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• BAC columns presented good perfor-
mance for water purification and DBP
control.

• DOM fluorescence substances were re-
moved by aerobic bacteria instead of an-
oxic bacteria.

• P addition decreased chlori(am)nated
HAA9 and HAN4 FPs as well as EPS on
the short-term.

• Removals of SMP-likes, HA-likes and DBP
FPs decreased on a long-term phosphate
addition.

• BAC positive response to phosphate addi-
tion was attributed to aerobic bacteria
not anoxic bacteria.
A B S T R A C T
A R T I C L E I N F O
Editor: Dimitra A Lambropoulou
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In drinking water treatment plants (DWTPs), the widely used biological activated carbon filters (BACFs), as the last
barrier before disinfection, can remove dissolved organic matter (DOM) known as precursors of disinfection by-
products (DBPs). Whether phosphate addition can improve water purification and DBP control of BACFs is still contro-
versial. This study investigated short-term and long-term effects of phosphate addition on controlling DBP formation
potentials (FPs) by BACFs via column and batch experiments. The BAC columns presented goodwater purification per-
formance: they removed around 50%DOM, nearly all fulvic acid-likes and humic acid-likes as well as 5%–70% chlor
(am)innated THM4, HAA9 and HAN4 FPs (except chloraminated THM4 FPs)， which was mainly contributed by aer-
obic bacteria not anoxic bacteria. Phosphate addition within 7–14 days further improved removals of DOM, aromatic
organics, fluorescence fractions in DOM aswell as HAA9 andHAN4 FPs (especially TCAA FP and TCANFP) to different
extent. However, this improvement did not last longer, and removals of DOM, aromatic organics, two fluorescence
fractions (solublemicrobial byproduct-likes and humic acid-likes) andDBP FPs decreased despite long-term phosphate
addition. Oxic and anoxic batch experiments showed that the positive response of water purification to short-term
phosphate addition was also mainly attributed to aerobic bacteria and not to anoxic bacteria. For example, the former
decreased DOM and DBP FPs, while the latter increased protein- and tryptophan-like substances as well as
chloraminated THM4 FPs. Phosphate addition resulted in EPS increase in anoxic reactors and decrease in oxic reactors.
These results indicated that a high dissolved oxygen in BACFs may be helpful for water purification and DBP control.
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Overall, short-term phosphate addition into phosphorus-limited water is beneficial for BACFs to control DBPs while
long-term addition has no effect. Therefore, an intermittent phosphate addition into BACFs is suggested to control
DBPs in DWTPs.
1. Introduction

Dissolved organic matter (DOM) is ubiquitous in the environment, and
its complexity and diversity pose challenges to drinking water treatment
plants (DWTPs). DOM can react with chlorine-containing disinfectants dur-
ing drinking water disinfection to form >700 regulated and unregulated
disinfection by-products (DBPs) (Chu et al., 2021; Lou et al., 2014; Xiao
et al., 2023), which have been linked to significant health risks such as an
increased risk of birth defects, bladder cancer and miscarriages
(Andersson et al., 2019; Villanueva et al., 2015). Therefore, the United
States Environmental Protection Agency (USEPA) has set standards for
total trihalomethanes (THM4) and five haloacetic acids (HAA5) at 80 and
60 μg/L respectively in drinking water (National Primary Drinking Water
Regulations, 2006). EU regulated that in drinking water THM4 and HAA5

do not exceed 100 and 60 μg/L in the newest European Drinking Water Di-
rective (EU, 2020). In addition, haloacetonitriles (HANs) in drinking water
have also attracted much attention. The cytotoxicity and genotoxicity of
HANs, a class of nitrogenous DBPs (N-DBPs), are similar to or even higher
than those of THMs and HAAs, known as two classes of carbonaceous
DBPs (C-DBPs) (Tan et al., 2017).

Removing DBP precursors preceding disinfection is the simplest and
most effective method to reduce DBP formation (Bond et al., 2012; Sadiq
and Rodriguez, 2004). Biological activated carbon filters (BACFs) have
been widely used in a number of DWTPs since it is cost-effective for
water purification (Onstad et al., 2008). As the last barrier before the disin-
fection in DWTPs, whether BACFs can effectively remove DOM, the precur-
sors of DBPs, is of concern. An appropriate C: N: P ratio for bacterial
proliferation and growth is 100: 10: 1 (Lauderdale et al., 2012). Typically,
BACFs remove DOM primarily through localized microbial-mediated bio-
degradation. Phosphorus is an essential nutrient for microbial growth,
meaning that phosphorus limitation could inhibit microbial activity
(Selbes et al., 2016). In DWTPs, the coagulation process as a conventional
water treatment technology can effectively remove phosphorus from source
water (Juhna and Rubulis, 2004; Lauderdale et al., 2012), which results in
very low phosphorus concentrations (Lehtola et al., 2002), so usually the in-
fluent of BACFs contain limited phosphorus with concentration
<0.01 mg/L (Banihashemi et al., 2017). Some studies (Nishijima et al.,
1997; Noh et al., 2020; Ross et al., 2019; Selbes et al., 2016) have found
that adding phosphate did not improve DOC removal efficiency, while
other studies showed that the removal efficiency of DOC by BACFs with
phosphate addition increased by 14 % (Banihashemi et al., 2017) and
8.3 % (Lauderdale et al., 2012; Stoddart and Gagnon, 2017), respectively.
Moreover, the effect of phosphate addition on DBP formation potentials
(FPs) removal has been rarely studied(van der Aa et al., 2000).

Microorganisms adsorbed on the surface of BAC use dissolved oxygen
(DO) to biodegrade organic matter (Korotta-Gamage and Sathasivan,
2017), and DO was consumed gradually along the depth of the filter bed
in BACFs (Feng et al., 2013). Due to the change of DO, aerobic, anoxic
and anaerobic microorganisms were distributed in the BACFs (Brown
et al., 2001; Rui et al., 2020). Aerobic microorganisms usually fully absorb
and reserve phosphate to promote the consumption of organic matter, and
their demand for nutrients is C (represented by BOD): N: P = 100: 5: 1,
while the phosphate uptake rate under anoxic conditions was lower than
that under aerobic conditions (Artan et al., 1998; Gomez et al., 1999;
Zhang et al., 2017). Therefore, the effect of phosphate addition on DBP pre-
cursors removal ability of aerobic and anoxic microorganisms might be dif-
ferent. There are few studies focusing on the effect of phosphate addition on
aerobic and anoxicmicroorganisms in BACFs. To further clarify the internal
mechanism of phosphate addition on DBP FPs removal by BACFs, it is
2

necessary to explore the physiological characteristics of aerobic and anoxic
microorganisms and the response of water purification to phosphate addi-
tion.

The concentration and composition of DOM are important factors af-
fecting the formation of DBPs (Krasner, 2009; Mian et al., 2018; Xu et al.,
2022c). Many studies showed that THM and HAA FPs are closely related
to humic-, fulvic-, and protein-likes in natural water environment
(Jutaporn et al., 2020; Nguyen et al., 2013; Xu et al., 2021; Yang et al.,
2015b). The intensities of Parallel Factor Algorithm (PARAFAC) compo-
nents and the relative distributions of three-dimensional fluorescence
excitation-emission matrices (EEMs) have been widely used to represented
levels and chemical composition of fluorescent DOM (Coble, 1996). The ef-
fect of phosphate addition on the removal of DOM by BACFs was studied,
and usually SUVA (Kitis et al., 2002) and DOC (White et al., 2003) were
measured as quantitative index of DOM, and the components of DOM
were rarely qualitatively analyzed. Fluorescence spectroscopy is a valuable
tool for identifying and quantifying different types of DOM components.
Further research is needed to better understand the relationship between
different DOM components and DBP formation.

The objectives of this study were to investigate the short-term and long-
term influences of phosphate addition on water purification and DBP FP re-
moval by BACFs, and to further understand the mechanism behind it by
separating aerobic and anoxic bacteria in BACFs.

2. Materials and methods

2.1. Materials

The standard products of DBPs including THMs (trichloromethane
(TCM), bromodichloromethane (BDCM), chlorodibromomethane (DBCM)
and tribromomethane (TBM)); HAAs (bromoacetic acid, chloroacetic acid
(MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA),
bromochloroacetic acid (BCAA), bromodichloroacetic acid,
dibromochloroacetic acid, dibromoacetic acid and tribromo acetic acid);
HANs (trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN),
bromochloroacetonitrile (BCAN) and dibromoacetonitrile (DBAN)) and
chromatographic Methyl tert-butyl ether (MtBE, high performance liquid
chromatography grade) were all purchased from Shanghai Balingwei Tech-
nology Co., LTD. Other chemical reagents including sodium hypochlorite,
ammonium chloride, phosphate buffer salt, anhydrous sodium sulfate, hy-
drochloric acid, sodium hydroxide, nitric acid and sulfuric acid were pur-
chased from Shanghai Sinopharm Chemical Reagent Co., LTD. Ultra-pure
water was prepared by Millipore MillI-Q Water purification system (18 M
ω ·cm, Billerica, MA, USA). All the gases used in the experimental instru-
mentswere provided by Shanghai Chunyu Special Gas Company. The filtra-
tion membranes with 0.45 μm aperture were purchased from Shanghai
Titan Technology Co., LTD. Hash residual chlorine powder pillow bag,
total chlorine powder pillow bag and phosphate powder pillow bag were
purchased from Shanghai Bangwoo Instrument Equipment Co, LTD.
Pierce® BCA Protein Assay Kit was purchased from Shanghai Yul Biotech-
nology Co, LTD. All DBP standard products were of guarantee grade and
other chemicals were of analytical grade.

The BAC used in this study was derived from coal and collected from a
BACF which had been running for one year in a DWTP located in Jiangsu
Province. The water used in this study was taken from Lake Panchi at the
campus of Shanghai University every 3–5 days. To confirm the stability of
the water quality, the physicochemical indexes were measured immedi-
ately every time after collection. The water quality result is shown in
Table S1 in the supplemental information. The water quality met the



F. Wang et al. Science of the Total Environment 882 (2023) 163534
standard of drinking water source set in China (Su et al., 2017). In this
study, Panchi Lake water was chosen as raw water, which was then coagu-
lated and precipitated before entering the BACFs in the laboratory to simu-
late the drinking water treatment process. Based on the result of
preliminary experiment with different dosages of polyaluminium chloride
(PAC), 0.015 g PAC / L was used in the coagulation process (Fig. S1). Con-
sidering that ozonation before BACFs can oxidize the organic matter into
biodegradable DOC in DWTP, 0.1 mg/L C-CH3COONa was dosed to in-
crease the content of biodegradable DOC in the influent of the BACFs with-
out ozone pretreatment in this study.

2.2. Experimental design

2.2.1. Column experiments
To investigate the effect of phosphate addition on the removal of DOM

and DBP FPs in BACFs, two BAC columns with and without phosphate ad-
dition (namely phosphate column and control column) were built. The col-
umns were made of PVC, with a diameter of 20 mm and a height of 25 cm.
The filling height was 20 cm, with BAC filler mentioned above. As is shown
in Fig. 1, two columns are in series and they all operated in upflow mode.
The filtration rate was set at 1 m/h in this study according to the actual en-
gineering and previous studies. Usually, oxic and anoxic conditions simulta-
neously exist in BACFs in practice, and also in the BAC columns of this
study: the influent and effluent DO was 6.64–8.09 mg/L and
0.01–0.33 mg/L respectively (Fig. S3). The pretreated raw water flowed
into BAC columns through the peristaltic multi-channel pump (BT100-
1 L, Shanghai Lange constant flow pump Co., Ltd.). Columns were wrapped
with black plastic to ensure darkness and prevent algae growth at ambient
temperature. After coagulation and sedimentation, the phosphate concen-
tration is <0.01 mg P /L. It was found that 0.6 mg P/L addition into BAC
column resulted in the lowest DBP production in drinking water distribu-
tion system (Xing et al., 2018). The maximum phosphate dosage in previ-
ous studies was 0.6 mg/L (Zhang and Andrews, 2012). Therefore, the
dosage of phosphate was set as 0, 0.3 and 0.6 mg P/L in this study.

The experiment lasted for more than three months, in which the ripen-
ing phase was >1 month (day 0–40). The water was refreshed every 3 days
until BAC columns reached a stable state of DOC removal. Following the
ripening period was the phosphate dosing stage, which was divided into
two stages. In the first phase (day 41–78), 0.3 mg P-Na2HPO4/L (0.3 mg
P/L) was added to the phosphate column. In the second phase (day
78–99), after the effect of dosing of 0.3 mg P/L on DOC removal was
Fig. 1. Schematic overview of BAC columns.
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weakened, 0.6 mg P-Na2HPO4/L (0.6 mg P/L) was added to the phosphate
column. During the experiment, the influent and effluent water samples of
both BAC columns were collected every 7 days to determine DOM and DBP
FPs. Each phase was sampled at least three times.

2.2.2. Batch experiments
As stated earlier, oxic and anoxic conditions simultaneously exist in

BACFs usually. To investigate the mechanism of phosphate addition in
the BACFs, the removal of DOM and DBP FPs after phosphate addition
were studied using oxic and anoxic batch reactor experiments. The oxic
and anoxic batch experimental processes are presented in Fig. 2. Twelve
brown glass bottles with a volume of 500 mL were filled with 50 g (wet
weight) BAC and 450 mL of pretreated water as described earlier. All
batch reactors were placed in the dark at a temperature of 25 ± 1 °C. The
six oxic batch reactors were open and cultured with stirring at 150 r/min
to ensure enough DO in the water. The other six anoxic batch reactors
were sealed using rubber stoppers and thewaterwas strippedwith nitrogen
gas for 10–15 min when the water was refreshed. All batch reactors were
refreshed every 5 days. Steady conditions for DOC removal in the batch re-
actors were reached in the ripening phase (Lekkerkerker-Teunissen et al.,
2012). As is shown in Fig. S2, the removal rates of DOC were steady in
the oxic and anoxic reactors on day 51 and 126, respectively. Afterwards,
0, 0.3, 0.6 mg P/Lwas added respectively to different batch reactors in trip-
licate as shown in Fig. 2. Thewater sampleswere collected at the beginning
and after 24 h for analyzing DOM-related indicators and DBP FPs. Addition-
ally, BAC samples were also collected in 24 h for analyzing extracellular
polymeric substances (EPS) on BAC (Text S1).

2.3. Chlor(am)inated DBP FPs

DBP FPs tests are widely used to evaluate the formation of DBP in drink-
ing water. DBP FPs tests were performed in 40 mL amber glass volumetric
bottles under headspace-free conditions in a dark incubator at a tempera-
ture of 25.0±0.5 °C (He et al., 2020; Krasner et al., 2012). NaClO stock so-
lution with a concentration of 83 g Cl2/L was prepared as the chlorine
disinfectant, and chloramine solution was configured according to Cl2:
N = 1:1.2 (Mitch and Sedlak, 2001; Mitch and Sedlak, 2002). In DBP FPs
tests, the requirements of chlorine and chloramine were calculated accord-
ing to eqs. (1) and (2) (Chu et al., 2011a), and the disinfection time of chlo-
rine and chloramine was 24 h and 72 h, respectively. At the end of the
predetermined reaction time, THMs and HANs were immediately extracted
by adding 2 mL MtBE to a 10 mL sample, and HAAs was extracted by
adding 4 mL MtBE to a 20 mL sample. HAAs samples were treated with a
water bath for 2 h by extracting the upper organic phase, then shaking
the samples for 5 min using a multi-tube vortex mixer (DMT-2500, Shang-
hai, China) at 2300 rpm. Lastly, samples were kept in the refrigerator for
<24 h before measurement.

Chlorine Cl2ð Þ dosage ¼ 3� DOC mg=Lþ 7:6� NH4
þ � N mg=L

þ 10mg=L (1)

NH2Cl dosage ¼ 3� DOC mg=L (2)

2.4. DBPs measurement

THM4, HAA9 andHAN4were decided to be the target DBPs in this study
because they were frequently detected in drinking water (Zhang et al.,
2020). Detailed information on DBP analytical methods are described in
Table 1. They were measured by gas chromatography equipped with an
electron capture detector (GC/ECD) (Clarus 680, PerkinElmer, USA)
based on the United States Environmental Protection Agency method
551.1 and 552.3.



Fig. 2. Batch experiment design.
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2.5. EEM, PARAFAC and other fluorescence parameters

The sources, optical properties, structures and chemical behaviors of the
Table 1
Analytical methods and conditions for DBP measurement.

GC/ECD Columns Carrier gas Injection
volume

Vaporizing
chamber

Detector Temperature programs

Clarus 680,
PerkinElmer,
USA

Elite-5,
30 m × 0.25 mm ID,
0.25 μm film thickness

Nitrogen, constant
flow at 3 mL per
minute.

1 μL 200 °C 300 °C

THM4
Initial temperature at 37 °C for 3 min, then 10 °C per minute to 80 °C and
hold for 2 min and finally 20 °C per minute to 220 °C and hold for 1 min.

HAA9

Initial temperature at 40 °C for 7 min, then 2.5 °C per minute to 65 °C and
5 °C per minute to 85 °C and hold for 1 min finally 20 °C per minute to
210 °C and hold for 5 min.

HAN4
Initial temperature at 30 °C for 10 min, then 17 °C per minute to 72 °C and
hold for 1 min and finally 40 °C per minute to 200 °C and hold for 2 min.
DOM in influent and effluent samples of the BAC columnswere analyzed by
Fluorescence spectrophotometer (HITACHI F-7000, Japan) with xenon
lamp as excitation source (Watson et al., 2018). Fluorescence spectrometer
was set to excitation mode and emission mode slit width was 5 nm, excita-
tion wavelength and emission wavelength were 200–450 nm and
210–550 nm respectively. The scanning speed was 1200 nm / min (Zhou
et al., 2013). EEMs divided aquatic DOM into five distinct Regions, with ar-
omatic protein-like substances (AP-likes) (Regions I and II: Ex<250 nm,
Em < 350 nm), fulvic acid-like substances (FA-likes) (Region III:
Ex<250 nm, Em >350 nm), soluble microbial byproduct-like substances
(SMP-likes) (Region IV: Ex = 250–280 nm, Em < 380 nm) and humic
acid-like substances (HA-likes) (Region V: Ex>280 nm, Em > 380 nm)
(Yang et al., 2008). Milli-Q water was used as blank to neutralize the influ-
ence of Rayleigh and Raman scattering when the fluorescence region inte-
gration (FRI) method was utilized for the quantitative analysis of EEM
spectra (Chen et al., 2003):

φi ¼
Z
ex

Z
em
I λexλemð Þdλexdλem

where φi is the EEM volume at region i, representing the cumulative
4

fluorescence response of DOM with similar properties at each region;
I λexλemð Þis the fluorescence intensity at each excitationemission
wavelength pair.
PARAFAC uses an iterative three-dimensional array decomposition al-
gorithm based on the alternating least squares principle. Data analysis
adopted parallel factor analysis byMatlab software andDOMFluor toolbox.
According to previous studies (Jutaporn et al., 2021; Yang et al., 2015a;
Yang et al., 2015b), split-half analysis and residual analysis were used to
test the validity of the PARAFACmodel and to determine the optimal num-
ber of DOM components. Some of the components extracted by PARAFAC
can be attributed to specific organic substances present in water samples,
but they are more likely to represent groups of organic compounds with
similar fluorescent properties. The fluorescence intensity was reported as
the maximum fluorescence (Fmax), which is the unique value of each com-
ponent in every sample that correlateswith the relative amount of that fluo-
rescing component.

2.6. DOC, UV254 and SUVA measurements

Ultraviolet absorbance (UV254), DOC and specific ultraviolet absor-
bance (SUVA) represent DOM characteristics. DOC was determined by a
total organic carbon analyzer. UV absorbance at 254 nm (UV254) was de-
tected by a UV–visible spectrophotometer (HACH DR6000). SUVA was
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determined by dividing the absorbance of each sample UV254 by DOC con-
centration and multiplying by 100. Error bars in all figures represent the
standard deviation from the average of three replications (n = 3).
Fig. 3. DOC, UVA254 and SUVA levels in influent and effluent of BAC columns (a, c, e) a
represents ripening phase, 0.3 mg P/L addition phase and 0.6 mg P/L addition phase res
collected at the starting and the end of the experiment. (n = 3).

5

3. Results and discussion

3.1. DOC, UV254 and SUVA removal in BAC columns and batch reactors

Fig. 3 shows the results of DOC, UV254 and SUVA removal based on the
column and the batch experiments with and without phosphate addition.
DOC concentrations in the effluent of both BAC columns were similar and
nd batch reactors (b, d, f) with 0, 0.3 and 0.6 mg P/L. Day 0–40, 41–78 and 78–99
pectively in Fig. 3a. INF and EFF of batch reactors in Fig. 3b, d, and f mean the water
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tended to be stable after 25 days during ripening without phosphate addi-
tion (Fig. 3a). The addition of 0.3 mg P/L decreased effluent DOC concen-
trations slightly in the initial 12 days of phosphate addition. The
phosphate column consumed more DOC, indicating that it was in
phosphorus-limited state (Sang et al., 2003). However, the continuous ad-
dition did not cause an evident difference in DOC concentration between
the two columns' effluent after 12 days, indicating that long-term phos-
phate addition in a BACF may not be helpful to DOC removal (Nishijima
et al., 1997). For 0.6 mg P/L addition, a result similar to 0.3 mg P/L addi-
tion was observed: initially the DOC removal was slightly enhanced but
then the impact disappeared (Fig. 3a). The response of DOC removal to
phosphate addition in the batch experiments containing oxic and anoxic re-
actors are shown in Fig. 3b. The removal rate of DOC in oxic reactors was
significantly higher than that in anoxic reactors, which is in line with a pre-
vious study reporting that high DO was beneficial to increase microbial bi-
ological activity and DOC consumption in BACFs (Lu et al., 2020). The
addition of 0.3 and 0.6 mg P/L increased DOC removal in oxic reactors,
but it did not play a significant role in anoxic reactors.

The results of aromatic DOM removal from the column and batch exper-
iments with and without phosphate addition are shown in Fig. 3c-3f. For
the column experiment, the addition of 0.3 and 0.6 mg P/L both slightly
lowered UV254 and SUVA levels in the effluent at the beginning, but the ef-
fect did not last long. On day 61 and 99, UV254 and SUVA levels even in-
creased by 2.95 ± 0.35 % and 16.34 ± 2.44 % compared with the
control column, respectively. The results from the batch experiments
showed that phosphate addition slightly decreased the effluent UV254 and
SUVA levels under both oxic and anoxic conditions (Fig. 3d and f), indicat-
ing that the addition of phosphate was beneficial to aerobic and anoxic bac-
teria to decompose the aromatic compounds.

Based on both the results of columns and batch reactors above, it can be
concluded that Aerobic degradation is much faster than anaerobic and
phosphate addition stimulated aerobic bacteria rather than anoxic bacteria
to remove more DOC in BACFs. Phosphate addition slightly increased the
removal efficiency of aromatic organics on the short-term, which is contrib-
uted by both aerobic and anoxic bacteria, but decreased it on the long-term.

3.2. EEM and PARAFAC

Fluorescence EEM spectra together with FRI was performed to investi-
gate the characteristics of DOM. The EEM spectra of influent and effluent
of BAC columns and batch experiments with and without phosphate addi-
tion are given in Fig. 4. Fig. 4a-4r clearly show that the influent contained
FA-likes, HA-likes, APs-likes, and SMP-likes, while all effluents were domi-
nated by APs-like and SMP-likes, indicating BAC columns had good re-
moval of FA-likes and HA-likes. Compared with the control group, three
weeks of 0.3 mg P/L addition resulted in a higher removal of AP-likes
(type II) in the first two weeks (day 47 and 54). It may be explained by
the enhanced oxidation of aromatic rings in AP-likes, which is probably
due to enhanced biodegradation by phosphate addition resulting in con-
sumption of more electron donor (Wang et al., 2009). The results of FRI
in Table S2 show that the removal rates of AP-likes (type II), FA-likes,
SMP-likes and HA-likes increased by 12.6 %, 29.7 %, 7.6 % and 13.2 % re-
spectively after short-time (day 40 to 47) 0.3 mg P/L addition. With time,
phosphate addition could no longer increase AP-likes removal (Fig. 4i, l, o
and r). Instead, it decreased removal of SMP-likes and HA-likes, indicating
that long-term phosphate addition made the microorganisms got used to
the phosphate level and therefore the removal percentage of fluorescence
substances in DOM could not be enhanced.

Fig. 4A-4H show the EEM fractions of DOM in the influent and the efflu-
ent of oxic and anoxic batch reactors. Similar to the BAC columns, the efflu-
ent of batch reactors also mainly contained APs-likes and SMP-likes. It can
be clearly observed that each fluorescence fraction was partly removed by
oxic reactors, while theywere hardly removed by anoxic reactors. It is note-
worthy that AP-likes (type II) were formed in the anoxic reactors, as shown
by the presence in the effluents. The corresponding FRI results of EEM are
shown in Table S3. As is observed in Fig. 4E-4H, phosphate addition has
6

little effect on fluorescence fractions removal in the anoxic reactors.
Compared with the control group, the removal percentages of fluorescence
fractions in the oxic reactors with 0.3 and 0.6 mg P/L addition increased by
1.8 % and 4.1 %, 0.4 % and 4.3 %, 0 and 1.3 %, 0.8 % and 2.3 %,
and − 0.4 % and 2.5 %, respectively. Generally, phosphate addition pro-
moted fluorescence fractions removal in oxic reactors.

In order to further explore the change of DOM characteristic after
BACFs, the EEM data above were ulteriorly analyzed by PARAFAC model.
Themaximumexcitation / emissionwavelength at a singlemaximum emis-
sion wavelength indicated three fluorescent components, C1, C2 and C3,
present in BAC water samples (Fig. S4). The three components were identi-
fied to be fulvic-like and humic-like (C1), tryptophan-like (C2) and
tyrosine-like (C3) respectively based on previous studies (Hambly et al.,
2015; Xu et al., 2022a; Yamashita et al., 2010) (Table S2). Fig. 5 presents
the Fmax of the three components in the influent and the effluent of BAC
columns and batch reactors. Fig. 5a shows that at the beginning the Fmax
removal of C1 were 77.3–82.7 % in phosphate column and 75.4–81.3 %
in the control column, showing that phosphate addition slightly increased
the C1 removal while decreased C2 and C3 removal on the short-term.
On the long-term, phosphate addition did not impact the three main com-
ponents removal by the BAC columns. The results of Fmax in oxic and an-
oxic batch reactors are showed in Fig. 5b. 62.9 ± 4.3 % C1 was
consumed in the oxic and anoxic reactors. 45.9 ± 2.0 % C2was consumed
in oxic reactors while 28.1±3.7%C2was produced in the anoxic reactors,
which means that aerobic bacteria instead of anoxic bacteria mainly con-
tributed to the consumption of C2 in the BAC columns. C3 was consumed
in both oxic and anoxic batch reactors, and notably its removal was much
higher under anoxic conditions than under oxic conditions. In general,
adding phosphate into the oxic and anoxic reactors did not significantly im-
prove the removal of the three components. C2, C3 are tryptophan-like and
tyrosine-like proteins, which are mainly related to microbial activity
(Hambly et al., 2015; Yamashita et al., 2010). The results above illustrate
that more DOM components were consumed by aerobic bacteria than an-
oxic bacteria, which is in line with previous studies that metabolism ability
of aerobic bacteria to DOM is higher than that of anoxic bacteria (Xu et al.,
2022a; Xu et al., 2022b).

3.3. Effect of phosphate addition on EPS characteristics of BACFs

Fig. 6 presents the effect of phosphate addition on EPS attaching on BAC
particles under oxic and anoxic conditions. It shows that phosphate addi-
tion to the oxic reactors resulted in an obvious decrease in the content of
EPS, mainly manifested as an evident decrease in protein (PN) content
and little change in polysaccharide (PS) content. On the contrary, phos-
phate addition to the anoxic reactors resulted in an increase in the contents
of EPS, PN and PS.When 0.3 and 0.6mgP/Lwas added, PN/PS ratios in the
oxic and anoxic reactors decreased significantly. It is well known that PN
content has a stronger correlation than PS content with the surface proper-
ties of microbial aggregates (such as hydrophobicity and surface charge)
(Liao et al., 2001). A lower PN/PS ratio in the EPS corresponded to a
more negatively charged surface and lower hydrophobicity, thereby
inhibiting the formation of stable microbial flocs. In this study, phosphate
addition decreased the PN/PS ratio in the EPS attaching on BAC particles
under oxic and anoxic conditions, indicating that phosphate additionweak-
ened microbial cell aggregation ability and therefore EPS stability, which
could result in the release of EPS into the BAC effluent. Additionally, phos-
phate addition resulted in EPS increase in the anoxic reactors and decrease
in the oxic reactors. Therefore, it can be speculated that the addition of
phosphate could increase the effluent EPS concentration of anoxic reactors.
It might explain why the content of the C2 component increased in the an-
oxic batch reactors due to the addition of phosphate (Fig. 5b).



Fig. 4. Influent and effluent EEM spectra of the BAC columns and batch reactors with 0, 0.3, 0.6mg P/L addition. Regions I-V represent aromatic protein-like substances (AP-
likes) type I, aromatic protein-like substances (AP-likes) type II, fulvic acid-like substances (FA-likes), soluble microbial product-like substances (SMP-likes), and humic acid-
like substances (HA-likes), respectively. 41D\\61D (a-i) and 61D\\99D (j-r) represent 0.3 mg P/L addition phase and 0.6 mg P/L addition phase.
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Fig. 4 (continued).

Fig. 5. The Fmax of three fluorescent components in the influent and effluent of columns (a) and batch reactors (b) with 0, 0.3 and 0.6 mg P/L dosed into BAC column and
batch reactors. (n = 3).
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3.4. Effect of phosphate on the removal of DBP FPs by BACFs

3.4.1. Removal of chlor(am)inated THM FPs by BACFs
The results of chlor(am)inated THM4 FPs in the influent and effluent of

columns and batch reactors with and without phosphate addition are pre-
sented in Fig. 7. The THM4 FPs of BAC columns remained relatively con-
stant during the whole experiment. The concentration of TCM FP, BDCM
FP, DBCM FP and TBM FP were 194-274 μg/L, 76-101 μg/L, 20-31 μg/L
and 4-12 μg/L in the BAC column effluent (Fig. 7a). The result was as the
same as a previous study in which the chloroform was the dominant
THMs (Liu et al., 2011). The removal percentage of TCM FP by BAC col-
umns was the highest among the four THMs, and TCM FP removal percent-
ages in BAC columns with and without phosphate addition were similar.
However, the removal of THM4 FPs was lower in the phosphate column
than in the control column, which is due to a reduced removal of BDCM
8

FP corresponding to phosphate addition. This phenomenon is consistent
with previous studies (Selbes et al., 2016; Selbes et al., 2017). Fig. 7b
shows the results of chlorinated THM4 FPs in BAC batch reactors. Under
both oxic and anoxic conditions, different concentrations of phosphate ad-
dition cannot significantly improve the removal of THM4 FPs in BAC batch
reactors. Different from the aerobic bacteria, the anoxic bacteria removed
only TCM FP but produced DBCM, BDCM and TBM FPs to some degree.

The chloraminated THM4 FPs of the influent and the effluent of the BAC
columnswith andwithout phosphate addition are given in Fig. 7c. Different
from the chlorination, the chloraminated THM4 FP increased greatly after
BACFs. Among the THM4 FPs, BACFs decreased TCM while it increased
DBCM, BDCM and TBM FPs. The increased concentrations of BDCM and
DBCM FPs in BACFs may be related to the cellular components of anoxic
microorganisms in BAC and macromolecular organic compounds such as
proteins, polysaccharides and HA secreted during metabolism. They may
be important precursors for the formation of CHCl2Br, CHClBr2 and



Fig. 6. The effect of phosphate on the characteristics of EPS attaching on BAC particles in oxic and anoxic batch reactors. EPS is the sum of PN and PS. (n = 3).
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CHBr3 during chlor(am)ination (Cowman and Singer, 1996). Additionally,
phosphate addition increased THM4 FPs of effluent, which was contributed
by the increase of DBCM and BDCM FPs. Fig. 7b further shows the
chloraminated THM4 FPs of the influent and the effluent of the aerobic
and anoxic BAC batch reactors. In the oxic reactors, phosphate addition in-
creased the removal of chloraminated THM4 FPs, which were 2.9 %, 9.3 %
and 21.7 % for the control, 0.3 mg P/L and 0.6 mg P/L addition batch reac-
tors, respectively. Nevertheless, in the anoxic reactors, phosphate addition
caused amuch higher chloraminated THM4 FPs of the effluent. An explana-
tion may be the increase of chloraminated THM4 FPs after BACFs, due to
the metabolism of anoxic bacteria instead of aerobic bacteria. In conclu-
sion, phosphate enhancement of biofiltration cannot improve the removal
THM4 FPs.

3.4.2. Removal of chlor(am)inated HAA FPs by BACFs
The results of chlor(am)inated HAA9 FPs in the influent and effluent of

columns and batch reactors with and without phosphate addition are pre-
sented in Fig. 8. Generally, the chlor(am)ination HAA9 FPs were removed
by the BAC columns (Fig. 8a and c). Fig. 8a and b show that in chlorinated
HAA9, TCAAwas predominant. The removal of DCAA, TCAA and BCAA FPs
was relatively higher than the removal of other HAA FPs. It can be observed
in Fig. 8a that phosphate addition slightly increased the removal of HAA9

FPs on the short-term (day 47–61), while it reduced the removal of HAA9

FPs on the long-term (day 85–99). Fig. 8b indicates that DCAA and TCAA
FPs tend to be removed by aerobic bacteria while BCAA FP is more easily
removed by anoxic bacteria.

In chloraminated HAA9, DCAA FP was predominant (Fig. 8c and d).
TCAA FP was much higher during chlorination than chloramination, and
as a result the total chlorinated HAA9 FPs was much more than the total
chloraminated HAA9 FPs. This difference might be a result of the oxidizing
power of chlorine which is much higher than that of monochloramine, and
TCAA FP are oxidation products while DCAA and MCAA FPs are substitu-
tion and hydrolysis products. This result is consistent with a previous
study (Hong et al., 2013). Generally, no obvious difference of the removal
of total HAA9 FPs was detected between the control column and phosphate
columns. However, phosphate addition increased the removal of DCAA FP.
In addition, Fig. 8d shows that under both oxic and anoxic conditions, dif-
ferent concentrations of phosphate addition cannot apparently improve the
removal of HAA9 FPs after chloramination in BAC batch reactors. In
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conclusion, phosphate addition in BACFs cannot impact the removal of
chlor(am)inated HAA9 FPs in the long run.

3.4.3. Removal of chlor(am)inated HAN FPs by BACFs
Fig. 9 shows the results of chlor(am)inated HAN4 FPs in the BAC col-

umns and batch reactors. The removal of chlorinated HAN4 FPs in the
BAC columns was slightly improved by phosphate addition at the begin-
ning, day 47 and 54, whereas phosphate addition could not improve the re-
moval of chlorinated HAN4 FPs on the long-term (day 61–99) (Fig. 9a). In
oxic batch reactors, phosphate addition improved the removal of chlori-
natedHAN4 FPs from2.9% to around 8.5%. In anoxic batch reactors, phos-
phate addition did not impact chlorinated HAN4 FPs removal (Fig. 9b). It
can be seen from Fig. 9c that among all kinds of HAN4, the removal of
chloraminated DCAN FP by BAC columns was the highest. Phosphate addi-
tion neither effectively impacted the removal of chloraminated HAN4 FPs
on both short-term (Fig. 9c and d) and long-term (Fig. 9c), nor under oxic
and anoxic conditions (Fig. 9d). The oxic batch reactors mainly removed
DCAN FP, while the anoxic batch reactors produced it. The chloraminated
TCAN and DBAN FPs were mainly removed by the anoxic batch reactors,
while BCAN and DBAN FPs were produced in the oxic batch reactors
(Fig. 9d). Different from the removal of THM4 FPs (Fig. 7) and HAA9 FPs
(Fig. 8), the removal of formation potential of N-DBPs, HAN4, by BACFs
was relatively low (Fig. 9). The possible reason is that the precursors of
HANs are not only organicmatter, but also have a great correlationwithmi-
crobial metabolites. For example, Chu et al. (Chu et al., 2011b) reported the
nitrogen-rich AP-likes and SMP-likes as important precursors of N-DBPs. In
this study, Fig. 3e and Fig. 4 show that aromatic component and AP-likes
could increase after phosphate addition on the long-term, which is consis-
tent with the results of DBPs removal by BACFs.

3.4.4. Effect of phosphate addition in different waters
The results in Fig. 7-9 demonstrate that BACFs effectively decreased all

chlor(am)inated THM4, HAA9 and HAN4 FPs (except chloraminated THM4

FPs), attributed to aerobic bacteria not anoxic bacteria. Phosphate addition
did not increase the removal of chlor(am)inatedHAA9 andHAN4 FPs on the
long-term. Instead, it decreased the removal of chlor(am)inated THM4 FPs,
attributed by anoxic bacteria.

Table 2 shows the removal of organic matter and DBP FPs by BAC with
phosphate addition reported in previous studies. It can be found that the



Fig. 7. The chlor(am)inated THM4 FPs in the influent and effluent of columns (a, c) and batch reactors (b, d) with 0, 0.3 and 0.6 mg P/L addition. (n = 3).
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effect of adding phosphate on the removal of organic matter and DBP FPs
by BAC in previous studies is variable. It might be related to whether the
phosphorus in the water source is limited. The appropriate mass ratio of
C:N:P for bacterial growth is 100:10:1 (Selbes et al., 2016). Usually, it is
considered to be phosphorus limiting when phosphorus concentration is
<0.01 times of C concentration. When phosphorus in source water is not
limited, phosphate addition cannot significantly affect the removal of or-
ganic matter and DBP FPs by BACFs (Selbes et al., 2016; Selbes et al.,
2017; Vahala et al., 1998), otherwise adding phosphate can improve the
performance of BACFs (Lauderdale et al., 2012; Ross et al., 2019; Sang
et al., 2003; Stoddart and Gagnon, 2017). Additionally, adding phosphate
had a significant effect on the removal of DBP FPs in BACFs for only a
short time. Previous studies also showed that the effect of phosphate addi-
tion is not permanent, and diminishes over time (Lauderdale et al., 2012;
Nishijima et al., 1997; Rahman et al., 2016). In this study, the phosphate
in source water is limited, with concentrations <0.07 mg/L (data is not
shown). The experimental results show that a short-term phosphate addi-
tion in phosphorus deficiency columns improved the removal of DOM
and all the three chlorinated THM4, HAA9 and HAN4 FPs, while a long-
term phosphate addition hardly impact the removal of them, even nega-
tively affected them.

Overall, when the influent of BACFs is phosphate limited, phosphate ad-
dition can improve the removal of DOMand formation potentials of various
DBPs to some extent, and this improvement works on a short-term instead
10
of a long-term. Therefore, an intermittent phosphate addition into BACFs is
suggested to control DBPs in DWTPs.

4. Conclusions

BAC columns presented good performance for water purification: 44 %
DOC removal, 68.4 % UV254 removal, and FA-likes and HA-likes complete
removal, which was mainly contributed by aerobic bacteria not anoxic bac-
teria. All DOM fluorescence substances were partly or completely removed
by aerobic bacteria but hardly removed by anoxic bacteria, and even anoxic
bacteria released tryptophan-like to the effluent.

Both two dosages of phosphate decreased EPS release and improved
water purification of BAC columns on the short-term: the removal of
DOC, aromatic organics and DOM fluorescence fractions all increased to
different extent in the first 7–14 days whereas the effect could not last lon-
ger, and even the removal of SMP-likes and HA-likes were weakened as a
result of long-term phosphate addition. Anoxic bacteria presented less re-
sponse to phosphate addition compared to aerobic bacteria. For example,
anoxic bacteria decreased the EPS adhesion and released PN and PS into
the effluent while aerobic bacteria consumed more PN.

BACFs effectively decreased all chlor(am)inated THM4, HAA9 and
HAN4 FPs (except chloraminated THM4 FPs), attributed by aerobic bacte-
ria. Phosphate addition slightly enhanced the removal of chlor(am)inated
HAA9 and HAN4 FPs on the short-term, but not on the long-term. However,
it decreased the removal of chlor(am)inated THM4 FPs, mainly contributed



Fig. 8. The chlor(am)inated HAA9 FPs in the influent and effluent of columns (a, c) and batch reactors (b, d) with 0, 0.3 and 0.6 mg P/L addition. (n = 3).
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by anoxic bacteria. Based on the results of previous studies and this study, it
can be concluded that phosphate addition into phosphorus-limited water
can enhance the removal of DOM and formation potentials of various
DBPs to some extent, but this effect works only on the short-term and not
on the long-term. Therefore, an intermittent phosphate addition into
BACFs is suggested to control DBPs in DWTPs.
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