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PREFACE
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creating a good focus in times of uncertainty and reaching out for appropriate guidance on time.
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combination of these interests. And at the end of my study, I can confidently say that I still feel very fortunate to live in the
time where this study is still so fascinating.

My time at Second Sight Medical Products has further triggered my interest in the field of bioelectronic medicine. It was
extraordinary to be able to observe patients that were able to see again due to a camera and retinal nerve stimulation. After
this, I was certain I wanted to know more about bioelectronics.

As both my grandfathers has suffered from Parkinson’s Disease, it has been an honour to work on the development of this
technology. The most remarkable moment of this internship has been seeing Parkinson’s Disease patients before and after
Deep Brain Stimulation, in a time window of 30 minutes. This image will surely stick with me. And I am thankful for the
opportunity to have seen what this technology can truly do in real-life.
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NOMENCLATURE
ABBREVIATIONS
Abbreviation Definition
DBS Deep Brain Stimulation
aDBS Adaptive Deep Brain Stimulation
PD Parkinson’s Disease
LFP Local Field Potential
ECG Electrocardiogram
std Standard deviation
Fs Sample Frequency
NLMS Normalized Least Mean Squared
FDA Food and Drug Association
STN Subthalamic Nucleus
GPi Globus Pallidus
IPG Implanted Pulse Generator
EEG Electroencephalogram
BPM Beats Per Minute
PSD Power Spectral Density
SYMBOLS
Symbol Definition Unit
1% Voltage [kg*m?*s~3*%A 1]

n Step size
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Abstract—Adaptive Deep Brain Stimulation (aDBS) offers the
potential for personalized stimulation strategies for patients with
Parkinson’s Disease (PD). The closed loop characteristic of this
system requires the incorporation of PD relevant biomarkers
that determine the patient’s need. In order to obtain high
quality LFP (Local Field Potential) input signals, the ECG
(electrocardiogram) noise should be suppressed. The aim of this
project is to study the performance of various algorithmic ECG
noise suppression methods. Out of the ADAPT-PD trial, we have
taken 9 LFP channels with consistent ECG artefacts for exploring
the performance of ECG noise suppression models. As a reference
point for filtering performance, we have used survey data (DBS-
OFF). Using an externally measured ECG as reference, we
have implemented two Adaptive NLMS (Normalized Least Mean
Squared) Noise Cancellation algorithms. For the first version,
we have used stimulation ramping alone for synchronization
of the data sets. The second version includes an extension
that aims to improve only the data synchronization feature.
Furthermore, we have explored the ECG noise suppression
performance of a proposed template subtraction method, using
11 different variations of epoch length. For improved analysis,
we have used three data sets, namely personal (#1), patient
group (#9) and simulated (#5346) data, using the Perceive toolbox
as the benchmark. Simulated LFPs are based on survey data
combined with 9 external ECGs in 11 levels of contamination
(100-1100%). We have conducted analysis in both the time
and frequency domain (beta-range), in order to estimate the
absolute difference from the reference survey. Outcomes in the
frequency domain show that, for personal performance, template
subtraction tweaking provides an improvement up to 37.6 %
over the Perceive toolbox. Furthermore, the outcomes show that,
for both the patient and simulation group, optimal performance
is obtained using the Perceive Toolbox with 20.7 % accuracy
for the patient group and 4.7 % for the simulations. It can
be concluded that the survey LFPs can be used for personal
calibration of ECG noise suppression. This contradicts the aim
to find one universal LFP ECG noise suppression method.
There is a need for a reliable data synchronization method
between the Percept’™ LFPs and other biometric data. Reliable
synchronization would improve the usability of the external
ECG as reference signal in adaptive filters. Furthermore, reliable
synchronization would accelerate the discovery of linked physical
symptoms for Parkinson’s Disease biomarkers.

1. INTRODUCTION

ver the past 30 years, DBS has proven to be an effective
O treatment for patients with PD who show an inadequate
response to medication alone. PD is a chronic neurodegen-
erative disorder characterized by tremor, stiffness, postural
instability and loss of facial expression [1]. For PD, DBS
has been the most important therapeutic improvement since
the development of levodopa medicine. DBS was first FDA
approved in 1997 as a therapy for tremor, and later in 2002
for general PD. Currently, over 160.000 patients worldwide
have been treated with a DBS implant for treating PD related
symptoms [2].

In order to control normal body movements and other
functionalities, neurons communicate using electrical signals.
In the brain of PD patients improper folding of proteins is
observed. This results in a chain reaction of progressive protein
folding and clumping, which has been linked to damage of
neural communication [4]. DBS delivers small electrical pulses

Extension

Figure 1: Illustration of the Percept DBS system. An IPG is
placed above the heart. The stimulated pulse travels through
the leads extension towards the leads situated at the STN or
GPi. Image taken from [3].

to a targeted brain area in order to disrupt the abnormal neural
communication [5]. The exact mechanism behind the DBS
induced reaction chain is still unclear, but researchers assume
dopamine to play a major roll. After DBS, increased levels
of dopamine have been observed in the STN of PD patients.
Increased dopamine levels have been linked to decreased PD
motor symptoms [6].

For PD patients, the STN and GPi are the common brain
areas for bilateral electrical leads placement [7]. These leads
are connected to the IPG that is normally placed above the
heart, similar to a cardiac pacemaker (Fig. 1). This IPG
includes a battery and generates the electrical current that is
delivered at the targeted brain area via the lead’s electrodes.

Due to the limited knowledge of the exact neural chain
reaction of DBS, the stimulation strategy provided to the PD
patient is still based on subjective assessment of a clinician.
Calibration of the stimulation parameters such as frequency,
pulse width, voltage and current amplitude is done by the clin-
ician, taking the clinical outcome and unwanted side effects
into account. Headache, confusion, problems with vision or
speech, numbness or tingling sensations are unwanted side
effects that have been documented after DBS stimulation.
Moreover, higher stimulation voltages have been linked to
neuro-psychiatric symptoms such as severe depression, mood
changes and impulsive behaviour [8].

The IPG has a specific battery longevity related to stim-
ulation strength and frequency. A surgical replacement of
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the IPG is needed every 10-15 years, affecting the patient’s
quality of life. Therefore, a trade-off should be made between
the stimulation dosage and clinical outcome, considering the
battery longevity [9]. In general it has been observed that
DBS clinical efficiency attenuates over a period of 6 months,
using a consistent stimulation dosage [10]. The amount of
subjective clinical assessments is trade of between parameters
optimization, costs, time and patient discomfort [9].

In 2020, the Medtronic Percept’® aDBS system was ap-
proved for aDBS trial for patients with PD. The Percept is
the first FDA approved fully implanted aDBS system with
BrainSense”™ technology and stimulation. This aDBS system
both stimulates and measures brain activity at the same time.
In the future scope, this real-time feedback loop could be used
to provide stimulation based on a patient’s need. Compared to
conventional DBS, that applies stimulation permanently, this
aDBS system opens up personalized treatment perspectives.

This potential demand and supply behaviour of aDBS aims
for optimal clinical outcomes, whilst both reducing DBS
induced side effects [11] and maximizing the battery longevity.
Additionally, a given battery will last longer, minimizing
surgical replacements. This reduces the risk of surgical com-
plications such as infection and severe tissue damage.

Brain activity for the aDBS system is measured as LFPs,
representing the activity, defined as the difference between
electrode points, of a few neurons. This is different from prior
common EEG recordings, that require multi-channel record-
ings with various electrodes placed on the scalp. Therefore
this new BrainSense”™ technology provides for the first time,
local insight in a neural response to a stimulation strategy [12].

In order to translate the captured LFPs into a clinical
state, PD specific biomarkers need to be incorporated into the
aDBS system. A biomarker is a measurable and reproducible
medical indicator used as an objective prediction of a persons
clinical state. However, qualitative identification of biomarkers
and translation into aDBS algorithmic strategies is yet to be
achieved. This section highlights the ECG artefacts found
in LFP recordings and their limitations for quality neural
feedback in aDBS systems.

The quality of the input signal is crucial for the accuracy
of the feedback and clinical performance of aDBS. Real-time
LFP recordings are prone to various artefacts such as cable,
stimulation or ECG artefacts [13]. As the contraction of a
heartbeat is the strongest electrical activity of the body, it can
be observed as an ECG artefact throughout LFP recordings
[14]. In the following section, the general waveform of the
ECG will be elaborated. Next, its interference with the PD
brain activity of interest will be highlighted.

A. ECG in general

A common ECG has a distinct waveform consisting of a
P wave, QRS-complex, ST segment, T wave and U wave

PR ST
Segment Segment
<> >

T

Complex

ST
Interval
QT Interval

PR aRS
Interval Interval

Figure 2: Illustration showing the ECG-complex with its
characteristic P-wave, QRS, T and U wave. Illustration taken
from [16].

(Fig. 2). The interval between an R wave and the next R
wave is around 0.8 seconds, depending on the BPM. Groups
of specialized cells in the heart control the phases of the
heartbeat by causing electrical potentials. The total ECG-
complex includes:

« P wave: electrical impulse is conducted from the sinoa-
trial node, the main pacemaker of the heart, initiating a
heart beat by generating the electrical impulse. This pulse
travels towards the atrioventricular node and spreads
from the right to the left atrium. This depolarization
(contraction) of the atria results in the P Wave in the
ECG [15].

¢ QRS-complex: The QRS-complex is the result of rapid
depolarization of both ventricles. As these contraction
muscles are bigger than the atria contraction muscles, this
amplitude is larger than the P wave.

o T wave: Ventricular repolarization results in the prior ST
segment and the T wave.

o U wave: The U wave represents the last wave of ventric-
ular repolarization.

B. Frequency overlap and Biomarkers

Research has been focused on finding PD specific biomark-
ers in the time and frequency domain of brain signals. LFPs
resemble oscillations of frequencies including delta and theta
bands (1-7 Hz), alpha and beta band (8-30 Hz), gamma band
(30-200 Hz) and higher frequency oscillations above 200 Hz.
PD patients are characterized with the presence of increased
activity in the beta range (13-30 Hz), i.e. the ’beta-peak’. This
beta-peak is linked to bradykinesia and rigidity and is used as
a PD biomarker [17]-[19].

An overlap in the frequency spectra of both LFP and ECG
signals suppresses this beta-peak, resulting in an inadequate



MSc Thesis Pallas Diana Lotte Koers, 2021

biomarker identification. Fig. 3 shows a positive relation
between the presence of ECG and the suppression of a beta-
peak (13-Hz). Classical digital filters such as low and high-
pass or band pass filters can not be used to extract the desired
signal due to the overlap of these frequency bands [20].

Due to the novelty of LFP recordings, most methods are
based on EEG multi-channel input, making them inadequate
for LFP filtering. These artefact suppression methods range in
complexity, applicability and computational demand [21]. For
real-time aDBS with LFPs, an ECG noise suppression method
should be proposed that is low in neural information loss, high
in accuracy and low in computational demand.

C. Perceive Toolbox

Recently, an extension was added to the open-source Per-
ceive Toolbox enabling the removal of ECG artefacts out of
the LFP signals [23]. This Perceive extension is based on
applying cross-correlation over sliding windows, generating
a recording specific template of ECG artefacts. Subsequently,
segments of signals affected with ECG artefact are identified
by using pattern matching. Afterwards, the identified segments
are replaced by mirrored padding. Fig. 3 shows the result of
ECG artefact removal by use of this novel Perceive Toolbox
in the time and frequency domain.

D. Template Subtraction 100

Research conducted by the Amsterdam UMC Neurology
department documented a different ECG noise suppression
approach [22]. Their algorithmic method detects ECG artefacts
in the LFP signal, creating a QRS-complex template for every
found R-peak, optimized in both scale and offset. The QRS-
complex epochs are averaged to find a LFP channel specific
ECG artefact template (green line) (Fig. 4). The tails of the
epochs are deflected to an equal value, preferably zero. Within
every epoch of the LFP, this QRS-template is subtracted as per
formula (1).

LFPfiltered(QRS) = LFP(QRS) - LFPecg(QRS) (1)

E. Problem Statement

The documented Amsterdam UMC template subtraction
method uses a defined epoch length of 100 samples, resem-
bling 0.4 seconds with 250 Hz sampling rate. The length of this
epoch has been arbitrarily chosen and variations have not been
explored. Presumably, as the deflection step is based on the
epoch length, variations could influence the shape of the LFP
Zero-Template and thus the filtered LFP. Thus the variations
in algorithmic performance can be analyzed.

As compared to above method, aDBS requires the usage
of filter algorithms that rapidly adapt to feedback changes.

Adaptive filters are known as a robust and simple processing
method that has been implemented for various noise cancella-
tion problems. However, implementation of adaptive filters for
LFP data is still to be examined. Furthermore, the availability
of the external ECG provides next to the LFP, provides new
research possibilities. It could be explored whether the usage
of the ECG as an extra reference for ECG artefacts removal
is beneficial for LFP signals.

BrainSense”™ technology provides the availability of sur-
vey data which are LFPs free from ECG artefact [24]. Survey
data characteristics will be explained in the method section.
Yet, usage of this data as an extra reference signal could be
investigated. Even though researchers have been focused on
finding a universal golden standard method for ECG noise
suppression, it is presumed that survey data could be incor-
porated for a personal tweaking of ECG noise suppression
filters.

F. Goal

In order to close this research gap, various algorithmic ap-
proaches should be examined for their ECG noise suppression
performance. The scope of this paper entails the implementa-
tion of adaptive noise cancellation filter and variations of the
template subtraction method. Results of the Perceive Toolbox
will be included for comparisons. Furthermore, the benefit
of ECG and survey LFP as reference signals for ECG noise
suppression will be investigated. The aim of this research is
to obtain optimal performance of ECG noise suppression in
LFP data both on patient and patient group level, enriched by
simulations. Moreover, the influence of epoch variations on its
ECG noise suppression performance will be assessed.

Summarized, as only qualitative LFPs can be used for real-
time personalized stimulation strategies, ECG noise needs to
be removed. Because only a few LFP specific ECG artefact
filtering methods exist, various approaches can still be ex-
plored. As an example, the usage of ECG as the external
reference in noise cancellation method could be assessed. The
aim is to explore adaptive filters and epoch variations on their
performance of ECG noise suppression.

2. METHODS

In this section, the methods used for the scope of this project
are outlined. First, the included patients and data collection
protocol will be discussed. Secondly, research circumstances
will be highlighted such as the types of data collected,
prior data synchronization, inclusion of data, electrode pair
characteristics and data preprocessing. Thirdly, the working
mechanisms of created and adjusted ECG noise suppression
algorithms will be explained. Decisions for the implementa-
tion or adjustments during the usage of these filters will be
highlighted. Lastly, the choices for the analyses of the results
will be explained.
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Figure 3: Figure showing the ECG contamination (absent to severe) of subclavicular implants with QRS-complex peaks in the
time domain. Below the corresponding PSD for each LFP is shown. On the right side, the PSD with or without QRS-complex
is presented. Showing the reappearance of a small beta-peak without QRS-complexes. For these graphs, the ECG filtering was

done using the Perceive Toolbox. Graphs taken from [14].
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Figure 4: Graph showing an example of a QRS-complex
template with an 100 sample epoch width (0.4 s). The red
line is equal to the data points of the raw LFP. In green, the
QRS-complex template is shown. In black, the outcome of
template subtraction can be seen. Graph taken from [22].

A. Research Patients

For this study, we have incorporated participants from
the ADAPT-PD (Adaptive DBS Algorithm for Personalized
Therapy in Parkinson’s Disease) trial. This trial was started in
order to evaluate the safety and efficiency of aDBS in patients
with PD and covers 12 research centers in Europa, the US and
Canada, conducting movement disorders research.

We have included 9 PD patients, all implanted with bilat-
eral electrode leads. The patients were scheduled to replace

their IPG with the Medtronic Percept’ ™ IPG. Patients were
informed by the details of the data collection and usage by
the clinicians. Additionally, the clinicians have instructed the
patients to stop taken their levodopa medicine prior to arrival
in the hospital. This is to avoid its influence on PD symptom
suppression.

Right after leaving the recovery room, we have instructed
the patients to conduct the behavioural protocol. This protocol
includes both a DBS-OFF and DBS-ON run. Each run entails
a period of rest, a period of reading aloud and a period of
upper limb movements (Appendix A). Simultaneously to the
behaviour protocol, we have recorded LFP, ECG, vibration
sensor (on both hands) and video data.

B. LFP Data Collection

The aDBS system measures LFPs in both hemispheres. Each
hemisphere has one lead. Each lead contains four contact
points. Out of these four contact points, three contact pairs
are made. In total six contact pairs are available per patient.
These contact pairs have been used to capture both streaming
and survey LFP data. Their difference will be explained in the
next two subsections.

1) Streaming Data

Streaming LFP data is the LFP data recorded while the
Percept’™ is on the ON-DBS mode, i.e. an electrical pulse
during application of O or higher mA. In this case, the LFP
recordings are contaminated with ECG artefact. Per patient,
only one contact pair can be chosen per hemisphere for
recording streaming data. This is because the stimulation is
provided by the intermediate contact points. Therefore, we
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have captured a total of 18 (9*2) streaming LFP channels for
this study.

2) Survey Data

The Percept’™ system has the ability to record the LFP

signals when the system is switched off, being in the OFF-
DBS mode. This provides the possibility to record the bilateral
LFPs without any ECG artefact leakage. As survey data can
only be recorded in OFF-DBS, this data is inadequate for real-
time aDBS feedback.

Survey data can be measured between the 6 contact pairs per
patient, given a total of 54 (9 * 6) survey data channels. For
this study, we have used 20 seconds of survey data, recorded
at the start of the behavioural protocol. For this project, we
have chosen to use the survey data as a reference signal for
ECG noise suppression performance.

Both streaming and survey LFPs were recorded by the
Percept at a sampling rate of 250 Hz. By default, the Percept
processes the LFPs with a 1-10 Hz high pass filter and two
100 Hz low pass filters. The LFPs were amplified by 250 times
and send wireless to the Clinician Programmer Percept’
tablet (Fig. 5). This tablet was designed to be the only direct
receiving unit of the LFPs, in order to protect the patient data.
Additionally, real-time captured LFPs and calibration settings
can be observed on this tablet during stimulation.

Electrode impedance is a determining factor for both ap-
plying and recording a current. Impedance is the resistance
to electrical current delivery in an alternating current circuit.
Invasive electrode contacts are prone to foreign body reactions,
such as scar tissue formation or the attraction of giant cells.
[25] These adverse reactions influences the interfacial distance
and impedance between the electrode and neurons. Higher
encapsulation is related to higher electrode impedance [26],
affecting the performance of DBS. Fig 6. illustrates the for-
mation of scar tissue and increased interfacial impedance. The
clinician has assessed the various contact point impedances
using the tablet programmer. The contact points with the best
characteristics were chosen for stimulation and sensing. The
streaming and survey LFP channels were exported as a JSON-
file and preprocessed with the Perceive Toolbox by the team
of clinicians and research students.

C. ECG Data Collection

We have measured the bipolar ECG signal with two elec-
trodes placed on the right and left upper chest during the
LFP recording. We have placed a ground electrode on the C7
cervical vertebrae. We have recorded the ECG data at 2048
Hz sampling rate using a TMSi Porti amplifier.

D. Time Synchronization of Data

Notably, a millisecond timestamp for the captured LFPs
is not incorporated into the Percept’™. Due to this design

Figure 5: Image showing the Percept IPG (left) the Percept
Clinician Programmer Tablet (middle), a Patient Programmer
on the phone to track events (right) and an example of im-
planted electrode leads with various contact electrode points.
Image taken from [27].

Adverse
biomechanical interactions

S

Interfacial
impedance !

Electrode

Tissue

Figure 6: Illustration of the adverse reaction such as scar tissue
by the placement of the electrode. These adverse reactions
result in increased impedance between the neuron and the
electrode, influencing the measured LFP or the received DBS
stimulation. Image taken from [28].

Stimulation Ramping for Synchronisation
Before Synchronisation After Synchronisation
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Figure 7: Image showing the stimulation ramping measured
at the stimulation artefact electrode. The Blue line shows the
stimulation amplitude, of which the shape can be observed in
the electrode recording. The shape matching is used to identify
the moment of stimulation ramping, in order to synchronize
the data. Image taken from [22].
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Detected R-Peaks in LFP
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Figure 8: Graph showing an example of a LFP channel (blue)
with identified R-peaks (red) in a 20 seconds recording (250
Hz), via the R-peak detection algorithm.

limitation, we have applied an alternative time synchronization
approach for the LFP and ECG data. This time synchronization
approach, called stimulation ramping, has been proposed by
research of the Amsterdam UMC and Oxford University. The
method includes the placement of 2, so called stimulation
artefact electrodes, on the forehead of the patient. By up
and down ramping of the stimulation, a stair effect of signal
amplitude change can be visualized on these two electrodes
(Fig. 7).

The initial moment of upramping is determined by a thresh-
old set regarding amplitude’s rate of change. Then, the Percept
data is upsampled to match the TMSi sampling frequency.
Afterwards, the TMSi recording is aligned by the determined
sample difference.

E. Inclusion of LFP channels

We have analysed 18 LFPs of left and right hemispheres on
their ECG artefact consistency using an ECG artefact detection
algorithm (Fig.8). First we have identified the R-peaks using
two formulas:

1) MinPeakHeight = 2.5 * std LFP (z-scored LFP)
2) MinPeakDistance = 0.5 * Fs

Then, we have included LFPs with a consistent ECG artefact
for the scope of this study using two criteria. First, the presence
of a R-peak within every three second timeframe. Secondly,
the presence of a BPM > 40. Using the corresponding ECG
as reference, this ECG artefact detection algorithm showed
an accuracy overlap of detected R-peak of 85%. This method
identified 7 out of the 18 LFP channels with consistent ECG
artefact. After visual inspection we have added 2 more LFP
channels, providing 9 LFP channels for the scope of this
project.

10
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Figure 9: ECG signal before and after 1 Hz highpass butter-
worth filtfilt, excluding the jumping of signals over time in
order to obtain a stable reference signal.
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Figure 10: Graph showing the 4th order 1 Hz high-pass
frequency response. All < 1 Hz frequency amplitudes are
attenuated, providing a 1 Hz highpass filter.

F. Preprocessing of ECG signals

The corresponding ECG signals analyzed showed significant
jumping over time (Fig. 9 upper). These disturbances is pre-
sumed to be the result of cable off-set, cable and physiological
movement which all occur below 1 Hz. Therefore we have
implemented a “1 Hz high pass 4th order Butterworth filtfilt”
filter on the total length of the raw ECG signal. A Butterworth
filtfilt applies a filter twice, once forward and once backwards
to a signal, attenuating all frequencies below 1 Hz (10°) (Fig.
10). After 1 Hz high passing, the ECG showed no longer any
jumping (Fig. 9 lower), serving as a stable reference input then.
Subsequently, in order to match the length of the streaming
and survey LFPs, the stable ECG signal was shortened to 20
seconds.

G. Adaptive Normalized Least Mean Squared

Adaptive filters, being algorithms with self-changing charac-
teristics, are used to estimate a time-varying signal. Compared
to usual linear filters, adaptive filters require little or no



MSc Thesis Pallas Diana Lotte Koers, 2021

Physical
system

Digital Signal
Processing

A 4

Sensor
noise-corrupted

MMW observation

d(n)

desired signal

x(n) = d(n) + v4(n)

Signal
source

x(n)

/

Adaptive Filter

(

Figure 11: A. Scheme illustrating the denoising principle of
a derived signal. A sensor amplifies the signal, after which
digital processing is applied to subtract the noise from the
noise-contaminated signal. The results is the desired signal.
B. of the adaptive noise cancellation principle with reference
signal. Where x(n) contains both the desired LFP signal d(n),
and ECG noise component vy (n). The noise estimate 0;(n) is
subtracted from the signal resulting in desired filtered signal
d(n) [29].

vi(n) -

N dm) = x(n) - :(n)

e(n) =d(n)

knowledge about the signal or noise components. Besides,
adaptive filters are more efficient over linear filters when the
neural and noise signals overlap in the time and frequency
range.

A noise cancellation adaptive filter uses a reference signal to
estimate a noise component in the raw, contaminated, signal.
Afterwards, it subtracts this estimated noise component from
the raw signal in order to obtain a filtered output. Fig. 11a
sketches the steps from recording a raw signal towards a
filtered signal.

The most frequently used adaptive filter is the LMS (Least
Mean Squared) filter. LMS filters use, within a preset step
size, a gradient to estimate the time varying signal. NLMS
is an extension to the LMS method filter by including a
time varying step size 7. This time varying learning rate
improves the convergence speed of the adaptive filter. The
rate of convergence is defined as the amount of calculation
and adaptation cycles required for the algorithm to converge
to a steady-state or optimum.

For the adaptive noise cancellation filter with a reference
signal, the input LFP x(n) contains both the desired LFP
signal d(n) and ECG noise component vi(n) (Fig. 11b).
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In this scenario, the known reference ECG signal va(n) is
uncorrelated to the raw LFP signal but, however correlated
to the noise component vy(n).

The reference signal va(n) is used to produce a noise
estimate ¥1(n) component within the raw LFP signal. The
estimated noise component is then subtracted from this raw
signal, generating the desired filtered signal d(n). In order
to minimize the output power E, the constant feedback of
component estimation is used to adjust the filter weights.

Within the adaptive noise cancellation principle, the systems
output serves as the input error signal for adaptive feedback.
For this research, we have implemented the NLMS adaptive
noise cancellation filter of the PADASIP Toolbox. We have
used normalized ECG and LFPs as input signals and an n of
= 0.001 [30] (Appendix. B).

Fig. 12a shows an example of normalized LFP of one of
nine included LFP signals and corresponding normalized ECG
in Fig. 12b. At Fig. 12c an overlay of both signals is created
to compare the signals in time.

Even though visual inspection of the Fig. 12c, including the
LFP and ECG, seems to show an overlay of peaks, Fig. 12D
shows a small mismatch in peak time synchronization.

Fig. 12e shows the estimated noise component n (green
line) within the target LFP d (red). The peak mismatch of
d and n can also be seen in a focused range in Fig. 12f.
After subtraction of the noise component, Fig. 12g shows
the estimated desired signal in pink. It illustrates still clearly
present ECG R-peaks.

These observations suggested that the stimulation ramping
in itself was inadequate for ECG and LFP data synchroniza-
tion.

H. Synchronization by Autopeak Delay Detection

In response to the mismatch in peak synchronization, we
have implemented an extra algorithmic synchronization step.
This Autopeak extension aims to calculate the average peak
delay that can then be used for data aligning and synchroniza-
tion.

Autopeak identifies, with a threshold set at 2 V, the locations
of the R-peaks in the ECG signal. Around every R-peak
location, an equally distributed epoch of 40 samples was saved.
Within each of these epochs, the x values of the corresponding
R-peak were identified in the LFP signal (Fig. 13). The average
distance between the real ECG R-peak and the identified LFP
R-peak was calculated and used as a data alignment factor. As
the NLMS filter requires equal input values, the signals were
cropped to an equal length. The original adaptive algorithm
is further referred to as Zero-Delay. The extended adaptive
algorithm is referred to as ‘Autopeak’ (Appendix. B).
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Figure 12: Figure showing example of time plot prior and
after NLMS Adaptive Noise Cancellation. A) LFP signal
showing consistent artefacts over a long time window. B) ECG
signal showing repetitive peaks over a long time window.
C) Zoomed-in time window of a normalized overlay of the
LFP and ECG signals showing resembles of R-peaks. D:
Zoomed-in time window of a normalized overlay of the LFP
and ECG signals, showing a slight mismatch in peak time
synchronization. E) Raw LFP signal (d) and estimated ECG
noise component (n). F) Further zoomed-in time window of
the raw LFP (d) and estimated ECG noise component (n). G)
Outcome of the d-n subtraction, and the estimation of filtered
LFP signal.
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Figure 13: Illustration outlining the Autopeak method. The R-
peaks are identified in the ECG and their locations are used to
calculate the average distance (x) between the identified ECG
and LFP R-peaks.

Compared to the Zero-Delay, the Autopeak time domain
data and components show an increased overlap accuracy of
the QRS- complex peak, as can be seen in Fig. 14B. Moreover,
no significant difference for the n component could be found
between Zero-Delay and Autopeak, as can be seen in Fig. 14C.
Focusing on a smaller time window, roughly the same d and
n peak difference can be observed. Thus, the Autopeak filter
output error shows no further improvement in ECG artefact
suppression in the time domain.

1. Template Subtraction Variations

The time synchronization method required for the ECG
reference methods has disadvantages. Signal processing wise,
it is considered to be difficult to ensure qualitative peak overlay
due to the steep R-peaks. Furthermore, because of cabling and
increased system size it causes patient discomfort.

The template subtraction method overcomes these concerns.
Time stamp synchronization is not required. For filtering the
timestamp of R-peak found in the LFP is used.

Therefore, for the further scope of this project we have
chosen to look into further improvement of the Amsterdam
UMC template subtraction model.

For the remainder of this report, we have used this Am-
sterdam UMC template subtraction method as a baseline,
enriching it with 10 algorithmic variations. The resulting 11
approaches, combined with the 2 adaptive filters, are compared
with the benchmark, being the original template subtraction
method and the Perceive toolbox.

The 11 variations all have a different epoch range ranging
from 50 samples to 150 samples in discrete steps of 10
samples.
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Figure 14: Image showing an example of Autopeak signal
filtering. A) Shows the overlay of LFP and ECG signals. B)
Zoomed-in time window of the normalized overlay of LFP
and ECG signals, showing a slightly better peak time synchro-
nization than with zero delay in Fig 12-D. C) The estimated
ECG noise component (n) (green colour) in the raw LFP (d).
D) Further zoomed-in time window of noise component (n)
(green colour) in the raw LFP (d) (red colour). E) Outcome
of the Autopeak LFP signal, showing high amplitude QRS-
complexes that are still present in the filtered LFP.

In Fig. 15, for each variation, the QRS-templates are plotted
taking an a single LFP channel as an example (Patient 15
right hemisphere). The black line shows the average epoch
measurements around every R-peak. A superimposed template
is constructed by optimizing the scale and offset using a mini-
mized squared error. Averaging these superimposed templates
results in a LFP channel specific QRS template depicted in
blue. Further improvement is obtained by an end tail deflecting
method, striving for similar end values with preferably zero
amplitude. This is referred to as the *Zero-Template’ depicted
in green.

Overall, it can be observed that the shape of the Zero-
Template QRS-complex is different for every template varia-
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tion. For example for the right hand side of the QRS-complex
T-130 (Template with 130 epoch length), the Zero-Template
follows the average template instead of a straight line. Also, it
can be observed that for T-150, the shape of the Zero-Template
QRS-complex left hand side follows the average template as
well, in this case it looks similar to a P-wave.

Three time domain examples of the Template Subtraction
epoch of 50 (T-50), 100 (T-100), and 150 (T-150) sample range
and its corresponding survey for a patient are shown in Fig.
16B. In red the raw LFP can be observed, showing R-peaks
with high amplitudes. The signal coloured in black shows the
filtered LFP after the template filtering, indicating strong R-
peak suppression starting from approximately 0-20 V down to
0-10 V.

The voltage range observed for the filtered T-50, T-100, T-
150 signals are comparable to the 0-10 V in the survey data
(Fig. 16A). Some outliers can be seen the survey data. For
instance the peak around the 500th sample seems to be missing
in the T-50, T-100 and T-150 time domain plots, possibly
indicating a slight over-suppression of the signal.

J. Simulated LFP Signals with ECG artefacts

As only 9 LFPs with consistent ECG artefact were included
for this study, we decided to add simulated data. In order to
obtain this simulated data, we used simulated LFPs based on:

1) 54 LFP survey recordings (20 sec)
2) 9 external ECG measurements (20 sec)
3) 11 levels of contamination (100-1100 %)

In total we generated 5346 simulations, which were used in
each of the 14 models for performance assessment. We used
their corresponding survey data as a reference.

K. Analysis

To improve the analysis apart from the time domain, we
have transformed the filtered LFPs into the frequency domain.
To obtain their PSD’s using the Welch’s method, we have used
a time window of 250 samples with 50 % overlap. As the
beta-range is assumed to serve as the main range of interest,
we have chosen this range for performance analysis. We have
taken the distance between in the beta-range for analysis,
illustrated in Fig. 17.

Using the survey data as reference, we have calculated an
absolute percentage difference in both the time and frequency
domain using 2 and 3. We have matched the chosen contact
pairs for streaming and survey for a qualitative reference.

abs% = \/

2
* 100

2

PSD(LFP — fil) — PSD(LFP — sur)
PSD(LFP — sur)
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Figure 15: Figure showing the examples of 11 Template Subtraction QRS-complex epochs. In the black colour, the measured
LFP is shown. The blue colours shows the estimated average QRS-complex template per channel. The Zero-Template, including

tail deflection is shown in the green colour.
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Figure 16: Figure showing a zoomed-in time window of an example survey LFP and three corresponding template subtraction
results (T-50, T-100, T-150). In red, the LFP shows significant R-peaks. In black, all three template variations show strongly

reduced R-peaks in the filtered LFP signal.
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Figure 17: Illustration of calculating the difference between
the filtered and the survey data in the beta-range (13-30 Hz).
The green area resembles the range that is included for the
performance calculation. We have used the distance between
the signal points to calculate an absolute percentage difference.

2

(LFP — fil) = (LFP —sur)

(LFP — sur)

sur)

3)

abs% = \/

Where LFP-fil is the filtered LFP and LFP-surv is survey
LFP. We have calculated the differences of LFPs on per per-
sonal channel (#1), per group average (#9) and per simulations
(#5346).
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Abbreviated, we have implemented old (Perceive and T-
100) and new (Zero-Peak, Autopeak, T-50:150) methods for
performance analysis. For the adaptive methods, the measured
ECG has been used for noise cancellation filtering. Survey
data has been used for reference of all model performances.
Per LFP, we have calculated the absolute difference in both
the frequency (beta-range) and time domain. Outcomes are
divided into three levels; personal, patient group and simula-
tions.

3. RESULTS

This section outlines the results of the analysis on the
filtered LFPs per model. The average PSD’s of the models
were visually compared to three PSD, namely the original
LFP PSD, survey PSD and Perceive PSD. First, the PSD plots
resulting out of the adaptive filters will be compared. Then,
the PSD plots of the template models will be assessed. Finally,
the results for all three different data groups (#1, #9, #5346)
are discussed by means of summarized tables (Table III).

A. Zero-Delay and Autopeak

Using the survey PSD (dark blue) as a reference, the raw
LFP signal (red) shows significant masking of the beta-range
(Fig. 18). Both Zero-Delay and Autopeak adaptive filtering
methods do not bring any significant improvement in resur-
facing the expected beta-peaks. As can be seen in Fig. 18,
these two methods have not only an overly strong suppression
of the LFP signal in the beta-range but also no significant
difference between their PSD’s.
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Figure 18: Graph showing the Mean PSD (9) of; survey (dark
blue), raw LFP (red), compared to the results of Perceive,
original T-100, Zero-Delay and Autopeak.

As these explored adaptive methods do not bring any
improvements, we have returned to the perceive and original
template method that still show higher resembles of the
expected beta peaks. After visual inspection they seem to a
more attractive approach.

B. Template Subtraction Results

The PSD analysis of the group average for all 11 variations
are shown in Fig. 19. Compared to the raw LFP, all template
variatios show significant suppression of the ECG noise (Fig
19 upper). Notably, focusing on the comparison of the template
variations with only the survey in Fig 19 lower, the template
variation PSDs show considerable differences in the lower
frequencies. Furthermore, slight beta-range differences can be
seen, but the lines mostly overlap. But all variations show a
significant beta peak around 15 Hz and an attenuated second
beta peak around 25 Hz. Compared to the original T-100, no
significant differences can be visually observed.

C. Absolute Difference in PSD and Time

Additionally to the visual findings, the absolute differences
per model in the time and PSD beta-range between the filtered
LFP and the survey data calculated by 2 and 3.

All numerical results of the three levels have been docu-
mented in Table III. Their comparisons show unique differ-
ences on every level. For every outcome, the lowest absolute
difference, and thus highest performance, is highlighted in
green. Further analysis is done for the outcomes on each
level, starting with an analysis in the frequency domain and
afterwards in the time domain.

1) Personal Results

In the matrix of personal outcomes in the frequency domain,
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Figure 19: Upper: Graph showing the Mean PSD (9) of;
Survey, raw LFP in red, compared to the result of Perceive
and 11 Template variations. Lower: Graph showing the Mean
PSD (9) of Survey and and 11 Template variations.

using the Perceive Toolbox, as seen in Table IIl-a. The T-
140 gives the highest accuracy in twice and the T-150 and
T-60 only once. For channel L18, the accuracy improvement
between Perceive and T-140 is 0.6 %. Likewise for channel
R14 (T-150) is 8.1% (Fig.21) and R18 (T-140) is 37.6%
(Fig.22).

In the time domain in the matrix of personal outcomes
of Table III-b, all methods shows a performance spread of
around50 % for all LFP channels. Only one channel shows op-
timal performance using the Perceive toolbox. T-100 (48.3%,
49,2%) and T-140 (48,35%, 46,31%) both show the optimal
performance of 2 channels.

These results advocate that an improvement of ECG noise
suppression can be made by choosing an optimal filter method.

the highest accuracy for 5 out of 9 LFP channels is obtained This suggest that the survey data can be used for personal

16
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A.

abs % PSD  Method Autopeak |Zero-Delay |Perceive |T-50 T- 60 T-70 T-80 T-90 T-100 T-110 T-120 T-130 T-140 T-150

LFP channel
9135 0165 683 873 012 934] 89| 877 937| 899| 892 919| 914| 895
87.20 87.63 | 13.72| 3698 | 36.33| 3659| 36.32| 36.42| 3642| 3626 3630| 3515| 35.08| 35.22
75.25 75.86 | 40.26| 4113 | 41.44| 4133| 4153] 4149| 41.28] 4137| 41.18] 39.80| 39.67| 39.84
96.32 9639 | 10.44| 21.16| 21.05| 21.07| 21.09] 21.15| 21.04]| 21.09| 21.11] 21.09| 21.06| 21.12
98.07 96.82 | 0.63| 3698| 3633 3659| 36.32| 3642| 3642| 3626| 36.30| 3515| 35.08| 35.22
26.68 28.80| 460| 7101| 7035 7125| 70.32| 70.98| 70.64| 70.79| 70.82| 70.56| 70.68| 71.04
96.64 94.83 | 41.18] 36.05| 36.05| 36.11| 36.05| 3608| 36.08| 3598| 36.14| 36.14| 33.12] 33.11
92.83 93.07| 986 849| 823 831| 858 838| 834] 839| 837 836| 859| 869
63.92 65.00 | 49.36] 1319| 12.52] 1251| 12.78] 1262| 12.28] 1260| 13.01] 1201| 11.76] 11.87
80.92| 81.13] 20.65] 30.41] 30.16] 3035] 30.21] 30.26] 3021] 3019 30.24] 29.72] 29.35] 29.45

Simulations 60.44] 69.80] 471] 829] 816] 803] 796] 7.86] 775] 7.76] 7.81] 7.82] 7.90] 7.94

B.

abs % time Method Autopeak |Zero-Delay |Perceive |T-50 T-60 T-70 T-80 T-90 T-100 T-110 T-120 T-130 T-140 T-150

LFP channel
49.91 40.00 | 40.45| 4923| 49.24| 4924| 4926 4932| 49.38| 4932| 49.43| 4938| 49.43| 49.45
50.14 5014 | 54.45| 5337| 52.00| 5347| 53.52| 54.03| 54.04| 5429| 53.05| 53.36| 52.46| 51.87
49.72 5021 | 48.69| 4864 | 48.76| 4875| 4883 4890 | 4884 4804 | 48.95| 48.89| 48.91| 48.90
49.89 49.87 | 49.36| 49.76| 49.62| 4950 | 49.61| 49.73| 49.75| 49.92| 50.00| 49.72| 49.68| 49.46
49.89 49.47 | 48.47| 4969| 49.74| 4968| 49.47| 4919| 4879| 4878| 4869 48.46| 4835| 4872
49.92 49.82 | 46.74| 47.09| 47.17| 47.09| 47.01| 47.11| 47.03| 46.86| 47.00| 47.12| 46.31| 46.32
50.41 50.41 | 48.38| 48.48| 4845| 48.48| 4857 | 48.48 | 48.44| 4837 | 4835| 4836 | 48.68| 48.71
50.86 50.85 | 48.80| 4837 | 4822 4837| 4835| 4831 | 4827| 4835 | 4842| 48.48| 48.38| 4834
50.08 50.08 | 49.30| 49.93| 49.95| 49.78| 49.75| 49.42| 49.21| 48098 | 48.83| 4896 | 49.22| 49.39
5009 50.08] 49.29] 49.40] 4935] 4935 49.37] 4939] 49.41] 49.31] 49.30] 49.19] 49.05] 49.02
3319  4596] 9.27] 438] 453] 465] 478] 492] 503] 511] 519] 529] 535] 539

Table III: A) Subtable showing the outcomes of the absolute PSD % (beta-range) difference for all data groups. B) Subtable

showing the outcomes of the absolute time % difference for all d
is highlighted for all data groups.

tweaking of ECG noise suppression calibration.

2) Patient Group Results

At the level of the patient group (9), the frequency domain
analysis shows an absolute mean difference of 80.92% for
Autopeak and 81.13% for Zero-Delay respectively. The model
with the lowest difference and thus highest accuracy is the Per-
ceive toolbox with an absolute difference of 20.7%. Compared
to the original T-100 (30,21%), the Perceive toolbox shows an
overall accuracy improvement of 9,5%. Within the template
variations, the highest found group accuracy is 29.35%, which
is an improvement of 0.86% over the original T-100.

In the time domain, the Autopeak and Zero-Delay methods
show the highest absolute difference with 50,08% and 50,08 %
respectively. The lowest absolute difference is obtained for the
T-150 with 49.01%. Compared to the original T-100 (49.41%)
this is an accuracy improvement of 0.4%. Within the template
variations, no outstanding performance differences can be
found. Compared to the Perceive toolbox with 49,29%, the
T-150 shows an accuracy improvement of 0.27%.
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ata groups. In green the outcome with the highest performance

3) Simulation Results

At the level of the simulated data, the frequency domain
analysis shows that the adaptive methods have the lowest
accuracy with an absolute difference of 60,44% and 69,8%
for the Autopeak and Zero-Delay respectively. The Perceive
outcomes shows the highest performance with an absolute
difference of 4.7%. The performance of the 11 template
variations are spread between 7.75-8.29%.

In the time domain, the highest performance accuracy
is found for T-50 with 4.3%, whereas Perceive has 9.3%.
Autopeak and Zero-Delay give 33,2% and 45.6%. T-150 shows
the lowest template variation accuracy in time domain with
5.4%.

4. CONCLUSION

The first conclusion is that both the Adaptive Zero-Delay
and Autopeak were able not able to adequately suppress
the ECG artefact without losing the beta-peaks. This be
substantiated by each of the three data groups in time and
frequency domain. Both adaptive filter methods show no good
estimation of the ECG component in the raw LFP signal.
Possibly this can be explained due to the fact that these
methods are based on minimizing the squared error based on
every time a new sample. They seem to be too sensitive to the
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amplitude fluctuations of the QRS-complex. The quality of
the estimated noise component is crucial for the quality of the
output signal. Notably, as the ECG signal is very pronounced,
even step function like, the template subtraction method is
more appropriate than the adaptive filters per sample input.

The second conclusion is that the used adaptive filters
seem to be more suitable to more stationary signals with
less amplitude fluctuations in time. These observations on the
adaptive methods suggest that subtraction of noise from the
raw signal poses a risk of signal distortion by creating even
additional noise. This could explain the bad performance of
these adaptive filters.

The third conclusion is that on a personal level, in the
frequency domain, upside potential might be up to 37.6 %
improvement as compared to the Perceive toolbox being the
benchmark. This conclusion contradicts with the aim of aDBS
to find an universal method.

The fourth conclusion is that on the other two levels, the
group level and the simulated level, no clear difference in
outcomes could be identified between the template variations.

The fifth and last conclusion is that the Perceive toolbox
shows the best ECG noise suppression performance for both
the group and simulated levels. For the patient group the
Perceive shows an improvement of approximately 10 % over
the various template subtraction methods. For the simulated
data the Perceive toolbox shows a performance improved of
approximately 3% over the template subtraction methods.

5. DISCUSSION & RECOMMENDATIONS

This section outlines various observations and recommen-
dations from my side.

A. Exploring other Adaptive Filters

First of all, this project scope as initially defined falls short
into exploring other adaptive filters such as pattern recogni-
tion and neural net adaptive filters. In hindsight, in general
these filters are more suitable for signals with characteristic
pattern repetition, such as the ECG. Notably, we have used
the PADASIP NLMS Adaptive filter toolbox that requires a
random weighting factor. To counteract the randomness of this
approach, we have arbitrarily selected a 1000 calculations to
estimate the noise component.

It can be recommended to conduct further research regard-
ing other adaptive filters such as pattern recognition and neural
network to explore the potential of adaptive filters for ECG
noise suppression within LFP data.
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B. Critical influence of Time Synchronization

Secondly, this research was limited by the lacking accurate
timestamps of the LFPs captured by the Medtronic Percept”? .
The default timestamp of this system is inadequate for reliable
data synchronization of LFPs with other biometric data. Also
we have found that an alternative synchronization method, the
stimulation ramping approach, differs on each LFP streaming
channel and required manual adjustment on thresholds. Thus
this alternative synchronization method is prone to subjective
error. As the outcomes of Adaptive Zero-Delay and Autopeak
are based on this synchronization approach, it makes it very
difficult to exclude the impact of inaccurate synchronization
on the overall performance.

It can be recommended to explore and implement a reliable
time synchronization method. This would improve the align-
ment of other properly timestamped biometric data. Only on
the foundation of a reliable synchronization method, machine
learning could accelerate the learning of biomarker identifica-
tion and implementation.

C. Signal Lengths

Thirdly, as the length of the available survey data used for
comparison was only 20 seconds, we had to limit ourselves to
shorten the input signals to 20 seconds as well.

It can be recommended, to use longer time windows of
survey and input data for a more accurate approximation of
the performance of the ECG noise suppression methods.

D. Influence of Beta-Burts on PSD analysis

Fourthly, in this project, we have used Fourier transforma-
tion to analysis the signals in the frequency domain. However
it has been found that a Fourier transform excludes the ability
to analyse beta-bursts, that have been reported as a biomarker
for movement loss [31]-[33].

It can be recommended to extend the research on ECG noise
suppression models to find and highlight the beta-bursts.

E. Excluded Patient Biometrics

Lastly, another drawback of the scope of this project is that
some obvious biometric data, such as gender or progressive
state of PD, were not considered. This might be important as
we identified personal tweaking as a more promising approach.

It is suggested to take into account various other biometric
factors such as gender, progressive state and hormonal dif-
ferences for a more in detail analysis. Apart from the used
BrainSense”™ that measures locally, one could also the novel
Medtronic SenSight” technology, that provides directional
information as well [34], [35].
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Longitudinal recordings in patients implanted with VISIT 1
DBS electrodes STIM OFF
Patient Identificatie Nummer: |[P|D|_| | | Onderzoeker:|_| |

Brainsense meting STIM OFF en ON

Instellen BrainSense met gewenste frequenty en pulse width, 0 mAl

Instrueer de patiént niet te spreken tijdens de meting.

Gebruik “Start” en “Stop” triggers TMSi per taak!

D 1 minuut rust

I:I 30 seconden statisch bewegen (vingers en pols RECHTS in hyperextensie)
I:I 10 seconden rust

D 30 seconden statisch bewegen (vingers en pols LINKS in hyperextensie)
D 10 seconden rust

D 30 seconden tappen RECHTS (wijsvinger op duim tappen RECHTS)

D 10 seconden rust

D 30 seconden tappen LINKS (wijsvinger op duim tappen LINKS)

I:I 10 seconden rust

D 30 seconden dynamisch bewegen [RECHTERhand open-dicht knijpen)
D 10 seconden rust

I:I 30 seconden dynamisch bewegen (LINKERhand open-dicht knijpen)

D 10 seconden rust

I:I 30 seconden dynamisch bewegen (RECHTERhand pro/supinatie)

I:I 10 seconden rust

D 30 seconden dynamisch bewegen (LINKERhand pro/supinatie)

D 10 seconden rust

D 30 seconden intentionele bewegingen (vinger onderzoeker — neus patiént RECHTS)
D 10 seconden rust

I:I 30 seconden intentionele bewegingen (vinger onderzoeker — neus patiént LINKS)
I:I 10 seconden rust

D 30 seconden spraak (tekst oplezen)

I:I 10 seconden rust

D 30 seconden stappen op de plaats (indien mogelijk)

D 10 seconden rust

BrainSense meting en TMSi meting CONTINUEREN, NIET PAUZEREN! Moar let op: max. 30 min streomen.
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Longitudinal recordings in patients implanted with VISIT 1
DBS electrodes STIM ON
Patient Identificatie Nummer: |[P|D|_| | | Onderzoeker:|_| |

Amplitude (mA) langzaam opvoeren per electrode tot aan gewenste effect (of pre-operatief bepaald maA)
Instellingen Percept:

Rechts

mA Frequency Pulse width
Links

mA Frequency Pulse width

BrainSense meting met stimulatie aan

Instrueer de pati€nt niet te spreken tijdens de meting.

Gebruik “Start” en “Stop” triggers TMSi per taak!

D 1 minuut rust

D 30 seconden statisch bewegen (vingers en pols RECHTS in hyperextensie)
I:I 10 seconden rust

I:I 30 seconden statisch bewegen (vingers en pols LINKS in hyperextensie)
I:I 10 seconden rust

D 30 seconden tappen RECHTS (wijsvinger op duim tappen RECHTS)

D 10 seconden rust

D 30 seconden tappen LINKS (wijsvinger op duim tappen LINKS)

D 10 seconden rust

D 30 seconden dynamisch bewegen (RECHTERhand open-dicht knijpen)
I:I 10 seconden rust

I:I 30 seconden dynamisch bewegen (LINKERhand open-dicht knijpen)

D 10 seconden rust

D 30 seconden dynamisch bewegen (RECHTERhand pro/supinatie)

D 10 seconden rust

D 30 seconden dynamisch bewegen (LINKERhand pro/supinatie)

D 10 seconden rust

I:I 30 seconden intentionele bewegingen (vinger onderzoeker — neus patiént RECHTS)
I:I 10 seconden rust

I:I 30 seconden intentionele bewegingen (vinger onderzoeker — neus patiént LINKS)
D 10 seconden rust

D 30 seconden spraak (tekst oplezen)

D 10 seconden rust

D 30 seconden stappen op de plaats (indien mogelijk)

D 10 seconden rust
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# -"- coding: utf-8 -™-

N

Created on Mon Nov 29 16.28:24 2021

@author: palla

N

from __future__ import division
import numpy as np

import matplotlib.pylab as plt
import padasip as pa

import scipy.io as sio

from numpy import save

from scipy.signal import find_peaks

#spectral density tools
from scipy import signal

def pknorm(x, mvalue, stdvalue):
X0 = (x - mvalue)/stdvalue
return xo

def znorm(x, axis=0):
meanval = np.mean(x, axis)
stdval = np.std(x, axis)
X0 = pknorm(x, meanval, stdval)
return xo

#A. loading and preprocessing of mat files into python

fs = 250

fullortask = ".task1.'

fullortaskkey = ‘task1’

namepatient = '‘PD’

chosenLFP = 'LFPF

folder = "C./"

patient = sir(namepatient) + str(fullortask)

ECG_ = sio.loadmat(folder + patient + 'ECG.mat)

LFP_L = sio.loadmat(folder + patient + 'LFPL.mat’)
LFP_R = sio.loadmat(folder + patient + ‘LFPR.mat’)

#taking right key out of dict

ECG = ECG_[str(namepatient)+str(fullortaskkey)+"ECG"].T
LFP_L = LFP_L[str(namepatient)+str(fullortaskkey)+"LFPL"].T
LFP_R = LFP_RJ[str(namepatient)+str(fullortaskkey) +'LFPR"].T

ECGinverse = ["PD010"]
if str(namepatient) in ECGinverse:

ECG = ECG[np.logical_not(np.isnan(ECG))]
else:

ECG = -ECG[np.logical_not(np.isnan(ECG))]

LFP_L_whole = LFP_L[np.logical_not(np.isnan(LFP_L}))]
LFP_R_whole = LFP_R[np.logical_not(np.isnan(LFP_R))]

LFP_L = LFP_L_whole[0:5000]
LFP_R = LFP_R_whole[0:5000]

ECG = ECG[0:5000]

if str(chosenLFP) =='LFP_L_OFF"
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LFP = LFP_L
else:
LFP = LFP_R

ECG_squeeze = np.squeeze(ECG)
ECG_prehp = ECG_squeeze
time_ECG_prehp = len(ECG)/fs

# highpass filter of 1 hz

t = np.linspace(0, time_ECG_prehp, len(ECG_prehp), False)
b, a = signal.butter(4, 1, 'high’, analog=True)
w, h = signal.freqs(b, a)

plt.semilogx(w, 20 * np.log10(abs(h)))
plt.title('Butterworth filter frequency response’)
plt.xlabel('Frequency [radians / second])
plt.ylabel(' Amplitude [dB])

#plt.margins(0, 0.1)

plt.grid(which="'both’, axis="both’)

plt.axvline(1, color='green’) # cutoff frequency
plt.show()

fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(ECG_prehp)

#x2.axis([0, 1-2, 2J)

ax1.set_xlabel('samples [k] ‘)

sos = signal.butter(6, 1, 'hp', fs=250, output='sos’)
ECG_posthp = signal.sosfiltfilt(sos, ECG_prehp)
ax2.plot(ECG_posthp)

ax2.set_title('After 1 Hz high-pass filter’)
#ax2.axis([0, 1, -2, 2])

ax2.sel_xlabel('samples [k] ')

plt.tight_layout()

plt.show()

A=0
B = len(LFP)

LFP_squeeze = np.squeeze(LFP)

LFP_norm = znorm(LFP_squeeze)
ECG_norm = znorm(ECG_posthp)

LFP_range = LFP_norm[A:B]
ECG_range = ECG_norm[A:B]

#B. Extended part for Adaptive Autopeak.
w#detect R-peaks
flag_peak = 0

data = np.squeeze(ECG_norm)

rpeaks, _= find_peaks(data, height=2)
plt.plot(data)

height_r_ECGpeaks =data[rpeaks]
plt.plot(rpeaks, data[rpeaks], "x")
plt.plot(np.zeros_like(data), "--", color="brown")
plt.show()

data = np.squeeze(-ECG_norm)

speaks, _= find_peaks(data, height=2)
plt.plot(data)

height_s_ECGpeaks =data[speaks]
plt.plot(speaks, data[speaks], "x")
plt.plot(np.zeros_like(data), "--", color="brown")
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plt.show()

meanheightsecgspeaks = np.mean(height_s_ECGpeaks)
meanheightsecgrpeaks = np.mean(height_r_ECGpeaks)

# Determine orientation R/S peaks

if np.mean(height_s_ECGpeaks) > np.mean(height_r_ECGpeaks):
rpeaks = speaks;
flag_peak = 1

else:
data = ECG_range

print(‘flagpeak =" +str(flag_peak))
locs = rpeaks

locs_lfp =[]

peakl_val =[]

peakl_idx =[]

peak2_val =[]

peak2_idx =[]

if locs[0] <= 20:
locs[1:]

if locs[-1] >= (len(data)-20):
locs[:-2]

if locs[0] <= 20:
locs[1:]

if locs[-1] >= (len(data)-20):
locs[:-2]

if locs[0] <= 20:
locs[1:]

if locs[-1] == (len(data)-20):
locs[:-2]

interval = np.transpose(locs)

intervala = []
intervalb= []

# Determine start and end of interval

fori in range(len(interval)):
intervala.append(intervalli]-20)
intervalb.append(intervalli]+20)

intervalzip = list(zip(intervala,intervalb))

column =[]
fori in range(len(intervalzip)):
column.append(LFP_range[intervala[i]:intervalb[i]])

fori in range(len(intervalzip)):

peak1_val.append(np.amax(column[i]))
peak_idx.append(np.where(column[i] == np.amax(columnli])))
peak2_val.append(np.amin(celumn[i]))
peak2_idx.append(np.where(column[i] == np.amin(celumn(i])))

peak1_val = np.squeeze(peakl_val
peak1_idx = np.squeeze(peakl_idx
peak2_val = np.squeeze(peak2_val

)
)
)
peak2_idx = np.squeeze(peak2_idx)
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if np.mean(abs(peak1_val)) > np.mean(abs(peak2_val)):
locs_lfp = locs -20 + peak_idx

flag_peak = O

else:
locs_lfp = locs -20 + peak2_idx
flag_peak = 1

meandifferencelocs = np.mean(locs_Ifp-locs)

#idenitfy delay value
C = int{(meandifferencelocs)
#C= 0 (for Adaptive d0 C=0)

# C. Preprocess for Adaptive NLMS filer
lenLFPminint = len(LFP)-1

#C. equalize lengths for adapfive NLMS input
LFP_syn = LFP_squeeze[1+C:lenLFPminint+C-1]
ECG_syn = ECG_posthp[1:lenLFPminint-1]

LFP_norm = znorm(LFP_syn)
ECG_norm = znorm(ECG_syn)

A=0
B = len(LFP_norm)

#-3 1o equalize lengths due to matrix of 4 input
ECG_range = ECG_norm[A:B]
LFP_range = LFP_norm[A:B-3]

mu = 0.001

xinput = pa.input_from_history(ECG_range, 4) # input ECG
dinput= LFP_range

input_y =[]
input_e =]
input_w =[]

#D. NLMS Adaptive Noise Cancellation Filter

for i in range(1000):
f = pa.filters.FilterNLMS(n=4, mu=0.001, w="random")
y_i, e_i, w_i = f.run(dinput, xinput)
input_y.append(y_i)
input_e.append(e_i)
input_w.append(w_i)

y_arr = np.array(input_y)
e_arr = np.array(input_e)
w_arr = np.array(input_w)

y = np.average(y_arr, axis=0)

e = np.average(e_arr, axis=0)
w = np.average(w_arr, axis=0)
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