

Delft University of Technology

RedactBuster
Entity Type Recognition from Redacted Documents
Beltrame, Mirco; Conti, Mauro; Guglielmin, Pierpaolo; Marchiori, Francesco; Orazi, Gabriele

DOI
10.1007/978-3-031-70890-9_23
Publication date
2024
Document Version
Final published version
Published in
Computer Security – ESORICS 2024 - 29th European Symposium on Research in Computer Security,
Proceedings

Citation (APA)
Beltrame, M., Conti, M., Guglielmin, P., Marchiori, F., & Orazi, G. (2024). RedactBuster: Entity Type
Recognition from Redacted Documents. In J. Garcia-Alfaro, R. Kozik, M. Choraś, & S. Katsikas (Eds.),
Computer Security – ESORICS 2024 - 29th European Symposium on Research in Computer Security,
Proceedings (pp. 451-470). (Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14983 LNCS). Springer.
https://doi.org/10.1007/978-3-031-70890-9_23
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-70890-9_23
https://doi.org/10.1007/978-3-031-70890-9_23

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

RedactBuster: Entity Type Recognition
from Redacted Documents

Mirco Beltrame1, Mauro Conti1,2, Pierpaolo Guglielmin1,
Francesco Marchiori1(B), and Gabriele Orazi1,3

1 Department of Mathematics, University of Padua, Padua, Italy
{mirco.beltrame.1,pierpaolo.guglielmin}@studenti.unipd.it,

mauro.conti@unipd.it, {francesco.marchiori.4,gabriele.orazi}@phd.unipd.it
2 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

University of Technology, Delft, The Netherlands
3 FDM Business Services, Milan, Italy

Abstract. The widespread exchange of digital documents in various
domains has resulted in abundant private information being shared. This
proliferation necessitates redaction techniques to protect sensitive con-
tent and user privacy. While numerous redaction methods exist, their
effectiveness varies, with some proving more robust than others. As
such, the literature proposes several deanonymization techniques, rais-
ing awareness of potential privacy threats. However, while none of these
methods are successful against the most effective redaction techniques,
these attacks only focus on the anonymized tokens and ignore the sen-
tence context.

In this paper, we propose RedactBuster, the first deanonymiza-
tion model using sentence context to perform Named Entity Recognition
on redacted text. Our methodology leverages fine-tuned state-of-the-art
Transformers and Deep Learning models to determine the anonymized
entity types in a document. We test RedactBuster against the most effec-
tive redaction technique and evaluate it using the publicly available Text
Anonymization Benchmark (TAB). Our results show accuracy values up
to 0.985 regardless of the document nature or entity type. In raising
awareness of this privacy issue, we propose a countermeasure we call
character evasion that helps strengthen the secrecy of sensitive informa-
tion. Furthermore, we make our model and testbed open-source to aid
researchers and practitioners in evaluating the resilience of novel redac-
tion techniques and enhancing document privacy.

Keywords: Document Redaction · Privacy · Personally Identifiable
Information · Named Entity Recognition · Information Leakage

1 Introduction

Increasing document digitalization efforts have been adopted in several domains,
such as the corporate sector, healthcare, and government [39]. These proce-
dures allow for streamlined workflows, improving processing times and reducing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Garcia-Alfaro et al. (Eds.): ESORICS 2024, LNCS 14983, pp. 451–470, 2024.
https://doi.org/10.1007/978-3-031-70890-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70890-9_23&domain=pdf
https://doi.org/10.1007/978-3-031-70890-9_23

452 M. Beltrame et al.

reliance on manual manipulation. As a side effect, the amount of data exchanged
has also seen a significant rise [29]. To illustrate the magnitude of the phe-
nomenon, in 2022 and in Italy alone, the car and motorcycle insurance market
generated more than 39 million documents between contracts and claims for a
market of about 22.6 billion euro [19]. Each of these 39 billion documents contains
sensitive information that needs to be protected. While the process of digital-
ization can improve efficiency and optimization in specific tasks thanks to the
recent advancements of Artificial Intelligence (AI) and data-driven approaches,
it can cause privacy concerns. Indeed, the lack of obfuscation of sensitive content
may lead to unfair profiling of certain individuals or discrimination of specific
groups [17]. For these reasons, anonymization defined as “the process of render-
ing personal data anonymous” has been mandated for General Data Protection
Regulation (GDPR) compliance in the EU [14].

Several anonymization techniques have been proposed, given the importance
of protecting user privacy and complying with regulations. In the context of pri-
vacy protection, redaction refers to the process of selectively editing or obscuring
sensitive information from documents to prevent unauthorized access or disclo-
sure [2]. It allows for removing only specific parts of a sentence while preserv-
ing the overall content of the text. In the Italian case, document redaction is
required for all public administrations. The Personal Data Protection Guarantor
(GPDP) obliges public organizations to publish how public resources were used
by anonymizing Personally Identifiable Information (PII) that refers to individ-
uals. However, this anonymization process might leave some information about
the users if only sensitive words are redacted. For example, inferring the entity
type of redacted content can pose a privacy threat as it could be cross-referenced
with other open-source intelligence. This can also lead to security risks, as the
knowledge of specific locations or individuals involved in sensitive documents
could be leveraged for malicious purposes. Some examples of redaction tech-
niques are shown in Fig. 1. One redaction technique blurs a specific text part to
make it unreadable (Fig. 1b). Another considers specific parts of the document
as images and pixelates them by reducing their image quality (Fig. 1c). Blackout
or whiteout redaction techniques (when applied correctly) are more effective, as
they allow to discard entirely the content to be anonymized and substitute it
with black or white boxes (Fig. 1d).

While redaction techniques are commonly used in many domains, their secu-
rity in protecting user privacy is uncertain. Indeed, several works in the literature
propose attacks for determining redacted content in sensitive documents. For
example, blurred and pixelated content can be unmasked with high accuracy [18].
For these reasons, other redaction techniques, such as blackout and whiteout,
should be preferable. While the effectiveness of other redaction techniques has
not yet been discussed, no attacks in the literature have been proposed. Further-
more, the existing attacks focus exclusively on the redacted tokens. Since with
more effective anonymization techniques the sensitive content is erased from the
document, this strategy is not effective anymore.

RedactBuster 453

Fig. 1. Examples of redaction techniques.

Contribution. In this paper, we present RedactBuster, the first document
deanonymization attack against the most effective redaction technique. We open-
source and evaluate our framework on the most comprehensive dataset, obtaining
results of up to 0.985. We also discuss the implementation of several countermea-
sures to our attack and propose a novel technique to enhance redaction efforts.
Our contributions can be summarized as follows.

– We present RedactBuster, the first deanonymization attack against the
most effective redaction technique. Our methodology leverages state-of-the-
art Machine Learning (ML) and Deep Learning (DL) models for computing
sentence embeddings and performing classification.

– We evaluate our framework on Text Anonymization Benchmark (TAB), the
most extensive dataset publicly available on document redaction [32]. This
dataset contains 1268 court cases in English, which have been properly anno-
tated, labeled, and redacted. Our results show baseline accuracy values of
0.958, which can reach 0.985 by fine-tuning the embedding model on our spe-
cific task. We test several ML and DL models, comprehensively evaluating
different architectures’ capabilities and limitations.

– We propose character evasion as an effective countermeasure against our
attack and test them against our model. This technique involves the exchange
of specific homoglyphs, allowing users to read and process the document
effortlessly but preventing malicious parties from extracting the redacted
entity types. We also demonstrate the effectiveness of our countermeasure
on the dataset and show how swapping only five characters can decrease the
attack success rate to 0.195.

– We open-source our framework at: https://github.com/spritz-group/
RedactBuster.

Organization. Our paper is organized as follows. In Sect. 2, we discuss related
works on anonymization and attacks on redaction techniques. Section 3 presents
our system and threat model, while technical details on the methodology are
provided in Sect. 4. In Sect. 5, we evaluate our framework, and we propose coun-
termeasures in Sect. 6. Finally, Sect. 7 concludes our work.

https://github.com/spritz-group/RedactBuster
https://github.com/spritz-group/RedactBuster

454 M. Beltrame et al.

2 Related Works

The importance of redaction for protecting documents containing sensitive data
or PII does not have a widely shared standard among parties to date. In June
2023, a litigation between Microsoft and the Federal Trade Commission demon-
strated that (i) documents can still be redacted by hand using a Sharpie marker
and (ii) redacted document represents a threat to organizations because of pos-
sible and expensive data leaks1. This event highlights how sensitive informa-
tion circulating through documents is still subject to human error today. The
unstructured nature of a written document makes it impossible to apply analyt-
ical methods to arrive at a specific result. Despite the current tools to support
this problem, manual validation is simultaneously the only solution to curb the
deficiency and the source of possible issues. Therefore, in this section, we describe
which are the current solutions for document redaction, how PII can be recog-
nized within a text, and which unredaction techniques have been found to date.

Redaction Techniques. Many studies and patents tackle the redaction phase
per se, covering some parts of the text. In [21], the procedure is specifically
crafted to work in synergy with Microsoft Office Word. In [27] a rule-set based
automatic redaction system is presented, while [12] proposes a dynamic redaction
based on tags specified by the user. Instead of covering, random generation of
sensitive characters and numbers has also been patented [26]. A similar approach
is presented in [1], which includes a redaction and storage system for redacted
documents. Another valuable approach is presented in [33], which implies the
concept of blockchain to preserve the security of an already-redacted document.
Unfortunately, such studies neglect the core of the redaction process, which is
identifying the sensitive characters of a text that must be covered.

Named Entity Recognition (NER). NER is a crucial component of Natural Lan-
guage Processing (NLP). It identifies predefined categories of objects in text,
such as names of individuals, organizations, locations, expressions of time, and
quantities. In [10], the authors present a novel approach in the field by employ-
ing bidirectional Long Short-Term Memory (LSTM) and Convolutional Neural
Network (CNN) architecture. The insight of the latter work influenced the cre-
ation of the well-known BERT [13], a milestone on which much work in NLP
is still based today. BERT has also proven to be highly effective in develop-
ing techniques for NER [24,25]. Nevertheless, BERT models are also adopted
as hyper-specialized models for particular domains such as [40] materials and
aerospace engineering [36]. The scientific community has shown approaches for
automation of NER and subsequent redaction of sensitive parts, albeit super-
vised by an end user [2]. On the same line, Microsoft developed and maintains
an open source tool called PRESIDIO [28], which analyzes a text and, based on
multiple recognizers, can detect and anonymize PII.

1 https://www.theverge.com/2023/6/28/23777298/sony-ftc-microsoft-confidential-
documents-marker-pen-scanner-oops.

https://www.theverge.com/2023/6/28/23777298/sony-ftc-microsoft-confidential-documents-marker-pen-scanner-oops
https://www.theverge.com/2023/6/28/23777298/sony-ftc-microsoft-confidential-documents-marker-pen-scanner-oops

RedactBuster 455

Unredaction. Despite exciting developments in text redaction, studies are point-
ing out that some methods of information coverage are ineffective and vulnerable
to possible data leaks. In [5], the authors assess standard PDF redaction tools
vulnerability. The study enlightens the possibility of recovering first and last
names just because of subpixel-sized shifts of characters. Instead, the authors
of [18] demonstrate the inadequacy of mosaicing, blurring, and pixelating meth-
ods as graphical coverage of sensitive characters. To further demonstrate how
dangerous such methods are, the security engineer Dan Petro released a proof-of-
concept [31]. Although the outcome might be preferred to solid black rectangles,
such aberrations represent an actual information leakage for a potential attacker.

3 System and Threat Model

We now discuss the assumptions defining both the redaction system’s function-
ality and potential attackers’ capabilities. In particular, Sect. 3.1 delves into the
system model and the functionalities of a redaction pipeline in an adversary-
free environment. In Sect. 3.2, we analyze the attacker’s knowledge of the target
model in real-world scenarios.

3.1 System Model

Digital documents are commonly used online to share knowledge, sign contracts,
or write reports. Due to the nature of documents, it is expected to share such files
while preserving the sensitive information. Redaction is the process that allows
companies and organizations to identify and protect the most sensitive parts of
a document by covering such portions of the text. To date, no objective standard
has been certified as the best methodology for digital document redaction. The
security of such an operation falls in the hands of individuals or companies that
may adopt more or less virtuous methods.

A general pipeline that organizations adopt is the one shown in Fig. 2 and
includes the following main steps:

1. Automated Entity Recognition. The text in a document is fed into a NER
software, which produces an intermediate document version with highlighted
entities that will potentially be redacted. Entities can be differentiated by
using different highlighting colors depending on the kind of entity (e.g., proper
name, date, location). If needed, entities that can or must be disclosed safely
can be included in a whitelist.

2. Human validation. An operator takes charge of the intermediate document
and manually reviews the highlighted entities to assess that there are no
missed detections. Once the validation is complete, the final redacted version
of the document can be generated.

Although redaction is a lossy process of the original digital document, many
details can still be used to empower inference techniques for disclosure purposes.

456 M. Beltrame et al.

Fig. 2. General pipeline for document redaction.

3.2 Threat Model

RedactBuster aims to predict which kinds of entities are hidden underneath a
redacted text. Even though working with unstructured text contained in doc-
uments is usually a challenge, our model wants to leverage the complexity of
sentences to achieve its goal.

The attacker employing RedactBuster is interested in reconstructing the
redacted text, ideally being able to rebuild the original unredacted document. In
other words, they want to revert the pipeline described in Sect. 3.1. Documents
are redacted to be shared with a broader audience that might not otherwise view
the information in plain text. For this reason, we assume that the attacker has
access to a redacted document that, if deanonymized, could lead to real gain.
For instance, the attacker may want to access plaintext documents to extort,
threaten, or ransom the victim.

Formal Definition. We will now outline the context in which the attacker oper-
ates, considering four key criteria [3]: their goals, knowledge, capabilities, and
strategies.

– Goal: The attacker wants to recover the original version of a document that
has been redacted.

– Knowledge: The attacker knows the area in which the document of interest
falls. A list of examples includes fiscal, legal, or technical scope.

– Capability: The attacker knows how and where to find redacted documents
they aim to deanonymize.

– Strategy: The attacker extracts the redacted text from the target document
and processes it through the proposed model. With the entity predictions,
they can leverage other kinds of attacks (such as social engineering attacks
or data leaks) or knowledge bases to fully unredacted the target document.

Practical Scenario. To accomplish the goal, the attacker of our threat model
must progress through different stages: collection, processing and recomposition:

1. Collection: The attacker gains access to redacted documents. Optionally, the
attacker can use other publicly available datasets similar to the target docu-
ment’s scope to fine-tune the unredaction system.

RedactBuster 457

2. Processing: After being extracted, the redacted text is processed by the pro-
posed model to gain predictions on covered entity types.

3. Recomposition: Combining the results of the previous step and additional
knowledge (personal/public domain or combined attacks), the attacker recov-
ers the original document’s plain text.

The main focus of this paper is mainly encapsulated in the processing step.
The collection step is dependent on the target that the attacker sets. Similarly,
in the recomposition step, the attacker has a plethora of possibilities that are
impossible to describe exhaustively and are, in fact, not primarily of interest
to the purpose of the paper. Some essential insights may already be contained
within the redacted document: one example is the length of the redacted block,
which can determine with a reasonable degree of approximation how many char-
acters the hidden text consists of.

Along the same lines, the step of extracting text from the target document
(typically a PDF file) is beyond the scope of this paper. The documents are
usually structured, and the text can be extracted even with a simple copy-
paste from any file reader. In cases where the document is unstructured because
perhaps it is the result of scanning, Optical Character Recognition (OCR) can
be involved. This technology has been extensively examined by the academic
community [9,22] as well as being widely adopted in the consumer world. In
addition, there are OCR open source projects such as Tesseract2 or Apache
Tika3, both widely adopted by the developers.

4 Methodology

We now detail our methodology and the techniques we use for unredaction. In
Sect. 4.1, we provide the specifics of the dataset and how it generalizes real-world
scenarios. Section 4.2 discusses the data processing steps applied, constituting a
crucial component of our contribution. In Sect. 4.3, we detail the used models
and their hyper-parameters. A complete overview of our framework is shown in
Fig. 3.

4.1 Dataset

Publicly available datasets present several limitations that make their appli-
cation to our study particularly challenging. In particular, most datasets are
restricted to clinical records and describe only a single individual [20]. Fur-
thermore, many are related to public figures, include only short sentences, are
composed of images, or have been subject to prior redaction or anonymization
techniques [30].

2 https://github.com/tesseract-ocr/tesseract.
3 https://tika.apache.org/.

https://github.com/tesseract-ocr/tesseract
https://tika.apache.org/

458 M. Beltrame et al.

Fig. 3. RedactBuster framework overview.

Text Anonymization Benchmark. For our study, we use the TAB dataset, an
open-source annotated corpus consisting of 1268 English-language court cases
from the European Court of Human Rights (ECHR). Twelve university stu-
dents at the University of Oslo have annotated the documents of this corpus after
being trained on their classification. In particular, multiple users have annotated
each document to cross-check their output. In case of disagreements, conflicts
were resolved among students based on the guidelines provided by the authors.
These guidelines indicate that each annotator should redact direct identifiers
and quasi-identifiers. The former refers to unique values given to an individual,
e.g., full names, email addresses, and social security numbers. The latter refers
to publicly known information of an individual that doesn’t enable identifica-
tion when isolated, e.g., gender, nationality, postal code. Each document is then
distributed in JSON format and contains the following data.

– Text of the court case used during the annotation.
– Document annotation.
– The target of the anonymization task.
– Whether another annotator revised the document.

Labels. The redacted text and its properties will constitute the starting point for
extracting the features needed for classification. Instead, the annotations repre-
sent our study’s labels and ground truth. In particular, each redacted entity
belongs to one of eight classes: datetime (e.g., “15 December 1993”), orga-
nization (e.g., “Court of Cassation”), person (e.g., “Dr Price”), demographic
(e.g., “police officer”), location (e.g., “London”), miscellaneous (e.g., “overdose
of paracetamol”), quantity (e.g., “2,000,000 Swedish kronor (SEK)”), and code
(e.g., “36619/03”).

4.2 Data Processing

When dealing with classification tasks, features and their correlation are the most
significant variables models can use to compute predictions. For this reason, we
first need to split the data for each annotation and define its ground truth. Then,

RedactBuster 459

features must be extracted from the redacted sentences, and eventual biases in
the dataset must be removed.

Preprocessing. The first step is to clean the text of each document and remove
artifacts that might tamper with the classification process. In this step, we han-
dle end-of-line characters and particular abbreviations. For instance, court texts
in the dataset always include section titles (e.g., “THE FACTS”), which are
followed by a series of \n characters. We handle them by substituting them
with dot characters and an appropriate number of spaces since their removal
would make the redaction offset wrong. We present more details of the textual-
level modifications we employ in Appendix A.1. Since each document contains
several redacted entities, we separate them into single samples. This facilitates
classification, as ML and DL models predict one label for each sample. There-
fore, we split the text into sentences using NLTK PunktSentenceTokenizer [4].
Each sentence is then associated with the calculated offset and entity type of
the redactions that are present inside. After this procedure, however, we might
still encounter sentences containing multiple redacted entities. For this reason,
we duplicate the sentence and switch the redaction target until all confidential
entities are redacted once. This also serves as a data augmentation technique, as
a single sentence can represent multiple labels depending on the redacted data.
An example is shown in Table 1.

Table 1. Example of sentence splitting and redaction.

Sentence Redaction Offset Type

It happened on 19/10/2004. It happened on **********. 〈15, 24〉 DATETIME
Paolo was in Amsterdam. ***** was in Amsterdam. 〈0, 4〉 PERSON

Paolo was in *********. 〈13, 21〉 LOC

At this stage, the dataset comprises the redacted text, the redaction offset,
and the redaction type. However, we notice a substantial imbalance between the
class distribution of the labels. Indeed, the most frequent class is datetime with
34280 samples, while code comprises only 2781 samples. This heavy skew in the
data distribution can negatively impact a ML model performance, as it would
create bias in classification. Therefore, we perform random undersampling on
the data to balance the distribution.

Features. After the preprocessing steps, the training and testing dataset mostly
contain samples in text format. However, ML and DL traditionally require a
constant number of features from each sample to compute a prediction. For this
reason, we use a widespread technique in the NLP literature: computing embed-
dings [23]. Given the importance of sentence data in our dataset, we use Sen-
tenceTransformers (SBERT), a popular Python framework for generating text
and image embeddings [34]. This Python package provides several Transformer

460 M. Beltrame et al.

models with different sizes and performances. We use all-mpnet-base-v2 as
it provides the best performances overall. Indeed, in our threat model scenario,
resources or computational overhead do not represent an obstacle, as document
unredaction is not a time-constrained task.

SBERT models are generated and trained for general purposes and do not
focus on specific domains. As such, using an out-of-the-box model yields lower
accuracy values with respect to a specifically trained model. For this reason, we
resort to fine-tuning. With this procedure, we can retain the knowledge acquired
by the model during the original training procedure and adapt it to our particular
domain to increase performance. In the case of SBERT Transformers, fine-tuning
is performed by comparing sentences with one another and providing a similarity
score for the couple. This score is the cosine similarity. Given two vectors A and
B of length n, this metric is defined as follows.

cos (θ) =
A · B

||A|| ||B|| =

n∑

i=1

AiBi

√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

. (1)

The output of this score is then normalized on a scale from 0 to 1, where higher
values indicate higher similarity between the sentences. Therefore, we extract a
subset of the training dataset containing 250 samples for each label (i.e., 2000
total samples). For each label, we fine-tune the model as follows: (i) we group
sentences in pairs (i.e., 125 for each label) and provide a similarity score of 0.8,
and (ii) we randomly pick a sentence from that label and a sentence from another
random label (until obtaining 125 couples) and provide a similarity score of 0.2.
We select those values since we want our model to comprehend the similarity
of the sentence context around the redaction without losing their individual
properties. Indeed, since embeddings are created from redacted sentences, our
Transformer model can only process the remaining sentence tokens. Therefore,
phrase context provides the knowledge the classifier requires to compute predic-
tions. It is worth noting that the 2000 samples used for fine-tuning the model
are then discarded from the dataset. We do this to ensure that our Transformer
model and the classifier are presented with new data and to prevent overfitting.

After fine-tuning, our Transformer generates embeddings from the remaining
training sentences (i.e., 2531 for each label). The embedding size is determined
by the Transformer model used for computation, which, in our case, is 768. We
now oversample the data at the embedding level to compensate for the under-
sampling performed during preprocessing. This is a widespread data augmenta-
tion technique used in ML literature, as it can compensate for the possible lack
of data in a dataset and allow the classifier to train on more samples [15]. It
is also worth noting that, in our scenario, this procedure can be applied only
after the embedding computation, as oversampling textual data can provide sev-
eral artifacts that can instead decrease the classifier performance. In particular,
we use Synthetic Minority Over-sampling Technique (SMOTE) as oversampling
technique [7]. This technique selectively generates synthetic samples through a

RedactBuster 461

nearest-neighbors approach for the minority class (which, in our case, are all the
classes) by interpolating between existing instances. We generate samples for
each label until we obtain 3500 total samples for each class. An overview of the
data balancing process is shown in Appendix A.2. We then split our dataset in
training and testing respective size percentages of 85% and 15%.

4.3 Models

After dealing with the dataset and its feature extraction, we design a classifier
for the unredaction task. We present a comprehensive study of different state-of-
the-art models by considering three ML models and two DL models. For the ML
models, we perform GridSearch on different hyper-parameters configurations to
find the best values for them. In particular, we perform a 5-fold cross-validation,
removing the need to include a validation set in the train and test dataset split.
GridSearch is performed on a balanced subset of the original dataset (∼10000
samples). Then, the found hyper-parameters are applied to the model to train
on the whole training dataset. DL architectures are instead validated manually
due to the need to test multiple architectures and layers. Furthermore, being
GPU-accelerated, they are significantly faster with respect to the ML executed
on the CPU.

ML Models. The first model we test is the Random Forest (RF) [6], an ensemble
learning method that constructs multiple Decision Tree (DT) during training.
Each tree is trained on a random subset of the dataset (bagging), and a random
subset of features is considered for each split, which adds randomness and reduces
overfitting. Hyper-parameter search is performed on the number of estimators,
the criterion, and the max depth. The first variable determines the number of
trees in the forest (tested with 150, 200, and 300). The second represents the
function of measuring the quality of a split (tested with gini, entropy, and log
loss). The third describes the maximum depth of each DT in the forest, thus
controlling the complexity of the model (tested with 3, 5, or unlimited).

Another widespread model used in the literature is Support Vector Machine
(SVM) [11]. It works by finding the hyperplane that best separates classes in
a high-dimensional space. For nonlinear classification tasks, SVM uses a kernel
trick to map the original features into a higher-dimensional space where a sepa-
rating hyperplane exists. Hyper-parameter search is performed on the kernel and
the C parameter. The first variable specifies the kernel type for the algorithm
(tested with polynomial and radial basis function). In the case of the polynomial
kernel, we also search for its optimal degree (tested with 3 and 4). The second
represents the regularization parameter that controls the trade-off between max-
imizing the margin and minimizing the classification error (tested with 3, 5, and
7). We also use bagging (bootstrap aggregation) to make the training process
faster and reduce overfitting.

Finally, we test eXtreme Gradient Boosting (XGBoost) [8]. This model
implements gradient-boosting algorithms designed for speed and performance. It

462 M. Beltrame et al.

builds multiple decision trees iteratively and tries to correct the errors of the pre-
vious models. It uses a gradient descent algorithm to minimize the loss function
when adding new models. Hyper-parameter search is performed on the learning
rate, the L2 regularization, and the max depth. The first parameter prevents
overfitting by shrinking the feature weights to make the boosting process more
conservative (tested with 0.01, 0.1, and 0.3). The second variable is a regular-
ization term on weights that penalizes the complexity of the model, preventing
overfitting (tested with 0, 0.125, and 0.25). The third represents the maximum
depth of each tree (tested with 3, 5, or unlimited).

DL Models. The first DL model we test is a feedforward Deep Neural Network
(DNN) composed of multiple layers of neurons. Our specific implementation
consists of five fully connected layers. The input layer consists of 768 neurons,
corresponding to the data’s input features. We include four hidden layers with
512, 256, 128, and 64 neurons, respectively. Each hidden layer applies a linear
transformation followed by a Rectified Linear Unit (ReLU) activation function.
Finally, the output layer consists of 8 neurons, representing the final output
classes. The model is trained with cross-entropy as the loss function and uses
Adam as an optimizer with a learning rate of 0.00005 for 200 epochs with a
batch size of 100.

The other model architecture we use is the CNN. It is a type of neural network
particularly effective for processing grid-like data, such as images or, in this case,
one-dimensional sequences. CNNs utilize convolutional layers to automatically
and adaptively learn spatial hierarchies of features from the input data. The rea-
son why we select this specific architecture is for its capability to detect patterns
in data samples. Indeed, in text data, embedding captures semantic information
and relationships between words or tokens [37]. The convolutional layers can
effectively process these to detect specific sequences at different abstract levels,
such as character-level, word-level, and higher-level semantic features. In our
implementation, the first two layers are convolutional. The first layer applies
16 filters of size 16 to the input sequence, producing feature maps. The second
layer applies 16 filters of size 16 with a stride of 2, reducing the spatial dimen-
sions. After each convolutional layer, a max pooling operation is applied with
a kernel size of 8 and a stride of 2, which reduces the spatial dimensions while
retaining significant features. Following the convolutional layers, there are four
fully connected layers with 1376, 688, 344, and 172 neurons, respectively. These
layers further process the extracted features. Finally, the output layer consists
of 8 neurons, representing the final output classes. The model is trained with
cross-entropy as the loss function and uses Adam as an optimizer with a learning
rate of 0.0001 for 200 epochs with a batch size of 100.

5 Evaluation

We now evaluate the entity-type recognition capabilities of our proposed method-
ology. First, in Sect. 5.1, we disclose the metrics we use for the evaluation and

RedactBuster 463

their definition. We then provide in Sect. 5.2 a baseline evaluation of or models in
scenarios in which the Transformer model has not been fine-tuned on the corpus.
We finally show the effectiveness of our fine-tuning procedure in Sect. 5.3.

5.1 Metric

From an ML perspective, our task is a multiclass classification task in which
each label has the same importance. This is different from a binary classification
task, where there is usually a positive and negative class. For this reason, in our
scenario, it is not possible to define False Positives (FP), False Negatives (FN),
and True Negatives (TN). Instead, only two events can occur when the model
predicts the redacted entity type.

– True Positive (TP): the predicted entity type matches the original entity
type.

– Misclassification (Err): the predicted entity type does not match the original
entity type.

For this reason, we use accuracy as our evaluation metric, defined as the ratio of
correctly classified instances (across all classes) to the total number of samples
in the dataset.

Accuracy =

8∑

i=1

TPi

8∑

i=1

(TPi + Erri)
=

Correct Predictions
Total Predictions

. (2)

5.2 Baseline

We now present the evaluation of our models in baseline performance. This
implies that each model is trained on embeddings generated from a non-finetuned
Transformer model. As such, after processing the document sentences as detailed
in Sect. 4.2 and undersampling them based on the number of classes, we directly
compute the embeddings with the out-of-the-box model provided by SBERT.
Since, in this scenario, the 2000 samples for fine-tuning the Transformer are not
discarded, we reduce the oversampling percentage to reach the same number of
total data samples. Training and testing datasets are then generated with the
same split percentages. The results of this evaluation are shown in Table 2. DL
models outperform all ML models on the test dataset, with the DNN model
obtaining the best score. It is also worth noting that ML models are overfitting
in most cases. This can be observed by the high scores on the training dataset,
which, however, are not representative of the models’ capabilities on unforeseen
data. The ML models’ behavior in this task can be attributed to two main
factors: (i) the shallower architectures employed with respect to the DL models,
and (ii) the variance and complexity of the embeddings. Indeed, the DL models
reach high scores without overfitting, making their more complex architectures

464 M. Beltrame et al.

advantageous in this task. Furthermore, high training scores but lower testing
scores indicate that the models are memorizing the embeddings, which causes a
loss of generalization capabilities. This indicates that the vectorial representation
of the sentences is too statistically varied, making smaller models unable to
classify them.

Table 2. Baseline evaluation of the models.

Model Accuracy

Train Test

RF 1.000 0.697

SVM 0.892 0.747

XGBoost 0.970 0.714

DNN 0.979 0.958

CNN 0.981 0.924

5.3 Finetuning

To address the shortcomings of the baseline evaluations, we proposed using a
fine-tuned Transformer model for embedding computation. In Table 3, we pro-
vide an evaluation of our models trained and tested on the fine-tuned dataset
presented in Sect. 4.2. Most of the models present an increased score in both
test and train datasets with respect to the baseline of Table 2. Indeed, the best-
performing model is now the CNN. Furthermore, we can also notice a significant
improvement in the ML models’ scores. This growth shows that fine-tuning the
Transformer model makes the embedding more homogeneous, allowing for using
less complex models. Regardless, the deeper architectures provided by DL should
be preferred, as they can provide consistently high scores and prevent overfitting.

Table 3. Evaluation of the models on fine-tuned embeddings.

Model Accuracy

Train Test

RF 1.000 0.823

SVM 0.983 0.840

XGBoost 0.940 0.866

DNN 0.946 0.945

CNN 0.986 0.985

RedactBuster 465

6 Countermeasures

Given the high accuracies demonstrated by our evaluation in Sect. 5, it is clear
that sentence context can provide enough information for an attacker to infer
the entity type of a redacted token. This threat can constitute a privacy breach
since, through the entity type, data linkage can be performed, which might lead
to bias and discrimination. Therefore, it is important to develop effective coun-
termeasures depending on the field of application of the redaction. For exam-
ple, if sensitive documents are shared in PDF format, an option is to disable
printing functionalities, thus preventing possible attackers from detecting and
extracting textual information. However, this can be counter-effective, as it also
impedes legitimate parties from engaging with the document. Unfortunately, this
side effect also applies to other scenarios where text is extracted through OCR
systems. For instance, when redacted documents are stored in paper format,
their digitalization involves scanning and extracting textual data from retrieved
images. Thus, to prevent an attacker from being able to extract the text, adver-
sarial attacks against ML-based OCR systems can be crafted [35,38]. However,
this also prevents legitimate parties from obtaining the document’s contents.

Character Evasion. To address the shortcomings of traditional countermeasures
against document unredaction, we propose a technique we call character evasion.
This method involves substituting specific ASCII characters at test time to fool
the entire unredaction pipeline. Taking inspiration from adversarial and evasion
techniques, the perturbations applied to the textual data are imperceptible to the
human eye but are substantial enough to fool the ML systems [16]. Indeed, one
of our study’s assumptions is that the attacker can access (or generate) a dataset
of redacted documents. As such, the attacker fine-tunes its Transformer model
and trains the DL models to process the text automatically. Traditional evasion
techniques would use the models’ gradients to compute adversarial attacks at
the embedding level to cause misclassification. However, the attacker owns the
unredaction pipeline; thus, legitimate parties cannot access the models’ param-
eters and architectures. Therefore, countermeasures must be applied at the doc-
ument level to make the attacker misclassify redacted entity types. In this case,
the best strategy is to substitute characters in the text with graphically identical
ones, which, however, are processed differently by models. For example, each “a”
character in the text can be swapped with the “a” character. These characters
are homoglyphs, i.e., they appear visually similar but are distinct characters
with different Unicode code points. In particular, the former is a Latin character
(U+0061), while the latter is a Cyrillic character (U+0430). We only swap the
five most common letters in the English alphabet (for which an identical Cyrillic
or Armenian character is available) and show them graphically with their Uni-
code code in Appendix B. This technique is particularly effective in cases where
human readability is necessary while preserving the content’s privacy. Indeed,
while humans can perfectly read the text, the unredaction attack is no longer
effective. An evaluation of this countermeasure is shown in Table 4. When using
character evasion, the accuracy of the models drops to values close to random

466 M. Beltrame et al.

guessing. This behavior can be attributed to the Transformer model, which, by
processing foreign characters at test time, cannot generate embeddings statisti-
cally close to the ones on which the DL models are trained. ML models obtain
similar results, with an average accuracy of 0.238. Furthermore, we can notice
that fine-tuning the Transformer does not improve the results, making charac-
ter evasion a robust countermeasure against our attack. It is also worth not-
ing that several Unicode homoglyphs exist for each Latin character. Therefore,
the attacker cannot simply substitute the evaded characters one-to-one before
inputting the text into the unredaction pipeline. Moreover, most homoglyphs
are regular characters of different alphabets, making their detection increasingly
difficult when redacting text in other languages.

Table 4. Evaluation of the models with the character evasion countermeasure.

Model Accuracy

Baseline Fine-tuned

DNN 0.182 0.195

CNN 0.181 0.183

7 Conclusions

With the increase in document digitalization and the consequent rise in the
exchange of data, it is essential to ensure that sensitive content stays private.
For this reason, several redaction techniques have been proposed and used to
mask private tokens inside textual documents. With the recent discoveries on
the insecurity of specific techniques such as blurring and pixelation, the complete
removal of the token is often preferred as, in this way, the entity is erased from
the document. However, sentence context can still leak information on the entity
type that has been redacted.

Contribution. This paper presented RedactBuster, the first entity type extrac-
tion attack on redacted tokens. Our attack leverages state-of-the-art DL models
for the processing and classification of redacted sentences. We evaluated our
attack on a real-world dataset, obtaining an accuracy of 0.958. Furthermore, we
proposed an effective countermeasure called character evasion, which can aid
practitioners in defending against our discovered attack.

Future Works. For future endeavors, we aim to create a new dataset that can
aid this line of research. Indeed, while our dataset included several types of
documents, more entity types, and document styles can further solidify the con-
tributions provided in this paper. This opportunity also opens up the possibility

RedactBuster 467

of implementing OCR system in the experimentations, thus simulating a com-
plete document digitalization and redaction pipeline. Access to a more realis-
tic framework can aid us in detecting new vulnerabilities and developing more
robust solutions to ensure user privacy. Finally, further experiments, such as
adversarially training the Transformer with evaded characters, can enhance the
applicability of our countermeasure in more varied scenarios.

A Dataset

In this Appendix section, we give more details on some of the processing steps
that the text must go through before being fed to the Transformer for embedding
computation.

A.1 Character Preprocessing

After handling the section titles, we substitute all \n characters with spaces,
as some sentences might be contained in multiple lines. This procedure also
ensures that the overall number of characters in the text remains the same.
We also address possible abbreviations that are common in specific tokens. For
example, “no.” is often used for “number” (or “nos.” for “numbers”). These
words cause the tokenizer to end a sentence after the dot character. To fix this,
we swap the dot character with an underscore. Nevertheless, the tokenization
process introduces several artifacts in the text, as it often removes spaces after
a dot character at the end of a sentence. This causes the sentences’ offsets to
be shifted with respect to the original text. We treat sentences separately and
compute the redaction offsets w.r.t. to the sentence start to solve this. Finally,
once we find the word to censor inside the sentence, we substitute it with the
right amount of asterisk characters.

A.2 Data Balancing

To ensure that the models do not have any biases for classification, we balance
the number of data samples for each class with different techniques. An overview
is shown in Table 5. First, we randomly undersample data to obtain a balanced
distribution. Then, we use a fixed amount of samples for each class for fine-
tuning the Transformer model. Finally, with the remaining dataset, we perform
oversampling.

468 M. Beltrame et al.

Table 5. Number of samples for each class at different stages of the unredaction
pipeline.

Class Dataset Undersampling Fine-Tuning Oversampling

DATETIME 34280 2781 2531 3500

ORG 28828 2781 2531 3500

PERSON 13393 2781 2531 3500

DEM 6325 2781 2531 3500

LOC 6224 2781 2531 3500

MISC 5169 2781 2531 3500

QUANTITY 2963 2781 2531 3500

CODE 2781 2781 2531 3500

Total 122963 22248 20248 28000

B Character Evasion

In Table 6, we show all the characters we use for our character evasion technique
and their respective Unicode code.

Table 6. List of character evasion substitutions.

Original Evasion

Char Code Char Code

a U+0061 a U+0430

e U+0065 e U+0435

i U+0069 i U+0456

n U+006E n U+0578

o U+006F o U+043E

C Hardware and Software Configuration

All experiments have been conducted on a workstation with the following con-
figurations.

– CPU: AMD Ryzen 5 3600X.
– RAM: 32 GB at 3200 MT/s
– Operating System: Ubuntu 20.04.4 LTS.
– Software: Python 3.8.10.

All ML models are implemented with the Scikit-learn Python package,
which does not natively support GPU acceleration. Instead, DL models are
implemented with Pytorch 1.7.1.

RedactBuster 469

References

1. Bendersky, M., et al.: Information redaction from document data. US Patent
9,734,148 (2017)

2. Bier, E., Chow, R., Gollé, P., King, T.H., Staddon, J.: The rules of redaction:
identify, protect, review (and repeat). IEEE Secur. Priv. 7(6), 46–53 (2009)

3. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recogn. 84, 317–331 (2018)

4. Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL
2006 Interactive Presentation Sessions, pp. 69–72 (2006)

5. Bland, M., Iyer, A., Levchenko, K.: Story beyond the eye: glyph positions break
pdf text redaction. In: Proceedings on Privacy Enhancing Technologies (2023)

6. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic

minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
8. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

9. Chen, X., Jin, L., Zhu, Y., Luo, C., Wang, T.: Text recognition in the wild: a
survey. ACM Comput. Surv. (CSUR) 54(2), 1–35 (2021)

10. Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs.
Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)

11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
12. Cottrille, S.C.: Selective document redaction. US Patent 7,913,167 (2011)
13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-

tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

14. European Parliament, Council of the European Union: Regulation (EU) 2016/679
of the European Parliament and of the Council. https://data.europa.eu/eli/reg/
2016/679/oj

15. Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: Smote for learning from
imbalanced data: progress and challenges, marking the 15-year anniversary. J.
Artif. Intell. Res. 61, 863–905 (2018)

16. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

17. Hajian, S., Domingo-Ferrer, J., Monreale, A., Pedreschi, D., Giannotti, F.:
Discrimination-and privacy-aware patterns. Data Min. Knowl. Disc. 29(6), 1733–
1782 (2015)

18. Hill, S., Zhou, Z., Saul, L.K., Shacham, H.: On the (in) effectiveness of mosaic-
ing and blurring as tools for document redaction. Proc. Priv. Enhancing Technol.
2016(4), 403–417 (2016)

19. IVASS: I principali numeri delle assicurazioni in italia (2022). https://www.
ivass.it/pubblicazioni-e-statistiche/statistiche/numeri-assicurazioni/2022/Focus
I principali numeri 2022.pdf. Accessed 17 Apr 2024

20. Johnson, A.E., et al.: Mimic-iv, a freely accessible electronic health record dataset.
Sci. Data 10(1), 1 (2023)

21. Kelly, D.G., Foster, B.R.: Process for electronic document redaction. US Patent
8,456,654 (2013)

22. Li, M., et al.: TrOCR: transformer-based optical character recognition with pre-
trained models. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, pp. 13094–13102 (2023)

http://arxiv.org/abs/1810.04805
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
http://arxiv.org/abs/1412.6572
https://www.ivass.it/pubblicazioni-e-statistiche/statistiche/numeri-assicurazioni/2022/Focus_I_principali_numeri_2022.pdf
https://www.ivass.it/pubblicazioni-e-statistiche/statistiche/numeri-assicurazioni/2022/Focus_I_principali_numeri_2022.pdf
https://www.ivass.it/pubblicazioni-e-statistiche/statistiche/numeri-assicurazioni/2022/Focus_I_principali_numeri_2022.pdf

470 M. Beltrame et al.

23. Li, Y., Yang, T.: Word embedding for understanding natural language: a survey.
In: Guide to Big Data Applications, pp. 83–104 (2018)

24. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

25. Luoma, J., Pyysalo, S.: Exploring cross-sentence contexts for named entity recog-
nition with BERT. In: Proceedings of the 28th International Conference on Com-
putational Linguistics, pp. 904–914 (2020)

26. Mane, S.: Method and system for advanced document redaction. US Patent
11,562,134 (2023)

27. Matichuk, B., Rebstock, J., Kraft, M.: Redaction engine for electronic documents
with multiple types, formats and/or categories. US Patent 10,853,570 (2020)

28. Microsoft: Presidio: Data protection and de-identification SDK (2022). https://
microsoft.github.io/presidio/. Accessed 17 Apr 2024

29. Nabbosa, V., Kaar, C.: Societal and ethical issues of digitalization. In: Proceedings
of the 2020 International Conference on Big Data in Management, pp. 118–124
(2020)

30. Papadopoulos, C., Pletschacher, S., Clausner, C., Antonacopoulos, A.: The impact
dataset of historical document images. In: Proceedings of the 2nd International
Workshop on Historical Document Imaging and Processing, pp. 123–130 (2013)

31. Petro, D.: GitHub - BishopFox/unredacter: never ever ever use pixelation
as a redaction technique — github.com (2022). https://github.com/bishopfox/
unredacter. Accessed 17 Apr 2024

32. Pilán, I., Lison, P., Øvrelid, L., Papadopoulou, A., Sánchez, D., Batet, M.: The text
anonymization benchmark (TAB): a dedicated corpus and evaluation framework
for text anonymization. Comput. Linguist. 48(4), 1053–1101 (2022)

33. Ramos, I.S., Dickenson, M., Nair, S.: Document redaction and reconciliation. US
Patent App. 16/438,439 (2020)

34. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese
BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

35. Song, C., Shmatikov, V.: Fooling OCR systems with adversarial text images. arXiv
preprint arXiv:1802.05385 (2018)

36. Tikayat Ray, A., Pinon-Fischer, O.J., Mavris, D.N., White, R.T., Cole, B.F.:
aeroBERT-NER: named-entity recognition for aerospace requirements engineering
using BERT. In: AIAA SCITECH 2023 Forum, p. 2583 (2023)

37. Xu, H., Dong, M., Zhu, D., Kotov, A., Carcone, A.I., Naar-King, S.: Text classi-
fication with topic-based word embedding and convolutional neural networks. In:
Proceedings of the 7th ACM International Conference on Bioinformatics, Compu-
tational Biology, and Health Informatics, pp. 88–97 (2016)

38. Xu, X., Chen, J., Xiao, J., Gao, L., Shen, F., Shen, H.T.: What machines see is not
what they get: fooling scene text recognition models with adversarial text images.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12304–12314 (2020)

39. Zhang, R., Yang, Y., Wang, W.: Research on document digitization processing
technology. In: MATEC Web of Conferences, vol. 309, p. 02014. EDP Sciences
(2020)

40. Zhao, X., Greenberg, J., An, Y., Hu, X.T.: Fine-tuning BERT model for materials
named entity recognition. In: 2021 IEEE International Conference on Big Data
(Big Data), pp. 3717–3720. IEEE (2021)

http://arxiv.org/abs/1907.11692
https://microsoft.github.io/presidio/
https://microsoft.github.io/presidio/
https://github.com/bishopfox/unredacter
https://github.com/bishopfox/unredacter
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1802.05385

	RedactBuster: Entity Type Recognition from Redacted Documents
	1 Introduction
	2 Related Works
	3 System and Threat Model
	3.1 System Model
	3.2 Threat Model

	4 Methodology
	4.1 Dataset
	4.2 Data Processing
	4.3 Models

	5 Evaluation
	5.1 Metric
	5.2 Baseline
	5.3 Finetuning

	6 Countermeasures
	7 Conclusions
	A Dataset
	A.1 Character Preprocessing
	A.2 Data Balancing

	B Character Evasion
	C Hardware and Software Configuration
	References

