braking can make a significant impact on 

driving safety by avoiding rear-end collisions. A kinematic analysis of driving also shows that 

between steering and braking, the latter is the only possible safe intervention in low speed (< 50 

km/h) emergency events, if the time to collision is less than 1 second (Allen, Rosenthal, & 

Aponso, 2005).  
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The longitudinal control task has been extensively studied using computer simulations and 

offline car following models (e.g., Touran, Brackstone, & McDonald, 1999). However, empirical 

studies on drivers’ performance in collision scenarios have been scarce. Most of the available 

empirical research considers the brake reaction time as the main variable for assessing drivers’ 

performance in safety-critical conditions (e.g., Green, 2000). Little is known about the 

performance of drivers after the brake onset, including the duration and dosing of the brake pedal 

input in critical events (Markkula et al., 2012). The knowledge about the sensory, perceptual, 

cognitive, and motor mechanisms during collision avoidance has been described as fragmented 

and having limited validity (Markkula et al., 2012). A paradoxical observation in fog, for 

example, is that drivers reduce their headways compared to clear weather conditions (Hawkins, 

1988; White & Jeffery, 1980). Little is known about why and how drivers change their behavior 

as a function of visibility, and or whether this relates to collision risk. 

There are few potential reasons for the scarcity of collision studies. First, collisions and near-

collisions are rare events by definition. Second, it is a technical and operational challenge to 

record and access data of such events in the real world. Third, to experimentally study the 

performance of drivers in safety-critical conditions is ethically challenging, and violates the code 

of conduct of the scientific community. Accordingly, all research in this thesis has been 

conducted in driving simulators rather than in real vehicles. Simulators allow researchers to 

expose participants to safety-critical events in a controlled manner, without physical risk.  

3. How to support drivers with technology? 

Drivers slow down the vehicle by putting pressure against the brake discs, a concept originating 

from horse carriages, and first used in car driving by Benz Velo in 1893 (Akamatsu, Green, & 

Bengler, 2013). The interaction mechanism between the driver and the brake system, whereby 

the driver activates and modulates the amount of the brake force using a pedal, has been the same 

for about a century or more. However, a recent trend is to make cars capable of avoiding 

accidents. It is possible to assist or complement the driver’s role in risky situations, either 

through warnings or by intervening when the risk level exceeds a threshold (e.g., Automated 

Emergency Braking). Another solution is to take the driver out of the control loop entirely by 

means of automated driving systems. The idea of using technology to mitigate accidents sounds 
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reasonable in theory. The irony, however, is that the car is still designed by fallible humans and 

that a fallible driver is still present in the vehicle. In fact, the main challenge in implementing 

active safety systems is said to be the human factor: “the hardest problems associated with … 

many related transportation technologies are ‘soft;’ that is, they are human factors issues of 

safety, usability, and acceptance .... These are problems that are many times more difficult to 

overcome and must be overcome, largely, in parallel with the traditionally ‘hard’ technological 

issues” (Levitan, Golembiewski, & Bloomfield, 1998, p. 111).  

4. Objectives and outline of this thesis 

As stated above, it is important to understand drivers’ limitations and abilities in mitigating a 

potential collision. The first objective of this thesis is to quantify how visual information shapes 

longitudinal control performance. For this purpose, the so-called visual occlusion technique is 

used, which is a common method for determining the visual demands of car driving (Van der 

Horst, 2004; Senders, Kristofferson, Levison, Dietrich, & Ward, 1967). The second objective of 

this thesis is to investigate the effectiveness of technological solutions for improving longitudinal 

control performance. This thesis proposes a head-up display that supports drivers in maintaining 

a safe and constant headway with respect to a car in front. This solution is seen as a useful 

alternative to automated driving systems that keep the driver out of the control loop.  

Chapters 2 and 3 examine to what extent driver’s visual perception can be relied on to avoid 

collisions in longitudinal maneuvers. The effects of the availability of visual information and the 

urgency of the situation were investigated in two simulated longitudinal control tasks: stopping 

at a target and driving behind a decelerating vehicle. Specifically, Chapter 2 presents the results 

of a driving simulator experiment in which participants drove behind a vehicle that suddenly 

slowed down. At the moment of lead car brake onset, the screen was occluded, with the aim to 

investigate how a brief period of visual distraction affects braking performance and collision 

risk. Chapter 3 examines the extent to which the braking task is an open loop control process. To 

do so, the study investigated how well participants can perform a stop at a target task as a 

function of the presence or absence of the visual information and the available braking time.  

Chapter 4 studies why drivers adapt shorter headway when they follow a vehicle in fog where 

the visibility condition is restricted. The changes in participants’ perceived risk and performance 
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were measured, and the utility of the results for designing systems that help drivers in 

longitudinal control in low visibility conditions are discussed. 

Chapter 5 presents the design and investigates the effectiveness of a head-up display that assists 

drivers in longitudinal control to maintain their headway from a lead car that follows a non-

steady speed profile. The aim of this display was to assist drivers by displaying combined 

information of lead-car acceleration and time headway advice on the rear window of the lead car. 

The design was based on the premise that a display giving visual feedback on lead-car 

acceleration and time headway will act as a sensory aid for human drivers and thus enhances 

their performance in maintaining a constant headway with respect to the lead car.  

Through reviewing the challenges of having automated driving systems from a human-factors 

perspective, Chapter 6 highlights human-machine interaction needs for automated vehicles and 

proposes design requirements for Cooperative Adaptive Cruise Control. Chapter 7 provides a 

general discussion of the conducted studies and suggests opportunities for future research.  

Each of the chapters is readable in isolation. That is, Chapters 2–6 each have their own 

introduction and literature review, methods, results, and discussion section. 
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CHAPTER 2 

The effect of a short occlusion period on subsequent braking behavior: A 

driving simulator study  

 

Abstract 

Most rear-end collisions occur because of visual distraction, but little is known about drivers’ 

braking behavior after a period of distraction during which relevant visual information is 

unavailable. The aim of this paper was to investigate the effects of (1) visual occlusion and (2) 

the absence of brake lights, on drivers’ braking behavior. In three driving simulator tests (1 = 

brake lights, 2 = no brake lights, 3 = occlusion), participants followed a car at 13.4 or 33.4 m 

distance with a speed of 96 km/h. At certain moments, the lead car decelerated moderately (1.7 

m/s2) or strongly (6.5 m/s2). In the occlusion condition, the screens of the simulator blanked for 

0.4 or 2.0 s when the lead car started to decelerate. Participants were instructed to brake after the 

occlusion ended. Results showed that occlusion (i.e., endured delay) had a detrimental effect on 

inter-vehicle distance, especially in the urgent braking condition (6.5 m/s2, 13.4 m), with 

collision prevalences of 18%, 29%, and 67%, for the brake lights, no brake lights, and occlusion 

conditions, respectively. Brake lights reduced the brake reaction times when the lead-car 

deceleration was small (1.7 m/s2) and not as much when the lead-car deceleration was large (6.5 

m/s2). In conclusion, if the conditions are unfavorable (short headway combined with a large 

lead-vehicle deceleration), then visually distracted drivers are often unable to adapt their braking 

to mitigate an impending collision. These findings complement existing research on driver 

distraction by showing that a visual distraction as short as a glance at the speedometer can 

dramatically increase crash risk, even when drivers are biomechanically and cognitively prepared 

to brake.  

Saffarian, M., De Winter, J. C. F., & Senders, J. W. (2015). The effect of a short occlusion period 

on subsequent braking behavior: A driving simulator study. Manuscript submitted for 

publication.
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1. Introduction 

Each year, road traffic crashes kill over 1.2 million people, with an additional 20 to 50 million 

people suffering non-fatal injuries (Lozano et al., 2013; World Health Organization, 2013). Rear-

end collisions account for about 20 to 30% of the road traffic crashes (Knipling et al., 1993; 

NHTSA, 2014; Sullivan & Flannagan, 2003). Driving simulator studies and naturalistic driving 

studies have found that when avoiding a collision, the majority of drivers braked without 

steering, despite the fact that the optimal maneuver is often steering alone or steering in 

combination with braking (Adams, 1994; see also Lee, Llaneras, Klauer, & Sudweeks, 2007). 

Over the history of traffic safety research, several efforts have been made to predict and improve 

drivers’ brake reaction time (e.g., Greenshields, 1936; Johansson & Rumar, 1971; Young & 

Stanton, 2007), with brake reaction time defined as the time between the start of the lead vehicle 

deceleration (often communicated with a brake light) and the start of pressing the brake pedal. 

Green (2000) argued that the level of expectation and the degree of urgency to brake, as well as 

age, gender, and cognitive load (i.e., cognitive distraction) are primary factors influencing brake 

reaction time. He further argued that the level of expectation is the most important factor, with 

average brake reaction times being about 0.7 s for situations that are entirely expected and 1.5 s 

or more for situations where an object/stimulus suddenly appears on the road (see also Lerner, 

1993; Summala, 1981, Taoka, 1989). In a more recent literature survey, Summala (2000) argued 

that visual distraction is another factor that determines the brake reaction time. Summala 

concluded that if drivers are attentive, they are usually able to brake in about 1.0 s. However, if 

drivers are visually distracted (e.g., looking at the mid console), they may detect a braking lead 

car with a delay of up to 5 s, depending on the timing and duration of the off-road glance.  

Visual distraction is the cause of a large portion of rear-end collisions (Ghazizadeh & Boyle, 

2009; Young & Regan, 2007). Results of a naturalistic driving study showed that 78% of crashes 

“involved the driver looking away from the forward roadway just prior to the onset of the 

conflict” (Dingus et al., 2006, p. 162). Similarly, an in-depth analysis of 74 rear-end collisions 

concluded that driver inattention to the driving task and following too closely were the two most 

common causal factors (Knipling et al., 1993). The authors concluded that “together or 

separately, these two factors were associated with 93 percent (weighted) of the clinical sample” 
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(p. ES-2). A recent analysis of a naturalistic driving dataset comprising 905 crash events 

confirmed these observations and concluded that distraction was a factor in 68.3% of the crashes 

(Dingus et al., in press). 

Although it is now an epidemiologically well-established fact that distraction is an important 

cause of crashes, relatively little is known about how a distracted driver brakes in a critical 

situation in order to mitigate collision. Most information on near-collision driver behavior has 

been based on computer simulations that are yet to be validated (Markkula, Benderius, Wolff, & 

Wahde, 2012). It is obvious from classical mechanics that the delayed brake reaction time 

associated with distraction increases the stopping distance compared to not being distracted (e.g., 

Lee, 1976). However, what is predicted by mechanistic equations may not hold in practice 

because drivers are likely to compensate for increased risk. For example, if a distracted driver is 

confronted with a decelerating lead vehicle, he or she may abruptly and deeply press the brakes 

in order to prevent collision, and therefore not be more likely to end up in a collision than a non-

distracted driver who presses the brake earlier. Other than crude outcome measures such as brake 

reaction time and whether or not a driver brakes or crashes, there is little empirical evidence of 

how a distracted driver actually brakes when a collision is imminent. Our observation concurs 

with Hancock and De Ridder (2003) who argued that “quantitative aspects of behavioral 

response in the vital milliseconds before collision has rarely been reported” (p. 1115). 

The aim of the present driving simulator study was to investigate how occlusion (i.e., not being 

able to look at the front scene) affects the braking response time of drivers who are tasked and 

prepared to brake right after the visual view is restored. Visual occlusion is a technique that has 

previously been used to study how drivers respond to a lack of visual information, and to 

determine the minimum visual information required to drive a car. The occlusion method has its 

origins in the 1960s (Senders, Kristofferson, Levison, Dietrich, & Ward, 1967), and has been 

applied in various driving tasks, such as lane keeping, cornering, braking, and hazard 

anticipation (e.g., Akamatsu, Green, & Bengler, 2013; Andersen, Cisneros, Atchley, & Saidpour, 

1999; Borowsky et al., 2015; DeLucia & Tharanathan, 2009; Kujala et al., in press; Saffarian, De 

Winter, & Senders, 2015; Van Der Horst, 2004; Van Leeuwen, Happee, & De Winter, 2014). By 

means of occlusion, the effect of just visual distraction (‘eyes-off-road’) was assessed. In other 

words, our research is not concerned with cognitive distraction (‘mind-off-road’), biomechanical 
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distraction (e.g., manually adjusting the radio), or auditory distraction (e.g., responding to a 

ringing cell phone; see Ranney, Garrott, & Goodman, 2001, for a taxonomy of distraction types).  

In our driving simulator experiment, four lead-car braking conditions were created by 

manipulating the deceleration magnitude of the lead car and the distance between the following 

and lead car. The selected deceleration magnitudes of 1.7 and 6.5 m/s2 are within the ranges 

reported in previous studies (e.g., Touran, Brackstone, & McDonald, 1999). The selected 

headways were 13.4 and 33.4 m from bumper to bumper, which at our instructed speed of 96 

km/h correspond to time headways (THWs) of 0.5 and 1.25 s, respectively. A THW of 0.5 s can 

be regarded as a ‘minimum safe distance’ adopted by a sizeable portion of drivers on highways, 

whereas a THW of 1.25 s is regarded as comfortable and common in busy highway traffic 

(Hoogendoorn & Botma, 1997; Neubert, Santen, Schadschneider, & Schreckenberg, 1999; Song 

& Wang, 2010; Taieb-Maimon & Shinar, 2001; Treiber, Kesting, & Helbing, 2006). Such short 

headways are common even in traffic that is not dense. For example, a field operational test 

showed that the mode of the THW distribution resides at 0.8 s, with a large portion of driving 

time spent at headways of 0.6 s and shorter (Fancher et al., 1998). Similarly, measurements with 

an instrumented vehicle by Brackstone and McDonald (2007) showed that the headway was less 

than 0.8 s for 29% of the time. 

In our study, two occlusion durations were implemented: 0.4 s (very short) and 2.0 (very long). 

Research shows that mean off-road glance durations range between 0.5 s (for quick glances at in-

vehicle information systems such as the speedometer) and 1.5 s (for complex tasks, such as when 

reading street names or interacting with route navigation devices; Dingus, Antin, Hulse, & 

Wierwille, 1989; see also Birrell & Fowkes, 2014, for a summary of the literature). Tijerina, 

Barickman, and Mazzae (2004) showed that drivers are relatively likely to look away from the 

road when the relative speed with respect to the lead vehicle is close to zero, and a recent 

analysis of naturalistic driving data by Victor et al. (2015) concluded that “the majority of … 

crashes happen because of a rapid change in situation kinematics, often occurring just after the 

driver has taken his or her eyes off the road.” (p. 84). These are also the conditions simulated in 

our research: the car following task was stationary prior to the occlusion, and drivers had to 

brake right after the occlusion. The participants completed multiple braking trials and were 

instructed what to do, which allowed us to assess the effects of occlusion delay per se, without 
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surprising the participants.  

In addition to the effect of occlusion, this study aimed to investigate the effect of the brake lights 

on the brake response compared to the same situation without brake lights. This experimental 

condition was included in order to examine whether the brake lights improve brake reaction 

times when responding to both large and small deceleration magnitudes compared to both with 

and without occlusion conditions where there is no brake light.  

2. Method 

2.1. Driving simulator 

The experiment was carried out in the NADS Minisim fixed-base driving simulator (Figure 1). 

The simulator presented the driving scene on three 42-inch plasma TVs, each with 1024 x 768 

pixels resolution. An additional 19-inch screen acted as an instrument panel. The simulator 

recorded the data of the vehicle and the control inputs at a rate of 60 Hz. Two speakers in the 

front provided stereo sound. Participants controlled the car using the steering wheel, brake pedal, 

and gas pedal, while gear changing was automated. 

 

Figure 1. NADS Minisim driving simulator. 
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2.2. Participants 

Twelve participants (10 males and 2 females) with a valid Ontario class G driving license (or 

equivalent) were recruited from the University of Toronto community. Participants were 

compensated with 30 Canadian Dollars. On average, the participants were 27.0 years old (SD = 

6.8, min = 21, max = 43) and had obtained their first driving license 7.4 years ago (SD = 4.5, min 

= 2, max = 16). Seven participants had previous experience driving a simulator (3 one time, 3 

two times, and 1 three times). Four participants drove between 100 and 1,000 km/year, 6 

participants drove between 1,000 and 10,000 km/year, and 2 participants drove between 10,000 

and 100,000 km/year (see the information questionnaire in Appendix A.2).  

2.3. Experimental schedule  

The experimental schedule is shown in Figure 2. After arrival, participants read and signed an 

information/consent form. The form described the simulator controls, the experimental steps, and 

the driving tasks. Next, participants filled out an intake questionnaire that collected their 

demographic and driving history data.  

 

Figure 2. Timeline of the experiment; the dashed boxes indicate the stages at which 

questionnaires were answered; the timeline is approximate. 

2.4. Simulator training 

Each driving test was preceded by a 6 min training session. During the training sessions, 

participants gained experience with the braking tasks of the main driving tests. The driving 

environment was a straight two-lane road with a lane width of 3.66 m. The participants had to 

follow a lead car that maintained a 13.4 or 33.4 m distance (bumper-to-bumper) from the 

participants’ car through a distance-control algorithm, and then braked with a deceleration of 1.7 
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or 6.5 m/s2. The training session consisted of one braking trial for each of the four combinations 

of deceleration and distance. The time between the braking trials was about 80 s. 

2.5. Driving tests 

The experiment consisted of three driving tests, in which the visual information was different. In 

the first test condition, brake lights, the lead car’s brake lights were on when the lead car braked 

(see Figure 3, for a screenshot). In the second test condition, no brake lights, the brake lights of 

the lead car did not turn on. In the third test condition, occlusion, the simulator screens 

automatically blanked out for a short period as the lead car started to brake, and the brake lights 

of the lead car did not turn on. When the lead car deceleration was large (6.5 m/s2), the occlusion 

duration was 0.4 s. For the small deceleration of the lead car (1.7 m/s2), the occlusion duration 

was 2.0 s. The simulator applied the deceleration of the lead car with a 0.08 s delay to the event 

trigger. The sequence of the three driving test conditions was counterbalanced between the 

participants. 

 

Figure 3. The participant’s view of the lead car with brake lights activated. In this view, the 

bumper-to-bumper distance was approximately 13.4 m. 
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2.6. Braking conditions within each driving test 

Figure 4 shows the speed profiles of the lead car for the two deceleration magnitudes. In each 

braking trial, participants first followed the lead car at an instructed speed of 60 mph (~ 96 

km/h). During this phase, the lead car automatically maintained a set gap with respect to the 

participant’s car. For half of the trials the bumper-to-bumper distance was maintained at 13.4 m 

and for the other half it was maintained at 33.4 m.  

Figure 5 shows the driver’s view at these two distances. After the car-following phase, the lead 

car slowed down to 30 mph (~ 48 km/h). For half the trials, the deceleration was 6.5 m/s2 and for 

the other half it was 1.7 m/s2. The duration of the slow down for each of the two deceleration 

magnitudes was about 2 and 8 seconds, respectively. The combination of the two deceleration 

magnitudes and the two following distances generated four different types of braking conditions.  

Each of the three driving tests included four trials for each of the four braking conditions. Hence, 

in total there were 16 braking trials within each driving test. The sequence of the braking 

conditions within each driving test were presented in no discernible order and differed between 

the three driving tests.  

Figure 4. The lead car speed scheme for large (left) and small (right) deceleration. *Speed 

during the 60 s constant speed phase varied between trials, because the lead car adapted its 

speed to the participant in order to achieve a constant headway. The times are 

approximate. 
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2.7. Instructions to participants 

Participants were informed, in writing, that the goal of this study was to investigate how drivers 

use visual information to control their brakes. The form stated that the task was to drive at a 

speed of 60 mph while following the lead car, that the lead car was controlled so that it 

maintained a set distance from the participant’s car, and that the lead car suddenly braked at 

certain moments. In addition, it informed the participants that when the lead car braked, their 

task was to slow down to avoid collision. The form also stated that the participants should (1) try 

to control the brake force and avoid slamming the brakes, (2) drive swiftly but safely as in 

normal driving, (3) try to keep the car centered in the right lane and not change lanes, and (4) 

keep the right foot on the gas pedal before starting to use the brake. Note that the participants 

were asked to not slam the brakes, to prevent an unrealistic 100% pedal depression throughout 

the trial (see Appendix A.1). Participants were further informed that they would drive three test 

conditions in random order as follows: 

(1) Brake lights: the brake lights of the lead vehicle are on; you can start braking at any time 

after the lead vehicle starts braking. 

(2) No brake lights: the brake lights of the lead vehicle are off; you can start braking at any time 

after the lead vehicle starts braking, and 

(3) Occlusion: when the lead vehicle starts to brake, the screen turns off for a short period; you 

should start braking at any time after the occlusion clears (i.e., when the screen turns back on); 

the brake lights of the lead vehicle are off. It was decided to keep the brake lights off during 

braking in the occlusion condition, because the onset of the occlusion already signals that the 

lead car had started braking. 
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Figure 5. The participant’s view of the lead car when the bumper-to-bumper distance was 

approximately 13.4 m (left) and 33.4 m (right). 

2.8. NASA Task Load Index (TLX), confidence questionnaire, and post-experiment questionnaire 

After each of the three driving tests, participants stepped out of the simulator and completed the 

NASA Task Load Index (TLX) questionnaire (Hart, 2006). The questionnaire included four 

additional items that asked about feelings of risk and confidence (see Appendix A.3). We used 

this four-item questionnaire in previous driving simulator research, and found that it could 

discriminate between occlusion/low visibility and control conditions (Saffarian et al., 2015; 

Saffarian, Happee, & De Winter, 2012). The items had a 21-tick scale and ranged from Very low 

to Very high for the mental demand, physical demand, temporal demand, effort, and frustration 

items, and from Perfect to Failure for the performance item. The risk and confidence items 

ranged from Strongly disagree to Strongly agree. At the end of the experiment, participants filled 

out a questionnaire that asked about the use of any specific strategy in performing the tasks 

during each of the three visual conditions (see Appendix A.4). 

2.9. Dependent variables 

The following dependent variables were used to measure the latency and amplitude of the 

braking response: 

 Brake reaction time (s). The time between the brake onset of the lead car and the brake onset 

of the participant’s car.  
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 Maximum brake pedal displacement (%). The maximum depression of the brake pedal that 

occurred during the braking trial, expressed as percentage of the full depression.  

 Maximum brake pedal displacement time (s). The time between the brake onset of the lead 

car and the moment that the maximum brake displacement occurred.  

In addition, the following distance-related measures were defined: 

 Minimum following distance (m). The minimum distance between the participant’s car and 

the lead car (bumper-to-bumper) that occurred during the braking trial. 

 Number of collisions (%). The percentage of trials in which participant’s vehicle and the lead 

car collided. Collisions did not actually materialize during the experiment; the cars could 

drive through each other unimpeded.  

Note that the simulator recorded the brake pedal position using a potentiometer that was 

calibrated such that 0% corresponded to a fully released pedal, and 100% corresponded to a fully 

depressed pedal as used by the simulator’s vehicle dynamics model. It was determined with a 

ruler and load cell that 100% pedal depression corresponded to a pedal travel of 5 cm and a pedal 

force of about 150 N. Moreover, it was determined that the brake pedal force was approximately 

linear in the 0–100% working range. Note that 100% was not the physical maximum depression 

that could be achieved; it was in principle possible to press the brake pedal about 1 cm more 

deeply into the rubbers that the fully depressed brake pedal rests on. 

2.10. Statistical analyses 

1 of 576 trials was excluded because the participant was already braking at the moment the lead 

vehicle started to decelerate. An additional 22 trials were excluded because the headway deviated 

more than 0.5 m from the target headway (13.4/33.4 m), due to the participant not speeding up 

enough. 

After this initial filtering of trials, temporal patterns of the throttle position, brake position, lead 

and participant’s car speed, and bumper-to-bumper headway were examined. Specifically, for 

each of the three visual conditions and four braking conditions, figures were created on which 
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the horizontal axis is the time, and the vertical axis is the average value across the 48 trials (i.e., 

12 participants × 4 trials per visual condition). Note that these temporal patterns reflect the 

average response of all participants, and cannot be used by themselves to make unequivocal 

inferences about the responses of individual participants. For example, a mean brake pedal 

position of 50% could mean that half of the participants were braking with 100% brake position 

and the other 50 half were not braking, or it could mean that all participants were braking with 

50% brake position. 

As a complement to the temporal patterns, the means and standard deviations of the dependent 

measures were calculated for each of the three visual conditions and four braking conditions. 

That is, for each participant, the mean of each measure was calculated over four trials, and then 

the mean and SD of these means were calculated across the 12 participants.  

Comparisons were performed using paired t-tests between (1) brake lights versus no brake lights, 

and (2) brake lights versus occlusion. A Bonferroni correction was applied. Accordingly, 

because eight statistical comparisons were done per dependent measure (i.e., four braking 

conditions × 2 comparisons), the significance level was reduced to 0.05/8 = 0.00625. For the 

self-report questionnaire items, the significance level was reduced to 0.05/2 = 0.025.  

3. Results 

3.1. Driving performance and behavior 

Figure 6 shows the temporal patterns of the throttle position. Most participants released the 

throttle immediately, with the fastest reaction times being about 0.35 s. In occlusion condition 

trials, some participants released the throttle after the occlusion ended, an effect that can be 

clearly seen in the small-deceleration small-headway condition (Figure 6 left top, 2 s occlusion). 

Figure 6 also shows that participants without brake lights released the throttle relatively late 

when the lead car deceleration was small. 
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Figure 6. The mean throttle pedal position during the different braking conditions. 

Figure 7 shows the temporal patterns of the brake pedal displacement. The means, standard 

deviations, and results of the statistical tests of the brake reaction time, maximum brake position, 

and time of maximum brake position are shown in Table 1 to Table 3. Figure 7 and Table 2 show 

that the maximum brake pedal displacement was largest for the most urgent condition (i.e., large 

deceleration 6.5 m/s2, small following distance of 13.4 m), and overall lowest for the least urgent 

condition (i.e., 1.7 m/s2, 33.4 m).  

Figure 7 and Table 1 show that when the lead car deceleration was small (i.e., 1.7 m/s2), the 

brake lights resulted in faster reaction times than the no-brake-lights situation. Table 1 also 

shows that the brake reaction time significantly increased for occlusion compared to the brake 

light condition (except for the large-deceleration small-headway condition). This increase of 

brake reaction time is expected, as drivers were instructed to brake after the occlusion period 

ended (2.0 s when the lead deceleration was small, and 0.4 s when the lead deceleration was 

large). These effects can also be seen in Figure 8, which shows the temporal patterns of the speed 

of both cars.  

Table 2 shows that when the deceleration was small, drivers in the no-brake-lights and occlusion 

conditions pressed the brake pedal further than drivers in the brake lights condition. Furthermore, 
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in the small-deceleration small-headway condition, drivers without brake lights reached the 

maximum brake pedal displacement significantly later than they did with brake lights (Table 3). 

Figure 7. The mean brake pedal position during the different braking conditions. 
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Table 1. Descriptive statistics of participants’ brake reaction time (s). 

Condition Brake lights (B) No brake lights (N) Occlusion (O) B vs. N B vs. O 

 M (SD) M (SD) M (SD) Paired t test results (df = 11) 

1.7 m/s2,  

13.4 m 
0.970 (0.220) 1.639 (0.433) 2.169 (0.471) p < 0.001  

t = −5.387 

p < 0.001  

t = −6.848 

1.7 m/s2,  

33.4 m 
1.747 (0.474) 3.077 (0.660) 2.507 (0.349) p < 0.001  

t = −5.029 

p < 0.001  

t = −6.033 

6.5 m/s2,  

13.4 m 
0.812 (0.090) 0.866 (0.111) 1.082 (0.064) p = 0.079  

t = −1.933 

p < 0.001  

t = −9.688 

6.5 m/s2,  

33.4 m 
1.173 (0.016) 1.330 (0.211) 1.246 (0.104) p = 0.045  

t = −2.260 

p = 0.167  

t = −1.480 

Note. Participants sometimes braked before the occlusion period ended (i.e., before 2.0 s when 

the deceleration was small). This occurred in 14 of 46 trials, 7 of 47 trials, 0 of 48 trials, and 0 of 

47 trials, for the four respective braking conditions. 

Figure 8. The mean participant’s car speed (thicker lines) and the mean lead car speed 

(thinner lines) during the different braking conditions. Note that the small bump in lead 

car speed (at 8.3 s for the 1.7 m/s2 conditions, and at 2.3 s for the 6.5 m/s2 conditions) is an 

artifact of the lead car’s controller, and is inconsequential. 
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Table 2. Descriptive statistics of participants’ maximum brake pedal displacement (%). 

Condition Brake lights (B) No brake lights (N) Occlusion (O) B vs. N B vs. O 

 M (SD) M (SD) M (SD) Paired t test results (df = 11) 

1.7 m/s2,  

13.4 m 
49.678 (8.686) 52.711 (11.451) 64.816 (12.571) p = 0.243  

t = −1.234 

p =0.002  

t = −4.098 

1.7 m/s2,  

33.4 m 
40.441 (7.825) 50.030 (11.451) 47.969 (11.215) p = 0.002  

t = −3.947 

p =0.009  

t = −3.191 

6.5 m/s2,  

13.4 m 
91.967 (11.255) 96.664 (6.157) 95.459 (8.128) p = 0.023  

t = −2.652 

p =0.028  

t = −2.530 

6.5 m/s2,  

33.4 m 
74.732 (12.878) 76.950 (9.676) 77.237 (14.827) p = 0.443  

t = −0.796 

p =0.307  

t = −1.070 

 

Figure 9 shows the temporal patterns of the following distance. The means (and standard 

deviations) per condition of the minimum distance and the number of collisions are reported in 

Table 4 and Table 5, respectively. The smallest distances and the largest numbers of collisions 

were found for the most urgent condition (i.e., 6.5 m/s2, 13.4 m). In this condition, the mean 

distance gap was negative at 3 s after the lead vehicle brake onset (Fig. 9, right top). With the 

brake lights, drivers had a larger following distance than they had when there were no brake 

lights. The following distance was also shorter in the occlusion condition than it was in with the 

brake lights condition. The effect of occlusion was most pronounced in the urgent condition (i.e., 

6.5 m/s2, 13.4 m, 0.4 s occlusion). In this urgent condition with occlusion, the number of 

collisions was as high as 67%, compared to 18% in the condition with brake lights (t (11) = 

−5.478, p < 0.001). 
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Figure 9. The mean bumper-to-bumper distance during the different braking conditions. 

 

 

Table 3. Descriptive statistics of participants’ maximum brake pedal displacement time (s). 

Condition Brake lights (B) No brake lights (N) Occlusion (O) B vs. N B vs. O 

 M (SD) M (SD) M (SD) Paired t test results (df = 11) 

1.7 m/s2,  

13.4 m 
2.825 (1.365) 4.446 (1.129) 3.784 (1.027) p = 0.004  

t = −3.649 

p = 0.085  

t = −1.889 

1.7 m/s2,  

33.4 m 
5.245 (2.508) 5.116 (0.774) 5.126 (1.196) p = 0.849  

t = 0.195 

p = 0.859  

t = 0.182 

6.5 m/s2,  

13.4 m 
2.009 (0.284) 1.915 (0.395) 1.992 (0.455) p = 0.232  

t = 1.266 

p = 0.807  

t = 0.250 

6.5 m/s2,  

33.4 m 
2.601 (0.412) 2.765 (0.524) 2.632 (0.599) p = 0.218  

t = −1.308 

p = 0.806  

t = 0.252 
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Table 4. Descriptive statistics of participants’ minimum distance gap (m). 

Condition Brake lights (B) No brake lights (N) Occlusion (O) B vs. N B vs. O 

 M (SD) M (SD) M (SD) Paired t test results (df = 11) 

1.7 m/s2,  

13.4 m 
8.797 (1.747) 7.140 (1.304) 6.400 (1.944) p = 0.004  

t = 3.668 

p = 0.003  

t = 3.851 

1.7 m/s2,  

33.4 m 
17.178 (5.474) 11.548 (3.679) 14.716 (5.843) p = 0.009  

t = 3.188 

p = 0.164 

t = 1.492 

6.5 m/s2,  

13.4 m 
2.262 (0.985) 1.159 (2.251) −1.060 (1.618) p = 0.075  

t = 1.968 

p < 0.001  

t = 8.500 

6.5 m/s2,  

33.4 m 
12.556 (3.118) 10.522 (2.875) 12.061 (3.731) p = 0.001  

t = 4.281 

p = 0.533  

t = 0.644 

 

 

Table 5. Descriptive statistics of participants’ number of collisions (%). 

Condition Brake lights (B) No brake lights (N) Occlusion (O) B vs. N B vs. O 

 M (SD) M (SD) M (SD) Paired t test results (df = 11) 

1.7 m/s2,  

13.4 m 
0 (0) 0 (0) 0 (0) - - 

1.7 m/s2,  

33.4 m 
0 (0) 0 (0) 0 (0) - - 

6.5 m/s2,  

13.4 m 
18.1 (25.8) 29.2 (36.7) 66.7 (30.8) p = 0.104  

t = −1.773 

p < 0.001  

t = −5.478 

6.5 m/s2,  

33.4 m 
0 (0) 0 (0) 0 (0) - - 

 

3.2. Self-reports 

Table 6 shows the results of the TLX and confidence questionnaires. It can be seen that there 

were no major differences between the three conditions. However, participants in the occlusion 

condition reported somewhat higher temporal demands than in the brake lights condition. This 
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finding is unsurprising as drivers indeed had less time to complete the brake in the occlusion 

condition (2.0 s and 0.4 s for the small and large deceleration of the lead car, respectively).  

A number of participants indicated that when brake lights were unavailable, they tried to look for 

other visual features that could help time their braking, such as the rear tire or the angular pitch 

of the car that occurs when slowing down. For the occlusion condition, two participants reported 

that they released the accelerator during the occlusion period (cf. Figure 6 showing that the 

majority of participants released the throttle before the occlusion ended). A number of 

participants indicated that in the brake lights condition, their strategy was to focus on the brake 

lights (only). 

Table 6. NASA TLX and four additional questions about feelings of risk and self-

confidence. 

 
Brake 

lights (B) 

No brake 

lights (N) 

Occlusion 

(O) 

 M (SD) M (SD) M (SD) 

TLX Mental demand 48 (27) 50 (33) 60 (22) 

TLX Physical demand 41 (28) 40 (34) 48 (26) 

TLX Temporal demand 36 (25) 33 (25) 45 (18) 

TLX Performance 37 (25) 31 (24) 51 (32) 

TLX Effort 50 (26) 56 (31) 57 (17) 

TLX Frustration 36 (29) 21 (28) 35 (21) 

I had a feeling of risk  35 (24) 37 (34) 37 (25) 

I think I drove more safely than the average participant 64 (18) 65 (21) 57 (18) 

I found the driving task easy 71 (19) 63 (25) 61 (17) 

I felt confident in my own capability to act appropriately 80 (17) 76 (21) 70 (18) 

Note. The results are shown in percentages from 0% (lowest on the scale) to 100% (highest on 

the scale). 

4. Discussion 

This research examined how drivers’ braking behavior is influenced by (1) a brief lack of visual 

information at the lead-vehicle brake onset combined with the instruction to brake after this 

occlusion ended, and (2) the absence of the brake lights. We investigated drivers’ braking 

response in a car-following scenario for two levels of deceleration and two levels of inter-vehicle 

distance. In our study, participants knew what to expect. That is, the participants knew there 
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would be a number of lead car braking trials and knew what stimulus signaled the lead car 

braking (i.e., the activation of the brake lights or the start of the occlusion). 

When there were brake lights, the reaction time was faster than when there were no brake lights. 

This result can be interpreted in light of the fact that in the brake lights condition there were two 

cues which the participants could use (the brake lights & the looming of the lead car) whereas in 

the no-brake-lights condition there was one cue (the looming of the lead car). However, the 

beneficial effect of brake lights on brake reaction time was statistically significant only in the 

low deceleration conditions (i.e., a lead car deceleration of 1.7 m/s2). These findings are in line 

with previous research which has shown that it is difficult for drivers to detect the low 

deceleration level of a lead car by means of vision (e.g., Braunstein & Laughery, 1964; Park, 

Lee, & Koh, 2001; Tharanathan & DeLucia, 2007).  

Our research provides a confirmation of the importance of brake lights, a feature which 

manufacturers introduced in 1916. Brake lamps were mandated by the 1960s, and have 

undergone refinement in the past decades (Moore & Rumar, 1999). Various brake light patterns 

and locations have been proposed (e.g., Berg, Berglund, Strang, & Baum, 2007; Hope et al., 

2011; Li & Milgram, 2008; McIntyre, 2008; Sivak, Conn, & Olson, 1986). The central high 

mounted stop lamp, arguably a “human factors success story” (Malone, 1987), is one design now 

available in many consumer vehicles (see also Theeuwes & Alferdinck, 1995; McKnight & 

Shinar, 1992; Stanton & Baber, 2003). Conventional brake lights only indicate the onset and not 

the intensity of the lead vehicle brake. Thus, researchers have tested alternative types of brake 

lights, including systems that provide continuous, rather than binary, information about the lead 

vehicle’s deceleration (e.g., Li & Milgram, 2008; Saffarian, De Winter, & Happee, 2013; 

Voevodsky, 1974). More recently, forward collision warning systems have been introduced, 

which offer the brake signal inside the driver’s vehicle (Abe & Richardson, 2006; Ho, Reed, & 

Spence, 2007; Lee & Peng, 2005; Meng, Ho, Gray, & Spence, 2015; Parasuraman, Hancock, & 

Olofinboba, 1997). 

With occlusion, participants seemed to be eager to press the brakes as quickly as possible in 

order to avoid collision. For example, when the headway was 13.4 s and the lead car braked hard 

(i.e., 0.4 s occlusion), the mean brake reaction time was 1.082 s for the occlusion condition, and 
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0.812 s for the brake lights condition. The difference is only 0.27 s (=1.082 s − 0.812 s), which is 

less than the occlusion interval of 0.4 s. When the occlusion duration was long (2.0 s), 

participants pressed the brakes before the occlusion ended in 19% of the trials with large distance 

headway and 30% of the trials with small distance headway, respectively (Table 1). Thus, 

although the brake reaction time of drivers in the occlusion condition was longer than in the 

brake lights condition, the additional time taken was less than the occlusion interval (0.4 or 2.0 

s), indicating that, in the absence of visual information, participants were cognitively and 

biomechanically primed to press the brakes.  

Occlusion had a negative effect on the distance headway compared to the condition without 

occlusion, an effect that was most pronounced in the urgent braking condition (6.5 m/s2, 13.4 m, 

see Tables 4 and 5). The adverse effects of visual distraction and corresponding time delay can 

be partially explained using classical mechanics. Suppose that two cars follow each other in the 

same lane, and assume that both cars are able decelerate at a constant deceleration of 6.5 m/s2 (a 

= –6.5 m/s2). Also, assume that the brake reaction time of the following car is 1 s (tb = 1 s), the 

initial speed of both cars is 96 km/h (V0 = 26.67 m/s), and the initial headway is 0.5 s (D0 = 13.4 

m). It can be calculated that the vehicles will collide 2.58 s (tc = 2.58 s) after the lead vehicle 

starts braking (i.e., tc = –(a·tb
2 + V0·tb + D0)/(2·a·tb) ). However, what is predicted by Newtonian 

equations may not hold in a practical human-machine assemblage, because drivers may tactically 

and strategically adapt their braking timing and dosing in high-urgent conditions in order to 

moderate their collision risk.  

A few tenths of a second of occlusion (0.4 s) already proved to be detrimental regarding the 

probability of collision, being as high as 67% for occlusion condition compared to 18% for the 

brake lights condition. The pedal displacement patterns were almost saturated in the emergency 

braking condition (cf. Fig. 7, right top), and therefore the 0.4 s occlusion period is ‘lost time’ that 

directly translates into ‘lost headway’ without much ability to compensate by pressing the brake 

further. Contrastingly, when the lead vehicle deceleration was small (2.0 s occlusion), then 

participants in the occlusion condition adapted their behavior to the time lost by braking harder 

(Fig. 7, left). In summary, our results demonstrate how a brief moment of distraction, as small as 

0.4 s (comparable to the duration of a brief glance at the speedometer), can seriously increase the 

crash risk when the headway is short and the lead vehicle performs an emergency brake. These 
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strong effects were observed despite the fact that the occlusion onset provided a salient cue that 

the lead vehicle started decelerating, allowing the participants to cognitively and 

biomechanically prepare themselves for the subsequent braking. Previous research has illustrated 

that performing non-visual tasks by drivers impairs their reaction time between 0.5 to 1 s 

(Lamble, Kauranen, Laakso, & Summala, 1999). Consequently, the presented results of this 

study may well be a conservative assessment of the detrimental effect of a short visual 

distraction. 

An analysis of the 100-car naturalistic driving study by Victor and Dozza (2011) showed that 

longer than 1 s glances away from the forward scene are dangerous. Based on a cross-sectional 

analysis of naturalistic driving data, they recommended that glances should always be short (< 1 

s). Our study suggests that a visual distraction as short as 0.4 s is hazardous in a specific 

emergency brake scenario where the lead-vehicle deceleration and initial headway are 

unfavorable. 

The present findings may be of use in the design of in-vehicle warning/feedback systems that 

alert/inform the driver when following too closely. Various systems are on the market and under 

development, such as forward collision systems, brake assist systems, and brake warning 

systems (e.g., Hildebrandt et al., 2015). The present results suggest that such systems may be 

ineffective in preventing crashes, if they do not brake automatically yet allow the driver to follow 

at very close headways. In order to support drivers, a design may be used that provides real-time 

feedback to the driver about the degree of hazard in front of the driver (e.g., Mulder, Mulder, 

Van Paassen, & Abbink, 2008; Charissis & Papanastasiou, 2010) or as a function of momentary 

visual distraction (Donmez, Boyle, & Lee, 2007, 2008; Itoh, Abe, & Yamamura, 2014). Here it 

should be noted that there is an obvious balance between productivity/mobility and safety: 

Headway feedback/advisory systems should not enforce a driver to drive at overly long 

headways, because this may hamper traffic flow efficiency or stimulate other vehicles to cut in to 

that gap (e.g., this is an issue with ACC systems, Larsson, 2012). An alternative solution is to 

coach or train drivers so that they improve their driving attitudes. This may be a difficult 

endeavor as violations are found to be resistant to change and may even increase with 

experience/practice (De Winter et al., 2009; De Winter, Wieringa, Kuipers, Mulder, & Mulder, 

2007; Foss, 2011; Stanton, Walker, Young, Kazi, & Salmon, 2007). Our findings are also 
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relevant for the design of automated driving systems, for which brake reaction time in takeover 

scenarios is a crucial performance measure (De Winter, Happee, Martens, & Stanton, 2014). An 

example is a platooning system, which automates the car following task by adopting a very short 

headway. Our results suggest that such technology needs to be extremely reliable so the manual 

takeover is not required (see also De Waard, Van der Hulst, Hoedemaeker, & Brookhuis, 1999). 

In interpreting the real world implications of our results, several limitations need to be 

considered. First, it is known that people underestimate the ‘true’ distance to a lead car in the 

NADS Minisim with as much as 70% (see Saffarian et al., 2015, for an evaluation), which may 

imply that participants brake differently in response to a lead car than they would do in a real car. 

This distance underestimation may be caused by the limited resolution of the screens, lack of 

stereopsis, or other visual limitations of the driving simulator (Andersen, 2011). On the other 

hand, it has been suggested that driving simulators provide valid results regarding the 

measurement of brake reaction time (McGehee, Mazzae, & Baldwin, 2000). Our brake reaction 

times to the brake lights (0.8–1.7 s, see Table 1) are in line with brake reaction times observed on 

the roads (Green, 2000; Johansson & Rumar, 1971; McIntyre, 2008; Summala, 2000; Young & 

Stanton, 2007). 

Second, one may argue that the number of participants was small (N = 12). On the other hand, 

our findings are theoretically plausible and yielded p values that were substantially smaller than 

the nominal alpha value, indicating that the findings have high evidential value (despite the fact 

that statistical power might seem small beforehand).  

Third, our setup lacked the vestibular and kinesthetic feedback that drivers normally experience 

during braking maneuvers. Because of lack of motion, drivers in a driving simulator usually 

brake harder and more abruptly than they do in a real vehicle (Boer, Girshik, Yamamura, & 

Kuge, 2000; De Groot, De Winter, Mulder, & Wieringa, 2011). The lack of motion is likely to 

have influenced the brake modulation compared to real driving, but it is unlikely that it would 

have much of an effect on the brake reaction time (i.e., when not yet decelerating). Note that 

driving simulators typically lack absolute validity (i.e., numeric similarity between the simulator 

and a real vehicle), but exhibit acceptable relative validity (i.e., a similarity of effect sizes, or 

signs of effects, between the simulator and a real vehicle; Kaptein, Theeuwes, & Van der Horst, 
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1996). Even driving simulators with six degrees-of-freedom motion platforms cannot generate 

realistic sustained motion (e.g., Bürki-Cohen, Soja, & Longridge, 1998). Hence, it remains to be 

seen whether more valid results would have been obtained with a classic motion platform. A 

simulator with linear drive motion may be recommended for future research (Nordmark, Jansson, 

Palmkvist, & Sehammar, 2004). 

Fourth, in our experiment, the driving scene was occluded completely (except for the 

speedometer). In real car driving, distracted drivers may still extract valuable cues from the 

environment using peripheral vision (Lamble et al., 1999; Summala, Lamble, & Laakso, 1998; 

Terry, Charlton, & Perrone, 2008). Although peripheral vision is not good at determining fine 

detail, it may still be useful for detecting brake lights or rapidly closing objects. 

Finally, because this research aimed to assess visual distraction rather than cognitive distraction, 

drivers in the present study were instructed in such a way as to experience no ‘surprise’ effects. 

Participants each completed 48 trials in a within-subjects design, which means that the effects 

were statistically reliable compared to experiments in which participants’ one-off surprise 

reaction is tested (e.g., Hault-Dubrulle, Robache, Pacaux, & Morvan, 2011). As a result of the 

large number of trials, it is likely that participants became accustomed to the procedure. 

Furthermore, the braking trials were homogeneous, with the duration of the occlusion period 

always corresponding to the same lead car deceleration (i.e., 2.0 s occlusion always 

corresponded to 1.7 m/s2 deceleration, and 0.4 s occlusion always corresponding to 6.5 m/s2 

deceleration). That is, participants knew (or could infer) that a change in lead vehicle speed is a 

signal that it will be slowing down, and this knowledge presumably led the participants to focus 

acutely on the lead vehicle. The self-reported strategies confirm that drivers behaved 

intelligently. Participants reported that, to compensate for the lack of visual information, they 

paid closer attention to visual features of the car when the brake lights were not present. Thus, 

our study measured the effect of visual distraction (or: ‘endured delay’ in brake initiation), are 

applicable to alert and practiced drivers, and  are informative regarding what could happen in a 

near-accident scenario. It is expected that the detrimental effect of a period of distraction would 

be even stronger for drivers in unexpected and surprise conditions. 
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CHAPTER 3 

Measuring drivers’ visual information needs during braking: A simulator 

study using a screen-occlusion method  

 

Abstract 

It is commonly accepted that vision plays an important role in car braking, but it is unknown how 

people brake in the absence of visual information. This simulator study measured drivers

’ braking behavior while they had to stop their car at designated positions on the road. The 

access to visual information was manipulated by occluding the screen at the start of half of the 

braking trials, while the temporal demand was manipulated by varying the time-to-arrival (TTA). 

Results showed that for the longer TTA values (≥ 6 s), participants in the occlusion condition 

stopped too early and at variable positions on the road as compared to the control condition. The 

lack of visual information after the brake onset reduces the maximum brake input applied by 

drivers in braking events with short TTAs. The results also show that the lack of visual 

information slows down drivers in building their brake response profile when the TTA is short. 

Overall, the findings imply that the availability of visual information during a stopping task 

where drivers need to stop at a precise location (e.g., a stop sign or a cross section) improves 

performance for both urgent and non-urgent stopping tasks, despite the fact participants 

underestimated the distance to objects by 70% (as determined with a distance estimation test).  

 

 

Saffarian, M., De Winter, J. C. F., & Senders, J. W. (2015). Measuring drivers’ visual 

information needs during braking: A simulator study using a screen-occlusion method. 

Transportation Research Part F: Traffic Psychology and Behavior, 33, 48–65. (adapted with 

minor textual changes) 



CHAPTER 3: Measuring drivers’ visual information needs during braking 

40 

 

 

1. Introduction 

1.1. The role of braking in driving safety 

Automobile driving presents a myriad of opportunities for accidents. Braking is probably the 

most common reaction of drivers to an impending collision (e.g., Gkikas, Richardson, & Hill, 

2009; Malaterre, Ferrandez, Fleury, & Lechner, 1988). A kinematic analysis of driving shows 

that between steering and braking, the latter is the only possible safe intervention in low speed (< 

50 km/h) emergency events, whereas at higher speeds evasive steering is possible as well (Allen, 

Rosenthal, & Aponso, 2005). It has been reported that rear-end collisions account for about 30% 

of all motor vehicle injury accidents (National Safety Council, 2011). While proper braking can 

save lives and limbs, improper braking can escalate the risk of collision. For example, if a driver 

brakes when not needed, he or she increases the risk of a rear-end collision (Inagaki & Sheridan, 

2012).  

1.2. Locomotion theories of braking behavior 

Despite its fundamental role in driving safety, drivers’ braking behavior is not well understood. 

Several attempts to explain braking behavior have used locomotion theories. According to these 

theories, the control of locomotion is ‘prospective’, which means that the perceptual system 

provides information about the future, and the actor adjusts the course of action to satisfy the 

requirements of the task (e.g., Warren, 1998; Zago, McIntyre, Senot, & Lacquaniti, 2009). Most 

of the existing braking theories assume that drivers perceive possible collisions and accordingly 

adjust the vehicle speed to avoid colliding (Andersen & Sauer, 2004; Lee, 1976; Yilmaz & 

Warren, 1995). The driver’s role is to close the control loop and return to a collision-free 

trajectory.  

Time to collision (TTC; also called time to arrival, TTA, in case the target on the road is a stop 

sign/line rather than another road user, see Hancock & Manser, 1998) is among the proposed 

parameters that drivers use to perceive the possibility of collision. The well-known tau 

hypothesis explains how humans perceive TTC (Lee, 1976). Specifically, the tau hypothesis 

suggests that humans observe TTC using the ratio between the image size of objects they might 

collide with and the rate the size of this image changes. The tau hypothesis states that TTC is an 
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optical parameter that is perceived directly in the eye’s frame of reference. Lee (1976) proposed 

that drivers can use the temporal derivative of tau (known as tau-dot or ) to determine the 

sufficiency of the braking deceleration when approaching an object in the path of motion: if 

, the deceleration is sufficient and the driver stops before colliding with the front object. 

If , the deceleration is not sufficient and the driver will collide with the front object if 

the deceleration is kept constant. Maintaining  results in a constant deceleration that 

brings the vehicle to stop just before touching the object (Bardy & Warren Jr, 1997; Lee, 1976).  

Research findings do not draw a conclusive picture regarding the use of tau in the timing of 

arrival tasks and drivers’ control of braking. Although Yilmaz and Warren (1995) showed that 

participants relied on the  threshold and that their brake adjustments were proportional 

to the deviation from this threshold, several theoretical and experimental findings do not readily 

support the validity of the tau hypothesis (e.g., Bardy & Warren Jr, 1997; Rock, Harris, & Yates, 

2006). For example, several non-driving studies have found that the tau hypothesis does not 

accurately predict the timing of interception/avoidance of approaching objects (Caljouw, Van der 

Kamp, & Savelsbergh, 2004; Tresilian, 1999; Wann, 1996). In general, humans substantially 

underestimate TTC. The amount of TTC underestimation increases as the actual TTC increases, 

which raises questions about the usability of TTC in shaping human performance (Caird & 

Hancock, 1994; Schiff & Detwiler, 1979). The accuracy of TTC estimation depends on several 

factors, including the closing speed (Kiefer, Flannagan, & Jerome, 2006; McLeod & Ross, 1983; 

Sidaway, Fairweather, Sekiya, & McNitt-Gray, 1996) and the front object size (Caird & 

Hancock, 1994; DeLucia, 1991; DeLucia & Warren, 1994). Smeets, Brenner, Trebuchet and 

Mestre (1996) suggested that humans do not perceive TTC directly, but infer TTC using the 

perceived relative speed and distance with respect to the front object. 

Based on the constant deceleration strategy, Boer, Kuge and Yamamura (2001) proposed that 

drivers’ braking behaviour when stopping behind a stationary target can be described as follows: 

 
(1) 
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where Δu (t) is the change in the brake input at the current time (t), kp is a proportional gain, a (t) 

is the deceleration at the current time, and a* (t) is the desired deceleration at the current time. 

The desired deceleration is a function of the current speed (v (t)) and current distance (d (t)) to 

the target: 

 
(2) 

1.3. What drivers can do versus what drivers do: a gap in the current knowledge 

The tau hypothesis describes how drivers can use the perceived information, but is unclear on 

how drivers actually behave (Green, 2008). The recent consensus is that the reaction to an 

impending collision is based on a variety of visual cues that correlate with the tau variable 

(Hecht & Savelsbergh, 2004). Tresilian (1999) suggested that interceptive or collision-avoidance 

actions are situation-dependent: through rehearsing the task, humans learn to identify the 

information that is useful for performing the task, and they filter the information that interferes 

with satisfactory task performance. In braking, experimental studies have shown that drivers 

make their braking decisions based on several factors, including the criticality of the event, the 

size and intensity of the event stimuli, and the global optical flow rate (Andersen, Cisneros, 

Atchley, & Saidpour, 1999; DeLucia & Tharanathan, 2009; Fajen, 2005a; Liebermann, Ben-

David, Schweitzer, Apter, & Parush, 1995; Van der Hulst, Meijman, & Rothengatter, 1999). 

In line with this view, the affordance control theory states that the perception of ‘action 

feasibility’ and not ‘nullifying an error’ from a preferred state (such as a constant deceleration) is 

the dominant mechanism that shapes the drivers’ braking response (Fajen, 2005a, 2005b). Thus, 

instead of a deterministic response, the affordance theory predicts a range of responses that fulfil 

safety tasks such as collision avoidance. For example, one can imagine a scenario where a car 

driving at 40 m/s approaches a vehicle that is 100 m away and moving at 20 m/s. The constant 

deceleration of the following car that avoids collision is 2 m/s2. However, it is very well possible 

to brake harder (e.g., 6 m/s2) and thereby avoid the collision, or to wait until the lead vehicle is 

50 meters ahead and subsequently brake with a constant 4 m/s2 deceleration. All these braking 

strategies seem reasonable and possible within the affordance space.  
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1.4. The effect of time to collision/arrival in braking 

Braking can occur at different driving speeds and at different amounts of time or distance 

available to respond. Obviously, a larger deceleration is required when the speed is higher, or 

when the distance to the target is shorter. The Fitts’ speed-accuracy trade-off predicts that the 

accuracy of a response is inversely proportional to the speed of that response (Fitts, 1954). Fitts’ 

law has been applied to various locomotion tasks including steering on a curved road: the time to 

successfully complete a course increases with the length of the course and decreases with the 

road width (Zhai, Accot, & Woltjer, 2004). The results of a previous simulation and empirical 

study by De Groot, De Winter, Wieringa, and Mulder (2013) confirm that when stopping at an 

intersection, the braking response is largely determined by the speed and distance at the onset of 

braking. 

1.5. Distance underestimation 

Humans are able to visually estimate position and velocity, and to a lesser degree acceleration 

(Dubrowski & Carnahan, 2002; Gottsdanker, Frick, & Lockard, 1961). However, research in 

human perception suggests that the perceptual world of humans is different from the physical 

world (Gilinsky, 1951; Loomis & Philbeck, 2008). Gilinsky’s law of visual space perception 

describes the relation between the physical and the perceived world. Specifically, Gilinsky’s 

empirical model relates the perceived distance (d) to the real distance (D) via an idiosyncratic 

parameter (A) that captures the maximum limit of the perceived distance, as follows: 

 
(3) 

The model predicts that the limiting values of the perceived distance for a given observer is equal 

to the visual distance from the observer to the horizon. Thus, parameter A represents the 

maximum limit of the perceived distance.  

This relation may have an important implication for driving safety and for our understanding of 

how drivers use visual information to control distance with brake systems, as it suggests that 

drivers perceive the world with compressed distances relative to the physical reality. It also states 

that the greater the distance, the greater the relative underestimation. Gilinsky’s model suggests 
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that a drivers’ visual system is equipped with a ‘safety’ mechanism. That is, if drivers 

underestimate distance headway, they may adopt a more conservative braking behavior.  

1.6. The potential of occlusion methods for understanding driver information needs 

While driving, visual information is sometimes unavailable, because drivers may be visually 

distracted or because the visual scene is blocked by conditions such as rain or fog. Former 

experiments have used the so-called occlusion method to gain insight into how humans perform 

driving tasks in the absence of continuous visual information (Andersen et al., 1999; Godthelp, 

1986; Senders, Kristofferson, Levison, Dietrich, & Ward, 1967; Van der Horst, 2004; Van 

Leeuwen, Happee, & De Winter, 2014). For example, using a shutter by means of which 

participants could request looking periods when they wished to, Senders et al. (1967) showed 

that as the speed of the car and the density of the surrounding traffic increase, the attentional 

demand of driving increases as well. Van der Horst (1990) used stroboscopic occlusion to 

suppress optic flow information and showed that with the occlusion, the minimum TTC of the 

participants during braking-to-full-stop manoeuvers was larger and more variable than in the 

control condition without occlusion.  

Godthelp (1984) studied the extent to which the steering control task can be performed without 

visual information. The results showed that drivers are able to keep their car on the road even 

when they intermittently sample the road. Godthelp, Milgram and Blaauw (1984) also introduced 

the concept of time to line crossing (TLC), which represents the available time that drivers can 

neglect the steering task until the vehicle passes the boundaries of the road. The shorter the TLC, 

the more urgent is the need for applying a steering correction. Recently, Van Leeuwen et al. 

(2014) investigated the effect of restricting the visual information of different parts of the driving 

scene (near view vs. far view) on drivers’ steering behavior. They found that lack of preview 

resulted in abrupt and coarse steering corrections, reduced steering precision, and an increased 

number of road departures. 

While former attempts to quantify the visual demand of driving tasks such as steering (Godthelp, 

1986) and cruising at a constant speed on highways (Senders et al., 1967) have been made, the 

visual demand of braking has not yet been determined. This study aimed to investigate to which 

extent the absence of visual information during the course of braking affects drivers’ braking 
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behavior. Is braking a tacit pre-programmed strategy that drivers learn and execute with 

minimum dependency on visual information during its execution, or do drivers depend on the 

visual information to brake properly? 

1.7. The present study 

The current driving simulator study investigated how well drivers can stop at a stationary target 

as a function of the presence versus absence of visual information during the course of their 

braking. Participants were asked to execute a series of braking maneuvers requiring a stop at a 

predefined spot on the road. In the occlusion condition, the screens blanked when a certain TTA 

was reached, while in the control condition, the simulator provided an auditory signal when the 

TTA was reached.  

Our hypothesis was that the lack of visual information affects the braking pattern of drivers, and 

that the size of the effect depends on the time available to brake. Specifically, it was expected 

that participants brake sooner and harder when the brake scene is occluded than when it is not 

occluded, as participants have to rely on an underestimated perceived distance at the start of the 

braking trial. Moreover, these effects were expected to be stronger for larger TTA values, 

because according to Gilinsky (1951) the distance underestimation is greater when the distance 

to the target is larger.  

We also examined the effects of a variable versus fixed brake onset on participants’ braking 

behavior. Specifically, one group of participants was allowed to start to brake at any moment 

after the TTA was reached, while a second group of participants was instructed to brake 

immediately after the TTA was reached. Hence, the results of the former group provide a 

relatively naturalistic investigation of how drivers behave, while the second group provides a 

more controlled setting, in which the effect of TTA on braking behavior itself is determined.  

2. Method 

2.1. Driving simulator 

The experiment was carried out in a fixed-based NADS Minisim driving simulator. The 

simulator provided a 130-degree horizontal by a 24-degree vertical field of view at 48-inch 
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viewing distance The simulator mimicked the sound of the passenger car using two speakers at 

the front. The roadway vibration was simulated using a bass speaker located below the driver’s 

seat. The brake and gas pedals, the steering wheel, the automatic gearshift, and the seat 

resembled those of an actual vehicle. The simulator measured both driver inputs and telematics 

data at a rate of 60 Hz (see Chapter 2 for a more detailed description and a photo of the 

simulator).  

2.2. Participants  

For this experiment, 24 participants (19 men and 5 women) with a valid Ontario Class G driving 

license were recruited from the University of Toronto community. All the participants provided 

written informed consent (Appendix B.1) and were compensated with a payment of 20 Canadian 

Dollars. Participants’ demographics and frequency of driving, cycling, and playing video games 

were collected using an intake questionnaire (Appendix A.2). On average, the participants were 

27.0 year old (SD = 6.0 years) and had obtained their driving license in 2005 (SD = 5.1 years; the 

experiment was conducted in February 2014). Four participants had used a driving simulator in 

the past. The majority of the participants (20 out of 24) drove more than 10 km per week, and 21 

participants drove more than 1000 km per year (Table 1). One participant drove less than 100 km 

on an annual basis. During the experiment, the participants drove in cruise control mode before 

executing the braking tasks. Thirteen participants reported they used cruise control at least once 

or twice a year (Table 2). 

Table 1. Distribution of the participants based on per-week (D1, in km) and per-year (D2, 

in 1000s of km) driven distance. 

D1 < 10 10 ≤ D1 < 100 100 ≤ D1 < 1000 D1 ≥ 1000  

4 13 7 0  

D2 < 0.1 0.1 ≤ D2 < 1 1 ≤ D2 < 10 10 ≤ D2 < 100 D2 ≥ 100 

1 2 13 5 3 
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Table 2. Frequency of driving, using cruise control, playing video games, and cycling 

among the participants. 

 
Drives  

a car 

Uses cruise  

control 

Plays  

video games 

Rides  

a bicycle 

Less than 1-2 times per year 0 11 5 8 

At least 1-2 times per year but  

less than once per month  

4 7 5 8 

At least once per month but  

less than once per week 

3 4 6 4 

At least once per week but  

less than once per day 
12 2 7 3 

At least once per day 5 0 1 1 

Total 24 24 24 24 

2.3. Experimental setup and test conditions 

2.3.1. Participant instructions and driving task information 

The experiment consisted of questionnaires, reaction time tests, and driving tests using the 

simulator (see Figure 1 for an overview of the stages of the experiment).  

 

Figure 1. Timeline of the stages of the experiment. The dashed boxes indicate the stages at 

which the questionnaires were completed. The time below each horizontal arrow indicates 

the duration of each task, excluding breaks. 

Upon arrival, participants read and signed the consent form, which informed them about the 

simulator controls and provided an overview of the experimental stages and tasks. After signing 

the consent form and confirming their interest to continue, participants filled out a questionnaire 

that gathered information about their demographics and driving history. Participants were free to 

take a break between the individual stages of the experiment.  
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2.3.2. Reaction time test 

The reaction times of the participants were measured using two separate visual and auditory tests 

(Cognitive Fun!, 2014). The tests were performed using a NX 50 Logitech mouse and a 1286 

CTO Lenovo laptop computer stationed at a separate desk outside the driving simulator 

laboratory. The volume level of the laptop was set at 40 (arbitrary units of the laptop computer). 

The resolution of the screen was 1366 × 768 pixels. Each test consisted of 10 trials, of which the 

first 5 were considered as warm-up and discarded from the analyses. In the visual reaction time 

test, the participants had to click a mouse button as soon as a green balloon appeared. The 

balloon was always the same size and appeared at the same location. In the auditory reaction 

time test, the participants had to click a mouse button as soon as they heard a beep.  

2.3.3. Simulator training 

A training session was used to familiarize the participants with the simulator controls. An 

analysis of steering-wheel reversal and lane-position data showed that the time required to adapt 

the steering response is less than 5 minutes (McGehee, Lee, Rizzo, Dawson, & Bateman, 2004). 

Based on measuring squared correlation coefficient of the speed versus distance, Jamson and 

Smith (2003) suggested that after five to six attempts, drivers in a simulator can perform a full 

stop braking task in a manner similar to that observed in real vehicles. Their recommendation 

was based on fitting a polynomial model to speed versus distance profiles, and determining the 

similarities between those profiles in reality and in a driving simulator. With these findings in 

mind, the training session was designed to provide sufficient exposure to the main control of the 

simulator. The road of the training session consisted of a left bend, followed by a right bend and 

a straight road. The length and average radius of the first bend were about 2500 m and 3600 m, 

respectively. The length and average radius of the second bend were about 1500 m and 2700 m, 

respectively. The length of the straight road was about 5300 m. On the straight road, participants 

completed eight braking trials that were identical to the trials of the main driving tests. There was 

one trial for each of the four TTA values, and for both the control and occlusion conditions (see 

Section 2.3.5 for further details on the test conditions). As pressing the brake pedal switched off 

the cruise control system, the participants were instructed how to reactivate this system after 

braking.  
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2.3.4. Distance estimation test 

The distance estimation test was conducted to measure the distance perception of the participants 

in the simulator environment. As the participant was seated in a stand-still vehicle, a stationary 

car appeared at a fixed distance in front of the participant’s vehicle (Figure 2) and remained 

visible for 7 seconds. The participants had to verbally report the estimated distance between their 

seat and the rear bumper of the lead car after the stationary car disappeared. The car reappeared 

at another pre-set distance 8 seconds after it disappeared. Each distance estimation test consisted 

of two series of distance estimation trials with an identical set of 10 pre-set distances presented in 

different orders. The ten presented distances were 5, 10, 15, 20, 30, 40, 60, 80, 120, and 160 

meters in no discernible order (see Appendix B.3 for the screenshots of these distances). The 

range of the presented distances is about three times larger than the range of the distances 

reported in Gilinsky’s (1951) seminal experiment, considering the large inter-object distances 

that can occur in driving. Participants were free to estimate the distances in either feet or meters, 

depending on their level of comfort with metric or imperial system. Only one participant opted to 

estimate the distances in feet.  

 

Figure 2. Screenshot of the distance estimation test, the distance represented in this picture 

is 20 m. 
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2.3.5. Driving tests and participant groups 

Two driving tests were used to measure the participant’s braking response in the presence or 

absence of the visual information. The first test condition, named ‘occlusion’, consisted of a 

series of braking trials where participants had to start braking after the driving scene was 

occluded. During an occlusion, the entire front screen was automatically blacked out for 10 

seconds. The second test condition, named ‘control’, involved braking with normal vision. In the 

braking trials of this test, participants started braking after they heard a beep. The beep had a 

frequency of 587 Hz and was 0.42 s long.  

Participants were divided into two groups, either responding ‘at’ or ‘sometime after’ the braking 

signal. The first 12 participants were instructed to start braking immediately after the beep or 

occlusion was triggered. The second 12 participants were instructed to start braking at any time 

after the trigger of the occlusion or beep sound. Both groups were instructed in writing. 

Furthermore, before the start of each test, participants were orally informed whether the test they 

would be confronted with was the occlusion or the control condition. 

In all braking trials, the participants’ task was to (1) stop the vehicle by braking at a certain 

position on the road indicated by a white circular patch with a drum at either side of the road 

(Figure 3), and (2) maintain the vehicle in the center of the road. Participants could drive on top 

of the white circle unimpeded. There were no other vehicles on the road and there were no 

collisions during any of the experimental sessions. In both driving tests, participants completed a 

straight road stretch of 9000 m. The width of the lane in all the experiments was 3.66 m.  

 

Figure 3. View of the stopping target of the braking trials in the main driving tests. 

The sequence of the control and occlusion conditions were counterbalanced among the 

participants. Half of the participants were randomly selected to drive the control condition as 
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their first driving test. For the other half, the first driving test was the occlusion condition. Cruise 

control set at 27 m/s (60 mph) was active during all driving tests, except between the moment a 

participant started braking and the moment that s/he finished braking. The cruise control system 

automatically disengaged when the participants pressed the brake pedal. Participants had to 

engage the cruise control to automatically drive away from the completed stop.  

The dashboard was visible throughout the experiment, even in the occlusion condition. However, 

speed maintenance before the start of the brake was not part of the task, and participants were 

instructed to not look at the speedometer. Participants were also instructed to avoid pumping 

their brakes. That is, the participants were told to brake in one controlled stop, instead of braking 

suddenly and subsequently coasting towards the target. The thesis author instructed and observed 

the participants’ compliance in following the instructions. 

In both the occlusion and control tests, the time available for braking was manipulated. 

Specifically, the braking trials were triggered (i.e., by a beep or occlusion onset) at four different 

TTA intervals of 2, 4, 6, and 8 s before the stopping target. At a constant cruising speed of 27 

m/s, these TTA values corresponded to distances to the target of 54, 107, 161, and 215 m, 

respectively. The TTA was calculated from the center of the vehicle (i.e., the center of the 

rectangle that bounds the vehicle) to the center of the circular patch that indicated the stopping 

target. The two driving tests included four trials per each TTA value. Hence, each of the 

occlusion and control tests included 16 brake trials where the participants brought their vehicle to 

a full stop. The range of travelled distance between two subsequent stopping targets on the road 

was between 415 and 659 m. The sequence of the trials within each test had a fixed random 

order. Thus, the sequences of the trials were not recognizable for the participants. The sequence 

was also different under the control and occlusion conditions. 

2.3.6. Benchmark tests 

A benchmarking test was conducted before and after the main driving tests (Figure 1). The 

participants had to stop their vehicle four times at a target position on the road while approaching 

the target at 27 m/s speed. In contrast to the driving tests, the participants received no stimulus 

for timing their braking response. That is, there was no occlusion or beep sound in the 

benchmark trials and the participants were free to start braking at any moment to stop their 
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vehicle at the target. The benchmark tests were conducted to measure the extent to which the 

participants’ braking responses changed due to a learning effect in the simulator. The benchmark 

tests took place on a straight road and involved 2000 m of driving.  

2.3.7. Self-report questionnaires 

After the occlusion and control tests, participants were asked to step out of the simulator for a 

short break and to complete a six-item NASA Task Load Index (TLX) questionnaire (Hart, 

2006). The questionnaire included four items that asked about feelings of risk and self-

confidence. The extra items were: (1) ‘I had a feeling of risk during driving’, ‘I think I drove 

more safely than the average participant in this experimental condition’, ‘This car-following task 

was easy’, ‘I felt confident in my own capability to act appropriately’. The questionnaire used a 

21-tick scale, and ranged from very low to very high, except for the performance item of the 

TLX, which ranged from perfect to failure. Participants had to put a cross on a tick for each of 

the questionnaire items. 

At the end of the experiment, participants filled out a questionnaire about their use of any 

specific strategy while performing the braking task during the benchmark tests and the control 

and occlusion conditions. 

2.4. Dependent variables 

For the driving tests, the following variables were used to quantify the braking response pattern 

of the participants in different conditions. First, for each participant, the mean of each variable 

was calculated over four trials under each experimental condition (i.e., the different TTA values, 

and the control and occlusion conditions). Trials in which a participant pressed the brakes before 

the beep/occlusion moment were excluded from all analyses. Next, the mean of these means was 

calculated across the participants.  

2.4.1. Braking performance and behaviour 

Brake response time (Trt; s): The time between the start of an occlusion or beep sound and the 

initial brake of the participant. Trt is a measure of reaction time to the brake trigger events of this 

experiment (Green, 2013; Young & Stanton, 2007). 
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Maximum brake pedal displacement (pmax; %): The maximum degree of the brake pedal 

depression expressed as a percentage. The simulator measured the brake pedal position using a 

potentiometer. 0% corresponded to a fully released pedal, and 100% corresponded to a fully 

depressed pedal. It was determined with a ruler and a load cell that 100% pedal depression 

corresponded to a pedal travel of 5 cm and a pedal force of about 150 N. The brake pedal force 

was approximately linear in the 0–100% working range. It should be noted that 100% pedal 

depression was not the physical maximum pedal depression; it was possible to press the brake 

pedal somewhat more deeply (about 1 cm) into the rubbers that the fully depressed brake pedal 

rests on, by applying high forces on the brake pedal. 

Maximum brake pedal displacement time (tmax; s): The time between the start of the occlusion or 

beep sound and the moment that the maximum brake displacement occurs. tmax is an indicator of 

the participant’s performance in timing the magnitude of the brake pedal input. Small values 

indicate that the participant depressed the brake pedal to its maximum level immediately after the 

stimulus onset. 

Maximum deceleration (dmax; m/s2): The maximum deceleration of the vehicle.  

Distance gap (D; m): The distance gap is the difference between the stopping position of the 

vehicle and the position of the circular target on the road. The distance gap is an indicator of the 

participant’s performance in stopping at the pre-determined position (cf. De Groot et al., 2013; 

Jamson & Smith, 2003). A negative value means that the participant stopped before the target 

(i.e., stopped too early), while a positive value means that the participant passed the target (i.e., 

stopped too late).  

2.4.2. Non-driving perception and reaction time performance  

Distance estimation error (E; %): The distance estimation error, calculated from the measures of 

the distance estimation test, is the ratio of the difference between the reported (d) and the true 

distance (D) over the true distance between the driver’s seat and the rear bumper of the lead 

vehicle. Negative errors represent an underestimation of distance and positive errors represent an 

overestimation of distance. 
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(4) 

Auditory and visual reaction time (RTa, RTv; s): RTa and RTv represent the mean reaction time 

of the participants to the standard auditory and visual stimuli, respectively. These variables were 

used to find whether there were any a priori differences between the reaction times of the 

participant groups. 

2.5. Statistical analyses 

To evaluate the effect of time to arrival, a paired t test was conducted between the means for the 

maximum TTA of 8 s versus the means for the minimum TTA of 2 s (df = 23). To evaluate the 

effect of visual information, a paired t test was conducted using the means for the control versus 

occlusion condition (df = 23). Interaction effects between TTA and occlusion were determined 

by conducting paired t tests between the control and occlusion conditions for each TTA 

separately. The between-subjects factor was the participant’s group: participants in the first 

Group (Gany, n = 12) were told to start braking any time after the braking event triggered, and 

participants in the second Group (Gat, n = 12) were asked to start braking immediately at the 

event trigger. Gany and Gat were compared using an independent-samples t test (df = 22). 

Considering this to be a large number of statistical tests, a conservative false positive rate (alpha) 

of 0.01 was adopted, instead of the more traditional 0.05. 

3. Results 

Observations during the experiments and initial probing of the collected data revealed that in a 

few trials, participants started braking before the occlusion or presentation of the beep. 

Specifically, for the control condition, 19 of 384 trials were excluded (10 trials for TTA = 2 s, 8 

trials for TTA = 4 s, and 1 trial for TTA = 6 s) and for the occlusion condition, 12 of 384 trials 

were excluded (9 trials for TTA = 2 s, 2 trials for TTA = 4 s, and 1 trial for TTA = 6 s). These 

early brake trials were excluded from the remaining analyses. 

100%
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3.1. Reaction time and distance estimation 

Descriptive statistics of reaction time and distance error estimates are reported in Table 3. 

Results of independent t tests revealed no statistically significant differences between the Gany 

and Gat participants.  

Figure 4. Means and means ± 1 standard deviation (SD) of the reported distance to the rear 

bumper of the front vehicle, as a function of the true distance to the rear bumper of the 

front vehicle. Also shown are a linear fit and Gilinsky’s model using the calculated A-value 

(averaged across the 10 true distances). It can be seen that the participants underestimated 

the true distance by about 70%. 

 

Table 3. Mean (standard deviation) of auditory reaction time (RTa), visual reaction time 

(RTv), and distance perception error (E) of participants (N = 12 per group). 

   RTa (ms) RTv (ms) E (%) 

Mean Gany (SD) 214 (39) 308 (46) -68 (12) 

Mean Gat (SD) 212 (24) 301 (28) -72 (12) 

t(df = 22) Gany vs. Gat 0.154 0.471 0.961 

p-value Ganyvs. Gat 0.879 0.643 0.347 
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Participants, on average, reported a distance that was consistently about 30% of the true distance 

(Figure 4). Accordingly, a linear fit provided a better fit than the curvilinear Gilinsky’s model 

(Figure 4).  

3.2. Braking performance and behavior 

Figure 5 shows that the response time of the participants became longer as the TTA of the 

braking event increased (p < 0.001, t = 6.509 for TTA = 8 s vs. TTA = 2 s). In other words, 

participants delayed their initial response when there was more time available to bring the car to 

a standstill. The brake reaction time was not significantly different between the occlusion 

condition and the control condition (p = 0.018, t = 2.535). Figure 6 shows the standard deviations 

of the brake reaction time among participants. Overall, Gat participants had a more consistent 

reaction time than Gany participants did, which can be explained by the task instructions for Gat 

stating that participants should brake directly after the event trigger.  

Figure 5. Mean brake response time as a function of the time to arrival (TTA), occlusion, 

and experimental group (Gany = braking at any time after the occlusion/beep; Gat = 

braking immediately at the occlusion/beep). 
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Figure 6. Standard deviation (SD) among participants (N = 12 per condition) of the mean 

brake response time, as a function of the time to arrival (TTA), occlusion, and 

experimental group (Gany = braking at any time after the occlusion/beep; Gat = braking 

immediately after the occlusion/beep). The standard deviation is a measure of inter-

individual differences. 

The results in Figure 5 further show that there is a group-TTA interaction effect regarding the 

brake response time (TTA = 2 s: t = -1.943, p = 0.065; TTA = 4 s: t = -0.625, p = 0.539; TTA = 6 

s: t = 2.413, p = 0.025; TTA = 8 s: t = 3.306, p = 0.003), indicating that the Gany group delayed 

their initial braking response in those cases where there was more time available (i.e., a higher 

TTA). 

The results of the maximum brake pedal displacement (Figure 7) show that participants pressed 

the brake less deeply when TTA was higher (p < 0.001, t = -12.811). The maximum brake 

displacement was larger in the control condition as compared to the occlusion condition (p = 

0.001, t = 3.756). Furthermore, there was an interaction effect (TTA = 2 s: t = 4.813, p < 0.001; 

TTA = 4 s: t = 2.918, p = 0.008; TTA = 6 s: t = 1.804, p = 0.084; TTA = 8 s: t = 0.818, p = 

0.422), indicating that for braking trials with a short TTA, participants pressed the pedal further 

during the control condition than they did in the occlusion condition. As could be expected, the 
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maximum deceleration of the vehicle reveals an almost identical pattern as the maximum pedal 

displacement (Figure 8).  

Figure 9 shows that as the TTA of the brake event increased, the maximum brake displacement 

occurred later during the braking trial (p < 0.001, t = 13.651). There were no statistically 

significant effects for the control versus occlusion conditions (p = 0.923, t = -0.098) and for Gany 

versus Gat (p = 0.641, t = -0.473). However, there was an interaction effect (TTA = 2 s: t = -

4.791, p < 0.001; TTA = 4 s: t = -2.633, p = 0.015; TTA = 6 s: t = 0.598, p = 0.555; TTA = 8 s: t 

= 3.274, p = 0.003). That is, for the control condition, the time of the maximum brake pedal 

displacement was earlier for the shortest TTA and later for the longest TTA in comparison to the 

occlusion condition (see also Figure 9).  

Figure 7. Mean maximum brake pedal displacement as a function of the time to arrival 

(TTA), occlusion, and experimental group (Gany = braking at any time after the 

occlusion/beep; Gat = braking immediately after the occlusion/beep). 
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Figure 8. Mean maximum deceleration as a function of the time to arrival (TTA), 

occlusion, and experimental group (Gany = braking at any time after the occlusion/beep; Gat 

= braking immediately after the occlusion/beep).

 

Figure 9. Mean maximum brake force time as a function of the time to arrival (TTA), 

occlusion, and experimental group (Gany = braking at any time after the occlusion/beep; Gat 

= braking immediately after the occlusion/beep). 
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As a supplementary analysis, the brake pedal displacement was divided into five equal ranges 

and subsequently the relative durations of the brake pedal depression were calculated within each 

of the ranges (Figure 10). As expected, it was found that the shorter the TTA, the greater the 

proportion of large brake pedal depression (> 80%). Furthermore, the control versus occlusion 

condition showed statistically significant effects for all depression ranges, except for the largest 

range (see Table 4). Table 4 also shows that there was a clear interaction effect. At the shortest 

TTA (TTA = 2 s), participants were more likely to use a large brake pedal depression (> 80%) in 

the control condition as compared to the occlusion condition. For the brake trials with the longest 

TTA (TTA = 8 s), the relative duration of < 40% braking was longer during the control condition 

than during the occlusion condition. This trend was reversed for the 40–60% range. In summary, 

in the occlusion condition participants were likely to apply intermediate brake pedal 

displacements, whereas in the control condition participants were more likely to operate the 

brakes in the extreme ranges.  

 

Figure 10. Time percentages of brake pedal displacement ranges as a function of the time 

to arrival (TTA) and occlusion. As the results for the two experimental groups were 

similar, the results were averaged across Gany (braking at any time after the 

occlusion/beep) and Gat (braking immediately after the occlusion/beep). 
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Table 4. p-values and t-statistics of main and interaction effects for the time percentages 

per brake pedal displacement range. 

 TTA  

8 s vs. 2 s 

Control vs. 

Occlusion 

Gany vs. Gat Control vs. Occlusion per TTA 

pedal depression range  TTA = 2 s TTA = 4 s TTA = 6 s TTA = 8 s 

T<20 (%) p < 0.001 

t = 5.245 
p = 0.001 

t = 3.809 

p = 0.079 

t = 1.840 

p = 0.057 

t = 2.006 

p = 0.183 

t = 1.372 

p = 0.011 

t = 2.785 
p = 0.001 

t = 3.736 

T20-40 

(%) 
p < 0.001 
t = 9.166 

p = 0.002 
t = 3.544 

p = 0.004 
t = -3.242 

p = 0.210 

t = 1.290 

p = 0.884 

t = 0.147 

p = 0.018 

t = 2.544 
p = 0.002 

t = 3.489 

T40-60 

(%) 
p < 0.001 

t = 5.626 
p = 0.005 

t = -3.111 

p = 0.084 

t = 1.810 

p = 0.123 

t = -1.599 

p = 0.664 

t = -0.440 

p = 0.216 

t = -1.271 
p = 0.001 

t = -4.039 

T60-80 

(%) 
p < 0.001 

t = -4.296 
p = 0.008 

t = -2.895 

p = 0.195 

t = 1.336 

p = 0.011 

t = -2.753 

p = 0.693 

t = 0.400 

p = 0.053 

t = -2.043 

p = 0.730 

t = 0.349 

T>80 (%) p < 0.001 

t = -10.111 

p = 0.287 

t = 1.090 

p = 0.571 

t = -0.575 
p = 0.002 

t = 3.252 

p = 0.714 

t = -0.371 

p = 0.371 

t = -0.912 

p = 0.306 

t = -1.047 

Note. The table shows the time to arrival (TTA) effect (TTA = 8 s vs. TTA = 2 s), visual effect 

(control vs. occlusion condition), and group effect (Gany who were braking at any time after the 

occlusion/beep vs. Gat who were braking immediately at the occlusion/beep). The table also 

shows the control versus occlusion effect for each TTA value separately. p < 0.01 is indicated in 

bold. 

Figure 11 shows the results of the distance gap between the stopping position and the circular 

target. Both TTA 8 s vs. 2 s (p < 0.001, t = -10.620) and control versus occlusion (p < 0.001, t = 

4.925) showed statistically significant results. The results in Figure 13 indicate that at the end of 

braking, all groups on average missed the target for the shortest TTA. There was an interaction 

effect as well (TTA = 2 s: t = 0.673, p = 0.508; TTA = 4 s: t = -0.509, p = 0.616; TTA = 6 s: t = 

3.054, p = 0.006; TTA = 8 s: t = 6.952, p < 0.001). That is, for the occlusion condition, the 

distance gap shifts from stopping too late to stopping too early, as TTA increases. For the non-

occluded condition, participants were able to accurately stop at the target. 
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Figure 11. Mean distance gap as a function of the time to arrival (TTA), occlusion, and 

experimental group (Gany = braking at any time after the occlusion/beep; Gat = braking 

immediately after the occlusion/beep). A negative value means that the participant stopped 

too early, while a positive value means that the participant passed the target and stopped 

too late. 

Figure 12 shows that intra-individual differences in the distance gap are larger for the occlusion 

condition than for the control condition. The standard deviation is calculated for each participant 

and so represents a measure of consistency of the person with respect to him/herself. For TTA = 

8 s, the mean number of trials in which participants stopped on-target (i.e., defined herein as 

stopping within 12 m from the center of the white circle) was 45% in the control condition, 

compared to 3% in the occlusion condition. 
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Figure 12. Standard deviation (SD) of the distance gap as a function of the time to arrival 

(TTA), occlusion, and experimental group (Gany = braking at any time after the 

occlusion/beep; Gat = braking immediately after the occlusion/beep). The SD was calculated 

across the four trials per experimental condition and per participant, and subsequently 

averaged across the 12 participants in the experimental condition. Hence, the SD is a 

measure of within-subject consistency across the four trials. 

3.3. Time series analysis of braking performance 

As an illustration of the above findings, this section reports the temporal pattern of the braking 

maneuver (i.e., pedal position, vehicle acceleration, and distance gap to the on-road target). The 

time-locked average of the response across the 12 participants per group was calculated (i.e., 

across 48 trials per each combination of TTA and occlusion/control condition). Because 

participants finished braking at different points in time, there were fewer data points to be 

averaged near the end of each time series. To minimize the effect of this noise in the pattern, the 

average was calculated up to the moment that all of the participants pressed the brake pedal in at 

least one of their four trials.  

 

The average braking response when faced with a stopping task with short TTA of 2 s is pulse-

shaped with high amplitude. As TTA of the braking event increases, participants responded with 
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a longer and less hard brake depression, resulting in a longer deceleration profile and lower 

levels of average deceleration (Figures 13 and 14). For TTA = 2 s, participants on average 

braked less hard in the occlusion condition as compared to the control condition (Figure 13).  

 

 

Figure 13. The average brake pedal displacement of participants during braking trials, as a 

function of time to arrival (TTA), participant group (Gany vs. Gat), and control and 

occlusion conditions. Gany = braking at any time after the occlusion/beep; Gat = braking 

immediately after the occlusion/beep. 
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Figure 14. The average deceleration of participants during braking trials, as a function of 

time to arrival (TTA), participant group (Gany vs. Gat), and control and occlusion 

conditions. Gany = braking at any time after the occlusion/beep; Gat = braking immediately 

after the occlusion/beep. 

 

Figure 15 shows the average distance gap of the participants during their brake response. When 

there was occlusion and the TTA was 2 s, participants, on average, stopped slightly after the 

target. However, when the scene was occluded, the average distance gap showed an offset 

proportional to the distance gap at the start of the event onset. The time series were highly 

similar between the two groups of participants (Gany vs. Gat). 
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Figure 15. The average distance gap of participants during braking trials, as a function of 

time to arrival (TTA), participant group (Gany vs. Gat), and control and occlusion 

conditions. Gany = braking at any time after the occlusion/beep; Gat = braking immediately 

after the occlusion/beep. 

3.4. Self-report questionnaires 

Table 5 shows the results of the NASA TLX and the four additional questions about feelings of 

risk and self-confidence. Participants found the occlusion condition more demanding than the 

control condition. The greatest differences were observed for the mental demand item. 

Furthermore, participants expressed lower self-confidence when driving with occlusion and 

found driving with occlusion more risky and more difficult, as compared to driving in the control 

condition. 

Finally, participants reported the strategies that they used in performing the braking task of the 

experiment. A few participants indicated that they used ‘estimation’ (2 times) or ‘imagination’ to 

brake when the scene was occluded. One participant mentioned ‘mentally preparing myself with 

the brake force that is required’ as a strategy used in the occlusion condition. Other responses 

implied similar strategies in using distance estimation for operation of the brake in the occlusion 

condition: ‘tried to brake faster for short distances and very light at long distances’, ‘I tried to 
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guess how many numbers I would have count in order to stop on spot (e.g. I would guess I 

should brake after counting to 7)’, ‘estimating the distance from the blackout point to the circle 

and transfer it to the time, so I would push the brake at the time I think I am close enough to the 

white circle’, ‘if don’t feel there is a lot of distance after occlusion, I smash on the brake’, and 

‘differentiate the pressure on the brake with distance’.  

Table 5. Descriptive statistics of participants’ responses to the NASA TLX questionnaire, 

and four additional questions about feeling of risk and self-confidence. 

. Occlusion Control   

 Gany Gat Gany Gat 
p-value Gany 

vs. Gat  

p-value 

control vs. 

occlusion 

TLX Mental demand 54 (25) 55 (23) 39 (21) 35 (23) 0.871 < 0.001 

TLX Physical demand 29 (18) 38 (27) 26 (16) 25 (19) 0.601 0.013 

TLX Temporal demand 32 (22) 43 (23) 33 (19) 30 (17) 0.582 0.177 

TLX Performance 50 (23) 55 (23) 34 (20) 46 (24) 0.264 0.023 

TLX Effort 58 (23) 57 (23) 39 (21) 50 (23) 0.562 0.005 

TLX Frustration 52 (28) 42 (25) 26 (24) 26 (23) 0.534 0.002 

I had a feeling of risk during 

driving (Risk) 

33 (29) 45 (35) 19 (21) 22 (24) 0.465 < 0.001 

I think I drove more safely than the 

average participant (Safety) 

65 (20) 43 (19) 65 (18) 47 (14) 0.006 0.506 

This driving task was easy 

(Difficulty) 

44 (23) 40 (23) 70 (20) 56 (22) 0.238 < 0.001 

I felt confident in my own 

capability to act appropriately 

(Confidence) 

66 (19) 50 (26) 84 (14) 64 (22) 0.022 < 0.001 

Note. The table shows means across participants (standard deviations in parentheses), and the p-

values for comparisons between the two participant groups (Gany vs. Gat) and between the control 

and occlusion conditions. The results are expressed in percentages from 0% (lowest on the scale) 

to 100% (highest on the scale). p < 0.01 is indicated in bold. 

3.5. Learning effects 

There were several statistically significant differences between the braking behavior of the two 

benchmark tests (Table 6). The maximum brake displacement and its occurrence moment did not 

significantly change between these two benchmark tests. However, during the second benchmark 

test, participants were less likely to have large brake pedal depressions (> 80%) and more likely 

to almost or completely release the brake (< 20%) in comparison to the first benchmark test. 
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These results suggest that participants learned to operate the brake pedal smoothly through the 

course of the experimental sessions. 

Table 6. Comparison of the maximum brake pedal displacement (pmax), maximum brake 

pedal displacement time (tmax), and time percentages per brake pedal displacement range 

(T<20, T20-40, T40-60, T60-80, T>80) during the two benchmark tests. The comparison was made 

between the average data of the four trials per test. 

Variable 
Benchmark test 1 

M (SD) 

Benchmark test 2 

M (SD) 

p-value 

Test 1 vs. Test 2 

pmax (%) 71.4 (13.5) 67.0 (12.8) 0.105 

tmax 7.7 (2.9) 7.0 (2.3) 0.308 

T<20 (%) 8.3 (9.6) 16.5 (8.1) 0.002 

T20-40 (%) 21.5 (19.7) 32.4 (14.4) 0.040 

T40-60 (%) 35.3 (14.5) 29.0 (17.1) 0.121 

T60-80 (%) 16.1 (10.6) 16.1 (10.0) 0.991 

T>80 (%) 18.9 (13.8) 6.0 (10.0) < 0.001 

Note. p < 0.01 is indicated in bold.  

4. Discussion 

This experiment investigated to what extent drivers rely on open loop (i.e., use of the scene 

memory) versus closed loop (i.e., continuous compensation of distance and speed with respect to 

a target) strategies in executing a braking task was investigated. The effect of the presence versus 

absence of visual information on the characteristics of participants’ brake responses when they 

were asked to stop at a target was examined. In half of the trials, the screen was blanked at a 

particular time-to-arrival value (TTA). Our hypothesis was that participants would brake longer 

and harder when the brake scene was occluded, because they had to rely on the perceived 

compressed distance at the start of braking as predicted by Gilinsky’s model of distance 

perception). Contrary to expectations, it was found that when the time available to brake is short, 

drivers brake harder in the control condition than in the occlusion condition. The current 

experiment also shows that the underestimation of distance does not follow the pattern proposed 

by Gilinsky (1951). Potential explanations for these findings are discussed below.  
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4.1. Distance underestimation 

The results of the current experiment indicate that in standstill conditions people underestimate 

the true distance to the lead vehicle in the virtual environment by as much as 70%. This 70% 

factor seems to be independent of the true distance, which means that a linear fit is an 

appropriate model of the perceived distance (based on visual inspection of Figure 4). Hence, the 

curvilinear model of Gilinsky for the simulator was rejected for the range of distances examined 

in this experiment. Baumberger, Flückiger, Paquette, Bergeron, and Delorme (2005) showed that 

drivers placed their car 5 m too far from the car in front (meaning they underestimated the 

distance to this car) when asked to position their car at mid-distance between two other cars that 

were moving in the adjacent right lane of the driver. Distance underestimation has been found in 

other virtual environments as well, for a variety of measurement methods such as verbal 

reporting of absolute distance, triangulation by pointing/walking, perceptually-directed action, 

and perceived size judgment (Knapp & Loomis, 2004; Loomis & Philbeck, 2008). 

A recent study by Li, Phillips, and Durgin (2011) sheds light on why the Gilinsky model did not 

yield a good fit for our data. These authors showed that if distance judgement is egocentric 

(meaning that the distances are estimated from the observer to a point in the environment, as was 

done in this study), then the estimated distance is linearly compressed. On the other hand, if 

distance judgment is exocentric (meaning that distance is measured between two points in the 

environment, as was the case in Gilinksy’s research), then distance underestimation becomes 

progressively larger as a function of distance. Previous research into egocentric distance 

judgements in real and virtual environments shows that observers typically underestimate the 

distance to an object by 20 to 30% (Li et al., 2011; Loomis & Philbeck, 2008; Messing & 

Durgin, 2005), although distance underestimates of around 55% have also been reported in 

virtual environments (e.g., Thompson et al., 2004; Witmer & Kline, 1998).  

Although the current experiment shows that the underestimation of the distance in driving 

simulators does not follow the pattern proposed by Gilinsky, it does confirm that drivers severely 

underestimate the true distance to the lead car in the virtual environment. Failure to consider this 

effect in designing driver support systems (by means of driving simulators) could adversely 

impact the effectiveness of such systems. For example, driving simulator studies on headway 
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settings for adaptive cruise control may be invalid if drivers systematically underestimate their 

actual distance. 

It should be noted that driving simulators have particular features that can complicate the 

estimation of distance. The simulator screen represents a two-dimensional picture of the 

environment, which prevents the use of stereopsis (i.e., depth perception through binocular 

vision). Furthermore, the two-dimensional simulator scene lacks the monocular parallax created 

by the movement of the head with respect to the world scene. Research has shown that humans 

are able to estimate distance more accurately in virtual environments when cues such as 

binocular disparity and motion parallax are available (Ellis & Menges, 1995). Other factors like 

the textures in the environment, perspective information and virtual eye height, shadows, screen 

resolution, convergence and accommodation cues, and the visibility of the frames of the screens 

may have also contributed to the underestimation of distance (cf. Andersen, 2011; Wu, He, & 

Ooi, 2007). Another factor in our distance estimation test was that the lead vehicle remained 

visible for only 7 s. In such a short time window, participants have little time to calculate the 

distance from relative size cues or other traffic scene features. Future research could clarify 

whether the fast-paced nature of the distance estimation task can cause enhanced distance 

underestimation, by comparing this result to the result of a similar task where the estimation 

time-window is larger. Nevertheless, the time window of the distance estimation tasks in this 

study is close to the time available in safety critical driving tasks (Allen et al., 2005).  

4.2. The effects of occlusion 

The results of the braking trials support our hypothesis that lack of visual information effects the 

duration, timing, and magnitude of the brake pedal depression. For TTA = 2 s, participants in the 

occlusion condition brought the car to a standstill at, on average, the same location as 

participants in the control condition did (Figure 11). However, drivers needed longer time and 

reduced their maximum brake input as compared to the control condition.  

In the events with short TTA (i.e., TTA ≤ 4 s) participants’ maximum brake pedal depressions 

were smaller during the occlusion condition than they were during the control condition (Figure 

7). These results are inconsistent with our hypothesis stating that people driving with occlusion 

brake hard because they have to rely on the compressed visual distance. One potential 
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explanation is that the participants’ brake reaction time was somewhat slower in the control 

condition than in the occlusion condition (Figure 5). For example, for TTA = 2 s, participants in 

the occlusion condition braked 0.19 s earlier than participants in the control condition, possibly 

because some participants braked after the 0.4 s beep had ended. Participants in the control 

condition should have compensated this delay by using a higher amount of pedal displacement. 

Another possibility is that participants have learned to use the simulator during the training 

session and the first benchmark test, and therefore were able to brake efficiently despite the 

severe underestimation of distance. Our comparison between the first and second benchmark 

tests confirms that people had adapted to the driving simulator by reducing their brake pedal 

depression (Table 6). A third possibility is that with the urgent conditions (TTA ≤ 4 s), 

participants cannot detect that they are likely to miss the target and therefore do not feel the urge 

to press the brake as far as possible. 

When there was ample time available at the start of the braking maneuver (TTA ≥ 6 s), 

participants in the occlusion condition brought their vehicle to a stop well before the target. The 

results further indicate that participants pressed the brake at an intermediate position when the 

driving scene was occluded. Arguably in the TTA ≥ 6 s conditions, participants cannot know 

when to release and regulate the brake pedal input, and they therefore apply a constant brake 

input (known as ‘hold’ strategy). The interaction effect between the visual condition and TTA 

(Table 4 and Figure 11) illustrates that people driving in the occlusion condition were more 

likely to press the brake at an intermediate position (60–80% for TTA = 2 s, and 40–60% for 

TTA = 8 s) than people driving in the control condition. However the people driving in the 

control condition were more likely to ‘slam’ the brakes (i.e., to press their brakes as deeply and 

as quickly as possible) at TTA = 2 s or release the brakes (at TTA = 8 s). These results are 

consistent with a study by Andersen et al. (1999) in which participants non-interactively 

observed a scene in which the motion decelerated at a constant rate followed by a blackout of the 

display. Their results showed that the longer the blackout period, the less accurate participants 

were in determining whether they were on collision course with a stop sign. 

In summary, for large TTA values (TTA ≥ 6 s), participants in the occlusion condition, on 

average, stopped well before the target and did so in an inconsistent manner (i.e., high within-

subject standard deviations of the stopping distance). In the occlusion condition with TTA = 2 s, 
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participants stopped on the target almost as accurately as in the control condition. Still, for these 

braking trials, participants in the occlusion condition pressed the pedal less hard (Figure 7) and 

reached lower peak decelerations (Figure 8) than in the control condition. 

4.3. The effects of task instructions 

The results of this experiment showed that imposing the brake onset instructions had little effect 

on the brake response characteristics. The largest difference between Gany (the group braking at 

any time after the occlusion/beep) and Gat (the group braking immediately at the occlusion/beep) 

was obtained in the brake response time itself. The uniform timing (i.e., low SDs, see Figure 6) 

among the Gat trials indicates that Gat participants responded as instructed: right after the brake 

stimulus. In the case of low urgency (TTA = 8 s), Gany’s average brake onset showed a delay of 

about 1 s compared to Gat (Figure 5). Summarizing, the brake response pattern did not noticeably 

differ between the Gany and Gat groups. The effects of the temporal urgency of the situation (TTA 

value) were stronger than the effects of task instruction. 

4.4. Limitations of this research 

One limitation of this study is that participants were vigilant and well instructed. In reality, 

emergency events can occur as surprise conditions where drivers have poor situation awareness. 

In addition, our simulator lacks tactile/vestibular-motion feedback. It has been found before that 

people brake more smoothly and with lower peak decelerations in a real vehicle than in a 

simulator, especially when the simulator does not provide physical motion feedback (Boer, 

Girshik, Yamamura, & Kuge, 2000; De Groot, De Winter, Mulder, & Wieringa, 2011; Siegler, 

Reymond, Kemeny, & Berthoz, 2001). A third limitation is that the participants in this study 

were relatively young, with a mean age of 27 years; two-thirds being younger than 30 years. 

There is some evidence that older participants make more conservative, but less accurate, 

decisions in braking tasks (e.g., Andersen et al. 1999; Bian & Andersen, 2014). Future research 

should investigate whether our results can be generalized to different age and experience levels. 

A fourth limitation of this study is that the results may be specific to the simulator’s brake 

system design, including such factors as the physical brake pedal stiffness, brake pedal 

amplitude, and the virtual brake dynamics model of the simulator. Many participants in the TTA 

= 2 s condition pressed the brakes at the full 100% depression, giving rise to a ceiling effect. It is 



CHAPTER 3: Measuring drivers’ visual information needs during braking 

73 

 

 

possible that differences between the control and occlusion condition would have been larger if 

the brake pedal had been stiffer. One recommendation that stems from these observations is that 

the brake pedal stiffness in real cars should not be too high, as people have a tendency to under-

brake when they lack visual information. This recommendation is in line with previous research 

showing that in situations with high urgency, drivers do not use their full braking capacity 

(Kassaagi, Brissart, & Popieul, 2003).  

4.5. Implications of this research 

The scenario investigated in this research (braking to a full stop at a target) can occur in various 

real life situations such as stopping behind stationary vehicles, at stop signs, or at traffic lights at 

signalized intersections. The results may be useful for explaining drivers’ responses in these 

situations and for determining the most effective remedies for accidents (e.g., training, design of 

warning systems). Many advanced driver assistance systems (ADAS) are designed to reduce 

drivers’ brake reaction time (e.g., Fancher, Bareket, & Ervin, 2001; Lee & Peng, 2005; Piao & 

McDonald, 2008; Wang, Zhang, Zhang, & Li, 2013). The present results may be useful for 

defining future research in this area. 
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CHAPTER 4 

Why do drivers maintain short headways in fog? A driving simulator 

study evaluating feeling of risk and lateral control during automated and 

manual car following 

 

Abstract 

Drivers in fog tend to maintain short headways, but the reasons behind this phenomenon are not 

well understood. This study evaluated the effect of headway on lateral control and feeling of risk 

in both foggy and clear conditions. Twenty-seven participants completed four sessions in a 

driving simulator: clear automated (CA), clear manual (CM), fog automated (FA) and fog 

manual (FM). In CM and FM, the drivers used the steering wheel, throttle and brake pedals. In 

CA and FA, a controller regulated the distance to the lead car, and the driver only had to steer. 

Drivers indicated how much risk they felt on a touchscreen. Consistent with our hypothesis, 

feeling of risk and steering activity were elevated when the lead car was not visible. These 

results might explain why drivers adopt short headways in fog. 

 

 

 

 

 

Saffarian, M., Happee, R., & De Winter, & J. C. F. (2012). Why do drivers maintain short 

headways in fog? A driving simulator study evaluating feeling of risk and lateral control during 

automated and manual car following, Ergonomics, 55, 971–985. (adapted with minor textual 

changes) 
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1. Introduction 

Fog is one of the most dangerous conditions a motorist can drive in. Crashes in fog tend to be 

more severe than crashes in clear weather and are associated with pile-ups involving multiple 

fatalities (Abdel-Aty, Ekram, Huang, & Choi, 2011; Al-Ghamdi, 2007; Johnson, 1973; Musk, 

1991; Sumner, Baguley, & Burton, 1977; Whiffen, Delannoy, & Siok, 2003). Because fog is a 

rare weather condition, the numbers of fatal road traffic crashes in fog account for only about 

one to three percent of the total (Organization for Economic Co-operation and Development, 

1994). However, on an absolute scale, fog contributes to a considerable number of fatalities. In 

representative Western countries such as the United States, Canada, and Germany, the annual 

number of fatal traffic crashes in fog has been estimated at 355, 54 and 33, respectively (Lerner, 

2002 cited in Debus et al., 2005; National Highway Traffic Safety Administration Fatality 

Analysis Reporting System [NHTSA-FARS], 2009; Whiffen et al., 2003). 

A peculiar phenomenon of driving in fog is that drivers tend to maintain a shorter headway to the 

lead vehicle than they do in clear weather. Motorway measurements by White and Jeffery (1980) 

showed that when visibility dropped below 200 m, drivers reduced their headway, expressed as 

both inter-vehicle distance and as temporal separation. At a visibility distance of 150 m, about 

30% of vehicles maintained headways within 2 s. This percentage was some 2.5 times higher 

than the percentage observed in normal traffic flow in clear weather. According to White and 

Jeffery, these findings demonstrate that fog causes platooning and provokes unsafe behavior. 

Similar findings were reported by Hawkins (1988). A driving-simulator study by Ni, Kang, and 

Andersen (2010) found that older drivers in particular followed at short headways in fog. 

When driving in fog, a driver is deprived of preview and road texture information that may be 

relevant to lateral control. A simulator study by Uc et al. (2009) found that drivers with 

Parkinson’s disease had poorer lane-keeping accuracy than controls, and that the effect size was 

larger in mild fog than in clear weather. Brooks et al. (2011) found that the mean percentage of 

the driving time that the vehicle was entirely within its lane was reduced in fog, but only when 

the visibility distance dropped below 30 m. A small study in a driving simulator by Malaterre, 

Hary, & Quéré (1991) showed that driving in fog reduced low frequency steering wheel 

movements (between 0.1 and 0.3 Hz), indicating reduced use of visual preview information. 
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They hypothesized that a lead vehicle might serve as a guide in lateral control. However, their 

experiment found no significant differences in steering behavior between driving in fog with 

versus without the presence of a lead car. As Caro, Cavallo, Marendaz, Boer, and Vienne (2009) 

pointed out, no experimental data is currently available that proves the influence of the lead car 

on lateral control in fog.  

Caro et al. (2009) showed that maintaining shorter headways in fog led to shorter response times 

than long headways, due to better contrast and improved visibility of the leading vehicle outline. 

This suggests that headway reduction is an adaptive mechanism in drivers to achieve faster 

discrimination of relative motion. The results by Caro et al. (2009) are supported by Kang, Ni, 

and Andersen (2008), who found that drivers in fog have difficulty detecting rapid speed changes 

in the lead car.  

Another mechanism that may be operating in fog is altered distance perception (Brown, 1970). A 

fog chamber experiment has shown that in fog people overestimate distance by as much as 60% 

(Cavallo, Colomb, & Doré, 2001). However, overestimation of distance can only marginally 

explain the short headways observed in fog, because distance overestimation occurs only in 

extremely dense fog when just the lead vehicle’s lights remain visible and the lead car’s outline 

cannot be perceived (Caro, 2008). 

Fog decreases visual stimulation of the peripheral field, reduces global optical flow, and creates a 

featureless environment. All this may cause drivers to underestimate their speed (Malaterre et al., 

1991; Musk, 1991), resulting in headway reduction. Underestimation of speed could be 

aggravated by the fact that the driver cannot easily check the speedometer while concentrating on 

the road ahead (Musk, 1991). Snowden, Stimpson, and Ruddle (1998) confirmed that as fog 

becomes denser, subjects perceived driving scenes to be moving more slowly, and drove at faster 

speeds in a low-fidelity driving simulator. However, these results are contradicted by a number 

of studies using more sophisticated driving simulators (e.g., Debus et al., 2005; Owens, Wood, & 

Carberry, 2010). 

In addition to these studies, which use perceptual mechanisms to explain headway reduction, a 

number of researchers have alluded to emotional variables such as fear, worry, or sense of risk, 

to explain the headway reduction. There is good reason to believe that emotional variables play a 



CHAPTER 4: Why do drivers maintain short headways in fog? 

81 

 

 

crucial role in car driving. General theories of car driving behavior suggest that psychological 

mechanisms in car driving can be conceptualized as avoidance of threat (Fuller, 1984) or risk 

(Näätänen & Summala, 1974). According to Musk (1991), fog is the weather hazard that drivers 

fear most. Edwards (1996) pointed out that motorway drivers may be anxious about losing sight 

of the lead vehicle, being struck by another vehicle from behind, or becoming detached from the 

road environment. Driving in fog without the presence of a lead vehicle also increases the chance 

of sudden confrontations with slow-moving vehicles, and drivers may therefore be reluctant to 

lead a queue (Musk, 1991). A survey of 1,773 drivers found that a psychological push-pull 

mechanism with respect to other cars contributes to short headways (Schönbach, 1996). In this 

study, 65% of respondents indicated that it is usually reassuring for them if they see the taillights 

of the car ahead. A recent driving-simulator study by Broughton, Switzer, and Scott (2007) 

found that high lead-car speed combined with dense fog prompted two distinctive behaviors in 

the drivers they tested: one group ceased to follow the lead car within visible limits and dropped 

back to a longer following distance. The other group maintained visual contact with the lead car, 

possibly at the expense of safety. These results indicate that the visibility threshold might 

function as a psychological barrier, separating drivers into laggers (who drive at lower speeds at 

the expense of unguided driving) and non-laggers (who closely follow a lead car that provides 

guidance).  

Of the reported mechanisms explaining headway reduction, the roles of lateral control and 

emotional variables such as feeling of risk have hardly been studied experimentally. The present 

study aimed to understand why drivers maintain short headways in fog by focusing on lateral 

control and subjective feeling of risk. This paper investigated these two mechanisms using a 

paradigm involving automated car following at seven preprogrammed following distances, 

including the condition when the lead car is not visible. Previous driving-simulator research by 

Lewis-Evans, De Waard, & Brookhuis (2010) showed that the participants’ feeling of risk as a 

function of headway has a horizontal asymptote towards increasing headway: Feeling of risk was 

low or nil at large headways, but showed an increase around 28 m (i.e., a temporal separation of 

2.0 s in that study), and increased further for shorter headways. It was expected that an 

asymptotic pattern would be replicated in clear weather, but would not be present in foggy 

conditions. Moreover, it was hypothesized that if the lead car were out of sight in foggy 
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conditions (i.e., large headways), drivers would report higher levels of subjective risk than when 

the lead car was visible. Furthermore, it was expected that when the lead car is not visible, a 

more active lateral control behavior would occur, indicating compensatory steering due to lack of 

preview. 

Drivers’ feeling of risk and lateral control behavior during manual and automated car-following 

scenarios were compared for both foggy and clear weather conditions. It was hypothesized that 

automatic car following would result in lower feelings of risk and reduced lateral control activity 

than manual car following because of the reduced physical and mental activity required. 

2. Method 

2.1. Participants 

Twenty-seven participants (twenty-two men and five women) who held a driver’s license for at 

least six months were recruited from the university community. All participants provided written 

informed consent. The experiment was approved by the Human Research Ethics Committee of 

the Delft University of Technology. 

Analysis of an intake questionnaire showed that the mean age of participants was 28.9 years (SD 

= 2.8 years) and they had held a driving license for on average 10.0 years (SD = 3.4 years). 

Fifteen participants reported that they had driven in a simulator before, and five reported playing 

video games for at least one hour a week. The response to the item “I have good steering skills 

(for instance in cycling or computer games)” rated 7.4 (SD = 1.6) on average, on a scale from 

one (completely disagree) to ten (completely agree). Four participants reported driving daily, 

nine drove weekly, and fourteen monthly or less. Twenty-one participants reported no experience 

with cruise control systems or indicated that they used cruise control systems less than once a 

year. 

2.2. Apparatus 

The fixed-base driving simulator (Figure 1) provided a realistic simulation of a mid-class 

passenger car with 180° field of view and surround sound. This simulator is used for initial 

driver training in the Netherlands (Green Dino, 2011). The pedals, steering wheel, ignition key, 
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and seat resembled those of an actual car, and gear changing was automatic. The steering wheel 

provided force feedback with a passive spring system. The steering sensitivity (i.e., a parameter 

representing the ratio of lateral acceleration to steering wheel angle) was calibrated to correspond 

to the steering sensitivity of cars on the road (Katzourakis, De Winter, De Groot, S., & Happee, 

2012). The simulation data stream was updated at 50 Hz. The virtual world was depicted by three 

LCD projectors (one front projector, NEC VT676, brightness 2,100 ANSI lumens, contrast ratio 

400:1, resolution 1,024 × 768 pixels; two side projectors, NEC VT470, brightness 2,000 ANSI 

lumens, contrast ratio 400:1, resolution 800 × 600 pixels). The dashboard, interior, and mirrors 

were integrated in the projected image. The car model used in this study had an automatic 

transmission. 

 

Figure 1. Driving simulator in the experimental setup. The lead car is driving 31 m ahead 

of the participant’s car. The driver is indicating the level of risk he is feeling on the 

touchscreen mounted on the steering wheel. Note that the eye-tracking equipment was not 

used in this experiment. 
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2.3. Experimental conditions 

The experiment contained four sessions, each featuring a weather/driving condition applied in a 

within-subject design: clear automated (CA), clear manual (CM), fog automated (FA), and fog 

manual (FM). The order of sessions was counterbalanced using a Latin square. In the CM and 

FM sessions, the drivers operated the steering wheel, throttle, and brake pedals. In the CA and 

FA sessions, an automatic controller regulated the throttle and brake, and the driver had only to 

steer the car. In all CA and FA sessions, headway as a function of time was identical throughout 

the session. 

The fog was created by blending a light grey color with each rasterized pixel fragment’s post-

texturing color. The blending factor was a linear function of the distance in eye coordinates to 

the fragment being fogged and was 100% for 40 m. The subjective visibility threshold of the lead 

car corresponded to a bumper-to-bumper distance of approximately 35 m, representing dense fog 

(Musk, 1991). 

Table 1. Summary of the behavior of the lead car and participant’s car (i.e., following car) 

during the experiment. 

 Lead car in all 

sessions 

Participants’ car in clear automated 

(CA) and fog automated (FA) sessions 

Participants’ car in clear manual 

(CM) and fog manual (FM) sessions 

Constant-

speed phase 

(40–300 s) 

Constant speed of 80 

km/h 

Seven 10-s intervals with constant 

distance (26, 81, 16, 31, 6, 21, and 161 

m). In between these intervals, the 

automatic controller adjusted the 

distance. 

Manual longitudinal control using 

brake and throttle pedals 

Variable-

speed phase 

(330–420 s) 

Multisine speed 

profile with mean 

speed = 99 km/h and 

SD of speed = 10 

km/h 

Multisine speed profile; follows lead car 

at virtually constant distance of 30 m 

(SD = 0.5 m). Mean speed = 99 km/h 

and SD of speed = 10 km/h. 

Manual longitudinal control using 

brake and throttle pedals 

Note. In all sessions, drivers had to steer themselves while gear changing was automatic. 

All sessions took place on a straight motorway with three 5-m wide lanes. There was no other 

traffic besides the participants’ car and the lead car driving along the right-hand lane. The speed 

profile of the lead car was the same in all sessions (see Section 3.2). Each session contained two 

main phases: a 260-s constant-speed phase during which the lead car kept a constant-speed (i.e., 

from 40 s to 300 s) and a 90-s variable-speed phase during which the lead car’s speed was a 

multisine with different phase shifts (from 330 s to 420 s). The multisine was designed such that 
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lead car speed was not predictable for the participant (cf. Jagacinski & Flach, 2003). The 

automatic controller used the start-up phase (0–40 s) and transition phase (300–330 s) to acquire 

the desired initial following distance and velocity. At the start of the experiment, the participant’s 

car stood still, 35 m behind the lead car. The automatic controller resembled a real adaptive 

cruise control (ACC) system and used a string-stable sliding mode controller to ensure constant 

spacing with respect to the lead car (Rajamani et al., 2000). In the constant-speed phase, the 

automatic controller successively maintained the following seven bumper-to-bumper distances 

(with corresponding time interval of the session in parentheses): 26 m (50–60 s), 81 m (80–90 s), 

16 m (120–130 s), 31 m (150–160 s), 6 m (180–190 s), 21 m (210–220 s), and 161 m (260–270 

s). Thus, the lead car was not visible for two of the seven distances. The inter-vehicle distance of 

31 m is shown in Figure 1. In the variable-speed phase, the automatic controller kept the 

following distance close to 30 m (SD = 0.5 m). The behavior of both lead car and participant’s 

car is summarized in Table 1.  

2.4. Information provided to participants 

Participants were informed in writing that the goal of the experiment was to investigate how 

visibility (i.e., presence or absence of fog) and adaptive cruise control (ACC i.e., a system that 

automatically keeps a constant following distance to the car in front) influence driving 

performance and behavior. They were also informed about the four experimental conditions, the 

simulator controls, the questionnaire, and risk measurement (see below). The instructions stated 

that their task was to 1) follow the car in front, 2) drive swiftly but safely, and 3) always keep the 

car accurately centered in the right-hand lane and not overtake or change lanes. Finally, the 

documentation informed drivers about the possible occurrence of simulator sickness, and stated 

that they could leave the experiment any time they wished.  

2.5. Procedures  

On arriving at the driving-simulator laboratory, participants read the information sheet, signed 

the informed consent form, and completed a short intake questionnaire. They then sat in the 

simulator and performed two practice sessions of four minutes each, the first with clear vision, 

the second with the fog. In the first two minutes of each practice session, participants drove 

manually and in the last two minutes, they drove with the automatic controller activated. 



CHAPTER 4: Why do drivers maintain short headways in fog? 

86 

 

 

Next, the participants completed the four 420 s experimental sessions. After each session, 

participants got out of the simulator for a short break (about four minutes) and to fill in a 

questionnaire containing the six-item NASA Task Load Index (Hart & Staveland, 1988; a widely 

used questionnaire in driving research, see e.g., De Groot, Centeno Ricote, & De Winter, 2012; 

Dey & Mann, 2010; Hart, 2006; Stinchcombe & Gagnon, 2010) as well as four items on the 

participant’s feeling of risk and self-confidence. The extra items were: 1) “I had a feeling of risk 

during driving”, “I think I drove more safely than the average participant in this experimental 

condition”, “This car-following task was easy”, “I felt confident in my own capability to act 

appropriately”, all on a 21-tick scale from 0% (strongly disagree) to 100% (strongly agree). 

 

Figure 2. The touch screen interface used by the participants to indicate their feeling of risk 

at several prescribed moments. 

 During all sessions, participants had the secondary task of indicating their feeling of risk using a 

touchscreen mounted on the steering wheel. At the sound of a beep, the participants had to rate 

how much risk they felt on a scale from 0% (no risk at all) to 100% (extremely risky), on a 

horizontal bar with 10% increments (Figure 2). The beep was produced at the following 

moments of each session, t = 50, 80, 120, 150, 180, 210, 260, 310, 330, 350, 370, 390, and 410 s. 

The first seven beeps corresponded to the seven following distances in the constant-speed phase 
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with the automatic controller, and the remaining six beeps were displayed every 20 s in the 

variable-speed phase. 

2.6. Dependent variables 

First, the steering angle data was filtered using a second-order Butterworth forward-reverse 

digital filter with a cutoff frequency at 1 Hz, using MATLAB’s filtfilt function, in order to 

remove sensor noise. Next, steering activity was calculated by applying a finite impulse response 

(FIR) forward-reverse digital filter on the absolute steering angular speed, also using 

MATLAB’s filtfilt function. The filter assigned equal weight to samples and used a 10 s interval 

(i.e., 10 s before and 10 s after). By applying such a low pass filter, a reliable indication about the 

participants’ temporal fluctuations of steering activity within the session was obtained.  

Descriptive statistics (means and standard deviations of participants) of the following measures 

were calculated for the constant-speed phase and variable-speed phase.  

2.6.1. Vehicle control activity 

 Mean steering activity (deg/s): Steering activity is a measure of lateral control. A low steering 

activity indicates smooth steering, whereas a high value describes compensatory and corrective 

steering.  

 Standard deviation of the throttle position (%): This measure represents the participant’s activity 

with the throttle pedal. 

 Standard deviation of the brake position (%): This measure represents the participant’s activity 

with the brake pedal. 

2.6.2. Driving performance 

 Standard deviation of lateral position (SDLP; m): SDLP is a commonly used measure describing 

a driver’s swerving on the road (e.g., Brookhuis, De Waard, & Fairclough, 2003; Dijksterhuis, 

Brookhuis, & De Waard, 2011; Van der Zwaag et al., 2012). 

 Mean following distance (m). 
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 Standard deviation of following distance (m): This measure describes how well the participant 

nullified distance differences with respect to the lead car (cf. Brookhuis, De Waard, & Mulder, 

1994, showing that this is a valid measure that can be used in an on-the-road test battery) 

2.6.3. Subjective evaluation 

 Mean feeling of risk (%): This measure represents the average risk level as indicated on the 

touchscreen. 

 Responses to the questionnaire (%). 

In order to test our hypotheses regarding feeling of risk and lateral control as a function of 

following distance, steering activity levels and following distances were extracted from the 

constant-speed phase at t = 55, 85, 125, 155, 185, 215, and 265 s, in the middle of each of the 10-

s constant-distance intervals. The feeling-of-risk levels were extracted at the end of each 10-s 

interval, that is, at t = 60, 90, 130, 160, 190, 220, and 270 s. 

2.7. Statistical analyses 

Comparisons between experimental sessions and following distances were all conducted with 

paired t tests. Because of the heterogeneity of variances between groups, and the expected 

nonlinear relationships between feeling of risk and steering activity versus distance, simple t tests 

were preferred over complex bivariate or multivariate tests. The steering activities and feeling-

of-risk levels corresponding to the seven following distances in the constant-speed phase were 

rank transformed (Conover & Iman, 1981) prior to submitting to the t test, for higher robustness 

and to cope with possible outliers. 

3. Results 

3.1. Excluded sessions 

One participant driving in the FM session did not keep the lead car in sight, maintaining a speed 

of about 40 km/h throughout the session and gradually increasing the following distance to about 

4.5 km. Later on, this participant said that he had chosen to drive at this speed because he wanted 

to maintain a safe stopping distance in case an obstacle appeared on the road. Due to the long 
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following distance, this session and corresponding questionnaire were withdrawn from the 

analysis. The first participant in the experiment braked repeatedly in the FA session, thereby 

inadvertently interfering with the automatic controller. This session and corresponding 

questionnaire were also withdrawn from the analysis. After this session, the written task 

instructions was clarified by including a statement that told drivers not to press the brake pedal 

during the automated sessions. Analysis of the results showed that in all later CA and FA 

sessions, participants obeyed the instructions and did not use the brakes.  

Two participants driving in the FM session lost contact with the lead car in the variable-speed 

phase, resulting in long following distances (> 200 m). The CM session was stopped accidently 

at 400 s instead of 420 s for one participant. The variable-speed phase for these three sessions 

was withdrawn, but their constant-speed phase and questionnaire results were kept in the 

analysis. In summary, all twenty-seven participants were included in the analysis, but two 

sessions were excluded completely, and for three other sessions, the variable-speed phase was 

excluded. 

3.2. Descriptive statistics 

Table 2 shows descriptive statistics for all four sessions. FM resulted in closer following (lower 

M Distance) and more consistent car following (lower SD Distance) than CM. Driving in fog 

evoked more active steering and higher feeling of risk than driving in clear visibility (FM > CM 

and FA > CA). The SDLP was lowest in the FM session compared to the other sessions, 

indicating that manual driving in fog resulted in superior lane-keeping performance. The 

questionnaire results showed that fog resulted in a higher level of risk and mental and physical 

demands, compared to clear visibility (FM > CM and FA > CA).  

Figures 3 to 6 illustrate the following distance, speed, feeling of risk, and steering activity, 

respectively, as a function of time for each of the four sessions. Figure 3 shows that for FM, 

drivers adopted a closer headway throughout the session compared to CM. Figure 4 shows that in 

the FM session, participants followed the lead car by closely matching the lead-car speed profile 

(high control gain) in the variable-speed phase, whereas in CM, drivers were able to ‘absorb’ the 

speed variations of the lead car with limited speed adaptations, because of the larger following 
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distance. The high control gain, indicating higher longitudinal control activity for FM compared 

to CM, is also demonstrated by SD Throttle and SD Brake in Table 2.  

The feeling of risk presented in Figure 5 shows a wider range of risk feeling with automated car 

following (CA and FA) than with manual car following (CM and FM). Fog resulted in overall 

higher feelings of risk than clear conditions (FA > CA, FM > CM). Figure 6 shows that steering 

activity was highest with the lead car out of sight (distance > 35 m) in the fog sessions, that is t = 

80–90 s and t = 260–270 s in FA, as well as around t = 315 s in FA and FM. 

Figure 3. Following distance during the experiment for all four experimental conditions. 

The lines represent the participants’ average per time point. Note that distance as a 

function of time is identical for each driver in clear automated and fog automated. 
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Figure 4. Speed of the driver’s car and the lead car during the experiment, for all four 

experimental conditions (top: lead car in all conditions, clear automated, and fog 

automated; bottom: clear manual and fog manual). The lines represent the participants’ 

average per time point. Note that speed is identical for each driver in clear automated and 

fog automated. The automatic controller required some time to catch up with the lead car 

in the transition between constant-speed and variable-speed phase (300–330 s).  
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Figure 5. Feeling of risk as indicated by drivers during the experiment for all four 

experimental conditions (top: clear automated and fog automated; bottom: clear manual 

and fog manual). The lines represent the participants’ average per time point. Note that 

risk levels changed at distinct moments, when drivers responded to the sound of the beep. 
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Figure 6. Steering activity during the experiment for all four experimental conditions (top: 

clear automated and fog automated; bottom: clear manual and fog manual). The lines 

represent the participants’ average per time point. 
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Table 2. Descriptive statistics, showing the means across participants (standard deviations 

in parentheses), and the p-values for comparisons between sessions. 

 CA CM FA FM 

p  

CA 

vs. 

FA 

p  

CM 

vs. 

FM 

p  

CA 

vs. 

CM 

p  

FA vs. 

FM 

Constant-speed phase (40–300 s)        

M Steering activity (deg/s) 0.58 

(0.30) 

0.59 

(0.21) 

0.85 

(0.41) 

0.81 

(0.33) 
.000 .000 .712 .587 

SD Throttle (%) - 9 (4) - 12 (6) - .001 - - 

SD Brake (%) -  0.7 (2.0) - 1.2 (2.8) - .025 - - 

SDLP (m) 0.37 

(0.14) 

0.30 

(0.10) 

0.34 

(0.09) 

0.26 

(0.08) 
.043 .009 .003 .000 

M Distance (m) 55 (0) 59 (47) 55 (0) 26 (5) - .000 .665 .000 

SD Distance (m) 48 (0) 16 (14) 48 (0) 5 (2) - .000 .000 .000 

M Feeling of risk (%) 26 (15) 11 (11) 40 (15) 32 (18) .000 .000 .000 .004 

Variable-speed phase (330–420 s)        

M Steering activity (deg/s) 0.74 

(0.51) 

0.69 

(0.28) 

0.86 

(0.46) 

1.15 

(0.48) 

.197 .000 .489 .000 

SD Throttle (%) - 18 (7) - 30 (6) - .000 - - 

SD Brake (%) - 2.0 (3.1) - 9.4 (3.7) - .000 - - 

SDLP (m) 0.36 

(0.12) 

0.34 

(0.10) 

0.34 

(0.12) 

0.27 

(0.08) 

.531 .000 .360 .036 

M Distance (m) 30 (0) 81 (45) 30 (0) 29 (8) - .000 .000 .500 

SD Distance (m) 0 (0) 21 (8) 0 (0) 12 (5) - .000 .000 .000 

M Feeling of risk (%) 35 (23) 10 (10) 51 (24) 57 (23) .000 .000 .000 .109 

Questionnaires          

TLX Mental demand (%) 25 (22) 27 (24) 42 (23) 51 (21) .000 .000 .622 .062 

TLX Physical demand (%) 17 (15) 23 (21) 25 (18) 35 (22) .005 .016 .063 .075 

I had a feeling of risk during 

driving (%) 

44 (23) 20 (19) 63 (23) 59 (25) .002 .000 .000 .323 

This car-following task was easy 

(%) 

77 (21) 75 (20) 68 (22) 51 (23) .103 .000 .726 .001 

Note 1. CA = Clear automated, CM = Clear manual, FA = Fog automated, FM = Fog manual, 

TLX = Task Load Index 

Note 2. Table includes only four selected questionnaire items that reveal large effects. p values < 

.05 are in boldface. 

3.3. Feeling of risk as a function of following distance 

Figure 7 illustrates the feeling of risk in the constant-speed phase as a function of following 

distance. Corresponding means and standard deviations are provided in Table 3. The differences 

in feeling of risk between CA and FA were relatively small at 6, 16, 21, 26, and 31 m (t = 1.89, 



CHAPTER 4: Why do drivers maintain short headways in fog? 

95 

 

 

2.72, 1.67, 3.46, 2.44; p = .070, .012, .107, .002, .022) compared to the CA-FA differences in 

feeling of risk at 81 and 161 m (t = 7.57, 11.7, both p < .001).  

Figure 7. Mean of feeling of risk versus mean of following distance, derived from various 

moments in the constant-speed phase (t = 60, 90, 130, 160, 190, 220, and 270 s). Mean 

distances are sorted in ascending order with a line connecting the points. 

Table 3. Means (standard deviations in parentheses) of participants’ following distance, 

feeling of risk, and steering activity during the constant-speed phase.  

 Distance (m) Feeling of risk (%) Steering activity (deg/s) 

t (s) CA and FA CM FM CA CM FA FM CA CM FA FM 

55 26 (0) 54 (53) 24 (12) 20 (17) 16 (18) 28 (18) 41 (22) 0.57 (0.25) 0.72 (0.63) 0.76 (0.41) 0.87 (0.47) 

85 81 (0) 53 (65) 24 (8) 8 (13) 15 (16) 38 (22) 35 (19) 0.52 (0.28) 0.55 (0.19) 1.09 (0.84) 0.82 (0.27) 

125 16 (0) 54 (56) 26 (7) 39 (26) 13 (16) 47 (22) 35 (20) 0.58 (0.41) 0.63 (0.35) 0.63 (0.44) 0.89 (0.39) 

155 31 (0) 61 (58) 28 (7) 23 (21) 10 (14) 31 (18) 32 (21) 0.67 (0.43) 0.65 (0.26) 0.93 (0.77) 0.73 (0.35) 

185 6 (0) 62 (54) 27 (6) 69 (22) 9 (13) 72 (25) 32 (19) 0.80 (0.78) 0.63 (0.34) 0.82 (0.65) 0.92 (0.68) 

215 21 (0) 62 (38) 26 (6) 36 (21) 9 (11) 42 (21) 32 (19) 0.66 (0.35) 0.67 (0.36) 0.73 (0.45) 0.86 (0.50) 

265 161 (0) 59 (40) 26 (6) 5 (11) 9 (10) 38 (21) 31 (19) 0.79 (0.87) 0.77 (0.63) 1.49 (1.07) 0.86 (0.44) 

Note 1. CA = Clear automated, CM = Clear manual, FA = Fog automated, FM = Fog manual. 

Distance and steering activity were extracted at the middle of each 10-s interval (time denoted as 

t), whereas feeling of risk were extracted at the end of each 10-s interval (t + 5 s). 

  



CHAPTER 4: Why do drivers maintain short headways in fog? 

96 

 

 

Figure 7 further shows that in FA, the feeling of risk follows a distinct pattern, with risk being 

high for the shortest following distance (6 m), decreasing up to about the visibility threshold, and 

then rising with increasing distance. A paired t test showed that the feeling of risk in FA was 

significantly higher for a following distance of 81 m (t = 2.08, p = .048) and 161 m (t = 2.03, p = 

.053), as compared to a following distance of 26 m. In contrast, for CA, the feeling of risk was 

lower for 81 m (t = −5.18, p < .001) and 161 m (t = −6.57, p < .001) compared to the feeling of 

risk at 26 m. In other words, consistent with our hypothesis, the reported feeling of risk in FA 

was elevated when the lead car was not visible (i.e., distance > 35 m). 

3.4. Lateral control as a function of following distance 

Figure 8 shows the influence of following distance on steering activity, with corresponding 

means and standard deviations shown in Table 3. It can be seen that steering activity was higher 

for FA than CA. The differences between FA and CA were relatively small at 6, 16, and 21 m (t 

= 0.12, 0.90, 0.68; p = .906, .375, .503).  

They were somewhat larger at 26 and 31 m (t = 1.58, 2.40; p = .126, .024), and were very large 

at 81 and 161 m (t = 5.63, 4.73, both p < .001). Mean steering activity when following at a 

distance of 161 m in FA was 1.49 deg/s, which is considerably higher than mean steering activity 

at 21 m (0.73 deg/s, t = −4.71, p < .001). For CA, these means were 0.79 and 0.66 deg/s, 

respectively, an insignificant effect (t = −0.27, p = .788). These results support our hypothesis 

that steering activity is high when the lead car is out of sight (distance > 35 m in fog). 
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Figure 8. Mean steering activity versus mean of following distance, derived from various 

moments in the constant-speed phase (t = 55, 85, 125, 155, 185, 215, and 265 s). Mean 

distances are sorted in ascending order with a line connecting the points. 

3.5. Differences between automated and manual car following 

Additionally, it was investigated whether feeling of risk and steering activity differed between 

manual and automated car following. Table 2 shows that for the constant-speed phase, feeling of 

risk was significantly higher during automated compared to manual following (CA > CM and 

FA > FM). Steering activity, on the other hand, revealed no significant differences between the 

automatic and manual sessions. Note that the mean following distances also differed during the 

sessions (cf. Figure 3) and could have acted as a confound. Therefore, this study investigated 

whether feeling of risk and steering activity were different between automated and manual 

following when following distance was taken into consideration.  

In FM, the mean following distance was 26 m and mean feeling of risk was 34% (averages of the 

seven values shown in Table 3). This feeling of risk in FM was not significantly different from 

the feeling of risk in FA at 26 m (28%, t = 1.71, p = .100). The mean following distance for CM 

was 51 m, and mean feeling of risk was 12% (averages again taken from Table 3). The feeling-

of-risk value does not deviate significantly from the corresponding value in CA (15%, t = −1.09, 
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p = .286; the average feeling of risk for the 31 m and 81 m distances in CA was used). In other 

words, there were no significant differences during the constant-speed phase between automated 

and manual car following in the indicated feeling of risk, when equivalent following distances 

are compared. 

Mean steering activity for the seven distances in FM was 0.85 deg/s (average of the seven values 

shown in Table 3), significantly higher than mean steering activity in FA at 26 m (0.76 deg/s, t = 

2.65, p = .014). The mean steering activity for CM was 0.66 deg/s, which was significantly 

higher than the steering activity in CA, averaged for the 31 m and 81 m distances (0.59 deg/s, t = 

2.27, p = .032). Summarizing, when equivalent following distances are compared, steering 

activity was slightly higher in FM compared to FA, as well as for CM compared to CA. 

4. Discussion 

The aim of this study was to understand the mechanisms behind the observation that drivers 

maintain short headways in fog by focusing on the effects of headway and fog on lateral control 

(i.e., steering activity) and subjective feeling of risk during driving. During manual car following 

in fog, participants maintained headways that were just within the visibility threshold. Even 

though drivers were instructed to follow the car in front, three drivers lost contact with the lead 

car in fog. Broughton et al. (2007) similarly found that fog separates drivers into so-called non-

lagging and lagging drivers.  

For clear automated (CA), an asymptotic pattern for feeling of risk versus following distance was 

found, supporting a previous driving-simulator study by Lewis-Evans et al. (2010). Consistent 

with our hypotheses, for automated car following in fog (FA), steering activity and feeling of 

risk were elevated when the lead car was out of sight as compared to when the car was in sight. 

The lowest feeling of risk was observed when the lead car was just within the visibility 

threshold. These results suggest that the lead vehicle provides a guide, resulting in reduced 

lateral control activity. The standard deviation of lateral position (SDLP, a measure of lateral 

swerving performance) was lowest when manually driving in fog, indicating that drivers used the 

increased steering activity to improve their lateral performance (see also De Groot, De Winter, 

Garcia, Mulder & Wieringa, 2011; He & McCarley, 2011; Macdonald & Hoffmann, 1980).  
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When distance was taken into account, feeling of risk showed no difference between manual and 

automatic car following. The lack of difference between automated and manual driving is 

remarkable, given that the ACC relieved the driver of two important tasks: controlling the pedals 

and remaining vigilant with respect to the lead car’s behavior. Note that the baseline levels of 

mental or physical demand (i.e., in the CM and FM sessions) were already low to begin with 

(Table 2) suggesting that floor effects may have occurred. A pilot experiment with other 

participants found lower subjective risk (as reported in a questionnaire) for automatic than for 

manual car following in fog. In this other experiment, the lead car had large fluctuations in 

speed, creating a more demanding driving task (Happee, Saffarian, Terken, Shahab, & 

Uyttendaele, 2011).  

Our research provides the first experimental evidence to explain the role of feeling of risk and 

lateral control in headway reduction. Of course, this does not rule out that other mechanisms 

might play a role as well. For example, there is also support for the influence of fog on relative 

speed perception (Boer, Caro, Cavallo, & Arcueil, 2007; Boer, Caro, & Cavallo, 2008; Caro et 

al., 2009).  

Despite its substantive findings, our study is not free of limitations. First, the lead car always 

drove perfectly down the center of the lane. A more realistic condition could have been achieved 

by implementing natural lane-keeping behavior for the lead car.  

Second, a lane width of 5 m was used in this experiment which is relatively wide. On Dutch or 

North American motorways, for example, lane widths of 3.5 or 3.7 m are standard. It is known 

that reduction of lane width reduces SDLP, increases lane-boundary crossings, lowers speed, and 

increases subjective ratings of risk and mental effort (e.g., Dijksterhuis et al., 2011; Godley, 

Triggs, & Fildes, 2004; Lewis-Evans & Charlton, 2006; Yagar & Van Aerde, 1983). Lane width 

is likely to interact with lateral control behavior in fog, because drivers may use the lane markers 

as visual guidance. The interactive effect of lane width on lane maintenance in fog is an 

interesting topic for further research.  

Third, this study did not involve traffic other than the car in front, which limits the external 

validity of the results. In real traffic, it has been observed that fog reduces the frequency of 

overtaking (White & Jeffery, 1980). Drivers who would normally overtake a lead car in clear 
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visibility will be inclined to remain in their own lane in fog, potentially contributing to reduced 

headways. Furthermore, in real traffic, fog muffles sound, which might also contribute to the 

tendency to close following, and the ability to anticipate collisions (Musk, 1991). 

Fourth, our fixed-base driving simulator used in this research offered medium fidelity in terms of 

visual cues and auditory cues and did not stimulate the vestibular organ. Drivers tend to behave 

differently in a simulator than they would do in a real car, demonstrating comparatively higher 

driving speeds, jerkier acceleration and braking behavior, altered lateral control behavior, and 

reduced perception of risk (e.g., Blana & Golias, 2002; Boer, Girshik, Yamamura, & Kuge, 

2000; De Groot, De Winter, Mulder & Wieringa, 2011; De Groot & De Winter, 2011; Green, 

2005; Hurwitz, Knodler, & Dulaski, 2005; Lew et al., 2005). Although driver behavior in the 

simulator is possibly biased in the absolute sense, simulators have proven value for establishing 

relative comparisons between different groups of drivers or experimental conditions, including 

drivers’ risk-taking behavior (e.g., Bédard, Parkkari, Weaver, Riendeau, & Dahlquist, 2010; 

Deery & Fildes, 1999; De Winter et al., 2009; Godley, Triggs, & Fildes, 2002; Green, 2005; Lee, 

Lee, Cameron, & Li-Tsang, 2003; Reimer & Mehler, 2011; Wang et al., 2010).  

Fifth, in order to acquire identical headways as a function of time in the CA and FA sessions, it 

was chosen to present the headways in the same order (26, 81, 16, 31, 6, 21, and 161 m) for each 

participant. There is some concern in the traffic-psychology literature that lack of randomization 

can distort self-reported feeling of risk (see Lewis-Evans & Rothengatter, 2009 for a 

comprehensive study). However, these concerns apply particularly to research that presents the 

independent variable in a monotonically ascending order, which was clearly not the case in this 

study which applied a semi-random order, and applied the sessions (i.e., CA, CM, FA, and FM) 

in fully randomized order.  

Sixth, the results may depend on the type of simulated fog. It seems that researchers use vastly 

different methods for simulating fog of various densities (e.g., Allen, Rosenthal, Aponso, & 

Park, 2003; Broughton et al., 2007; Hoogendoorn, Hoogendoorn, Brookhuis, & Daamen , 2010, 

2011; Kolisetty, Iryo, Asakura, & Kuroda, 2006; Pretto & Chatziastros, 2006; Rimini-Doering, 

Manstetten, Altmueller, Ladstaetter, & Mahler, 2001; Stanton & Pinto, 2000; Takayama & Nass, 

2008; Van der Hulst, Rothengatter, & Meijman, 1998). Snowden et al. (1998) used a uniform 
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contrast reduction whereas Dumont, Paulmier, Lecocq, and Kemeny (2004) proposed rendering 

sophisticated fog for both daytime and nighttime conditions, including light from headlamps 

scattered back by minute water droplets. In our experiment a thick fog was simulated using color 

blending as a function of distance without simulating fog lights which may remain visible when 

the outline of the car is no longer in sight (cf. Caro, 2008). Subjectively the simulated fog was 

realistic and none of the participants reported anything unusual regarding its appearance. 

How can the present results be used to improve road safety? Our results suggest that headway 

reduction in fog does not constitute irrational or irresponsible driver behavior as has been 

suggested by several authors (e.g., Hawkins, 1988). Instead, headway reduction provides 

advantages such as smoother lateral control behavior, reduced feeling of risk (and, arguably, 

reduced objective risk), as well as improved perception of speed differences (demonstrated by 

Caro et al., 2009). Therefore, drivers should not be advised to maintain larger headways. Instead, 

drivers should be encouraged to reduce speed in order to shorten stopping distance.  

Several studies have found beneficial effects of fog signaling and speed advisory systems (e.g., 

Hogema & Van der Horst, 1997; see also Hassan & Abdel-Aty, 2011 for a questionnaire study), 

whereas computerized traffic detection and warning systems on motorways are commonplace 

internationally. Another option is to give drivers proper advice about the impending situation. 

For example, Charissis & Papanastasiou (2010) used a simulator to test a head-up display (HUD) 

system in foggy conditions. Their HUD provided minimalist visual representations of real 

objects, such as lead vehicle symbols, lane symbols, and traffic symbols indicating congestion in 

close proximity. They found that the HUD dramatically reduced the number of collisions and 

improved subjects’ maintenance of following distance, when compared to unaided driving. A 

third option is to use ACC using radar measurements of inter-vehicle spacing, or cooperative 

adaptive cruise control (CACC) using vehicle-to-vehicle communication (Naus, Vugts, Ploeg, 

Van de Molengraft, & Steinbuch, 2010). ACC and CACC automate the driving task and allow 

precise control of shorter headways between following vehicles. As illustrated in Figure 7, 

shorter headways can induce an elevated feeling of risk, even with automation. Thus also with 

automation a driver information system may be needed to inform drivers of the actions taken by 

the automated system and to provide sufficient reassurance about proper functioning of the 

system. 
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In conclusion, the present results suggest that there are two advantages to maintaining a close 

headway in fog: reduced feeling of risk and improved lateral control. These results are valuable 

for devising effective driver assistance and support systems. 
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CHAPTER 5 

Enhancing driver car-following performance with a distance and 

acceleration display  

 

Abstract 

A car-following assisting system named the Rear Window Notification Display (RWND) was 

developed, with the aim of improving a driver’s manual car-following performance. The RWND 

presented lead-car acceleration and time headway (THW) (i.e., inter-vehicle distance divided by 

the speed of the following car) on the rear window of a lead car, which was driven automatically. 

A simulator-based experiment with 22 participants showed that the RWND reduced both the 

mean and standard deviation of THW but did not increase the occurrence of potentially unsafe 

headways of less than 1 s. The parameter estimation of a common linear car-following model 

showed that drivers accomplished the performance improvements by adopting higher control 

gains with respect to inter-vehicle distance, relative speed, and acceleration. A post-experiment 

questionnaire revealed that the display was generally not regarded as a distraction nor did 

participants think that it provided too much information, with means of 4.0 and 2.9, respectively, 

on a scale from one (completely disagree) to ten (completely agree). The results of this study 

suggest that the RWND can be used along with Cooperative Adaptive Cruise Control to increase 

traffic flow without degrading safety. 

Saffarian, M., Happee, R., De Winter, J. (2013). Enhancing driver car-following performance 

with a distance and acceleration display. IEEE Transactions on Human-Machine Systems, 43, 8–

16. (adapted with minor textual changes) 

Furthermore, a preliminary version of this work was initially published in a conference 

proceedings: Saffarian, M., & Happee, R. (2011). Supporting drivers in car following: a step 

towards cooperative driving. In Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 

934-944),  Baden-Baden, Germany. 
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1. Introduction 

Because of developments in electronics, communication technology, and the processing power 

of computers, drivers are increasingly aided by Advanced Driver Assistance Systems (ADAS). A 

growing number of vehicles are now equipped with Adaptive Cruise Control (ACC), a system 

that has the capacity to adjust both brake and throttle, so as to maintain a constant headway with 

respect to the vehicle in front (Adell, Várhelyi, & Fontana, 2011; Kesting, Treiber, Schönhof, & 

Helbing, 2008; Van Nes, Houtenbos, & Van Schagen, 2008). Marchau, Van Nes, Walta, and 

Morsink (2010) reviewed intelligent speed adaptation systems, ranging from those that provide 

information to those that intervene in vehicle operation and noted that in all the reviewed studies, 

ACC reduced speeding violations and speed variability.  

Several studies have evaluated traffic-flow and human-factors aspects of car-following with 

different ACC systems in various driving conditions (Chiang, Wu, Perng, Wu, & Lee, 2010; 

Gietelink, Ploeg, De Schutter, & Verhaegen, 2006; Hamdar, Treiber, Mahmassani, & Kesting, 

2008; Mulder, Pauwelussen, Van Paassen, Mulder, & Abbink, 2010; Van Arem, Van Driel, & 

Visser, 2006). Evidence suggests that although ACC potentially enhances safety by helping 

drivers maintain constant speed and headway (Davis, 2004), drivers must be aware of its 

limitations and intervene if ACC cannot handle a situation, such as on approaches to sharp 

curves, when the lead car brakes sharply, or in the event of system failure (Rudin-Brown & 

Parker, 2004; Seppelt & Lee, 2007; Stanton & Marsden, 1997; Young & Stanton, 2007). Current 

experience shows that drivers are less likely to use ACC in heavy traffic (Marsden, McDonald, 

& Brackstone, 2001), which is precisely the situation where the greatest benefits could be 

achieved in traffic flow (shorter headways, avoiding coming to a full stop), safety (more 

homogenous traffic patterns), and fuel efficiency (following lead vehicles within their wake 

region and reducing the frequency and severity of braking and acceleration). 

A next generation of ACC systems, known as Cooperative Adaptive Cruise Control (CACC), is 

addressing the stability limits of conventional ACC systems (Naus, Vugts, Ploeg, Van de 

Molengraft, & Steinbuch, 2010; Rajamani et al., 2000). CACC systems communicate their 

kinematic state using high bandwidth vehicle-to-vehicle communication. With CACC, it is 

possible to guarantee stability in traffic flow, meaning that inter-vehicle distance-errors decrease 
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as they propagate along the platoon (Gietelink et al., 2006; Naus et al., 2010). Simulations have 

shown that traffic throughput could increase significantly if 60% (or more) of all cars were 

equipped with CACC technology (Milanés, Alonso, Bouraoui, & Ploeg, 2011; Van Arem et al., 

2006). However, in the introductory phase of cooperative driving, penetration rates would be 

low, making it desirable to design a system that can influence the behavior of drivers of cars 

without such equipment and facilitate cooperation with those vehicles that do have it. 

This paper proposes a system that assists drivers of non-equipped cars by displaying combined 

acceleration information and headway advice on the rear window of cars equipped with CACC. 

In this simulator study, participants using the Rear Window Notification Display (RWND) 

directly control the vehicle with the gas and brake pedals and the steering wheel. The system 

design was based on the hypothesis that a display giving visual feedback on lead-car acceleration 

and time headway (THW) will act as a sensory aid for human drivers and thus enhance their car-

following performance.  

The paper is organized as follows: Section 2 presents the concept and design of the RWND. 

Section 3 describes the test procedure and experimental setup for evaluating the display in a 

driving simulator. To examine the effect of the RWND, three types of measures were used: (1) 

traditional measures, such as mean and standard deviation of THW, to describe observable 

performance and behavior; (2) parameters of a linear driver model, to clarify how drivers use 

distance, speed, and acceleration information, and how they adapt their control behavior; and (3) 

a questionnaire surveying drivers’ opinions. Section 4 discusses our results, while Section 5 

deals with the implications of our research and suggests follow-up research. 

2. Methods 

2.1. The RWND 

Previous research shows that while drivers can detect speed changes, they are not good at 

estimating the duration and intensity of such changes, especially regarding approaching objects 

(e.g., Cavallo & Cohen, 2001; De Winter, Spek, De Groot, & Wieringa, 2009). Brake lights 

provide a salient binary cue about deceleration and thus have an alerting function. However, 

traditional brake lights provide no information about the intensity of braking or about 
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acceleration. This study hypothesized that augmented information on acceleration and 

deceleration intensity would be essential for improving car-following performance.  

THW, defined as inter-vehicle distance divided by the speed of the following car, is a key 

indicator of the capacity of any transit system, and correlates with a driver’s perception of risk as 

measured with psychophysical methods (Kondoh, Yamamura, Kitazaki, Kuge, & Boer, 2008). It 

has also been found that drivers’ preferred THW in real car-following situations is independent 

of speed (Taieb-Maimon & Shinar, 2001). Thus, THW was selected as the second parameter for 

the display, combining the safety perception of drivers with network capacity. THW and 

acceleration have complementary integrator and differentiator characteristics, respectively. 

Through visualized information of THW and acceleration, the human operator can observe both 

the long and short-term effect of their control actions during car-following. 

Studies have found that people do not make veridical judgments of speed and distance (e.g., 

Runeson, 1974, see also Chapter 3 of this thesis). The RWND here was designed to directly 

communicate the action that is required, rather than displaying a desired headway or speed in 

numerical form. The layout of the RWND is presented in Figure 1. The display employed one 

horizontal bar and one vertical segment to communicate lead-car acceleration and THW 

respectively. In order to facilitate stimulus response compatibility, the horizontal bar was aligned 

with the gas and brake pedal positions. Thus, lead-car acceleration was shown on the right, with 

the bar filling up from the middle of the bar to the left with red for deceleration, and to the right 

with green for acceleration, respectively. The length of the filled portion was proportional to the 

magnitude of acceleration or deceleration. Both sides of the bar were full at an acceleration or 

deceleration magnitude of 1.6 m/s2 (and above).  
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Figure 1. Rear Window Notification Display (RWND): Arrows indicate time headway 

(THW) deviations (up means that the driver is too far and should close the gap; down 

means that the driver is too close and should open the gap) and the horizontal bar indicates 

lead vehicle acceleration (right, color coded with green is acceleration; left, color coded 

with red is deceleration). 

The second segment of the RWND consisted of one upward and one downward arrow positioned 

above and below the horizontal bar. Colored orange, the arrows indicated THW in terms of 

deviation from the desired margin. Only one arrow appeared at a time. An upward arrow meant 

the driver should follow closer. If the downward arrow appeared, the following driver was too 

close and needed to increase THW. When no arrow was visible, the THW was within the desired 

range and no action was required. The size of the arrows did not change with respect to the 

magnitude of the THW deviation. The THW values that triggered the appearance of the arrows 

were adjustable. In this study, the setting was as follows: when THW was less than 1 s, the 

downward arrow appeared, while a THW greater than 1.5 s made the upward arrow visible. This 

approach is also known as bandwidth augmented feedback; it stimulates satisficing rather than 

optimizing behavior and prevents the driver from becoming distracted by or dependent on the 

feedback (De Groot, De Winter, Garcia, Mulder, & Wieringa, 2011). Because the augmented 

feedback is visible only when the information is needed for potential action, this avoids problems 

that arise with continuous concurrent feedback, such as over-corrective control inputs (Van 

Leeuwen, De Groot, Happee, & De Winter, 2011). These thresholds and other aspects of the 

display were based on a subjective interpretation of safe and comfortable driving during pilot 

tests in the driving simulator. Moreover, a 1 s headway is the lowest minimum recommended 

value for maintaining safe headway and is associated with comfortable driving (Taieb-Maimon 

& Shinar, 2001). To illustrate functionality, Figure 2 shows four different states of the display. 
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Figure 2. Four possible states of the RWND: (a) Lead car brakes strongly – THW is greater 

than 1.5 s (decelerate but close the gap); (b) Lead car is accelerating moderately – THW is 

greater than 1.5 s (accelerate and close the gap); (c) Lead car is accelerating hard – THW is 

less than 1.0 s (accelerate but widen the gap); (d) Lead car brakes strongly – THW is 

between 1.0 s and 1.5 s (decelerate and maintain current gap). 

In the simulator environment, the RWND was projected onto the rear window of the lead car. 

The size and position of the display was adjusted based on the relative distance and position of 

the lead car, so that for the driver it seemed as if the display was attached to the lead car. Figure 

3 shows the simulator environment with RWND. In this snapshot, the lead car was decelerating 

and the follower was instructed to increase the gap with respect to the lead car. 

 

Figure 3. The RWND in the fixed-base driving simulator. 

2.2. Driving simulator 

The experiment was conducted using a fixed-base simulator manufactured by Green Dino, with 

customized data collection. The simulator consisted of a cabin, an Intel Pentium IV 3.0G 
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computer that ran both the graphics and driving scenario of the simulator software, and a 

projector screen which provided a 180 degree horizontal field of view for the driver seated in the 

cabin. The virtual world was projected by three LCD projectors (front projector NEC VT676, 

brightness 2,100 ANSI lumens, contrast ratio 400:1, resolution 1,024 × 768 pixels; side 

projectors NEC VT470, brightness 2,000 ANSI lumens, contrast ratio 400:1, resolution 800 × 

600 pixels). Integrated visuals of the road and other traffic, along with the car’s features such as 

dashboard and mirrors, were shown on the projector screen. The cabin of the simulator 

resembled the front portion of a regular passenger car and was equipped with gas, brake, and 

clutch pedals, steering wheel, and indicators. The simulator software recorded driver actions to 

control the vehicle and the state of the vehicles in the virtual environment. The car model used in 

this study had an automatic transmission. 

2.3. Participants 

In total 22 drivers (17 men and 5 women) with an average age of 21.9 (SD = 1.8 years) and an 

average driving experience of 3.1 years (SD = 1.6 years) participated in the experiment. All were 

students at TUDelft, aged from 19 to 26, and were required to have held a driving license for a 

minimum period of one year. All participants gave informed consent. Participants were not paid 

for taking part in the experiment. 

2.4. Experiment design and procedures 

On arrival at the test location, the participants filled in an intake questionnaire, which recorded 

their personal information (name, age, and contact details), driving experience, and self-rated 

driving skills (Appendix D.3). They were also asked if they spent more than one hour playing 

video games on a weekly basis. Drivers were randomly allocated into two groups. The 

experimental group (n = 12; 4 women; mean age = 21.5; mean driving experience = 2.8 years) 

was tested with the RWND and the control group (n = 10; 1 woman, mean age = 22.3; mean 

driving experience = 3.4 years) was tested without the RWND.  

Prior to the experiment, the participants were given written instructions. These explained how to 

use the simulator, including how to adjust the seat position and control the car with the steering 

wheel, gas, and brake pedals. The instructions also included details about the duration of the test 
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and indicated that the task was to drive behind a lead car with a constant THW throughout the 

whole session, without overtaking. Both groups were informed verbally that the recommended 

THW was between 1 and 1.5 s. For the participants tested with the RWND, the operation of the 

display was also explained in writing. They were informed that they drove properly if the THW 

was kept within the acceptable range with respect to the front car. Before the start of the 

experiment, they were also given verbal instructions on how to interpret the display. They were 

free to ask questions or seek further explanation about the system prior to starting the test. 

Each participant completed one training session and two test sessions. The training session was a 

short introduction of 300 s in an urban environment that allowed drivers to become acquainted 

with driving in the simulator. The training session exposed drivers to common maneuvers, 

including negotiating busy or slow traffic, slowing down, speeding up, changing lanes, and 

steering without the RWND. After training, drivers from both groups completed two 700 s 

driving sessions. The control group completed these sessions without the RWND. Participants 

from the experimental group drove the first session without the RWND and the second session 

with this display. During the experimental group’s second session (driving with the RWND), the 

vertical arrows switched off after 550 s without prior notice. This was done to quantify whether 

arrows were effective to help drivers comply with keeping the headway between 1 and 1.5 s, 

even after the feedback was absent. The acceleration information from the horizontal bar 

remained unchanged. After each session, the participants stepped out of the simulator for a break 

of approximately 3 minutes. The design of the experiment is summarized in Figure 4. The lead 

car in both 700 s sessions had a predefined, but subjectively unpredictable, speed profile with 

speeds ranging from 15 km/h to 110 km/h representing a highway with busy traffic (see Figure 

5). The speed profile of the lead car was set to be identical for every test. However, small 

random variations existed between individual sessions, induced by the modeled dynamics of 

other traffic. 
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Figure 4. The experimental design. 

 

 

Figure 5. Speed profile of the lead car. 

2.5. Dependent measures 

2.5.1. Traditional performance measures 

The traditional car-following performance measures calculated for each session and each 

participant were as follows:  

 Minimum distance (m): The minimum distance between the front bumper of the participant’s 

car and the rear bumper of the lead car. 
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 Maximum distance (m): The maximum distance between the front bumper of the participant’s 

car and the rear bumper of the lead car. 

 Mean distance (m): The average distance between the front bumper of the participant’s car 

and the rear bumper of the lead car. 

 Mean relative speed (∆v) (m/s): The average of the absolute difference between the speed of 

the participant’s car and the speed of the lead car.  

 Mean acceleration (m/s2): The average of the absolute acceleration of the participant’s car.  

 Mean jerk (m/s3): The average of the absolute jerk of the participant’s car. Jerk is used to 

evaluate the speed of the brake and throttle operations. 

 THW < 1 s (% of time): The percentage of time that the THW was less than 1 s, indicating 

that the following vehicle was too close. 

 1 s ≤ THW < 1.5 s (% of time): The percentage of time that the THW was between 1 and 1.5 

s.  

 THW ≥ 1.5 s (% of time): The percentage of time that the THW was greater than 1.5 s.  

2.5.2. Driver-model parameters 

Parameters of a generic driver model were estimated for each session and each participant, 

aiming to quantify the effect of the RWND on the driving behavior in terms of feedback delays 

and gains. This study used a common linear car-following model (Abbink, 2006; Brackstone & 

McDonald, 1999; Helly, 1959). The acceleration ai of the participant’s car (i) was expressed as:  

     (1) 

 

       (2) 

 

With τ being the driver’s visuomotor delay, ∆vi the speed difference between the lead and the 

participant’s car, ∆xi the following distance and ai-1 the acceleration of the lead car. Variable hi(t) 

describes the desired following distance with h0 representing the desired distance at standstill and 

  1( ) ( ) ( ) ( ) ( )i v i d i i a ia t K v t K x t h t K a t          

)()( 0 tvhhth ivi 



CHAPTER 5: Enhancing driver car-following performance 

118 

 

 

hv an additional THW describing the dependence of the desired distance on the speed vi of the 

participant’s car. Kv, Kd, and Ka represent speed, distance, and acceleration gains. Kv and Kd are 

corrective feedback gains controlling relative speed and distance. The acceleration gain Ka 

represents feedforward control; when Ka = 1 the participant’s car would follow the lead car 

perfectly. Such an acceleration gain is not commonly included in car-following driver models, 

but has been added here to describe the expected use of the acceleration display of the RWND. 

 

A nonlinear Levenberg-Marquardt optimization algorithm was used to estimate the individual-

driver parameters for each session. The model parameters were estimated by minimizing the 

squared deviation of predicted and measured vehicle motion. Realistic feedback delays were 

estimated when using an acceleration-based error criterion, while delays where often estimated 

to be zero when using a distance-based criterion. The parameter h0 could only be estimated when 

distance was included in the criterion. In order to select the most appropriate error criterion, and 

to quantify the estimation accuracy, a sensitivity analysis was performed using a model 

simulation with known parameters and re-estimating the parameters for 10 sets of randomly 

selected initial parameters with 10 added noise realizations. Optimal accuracy was obtained with 

a criterion using the weighted sum of the errors in following distance and acceleration such that 

both constitute about 50% of the criterion. It was not possible to accurately estimate both 

parameters h0 and hv for this scenario due to their interacting role and, hence, a fixed value hv = 1 

as in Helly (1959) was adopted for all tests. With these choices all parameters except for the 

position feedback gain Kd showed estimation errors below 10%. 

2.5.3. Subjective evaluation 

After the second session, the participants were asked to step out of the simulator and complete a 

questionnaire. The responses were scaled from 1 (completely disagree) to 10 (completely agree), 

and focused on the drivers’ subjective analysis of the simulated car-following task. Participants 

from the experimental group were also asked to rate the RWND’s usefulness, readability, 

visibility, clarity, and distracting effect, as well as the amount of information it provided. A set of 

relevant questions was selected for describing the subjective rating on specific aspects of the 

tests and the display (Table 1). 
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2.6. Statistical analyses 

The effect of the RWND was evaluated by (1) comparing the two sessions of the experimental 

group, and (2) by comparing the experimental group’s second session with the control group’s 

second session. Two comparisons served as negative control: (1) the two sessions of the control 

group were compared to determine whether performance in the simulator was stable and not 

distorted by learning effects, and (2) the experimental group’s first session and the control 

group’s first session were compared to verify whether group behavior was comparable, 

indicating adequate randomization. 

The two groups were compared with an independent-samples t test, whereas the two sessions of 

the same group were compared using a paired t test. The Type I error rate (alpha) was set at .05. 

The analyses were all based on the data recorded between 60 s and 550 s per session. The first 60 

s were excluded, because the car started from standstill, resulting in initially large THWs, and the 

driver variability occurring in the speedup phase of the car was not of interest.  

Two analyses assessed the effect of two phases in the second session: (1) for the experimental 

group, the data between 60 s and 550 s was compared with the final 150 s (i.e., between 550 s 

and 700 s), and (2) the final 150 s of the experimental group were compared with the final 150 s 

of the control group. 

With regard to the post-test questionnaire, descriptive statistics (means and standard deviations) 

were reported, and comparisons between experimental and control group were carried out using 

an independent-samples t test.  

3. Results 

3.1. Subjective evaluation  

As shown in Table 1, drivers rated the simulator as moderately realistic and gave a low score to 

their ability to judge speed accurately (Q11). The RWND was rated positively on readability 

(Q12), amount of information (Q14), perceived effectiveness (Q16), and understandability (Q17) 

(6.3 to 8.3 on the scale from 1 = completely disagree to 10 = completely agree). Questions Q13 

and Q15 resulted in low scores, indicating that the display was generally regarded as not being 
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distracting, nor did it provide too much information. The relatively high standard deviation on 

Q13 was associated with two participants who reported that they found the RWND to be 

distracting (8 and 9 on the scale from 1 to 10). The preferences for driving a car with RWND 

(Q18), following RWND advice (Q19) and the potential to solve traffic jams (Q20) were rated as 

moderate to positive (4.7 to 6.7 on the scale from 1 to 10) with a high standard deviation, partly 

because one participant gave a rating of 1 in response to Q18, Q19, and Q20. 

Table 1. Participants’ subjective rating (means with standard deviations in parentheses) on 

a scale from 1 (completely disagree) to 10 (completely agree).  

# Question item Experimen

tal group  

M (SD) 

Control  

group 

M (SD) 

p 

5 I had problems concentrating on the driving task. 4.0 (2.1) 4.0 (1.9) 1.000 

7 The simulator is realistic. 5.6 (2.1) 4.3 (1.3) .107 

8 The simulator visual scene is realistic. 6.2 (2.1) 5.5 (2.1) .443 

9 The simulator controls are realistic. 4.8 (1.7) 4.7 (1.9) .949 

10 I was able to judge distances accurately. 5.3 (1.9) 5.8 (2.3) .579 

11 I was able to judge speed accurately. 4.3 (2.1) 5.2 (2.2) .358 

12 I was able to read the information given by the RWND at the 

advised distance. 

7.2 (1.5) 
- - 

13 The RWND was distracting me. 4.0 (2.4) 
- - 

14 The RWND was giving me enough information. 6.8 (1.5) 
- - 

15 The RWND was giving me too much information. 2.9 (1.9) 
- - 

16 The RWND helped me to improve keeping the right distance 

to the preceding car. 

6.3 (2.5) 
- - 

17 I could understand the information given on the RWND. 8.3 (1.1) 
- - 

18 I prefer driving with RWND over a car which is not equipped 

with a RWND. 

4.7 (2.6) 
- - 

19 In real traffic I would follow the advice of the RWND to help 

increase road capacity. 

6.2 (2.4) 
- - 

20 The RWND had great potential to help solve traffic jam 

problems. 

6.7 (2.7) 
- - 

Note. Q1 to Q11 were common for both groups. Q12 to Q20 were specific to the experimental 

group tested with RWND (n = 12 for the experimental group; n = 10 for the control group). 



CHAPTER 5: Enhancing driver car-following performance 

121 

 

 

3.2. Traditional performance measures and driver-model parameters 

For the experimental group using the RWND in session 2, several significant effects in both 

traditional measures (Table 2) and estimated model parameters (Table 3) were found, as 

compared to the control group in session 2 and the experimental group in session 1. With 

RWND, reductions were evident in the mean and maximum following distance, average speed 

difference (∆v), and time that THW exceeded 1.5 s. However the percentage of time that THW 

was below 1 s remained at the same level, suggesting that safety was not compromised. Figure 6 

shows that the time percentage in which the time headway was between 1 and 1.5 s was greater 

in the RWND sessions than in the sessions in which the RWND was unavailable. This indicates 

that the RWND improved drivers’ adherence to the instructed time headway range. At the same 

time, acceleration and jerk increased significantly, indicating more and/or stronger control 

actions.  

Table 2 and Table 3 reveal no significant differences between the experimental and control 

groups in session 1, confirming their similarity. For the control group, which drove both sessions 

without RWND, THW exceeded a value of 1.5 less and was more frequently in the desired range 

of 1–1.5 s, in session 2 than in session 1, whereas no significant effects were found for the other 

measures, suggesting very limited learning effects between sessions.  

Figure 7 shows a typical model result for one driver in one session. The distance is well 

predicted up to 160 s, but the driver allows a large gap at 175 s where the model maintains a 

shorter following distance. The distance, speed, and acceleration gains of the drivers’ model are 

roughly doubled with the RWND, which indicates that drivers control activity increases with the 

use of the RWND. 

These effects are highly significant for the speed gain Kv but not significant for the distance gain 

Kd and the acceleration gain Ka. The acceleration gain Ka is estimated to be negligible (< .02) in 

6 out of 10 cases without RWND and in 3 out of 11 cases with RWND (in the optimization Ka 

was constrained to a minimum of zero). If drivers adopted an acceleration gain Ka = 1, they 

would follow the lead car perfectly and the feedback terms Kv and Kd would only be needed for 

additional correction of imprecise feedforward control. The estimated Ka values around 0.12 

suggest that such behavior was not achieved, even with RWND. When using RWND, the 
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estimated desired following distance at zero speed h0 is reduced in agreement with the reduced 

mean and maximum distance, as shown in Table 2.  

Table 2. Descriptive statistics of traditional performance measures.  

Group and session – mean (SD) 

Min  

distance 

(m) 

Max 

distance 

(m) 

Mean 

distance  

(m) 

Mean  

∆v  

(m/s) 

Mean  

acc  

(m/s2) 

Mean  

jerk  

(m/s3) 

THW 

<1s 

% of 

time 

1≤ 

THW 

<1.5s 

% of 

time 

THW 

≥1.5s 

% of 

time 

Session 1. Experimental group (RWND 

OFF) 
13.9 (6.1) 

134.3 

(67.3) 
57.2 (29.7) 2.11 (0.80) 0.57 (0.13) 0.45 (0.17) 17 (26) 20 (18) 61 (35) 

Session 1. Control group (RWND OFF) 10.9 (5.4) 
139.3 

(64.6) 
55.4 (25.4) 2.17 (0.59) 0.54 (0.10) 0.40 (0.11) 9 (10) 23 (18) 66 (24) 

Session 2. Experimental group (RWND 
ON) 

14.1 (4.4) 65.8 (18.9) 33.6 (6.8) 1.27 (0.31) 0.64 (0.09) 0.55 (0.17) 10 (10) 69 (12) 21 (12) 

Session 2. Control group (RWND OFF) 11.9 (6.5) 99.0 (17.0) 45.7 (11.5) 2.04 (0.52) 0.59 (0.05) 0.43 (0.09) 12 (11) 34 (15) 54 (21) 

          

Comparison - p values          

Experimental vs. Control (session 1) .248 .861 .879 .846 .568 .400 .376 .711 .712 

Experimental vs. Control (session 2) .358 <.001 .006 <.001 .113 .065 .579 <.001 <.001 

Session 1 vs. Session 2 (experimental 

group) 
.945 .004 .022 .003 .026 .019 .240 <.001 <.001 

Session 1 vs. Session 2 (control group) .681 .079 .315 .589 .196 .435 .274 .050 .048 

Note. Means of participants with standard deviations in parentheses, and p-values for group 

comparisons, n = 12 for the experimental group, n = 10 for the control group; All results based 

on the data recorded between 60 and 550 s of the sessions.  

Table 3. Descriptive statistics of driver-model parameters.  

Group and session – mean (SD) 
VAF 

∆x 

VAF 

acceleration 
Kv (1/s) Kd (1/s2) Ka (-) τ (s) h0 (m) 

Session 1. Experimental group (RWND OFF) 0.57 (0.16) 0.43 (0.15) 0.27 (0.12) 0.016 (.013) 0.076 (0.078) 0.72 (0.45) 30.4 (28.7) 

Session 1. Control group (RWND OFF) 0.65 (0.10) 0.45 (0.09) 0.24 (0.06) 0.018 (.020) 0.079 (0.115) 0.80 (0.37) 25.9 (13.7) 

Session 2. Experimental group (RWND ON) 0.59 (0.14) 0.45 (0.13) 0.58 (0.33) 0.097 (.171) 0.124 (0.115) 0.69 (0.19) 8.4 (4.3) 

Session 2. Control group (RWND OFF) 0.63 (0.11) 0.44 (0.10) 0.24 (0.06) 0.026 (.020) 0.084 (0.124) 0.67 (0.35) 18.7 (8.7) 

        

Comparison - p values        

Experimental group vs. control group (session 1) .214 .735 .422 .789 .954 .643 .651 

Experimental group vs. control group (session 2) .465 .843 .005 .210 .444 .855 .002 

Session 1 vs. session 2 (experimental group) .768 .628 .010 .139 .257 .873 .019 

Session 1 vs. session 2 (control group) .469 .543 .558 .376 .921 .497 .137 

Note. Means of participants with standard deviations in parentheses, and p-values for group 

comparisons, n = 12 for the experimental group, n = 10 for the control group; All results based 

on the data recorded between 60 and 550 s of the sessions. VAF = variance accounted for. 
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Figure 6. THW distribution for all four conditions. 

Figure 7. Test data and model fit for one of the participants (session 2, control group). 

Of the 32 relationships probed in Table 2 and Table 3 (experimental group session 2 vs. control 

group session 2 & experimental group session 1 vs. experimental group session 2), 16 were 

significant at the .05 level, and 6 were significant at the .001 level. The p value for session 1 

versus session 2 comparison of the experimental group regarding 1 < THW < 1.5 equaled 

4.9*10-8, with all 12 participants improving their performance. This indicates that even after 
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applying a Bonferroni correction for multiple testing, by multiplying the p value by 32, the p 

value would still be extremely small and the risk of Type I errors would be negligible. 

Finally, the results for the first and second phase of the RWND session were compared. The 

arrows indicating THW were switched off after 550 s without notifying the drivers. The 

acceleration display remained active during the entire session. With RWND in phase 2 the time 

that THW was in the recommended range of 1–1.5 s was reduced from 69% to 40% (p < .001) 

while such a trend was not observed in the control group in session 2 (from 34% to 39%, p 

= .172). This suggests that the THW arrows effectively assisted the driver. No further significant 

differences between phase 1 and phase 2 with RWND were found, possibly as a result of the 

short time frame involved (150 s with vertical indicators disengaged). In phase 2 of session 2 the 

mean ∆v with RWND (1.21 m/s) was significantly (p = .026) lower than in the control group 

(1.72 m/s), indicating benefits of the RWND even when only the acceleration is displayed.  

To illustrate the effects of the RWND on car-following behavior, the driver-model response for a 

simple scenario consisting of a ramped increase of lead-car speed was simulated. These 

simulations show the nominal driver behavior as captured by the model, and thus exclude 

unpredictable and/or time variant behavior as present in the original data. Figure 8 shows the 

predicted effect of the RWND simulating the average model parameters in session 2. Apparently, 

tighter nominal control is achieved with RWND. The conventional measures (see Table 2) and 

the model parameters (see Table 3) of the experimental group indicated substantial variations 

between subjects. Figure 9 illustrates these between-subject variations by plotting simulated 

responses using the estimated parameters of individual participants. 
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Figure 8. The simulated response of the control group and the experimental group 

(RWND) to a 10 s, 1 m/s2 constant lead vehicle acceleration using the average of the 

identified driver model parameters.  

Figure 9. The simulated responses of the drivers in the control group and the experimental 

group (RWND) to a 10 s, 1 m/s2 constant lead vehicle acceleration using the identified 

driver model parameters.  
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4. Discussion 

This study presented a novel advisory display to improve drivers’ car-following performance. 

The display projected acceleration and THW information onto the rear window of the lead car. 

The most important finding is that drivers with RWND outperformed the control group by 

achieving a smaller headway and reduced speed differences with respect to the lead car. Drivers 

with RWND maintained more homogenous headways during car following, with a significantly 

reduced occurrence of large gaps between vehicles. The occurrence of short THW (< 1 s) did not 

increase because of the RWND, suggesting that safety was not compromised. This performance 

gain was achieved with a significantly larger acceleration and jerk in the RWND condition 

indicating enlarged control effort. Note that this study was performed in a fixed-base simulator, 

where the lack of haptic and vestibular acceleration cues may have induced abrupt gas and brake 

pedal actions. 

The driver-model parameters provided complementary information with respect to the traditional 

performance measures and gave information about how drivers use distance, speed, and 

acceleration information with and without the RWND. The time delay identified from the model 

was roughly similar to the values reported by Brackstone and McDonald, (1999) and Brackstone, 

Waterson, & McDonald, (2009). The driver-model parameters showed that drivers with RWND 

achieved enhanced car-following performance by adopting higher control gains. This result 

confirms earlier findings that drivers are capable of using augmented information on a lead car’s 

acceleration during car-following (Sultan, Brackstone, & McDonald, 2004). The driver-model 

parameters indicate that the acceleration gain Ka is relatively low and varies between participants 

even when an acceleration cue is displayed. It may be that the acceleration cue merely helps 

drivers to detect speed changes more effectively. Figure 8 and Figure 9 illustrate nominal driver 

behavior as captured by the driver model. While Figure 8 presents ‘average’ behavior, Figure 9 

shows substantial between-driver variations. To investigate the advantages of using RWND in 

complex traffic flows, the driver model (with parameter sets representing between-driver 

variations) can be applied to simulate RWND benefits in microscopic traffic-flow models. 

The questionnaire revealed that the display was generally regarded as not distracting, suggesting 

that the RWND may have potential in real vehicles. Participants rated the driving simulator as 
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moderately realistic and indicated that they had some difficulty judging speed accurately. These 

results correspond to previous research using the same driving simulator (De Groot, De Winter, 

Mulder, & Wieringa, 2011), and may be explained by the lack of vestibular motion cues, the 

limited resolution provided by the LCD projectors, and the lack of binocular depth cues. 

However, driver-simulator validity is an on-going field of investigations, and simulators have 

proven to be valuable tools as far as relative comparisons between experimental conditions are 

concerned (Kemeny & Panerai, 2003; Reymond & Kemeny, 2000). 

Van der Hulst, Meijman, & Rothengatter (1999) argued that the late detection of lead-car 

deceleration is the primary human error in distance keeping. A study by Brackstone et al. (2009) 

showed that the behavior of the car in front has the largest influence on the chosen headway, as 

compared to other factors such as road type and traffic-flow condition. Muhrer and Vollrath 

(2010) examined the role of expectation in car following (e.g. when a lead car suddenly brakes). 

Their findings suggest developing assisting systems that generate anticipation in drivers, 

especially in a car-following driving situation where the lead car is driving at a constant speed 

and drivers cannot foresee the need for action. Knowing that a primary source of information 

during the car-following task is available through the brake lights of the leading car, different 

brake light arrangements have been tested to improve the accuracy and speed of drivers’ reaction 

time and their situation awareness (Alferdinck, 2004; Alferdinck & Theeuwes, 1995). A dynamic 

brake light concept has been studied as well in a driving simulator, showing that subjects braked 

sooner when brake lights were artificially expanding as a function of the hazard. This concept 

was most effective for poor visibility conditions (e.g. at night without headlights), making the 

lead vehicle brake lights most salient (Li, 2006; Li & Milgram, 2008). The RWND effect is 

comparable to the effect of brake lights, as they both communicate the lead vehicle action to the 

driver. The distinguishing factor is that, unlike traditional brake lights, the RWND communicates 

the magnitude of acceleration and deceleration to the driver, helping him to better implement the 

start, duration, and level of control action in response to lead-car behavior. Given that human 

understanding and interaction with ACC is one of the barriers for achieving ACC benefits in 

different working regimes (Marsden et al., 2001), a display similar to RWND could support 

drivers in their understanding of ACC and next generation technology, such as CACC. Some 

examples of this include visualizing the performance and limits of ACC systems, indicating 
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proper conditions for initiating transitional maneuvers such as gap creation, joining or separation, 

and authority exchanges between car and driver. 

The RWND could be placed on the inside of a rear window, possibly integrated with an extra 

brake light, such that the rear view is not compromised, or it could be placed externally, taking 

into account legal requirements for brake lights and regular illumination. The height and 

dimensions of the display should follow regulations in place for the Center High Mounted Stop 

Lamps (CHMSL) in passenger cars (Kahane & Hertz, 1998), whereas variables such as color and 

intensity would have to follow the limits drafted in relevant standards (UNECE, 2008). Finally, it 

should be noted that the current RWND is designed to be displayed on a rear window, in order to 

assist following cars that are not equipped with CACC. Similar results are expected if the 

information is shown on a head-up display in the following car itself.  

5. Conclusion and recommendations 

This paper reported on a Rear Window Notification Display (RWND) developed to help drivers 

follow cars precisely and accurately. Displayed on the rear window of the lead car, the RWND 

showed the time headway and acceleration of the lead car in an intuitive way for the human 

driver. The simulator-based study showed that the RWND is capable of enhancing driver car-

following behavior, reducing mean time headway (THW) and speed and distance variance at the 

expense of more control effort. Drivers did not consider the RWND to be a distraction, possibly 

because the arrows did not appear when THW was within the desired range of 1–1.5 s. In 

conclusion, the results of this study suggest that the RWND can be used along with CACC to 

increase network capacity without degrading safety. Mental workload and distraction effects 

should be evaluated in further experiments, including on-road testing in a naturalistic 

environment and a more diverse population.  
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CHAPTER 6  

Automated driving: human-factors issues and design solutions  

 

Abstract 

The goal of this paper is to outline human-factors issues associated with automated driving, with 

a focus on car following. First, we review the challenges of having automated driving systems 

from a human-factors perspective. Next, we identify human-machine interaction needs for 

automated vehicles and propose some available solutions. Finally, we propose design 

requirements for Cooperative Adaptive Cruise Control. 
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1. Introduction 

Automation has entered many aspects of our daily life, including the way we transport ourselves. 

Adaptive Cruise Control (ACC), lane keeping assistance, and blind spot assistance are being 

introduced into vehicles at a rapid pace. Such systems provide information and advice (e.g., 

warnings, suggested actions) or control the vehicle in specific longitudinal or lateral tasks. 

Although fully automated cars have been under investigation for about half a century (e.g., 

Burnham & Bekey, 1976; Geddes, 1940; Hallé & Chaib-Draa, 2005; Ioannou & Chien, 1993; 

Levine & Athans, 1966; Naus, Vugts, Ploeg, Molengraft, & Steinbuch, 2009), they are not yet 

available for public use. The challenges of vehicular automation are more than technical. Neale 

and Dingus (1998) stated that “the hardest problems associated with an Automated Highway 

System (AHS) … are ‘soft’; that is, they are human factors issues of safety, usability, and 

acceptance, as well as institutional issues. These are problems that are many times more difficult 

to overcome and must be overcome, largely, in parallel with the traditionally ‘hard’ 

technological issues” (p. 111). 

2. Challenges of interaction between human and automation  

One might be inclined to think that automation eventually reduces the human’s task to the 

selection of the travel destination. However, the reality is that even with highly automated 

systems, the contribution of the human operator is crucial (Bainbridge, 1983). Automation shifts 

the human’s driving tasks from manual control to supervisory control of the conducted 

maneuvers (Geyer, Hakuli, Winner, Franz, & Kauer, 2011). Being ‘out of the loop’ may lead to 

overreliance, behavioral adaptation, erratic mental workload, skill degradation, reduced situation 

awareness, and an inadequate mental model of automation capabilities (cf. Endsley & Kiris, 

1995; Parasuraman, Sheridan, & Wickens, 2000). In the following, we briefly revisit these issues 

in the driving context. 

2.1. Overreliance  

Overreliance (or complacency) is defined as a situation where the human does not question the 

performance of automation and insufficiently counterchecks the automation status. Distraction 
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and poor judgment are two major causes of accidents (Peters & Peters, 2002). Overreliance on 

automation could make these problems worse. Kazi, Stanton, Walker, and Young (2007) found 

that drivers are not good in developing appropriate trust levels with respect to the reliability level 

of ACC.  

2.2. Behavioral adaptation 

Rajaonah, Tricot, Anceaux, and Millot (2008) showed that drivers who often use ACC had a 

lower perceived risk and lower workload than infrequent users of the system. An experiment by 

Rudin-Brown & Parker (2004) showed that drivers using ACC may be more tempted to engage 

in activities other than driving. Drivers using ACC tend to adopt higher speeds and shorter 

headways than drivers without ACC (Hoedemaeker & Brookhuis, 1998), a phenomenon which 

can be explained by the risk homeostasis theory (RHT) (Ward, 2000; Wilde, 1988). The RHT 

states that humans adapt their behavior when their perceived risk changes, to restore their target 

level of preferred risk. 

2.3. Erratic mental workload 

Automated systems have the potential to relieve the human of tasks that are complex, dangerous, 

or temporally demanding. Consequently, automation reduces mental workload in routine 

situations (e.g., Ma & Kaber, 2005; Stanton & Young, 2005). However, automation can also 

increase mental workload in unexpected situations (Vahidi & Eskandarian, 2003). Lee (2006) 

summarized several examples from the aviation and shipping industry where poorly designed 

automation results in an improper increase of workload. 

2.4. Skill degradation 

Loss of manual control skills due to automation is a serious concern in the highly automated 

aviation industries (Damos, John, & Lyall, 1999). Automation not only results in loss of 

psychomotor dexterity but also contributes to degradation of the cognitive skills required to 

accomplish the task successfully (e.g., Parasuraman et al., 2000). 



CHAPTER 6: Automated driving: human-factors issues and design solutions  

 

135 

 

 

2.5. Reduced situation awareness 

High levels of automation can prevent humans from receiving feedback within a proper time 

window, can diminish understanding of the process under control, and result in degraded event 

detection and response (Norman, 1990; Sarter & Woods, 1997; Wickens, 2008; Young & 

Stanton, 2002). An experimental study by Spiessl & Hussmann (2011) showed that compared to 

manual control of the steering wheel, operators of an automated steering system adopted longer 

reaction times. A related issue is carrying out inappropriate actions for the mode that the 

automation is in, a phenomenon known as mode error (Degani, Shafto, & Kirlik, 1999). 

Research has shown that lack of mode awareness can significantly increase the response time of 

the driver (Horiguchi, Suzuki, Nakanishi, & Sawaragi, 2010). In a driving simulator experiment, 

Stanton, Young, & McCaulder (1997) showed that a third of the participants were unsuccessful 

in reclaiming control of the vehicle without collision. 

2.6. Inadequate mental model of automation functioning 

Automation does not control the vehicle the same way as a human does. Because of sensory 

limitations and regulatory requirements, automation systems have a restricted working envelope 

(Zheng & McDonald, 2005). For example, although ACC systems can maintain steady headway 

and constant speed, radars used in ACC have a limited operating range. Drivers could fail to 

reclaim control of the vehicle due to not clearly understanding the ACC’s functional limitations 

(e.g., Stanton & Young, 2000). 

3. Main interaction functions of human and automated car 

Because of vehicular automation, humans are more engaged in supervision and intervention and 

less involved in manual control and continuous compensation of the vehicle (Sheridan, 1999). 

With ACC, humans are currently required to handle new tasks including initialization (e.g., 

headway setting), monitoring automation status, and takeover control (e.g., when approaching a 

sharp curve). Humans need to interact with the automation system for two main functions 

(adapted from Ran, Leight, Johnson, & Huang, 1997): (a) authority transitions, (b) human-

vehicle instruction and feedback. In the following, we explain these functions. 
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3.1. Authority transition 

An authority transition is defined as the timing and procedure of transferring responsibility from 

the human to automation system, and vice versa. Some situations requiring a transition are 

automation failure, road blockage, severe weather conditions, sudden maneuvers by another 

vehicle, and operator preference. A proper automation system should avoid automation surprises, 

and facilitate proper trust on automation (Adell, Várhelyi, & Fontana, 2011). The human should 

be aware of the automation system’s limits well in time and be able to take over the vehicle 

control when needed (Pauwelussen & Feenstra, 2010). 

3.2. Human-to-vehicle instruction and vehicle-to-human feedback 

Not only the presence of the feedback is important, but feedback should also be provided in a 

timely and useful manner. Humans may miss nonsalient warnings, whereas too salient warnings 

are annoying (Lee, McGehee, Brown, & Nakamoto, 2007). Feedback provided too early or 

inappropriately (i.e., false alarms) can result in distraction, ignoring the alarm, or shutting down 

the alarm system entirely (Meyer & Bitan, 2002; Parasuraman & Riley, 1997). Abe and 

Richardson (2005) showed that drivers trust early collision alarms more than late alarms.  

Displays and automation settings may need to be configurable based on operator preference. 

Setting customization, however, can be a double-edged sword because of potential confusion by 

other users. 

4. Potential solutions for interaction of human and automation 

The driver-automation interaction mechanism deals with achieving the functions and purposes 

addressed above. In the following, we present some available frameworks. 

4.1. Shared control 

Several researchers have argued that interactions between human and automation should not 

merely consist of activations and deactivations. They have proposed developing appropriate 

frameworks to keep drivers involved in the control loop (Stanton & Young, 2000), allow drivers 
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to understand the machine’s capability (Seppelt & Lee, 2007), and support the acquisition of 

situation awareness with a minimum of cognitive effort. 

Shared control is a framework whereby the human and automation cooperate to achieve the 

required control action together. This approach should realize automation benefits (e.g., fast 

response, accurate control) while avoiding problems such as the out-of-the-loop unfamiliarity 

and mode errors (Flemisch et al., 2012). Abbink, Mulder, and Boer (2012) developed a haptic 

gas pedal and steering which has been tested as a medium for shared control for car following 

and curve negotiation. The gas pedal stiffness adapts according to the headway to the following 

car. The human can still overrule and change the distance by using more or less force on the 

pedals. De Winter and Dodou (2011) provided a critical reflection of the literature on the effects 

of shared control on road safety. They argued that force feedback should not be provided 

continuously, but only when deviations from acceptable tolerance limits arise. 

4.2. Adaptive automation 

Variation in driving conditions (e.g., infrastructure, traffic rules, traffic density, and weather) and 

drivers’ population (e.g., age, gender, and experience) justify designing automation systems that 

can adapt to these differences. Adaptive interfaces can reduce the driver’s mental workload by 

filtering the presentation of information according to situational requirements. Piechulla, Mayser, 

Gehrke, and Konig (2003) implemented such a filter as a projective real-time workload estimator 

based on an assessment of the current traffic situation. In a driving-simulator study, Lee et al. 

(2007) quantified driver sensitivity to different ranges of brake duration and magnitude. They 

suggested that their findings could be used to create ACC algorithms and develop brake pulse 

warnings. Adaptive automation can also be used to monitor and alert drivers to their 

impairments, such as drowsiness and inattentiveness (Victor, 2000). 

4.3. Use of an information portal 

Providing the relevant information at the suitable moment can assist drivers to improve their 

situation awareness (Seppelt & Lee, 2007; Stanton & Young, 2000). An information portal can 

be used to communicate required actions, provide augmented feedback (e.g., improved rear-view 
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vision or enhanced night vision), provide recommendations for better performance (e.g., eco-

driving feedback), or to highlight risky driving conditions (e.g., blind spot assistance). In 

automated systems, information portals can be used to avoid automation surprises and increase 

the acceptance rate of the system. Information portals can be implemented as visual displays, or 

by complementing the visual task-intrinsic information with non-visual (audio) cues (e.g., Risto 

& Martens, 2011; Van den Broek, Netten, Hoedemaeker, & Ploeg, 2010). 

4.4. New training methods 

Because the role of the human changes from manual to supervisory control, changes in driving 

licensing and driver training may be needed. Future drivers may have to demonstrate 

competency in computer skills and mode-conflict resolution, while psychomotor skills will be 

less relevant. Educating drivers on the capabilities and limits of automation has been proposed as 

a preventive strategy to minimize adverse behavioral adaptation (Rudin-Brown & Parker, 2004; 

Stanton & Young, 2005). 

Automation can be used to develop new types of training. In theory, a consistent, accurate, and 

tireless automated trainer is capable of capturing every event in the vehicle, including erratic and 

unsatisfactory human behavior. Sensor systems can reveal transient errors or driver drowsiness, 

which might remain unnoticed by human trainers. The use of automated trainers can result in a 

quantitative evaluation of the operator, making it possible to provide feedback of human error in 

real-time (e.g., Panou, Bekiaris, & Touliou, 2010). 

5. Requirements and potential solutions of human interaction with CACC 

We propose using the Cooperative Adaptive Cruise Control (CACC) system as a main platform 

to integrate human-automation control. The CACC system enables a platoon of two or more 

vehicles driving with automated longitudinal control at a set distance parameter (e.g., time 

headway) through shared kinematic information (Naus et al., 2009). The scheme of such platoon 

is shown in Figure 1. Cooperative cars can be used in driving in reduced visibility, such as in 

fog, at night or on unlit motorways, and for driving long periods. In these conditions, cooperative 

vehicles have the potential to outperform humans in terms of safety, traffic flow, and eco-
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driving. In the CACC framework, one can distinguish three main maneuvers: platooning, joining, 

and splitting. Joining and splitting are transition maneuvers, whereas platooning involves 

stationary motion. 

In the following, we discuss design requirements, expected human-factors issues, and design 

solutions for interaction between drivers and CACC. These findings are based on the human-

factors issues discussed in Section 2 the CACC goals and functions briefly introduced above, and 

a consideration of the main interaction functions in Section 3.  

 

Figure 1. CACC-equipped platooning vehicles. 

5.1. CACC design requirements 

We assume that all vehicles are equipped with equivalent CACC systems. Thus, the issue of 

interaction with heterogeneous technologies is not considered. 

System Initialization. The system should make drivers aware whether the CACC is enabled or 

disabled. Initialization should result in a clear driver understanding of what the headway and 

speed setting implies in terms of stopping distance and hazard. The system should enable drivers 

to distinguish the difference between driving in platoons and individual driving. The system 

should enable drivers to easily retrieve and change the headway and speed settings, and the 

initialization setting should not pose too much extra workload on drivers (i.e., no erratic mental 

workload). 

Platooning. The tailgating behavior of CACC cars should gain acceptance of drivers. Drivers 

should not experience automation surprises, such as very rapid acceleration and deceleration, 

sudden closure of inter-vehicle gap, unexpected change of the topology of the platoon, and poor 

string stability. The system should clarify and communicate the constraints that driving in 
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platoons pose in terms of feasible maneuvers (i.e., have a correct mental model). For example, 

the system should make it clear for drivers that they are not able to override the headway 

instantly. Drivers should have an option to come out of the platoon in a safe and smooth manner 

(i.e., proper trust) and should not experience very low workload levels. 

Joining and Splitting can be initiated either by the platoon’s control hierarchy (Hallé & Chaib-

Draa, 2005) or by the human. Drivers should be able to take over vehicle control when coming 

out of the platoon. Drivers should not be surprised by the automation’s behavior, either initiated 

by the controller or driver. Joining and splitting should be performed with as few as possible 

steps to avoid confusion (i.e., avoid mental overload). The system should make drivers aware of 

the start, end, and the process of the joining and splitting transitions. 

5.2. CACC design solutions 

Initialization. The process of selecting a headway and speed during driving is distracting and 

disconnects the driver from the driving task. In addition, there is a risk that the driver does not 

fully understand what the setting implies. The use of additional icons can be distracting, while 

the learning and remembering involved can impose an extra workload on drivers. An alternative 

option is to use a system consisting of an adaptive setting based on the driver’s history of manual 

car following. The system can choose the average minimum headway distance and maximum 

speed that the driver held for more than a set period (e.g., one minute) within the most recent 

hour of driving. Such a mechanism will prevent the driver from having to face an unexpected 

following distance and bring forward an expected following distance. The CACC should be 

turned on by the driver who should be informed of the system status by visual/audio cues to 

maintain correct awareness. 

Joining. When the system is on, the car should start cruising at the set speed, resort to car 

following when approaching a slower vehicle, and brake to a complete standstill if needed. In 

other words, a platoon can be joined from the rear without driver intervention. However, drivers 

have to be informed about large speed differences, and may be advised to change lanes to better 

follow their desired speed. Here, adaptive automation may be used, monitoring the driver state, 

and providing person-specific advice to the driver. Drivers should be aware of situations where 
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joining is not feasible due to the maneuvers of other members of the platoon or any other 

constraints, such as maximum length of the platoon because of the road layout. Thus, transitions 

in the platoon that pose constraints on any other platooning members should be communicated to 

the constrained members. 

Platooning. The state of the system should be clearly communicated to the driver as “Platoon 

Mode” through a communication portal or icon. This mode can be announced audibly and 

repeated at certain intervals to keep the human aware. Again, using adaptive automation, 

frequency, and intensity should be raised when humans are potentially less attentive (e.g., when 

they do not provide any input for a prolonged time). 

When platooning, humans should not experience unannounced or abrupt changes. Topology 

changes in the platoon and the splitting off and joining of other members should be announced to 

avoid surprises and lowering of trust in the automation. Humans should be aware of the limits of 

maneuvers. For example, a human cannot close the headway beyond a certain threshold and 

should not steer instantly. To avoid sudden steering, haptic feedback can be used on the steering 

wheel. 

Splitting. Drivers should be able to safely end their platooning. One potential solution is that the 

human increases the headway to an allowable limit. When this limit is reached the CACC system 

disables and the driver is informed of the shutdown via an information portal. 

6. Conclusion 

This chapter reviewed several human factors challenges of automated driving. We applied the 

issues, needs, and solutions for vehicle automation to the concept of CACC and proposed an 

interaction mechanism between humans and CACC. The proposed system has few modes, keeps 

drivers engaged in the control loop, and facilitates cooperation between drivers and their vehicles 

as well as among other vehicles. 
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1. Main findings 

This thesis presented the results of four driving simulator experiments investigating the effects of 

the availability and quality of visual information on the performance of drivers in safety-critical 

longitudinal control tasks. Chapters 2 to 4 examined the effects of diminished visual information. 

The tasks were avoiding collision with a decelerating preceding car (Chapter 2), stopping at a 

target (Chapter 3), and following a lead car in fog (Chapter 4). Chapter 5 examined to what 

extent augmented visual information can improve the performance of drivers in a car following 

task. 

A primary finding of these experiments is that continuous availability of visual information is 

crucial to safe driving. The results showed that realistic yet unfavourable timing of visual 

distraction (a glance away from the road when the headway is short and the lead vehicle brakes 

hard) causes a collision with the lead car (Chapter 2). Moreover, when the screens are occluded, 

people cannot precisely stop their car at a designated spot on the road even though in theory a 

constant brake input would suffice (Chapter 3). Drivers also adopt short headways in order to see 

the lead car and achieve a smooth steering performance in foggy conditions (Chapter 4). 

Oppositely, car following performance of drivers improves when drivers have direct access to 

visual information about the action of the lead car and the deviation of the desired headway with 

respect to the lead car (Chapter 5). 

In the remainder of this chapter, we interpret the results of Chapters 2 to 5, discuss lessons 

learned from the methods, and reflect on future research opportunities for enhancing driving 

performance and safety. 

2. Interpretation of results using control theoretic models 

The results of Chapters 2 to 5 can be interpreted in terms of the control strategies that may have 

been used by the participants. Mortimer et al. (1970) argued that during normal (i.e., non-

emergency) braking, drivers rely on a closed loop control strategy. This means that drivers 

control the deceleration of their vehicle to nullify the discrepancy between the required 

deceleration to come to a stop at the target position/spot on the road and their observed actual 
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deceleration. In Chapter 3, when the screen was not occluded and TTA was large, participants 

used closed loop control to regulate their brake pedal and stop at the designated spot on the road. 

However, when the screens were occluded, participants could not apply the necessary closed 

loop control. Put simply, if the screen is blanked, participants cannot see how far they are from 

the stopping position and therefore do not know how hard to brake. While this result is not 

necessarily surprising, it reaffirms that drivers cannot perform a standard and highly repetitive 

braking task without visual information feedback.  

Regarding emergency situations, Mortimer et al. (1970, p. 28) indicated that “it is likely that the 

braking is performed in a completely open loop manner”, meaning the driver does not use visual 

feedback. For low TTA values (Chapter 3) or a short headway (Chapter 2) participants applied 

an open loop braking approach (i.e., they ‘slammed’ the brakes) regardless of the availability of 

visual information. Nonetheless, when visual information was available, participants did use 

some of this visual information even in the most urgent condition (TTA = 2 s, in Chapter 3). This 

was evident from the magnitude of the maximum depression of the brake pedal, which was 

larger without occlusion as compared to with occlusion. Thus, braking is not completely open 

loop even in the most critical braking situations. In line with Flach (1999), it is argued that 

braking is partly open loop and partly closed loop (Fig. 1). The less time is available to avoid a 

collision, the more the driver brakes in an open loop manner and the less likely he is to use visual 

feedback. 

Chapter 4 was concerned with understanding the paradoxical phenomenon that participants 

adopted shorter headways in fog compared to clear weather. It was found that in fog, the feeling 

of risk was lowest when the lead car was just in sight. These findings can be explained with the 

help of a “perceptually grounded driver model for car following in fog” proposed by Boer et al. 

(2008) (Figure 2). The difference between the model in Figure 1 (used for explaining the results 

of Chapters 2 and 3) versus the model in Figure 2 (used for explaining the results of Chapter 4) is 

that the latter model makes use of an additional outer ‘tactical’ (cf. Michon, 1985) loop of target 

headway adjustment.  
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 Figure 1. A combination of feed forward (open loop) and feedback (closed loop) control 

(figure based on McRuer, D. T., & Jex, H. R. (1967). A review of quasi-linear pilot models. 

IEEE Transactions on Human Factors in Electronics, HFE-8(3), 231–249). 

Specifically, the model by Boer et al. (2008) consists of a closed loop feedback mechanism in 

which the visual angle error (defined as the difference between the desired and current visual 

angle of the lead car) and the visual angle rates are the perceptual inputs that determine the 

throttle and brake actions of a driver. The feedback mechanism becomes active when the change 

in the visual angle exceeds the driver’s perceptual sensitivity. An important aspect of this model 

is that perceptual sensitivity improves (i.e., the Just Noticeable Difference [JND] decreases) 

when the distance headway (Dist variable in Figure 2) is smaller. According to the model, 

drivers can reduce their target headway (Dist* variable in Figure 2) to achieve a more accurate 

control performance. In other words, a shorter target headway has advantages in terms of 

improved perception of the distance to the lead car, allowing the driver to reduce the variability 

of headway and associated collision risk. In fog, these advantages of headway variability 

reduction are stronger than the advantages of increasing the target headway itself (Boer et al., 

2008). Boer et al. (2008) fitted this model to empirical driving simulator data and showed that it 

is capable of explaining the short-headway-in-fog phenomenon. Accordingly, the model can 

explain why drivers’ sensed feeling of risk is sometimes smaller for smaller headways. It is 

noted, however, that the model is a simplification of the true state of affairs; it does not account 

for the effects of lead car lighting nor for situations in which the lead car cannot be seen at all.  
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Figure 2. A perceptual model used to explain driver behaviour in fog. THW = Time 

headway, Ahost/Vhost/Xhost = acceleration/velocity/distance of driver’s vehicle. Xlead = 

distance of the lead vehicle. Dist = headway distance, Theta = visual angle of subtended by 

the width of the lead vehicle, Phi = the driver’s internal representation of Theta, PhiDot = 

the driver’s internal representation of the rate of change of Theta, JND = Just Noticeable 

Difference, * refers to values corresponding to driver’s target THW. Phi* and Theta* are 

always identical (figure from Boer, E. R., Caro, S., & Cavallo, V. (2008). A perceptually 

grounded driver model for car following in fog. Proceedings of the Driving Simulation 

Conference Europe (pp. 247–257), Monaco). Reprinted with kind permission of Erwin Boer. 

The structure of Figure 2 can also be used to explain why the Rear Window Notification Display 

(RWND) system enhanced the car following performance of drivers. The RWND not only 

bypassed the perceptual sensitivity threshold of drivers by providing direct operational 

information about the acceleration and deceleration of the lead car, but it also provided tactical 

advice about the time headway that drivers should adopt. Both theoretical traffic models and 

traffic observations suggest that traffic jams are formed by large traffic flow fluctuations 

(Sugiyama et al., 2008). The results of Chapter 5 showed that the use of the RWND reduced both 

the mean and standard deviation of time headway without increasing potentially unsafe 

headways of less than 1 s.  

Apart from relying on these ‘traditional’ measures of longitudinal control performance, Chapter 

5 also included a control model and associated driver parameter identification technique. The 
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results showed that the RWND caused participants to respond with higher gains to spacing errors 

with respect to the lead car. The combination of methods used in Chapter 5 (i.e., self-report 

questionnaires, performance measures, and control theoretic modelling) is regarded as a unique 

contribution of this thesis, and may be of value to assess other types of hard (technological) or 

soft (behavioural) safety interventions. 

3. Validity of perception in driving simulators 

In Chapter 3, it was found that participants substantially and proportionally underestimated the 

distance to a stationary lead car. Distance underestimation is not unique to virtual reality; it has 

also been observed in real-life driving tasks, although not as severe as the 70% underestimation 

as found in Chapter 3. Nonetheless, in an on-road study, Rockwell (1972) found that drivers 

underestimated the distance headway by as much as 30% to 60%. Several explanations for 

distance underestimation were proposed in Chapter 3, including the lack of several monocular 

and binocular depth cues in the driving simulator, and the fact that participants had little time to 

consciously reflect on the distance estimations, meaning they had to rely on Gibsonian direct 

perception (DeLucia, 2008). 

Regardless of the causes of the distance underestimation, these data do pose some concerns for 

the validity of our results with respect to real-life applications. Distance perception bias in 

simulators may alter the risk perception of drivers and affect drivers’ control performance. 

Another issue is that the simulators used in this thesis did not feature vestibular motion feedback. 

Several researchers have argued that simulators without motion feedback do not possess absolute 

validity, but are still valid for making relative comparisons and assessments of effect sizes (De 

Winter, Van Leeuwen, & Happee, 2012; Sidaway, Fairweather, Sekiya, & McNitt-Gray, 1996).  

Having access to perceptually valid simulator setups is particularly important for understanding 

drivers’ collision avoidance behaviour, considering that on-road testing of safety-critical tasks is 

often dangerous and thus unethical. Simulators provide experimental validity and have been used 

as accurate tools to assess effect sizes between conditions (relative validity). For example, 

simulators have been found valid for examining whether using an in-vehicle HMI improves or 

deteriorates driving performance compared to not using the HMI. For example, Klüver et al. 
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(2016) recently showed that effect sizes in rear cars generalize to low fidelity fixed-based 

simulator setups. Validation studies of driving simulators are becoming more and more common, 

partially driven by industrial needs to develop cost-effective research tools to determine the 

effectiveness of in-vehicle technology prior to conducting on-road studies (e.g., Klüver, Herrigel, 

Heinrich, Schöner, & Hecht, 2016). 

4. Limitations of driving simulator research and future research directions 

The experiments of this thesis consisted of simple driving tasks. There was at maximum one 

other road user, and the driving tasks were limited to maintaining the lane, following and 

responding to the vehicle ahead, or stopping on a specified position on the road. While this is 

different than the realm of our roads, this design was used deliberately. A relatively new and 

sensible view about driving simulators is that simulators should not be developed to be as 

realistic as possible, and accordingly that unnecessary distractors should be eliminated from the 

virtual environment (Lee, 2004; Parkes, 2012). In line with this view, in designing the tasks and 

the instructions of these experiments, best effort has been made to remove distraction elements 

by using simple driving tasks and traffic environments. Thus, the results of this thesis should be 

seen as a reference that may be applicable to future research into the availability and quality of 

visual information in more complex driving environments. 

One of the questions in controlled driving experiments is how ecologically valid are the 

simulated scenarios in terms of the type and the frequency of the critical events. The headways 

(0.5 s, 1.25 s), occlusion periods (0.4 s, 2.0 s), deceleration values (1.7 vs. 6.5 m/s2), and 

moments of occlusion onset (i.e., when the situation is stationary) are realistic and resemble the 

values observed or tested in previous research (see Chapter 2). However, the total duration of the 

experiments was relatively short (about 60 minutes total simulated driving time). The selected 

occlusion periods represent two extremes for not looking at the driving scene. While it is 

expected that the responses to other occlusion durations fall in between the results obtained for 

these two conditions, the sensitivity of drivers to the changes in the occlusion period requires 

further investigation.  
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For statistical reasons a large number of event data needed to be collected per participant. 

Accordingly, in the short-lasting experiments of this thesis, participants were exposed to multiple 

emergency stops or severe deceleration events. In real traffic, drivers are faced with a much 

smaller frequency of such events. In other words, despite that the selected conditions (headways, 

occlusion durations, lead car decelerations) are common in real traffic, the frequency with which 

emergency stops occurred was higher than the real traffic. Note that this limitation applies to 

many other traffic safety research, such as hazard perception studies, where the scenarios such as 

pedestrians stepping onto the road are rare in real driving per time unit, but are still 

proportionally important contributors to accidents. Still, the question remains regarding the 

extent to which the present results are transferable to the real world.  

The risk level that is experienced by participants probably represents a conservative estimate for 

reality. At the same time it is likely that drivers demonstrate a startle response only at collision-

prone conditions in real traffic where the perceived risk is high. It is not possible to test drivers in 

near-collision conditions due to ethical concerns and potential harm that is involved for 

participants. However, it is possible to construct collision and near-collision conditions that 

occur in naturalistic observations studies in simulator environments and compare drivers’ 

responses in the controlled simulator setting with naturalistic response data. Nevertheless, the 

questions over the validity of the frequency and the perception of risk-prone events are 

applicable to any driving simulator research unless the research is duplicated in both simulators 

and the real world.  

Because it is not possible to truly ‘surprise’ a person more than once in controlled experiment 

conditions, there was almost no surprise effect in these experiments. Drivers experienced a 

moderate-to-low workload and perceived risk in the experiments of Chapters 2 and 3, in which 

they were faced with repeated critical events (Table 1). The driving task of Chapter 4 consisted 

of relatively monotonous car following without emergency situations and resulted in overall low 

workload (Table 1). Only when the headway was extremely short did participants experience a 

high level of risk, but overall the task was experienced as undemanding (see Chapter 4).  
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Table 1. Mean self-reported workload (measured with the NASA TLX) and mean self-

reported risk, for the experiments in Chapters 2, 3, and 4. 

 

Note. The width of the bars linearly corresponds to the value in the cell, ranging from 0% (no bar 

visible) to 100% (cell entirely filled with the bars). The questionnaire used a 21-tick scale. The 

TLX items ranged from very low to very high, except for the performance item of the TLX, 

which ranged from perfect to failure. The risk item ranged from strongly disagree to strongly 

agree. For the experiment of Chapter 5, the NASA TLX was not used. 

One remedy to overcome the limits of studying collision-prone situations in a controlled setting 

like a simulator study is to gather a large amount of naturalistic driving data that contains a 

sufficient number of (almost) identical collision and near collision events, and verify the results 

of the controlled experiments with such events. Projects such as SHRP 2 (Victor et al., 2015) are 

on track to generate a database for this purpose using a large fleet of instrumented vehicles. A 

more cost-effective method is to gather a large amount of naturalistic data using smart phone 

technologies (Saffarian, 2015). 

While the conditions tested in this thesis are among the most frequent tasks that happen on the 

road, their fidelity can be extended by including constraints that can exist during driving. One of 

these constraints is being part of a traffic stream. At present, little is known about how drivers 

take into account the impact of their actions on the safety of surrounding vehicles (Meskali, 

Barbet, Espié, & Bootsma, 2006). For example, do drivers assess the ability of the following car 

when hard braking is required? And if so, what cues do they use to make such assessment? It is 

also unknown to what extent drivers are capable of mitigating the collision risk involved in such 

Brake 

lights (B)

No brake 

lights (N)

Occlusion 

(O)

Occlusion, 

Gany

Occlusion, 

Gat

Control, 

Gany

Control, 

Gat

Clear 

automated

Clear 

manual

Fog 

automated

Fog 

manual

TLX Mental demand 48 50 60 54 55 39 35 25 27 42 51

TLX Physical demand 41 40 48 29 38 26 25 17 23 25 35

TLX Temporal demand 36 33 45 32 43 33 30 18 18 29 34

TLX Performance 37 31 51 50 55 34 46 24 28 30 39

TLX Effort 50 56 57 58 57 39 50 21 27 31 43

TLX Frustration 36 21 35 52 42 26 26 24 20 37 39

I had a feeling of risk 35 37 37 33 45 19 22 44 20 63 59

Chapter 2 Chapter 3 Chapter 4
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multi-vehicle situations. Future research could employ multi-driver simulators, an approach that 

is gaining popularity in human factors research (Hancock & De Ridder, 2003; Houtenbos et al., 

2016; Lehsing, Kracke, & Bengler, 2015; Muehlbacher, Rittger, & Maag, 2014; Oeltze & 

Schießl, 2015). 

In this thesis occlusion was used to measure the effect of visual distraction on drivers’ braking 

behavior (Chapter 2) and to measure the effect of visual information during braking on drivers’ 

braking behavior (Chapter 3). Senders, Kristofferson, Levison, Dietrich, and Ward (1967) used 

the occlusion technique to measure the information demand (duration and frequency of looking 

at the driving scene) of highway driving. The same method can be used to assess whether 

changes in the quality of the visual information affect the information needs of drivers, how such 

potential changes affect their performance, and whether adaptation mechanisms (e.g. close 

following in fog) and technological aids (e.g. RWND) change their information demand.   

5. Towards a collision-free world? 

This thesis highlighted some of the limitations of humans when they rely on visual information 

in safety-critical driving tasks (Chapters 2 to 4). This thesis also showed that automation 

technology per se will not reduce drivers’ feelings of risk (Chapter 4) nor actual risk (Chapter 6). 

Finally, this thesis showed that drivers and technology can work cooperatively to enhance safety 

(Chapter 5). The proposed Rear Window Notification Display (RWND) improved car following 

performance, was generally not regarded as a distraction, and has the potential to be used along 

with automation technology, such as Cooperative Adaptive Cruise Control. It is argued that 

humans and machines will increasingly cooperate and that the human-machine interface will 

become an increasingly crucial component of connected vehicles until wholly automated driving 

is technically feasible. 
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Appendices 

There are major concerns about lack of reproducibility of behavioral research experiments (e.g., 

Open Science Collaboration, 2015). These appendices are included to enhance the 

reproducibility of the experiments in this thesis. Without these appendices and photos a follow-

up researcher will have difficulty getting the exact same results as I did because of the lack of 

knowledge about the protocol and the specific headway conditions. 

 

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. 

Science, 349, aac4716. 
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Appendix A: Experimental Materials of Chapter 2 

Appendix A.1: Consent Form 

 

Investigators:       Professor John W. Senders (Thesis Advisor), Mehdi Saffarian (PhD Candidate)  

 

Duration of the experiment:         Less than 150 minutes 

 

Dear participant, 

 

The goal of this research is to investigate how drivers use visual information of a simulated driving scenario to 

control their brakes. The results of this experiment will be statistically analyzed and published in a scientific paper. 

All results will be treated anonymously and only used for research purposes. 

 

Simulator controls 

The experiment will be conducted in a fixed-base driving simulator.  You are able to control the simulated car with 

the steering wheel, brake pedal and gas pedal. Gear-changing is always automatic.  

 

Test conditions 

In this experiment you will complete the following stages:  

 

1. Reading the consent form and completing the intake questionnaire (10 minutes). 
 

2. Simulator Training (10 minutes) 
Task: Follow a lead vehicle at a safe distance and match the speed of the lead vehicle. The lead vehicle brakes at different 

deceleration rates. Your task is to slow down your own vehicle with controlled braking to avoid collision with the lead car and 

position your vehicle at a minimum acceptable safe distance for yourself. The brake light of the lead car is on.  

 

3. Driving Tests A (20 minutes) 

Task: Drive your vehicle at a set speed of 60 MPH while following a lead car. The lead car maintains a set distance from your 

vehicle, and suddenly slows down at certain moment of the scenario. When the lead car brakes, your task is to slow down your 

own vehicle with controlled braking to avoid collision with the lead car and position your vehicle at a minimum acceptable safe 

distance for yourself. The brake light of the lead car is on.  

 

4. Driving Tests B (20 minutes) 

Task: Similar to Driving Test A. The only difference is that the brake light of the lead car is off.  

 

5. Driving Tests C (20 minutes) 

Task: Similar to Driving Test A. The only difference is that when the lead car starts to brake, the scene is occluded (i.e. the 

screen turns off) for a short period. You should start braking after the occlusion clears (i.e. the screen turns back on). The brake 

light of the lead car is off. 

 

6. Filling out the Post Experiment Questionnaire (10 minutes) 

 

Note for Training and Driving Sessions 

 In between driving tasks A, B and C, you will also fill a NASA TLX task load questionnaire. 

 In all braking responses, try to control the brake force and avoid slamming on the brake.  

 The orders of experiments A, B and C will randomly be changed among the participants.  
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 In Driving tests A and B: you can start braking at any time after the lead starts braking.  

 In Driving test C: You should start braking at any time after the end of the occlusion.  

 Drive swiftly but safely, as you do in normal driving conditions. 

 Always try to keep your car accurately centered in the right lane; do not change lanes. 

 In driving sessions, A, B and C, you should maintain your speed at 60 MPH except the short period after the 

slowing down and braking of the lead vehicle.  

 Keep your right foot on the gas pedal before the start of the brake.  

 

Simulator sickness 

Driving in a simulator may sometimes cause simulator sickness symptoms such as headache and nausea. These 

symptoms resemble car sickness or motion sickness on a boat. If you start to feel uncomfortable in any way, we 

advise that you immediately withdraw from this experiment. You are able to stop your cooperation in the 

experiment whenever you wish, without any personal negative consequences. Please inform the experimenter of any 

uncomfortable feeling immediately.  

 

Compensation 

You will receive $12 CAD / hour (total: $30 CAD for 2.5 hours) as a token of appreciation for your participation at 

the end of this study.  

 

Confidentiality 

All information obtained during the study will be held in strict confidence. You will be identified with a study 

number only, and this study number will only be identifiable by the primary investigator. No names or identifying 

information will be used in any publication or presentation or will be transferred outside the investigators of this 

study. 

 

Please be advised that we video-record the experimental trials with four small web-cameras. One camera will be 

pointed at you, one will capture the steering wheel, one the pedals, and the final camera will capture the overall 

scene. We will use two other cameras on and near the dashboard to track and record where you are looking during 

the experiment.  The videos will only be seen by the investigators and their research collaborators. Faces will be 

blurred in any video used in public presentations.   

 

Participation 

Your participation in this study is voluntary. You can choose to not participate or withdraw at any time. You will be 

compensated for your time at $12 CAD / hour rate. Feel free to ask any questions during the experiment. If you read 

all the above items and have no further questions at this moment please proceed to the following: 

 

Consent 

I have had the opportunity to discuss this study and my questions have been answered to my satisfaction. I consent 

to take part in the study with the understanding that I may withdraw at any time. I have received a signed copy of 

this consent form. I voluntarily consent to participate in this study. 

 

Date  : ……………………………… 

 

Participant Name : ………………………………  Participant Signature: ……………………………… 

 

Further Questions 

If you have any questions about this study after the experiment, please contact:  

 

Mehdi Saffarian: Phone: 647.825.3358, Email: mehdi.saffarian@mail.utoronto.ca 

 

You may also contact the Ethics Review Office at ethics.review@utoronto.ca or 416-946-3273, if you have 

questions about your rights as a participant. 
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Appendix A.2: Information Questionnaire  

 

 

 

           

 

 

           

 

 

           

 

 

          

           

           

           

            

 

 

          

           

           

           

           

           

           

           

            

 

           

 

 

          

            

 

 

          

  

 

 

 

         

          

1. Number - A or B?

2. How old are you?

3. What is your gender?

Male

Female

Other

4. Do you have a normal or corrected-to-normal vision?

Yes

No

5. Do you wear glasses or contacts when you drive?

Yes - Contacts

Yes - Glasses

I don’t wear glasses or contact lenses when I drive

6. Do you have an active driving license?

Yes

No

7. If so what type of drivers license do you have?

G1 or G1 equivilant

G2 or G2 equiviliat

G or G equivilant

8. Which year you obtained your first driving license?
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9. On average, how often do you drive?

Less than 1-2 times per year

More than 1-2 time per year but less than once per month

More than once per month but less than once per week

More than once per week but less than once per day

At least once per day

10. On average, how long you drive per week?

More than 1,000 kilometers

Less than 1,000 kilometers but more than 100 kilometeres

Less than 100 kilometers but more than 10 kilometeres

Less than 10 kilometers

11. On average, how long you drive per year?

More than 100,000 kilometers

Less than 100,000 kilometers but more than 10,000 kilometeres

Less than 10,000 kilometers but more than 1,000 kilometeres

Less than 1,000 kilometers but more than 100 kilometers

Less than 100 kilometers

12. How many times you drove in a simulator before? (If never used a simulator enter 0)

13. How often do you drive with Cruise Control?

Less than 1-2 times per year

More than 1-2 time per year but less than once per month

More than once per month but less than once per week

More than once per week but less than once per day

At least once per day

14. How often you play video game?

Less than 1-2 times per year

More than 1-2 time per year but less than once per month

More than once per month but less than once per week

More than once per week but less than once per day

At least once per day
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15. How often you ride a bicycle?

Less than 1-2 times per year

More than 1-2 time per year but less than once per month

More than once per month but less than once per week

More than once per week but less than once per day

At least once per day

16. Is English your first language?

Yes

No

17. Are you right handed?

Yes

No

18. Do you use your right foot to operate the gas and brake pedal? 

Yes, I use my right foot to operate both pedals

No, I use my both feet to operate both pedals

19. Are you color blind?

Yes

No

20. Are you allergic or sensitive to adhesive or alcohol?

Yes

No

21. Have you experienced irreversible hearing loss?

Yes

No

22. Do you frequently experience migraine headaches?

Yes

No
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23. Do you experience motion sickness?

Yes

No

24. Do you experience claustrophobia?

Yes

No

25. Are you pregnant?

Yes

No

26. Rate the following:  

I have good steering skills (for instance in cycling or computer games) 

Completely disagree     1   2   3   4   5   6   7   8   9   10  Completely agree 
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Appendix A.3: NASA TLX workload assessment 

 

 

W1-Mental Demand: How mentally demanding was the task? 

                             
  Very Low                                           Very high   

                         
W2-Physical Demand: How physically demanding was the task? 

                             
  Very Low                                           Very high   

                         
W3-Temporal Demand: How hurried or rushed was the pace of the task? 

                             
  Very Low                                           Very high   

                         
W4-Performance: How successful were you in accomplishing what you were asked to do? 

                             
  Perfect                                           Failure   

                         
W5-Effort: How hard did you have to work to accomplish your level of performance? 

                             
  Very Low                                           Very high   

                         
W6-Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you? 

                             
  Very Low                                           Very high   

                         
During  this experimental condition: 

P1- I had a feeling of risk. 

                             
  

     Strongly disagree                                         

   

  Strongly agree 

                         
P2-I think I drove more safely than the average participant. 

                             
  

     Strongly disagree                                         

   

  Strongly agree 

                         
P3-I found the driving task easy. 

                             
  

     Strongly disagree                                         

   

  Strongly agree 

                         
P4-I felt confident in my own capability to act appropriately. 

                             
  

     Strongly disagree                                         

   

  Strongly agree 
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Appendix A.4: Post-Experiment Questionnaire  

Q1. Did you use any particular strategy while performing with no brake light and with no occlusion scenario 

(circle one)?         YES   NO 

If yes, please explain your strategy briefly in the space below:  

Q2. Did you use any particular strategy while performing with no brake light and with occlusion scenario (circle 

one)?          YES   NO 

If yes, please explain your strategy briefly in the space below:  

Q3. Did you use any particular strategy while performing with brake light scenario (circle one)?    

         YES   NO 

If yes, please explain your strategy briefly in the space below:  

 

Considering the following tasks during braking: (A) Keeping the vehicle centered in a lane  and  (B) Avoiding 

collision with the following car 

Please answer the following questions: 

Q4. When you performed with brake light scenario: 

I. (A) was more difficult than (B) 

II. (A) was less difficult than (B) 

III. (A) was as difficult as (B) 

Q5. When you performed with no brake light and with occlusion scenario: 

I. (A) was more difficult than (B) 

II. (A) was less difficult than (B) 

III. (A) was as difficult as (B) 

Q6. When you performed with no brake light and with no occlusion scenario: 

I. (A) was more difficult than (B) 

II. (A) was less difficult than (B) 

III. (A) was as difficult as (B) 

Q7. Do you workout (circle one)?       YES   NO 

If yes, please mention what sports you play:  
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Q8. Compared with others your age, how would you rate your overall VISION? (If you wear glasses or contacts, 

rate your corrected vision when you are wearing them)  

 

Excellent  Good   Average  Fair   Poor 

Q9. Please indicate how you consider your leg strength (circle one)? 

Lower than average    average   above Average 

Q10. On a scale of 1 to 10, with 1 being “very unsafe” and 10 being “very safe”, how safe a driver do you think you 

are?  

Very unsafe 1   2   3   4   5   6   7   8  9 10  Very safe 

Q11. In the past five years, how many times have you been stopped by a police officer and received a WARNING 

(but no citation or ticket) for a moving violation (i.e. speeding, running a red light, running a stop sign, failing to 

yield, reckless driving, etc.)?  

Q12. In the past five years, how many times have you been stopped by a police officer and received a CITATION 

OR TICKET for a moving violation?  

Q13. In the past five years, how many times have you been in a VEHICLE CRASH where you were the driver of 

one of the vehicles involved?  
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Appendix B: Experimental Materials of Chapter 3 

Appendix B.1: Consent Form  

Location of the experiment:     University of Toronto, Department of Mechanical and Industrial Engineering 

164 College Street, Roseborough Building, Room 313 

   

Investigators:       Professor John W. Senders (Thesis Advisor), Mehdi Saffarian (PhD Candidate)  

 

Duration of the experiment:         Less than 90 minutes 

 

Dear participant, 

 

The goal of this research is to investigate how drivers use visual information of a simulated driving scenario to 

control their brakes. The results of this experiment will be statistically analyzed and published in a scientific paper. 

All results will be treated anonymously and only used for research purposes. 

 

Simulator controls 

The experiment will be conducted in a fixed-base driving simulator with 180-degree field of view.  You are able to 

control the simulated car with the steering wheel, gas pedal, brake pedal and cruise control system. Gear-changing is 

always automatic.  

 

Test conditions 

In this experiment you will complete the following stages:  

 

7. Reading the contest form and completing intake questionnaire (10 minutes) 

 

8. Reaction Time Measurement  (5 minutes) 

Task: Follow the instructions and react (click the mouse) as fast as possible 

 

9. Training Session with the Simulator (10 minutes) 

Task: Familiar yourself with the simulator control and its driving conditions 

 

10. Distance Estimation Test (10 minutes) 

Task: Verbally estimate the distance from your seat to the back of the vehicle in front (in meters or feet, whichever 

you are more convenient with) 

 

11. Driving Tests A and B: two main driving sessions with the task of braking behind a vehicle right after hearing a 

beep OR after occlusion (30 minutes) 

Task: Avoid collision with the stopped vehicle in front; bring the car to stop at 2 meters behind the stopped vehicle 

(2 meters is indicated with a cone during the driving) 

 

12. Post Test Questionnaire (5 minutes) 

 

Note for Training and Driving Sessions 

 Drive swiftly but safely; avoid collisions with the car in front. 

 Always keep your car accurately centered in the right lane; do not change lanes or overtake. 

 In driving sessions, cruise control should be activated and set at 60 MPH. You don’t need to press the gas pedal.  

 Keep your right foot on top of the gas pedal before the start of the brake but do not press the gas pedal.  

 After braking, cruise control is no longer activated. At the start of the next trial, make sure to reactivate cruise 

control and check its set speed. The experimenter can help you with that.  

Simulator sickness 

Driving in a simulator may sometimes cause simulator sickness symptoms such as headache and nausea. These 

symptoms resemble car sickness or motion sickness on a boat. If you start to feel uncomfortable in any way, we 
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advise that you immediately withdraw from this experiment. You are able to stop your cooperation in the 

experiment whenever you wish, without any personal negative consequences. Please inform the experimenter of any 

uncomfortable feeling immediately.  

 

Compensation 

You will receive $13 CAD / hour (total: $20 CAD for 90 minutes) as a token of appreciation for your participation 

at the end of this study.  

 

Confidentiality 

All information obtained during the study will be held in strict confidence. You will be identified with a study 

number only, and this study number will only be identifiable by the primary investigator. No names or identifying 

information will be used in any publication or presentation. No information identifying you will be transferred 

outside the investigators of this study. 

 

Please be advised that we video-record the experimental trials with four small web-cameras. One camera will be 

pointed at you, one will capture the steering wheel, one the pedals, and the final camera the overall scene. We will 

use two other cameras on and near the dashboard to track and record where you are looking during the experiment.  

The videos will only be seen by the investigators and their research collaborators. Faces will be blurred in any video 

used in public presentations.   

 

Participation 

Your participation in this study is voluntary. You can choose to not participate or withdraw at any time. You will be 

compensated for your time at $13 CAD / hour rate. Feel free to ask any questions during the experiment. If you read 

all the above items and have no further questions at this moment please proceed to the following: 

 

Consent 

I have had the opportunity to discuss this study and my questions have been answered to my satisfaction. I consent 

to take part in the study with the understanding that I may withdraw at any time. I have received a signed copy of 

this consent form. I voluntarily consent to participate in this study. 

 

Date  : ……………………………… 

 

Participant Name : ………………………………  Participant Signature: ……………………………… 

 

Further Questions 

If you have any questions about this study after the experiment, please contact:  

 

Mehdi Saffarian: Phone: 647.825.3358, Email: mehdi.saffarian@mail.utoronto.ca 

 

You may also contact the Ethics Review Office at ethics.review@utoronto.ca or 416-946-3273, if you have 

questions about your rights as a participant. 
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Appendix B.2: Post-Experiment Questionnaire 

Q1. Do you workout? 

Q2. What sports you play? 

Q3. Please indicate how you consider your leg strength (circle one)? 

Lower than average    average   above Average 

Q4. Did you use any particular strategy while performing the braking task without occlusion or beep sound (circle 

one)?      YES   NO 

If yes, please explain your strategy briefly in the space below:  

Q5. Did you use any particular strategy while performing the braking task with occlusion (circle one)?  

       YES   NO 

If yes, please explain your strategy briefly in the space below: 

Q6. Did you use any particular strategy while performing the braking task with beep sound (circle one)?   

     YES   NO 

If yes, please explain your strategy briefly in the space below: 

Considering the following tasks: (A) Keeping the vehicle centered in a lane   AND (B) Stopping the vehicle at a 

marked position on the road 

Please answer the following questions: 

Q7. When you did the without occlusion or beep sound scenarios: 

I. (A) was more difficult than (B) 

II. (A) was less difficult than (B) 

III. (A) was as difficult as (B) 

Q8. When you did the with occlusion scenario: 

I. (A) was more difficult than (B) 

II. (A) was less difficult than (B) 

III. (A) was as difficult as (B) 
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Q9. When you did the with beep sound scenario: 

I. (A) was more difficult than (B) 

II. (A) was less difficult than (B) 

III. (A) was as difficult as (B) 

Note1. The Information Questionnaire of the experiments reported in Chapters 3 and 4 are 

identical. 

Note2. The NASA TLX workload assessments of the experiments reported in Chapters 1 to 4 are 

identical. 

  



Appendix B: Experimental Materials of Chapter 3 

175 

 

 

Appendix B.3: Screenshots of the Distance Estimation Test. Note that the green marker on 

some of the screenshots was not visible during the experiment. 

 

Distance Gap = 160 m 

 

Distance Gap = 120 m 
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Distance Gap = 80 m 

 

Distance Gap = 60 m 
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Distance Gap = 40 m 

 

Distance Gap = 30 m 
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Distance Gap = 20 m 

 

Distance Gap = 15 m 
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Distance Gap = 10 m 

 

Distance Gap = 5 m 
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Appendix C: Experimental Materials of Chapter 4 

Appendix C.1: Consent Form 

 

Location of the experiment:     TU Delft. Faculty Mechanical, Maritime and Materials Engineering (3mE) 

Biomechanical Engineering Department (BMechE) 

Driving Simulator Lab; room 4A-0-36 

 

Duration of the experiment:         60 minutes  

 

Dear participant, 

 

The goal of this research is to investigate how visibility (presence or absence of fog) and adaptive cruise control (a 

system that automatically keeps a constant following distance to the car in front) influence driving performance and 

behavior. The results of this experiment will be statistically analysed and published in a scientific paper. All results will 

be treated anonymously and only used for research purposes. 

 

Simulator controls 

The experiment will be conducted in a fixed-base driving simulator with 180-degree field of view.  You are able to 

control the car with the steering wheel, throttle, and brake pedal. In 50% of the sessions, the adaptive cruise control 

will be operative, which means that you only have to use the steering wheel. Gear-changing is always automated; do 

not use the clutch pedal or gear lever. 

 

Test conditions 

The experiment consists of one training session, and four test sessions. In the training session you will have an 

opportunity to experience how each of the test sessions feel. The training session is about 8 minutes and each of the 

test sessions are about 7 minutes. You will test all the following conditions in random order: 

 

1. Manual car following in clear visibility 

2. Automated car following in clear visibility 

3. Manual car following in fog condition 

4. Automated car following in fog condition 

 

Before each test, you will be informed which test condition will be the next one.  

 

Task instructions 

The goal for you is to 

 Follow the car in front. The speed of the car in front will vary. 

 Drive swiftly but safely; avoid collisions with the car in front 

 Always keep your car accurately centered in the right lane; do not change lanes or overtake. 

 During the automated driving do not use the brake pedal. 

 

Questionnaire 

Between the test sessions, you are asked to step out the simulator, have a break for 3–5 minutes while filling in a 

short questionnaire about your experienced mental and physical workload.  

 



Appendix C: Experimental Materials of Chapter 4 

181 

 

 

Risk Measurement  

When you hear a beeping sound during driving, please press the touchpad and indicate your perceived risk level at 

that moment on a scale between 0% (not risky at all) and 100 % (extremely risky). During all sessions, the touchpad 

installed on your steering wheel will be on and displaying a scale from 0–100.  

 

 

 

Simulator sickness 

Driving in a simulator may sometimes cause simulator sickness symptoms such as headache and nausea. These 

symptoms resemble car sickness or motion sickness on a boat. If you start to feel uncomfortable in any way, we 

advise you to immediately exclude yourself from this experiment. You are able to stop your cooperation in the 

experiment whenever you wish, without personal negative consequence. If you have any questions, do not hesitate to 

ask the experimenters for clarification.  

 

If you read all the above items please proceed to the next page. 

 

Date  : ……………………………… 
 

I confirm that I read and understood this text, and that I participate voluntarily. 

 

Name and signature of the participant 

 

Name  : ……………………………… 
Signature : ……………………………… 
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Appendix C.2: Photos made for different bumper-to-bumper following distances between 

the participant’s car and the lead car in the fog condition.   

 

Following Distance  = 6 m 

 

Following Distance  = 16 m 
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Following Distance  = 21 m 

 

Following Distance  = 26 m 
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Following Distance  = 31 m 

 

Following Distance  = 81 m 
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Following Distance  = 161 m 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C: Experimental Materials of Chapter 4 

186 

 

 

Appendix C.3: Photo of the car following scenario in the clear weather condition 
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Appendix D: Experimental Materials of Chapter 5 

Appendix D.1: Information Form (with RWND group) 

Seating position  

Please find a comfortable driving position, by moving the seat forwards or backwards.  

Raise the lever on the left-hand side under the chair to move the seat.  

You must be seated so that you are able to operate the steering wheel and pedals. 

The idea of the test is that you try to follow the first car you encounter as good as you can, i.e. you must 

try to maintain a constant time headway(=the following distance divided by speed). 

Controls  

The gearbox of the car is fully automated.  

The right pedal is the accelerator. If you press it you will drive faster.  

The middle pedal is the brake. If you press it you will slow down.  

Please use only your right foot to operate the pedals.  

The steering wheel is used to move the car to the left or right.  

 

Test 
First you will drive a sort of tutorial for 5 minutes, in which you can get to know the simulator, we will 

not store the data of these 5 minutes. 

 

After this, the actual test will start. The first run of the test you will drive a certain track for 10 minutes on 

which you must try to follow the preceding car as described above. The test starts when you leave the 

emergency lane, so do this as fast as possible. 

 

Next, your will get a short break after which you will perform a second run of 10 minutes. 

 

Survey 

After the driving session, please fill in the Rating scale Mental Effort questionnaire we will hand you. 

 

N.B.: There is a possibility that you get car sick in the driving simulator, this has happened before in 

other tests. If this happens to you, let us know and stop with the experiment. 

If something weird happens during the test, just keep driving. If you have any questions, ask them directly 

after reading this information sheet.  
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Appendix D.2: Information Form (with RWND Group) 

 
Seating position  

Please find a comfortable driving position, by moving the seat forwards or backwards.  

Raise the lever on the left-hand side under the chair to move the seat.  

You must be seated so that you are able to operate the steering wheel and pedals. 

The idea of the test is that you try to follow the first car you encounter as good as you can, i.e. you must 

try to maintain a constant time headway(=the following distance divided by speed). 

Controls  

The gearbox of the car is fully automated.  

The right pedal is the accelerator. If you press it you will drive faster.  

The middle pedal is the brake. If you press it you will slow down.  

Please use only your right foot to operate the pedals.  

The steering wheel is used to move the car to the left or right.  

 

Test 

First you will drive a sort of tutorial for 5 minutes, in which you can get to know the simulator, we will 

not store the data of these 5 minutes. 

 

After this, the actual test will start. The first run of the test you will drive a certain track for 10 minutes on 

which you must try to follow the preceding car as described above. The test starts when you leave the 

emergency lane, so do this as fast as possible. 

 

Next, your will get a short break after which you will perform a second run of 10 minutes. In this run we 

will provide you with an interface to help you to maintain a constant time headway.  

In this interface we will show vertical arrows, which indicate the ideal time headway. If the arrows are not 

visible, it means that you are following the car at the ideal time headway. If the top arrow is visible, then 

you need to decrease the following distance. If the bottom arrow is visible, it means that you need to 

increase the following distance. The purpose of the test is to drive in such a way that the arrows are not 

visible. 

 

As an extra, we will also show a horizontal bar with the degree of acceleration of the preceding car to the 

right and the degree of braking of the preceding car to the left, so how harder the preceding car brakes or 

accelerates, how larger the beam becomes. 

 

 

Figure1:The interface 

Survey 

After the driving session, please fill in the Rating scale Mental Effort questionnaire we will hand you. 
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N.B.: There is a possibility that you get car sick in the driving simulator, this has happened before in 

other tests. If this happens to you, let us know and stop with the experiment. If something weird happens 

during the test, just keep driving. If you have any questions, ask them directly after reading this briefing. 

During the test we will not answer questions.  
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Appendix D.3: Intake Questionnaire 

Name (Last, First)  

Phone Number  

E-mail  

Age  

Gender  Male   Female 

Do you have a license?  Yes   No 

Do you play video games at least 1 hour per week?  Yes   No 

Have you ever driven in a simulator before?   Yes   No 

Year of issue first Drivers’ License    

Driving Experience 

How often do you drive? 

 Less than one time per year 

Monthly 

Weekly 

Daily 

I have good steering skills (for instance in cycling or computer games) 

Completely disagree   1   2   3   4   5   6   7   8   9   10   Completely agree 

Test code (to be filled in by experimenter)  A  B 

Session code (to be filled in by experimenter)  A  B 
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Propositions belonging to the PhD thesis 

Understanding and improving driving performance by removing and adding visual information 

 

Mehdi Saffarian, 10 March 2017 

1. Among all driving conditions, the performance of drivers in the most safety-critical driving 

conditions is the least understood. 

2. The distance to objects in the environment is positively correlated with safety, but negatively 

correlated with performance. 

3. The moment one glances away from the road is a more important determinant of driving 

safety than the duration of that glance.   

4. Braking an automobile is not an entirely open loop task, even when the time-available-to-

respond is very short (this thesis). 

5. In developing automation technologies for driving, the priority should be to automate the 

most safety-critical driving task. 

6. In order to enhance safety, the best use of automated driving technology is not to let the 

driver supervise the automation, but to let the automation supervise the driver and intervene 

when the driver is about to crash. 

7. Drivers find assistive technologies that enhance their perception and control abilities more 

useful than technologies that replace those abilities.  

8. In driving simulator research, there is a trade-off between fidelity and reproducibility. 

9. Simulators are often used to investigate performance in perceptual tasks, but the perceptual 

validity of simulators is rarely investigated. 

10. Compared to tactical and strategic tasks, simulators are better suited for studying operational 

control tasks.  

11. An integration of information theory (to identify critical conditions in the environment), 

queueing theory (to prioritize critical conditions), and control theory (to mitigate critical 

conditions) is required for understanding and improving the safety of driving. 

Michon, J. A. (1985). A critical view of driver behavior models: what do we know, what should 
we do? In Human behavior and traffic safety (pp. 485–524). Springer.  

These propositions are regarded as lending themselves to opposition and as defendable, and have 

been approved as such by the promotor prof.dr. F.C.T. van der Helm 


