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SUMMARY

The performance of supercomputers is not growing anymore at the rate it once used
to. Several years ago a break with historical trends appeared. First the break appeared
at the lower end of worldwide supercomputer installations, but now it affects a signif-
icant number of systems with average performance. Power consumption is becoming
the most significant problem in computer system design. The traditional power reduc-
tion trends do not apply any more for the current semiconductor technology, and the
performance of general-purpose devices is limited by their power consumption. Server
and system design is in turn limited by their allowable power consumption, which is
bounded for reasons of cost and practical cooling methods. To further increase perfor-
mance, the use of specialized devices, in specialized server designs, optimized for a cer-
tain class of workloads, is gaining momentum. Data movement has been demonstrated
to be a significant drain of energy, and is furthermore a performance bottleneck when
data is moved over an interconnect with limited bandwidth. With data becoming an
increasingly important asset for governments, companies, and individuals, the develop-
ment of systems optimized on a device and server level for data-intensive workloads, is
necessary. In this work, we explore some of the fundamentals required for such a system,
as well as key use-cases.

To highlight the relevance of the work for a real-world project, we analyze the feasi-
bility of realizing a next-generation radio-telescope, the Square Kilometre Array (SKA).
We analyze the compute, bandwidth and storage requirements of the instrument, and
the behavior of various important algorithms on existing products. The SKA can be con-
sidered to be the ultimate big-data challenge, and its requirements and characteristics
do not fit current products. By putting the SKA requirements next to historical trends,
we show that the realization of the instrument at its full capacity will not be achievable
without a significant effort in the development of optimized systems.

In order to make steps towards the successful realization of the SKA, we develop a
custom hardware architecture for the Central Signal Processor (CSP) subsystem of the
SKA. The CSP is dominated by high input and output bandwidths, large local memo-
ries, and significant compute requirements. By means of a custom developed ASIC, con-
nected to novel high-bandwidth memory, the proposed solution has a projected power-
efficiency of 208 GFlOPS/W, while supporting all CSP kernels in a flexible way. This is
an example of how optimized systems can drive down the energy consumption of work-
loads, and thereby aid the realization of projects with non-conventional requirements.

To enable improving the efficiency of a variety of workloads, we developed a hard-
ware architecture supporting arbitrary processing capabilities close to the main-memory
of a CPU. This follows the theme of ‘near-data processing’, offering foremost high band-
widths and reduced data movement. The effort is driven by the two main observations
that 1) processing capabilities should be workload-optimized, and 2) a focus on data
and memory is necessary for modern workloads. The architectural description includes

ix



x SUMMARY

data allocation and placement, coherence between the CPU and the near-data proces-
sors (NDPs), virtual memory management, and the accessing of remote data. All data
management related aspects are implemented with existing OS level NUMA functional-
ity, and require only changes in the firmware of the system. The other three aspects are
realized by means of a novel component in the memory system (NDP-Manager, NDP-M)
and a novel component attached to the CPU system bus (NDP Access Point, NDP-AP).
The NDP-M realizes coherence between CPU and NDP by means of a fine- and coarse-
grained directory mechanism, while the NDP-AP filters unnecessary coherence traffic
and prevents it from being send to the NDPs. Address translation is implemented by the
NDP-M, where the Translation Lookaside Buffer (TLB) is filled and synchronized via a
connection with the NDP-AP. The NDP-AP is furthermore the point where remote data
accesses from the NDPs enter the global coherent address space. Several benchmarks,
including a graph-traversal workload, show the feasibility of the proposed methods.

The evaluation of the architecture as well as the evaluation of various types of NDPs
required the development of a novel system-simulator. The developed simulator allows
the evaluation of NDPs developed in a hardware description language placed in a simu-
lated memory system. Arbitrary applications making use of the simulator feed the simu-
lated memory system with loads and stores, and can control the NDPs. It is also possible
to evaluate general-purpose NDPs running software threads. The complex system level
interactions concerning coherence and remote data accesses are modeled in detail and
provide valuable insights.

Two relevant benchmarks for both high-performance computing and data-intensive
workloads are the High-Performance Conjugate Gradient (HPCG) benchmark, and the
Graph500 benchmark. They implement a distributed multi-grid conjugate gradient solver
and a distributed graph breadth-first search, respectively. Both benchmarks are imple-
mented on the proposed architecture containing four NDPs, consisting of very small and
power-efficient cores. By exploring both parameters of the architecture, as well as vari-
ous software optimizations, we boost the performance of both benchmarks with a factor
3x compared to a CPU. A key feature is the high-bandwidth and low-latency intercon-
nect between the NDPs, by means of the NDP-AP. The cacheability of remote data at the
NDP-AP enables the fast access of shared data and is an important aspect for Graph500
performance. The use of user-enhanced coherence boosts performance in two ways.
First, guiding the coarse-grained coherence mechanism at the NDP-M eliminates much
of the required coherence directory lookups. Second, allowing remote data to be cached
in NDP hardware-managed caches, improves data locality and performance, at the ex-
pense of more programming effort to manually maintain coherence.

A typical operation in big-data workloads is the sorting of data sets. Sorting data
has, by nature, phases with a lot of data locality, and phases with little data locality. This
opens up the intriguing possibility of heterogeneous CPU and NDP usage, where the two
types of devices sort the high-locality, and low-locality phases, respectively. The CPU
makes optimal use of its caches, while the NDP make optimal use of the high bandwidth
to main memory. This is evaluated when considering a workload-optimized merge-sort
NDP, and we obtain up to a factor 2.6x speedup compared to a CPU-only implementa-
tions. Given the very low power of the workload-optimized NDP, the overall energy-to-
solution improvement is up to 2.5x.
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2 1. INTRODUCTION

1.1. BACKGROUND
We live in exciting times. Computers help doctors with the correct diagnoses of cancer
patients, and with the creation of optimal treatment plans for these patients, increasing
the quality of life for many people around the globe [1]. Grandparents can connect with
their grandchildren by means of a variety of mobile applications and social media. Cli-
mate research, as well as research into novel energy sources, drives our understanding of
how to keep our planet inhabitable for the upcoming generations. These opportunities
are driven by the ever growing capabilities of computer systems, enabled by continued
research into the field of semiconductor technology and computer architecture. These
growing capabilities of computer systems are typically explained as being a consequence
of ‘Moore’s law’. This famous law, described in a 1965 paper [2], states that the number
of transistors we can put on a chip doubles every year, and that we can furthermore re-
alize this for the same cost. This turned out to be true for some decades following 1965.
Moore’s law does not imply anything about the performance (the amount of operations
per second) we are able to realize with computers build with these transistors, but his-
torical trends have shown that the performance developments follow the same trend of
doubling every year. However, things have changed.

Computer performance development does not follow the historical trends anymore.
In Figure 1.1 we show the achieved performance of the 500 fastest supercomputers in
the world, the TOP500 [3]. Shown is the cumulative performance, the performance of
the number one system, and the performance of the number 500 system. When looking
at the slowest system of the list, we see a clear break with historical trends around the
year 2008. From that year onwards, the performance grows at a constant slower rate. The
same holds for the cumulative performance, but from the year 2013 onwards. Although
supercomputers alone do not capture the full extent of the computer systems business,
technologies often get introduced in, and developed for, such systems.

We have entered an era where the performance of computers, on the device as well as
the system level, is bounded by power consumption. Making a device faster will make it
generate too much heat to be able to cool it down with practical cooling methods. At this
moment, a CPU already has a significantly higher power density (Watts / cm2) than a hot
plate [4]. Making a complete system faster will result in unreasonably high power bills.
The estimated accumulated annual electricity bill of all datacenters in the USA in the
year 2020 is an impressive 13 billion dollars [5]. Moving data around in a computer sys-
tem is the main drain of energy. It is estimated that moving two operands from external
main memory to a functional unit is a factor 100x up to a factor 1000x more expensive
than doing an operation (e.g. multiplication) on that data [6] [7]. The performance of
computers is thus, when put in a simple statement, limited by data movement.

All three examples in the introduction have something in common: they are driven
by data. Intelligent healthcare systems can ingest all available literature on a topic and
process this into meaningful conclusions. Social media collect our communications,
our online browsing behavior, our whereabouts and many more things, typically aimed
at the creation of personalized advertisements. Research into climate change can only
be performed when large amounts of (historical) measurements are available.

In Figure 1.2 we show a generic overview of data growth in the last decade. The ex-
ponential growth is clearly visible. In Figure 1.3 we show the growth in available data
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Figure 1.1: TOP500 historical performance including trend lines. Clearly visible are the two breaks with histor-
ical trends in 2008 and 2013 for the slowest system and the cumulative performance of all the systems in the
list, respectively. Image courtesy: TOP500

for the specific field of bio-informatics. This field is a clear example of where the data
volumes grow much faster than any other trend we have seen in the history of computer
architecture. Every seven months the amount of available DNA data doubles [8], which
is about twice as fast as the (historical) initial growth rate of Moore’s law.

Bio-informatics is a clear example of a field being overflown with data. Another ex-
ample of a field experiencing an ‘astronomical data deluge’, is radio-astronomy. Existing
radio telescopes create enormous amounts of data, requiring novel real-time compute,
back-end compute, and storage solutions, to create scientific insights [9]. The Square
Kilometre Array (SKA) [10] will produce orders or magnitude more data, and is a clear
example of an instrument that will push the boundaries of computer system develop-
ment [11].

In the remainder of this chapter we will explain the drivers and mechanisms behind
the declining trends in computer performance, as well as the trends that counter those
effects. The explanation will be started at the device level, reasoning about the reasons
single devices can not become much faster. From there the step towards a system-level
analysis is made. By including various types of processing elements in a single system,
the overall performance of the systems kept increasing for workloads fitting the new
types of processing elements. By an extensive analysis of supercomputers, we however
show that the solutions being pursued here are not the ones benefiting modern, data
intensive, workloads. Novel, data-oriented, and well-integrated solutions, are likely to
push computer system performance forward in the next decade.

1.2. DEVICE LEVEL ANALYSIS
To understand the performance limitations in modern computer systems, we need to
start at the device level.
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Figure 1.2: A view of the exponential growth in data volumes for a variety of fields (source: [12]).

Figure 1.3: Illustrating the amount of available genomic data, growing much faster than Moore’s law (source:
[8]).
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1.2.1. ENDING OF MOORE’S LAW
The initial growth rate of Moore’s law has held true for many years, but has slowed down
in recent decades. Although it depends on the exact type of technology we are looking
at, in the 80s a drops towards a 3x increase per four years became apparent [13]. Around
the year 2000, this slowed down to a 2x per two years, and at the moment we are experi-
encing a 2x per three years. Another aspect of Moore’s law is the cost per transistor. Due
to the push-back (if not cancellation for the foreseeable future) of developing 450 mm
wafer technology [14], the cost per transistors will also not go down with the same rate
as before.

1.2.2. ENDING OF DENNARD SCALING, THE POWER WALL, AND DARK SILI-
CON

A transistor becomes a factor S = 1.4 smaller with every process generation, and since
we are talking about a 2D structure, we can put S2 ≈ 2x more transistors on a chip. This
does not imply anything about performance, but trends have shown that performance
increases with the same rate as the number of transistors on a chip for a long time. The
reason is that, when transistors become smaller, they can be operated at a higher fre-
quency, and thus realize a higher performance. The power used by such a transistor
would not increase with respect to previous generations, as a smaller transistor has a
smaller capacitance and can operate at a lower voltage. This effect is known as ‘Dennard
scaling’ [15], and is the drive behind ever increasing frequency of processors, until we hit
the ‘power wall’ early 20th century. With increasing leakage currents due to thinner in-
sulation layers, and voltages hitting the lower bound at which a transistor still functions,
the power per transistor no long dropped at the same rate as before. The consequence
of the increase of power is popularized as ‘dark silicon’ [16]. In this work it is shown that
the power per transistor only drops with a factor S per generation nowadays (and this is
uncertain for the future), and since we get S2 transistors, the power increase for the chip
is S, at constant frequencies. As the peak power of a chip is limited by practical cool-
ing methods, this results in a new reality in which for every process generation, we can
switch on a factor S fewer transistors compared with the previous generation, resulting
in a increasing fraction of mandatory ‘dark’, or switched-off, silicon.

Figure 1.4 illustrates that, from the year 2000 onwards, the power per processor is
capped between a 100 and 200 watts, and the frequency is capped at two to four GHz.
This effect is complemented by the ‘dark silicon’ effect, illustrated in Figure 1.5, showing
how, for a process shrinkage of S = 1.4, we get double the transistors or cores, but we have
to switch off half of them to stay within the power budget.

1.2.3. SOLUTIONS AT THE DEVICE LEVEL
To still realize performance improvements, although not at the same rate as before, in-
dustry and academia have explored various directions.

PARALLELISM AND BIGGER CACHES

Although the practical operating frequency of transistors no longer improves from one
generation of semiconductor technology to the next, we still get more transistors with
every generation. To make use of all the available transistors, CPUs started to get more
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Figure 1.4: The effects of the ‘power wall’: processors have hit the limit of power usage, and the frequency
cannot increase further because of that. (Image source: [17])

Figure 1.5: Effect of the ‘power wall’: for every process generation, we have to switch-off a larger fraction of
the transistors to stay within the power budget, even at constant frequencies. This is popularized as ‘dark
silicon’ [16]. (image based on: [18])
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cores from 2003 onwards. This is illustrated by the trend lines in Figure 1.4. Using more
cores increased the performance of the device, for flat frequencies. However, due to the
dark silicon problem sketched above, between generations, the frequency still needed to
decline, or become variable based on turbo and sleep modes, to keep the power usage
within the budget [19]. Another observable trend is to use the available area for more
and larger caches. Although caches use power as well, their footprint is smaller than a
processing core, thus easing the problem while making good use of the area.

The so-called many-core architectures, like GPUs and the Xeon Phi, take this con-
cept to the extreme. By deliberately using many weak cores, parallelism is favored over
single core performance. Although these products are sometimes regarded as being rev-
olutionary, their working is not fundamentally different from CPUs.

SPECIALIZATION WITHIN A DEVICE

Instead of using all transistors for fully programmable general-purpose cores, sacrificing
area for specialized pieces of logic can improve performance and power efficiency. In
case they are not used, the power budget can be used by the general-purpose cores, run-
ning at a high frequency. When an application can make use of the specialized logic, it
will execute much faster. An example of this concept from academia is the ‘conservation
cores’ [20], but many variations, including reconfigurable ones like ‘VEAL’ [21], exist. The
complexity of implementing and using ideas like this have limited their realization.

Industry examples of the same concept, but at a coarser level, is the POWER edge of
network chip [22]. This chip contains several types of specialized accelerators targeting
various task in the area of network traffic processing, like packet inspection. Also in
CPUs, specialized logic is being used to accelerated industry standard functionality that
will not change for the foreseeable future [23] [24]. Examples of this are encryption (e.g.
AES, random number generation) and compression (e.g. gzip). For these algorithms
the gains are considered to outweigh the complexity and investment of implementing
them. The IBM Cell processor [25] was the first processor to implement two types of
general-purpose cores on the same chip, making optimal use of the available area to
accelerate foremost multi-media applications. Another example of this is the big.LITTLE
technology from ARM [26], implementing several big cores as well as many small cores
on the same processor.

True application-level specialization can come from the use of FPGAs. These devices
allow complete reconfiguration and can thus be optimized for the task at hand. They
can however not easily be used in a stand-alone fashion, and must either be integrated
in a system-on-chip [27], or as a separate device connected to a CPU, as will be discussed
later in this chapter.

1.3. NODE-LEVEL ANALYSIS

With the processing capabilities of devices continuing to increase, other problems, at the
node and the system level, become apparent. In this section we will first discussed two
trends regarding memory bandwidths and the handling of data, followed by an analysis
of supercomputers.
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1.3.1. THE MEMORY WALL

In 1995 it was already established that computer performance is growing exponentially
faster than bandwidth, resulting in the so called ‘memory wall’ [28]. This means we can-
not get data fast enough into the device to ‘feed’ the compute elements, reducing the uti-
lization. As an example, for NVIDIA’s® Tesla® product line, the bandwidth-to-compute
ratio has worsened by a factor 2.15 between 2008 and 2013 (C870 to K40) [29]. Similar
trends will be visible for basically every other type of device. Furthermore, the memory
latency has been shown to lag bandwidth quadratically [30], meaning we also have to,
relatively, wait longer for the data to arrive.

One of the origins of the memory wall is a consequence of scaling ratio between the
area and perimeter of the chip. Multicore performance scales with the area, whereas I/O
generally has to escape a chip or package at its perimeter. Furthermore, the increase in
pin count does not keep up with the increase in transistor count [31]. While many of
the interfaces in a computer changed from parallel to serial in the last decades, the de-
facto standard DRAM memory technology still uses a parallel interface. With increasing
throughput and frequencies, this results in complex routing and timing issues [32]. It
is however not just a technological challenge. Economics and product placement also
play a role in the features manufacturers focus on. The CPUs from IBM typically have a
much better bandwidth-to-compute ratio as well as a higher absolute bandwidth com-
pared to Intel CPUs, which tend to focus more on compute performance [33] [34]. Novel
serial memory technologies like the Micron Hybrid Memory Cube (HMC) [35], or 2.5D
stacked DRAM technologies like High Bandwidth Memory [36], offer much higher band-
widths than current mainstream technologies. First products utilizing these technolo-
gies are available already [37], creating a step function in absolute memory bandwidth.
The decade old trend that created the memory wall is however not turned around that
easy, and we see only a stabilization of the compute-to-bandwidth ratio for this gener-
ation of products. Furthermore, these new memory technologies are not yet found in
CPUs, but are foremost used in GPUs and some FPGA solutions.

1.3.2. DATA-LOCALITY AND DATA-MOVEMENT PROBLEMS

Besides raw bandwidth, difficulties arise regarding the data-movement management in
a system. Data movement is necessary to bring operands to functional units doing op-
erations. This is a fundamental property we cannot do much about. To limit data move-
ment, data-compute affinity, or data-locality, is essential. This means we should do our
computations as close as possible to the data, or the other way around, store the data as
close as possible to the place we are doing the computation. When looking at a simple
operation, e.g. an addition, it is clear we need to combine two operands together. These
two operands can however very well come from different data sets, stored in different
physical memories, frustrating the data-compute affinity. When looking at parallel com-
pute kernels, many data sets can be accessed, of which some are private to each kernel
execution, while others are shared by all kernels in parallel, that are possibly running
on various distinct compute elements (e.g. multiple CPU cores, multiple CPUs). Op-
timizing data-locality in such a situation becomes increasingly hard. Data sets can be
allocated and initialized at various points in an application, some data sets are used only
for one compute kernel, while others live throughout the entire applications life. Opti-
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mizing data-locality is essential to limit data movement, but also a practical as well as
fundamental problem due to how computers and applications work.

With ever more complex multi-socket hardware-managed memory hierarchies, it is
increasingly hard to understand where the data resides [38]. In an opposing approach,
with the introduction of different types of processing devices in a node (discussed lat-
er), separate memory spaces were added, needing explicit data management from the
programmer. With memory bandwidth and interconnect bandwidths not keeping pace
with the processing capabilities, this data locality management (or the lack of the abil-
ity thereof), becomes increasingly problematic. With the recent introduction of the IBM
and NVidia NVLink technology [39], and the recent announcement of the IBM POWER9
interface technology [40], extra steps are taken to increase the bandwidth between de-
vices, and to ease the management of data locality. Besides the problems associated
with handling data, moving data costs a lot of power. Moving data from one side of a
chip to the other side is already an order of magnitude more expensive than doing a
computation on that data. This factor is estimated to increase towards a factor between
a 100x and a 1000x more expensive when considering loading the value from external
DRAM [6] [7]. With the already discussed problems regarding power usage, data move-
ment should thus be limited whenever possible.

1.3.3. HETEROGENEITY

Device-level specialization is a method of increasing the performance of a device be-
yond the traditional trends. This can not only be exploited within a device, but also at the
node level. Last decade, this concept was popularized by adding specialized coproces-
sors, often called accelerators, to a node, to boost performance. These coprocessors are
typically highly parallel, sacrificing single thread performance for running many threads.
They often offer a high floating point compute performance, and are thus meant to run
the compute intensive part of an application. This heterogeneous approach is often cel-
ebrated for its performance and power efficiency.

Adding a different type of compute element to a system, thus making it heteroge-
neous, is not without difficulties. First, coprocessors typically have a different program-
ming paradigm and applications must be explicitly optimized to make use of them. With
the availability of various types of coprocessors, and the release of new product genera-
tions every couple or years, this is a serious burden on programmers [41]. Especially for
large code bases developed over many years, with the intent of being portable and main-
tainable for many more years, explicit optimizations for one kind of coprocessor are un-
popular. Although, e.g., ‘general purpose GPU’ programming has been around for over
a decade, only now hardware-agnostics parallel programming paradigms like OpenMP
(version 4+) [42] are supporting pragma-based usage of coprocessors in a meaningful
way [43] [44]. Second, coprocessors are typically connected to a CPU by means of a
relatively slow bus, intensifying the data transportation problem mentioned in Section
1.3.2. Furthermore, the level of system-integration is only improving slowly. Generic
hardware-managed mechanisms to allow sharing the same view on data between CPU
and coprocessor are still not in place today (but are under development [45]).



1

10 1. INTRODUCTION

1.4. WORKLOAD-OPTIMIZED SYSTEMS
At the device level, performance improvement due to frequency scaling has run out of
steam, and last decade we have seen an increase in the core count to improve perfor-
mance. Taking this concept to the extreme, by introducing heterogeneity through adding
highly-parallel coprocessors such as GPUs to a node, boosted the performance well into
this decade. However, the use of standardized coprocessors has its limits and the ap-
proach does not necessarily fit every application of today. To further improve the per-
formance of relevant applications, we need to optimize a computer system for the task
at hand. This analysis is illustrated in Figure 1.6, clearly showing the steps from device
scaling, to core scaling, towards heterogeneous workload-optimized systems. Workload
optimization can be achieved by using reconfigurable fabric like FPGAs, as already men-
tioned in Section 1.2.3, attaching them to a CPU by means of fast interconnects. One
step further is the use of application-specific integrated circuits (ASICs), to create an-
other step function in performance and power-efficiency, at the expense of flexibility.
The customization of nodes and the resulting performance increase, will also improve
the power-efficiency of large supercomputers. By using fewer, but stronger, nodes, over-
heads in e.g. the power supply [46] get smaller, and less inter-node data transport is
required.

There are several industry examples of this trend. Microsoft is using reconfigurable
logic in their data-centers to push the performance and power-efficiency of their search-
related infrastructure [47]. Google recently announced a (partly) custom motherboard
to design a complete compute node specific for their needs [48]. To boost their per-
formance and power-efficiency in the field of deep-learning, Google furthermore an-
nounced an in-house developed ASIC [49], delivering a 15x-30x speedup compared to
commodity hardware [50]. With the introduction of the CAPI interface [51], and the an-
nouncement of OpenCAPI [45], the customization of computer systems has taken flight.
Custom developed coprocessors can now coherently be attached to a high-end CPU,
and be used directly from a user-level application, and the already mentioned upcom-
ing bandwidth technologies in Section 1.3.2 will tackle bandwidth bottlenecks between
various devices. By utilizing these concepts, systems will be tailored to the workload at
hand, and will excel in both performance and power-efficiency as compared to general-
purpose solutions.

1.5. SUPERCOMPUTER ANALYSIS
Figure 1.7 shows the measured performance of the number one systems of the TOP500
for the past decade. Note we only include new number one systems: including the num-
ber one from every list would make the figure less clear, while not changing the result. It
can be seen that on a logarithmic scale, this dataset fits a straight line, which goes back
all the way back to 1993, as also shown in Figure 1.1. The performance of the number
one systems increases with roughly a factor of two every year.

1.5.1. POWER EFFICIENCY LAGS BEHIND PEAK PERFORMANCE

Figure 1.7 shows, in flops per Watt, the power efficiency of the system. Also in this case,
we can observe a straight line. When looking at the performance growth of the number
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Figure 1.6: Illustrating the steps taken in this chapter, from device scaling, to core scaling, towards heteroge-
neous workload-optimized systems. (Based on images from H.P. Hofstee and M.L. Schmatz)

one supercomputer in the world, we observe a factor 1.9x in the last 25 year, very close to
the initial rate of Moore’s law. The slope of the power efficiency is lower than that of the
peak performance, meaning that peak performance is growing exponentially faster than
power efficiency. This means that new systems use exponentially more absolute power
than their predecessors. This directly follows the arguments put forward in Section 1.2.2
and Section 1.2.1 about the end of Moore’s law and end of power-efficiency (‘Dennard’)
scaling. The performance increases with a factor 1.9x a year, while the amount of tran-
sistors per chip does not increase anymore with that rate, and neither does the increase
in power-efficiency per used transistor. The performance increase can thus only be re-
alized by using more devices, which use more power. Although the shown numbers are
obtained when running the LINPACK benchmark, it has been shown they can be gener-
alized for general-purpose workloads [52], meaning power bills are becoming higher and
cooling will become more impractical. As device-level power consumption is limited at
around 200 Watt (considering air-cooling), as discussed in Section 1.2.2, the total power
usage of a supercomputer is limited as well, although the bound is less strict. A typical
limit used is 20 to 30 mega Watt [53], comparable to a small town. When the practical
absolute power usage limit is reached in the not so distant future, the growth in peak
performance will have to slow down to follow the trend in power efficiency.

A version of the TOP500 list aiming at understanding the developments in power-
efficiency is the Green500 [54], which shows the same systems, but now sorted on power-
efficiency. The interpretation of this list is however difficult, as the top 10 contains both
small and very large systems. Number one on this list achieves 9462 GFlops/W at a total
power budget of 349 KW. The first very large system, the Sunway TaihuLight, reaches
‘only’ 6051 GFlops/W at place four of the list, but has a total power budget of 15.3 MW,
making it a very different beast compared to the number one system. Nonetheless, to
some extent breaking with historical trends, we see very large, both homogeneous as well
as heterogeneous systems, in the top 10, indicating that industry is capable of realizing
large systems with a good power-efficiency, when running LINPACK. As on the device
level and the node level, data transport is a major drain of energy in a supercomputer.
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Figure 1.7: Trends for the new number one systems in the TOP500. Innovation is explained in Section 1.5.

An analysis presented in [46] shows that for an average set of workloads, around 15% of
the total power budget is spent in the network between nodes.

1.5.2. INNOVATION IN NEW SUPERCOMPUTERS

Every new number one supercomputer is faster than its predecessor, and most of the
time also more power efficient. We are interested in the level of innovation that ev-
ery new generation brings, i.e., how much closer it brings us to high-performance and
power-efficient computing. To investigate this, we create the Innovation metric, shown
in Equation 1.1. Perf, Eff and n are the measured peak performance, power efficiency
and system index, respectively. The innovation score is the product of the relative in-
crease in performance with the relative increase in power efficiency. The power-efficiency
of supercomputers is not strictly increasing, and therefore the Max operator is intro-
duced, to evaluate the power efficiency of the system under study against the best power
efficiency to date. The results are shown in Figure 1.7.

Innovati onn =
Per fn

Per fn−1
× E f fn

M ax(E f f0 : E f fn−1)
(1.1)

Over the past decade, an interesting observation is that, out of all the systems, the
best scoring ones are all based on custom-designed hardware (Blue Gene/L, PowerX-
Cell, K, Blue Gene/Q). The lower scoring systems are all based on commercial off-the-
shelf (COTS) products, or are extensions of existing systems. This analysis shows us that
although the use of COTS products is convenient for many reasons, they apparently do
not give us the big steps forward we need. Research, out-of-the-box thinking, and novel
approaches are needed to realize the next supercomputer which is not only faster but
also more power efficient.
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1.5.3. UTILIZATION AND LIMITATIONS FOR MODERN DATA-INTENSIVE WORK-
LOADS

The performance numbers for supercomputers shown so far are based on the high-
performance LINPACK benchmark [55]. LINPACK factors and solves a large dense sys-
tem of linear equations using Gaussian Elimination [56]. The dominant calculations in
this algorithm are dense matrix-matrix multiplications and related kernels. This bench-
mark has been very relevant for a long period of time, but last decade the community
started to realize the used kernels no longer capture the behavior of modern workloads.
This gave rise to (at least) two additional commonly used ‘industry-standard’ bench-
marks.

In the field of high-performance computing, methods based on differential equa-
tions have become the standard [56], and the typical characteristics of these methods
needed to be captured in a benchmark. This became the HPCG (high-performance con-
jugate gradient) benchmark [57]. HPCG solves a sparse system of differential equations
by means of a conjugate gradient method. The benchmark shows a variety of memory
access patterns as well as inter-node communication patterns deemed relevant today.

Next to high-performance computing, the field of ‘data analytics’ made its entry. This
field tries to create (economic) value from the growing amount of generated and stored
data. To capture the typical behavior in data-analytic workloads, the Graph500 bench-
mark [58] was introduced. This benchmark does a breadth-first search in an undirected
graph, and captures the memory access patterns and inter-node communication pat-
terns essential for knowledge discovery based on unstructured data.

Where LINPACK performance foremost depends on the compute capabilities of a
system, the other two benchmarks highly depend on the memory access characteris-
tics as well, and can be considered to be ‘data-intensive’ workloads. In Figure 1.8 we
show the utilization (fraction of compute capabilities used) for the top 10 supercompu-
ters running LINPACK as well as HPCG. It can be observed that LINPACK reaches a very
high utilization, between 75% and 95%. HPCG on the other hand, shows a very low uti-
lization, with the K system scoring the highest with a 5.3% utilization, and the Sunway
TaihuLight scoring the lowest with a 0.3% utilization. This is a clear indication that the
systems we build today are very good at running a benchmark deemed less relevant, and
are seriously under-utilized when running a more representative benchmark.

In Figure 1.9 we show the performance of the top 10 supercomputers running LIN-
PACK, HPCG, and Graph500, normalized against the number one system (Sunway Tai-
huLight). For LINPACK, the results obviously decrease towards the number 10 in the list,
as this is the index the list is sorted on. For HPCG we see very different results. Sev-
eral systems score better than the number one, and until we reach number eight in the
list, there is no decreasing performance trend at all, while for LINPACK, these systems
already run 10-20x slower than the number one. For Graph500, unfortunately not all
systems have an entry, but the analysis is very similar to HPCG. Also shown is the in-
troduction date of the system. Striking are the K system and the Sequoia system, both
performing equal or better than the Sunway TaihuLight system, while being five and
four years older, respectively. This is a clear indication that, when looking at modern
and relevant workloads, little progress has been made in the last years to improve per-
formance. Apparently, the metric we focus on when developing new supercomputers, is
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Figure 1.8: The utilization for the top 10 supercomputers, running the LINPACK and the HPCG benchmark.
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Figure 1.9: The relative performance of the top 10 supercomputers running the LINPACK, HPCG, and the
Graph500 benchmark.

not necessarily the metric most relevant today.

1.5.4. HETEROGENEOUS SUPERCOMPUTERS
Figure 1.10 shows the fraction of the TOP500 supercomputers using some form of copro-
cessors. The first one (the ‘Clearspeed’ coprocessor) was introduced in 2005, followed
by the now very popular GPUs shortly after. Note how these dates correspond with the
trends shown in Figure 1.4. Although coprocessors (foremost GPUs) are popularized and
used more and more often (e.g. for deep learning), their penetration into the TOP500
is slow. The share of systems using coprocessors never exceeded 20%, and the perfor-
mance share never exceeded 35%. In fact, in recent years we see a decline in the usage
of coprocessors, in both system share as well as performance share.

To understand this better we look at the usage of coprocessors of the top 20 systems
of the HPCG benchmark list. In Figure 1.11 we show the performance of these systems,
indicating which ones are homogeneous, and which ones are heterogeneous. This is
complemented by Figure 1.12, showing the utilization of the same systems. There does
not seem to be a clear relation between the heterogeneity of a system and either the
performance or the utilization of these systems, for this important benchmark. From
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Figure 1.10: Penetration of coprocessors in the TOP500 list of supercomputers.
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this we can conclude that adding the current type of floating-point performance focused
coprocessors so to a system, does not necessarily makes them better at the tasks at hand,
despite common beliefs [59].

Heterogeneity is one of the few ways forward left to increase (super)computer perfor-
mance, but care must be taken on the aspects to focus on. The coprocessors developed
over the last decade, and the heterogeneous systems they gave rise to, are focused on
peak floating-point performance, while modern applications like the ones represented
by HPCG and Graph500, being more data-intensive, do not benefit from this metric. The
slow progress on system-level integration and programming support, still limits the pen-
etration of heterogeneous computing.
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Figure 1.12: The utilization of the top 20 system running the HPCG benchmark, indicating which ones are
homogeneous, and which ones are heterogeneous.

1.6. NEAR-DATA PROCESSING
As indicated at the beginning of this chapter, we are experiencing a digital data deluge.
Data is becoming an increasingly important asset, and computer systems are needed to
create value from this asset. We discussed the problems associated with handling data
and transporting data in a computer system, as well as trends regarding customization
and heterogeneity. We furthermore showed that supercomputers do not reach their po-
tential when executing data-intensive workloads, and we showed that the classic het-
erogeneous approaches focusing on compute capabilities do not help. From this we
can argue that an effort to create workload-optimized systems, targeting data-intensive
workloads, is needed. This overall theme is popularized in recent years as ‘near-data
processing’. By moving the compute closer to the data, in general, the following benefits
are claimed:

• Higher bandwidths, since there is no (or less of a) memory-channel bottleneck to
cross;

• Lower latency, since the compute is done physically close to the memory;

• Less energy usage, since expensive data movement is avoided;

• Depending on the architecture and memory technology, a smaller access granu-
larity.

The typical characteristics of applications benefiting from this paradigm are:

• Little temporal data-locality, meaning that data is not reused soon, and local mem-
ories (e.g. caches) are thus not helping;

• Low operational intensity, meaning only few operations per amount of data loaded
from memory;
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• Short dependency chains, meaning the next load depends on the previous load,
frustrating efficient prefetching;

• Little spatial data-locality, meaning wide, cache line sized, accesses waste band-
width.

1.6.1. HISTORY OF NEAR-DATA PROCESSING

The first occurrence of the near-data processing paradigm dates back to 1970 [60]. Al-
ready at that moment it was realized that the inherent parallelism inside memory allows
for great performance increases when processing elements were added inside DRAM
memory. Two decades later, in 1992, this concept was put in a more concrete form and
even prototyped, targeting foremost digital signal processing algorithms [61]. In this
work it is already recognized that, for some algorithms, execution time is constant for
increasing problem sizes, since the number of of processing elements grows with the
amount of memory. The EXECUBE work [62] restates the available bandwidth within
the memory, but also proposes a system design based on in-memory processors. A more
complex variant of the same concept is presented in [63], putting programmable SIMD
cores in the memory. A somewhat different approach is presented in [64] [65], putting
a SIMD processor on the same die together with large amounts of DRAM, replacing the
caches to a large extent.

In 1994, the ‘memory wall’ was first described [28] (Section 1.3.1), which aligns with
the growing amount of publications around the topic of near-data processing [66]. Later
in the nineties more in-memory processing proposals were published, and several of
them begin to have more concrete system-level proposals, and more detailed implemen-
tations [67] [68] [69] [70]. A more detailed programming paradigm appears in [71].

From this moment also the focus shifts from purely in-memory, to also include near-
memory. A clear example of this, from 2005, is a heterogeneous approach presented in
[72], adding a vector and streaming processor close to the main memory, and including
a distinct ‘near-memory processor interface’ component to create an abstraction layer
between memory and the near-memory processor. The 00’s has been a quiet decade for
near-data processing. Previously discussed research typically did not materialize, or did
not make it past a prototype stage. The technical challenges and cost associated with
the physical integration of processing elements in memory, as well as the lack of suitable
programming models, have been major reasons for this [73].

Since the start of the current decade we can observe a steep increase in near-data
processing related research. This is not limited to the ‘traditional’ in-memory process-
ing, but also includes processing at storage class memory, putting specialized processors
close to the memory, and using 3D stacking [73]. As stated in [73], the renewed inter-
ested is a combination between the need for data-oriented architectures, technological
advances, and a novel class of algorithms. Each is discussed extensively in this chapter.
We will discuss recent near-data processing work in detail in the subsequent sections.

1.6.2. NEAR-DATA PROCESSING THROUGHOUT THE MEMORY HIERARCHY

Many interpretations of the ‘near-data processing’ theme exist, and in Figure 1.13 we
show a taxonomy of the near-data processing options throughout the memory hierarchy
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Figure 1.13: Taxonomy of the near-data processing landscape. The dashed lines indicate the part this work is
focused on. Image based on [38].

[73]. Data is stored in the entire memory hierarchy of a computer, four levels in the case
of Figure 1.13, and near-data processing can be performed at each of those levels.

When looking at the top level, processing at disk, an industry example is IBM Pure-
Data [74], built on Netezza technology [75]. These systems offer the execution of mas-
sively parallel data analytics based on FPGAs close to the storage. The CPUs are used
to orchestrate the system and keep the FPGAs busy, while not having to care about the
massively parallel disk IO.

Working directly on storage-class memory is presented in [76]. The work proposes a
custom system and board design around Flash and DRAM, targeting big-data workloads.
By doing operations close to the storage-class memory, this work improves performance
and energy-efficiency significantly. Another example of working directly on storage-class
memory is [77], in which the authors implement query capabilities in the firmware of an
SSD, improving performance and energy-efficiency. In [78] an embedded GPU is added
to an SSD to allow highly parallel processing in a MapReduce [79] context.

The third level, the main memory of the CPU, is divided in two: processing in-memory,
and processing near-memory. Processing in-memory integrates the processing elements
physically within the main memory of a CPU. Processing near-memory is, to some ex-
tent, independent of the memory technology, as the processing elements are physically
separated from the memory. Both will be discussed extensively in the next section.

The last level, the processor, is often not considered in near-data processing. How-
ever, the accumulated core - L2 cache bandwidth for a modern CPU is 1.5 TB/s [34]. As
long as there is enough data locality, CPUs are very capable of running data intensive
workloads.
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1.6.3. A TAXONOMY OF WORKING IN AND NEAR MAIN-MEMORY
In this work we focus on the third level of the vertical taxonomy shown in Figure 1.13:
processing at the main memory of a CPU. This is the most researched interpretation of
near-data processing, and therefore an extra breakdown is necessary. In Figure 1.14 a
taxonomy of processing near and in the main memory of a CPU is shown. The described
workload categories are roughly based on work presented in [80], but in this work a more
explicit distinction between workloads and near-data processor (NDP) designs is made.
Although believed to be a correct distinction, this way not all combinations with the NDP
designs are possible. While a fully programmable NDP can run a simple copy workload,
a fixed function NDP can obviously not run an arbitrary application kernel workload.
Categories added for this work are ‘memory integration’ and ‘system integration’.

WORKLOADS

Atomic operations are already supported by memory controllers, realizing a form of
near-data processing [40]. The offloading of operations bound to a single cache line to
the memory system is proposed in [81].

For compound operations two categories are recognized. First, simple operations
like data-reordering [82], and searching for the largest value [83]. A detailed study on
the feasibility and performance of copying data and bitwise operations in DRAM is pre-
sented in [84] [85] [86] [87]. The second category of compound operations are com-
plex industry-standard operations like encryption and compression. All mentioned con-
cepts can benefit from the advertised higher bandwidth of near-data processing, but the
industry-standard operations are challenged by the trend of integrating accelerators with
industry-standard APIs in the nest of the CPU, as discussed in Section 1.2.3.

Focusing on entire kernels to offload large parts of applications to near-data pro-
cessors is promising, as researched in for example [88] and [89], focusing on big-data
analytics and scientific kernels, respectively.

NDP IMPLEMENTATIONS

When looking at NDP implementation types, fixed function NDPs can be used to im-
plement bound-operand or compound workloads [80]. Being optimized for a specific
task, the energy-efficiency of these processing elements can be very good, of course at
the expense of offering limited functionality.

In between fixed-function and programmable we find reconfigurable logic. Recon-
figurable NDPs have the great advantage of supporting optimized processing pipelines
for every application, and more importantly, support custom ways of handling loads
and stores. Applications doing streaming accesses can make use of deep prefetchers
and buffer sizes matching the characteristics of the memory system, while applications
with scattered and unpredictable memory accesses (e.g. graph processing) can make
use of many parallel and independent elements each holding several outstanding loads.
An optimized architecture leveraging both reconfigurable logic as well as coarse-grained
arrays in the context of near-data processing is presented in [90].

The other end of the spectrum is filled by programmable NDPs, running an instruc-
tion set, to execute kernels or entire applications close to the memory [72] [91]. To
avoid the energy inefficiency of the superscalar, speculative, out-of-order cores found
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in a CPU, but still have enough loads and stores outstanding to saturate all the avail-
able bandwidth, several solutions have been proposed. For example the use of many
in-order cores, each running multiple threads [88], having a decoupled architecture able
to efficiently prefetch data ahead of time [91], or using in-order cores able to process
critical loads out of order [92]. An interesting approach in this category is [93], propos-
ing little programmable cores within the memory controllers of the CPU, to accelerate,
e.g., double-indexed lookups. By executing two dependent demand cache misses at the
memory controller, some latency is cut.

MEMORY INTEGRATION

The category of memory integration is divided in four groups, ranging from physically
integrating the processing in the memory, to having the memory as separate chips. Pro-
cessing in-memory is, as discussed, already a decades old concept, and various ways
of integrating processing elements in the (DRAM) memory are proposed [64] [70], but
is still an active field of research today [84] [83]. With the rise of novel storage and de-
vice technologies, new in-memory processing concepts are explored, of which a recent
overview is presented in [94]. The work in [95] proposes the use of memristor device
technology to enable true in-memory operations, and evaluates and architecture for
simple matrix operations as well as complex bioinformatics workloads. Work in [96]
proposes a reconfigurable architecture based on memristors, to improve the useability
of this technology. Although promising, the realization of memristor based computers is
still in its research phase. Different from memristors, and already available, the Micron
Automata Processor [97] can implement non-deterministic finite automata in hardware
and can be used to implement, among other things, complex regular expressions.

Advances in stacking technology are sometimes named as a key enabler for near-data
processing [98], by adding processing capabilities to either the logic layer of the HMC,
or on top of traditional (2D) DRAM [99]. One of the earliest proposals for using the 3D
stacking is [100], foremost focusing on technology, but also showing power and perfor-
mance simulations for isolated kernels. A more general-purpose example of utilizing the
logic layer in 3D stacked memory is [101], adding GPU like processing capabilities to re-
alize a throughput oriented near-data processor, targeting HPC workloads. Work in [102]
focuses on data-locality and data-placement optimizations within 3D stacked memory.
Regarding the HMC product, advantages of this integration technique are, with respect
to accessing the memory from outside the device, a smaller access granularity at the full
memory bandwidth, a slightly lower latency, and a better power efficiency due to less
data movement [35]. Examples of disadvantages are the lack of flexibility, e.g. varying
processing capabilities versus memory capacity, and the need for strong coordination
across industry, matching product roadmaps, supply chains, and intellectual properties.

2.5D stacked (direct attached) high-bandwidth memory (HBM) has found its way
into the high-end GPU market, and offers a dramatic increase in bandwidth with respect
to the GDDR alternative [37]. This integration technology has the advantage of being
more flexible than 3D stacking, at the expense of the processor sitting further away from
the data.

The last category is the most traditional and the most flexible one: having the mem-
ory as separate devices. This, among others, includes DRAM memory, the HMC as exter-
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nal memory and HBM over a serial link [32]. The best option for memory integration de-
pends on the requirements for bandwidth and capacity, the access characteristics of the
key workloads, and the budget, where, e.g., stacked memories can deliver much higher
bandwidths, but do not have the cost-effectiveness of DRAM.

NDP INTEGRATION

Regarding NDP integration, the NDPs can be attached to the CPU as a separate device
with its own address space. This makes it possible to create fully custom solutions offer-
ing great performance for a range of applications [98]. In also implies that data move-
ment, coherence etc. is left to the device driver and user. With the rise of high-speed and
coherent links like the already discussed NVLink and CAPI, hard address-space bound-
aries begin to blur, with some integration aspects being taken over by hardware mecha-
nisms.

The majority of NDP proposals integrate processing capabilities with the CPUs main
memory, and are integrated by means of both hardware mechanisms and a device driver
/ runtime system. This solution offers the highest possible bandwidth to the CPUs main
memory, with the lowest possible latency, but implies necessary overhead to manage,
for example, coherence and virtual memory. Somewhat of an outlier is [103], proposing
the use of near-data processing in the logic layer of stacked memory, attached to a GPU.
This is a very novel approach, but the integration aspects are not fundamentally different
from integrating with a CPU.

Last, we can integrate the NDP as a full CPU peer in the memory system. In this case
the NDP becomes a node in the SMP domain, with the same access rights and capabili-
ties as the CPU, and the NDP can run threads belonging to the OS.

1.7. PROBLEM STATEMENT
The rise of the field of data-analytics, changes in the field of high-performance comput-
ing, and the realization of novel large-scale scientific instruments, has resulted in the
increased usage of data-intensive applications. Due to the more important role of data,
a redesign of computer systems is necessary to increase efficiency by enabling arbitrary
processing capabilities close to the main memory of a CPU.

We identify the following problems:

• The next-generation radio telescope will generate a huge amount of data. It is
unclear how current technology can handle this, and it is unclear whether the in-
strument is feasible at all without significant technological advances.

• The addition and integration of novel components in a computer system is a non-
trivial task. It is unclear how we can add coherent and virtualized processing ca-
pabilities to the main memory of a CPU, or even perform basic operations such as
communicating with a component in the memory system.

• By having multiple heterogeneous devices in an asymmetric shared-memory space,
the ability to control data locality is essential for performance. Mechanisms to
handle data locality for NDPs and CPUs without changing the OS are not yet dis-
cussed.
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Figure 1.14: Taxonomy of near-data processing in and near main-memory.
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• Although the near-data processing concept is evaluated in many forms, clear com-
parisons with existing hardware when using industry-standard benchmarks is lack-
ing. This makes it hard to evaluate many proposals on an absolute scale, especially
when taking in to account common optimizations deployed in the field.

1.8. CONTRIBUTIONS AND THESIS OUTLINE
The contributions of this thesis can be described as follows.

• An analysis of the (high-performance) computing environment and the Square
Kilometre Array radio-telescope. We reason about the trends and performance
of devices and supercomputers for several benchmarks to understand the current
bottlenecks. We show how custom and innovative, workload-optimized, data-
centric designs are needed to boost both the performance as well as the power
efficiency of large supercomputers for relevant workloads. We argue that this is es-
pecially true for the SKA radio-telescope, which has unorthodox requirements in
terms of bandwidths, data storage, and power efficiency. The SKA can not be re-
alized at its full potential without a significant effort in optimized-system design.
This is discussed in Chapter 1 and Chapter 2.

• An optimized architecture for the Central Signal Processor (CSP) subsystem of
the SKA. We propose an optimized ASIC connected to novel high-bandwidth mem-
ory to improve the power-efficiency of the CSP subsystem. By doing so a first step
in aiding the realization of the SKA is made. This is discussed in Chapter 3.

• An architecture to enable arbitrary near-data processing capabilities close to the
main memory of a CPU. The architecture offers all integration features relevant
to integrate a near-data processor in a virtualized, coherent and consistent way,
without negatively affecting CPU performance. Key aspects are a mixed fine- and
coarse-grained coherence scheme, selective extension of CPU snoop and virtual
memory operations, and inter-NDP traffic optimizations through a CPU-based
cache. Also presented is a method for data-locality management based on existing
OS level functionality. This is discussed in Chapter 4.

• A system simulator simulating a CPU and its memory system, including the
new proposed components. The simulator allows the simulation of workload-
optimized near-data processors as well as software running on general-purpose
near-data processors. It allows for the evaluation of near-data processing at the
application level, as well as heterogeneous CPU and near-data processor usage.
This is discussed in Chapter 5.

• Evaluation and optimization of the HPCG and Graph500 benchmark on the pro-
posed architecture. Key aspects are a study of access granularities and software
prefetching, a study of inter-NDP traffic and its optimization, the cacheability of
remote data, executing atomic at the CPU, and various software optimizations.
Performance improvements with respect to server-class CPUs are in the order of a
factor 3x, for both benchmarks. This is discussed in Chapter 6.
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• The heterogeneous CPU and NDP usage to sort data sets. Key aspects are a dy-
namic workload balancing scheme to keep both the CPU and the NDPs busy, and
the usage of workload-optimized NDPs. By doing so we showcase the most funda-
mental property and advantage of near-data processing. When working together,
the CPU and the NDP make use of all the bandwidth in the memory hierarchy, and
a performance increase with respect to a server-class CPU of a factor 2.5x. This is
discussed in Chapter 7.

• A generalization of the near-data processing concept. We show, complementing
the preceding chapters and looking further in to the future, a different design point
for near-data processors. By making them equal to a CPU, we can create a generic,
memory-access parallelism focused, data-centric, compute platform. This is dis-
cussed in Chapter 8.



2
DATA CHALLENGES IN RADIO

ASTRONOMY

The introduction chapter discussed various trends and observations regarding (super)-
computers, running industry standard benchmarks. These benchmarks are useful to com-
pare systems between each other, and to show progress over time, but have obviously no
real-life meaning. The solving of real-life problems is however the goal, and in this chap-
ter we describe one of these problems.

The never ending pursuit of scientific knowledge by mankind has led to the realization
of some very powerful and incredibly complex instruments. A well known example of
this in the large hadron collider, build by the European Organization for Nuclear Re-
search (CERN). Another example is the Hubble space telescope, build by NASA. In the
field of radio-astronomy, the community is currently designing the next generation radio-
telescope, called the Square Kilometre Array, or the SKA. This instrument is supposed to
enable significant advances in our understanding of the galaxy.

Already before the design started in any serious way, it became clear that the SKA would
generate an astonishing amount of data, and would need an equally large amount of com-
pute power to process the data. With that observation, it perfectly fits the ‘digital data del-
uge’ sketched in Section 1.1. The compute requirements, especially when taking the power
budgets into account, would upon first sight almost certainly not fit in the already strug-
gling industry trends regarding big and power-efficient supercomputers. In this chapter
we analyze the requirements of the SKA, inspect the used algorithms, and argue about the
feasibility of its realization.

The content of this chapter is based on the following two papers:

Exascale radio-astronomy: can we ride the technology wave?
E. Vermij, L. Fiorin, C. Hagleitner and K. Bertels
International Supercomputing Conference (ISC), 2014
Best paper award

25
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Challenges in exascale radio-astronomy: can we ride the technology wave?
E. Vermij, L. Fiorin, R. Jongerius, C. Hagleitner and K. Bertels
The International Journal of High Performance Computing Applications
Invited paper
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ABSTRACT
The Square Kilometre Array (SKA) will be the most sensitive radio telescope in the world.
This unprecedented sensitivity will be achieved by combining and analyzing signals from
262,144 antennas and 350 dishes at a raw datarate of petabits per second. The process-
ing pipeline to create useful astronomical data will require hundreds of peta-operations
per second, at a very limited power budget. We analyze the compute, memory and band-
width requirements for the key algorithms used in the SKA. By studying their implemen-
tation on existing platforms, we show that most algorithms have properties that map
inefficiently on current hardware, such as a low compute-bandwidth ratio and complex
arithmetic. In addition, we estimate the power breakdown on CPUs and GPUs, analyze
the cache behavior on CPUs, and discuss possible improvements. This work is com-
plemented with an analysis of supercomputer trends, which demonstrates that current
efforts to use commercial off-the-shelf accelerators results in a two to three times smaller
improvement in compute capabilities and power efficiency than custom built machines.
We conclude that waiting for new technology to arrive will not give us the instruments
currently planned in 2018: one or two orders of magnitude better power efficiency and
compute capabilities are required. Novel hardware and system architectures, to match
the needs and features of this unique project, must be developed.

2.1. INTRODUCTION
The Square Kilometre Array (SKA) [10] will be the largest radio telescope in the world,
and it will have an unprecedented sensitivity, angular resolution and survey speed. Most
specifications are ten to a 100 times better than any existing telescope. Because of the
size of the project, its construction has been divided into two phases: SKA-1 and its ex-
tension SKA-2. SKA-1 is currently being designed, and construction will start in 2018. In
the same year, the design of SKA-2 will start. This paper will only look at the SKA-1, be-
cause the specifications for SKA-2 have yet to be finalized. Therefore, we will from now
on refer to SKA-1 as ‘SKA’. The SKA will deploy 262,144 antennas and 350 dishes in re-
mote areas in South-Africa and Australia, together producing several petabits of data per
second. Realizing the SKA will face many challenges in diverse fields like data transport,
algorithms, data storage, and system design. In this paper we will look at the compu-
tational challenges of the project: the absolute performance and power efficiency re-
quired. Power efficiency has special attention, since several subsystems of the SKA will
be located far away from any human infrastructure.

The main contributions of this paper are as follows. We present a detailed compu-
tational profile of SKA and its main algorithms, analyze the algorithms on existing hard-
ware, and discuss points for improvement. We show relevant trends in high-performance
computing and introduce the innovation metric to compare generations of supercom-
puters. Finally, we argue about the feasibility of deploying the SKA using commercial
off-the-shelf (COTS) hardware.

2.2. SKA PROJECT DESCRIPTION
SKA [104] will consist of three instruments: SKA-low, SKA-mid and SKA-survey.

SKA-low is an aperture array instrument [105] consisting of 1024 stations, each con-
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taining 256 dual-polarized antennas, which will receive signals between 50 and 350 MHz.
The antenna signals are summed per station into a single beam, which is transported to
a central signal-processing facility. The stations will be 35 m in diameter, and placed at
most 40 km apart. This instrument will be very much like a big version of LOFAR, the
low-frequency aperture array built in the Netherlands [9].

SKA-mid will use 254 single-pixel feed dishes capable of receiving signals between
350 MHz and 13.8 GHz. From this frequency range, a 2.5 GHz band can be selected for
measurements. The dishes will be placed at most 90 km apart.

The SKA-survey instrument will use 96 dishes, each containing phased array receivers.
Every receiver will have 94 antennas and can point 36 beams onto the sky. In this way, a
single dish has a huge field of view, compared with the SKA-mid dishes. The frequency
ranges between 250 MHz and 4 GHz, with an instantaneous bandwidth of 500 MHz. The
antennas will be spaced at most 25 km apart.

2.2.1. SCIENCE CASES FOR THE SKA
In the early stages of the SKA(1) project, two major science cases where identified, citing
the SKA organization [106]:

• Understanding the history and role of neutral Hydrogen in the Universe from the
dark ages to the present-day; and

• Detecting and timing binary pulsars and spin-stable millisecond pulsars in order
to test theories of gravity (including general relativity and quantum gravity), to dis-
cover gravitational waves from cosmological sources, and to determine the equa-
tion of state of nuclear matter.

Besides these two main science cases, there are about 10 others, like searching for
exo-planets and studying cosmic magnetism. From these science cases, various use-
cases have been defined, which give hints towards instrument and processing require-
ments of what is needed to produce relevant science results. Two main categories can
be identified: imaging and non-imaging use-cases. In the imaging mode we create im-
ages of the sky, while for the non-imaging mode, we are interested in, for example, time-
series. Besides the very first processing steps, these two modes have not much in com-
mon.

The first science case stated above (also known as Epoch of Reionization), has an
imaging use-case, and some requirements are listed below:

• Use the SKA-low instrument, in a frequency range from 50 to 300 MHz.

• 208,333 image frequency channels, about 1.2 KHz each.

• Image resolution between seven arcseconds and one arcminute, for respectively
calibration and actual imaging.

• Image dynamic range larger than 2.5×106.

From these requirements we can, to some extent, dimension the telescope and pro-
cessing pipeline. For example, the image frequency channel requirement translate to the



2.2. SKA PROJECT DESCRIPTION

2

29

Figure 2.1: Cold atomic hydrogen gas in the M81 galaxy, measured at 1420.4 MHz. As a reference, human-
visible red light has a frequency of 430 THz. Image courtesy of NRAO, D. S. Adler, D. J. Westpfahl.
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Figure 2.2: Overview of the processing steps for the SKA-low, using imaging pipeline. For SKA-mid and SKA-
survey, the antenna/station subsystem will be replaced by a dish.

Fast Fourier Transform (FFT) size needed in the correlator (as explained in the next sec-
tion). The dynamic range requirement translates to the quality of the entire calibration
and imaging pipeline.

As we cannot evaluate all science cases in this work, we will focus on an overall use
case: creating sky images for the entire frequency range of the instrument, and no chan-
nel integration. Based on experience from existing telescope, this is expected to be the
most compute intensive workload. In Figure 2.1 we show an example of a sky image
(for a single frequency channel). In this image we see the distribution of hydrogen in
the M81 galaxy, which shows a far more extended structure than images made in the
human-visible light spectrum.
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2.2.2. PROCESSING PIPELINE AND APPLICATIONS
In Figure 2.2, we show the simplified processing flow for the SKA-low, using the con-
tinuum imaging science case. For the SKA-mid and SKA-survey, the antenna/station
subsystem will be replaced by a single dish.

STATION PROCESSING FOR SKA-LOW

Because the SKA-low uses aperture arrays instead of dishes, extra processing is required
to synthesize a dish. The digitized antenna signal from the analog-digital converter is
sent to a polyphase channelizer consisting of several finite impulse response (FIR) filter
banks and an FFT, creating a number of frequency bands. These are fed into the beam-
former, in which every band is multiplied with a complex phase shift to delay the signal,
and added to the corresponding band from the other antennas. By delaying signals be-
tween antennas and summing them, the instrument focuses its sensitivity into a specific
direction, creating a so-called beam. The channelization before beamforming is needed
because the beamforming concept only works on small frequency bandwidths [107].

CENTRAL SIGNAL PROCESSING (CSP)
The beam from every station or dish undergoes a second channelization, generating
finer frequency channels, after which the beams are aligned in time and phase and, in
case of the SKA-low, undergo a gain correction to offset filter artifacts from the station
processing. The beam is correlated (multiplied) [108] with the data from all other sta-
tions or dishes, and integrated over a small period of time (the dump time). By corre-
lating, the signal-to-noise ratio of the data improves. A pair of stations/dishes is called
a baseline. The result is a visibility, which is a sample of the Fourier-transformed sky.
The visibilities are processed by removing RFI signals and by performing a calibration
step, to correct for known system inequalities. Furthermore, a set of well-known very
bright sources (the A-team) is demixed from the dataset. After these steps, the data is of-
ten integrated again in time and frequency, depending on the frequency smearing [109]
and/or other science requirements.

SCIENCE DATA PROCESSOR (SDP)
From the visibilities, a sky image can be constructed. The calibration works on a sta-
tion/dish basis, and accounts for both direction-independent effect (gains, crosstalks)
and direction-dependent effects, such as ionospheric distortion. The corrected visibil-
ities together with the calibration solution are passed to the imaging pipeline. From a
telescope model and the calibration parameters, we can create a small map representing
the complex gain function for a beam, called A-projection (analog to the lens behavior
in an optical camera) [110]. Two maps of a single baseline are multiplied together, and
then multiplied with a W-term to account for the non-coplanar baselines effect [111] (the
earth is not flat), and scaled up. The resulting map, or convolution matrix, is multiplied
with a visibility and added (gridded) onto a Fourier grid. This gridding process happens
in various time-steps, called snapshots [112]. All snapshots are later refitted into a single
grid. A Fourier transform of the grid results in a dirty image, and the CLEAN deconvo-
lution algorithm [113] is used to extract bright sky sources. After a certain threshold has
been reached, the extracted sources are converted back into visibilities (de-gridding),
which are subtracted from the original dataset. This gives us a visibilities dataset with
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only weak sources, and the gridding process starts over until only noise is left. All ex-
tracted sources are kept in a sky model. This sky model is used to make better estima-
tions about certain calibration parameters, resulting in another feedback loop back into
the calibration step. After a sufficient amount of iterations, the sky model can be con-
verted into a sky image, ready for research.

2.3. SKA COMPUTATIONAL PROFILE
In this section we analyze the compute requirements of various applications in the SKA
processing chain. The key element of this research are the scaling rules, or how the com-
pute for an application relates to telescope-parameters. The analysis shown is based on
work performed by Jongerius [114], internal project documents, and own research. We
would like to point out that the numbers in this section are estimations. Furthermore,
some algorithms, like calibration, are missing, since they are at this moment not well
defined enough to include.

2.3.1. STATION PROCESSING APPLICATION SET

CHANNELIZATION

The channelization consists of a fixed-size bank of FIR filters and a fixed-size (real to
complex) FFT. The compute requirements per second per single-polarized antenna are
given in Equation 2.1. Nt aps is the number of filter taps and Nband s is the number of
frequency bands. Samplessec is the incoming sample rate.

Opschannel i zati on = Samplessec × (2Nt aps + 5×0.5l og2(2Nband s )) (2.1)

BEAMFORMING

The beamforming step multiplies every dual-polarized antenna sample with 2×2 matrix
holding complex weights. Thus every sample undergoes 14 operations, eight multiplica-
tions and six additions.

2.3.2. CSP APPLICATION SET

CHANNELIZATION

The compute requirements per second per beam for this step is a variation on Equation
2.1. In this case the inputs are complex numbers, and we generate frequency channels
instead of frequency bands.

CORRELATION

The correlator multiplies two signals together and adds the result to a sum. The compute
for the correlator per second per channel is given in Equation 2.2. Here, Nst at is the
number of stations or dishes.

Opscor r el ator = 8×Samplessec ×0.5×N 2
st at (2.2)

An implementation challenge lies in the fact that data arrives per station, containing
all the frequency channels of that station, whereas the algorithm wants the data per fre-
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quency channel, containing all the stations. This data rearrangement is often called the
‘corner turn’, and frustrates practical implementations of the correlator.

RFI REMOVAL

Based on experiences from LOFAR, we see that good RFI removal costs 268 operations
per input sample [115]. This is not shown in an equation.

2.3.3. IMAGING APPLICATION SET

CONVOLUTION MATRIX GENERATION

Creating the convolution matrices as described in Section 2.2.2 involves several 2D FFTs
and point-wise matrix multiplications. The compute is however dominated by a single
2D FFT, often not a power-of-two in size. The compute requirements per second per
channel and baseline are given by Equation 2.3. W is the average W-matrix size, and O
is a scaling factor. Ssec indicates how many seconds the projection matrices are valid
because of time dependent effects. Cchan is the channel compression, indicating how
many channels can be served by the same W-A combination. Ni ter is the number of
iterations following the feedback loops described in Section 2.2.2.

OpsConv−matr−g en = 5× Ni ter

SsecCchan
×W 2O2log2(W 2O2) (2.3)

The up-scaling introduces a form of interpolation in the gridder. This is necessary
because the location of the visibilities is of much higher precision than the Fourier plane
gridpoints.

W-SNAPSHOTS GRIDDING

As de-gridding and gridding are very much the inverse of each other with the same ker-
nels and properties, we will only focus on gridding in this section. Based on the location
of the visibility with respect to the grid, a 1/64th subset of the convolution matrix is se-
lected. The visibility is multiplied with this matrix and added to the Fourier plane. The
compute per second per channel is given in Equation 2.4. Tdump is the correlator dump
time, and Nbl the number of baselines.

Opsg r i ddi ng = (6 + 2)× Ni ter Nbl

Tdump
×W 2 (2.4)

A practical aspect of this algorithm is that additional parallelism in the baselines
exists. However, exploiting that can be difficult because of the addition to a final grid,
which has to happen in an atomic way.

W-SNAPSHOTS RE-PROJECTION AND 2D FFT
Refitting a gridding snapshot consists of a coordinate transformation, and a 2D FFT. The
re-projection is estimated to be 50 operations per pixel per channel and is not shown in
an equation. The compute requirements per channel for the FFT follow Equation 2.5,
where R is the amount of pixels in one dimension of the image. Snapshot ssec indicates
the amount of seconds a snapshot is valid.
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Opssnapshot−r e f i t t i ng = 5× Ni ter

Snapshot ssec
×R2log2(R2) (2.5)

DECONVOLUTION

For this application we assume Cotton-Schwab CLEAN [116], together with the W-snapshots
described earlier. An estimate for the compute requirements per channel for this algo-
rithm are shown in Equation 2.6. Nmc is the number of minor cycles, Npp is the amount
of pixels along one axis of the dirty-beam patch, Npi is the amount of pixels along one
axis of the image, Nal is the number of pixels in the active-list, and Measur ementsec is
the measurement time. A detailed explanation of these parameters is beyond the scope
of this work, but can be found in [117].

Opsdeconvoluti on = 3×Nmc × Ni ter

Measur ementsec
× (

Npp

Npi
)2 ×Nal (2.6)

2.3.4. COMPUTE REQUIREMENTS
With the analysis performed in the previous Sections, and the specific parameters of all
the instruments, we can calculate the compute requirements. The result is shown in
Figure 2.3. From this Figure it is clear that several applications have very high compute
requirements, up to several hundreds of peta-ops per second. To make this work as rel-
evant as possible, we focus to four very compute intensive kernels, namely:

• FIR + 1D FFT (channelization), used in the SKA-low stations and the CSP.

• Correlation.

• 2D FFT, used in creating the convolution matrices, the W-snapshots re-projection,
and several places not explicitly mentioned in this work.

• Gridding.

In the remainder of this work we will (foremost) talk about these four kernels.

PARALLELISM AND DATATYPES IN THE APPLICATIONS

The compute requirements for SKA are high, but there are also trivial parallelizations
possible. Already recognizable in the previous section, most SDP applications can be
parallelized over frequency channels. These channels do not interact with each other,
and they can therefore be processed completely independent of each other. Another
parallelization possibility are the beams, which is especially relevant for SKA-Survey.

Another interesting point of our application set is that the datatypes are not neces-
sarily the default 32 or 64 bit floating-point. For example, the input for the correlator is
defined as 8 bit integers. The applications in the SDP do not have requirements like this,
but it is clear that some steps need more precision and/or dynamic range than others.
For example, the multiplication of a visibility with a convolution matrix can be done with
a ‘small’ datatype, compared to the full Fourier plane.
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Figure 2.3: Compute requirement estimates for the various applications for the three SKA instruments.

2.3.5. VISIBILITY BUFFER AND DATAFLOWS
The visiblity stream out of the correlator must be stored in a visibility buffer (or UV
buffer). The various major and calibration cycles can then be executed on this dataset.
The visibilities need to be stored in a ping-pong fashion, one buffer for the incoming
data, and one buffer for the dataset currently being processed. Here we assume that the
telescope will always be ‘on’. In Figure 2.4a we show the amount of storage needed for
the visibilities, for the three instruments of the SKA. It can be observed that the buffer
requirements are very high, over a 100 petabytes.

The input and output bandwidths for several steps for the three SKA instruments are
shown in Figure 2.4b. For the SKA-low we see a huge bandwidth reduction from the AD-
converters to the station output, due to the beamforming, where we sum all the antennas
together. For all the instruments, we see an increase in data rates in the correlator. This
is due to the large number of stations/dishes we have in SKA. Most existing, smaller, tele-
scopes reduce the data rates in the correlator, due to the summation happening there.
The input data rate for the imaging pipeline is again much higher than the correlator
output because of the various calibration and major loops that need to happen here. Fi-
nally, the output data rates of the imaging process (a set of images), is much smaller, as
a large stream of visiblities is converted into an image.

2.4. THE SKA ON THE TECHNOLOGY OF TODAY
As shown in the preceding sections, SKA will require significant computational power. In
this section, we will be analyzing state-of-the-art implementations of the key algorithms,
and take a look at how we could optimize current technology for SKA.

2.4.1. CORE TECHNOLOGIES
A decade ago, the first multi-core CPU was introduced, which sacrificed single-core peak
performance for parallelism. With manycore architectures, this concept is taken to the
extreme. Besides using more cores, specialized logic designed for a specific task can
be added: using additional area is traded off for better power efficiency or through-
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Figure 2.4: (a) UV buffer requirements for the SKA and (b) bandwidths throughout the SKA instruments.

put/latency [20]. Performance and/or power efficiency can be further improved by using
heterogeneity. This can be done on a node level by using multiple types of devices (CPUs
and GPUs for example), or within a single device (ARM® big.LITTLE [26] for example).
Another kind of heterogeneity comes in the form of attached FPGAs, which are reconfig-
urable. Examples of this are the Molen polymorphic processor [118], and the systems of
Convey Computer [119].

Most advances in power efficiency and throughput we see today are based on these
technologies. For example, GPUs employ the manycore paradigm, have thousands of
small cores, and are often used in a heterogeneous setup. CPUs become faster by adding
wider and more specialized instructions [120] or small accelerators [24].

2.4.2. THE SKA KERNELS ON EXISTING PRODUCTS

CHANNELIZATION

The work performed by Shahbahrami et al. [121] shows that FIR filters using real num-
bers are well suited for SIMD parallelization. For complex numbers additional data-
shuffling hardware is required. Jongerius et al. [122] show that a modern CPU can only
run a real FIR filter at 10-15% of its peak performance, because of the low number of
operations per byte of I/O. Romein [123] shows that this also holds true for complex FIR
filters on GPUs.

The FFT algorithm features an irregular data access pattern with low computational
intensity, which make it hard to run this algorithm efficiently on almost any architecture.
Jongerius et al. [122] show that the FFTW library [124] reaches 17% of the peak perfor-
mance of a modern CPU. The research by Xu et al. [125] shows in detail how the FFT can
be optimized for SIMD processing on a modern CPU. Romein [123] shows that FFTs on
GPUs are heavily IO bound, and achieve around 20% of the peak performance, compara-
ble with CPUs. Research by Lobeiras et al. [126] and nVidia’s own CUFFT library confirm
this.

LOFAR shows us that using FPGAs on the Uniboard [127] is a good match for the
fixed-sized FIR and FFT. The multiple bitwidth modes LOFAR can use are all supported
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on a single FPGA image.
For the channelization we can conclude that SIMD and SIMT models both work fine,

and that the bottlenecks are in the memory bandwidth and memory access pattern.

CORRELATOR

Nieuwpoort et al. [128] implemented the correlation algorithm on several architectures,
namely CPUs, GPUs, the Blue Gene®/P [129], and the Cell processor. They conclude
that having sufficient local storage is key to good performance. Both Cell and the Blue
Gene® achieve close to peak performance, whereas CPUs and GPUs reach significantly
lower numbers (70 and 40% respectively). Work by Clark et al. [130] and Romein et al.
[123] shows that for modern GPUs, a peak performance of up to 80% can be achieved
for a large number of stations, provided that significant optimization effort is put into
register and IO usage.

1

Research by Woods [131] and Souza et al. [132] shows that FPGAs are a suitable can-
didate for running the correlation algorithm, because of its regular and simple structure.
Utilizing custom datawidths is a major, and realistic, advantage over other architectures.

In conclusion, the correlator runs well on most architectures, but a big local storage
is important. Using custom datatypes gives an advantage.

2D FFT
A white paper published by Intel® [133] reports CPU utilizations ranging from 70% for a
64×64 dataset down to 50% for a 256×256 dataset, using their commercial math pack-
ages. For larger datasets the utilization drops, but one dimension is always kept at or
below 256, which makes the results less valuable for this analysis. For the utilization on
a GPU we run some small benchmarks. Using an nVidia® K20 GPU and CUDA® 6.0,
we see rather flat utilizations in the range of 7.5 and 10%, for input sizes from 64×64 to
8192×8192. The datasets for 2D FFTs on full sky images (10,000 - 50,000 pixels across)
will not fit on current day discrete accelerator devices, thereby frustrating an efficient
implementation.

Despite vendor-optimized codes, we see that (large) 2D FFTs do not run very well on
CPUs and GPUs. Their computational intensity is somewhat better than 1D FFTs, but it
is still low.

GRIDDING

The naive way to implement this algorithm gives a very low computational intensity
[134], and a lot of atomic add operations. This is shown in [135] for CPUs and GPUs.
Both platforms achieve around 5% of their peak performance because of bandwidth lim-
itations. An implementation on the Cell [136] achieves around 25% of the peak perfor-
mance, but only after considerable optimizations in the memory bandwidth usage. GPU
research performed in [137] tries to eliminate atomic add instructions as much as possi-
ble, and the GPU reaches 25% of its peak performance. Even when there are hardly any
atomic add operations left (0.23% of all grid updates), they still take up 26% of the time.

1Blue Gene is a trademark of International Business Machines Corporation, registered in many jurisdictions
worldwide. Other product or service names may be trademarks or service marks of IBM or other companies.
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For the gridding, we can conclude that the simple kernel will run well on most archi-
tectures; bottlenecks are in the memory bandwidth and atomic additions.

2.4.3. HINTS TOWARDS OPTIMIZED ARCHITECTURES

This section presents and analyzes two aspects of the key SKA algorithms: first, the
power breakdown on CPUs and GPUs, and second, the cache performance on CPUs.
Together with the work presented in Section 2.4.2, these analyses can be seen as a start-
ing point for research into architectures that can run the algorithms at higher through-
puts and with improved power efficiency. The CPU tests are run on a model of an In-
tel® Xeon® E5-2630 implemented by using the Gem5 simulator [138] and McPAT [139],
while the GPU tests are run on a generic model of a NVIDIA® GTX480 GPU implemented
by using an enhanced version of GPUWattch [140], a microarchitecture-level GPU power
simulator based on GPGPU-Sim [141] and McPAT. This GPU architecture is not the most
modern one, and already superseded by two architectures. The general organization of
GPUs has however not changed, therefore we believe the results shown are still relevant.
The CPU performance numbers are obtained by using the Intel® Vtune™ Amplifier and
again an Xeon® E5-2630 processor.

For the channelization, we used the algorithm described by Romein [123]. The corre-
lator implementations are based on code presented by Nieuwpoort et. al. [128], and the
gridding implementation described by Romein [137]. For the 2D FFT kernel, we used
a 128×128 complex matrix as input. This is a realistic size for the convolution matrix
generation, but somewhat small for the W-snapshot refitting.

POWER BREAKDOWN

Figure 2.5 shows the results of our power breakdown experiments. As can be seen, the
CPU shows very similar power distributions for all the algorithms. Only a very small
portion of the energy goes to the actual computations. Around 50% of the energy goes
to the three levels of caches, and another 20% to 30% is spent in the memory controllers.
Although not shown in the graph, almost all the power for the level two and level three
caches is due to the static power component. For the level one cache, the static and
dynamic power distribution is about equal. This means that a significant part of a CPUs
power usage is due to the presence of these big caches, which consume energy even
when they are idle. From the graph it is possible to notice the slightly higher usage of the
memory controllers in the channelization, due to the streaming nature of the algorithm.
Moreover, the correlator uses more power in the level one cache, which corresponds with
its intensive use of a local storage, as indicated Section 2.4.2.

The breakdown for the GPU shows a bigger power percentage for the functional units
than the CPU, as one would expect with GPUs being compute oriented platforms. This
difference is especially clear when running a compute-bound algorithm like the corre-
lator. For the 2D FFT the difference is much smaller. This shows that compute bound
problems run more efficiently on a GPU, and this is of course the reason why they are
used in HPC. Another interesting observation is the large amount of energy GPUs spend
in the register file (especially compared to CPUs), around 15%. This corresponds with
the fact that the register file in a GPU is very big, and can be compared with the level
one cache in CPUs. The constant power (around 15%) is mainly caused by processor
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Figure 2.5: Power breakdown on CPUs (left) and GPUs (right) for the four SKA algorithms considered in this
work: channelization (Chann.), correlator (Corr.), 2D FFT and Gridding (Grid.).

Table 2.1: CPU cache performance and ALU utilization for the four SKA algorithms considered in this work.
Here Chann. is the station channelization.

Chann. Correlator 2D FFT Gridding
Cycles under L1$ miss 29% 32% 46% 1%
Cycles under L1$ miss, L2$ hit 3% 29% 26% 1%
Cycles under L2$ miss, L3$ hit 4% 2% 7% 0%
Cycles under L3$ miss 23% 1% 13% 0%

and memory leakage power and peripheral circuits’ power [140]. In the case of GPUs, it
can be noticed that we have a high power consumption of the floating point units while
running the correlator, as we would expect for a compute bound problem. Furthermore,
the 2D FFT consumes a lot of energy in the local storage (register files, shared memory
and level two cache), corresponding with the large datasets it has to process in a relative
inefficient way.

CPU CACHE PERFORMANCE

The results for the CPU cache performance are shown in Table 2.1, and correspond with
what we know about the algorithms. The channelization does not use the level two and
level three cache: data is streamed from external RAM into level one, processed and
evicted again. For the correlator we know that it appreciates large amounts of local stor-
age, this is reflected in the numbers: level one misses almost always hit in level two. The
2D FFT behaves in the same way as the channelization, but also uses the level two cache,
since it uses larger datasets. The gridding exhibits very good cache behavior.

CONSIDERATIONS

From these numbers, we can extract some general guidelines on how to improve the
power efficiency and throughput of these four algorithms.

GPUs spend a significant amount of energy in the floating point units, the register
file and the rest of the core. We see a similar picture for the corresponding CPU cate-
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gories. Adding macro instructions to the core-architecture for executing FFT butterflies
(beyond existing shuffle instructions), complex multiplications or even bigger instruc-
tion blocks, would result in less register file accesses and more efficient execution units.
This could reduce the power consumption and improve the throughput. Furthermore,
core-architectures could be optimized to capture the simplicity and regularity of the al-
gorithms. The correlator for example, has basically a single type of instruction (complex
multiply-accumulate) inside several loops, but still, when running this algorithm on a
CPU, five percent of the power goes to the instruction cache. Exploiting this regularity
can also improve the power efficiency and throughout.

Besides the computational part of the chips, the local memories use large amounts
of energy, and are often also a performance bottleneck. Making the memories deeper
and wider will make performance better, but the energy consumption worse. A possible
improvement would be to be able to exploit the regularity and predictability of the data
needs. With carefully arranged accesses, specific to our SKA algorithms, we could utilize
the available bandwidth to the largest extent. Similarly an improved, more SKA specific,
organization of the local memories would increase data locality, reducing the number of
accesses to a lower level or the external memory. The numbers presented in Table 2.1
and the power breakdown observations in Section 2.4.3 can serve as a guideline here.

2.5. TECHNOLOGY CHALLENGES FOR THE SKA
In Chapter 1 an overview is given of several industry trends, from the device level up to
the supercomputer level. We can revisit the challenges for the future of radio astronomy.
For SKA, the power and memory walls can be summarized into a data-locality problem.
The instrument generates so much data (Section 2.3.5), that it is impossible to move
the data to an appropriate processing device. As a node level example: a modern PCIe-
attached device needs hundreds of operations per incoming byte to run at a high utiliza-
tion. We do not have that amount of operations, as indicated in Section 2.4. Between
nodes we see a similar problem: a significant portion of supercomputing power goes
to the interconnect, and with the rapidly increasing node peak performance, data com-
munication cannot keep up. Managing where the data is with respect to the compute
resources will be the key challenge.

As discussed in the introduction, power efficiency is of special importance to the
SKA, since several subsystems will be located in remote areas. Power will have to be
transported there or generated on the spot. This gives another dimension to the power
efficiency challenge.

2.6. CAN SKA RIDE THE TECHNOLOGY WAVE?
2.6.1. AT NODE LEVEL
The algorithms discussed and analyzed in Sections 2.3 and 2.4 exhibit features that do
not map well on existing technologies. In Section 2.4.3, we already briefly discussed
some of them: predictable data-access patterns, high bandwidth-to-compute ratio, and
complex-number arithmetic. Other exploitable features are narrow and/or flexible dataw-
idths and simple highly repetitive kernels.

Given the challenging requirements of the SKA, we cannot afford to either waste
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Figure 2.6: The compute and power efficiency points for the SKA subsystems, put next to TOP500 trends.

computational resources or energy or not benefit from some specific features the algo-
rithms offer us. An extra level of specialization, like the industry examples indicated in
Section 1.4, will be needed.

2.6.2. AT THE SYSTEM LEVEL

In Figure 2.6, we show the compute versus power efficiency operation points for the sev-
eral subsystems of SKA. The SKA systems should be built towards the end of this decade.
Power requirements are found in the SKA baseline design, and the compute is based on
Section 2.3. The graph furthermore shows several point sets and a trend based on several
TOP500 top ten systems [3]. We would like to emphasize that our kernels will run on a
lower utilization than the Linpack kernel for the TOP500 / Green500 data points. For this
figure we do not use the latest TOP500 list, since the number 10 in that list (the only new
one), does not have a reported power number.

Two observations can be made. First, the power efficiency of the subsystems are
orders of magnitude apart. This means that the power budgets are not balanced very
well. As illustration we also included a weighted power efficiency in Figure 2.6. Secondly,
it is clear that riding the technology wave and waiting for systems available at the end of
the decade will not give us the hardware needed to realize some subsystems (foremost
the SDPs) of SKA.

Given the data challenges indicated in Section 2.5, novel data-centric approaches
should be considered. A high-level example of this could be to split the system physi-
cally into frequency channels (as described in Section 2.3.4). Data can stay at rest within
a ‘channel-node’, while the node does all consecutive processing steps. This would sig-
nificantly reduce the load on the system interconnect, and thereby reduce the power
consumption. With such an approach, we would end up with a true data-centric super-
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computer.

2.7. CONCLUSION - REALIZING THE SKA
In this paper, we presented an overview of SKA from a compute perspective, and ana-
lyzed whether the instrument can be built using COTS hardware in 2018. Three observa-
tions can be made: 1) SKA will require large amounts of computational power at a very
high power efficiency. 2) Most SKA algorithms will only run at efficiencies around 10% to
50% on COTS hardware, with clear points for improvement being smarter memory ac-
cesses and specialized execution units. 3) The HPC innovation and trend analysis shows
that custom-built machines achieve two to three times larger improvement in compute
capabilities and power efficiency than systems employing COTS hardware.

We conclude that waiting for new technology to arrive will not give us the instru-
ments currently planned at the end of the decade: an order of magnitude better power
efficiency and compute capabilities are required. Developing new, workload specific
technology, specialized for the tasks at hand must be considered. Solving the data-
locality problem will be key: there should always be a suitable compute element near
the data, on every level.





3
A CUSTOM COPROCESSOR FOR

RADIO ASTRONOMY CORRELATION

The use of customization within a device, as well as the usage of custom systems, is an
efficient way to increase the performance and power-efficiency of workloads. The level of
customizations, and thus optimizations, that can be applied, depends on the application
demands, but also on the longevity of the applications’ cause, and the achievable impact.
For the SKA radio telescope, unorthodox compute and power efficiency requirements are
presented, and workload optimized systems can be a successful way to realize (parts of)
the SKA. The first processing stages for the SKA require a significant amount of compute,
but their complexity and variability are limited. These stages are therefore an excellent
candidate for custom and well optimized computer systems, as described in this chapter.

The content of this chapter is based on the following paper:

An energy-efficient custom architecture for the SKA1-Low central signal processor
L. Fiorin, E. Vermij, J. van Lunteren, R. Jongerius and C. Hagleitner
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ABSTRACT
The Square Kilometre Array (SKA) will be the biggest radio telescope ever built, with un-
precedented sensitivity, angular resolution, and survey speed. This paper explores the
design of a custom architecture for the central signal processor (CSP) of the SKA1-Low,
the SKA’s aperture-array instrument consisting of 131,072 antennas. The SKA1-Low’s
antennas receive signals between 50 and 350 MHz. After digitization and preliminary
processing, samples are moved to the CSP for further processing. In this work, we de-
scribe the challenges in building the CSP, and present a first quantitative study for the
implementation of a custom hardware architecture for processing the main CSP algo-
rithms. By taking advantage of emerging 3D-stacked-memory devices and by exploring
the design space for a 14-nm implementation, we estimate a power consumption of 14.4
W for processing all channels of a sub-band and an energy efficiency at application level
of up to 208 GFLOPS/W for our architecture.

3.1. INTRODUCTION
The Square Kilometre Array (SKA) will be the biggest radio telescope in the world, with
unprecedented sensitivity, angular resolution, and survey speed. Collectively, the an-
tennas composing the SKA are expected to gather 14 exabytes and store one petabyte of
data every day, requiring exa operations per second for the processing [10]. In this work,
we focus on the implementation of the central signal processor (CSP) of the SKA1-Low,
the SKA’s aperture array instrument that will be built in the first phase of the deployment
of the SKA and consisting of 512 stations, each containing 256 dual-polarized anten-
nas [10]. We refer in particular to a two-stage signal channelization implementation in
which the signal-processing load is distributed between the stations and the CSP (see
Figure 3.1 for details) [10]. This configuration is similar to the one implemented in LO-
FAR, the low-frequency aperture array built in the Netherlands [114].

Figure 3.1 shows an overview of the processing steps for the SKA1-Low, in the case
of the continuum imaging science case [10]. The processing flow can be divided in three
parts: the station processing, the central signal processor, and the science data processor
(SDP) 1.

This paper focuses on the study and evaluation of an energy-efficient custom archi-
tecture for the CSP. Current proposals for its implementation rely on the use of high-
performance homogeneous supercomputers [129] or on GPU-based accelerated archi-
tectures [130], and hardware solutions based on FPGAs [132]. We present a first quan-
titative study for the implementation of a custom hardware architecture for processing
the CSP algorithms. By taking advantage of emerging 3D-stacked memory devices and
by exploring the design space for a 14-nm implementation, we evaluate that our archi-
tecture consumes 14.4 W for processing all channels of a sub-band, achieving an energy
efficiency at application level of up to 208 GFLOPS/W.

The remainder of this paper is organized as follows: Section 3.2 describes the CSP
and presents an analysis of its main algorithms and of their requirements. Section 3.3
introduces the proposed architecture and discusses the advantages of the new data or-
ganization. In Section 3.4, the proposed architecture is evaluated. Related work is pre-

1We refer the interested reader to [129, 142] for further details.
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Figure 3.1: Overview of the processing steps for the SKA1-Low, using the continuum imaging science case [142].

sented in Section 3.5, and Section 3.6 concludes the paper.

3.2. CENTRAL SIGNAL PROCESSOR
Figure 3.1 shows an overview of the main processing steps of the SKA1-Low CSP, taking
as example the configuration implemented in LOFAR, the low-frequency aperture array
built in the Netherlands [114]. At the stations, dual-polarized signals from each antenna
are digitized and sent to poly-phase channelizers, which creates a number of frequency
sub-bands. Signals of every band are delayed appropriately by multiplying them with a
complex phase shift, and added to the corresponding band from the other antennas to
create a so-called beam.

At their arrival at the CSP, station data are copied in a memory buffer and a coarse-
grained inter-sample time delay is introduced in the beam data to correct for the differ-
ent relative stations distance and align the beams in time and phase. Station data arrive
separated over Nband coarse-grained channels or sub-bands, thanks to the first chan-
nelization phase performed during station processing.

In the second step, in the stage called corner turn, data are redistributed. Data arrive
at the CSP per station, and the corner turn redistributes them to have data from all sta-
tions for a single frequency sub-band in the processing node. This is done because data
need to be processed per sub-band. After the corner turn, a new channelization step is
performed in which signals are split into even narrower frequency channels. After the
channelization step, data are multiplied with complex coefficients to correct for artifacts
introduced by the filter banks in the station processing.

At this point, samples from every station in the same frequency channel are corre-
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Table 3.1: CSP application parameters.

CSP requirements
Parameter Description Value
Nst at # transmitting stations 512
Nband # sub-bands (coarse-grained channels) 512
Nbeam # beams per station 1
Npol # polarizations 2
fst at Station samples frequency (Mega samples/s) 360
Nch # channels for frequency sub-band 512
Nt aps # FIR filter taps 8
Ndump # samples integrated at the correlation step 1200
Ops f i r # operations per sec. - FIR (Tera ops/s) 11.06
OpsF F T # operations per sec. - FFT (Tera ops/s) 16.59
Opscor r ec # operations per sec. - corrections (Tera ops/s) 5.16
Opscor r # operations per sec. - correlation (Peta ops/s) 1.51

lated to detect statistic coherence in the received signals - otherwise too weak to be dis-
tinguished from the noise - and integrated over a small period of time to reduce the
output size. The result data of this step, called visibilities, are processed by removing any
sample disrupted by radio-frequency interference.

In this work, we focus on the most computing-intensive algorithms of the CSP, i.e.,
the channelization, the corrections, and the correlation (grey area in Figure 3.1). In the
remainder of the paper, we will refer to the parameters and requirements summarized
in Table 3.12.

3.2.1. ALGORITHMS PROFILE

CHANNELIZATION

In the channelization, every frequency sub-band is split into Nch narrower frequency
channels by trading time resolution for frequency resolution. This is performed through
a poly-phase filter consisting of Nch Nt aps -taps finite impulse response sub-filters (FIR)
and an Nch-point complex-to-complex Fourier transform (FFT) taking as input the out-
puts of the sub-filters. As a reference, Figure 3.2 shows a block diagram of the CSP poly-
phase filter. Both FIR and FFT algorithms operate on complex samples. Every channel-
tap combination in the sub-filters has a different real weight, but all stations and po-
larizations share the same weight. Given the parameters summarized in Table 3.1 and
considering a Radix-2 Cooley-Tukey implementation for the FFT, the aggregate comput-
ing requirements of this step for processing all Nband sub-bands are 27.6 tera operations
per second, with an input bandwidth of approximately 5.9 terabits per second [114].

2At the time of the submission, the specification of the SKA1-Low are not yet fully finalized. Values reported in
this work represent an educated guess of the worst-case scenario requirements [10].
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Figure 3.2: Block diagram of the CSP poly-phase filter.

PHASE SHIFT AND BANDPASS CORRECTION

Both phase shift and the bandpass corrections are implemented by multiplying each
sample with complex (phase shift) or real (bandpass) coefficients [129] after the chan-
nelization. The computing requirements of these two steps are approximately 5.2 tera
operations per second. In the case of the phase shift correction, additional computing
power may be needed calculating the coefficients, which changes over different time
windows. For the sake of simplicity, in the remainder of the paper, we will not discuss
the execution of the correction steps, as their computing requirements are negligible
with respect to the requirements of the channelization algorithms, and in particular of
the correlation algorithm.

CORRELATION

In this step, simultaneous samples of each pair of stations (baselines) are correlated by
multiplying a sample with the complex conjugate of the sample of all other stations, and
integrated over a period of time (the dump time). For each baseline, four visibilities are
calculated, i.e., correlating each one of the two baseline’s polarizations with itself and the
other. This is performed for each one of the Nband ×Nch frequency channel in which the
signal spectrum has been divided by the channelization phases. The correlation shows
a computing requirement of 1.5 peta operations per second (approximately 2 orders of
magnitude higher than the one shown by the channelization step), making it the most
expensive computing step of the CSP.

An additional difficulty in implementing the correlation step is that on conventional
computer architectures, the channelization and corrections steps in general produce
data in an order unsuitable for the correlation step [128], which may influence the per-
formance (time-wise) and power efficiency of the entire CSP.
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Figure 3.3: Overview of the proposed accelerator architecture. From left to right: socket, chip, core.

3.3. PROPOSED MICRO-ARCHITECTURE
As presented in Section 3.2, the CSP is composed of several algorithms with small repet-
itive kernels that process data with relatively little locality and with streaming behavior.
Although the computing requirements are enormous, the application is embarrassingly
parallel. Given the characteristics of the application, we propose a customized Single-
Instruction Multiple-Data (SIMD) micro-architecture suitable for satisfying the energy
efficiency requirements of the CSP, while still maintaining a good level of flexibility.

Figure 3.3 presents an overview of the proposed custom architecture. Several 3D-
stacked memory devices, such as Micron’s Hybrid Memory Cube (HMC) [143] [144], are
connected to the accelerator die through high-speed Serializer/Deserializer (SerDes) I/O
links. The accelerator consist of several homogeneous cores, connected by an on-chip
interconnection network. Figure 3.3 shows the CSP custom core micro-architecture tem-
plate. Each core is composed of m functional units (FUs). Each functional unit is com-
posed of its own private register file (RF) and of an execution unit (represented in the
figure by the Complex Fused Multiply-Add - CFMA). Data are transferred from/to the
memory exploiting wide path accesses into/from the register files of the functional units.
An additional register file (the Shared Scalar Register File - SSRF) is used for storing scalar
values shared by all m functional units. As will be explained in Section 3.3.3, all CSP al-
gorithms can be expressed in form of a multiplication of a vector with a scalar value. The
SSRF serves as a buffer into which values are written as vector to exploit the wide mem-
ory access of the memory, and read as scalar. The core is controlled by a state machine
(micro-controller) that manages a predetermined sequence of storage, communication,
and computation steps [145]. All functional units work at lock step under the manage-
ment of the micro-controller, performing the same operation on different data. As also
explained in Section 3.3.3, each core operates interdependently on its own set of data.

3.3.1. FUNCTIONAL UNIT
The analysis of the algorithms in Section 3.2 shows that the CSP operations are domi-
nated by the correlation. This function can be implemented, by including also the addi-
tion due to the integration over the dump time, as a Fused Multiply Add (FMA) between
two incoming complex samples and the temporary result of the integration.

The complex FMA (CFMA) can also serve as functional unit to implement the other
algorithms of the CSP. The FIR operation contains Nt aps real to complex multiplications
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and Nt aps −1 complex additions, corresponding to 4Nt aps −2 real floating-point opera-
tions. By using a CFMA, the FIR can be expressed as Nt aps CFMAs, equivalent to 8Nt aps

real floating-point operations, leading to a theoretical utilization of the functional unit
of approximately 47% for Nt aps equal to 8.

The FFT can be similarly expressed in terms of CFMAs [146] [147]. For instance in the
case of a Radix-2 Cooley-Tukey implementation, a butterfly between complex operands
requires 10 floating-point operations, and it can be implemented as two CFMAs. The
theoretical utilization of the functional units in the FFT is therefore equal to 62.5%.

In the case of a phase shift and bandpass correction (if separated from the channel-
ization), the utilization is equivalent to 75% and 25%, respectively, because of the simple
multiplication to complex coefficients in the first case and to real ones in the second
case.

Even if the theoretical utilization is sub-optimal for FIR, FFT, and corrections, the
computational weight of the correlation makes the overall system-level utilization of the
functional units close to 100%. Therefore, possible advantages of using functional units
customized for the specific algorithms are not justified by the negligible improvement
they could bring at system level.

Each CFMA is provided with a private register file, which allows a full throughput in
the utilization of the CFMA to be achieved, i.e., a number of interleaved threads equal
to the number of pipeline stages of the execution unit is supported. Given the high par-
allelism of the algorithms, it is possible to schedule threads without being influenced
by data dependencies [148]. To achieve a least-energy solution, we assume two differ-
ent clocks for the CFMA and the register file, trading parallelism versus pipelining in the
access to the register file [148] [146].

3.3.2. MICRO-CONTROLLER

The micro-controller controls the entire processing path, i.e., the reading of operand val-
ues from memory, transferring these to the functional units, triggering the subsequent
processing of these operands, and writing the results back to memory [146] [145]. The
micro-controller uses a new type of low-level programming model that allows us to pro-
gram the memory accesses, data transfer and computation in a more tightly coupled
fashion. This allows us to remove a large part of the logic overhead (e.g., buffering) that
typically resides between the memory circuits in which the data resides and the func-
tional units that process the data, and which is inherently part of conventional general-
purpose processing architectures. By also integrating selected memory controller func-
tions, in particular address mapping and access scheduling, the micro-controller can
further improve the overall performance by optimizing the bandwidth utilization and
power efficiency of the memory system.

The programming model of the micro-controller is based on two main concepts. The
first one is a programmable state machine, called B-FSM [149], which makes it possible
to support efficient multi-way branch capabilities in the micro-controller. This allows
us to evaluate many conditions in parallel, including loop conditions as part of address
generation, and access scheduling related conditions.

The second enabling technology is a programmable mapping scheme that can be
used to adapt the mapping of addresses over the memory banks, with the objective to
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improve memory bandwidth utilization based on improved access interleaving to re-
duce bank contention [150].

3.3.3. PROPOSED DATA ORGANIZATION AND ALGORITHMS EXECUTION
To exploit the high available parallelism and the potential of the proposed SIMD archi-
tecture, we organize data to better fit the wide line of FUs. As observed, the correlation is
the computationally most intensive algorithm, and data should be delivered to the func-
tional units in a way that maximizes their utilization, while minimizing data movement.
In this work, we refer to a correlation implementation based on the input-buffered ar-
chitecture [151]. All input samples of the antennas processed by a specific core are first
copied to a memory that holds enough samples for the integration over the dump time.
The samples of one pair of antennas (baseline) are multiplied and summed to the tem-
porary result until all samples in the dump time have been processed. Then, the result
is delivered and a new baseline is processed, continuing in this way until all pairs of an-
tennas have been correlated.

We can assume data to be delivered at the input buffer of the CSP in the form:

d at a_i n[st ati ons][t i me][pol ar i zati ons]

in which the time dimension includes the results of the first channelization, i.e., the
“distribution” of the time samples over multiple sub-bands. Similarly to the LOFAR im-
plementation [129], we rely on a corner turn and perform a first parallelization of the
computation over the sub-bands (see Figure 3.1). After the corner turn, we assume data
organization at the input of each node processing a sub-band in the form:

d at a_i n[t i me][st ati ons][pol ar i zati ons]

FIR AND FFT EXECUTION

The FIR and the FFT are performed by accessing data in memory per column instead
of per row, in a way similar to what is described in [152] for the CELL processor. Each
functional unit is therefore responsible for processing samples of one of the polariza-
tions of a single station, both for the FIR and the FFT. Figure 3.4 shows a block diagram
of the execution of the FFT over our micro-architecture in the case of an in-place Radix-
2 Cooley-Tukey FFT implementation, optimized for CFMAs [147]. Twiddle factors are
pre-calculated and organized in memory to optimize their utilization in the successive
stages of the FFT calculation. We exploit the parallelism available in the core to perform
the algorithms over multiple stations/polarizations at the same time, and use wide ac-
cesses to retrieve sample data from the memory. In the figure, sti , j is the i − th station
with polarization j ; chi is the i − th channel generated during the FIR step, and t wi is
the i − th twiddle factor used for calculating the FFT butterfly.

Every functional unit works on its own column of data. As the core’s functional units
work in parallel and at lock step, all the data in the retrieved memory block/line is pro-
cessed at the same time, therefore efficiently exploiting the wide line of functional units.
Moreover, in the case of the FFT, by accessing data in this way, there is no need for spe-
cial hardware for shuffling data or for performing any transpose operation, and input
data locality can be exploited in the core by implementing a decomposition in smaller
FFTs [152] or/and by using higher radix orders.
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Figure 3.4: Proposed input data organization for the FIR and the FFT algorithm. The picture also sketches how
data are processed by the proposed micro-architecture when implementing the FFT.

In the execution of the FIR and the FFT, each basic step implies that each FU multi-
plies its input sample data with a value common to all FUs (the tap weights in the case of
the FIR, and the twiddle factors for the FFT). The SSRF is used to store these values and
provide them to the FUs.

CORRELATION EXECUTION

By distinguishing between different channelization batches over the time, data after the
channelization are provided to the correlation in the form:

d at a_i n[t i me][channel s][st ati ons][pol ar i zati on]

Figure 3.5 shows the same diagram as in Figure 3.4, but in the case of the correlation.
For each time sample ti , a line of station data is copied on the SSRF, and, one station
data at the time, multiplied with the line of station data retrieved for the line of FUs.
Temporary results of the integrations are stored in the RFs until all time samples within
the dump time for the calculated correlations have been processed and added to the
temporary results. This implementation requires the RF to have enough local storage
to store the intermediate results of the integrations, i.e., given a line of m FUs and a
number of SSRF entries equal to SSRFentr i es , each RF should be big enough to store
m ×SSRFentr i es temporary integration results.

The use of the RF and the SSRF, together with optimized data scheduling, allows us
to reduce the number of accesses to the main memory of the accelerator, and therefore
the requested data traffic from it. Figure 3.6 shows a simplified example of how data can
be scheduled on the proposed architecture when implementing the correlation. In the
example, we consider 8 lines of m station data (A to H), i.e., 8×m stations to correlate
(single polarization, in the example). The figure shows the sequence of data loads on the
RFs and on the SSRF. For sake of clarity, Figure 3.6 shows only the stations involved in the
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Figure 3.5: Proposed input data organization for the correlation. The picture also sketches how data are pro-
cessed by the proposed micro-architecture when implementing the correlation (one channel).

Figure 3.6: Overview of an optimized input data scheduling on the proposed architecture for the correlation
algorithm.
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correlation, and not each station’s time samples. From the figure, it is straightforward
to derive that the number of read accesses to the memory and the input bandwidth is
proportional, in the case of the SSRF, to:

(3.1)RDs(mem,SSRF ) =
st ati ons

2m
(

st ati ons

m
+ 1)

In the case of the RFs, the number of read accesses is proportional to:

(3.2)RDs(mem,RF ) =
st ati ons

2m × SSRFentr i es
(

st ati ons

m
+ 1)

Note that by reorganizing the data in the way presented before the channelization,
there is not need to transpose data before the execution of the correlation, as is currently
done in conventional computing architecture [129].

3.4. EVALUATION RESULTS
In this section, we present the results of the design-space exploration we performed on
our architecture in order to find the most energy-efficient configuration.

3.4.1. EXPERIMENTAL SETUP
We modeled the CFMA by extracting implementation data for a single-precision floating-
point FMA from [148] and scaling them to 14-nm technology, likely to be commercially
available in 2018, when the construction of SKA1 will begin. We considered a non-
optimized CFMA composed of four FMAs, with twice the number of pipeline stages of
the FMA. As our goal is to reduce the total energy, we focused on a low Vdd and high
Vth implementation, i.e., synthesized with a low-power technology library [148]. For
modeling the register files and the SSRF, we relied on CACTI-D [153], scaling the results
obtained from the tool from 32 nm to 14 nm. On-chip interconnections were modeled
on implementation results extracted from [154]. Power and area numbers for the micro-
controller are preliminary synthesis results for a 14-nm implementation. Numbers for
I/O chip-to-chip data transfers over the backplane were estimated by scaling to 14 nm
power and area results obtained for an electrical transceiver implemented in 65 nm and
capable of up to 15 Gb/s data rate [155]. For the technology scaling, we referred to the
trends reported in [156] and [157] in the case of Low Operating Power technology. For
logic, we applied a scaling factor of 0.53x per technology node for the area, and a scaling
factor of 0.8x per technology node for dynamic and leakage power. For SRAM devices,
from 32 nm to 14 nm, we considered an overall area scaling factor of 0.34x and a power
scaling factor of 0.56x. We considered a 30% increase per technology node in the maxi-
mum frequency of the design.

We model the 3D-stacked memory modules after a Micron study showing that the
energy per bit for access in the first-generation HMC is measured at 10.48 pJ, of which
3.7 pJ/b in the DRAM layers and 6.78 pJ/b in the logic-layer, which includes HMC mem-
ory controllers, short-range high-speed Serializer/Deserializer (SerDes) link controllers,
a crossbar switch, and additional logic [143] [144]. As the logic layer is implemented
in 90 nm, we scaled the logic layer access energy to 2.1 pJ/b to take into account of the
most recent technology likely to be used in the second-generation HMC [35]. The energy
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Table 3.2: Characteristics of the Pareto point with minimum power (α) and minimum die area (β). Values are
reported for correlating all stations for each Nch channels of one sub-band.

Point Power (W) Area (mm2) GFLOPS/W SSRFentr i es RF ssi ze /core (KB) RFcon f
α 11.47 14.54 257 4 268 SRAM, N
β 12.04 9.73 245 2 134 eDRAM, N

access values obtained are in line with numbers reported in other studies [158]. We as-
sume an additional 1.33 W of consumption in the logic layer for components other than
the SerDes links, and a background DRAM array power equal to 10% of the DRAM power
consumption at maximum bandwidth [144]. An additional 1 pJ/b has been considered
for crossing the short-range links between the core accelerator chip and the HMC de-
vices [143]. Each HMC device has a maximum of four full-duplex 16-lane links with an
aggregate link bandwidth of 480 GB/s [35].

3.4.2. DESIGN-SPACE EXPLORATION

As the requirements of the correlation dominate the application, we focus on them the
system-level design. Performance and costs of executing the channelization algorithms
on the architecture will be evaluated afterwards.

CORRELATION

We explored different configurations of the architectural template presented in Section
3.3. While focusing on performing our operations on 64-bit-wide complex operands (32
bits for both the real and the imaginary part), we varied the number m of FUs per core,
the number of SSRF entries, and the corresponding size of the RFs. As every FU practi-
cally operates on its own set of data independently of the other FUs, we considered each
core’s RF either as big memories with wide accesses or as m smaller memories with nar-
row accesses. We explored different memory implementation technologies considering
for RFs either SRAM or embedded DRAM (eDRAM).

Each CFMA, implemented as a 6 pipeline stage unit, operates at 433 MHz. Each core
is therefore able to deliver a maximum throughput of m × 433 MHz. Evaluations were
performed by considering that our accelerator can process all Nch channels of one sub-
band. In those configurations in which a single chip was not able to satisfy the design
constraints (e.g., the maximum allowed core-memory bandwidth), additional area and
power overhead were considered for a multi-chip implementation.

To allow a streaming behavior of the application and overlap execution with mem-
ory transfers, we doubled the size of all memory components. Given the requirements
in Table 3.1, the minimum amount of memory needed for a streaming input-buffered
implementation of the correlation is equal to 9.375 GB. We considered therefore a mini-
mum of three 4-layered 4-GB HMC devices, for a total capacity of 12 GB per accelerator.

Figure 3.7 shows the results of the design-space exploration performed on our cus-
tom architecture, by considering the inverse of the number of GFLOPS per Watt and
the inverse of the number of GFLOPS per unit of area (mm2) as design objectives. The
power evaluation includes all the components modeled. Area values refer only to the ac-
celerator die. Table 3.2 summarizes the main characteristics of the points in the Pareto
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Figure 3.7: Results of the parameters design-space exploration for the proposed architecture.

curve with minimum area and minimum power, α and β, respectively. For both points,
the number m of functional units per core is equal to 64 and the number of cores in
the chip is 14. The throughput from the HMC for the α and the β point is equal to 68
GB/s and 81 GB/s, respectively. The different throughputs are due to the difference in
the SSRFentr i es parameters and to the influence that SSRFentr i es has on the number of
memory accesses. The throughput to the HMC is in both cases equal to 18 GB/s. In the
table, SSRFentr i es is the number of SSRF entries, and RF ssi ze is the total size of the RFs
in the core. RFcon f i g specifies the memory implementation technology used for evalu-
ating the memory component and whether it employs narrow (N) or wide (W) accesses.
The utilization of the functional units is equal to 95.1%.

As noted, every core works on its dedicated memory space. The amount of main
memory needed per core for implementing the correlation is equal to approximately
686 MB. The size of a 4-GB HMC vault, i.e., a vertical memory slice in the stacked DRAM
which is managed by a dedicated controller, is equal to 128 MB [35]. By allocating six
vaults to each core, the memory access requests can be served in parallel by the con-
trollers without contention penalties.

Figure 3.8 shows the power breakdown in the case of the correlation while varying
the number of FUs per core. The histograms are normalized with respect to the config-
uration using 4 FUs per core. For each core configuration, we chose the point that min-
imizes the product power 2 ×ar ea. As modeled by Equations 3.2 and 3.1, by increasing
the number m of FUs per core, the power reduces approximately as 1/m. This is mainly
due to the reduction of the number of micro-controllers needed and to the reduction of
the communication between memory and cores, which decreases the memory access
power, the HMC links power, and the on-chip communication power. By exploiting the
locality of the station data in the correlation using wider cores, the number of accesses
to the memory is significantly reduced. Figure 3.8 also shows that the main contribution
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Figure 3.8: Power breakdown for different core configurations.

to the power consumption is due to the accesses to the main memory. Together with
the SerDes communication cost, the memory accesses account for around 73% of the
power budget for the most energy-efficient configuration. As the computing capabilities
needed are the same for each configuration, the power consumption due to RFs and exe-
cution units is approximately constant for all configurations. Both power consumptions
are dominated by the dynamic components. Given the relatively small size of the SSRF,
its contribution to the overall power consumption is negligible. By using 64-wide cores,
we are able to save approximately 85% in power with respect to a 4-wide core configura-
tion.

In Figure 3.9, we analyze the variation of the power consumption of the architecture
components by varying the size of the SSRF and the RFs. We show results for the con-
figuration with 8 functional units per core that minimizes the power 2 × ar ea product.
The configuration with minimal power (SSRF equal to 32) corresponds to the point at
which the reduction in the memory and communication power equals the increase of
the power of the RFs. In fact, while the increase of the size of the SSRF decreases the
memory-core communication (as shown in Equation 3.2), it also increases the size of
the RFs and consequently the cost associated with accessing its elements.

CHANNELIZATION ALGORITHMS

As can be derived from Table 3.1, the channelization step requires 12.2 Giga CFMAs per
second for each sub-band. A single core with 64 FUs provides sufficient computational
power for implementing the channelization. Therefore, we evaluated the execution of
the channelization algorithms by considering an additional core with 256 MB of allo-
cated memory space in the system. By implementing the FIR and FFT as described in
Section 3.3.3, each single functional unit, working at 433 MHz, processes eight stations.

To exploit the locality of the input samples, we store several of them in the main
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Figure 3.9: Power consumption while varying the size of the SSRF (8 FUs per core).

memory and execute the FIR a sub-filter at the time over those time samples (by taking
as reference Figure 3.2, the order of the results would be FFT(0), FFT(Nch), FFT(2Nch),
..., FFT(kNch), FFT(1), FFT(1+Nch , FFT(1+2Nch), ..., FFT(1+kNch), etc, where k depends
on the number of samples stored). This implementation allows us to reduce the number
of input samples read from main memory for each FIR execution to one asymptotically.
The FFT step is then performed over all results accumulated in the main memory. A
Radix-8 version of the FFT for CFMAs was considered [147]. Once the FFT step has been
performed, samples are copied into the memory space of the cores implementing the
correlation.

Our implementation of the channelization results in an utilization of the core equal
to about 44%. The core requires an additional throughput from the HMC devices to core
and from core to the HMC devices of approximately 22 GB/s and 18 GB/s, respectively.
The execution of the channelization implies at the node level an additional power con-
sumption of 2.23 W.

By spreading the constant power overhead over the operations performed, the en-
ergy of executing an 8-taps FIR is equal to about 2.2 n J , whereas executing a 512-point
FFT in this core configuration consumes 1.38 µJ .

Figure 3.10 compares the normalized power distribution for separate execution of
the correlation and the channelization and when considering the two steps together.
Accessing the main memory represents the biggest contribution to the power budget.
In the case of the channelization, however, this contribution is higher in percentage,
because of the relatively small exploitable input data locality of the filtering step, in par-
ticular when compared with the execution of the correlation, which presents a more
compute-bound behavior [142]. As expected, at application level, the power consump-
tion is dominated by the correlation.
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Figure 3.10: Power breakdown for correlation and channelization.

OVERALL SOLUTION

Summarizing the studies presented in the two previous subsections, the CSP can be im-
plemented with 512 nodes (one for each sub-band), each one composed of a 15-core
chip with the configuration of point α in Table 3.2, and three 4-GB HMC devices. Each
15-core chip can theoretically deliver around 3.3 TFLOPS. The evaluated CSP algorithms
achieve an overall utilization of 92%. The estimated power consumption for the node
is 14.4 W, leading to an energy efficiency of 208 GFLOPS/W at application level. The
15-core chip occupies approximately 15.7 mm2 of die area. The data throughput from
and to the HMC devices is equal to 93 GB/s and 37 GB/s, respectively. One 60 GB/s
SerDes link for each HMC is therefore sufficient for providing the required bandwidth.
The chip input and output data rate are equal to 5.76 GB/s and 2.46 GB/s, respectively.
Four transceiver macros are therefore sufficient for providing the needed I/O bandwidth.

3.5. RELATED WORK

The main CSP algorithms have been recently studied and evaluated in several comput-
ing platforms, with the goal of optimizing their execution by exploiting the characteris-
tics of the systems targeted. As the channelization algorithms are well known and vastly
discussed in the literature, we focus in particular on the correlation implementations.

In [128] and [129], the correlation algorithm was implemented on several architec-
tures, i.e., CPUs, GPUs, and the IBM Blue Gene/P and Cell processors. The authors ob-
served that, given the characteristics of the algorithm, good performance can be achieved
when sufficient local storage is available. Both the Cell and the IBM Blue Gene can
achieve close to peak performance, whereas CPUs and GPUs reach significantly lower
numbers (70% and 40%, respectively), with the Cell the most power-efficient architec-
ture. However by applying a multi-level data-tiling strategy in memory, and by optimiz-
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ing the overlapping of streaming data transfer and computation, peak performance of
up to 80% can be achieved in modern GPUs for a large number of stations [130].

Research by Souza et al. [132] shows that FPGAs are a suitable candidate for running
the correlation algorithm, because of its regular and simple structure. The use of cus-
tom data widths allows a potential reduction of the power consumption at the cost of a
reduced programmability, flexibility, and algorithm scalability.

With regard to the proposed architecture, many different solutions can be found in
the literature for accelerating specific kernels in high-performance computing by ex-
ploiting the intrinsic parallelism of the application. While systolic arrays were pop-
ular in the 80s [159], more recent works have, for example, studied the acceleration
of mathematical kernels, such as general matrix-matrix multiplications (GEMM) [146]
[160], or the acceleration of frameworks for the management of big-data workloads, such
as MapReduce [144].

While similar in some of the aspects to the related work discussed, our paper presents
the first system-level evaluation of the implementation of a custom architecture for ac-
celerating the main algorithms of the SKA1-Low central signal processor. By approach-
ing the problem at the application level, it is possible to optimize the memory utilization
by reorganizing data for exploiting wide SIMD cores and the wide access and high band-
width offered by 3D-stacked memories. This feature is supported in our architecture
by the SSRF, which can be used in the execution of all algorithms discussed, and by the
micro-controller, which exploits the regularity of the data access pattern for optimizing
data movements in the memory layers and the functional units.

3.6. CONCLUSIONS
In this paper, we propose, for the first time, the implementation of a custom architecture
for accelerating the main algorithms of the SKA1-Low central signal processor. After dis-
cussing the main characteristics of the algorithms and the challenges offered by the size
of the problem, we propose an accelerator architecture that takes advantage of the band-
width and low-power operations of new 3D-stacked memory devices. Our evaluations
show that our architecture, thanks to a data organization that supports the execution of
algorithms over wide SIMD cores, is able to process all 512 channels of a sub-band for
just 14.4 W, achieving an energy efficiency at application level of up to 208 GFLOPS/W.
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AN ARCHITECTURE FOR NEAR-DATA

PROCESSING

The need for ever increasing computing performance can be satisfied by realizing workload-
optimized systems. For the class of data-intensive applications, the ‘near-data processing’
paradigm seems to be a perfect fit. Many interpretations of this theme exist, ranging from
very specific solutions, to very generic solutions.

Since the NDP needs to be optimized for the workload at hand, no assumption should be
made on its design. It could be a piece of reconfigurable logic able to implement optimized
functions, but also a collection of general-purpose (soft)cores running an instruction set.
This also reflects the fact that processing in general is becoming a decreasingly relevant
part of the entire system. With performance, as well as energy consumption, being domi-
nated by data transport, we put less emphasis on the actual NDP design and more on the
data-related aspects.

In contrast to the exact processing capabilities, the heterogeneous integratability of the
NDP in the system is of great importance. With the integration of traditional heteroge-
neous solutions, e.g., GPUs, still not being mature, adding processing capabilities in an-
other non-trivial place of a computer system raises new questions and challenges. A solid
integration, supporting virtual memory, coherence, and the ability to access data stored
anywhere in the system, is however of great importance to ease the burden on the program-
mer, and realize good performance without needing tedious tweaking and optimizations.
Another aspect of this is data-locality management. Programmers should be able to opti-
mize the data locality in order to maximize performance, but these mechanisms must be
straightforward, and whenever possible use existing operating system support.

To minimize data movement, and avoid any bottlenecks related to copying data around,
the NDP should be close to the memory the CPU believes is its ‘normal’ memory, meaning
that the NDP can start working on a data set directly after it is allocated by the operating
system.
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In this chapter an architecture to enable arbitrary near-data processing close to the main-
memory of a CPU, as well as a generic data-locality management mechanism, is pre-
sented.

The content of this chapter is based on the following two papers:

An architecture for near-data processing
E. Vermij, C. Hagleitner, L. Fiorin, R. Jongerius, J. van Lunteren and K. Bertels
Computing Frontiers, short paper, 2016

An architecture for integrated near-data processors
E. Vermij, L. Fiorin, R. Jongerius, C. Hagleitner, J. van Lunteren and K. Bertels
Transactions on Architecture and Code Optimization
Under review - Major revision
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ABSTRACT
To increase the performance of data-intensive applications, we present an extension to a
CPU architecture which enables arbitrary near-data processing capabilities close to the
main memory. This is realized by introducing a component attached to the CPU system-
bus, and a component at the memory side. Together they support hardware-managed
coherence and virtual memory support to integrate the near-data processors in a shared-
memory environment. We present an implementation of the components, as well as a
system-simulator, providing detailed performance estimations. With a variety of syn-
thetic workloads we show the performance of the memory accesses, the mixed fine- and
coarse-grained coherence mechanisms, and the near-data processor communication
mechanism. Furthermore we quantify the inevitable start-up penalty regarding coher-
ence and data writeback, and argue that near-data processing workloads should access
data several times to offset this penalty. A case study based on the Graph500 benchmark
confirms small overhead for the proposed coherence mechanisms, and shows the ability
to outperform a real CPU by a factor two.

4.1. INTRODUCTION
The world’s population is producing and storing more digital data than ever before, by
means of a wide variety of social media, and modern voice-, text- or image-based com-
munication methods. While Facebook and Google are traditional examples of data-
driven companies, big-data has found its way to many different businesses and fields
[161]. Creating business value from huge amounts of data is becoming an ever more im-
portant task for computer systems. Real-time graph analytics, online fraud-detection,
and cognitive computing are examples of data-intensive workloads posing even more
challenging requirements on computer systems. Because of this, we have seen a grow-
ing interest in the role of data in computer systems. Unfortunately, not only are the tasks
becoming harder, but also computer systems are becoming relatively worse at handling
them: the increase in memory bandwidth and the reduction in memory latency does not
keep up with the increase in processing capabilities, making compute nodes increasingly
worse at handling data intensive workloads.

One solution to cope with ever increasing data-rates and data-sizes is to use more,
relatively cheap, nodes. This is known as a scale-out solution, which has gained much
attention in the past few years, and works well for embarrassingly parallel workloads.
Many frameworks, such as for instance Spark [162], exist, which are either generic or
workload-specific and offer massively parallel workload distribution on a standard clus-
ter [163].

Scaling-up the hardware, by making it more powerful or more specific for big-data
problems, is another way of increasing performance, and is especially suited for prob-
lems that do not scale linearly with the amount of nodes. An increase of performance
can be achieved in several ways, ranging from the use of accelerators and co-processors,
to the support of large and different type of memories. For example, the IBM POWER8
systems offer a high memory bandwidth and large amounts of DRAM per socket, mak-
ing it an interesting platform for data-intensive applications. GPUs are well recognized
as a platform for boosting the performance of data analytics with respect to CPUs, due
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to their high bandwidth, parallelism, and latency hiding mechanism [164], making it the
fastest single node solution for the data-intensive Graph500 benchmark [58]. IBM intro-
duced the CAPI interface [51] in its POWER product line, enabling the coherent attach-
ment of workload optimized coprocessors to the CPU’s memory space, making handling
data in an optimized heterogeneous system much easier. With the rise of various types
of non-volatile memory [165] [166], we get high bandwidths to large persistent storage
volumes, much higher than what disks can offer. All these, and likewise, products have
useful memory-related features, but lack others. For example, the CPU’s DRAM offers
the storage capacity, but only mediocre bandwidths compared to GPUs, and cacheline-
sized accesses. GPUs and the Xeon Phi have a high memory bandwidth, but suffer from
a high latency and a relatively small storage volume.

To bridge the gap in memory bandwidth and latency between what today’s data-
intensive workloads demand and what existing computer architectures can offer, the
processing should take place as close to the data as possible, avoiding interconnect bot-
tlenecks. This paradigm is referred to as ‘near-data processing’, and has recently been
re-discovered [73], motivated by the availability of new technologies such as 3D stack-
ing, big-data workloads with high degrees of parallelism, and programming models for
distributed big-data applications. By introducing processing capabilities very close to
the main memory of a CPU, it is possible to benefit from memory access features char-
acterized by low latency, high bandwidth, small access granularity, and support for large
memories. In this work, we propose an architectural extension to support near-data pro-
cessing in an existing CPU ecosystem.

A high-level view of the proposed architecture is shown in Figure 4.1. The essen-
tial aspect is the two levels of memory controllers: at the CPU level, we have memory-
technology agnostic memory controllers, while the technology-specific memory con-
trollers are tightly coupled to the main memory. An industry example of such a setup is
the memory system of the IBM POWER8 CPU [34], which has eight memory-technology
agnostic memory channels each connecting to a ‘memory buffer’ chip, holding four
DDR3/4 memory controllers. Another example is a CPU connected to novel stacked
memory like the Hybrid Memory Cube [35], having the technology-specific memory
controller in the logic layer of the memory device. We propose the addition of near-data
processing capabilities close to the technology-specific memory controllers, as shown
in Figure 4.1. For completeness, we show default memory channels as well, to highlight
the generality of the approach. It would also be possible to extend it with a second CPU
socket or even a modern GPU, without breaking the concept of the proposal. The focus
of this paper is to discuss the architectural implications of adding the near-data process-
ing capabilities, and to evaluate how it affects software and workload partitioning.

The main contributions of this paper are as follows:

• We propose a novel memory-centric architecture to enable arbitrary near-data
processing in a contemporary server environment, by introducing a minimally-
invasive component at the CPUs’ system bus and a component in the memory
system;

• We propose generic methods for data allocation and data locality management
based on existing NUMA functionality for the near-data processors (NDPs) and
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the CPU;

• We propose generic hardware-managed methods for coherence and for accessing
data in the global address space;

• We quantify the coherence and data writeback overheads, and show the perfor-
mance of the proposed architecture for a variety of small workloads as well as the
Graph500 benchmark.

The remainder of this paper is organized as follows: Section 4.2 describes related
work and the motivation for the proposed research. In Section 4.3 data placement and
memory management is discussed followed by the proposed necessary hardware ad-
ditions in Section 4.4. Section 4.5 presents a detailed discussion on coherence, while
Section 4.6 discusses virtual memory management and access to remote data. A custom
system simulator is presented in Section 4.7 followed by synthetic results in Section 4.8
and a case study in Section 4.9. Section 4.10 concludes the paper.

4.2. MOTIVATION AND RELATED WORK

4.2.1. INTEGRATING ARBITRARY NEAR-DATA PROCESSING CAPABILITIES
Several platforms have been proposed to deal with big-data applications. A case study
of using existing node and cluster technology to execute big-data workloads is presented
in [167]. The work in [76] proposes a system and board design around Flash and DRAM,
targeting energy-efficient execution of big-data workloads. Another system-design pro-
posal [98] targets the specific class of graph processing algorithms. Work in [88] shows
a generic architecture for big-data analytics, using stacked DRAM and its logic layer.
In [168], near-data processing has been investigated for accelerating big-data workloads
with poor locality in solid-state disks.

Work in [144] [91] [169] [98] [88] proposes architectures all based on exploiting the
logic layer found in 3D-stacked DRAM devices, such as the Micron Hybrid Memory Cube
(HMC). In [89] the integration of light-weight cores on top of traditional DRAM is pro-
posed, while [83] adds small compute elements close to the DRAM banks.

We differentiate from all this work by not focusing on a particular type of NDP archi-
tecture (general purpose, reconfigurable, etc.), a particular type of memory technology
(DRAM, HMC, HBM, etc.), or a particular type of applications, but on adding the hard-
ware components and mechanisms needed for integrating near-data processing. This is
done under the assumption of a high-level architectural concept as described in Section
4.1 and shown in Figure 4.1. To make a solid contribution, a clear definition of ‘inte-
grated’ needs to be specified. The objectives of a generic integration of any type of NDP
following the architecture in Figure 4.1 are:

1. To not limit standard CPU performance;

2. To limit changes to the CPU and the OS (Linux);

3. To use standard OS level memory management;

4. To provide global, virtualized, and coherent memory.
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Figure 4.1: The high level view of the proposed architecture, where compute capabilities are added close to the
main memory of a CPU.

Figure 4.2: The problem of integrating NDPs with a CPU: all relevant integration features stop at the memory
controllers.

First, workloads not using the NDPs should not be negatively affected, as that would
break the general usability of the system. Second, changes to the CPU must be limited
and as non-invasive as possible, to not break the delicate workings, overhaul roadmaps,
and incur major costs. Changing non-trivial aspects of the OS kernel in a maintainable
way can be considered equally challenging, given the community-like organization, the
enormous complexity, and the high costs of quality software engineering. The last two
items follow the trend in industry towards coherently attached coprocessors [51], the
trend in industry towards a unified and coherent address space between CPU and copro-
cessor [170], and the literature (many are cited in the remainder of this section) which
almost always describes one or more of these aspects to some degree, thus acknowledg-
ing the need for them. This is also reflected in a recent expert-opinion overview [171]
about near-data processing, which, among others things, stresses the need for a unified
shared address space, a unified memory model for both the CPU and the NDPs, com-
munication between the various devices, and a re-visitation of solutions for coherence.

Before proposing a solution, it is necessary to have an understanding of the chal-
lenges involved with integrating NDPs to this extent. Figure 4.2 shows both the most
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fundamental property as well as the most fundamental problem associated with near-
data processing. Being the barrier between the CPU and the memory system, all features
relevant for system integration stop at the generic memory controllers. This implies that:

• The NDP cannot issue a load/store to an address outside its own memory channel,
or to the caches at the CPU;

• The NDP cannot know whether a piece of data is stored in a cache at the CPU;

• The NDP cannot have a notion of virtual memory.

• The NDP observe only a subset of a data set, since data is striped over the various
memory channels.

To integrate NDPs successfully, they need to be connected to the functionalities of-
fered by the system bus.

4.2.2. PROPOSED SOLUTIONS AND THEIR PITFALLS

EXTENDING THE SYSTEM BUS

Although a first idea would be to extend the system bus towards the NDPs, this is very
undesirable for various reasons:

• Several operations on the coherence fabric of the system bus are latency critical,
for example a snoop or an invalidate. Extending these operations to the NDPs
would have a dramatic negative impact on system performance [51].

• The hardware TLB sync and invalidate mechanism to support virtual memory in
multi-processor systems [172] are latency critical as well, and extending these op-
erations to the NDPs would also have a dramatic negative impact on system per-
formance.

• For consistency reasons, caches at the CPU have to keep track of an evicted cache
line until it is committed to the memory controller. By increasing the latency to-
wards this commitment, caches will require more resources (tracking state-machines
etc.) for the same performance.

Therefore, extending the system bus would result in a much poorer CPU perfor-
mance, which breaks the first goal described in Section 4.2.

VIRTUAL MEMORY SOLUTIONS

Regarding virtual memory support, many NDP solutions propose the usage of a small
TLB holding the translations, and describe this TLB to be filled by means of a driver or
library [88] [173], or lack the description on how the TLB gets filled [91] [174]. Unfortu-
nately, the effective to real address translation mapping is not static: memory pages al-
located by the default OS allocation methods can be subject to physical migration, steal-
ing, and several other operations [175]. For this reason, and many others, the system bus
offers the TLB synchronization mechanisms stated before. A software managed solution
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would require a deep integration with the OS to monitor and temporally hold these mi-
grations, which is a very difficult task resulting in a non-portable solution. Furthermore,
a software managed TLB would be much slower compared to hardware managed ones.

Using pinned or memory-mapped (physically contiguous) memory [90] [83] avoids
the need of virtual memory at the NDP but will not work when having data sets with a
size close to the main memory capacity due to physical fragmentation, and requiring
significant allocation times. Work in [176] proposes to use a novel and completely de-
coupled page table for the NDPs, allowing for various optimizations and efficient trans-
lations, at the expense of integratability. Their proposal requires changes in the oper-
ating system and special allocation routines. Several of the already mentioned papers
name the exploitation of transparent huge pages [177], or the exploitation of the fact that
many page level translations can be grouped into larger chunks due to how the allocators
work [178]. But, although important optimizations, they do not solve the underlying syn-
chronization problem. None of the proposed solutions will provide true virtual memory
support without substantial OS modifications, which is in contrast to the second goal of
limiting OS changes as much as possible.

COHERENCE SOLUTIONS

Regarding coherence, various options have been explored. Putting the NDPs in a sep-
arate address space [98], with explicit data management by a driver, avoids the need of
coherence, but is also not an integrated solution. Marking pages cache-inhibited [179]
[98] [83] [90] makes working with them incredibly slow from the CPUs perspective as
every access has to go through the non-cacheable unit [180], which is designed for man-
aging memory-mapped devices, not for handling large amounts of data. Work in [88]
proposes the identification of a single cache in the entire system which can hold a cer-
tain page, which is stored and managed via the page tables. This is a strong idea as it
makes things explicit and thus simple, but also raises many issues. For example, the
method is not scalable to larger systems as the page tables have only so much free bits
to identify caches, assumes that all memory accesses are done via a TLB which is not
the case for hardware prefetches, and it limits the sharing of data between cores. Lazy
methods based on a rollback mechanism have been proposed in [181] but the paper
lacks details required for a detailed comparison (e.g. description of the rollback mech-
anism and the proposed ‘conflict detection hardware’). Work in [81] proposes a form
of integrated near-data processing offloading small instructions to the memory system,
but requires significant changes to the delicate inner-core of a CPU, and lacks significant
details on the used coherence methods and their performance. It for example assumes
that data can only be in the local last-level cache of a core, which will not be true for
modern CPUs. Work in [91] proposes a generic hardware-managed method for coher-
ence, but lacks the ability to shared data between CPU and NDP, and furthermore does
not support the access of remote data by an NDP, limiting the useability of the proposal.
Handling coherence manually (flushing cache lines explicitly) is both hard and unpre-
dictable as the hardware prefetchers can prefetch data the user/programmer believes
is still in memory. Besides, software driven cache flushes are very slow, especially on
multi-socket systems.

Furthermore, both the cache-inhibited and the manual approach above do not pro-
vide us with a consistency model keeping track of when a write from the CPU has actu-
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ally appeared in DRAM and can thus be read by the NDP. Without a hardware managed
coherence mechanism, a hardware synchronization mechanism is still needed to solve
this issue. Other related works do not discuss coherence [173] [174] [99]. None of the
proposed solutions will provide a workable coherence and consistency model without
breaking the goals stated in Section 4.2. A similar analysis holds for accessing non-local
data: none of the above mentioned works describes how an NDP can issue a load at the
CPU’s fabric to access data stored in a CPU cache, in another memory channel, or on
another socket.

IBM’s CAPI interface [51] solves a part of the problem: it offers a device a coherent
view towards the CPU, but not towards local memory. This is visualized in Figure 4.3b,
where CAPI provides the line from the NDP towards the CPU, but not the lines towards
the memory.

MEMORY MANAGEMENT SOLUTIONS

The problem regarding memory management is that the CPU wants its data striped over
the various memory channels, while the NDP wants entire data sets to reside in the same
memory channel. Furthermore the OS does not allow the allocation of data within a spe-
cific memory channel. The work presented in [91] solves this by using a custom allocator
(or extending the OS allocator) which is able to allocate memory in both a striped as well
as a contiguous fashion. Research in [176] describes the use of a custom allocator as
well, again requiring OS modifications. Both these works break our goal of limiting the
OS changes as much as possible. Work in [90] and [101] describes the concept of page
level distribution of data across memory channels, but lacks a description of how that is
implemented/realized.

4.2.3. CONCEPT OF THE PROPOSED SOLUTION
In this work, we propose a novel method for integrating an NDP which keeps the over-
head to a minimum and achieves all four goals stated at the top of this section. This in-
volves a component in the memory system, responsible for, e.g., handling the coherence
requirements of the NDP, as well as a single component at the CPU, together creating
a ‘bridge’ between CPU and NDP. This work complements some of the literature cited
before. For example, a proposal for a specific core design utilizing the memory char-
acteristics of the HMC could be extended with the methods proposed in this work, to
coherently integrate it in the global address space.

4.3. DATA PLACEMENT AND MEMORY MANAGEMENT
By default, the POWER8 CPU stripes accesses to subsequent cache lines across different
memory channels, to optimize bandwidth for common access patterns [34]. In this case,
all memory channels represent a single big contiguous memory space called a group,
with a certain modulo or hashing scheme to map accesses to the right channel, illus-
trated by the two default memory channels in Figure 4.1 contained in a single contigu-
ous memory region. It is, however, also possible to make every memory channel its own
group, implying that every memory channel holds a contiguous part of the physical ad-
dress space, shown by the NDP memory channels in Figure 4.1. The actual configuration
is set in firmware and typically multiple groups are only used when memory channels
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have different types or sizes of memory. For the architecture presented in this work,
however, every memory channel constitute its own group, and by doing this, data sets
can be mapped into a single memory channel. The methods to achieve this and perfor-
mance implications of this are discussed below.

4.3.1. NDP ALLOCATIONS

The OS has limited knowledge of the physical memory layout. The most detailed hard-
ware level it is aware of are the NUMA domains, consisting of physical memory regions
belonging to a certain node in a multi-processor system. The memory-allocator typi-
cally returns pages located at the node running the thread first accessing the page. The
OS is not aware of the discussed memory channel groups, and does not care about how
a NUMA domain is physically constructed. Therefore to allocate space in the memory
of a specific NDP is not trivial, and we solve it relying on the existing NUMA organiza-
tion capabilities of the OS, complying with the goal of using standard OS level memory
management.

The OS builds its NUMA organization tree [182] based on information supplied by
the firmware. This tree is a hierarchical representation of nodes and possible subnodes
in the system, including both the CPUs and the memory. We can adjust the firmware in
such a way that it reports the various memory channels and their physical address re-
gions as NUMA memory nodes, as is shown in Figure 4.3a. In this way we can use indus-
try standard functionality to bind a process to a specific memory channel using numactl,
or bind a memory allocation to a specific memory channel using the numa_alloc_onnode()
functionality supplied in numa.h, all possibly hidden in an NDP runtime library. By do-
ing so, we introduce, from an NDP point of view, the concept of local and remote data.
Local data should, whenever possible, be stored in the memory of the specific NDP, while
remote data can be stored anywhere, even on a different socket or in GPU memory. It
should be clear that managing data locality is the key for obtaining reasonable NDP per-
formance on the proposed architecture, this is however exactly the same as the opti-
mizations usually performed on existing NUMA systems.

In case a data set is allocated without a specific NUMA binding, but is accessed for
the first time by an NDP, the data locality solves itself. In this case, the NDP access will
raise a page-fault (discussed in Section 4.6), and the OS is asked for physical backing
of the accessed virtual memory. Since the request for physical memory comes from a
specific NUMA domain (the NDP), the physical pages will be taken from the NDPs’ local
memory. This is a very valuable effect foremost of interest when the NDP initializes data
sets.

4.3.2. DEFAULT ALLOCATIONS

To make sure default allocations (i.e. NDP unrelated) do not end up in a single memory
channel, dramatically reducing the achievable bandwidth to that data set and thereby
breaking with the integration goals, extra care is needed. This can be solved by configur-
ing the CPU node as having no memory of its own (MEMORYLESS_NODE), and change
the default OS allocation policy to INTERLEAVE. That way a page request will be for-
warded, in a round-robin fashion, to the other nodes: the memory channels, either with
or without NDP. By doing so, we realize a best-effort page level distribution of data across
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(a) (b)

Figure 4.3: (a) A CPU environment enhanced with near-data processing capabilities. By introducing a com-
ponent in the memory system and one at the system bus, we can extend the necessary integration features
towards the NDPs, supporting arbitrary functionality. This connection is illustrated with the two arrows. (b)
Both components have a virtualized and coherent view towards each other, and towards the main memory.

the available memory channels. Accesses to a single page still have to go through the
same memory channel, but if we have many threads running at the CPU, as we have in
modern big-data applications, the bandwidth achievable on a system-level will be like
the striped cache line approach, as also indicated in [88]. This mechanism does not im-
ply a large penalty at allocation time, as physical page allocation is only done when the
page is touched, and forwarding the allocation to another NUMA node is nothing more
than traversing a small data-structure in the OS routines.

4.4. HARDWARE EXTENSIONS TO ENABLE NEAR-DATA PROCESS-
ING

In Figure 4.3a we show the proposed architectural extension. At the memory side we
introduce the NDP Manager (NDP-M), and at the CPU side we introduce the NDP Access
Point (NDP-AP). Between the two components, a communication channel exists. In the
remainder of this section these components will be discussed.

4.4.1. COMMUNICATING WITH THE MEMORY SYSTEM

As discussed, we include processing capabilities at the memory-side of the generic MC.
To not interfere with the existing operations of the CPU, the communication with an
NDP must be done on top of existing functionality. We added a lightweight NDP mes-
saging extension to the protocol of the high-speed serial link of the memory channel.
Instead of being load/store-only, it is extended to be able to carry both the original traffic,
as well as communication between the NDP-M and NDP-AP introduced below. This is
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shown in Figure 4.3a with the two arrows. Communication between the NDP-AP and the
generic memory controllers is done by using direct-addressing on the system bus. To en-
sure the correct functioning of the coherence mechanisms described in this work, mes-
sages can by default not overtake ‘normal’ cache lines traveling up or down the memory
channel.

4.4.2. NEAR-DATA PROCESSOR MANAGER
To support virtual memory, coherence, remote accesses, and communication capabili-
ties for NDPs in the memory system, we introduce the NDP-M, as shown in Figure 4.3a.
In Figure 4.4, we show the architecture of the NDP-M, with its main functional blocks,
described below. On the bottom the interface towards the high-speed link is shown, and
on the top the interfaces towards the memory controllers. On the side there are two types
of interfaces for the NDP: one for handling messages between the NDP and applications,
and one or several interfaces for the memory accesses. The NDP-M is responsible for:

• Offering an interface for any type of NDP.

• Managing coherence and consistency between the CPU and the NDP; the former
by means of a distributed directory stored in DRAM, discussed in Section 4.5, and
represented by the Coherence Manager in Figure 4.4.

• Translating the virtual addresses received form the NDP, discussed in Section 4.6,
and represented by the ERAT (effective-to-real translation) in Figure 4.4.

• Providing a gateway to access non-local data, discussed in Section 4.6.3, illustrated
by the NDP Remote Rd/Wr Q. in Figure 4.4.

• Providing information towards the NDP-AP (described below) about address ranges
involved with near-data processing.

NDP accesses are, after translation, stored in either the local or remote queue. CPU
accesses are stored in the CPU queue. An arbiter decides, based on their priorities and
the right address protection (ordering) rules, which queue can issue a memory access.
The coherence manager makes sure the access is performed coherently, after which it is
dispatched to the memory controllers.

4.4.3. NEAR-DATA PROCESSOR ACCESS POINT
The CPU needs to support the NDP-M in all its needs regarding address translations, re-
mote accesses, etc. To avoid a significant software overhead and unnecessary CPU load,
we introduce a single hardware component attached to the system bus, called near-data
processor access point (NDP-AP). From the NDP-Ms perspective, the NDP-AP is the ac-
cess point into the global coherent memory space. From the software perspective (either
OS or user), it is the component handling communication with the NDP-Ms. In Figure
4.5, we show the architecture of the NDP-AP, with its main functional blocks. The NDP-
AP is responsible for:

• Issuing load and stores on remote data on behalf of the NDP-M(s).
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Figure 4.4: Main functional blocks within the near-data processor manager (NDP-M). In reality, the CPU Rd/Wr
queue can consist of several queues, for example a separate one for prefetch loads. For simplicity, only the
forward path towards the DRAM is shown.

Figure 4.5: The main components in the near-data processor access point (NDP-AP). The fat arrows indicate
data ramps.
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• Supporting virtual memory and coherence functionality towards the NDP-M(s),
without affecting the CPUs performance by means of scope filtering based on in-
formation provided by the NDP-M(s).

• Caching of remote accessed data to exploit locality in various communication pat-
terns.

Applications, or the OS, can send messages to the NDP-AP by means of a special in-
struction (like icswx for the POWER ISA [183]), which forces a cache line on the system
bus directly addressed towards the NDP-AP. This gives us the possibility to dispatch mes-
sages with very little latency and overhead. The NDP-AP can send messages to the NDP-
M by generating a special transaction on the system bus, directly addressed towards the
correct generic MC, with the reverse path working likewise.

When designing a balanced system, the NDP-AP throughput must match or exceed
the accumulated data and coherence throughput of the NDP-M enabled memory chan-
nels. When scaling up the system size, the NDP-AP concept has two degrees of freedom.
First, an NDP-AP can have multiple connections to the system bus, and second, addi-
tional NDP-APs can be integrated at the CPU, each supporting a bandwidth-matched
subset of NDP-Ms. The best solution depends on the bandwidth of the system bus con-
nection, the system bus organization, technology-specific features (e.g. delay), and cost.
In this work we consider the NDP-AP to be a single component.

4.4.4. THE SYSTEM BUS
Access to the system bus is necessary to communicate between the NDP-AP and the
NDP-Ms. We base our work on a system bus as found in modern CPUs such as the
POWER8. Such a bus is a capable interconnect fabric supporting the integration fea-
tures described in Section 4.2. POWER8 features several wide bidirectional buses, with
up to 3.7 TB/s of bandwidth between all components. This is much more than the ac-
cumulated memory channel bandwidth of 230 GB/s [184] [185] [34]. Note that the sys-
tem bus, for any system design point, by definition can support the accumulated mem-
ory channel bandwidth. The system bus has two snoop buses and thus supports two
coherence requests per clock tick from all attached components combined. Given the
bus frequency of 2 GHz and the 128 B cache lines, this results in a snoop and invalidate
throughput of 512 GB/s [185] [34].

4.5. MEMORY CONSISTENCY AND COHERENCE
In this section we discuss both consistency as well as coherence between CPU and NDP.
No assumptions on the NDP design are made, and they can have hardware managed
caches or not. Most attention will however go to NDPs with hardware managed caches,
as it shows the more complete picture.

4.5.1. NDP-M MEMORY INTERFACES AND CONSISTENCY
The NDP-M offers memory interfaces to let an NDP access the memory. The number
of available interfaces and their width depends on the memory technology used. The
NDP-M does not apply any bandwidth optimization techniques (grouping, etc.) to the
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(a) (b)

Figure 4.6: Two activity diagrams showing possible coherence interactions between the NDP and the CPU.
In (a) the NDP wants to write to a line currently owned by the CPU, and in (b), the CPU wants to read a line
currently owned by the NDP.

received memory request, as it assumes the NDP already makes use of the memory in-
terfaces in an optimal way. Nonetheless, the NDP-M implements an unordered memory
model, to be able to hide latency for address-translation misses or remote memory ac-
cesses. The Rd/Wr queues shown in Figure 4.4 allow for out-or-order issuing of memory
operations, where the Address Protection unit also shown in Figure 4.4 ensures ordering
rules.

The NDP can be considered as a thread in the same shared memory as the CPU,
and therefore a memory-consistency model is necessary. The recent POWER multicore
CPUs implement an unordered memory model [186], relying on (lightweight) sync in-
structions to enforce consistency between concurrent threads. After a sync, all memory
accesses are committed to the global coherent space, and it is ensured that every thread
will observe the right value. A sync, or likewise barrier instruction, executed by the NDP
will have to ensure the same. In case the NDP has a hardware managed cache, this means
all loads and stores have to be committed to the cache, and the NDP-M will ensure the
CPU observes this value as described in the following sections. In case the NDP does not
have hardware managed caches, a barrier has to travel to the NDP Rd/Wr queue shown
in Figure 4.4 and ensure that this queue is empty before returning. Only after the queue
is empty, all accesses have passed the Coherence Manager and have entered the global
coherent space, again meaning that the CPU is able to see the latest value.

4.5.2. Extended Coherence BETWEEN CPU AND NDP
We introduce a hardware managed Extended Coherence solution to enforce coherence
between the CPU, the NDP, and the main memory in a generic way. This is illustrated
on a functional level in Figure 4.3b, showing the coherent views of both devices towards
each other and the main memory. From the devices’ (CPU and NDP) perspective towards
the NDP-M, we implement a basic MSI (modified-shared-invalidate) protocol [187] . The
devices can send messages like ‘Get for read’ (GetS), ‘Get for write’ (GetM), ‘Upgrade for
write’ (Invalidate) etc. to the NDP-M. As MSI is a subset of the more complex polling-
based coherence protocol found in contemporary CPUs, this does not require changes
in the CPUs protocol. The GetS or GetM messages from the CPU travel down the ‘normal’
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path to the NDP-M, as these are just default loads from the CPU. We discuss Invalidate
messages separately in Section 4.5.4.

At the NDP-M, the state of the memory is managed by the Coherence Manager, and
every line has either the CPU owned state, the NDP owned state, or the shared state. The
shared state is introduced to allow effective processing with shared data sets, such as for
example reading data of one NDP by another NDP, without having to invalidate the data
on the originating NDP. How the NDP-M manages these states is discussed in Section
4.5.3. We do not make a distinction between cached and non-cached (i.e. in main mem-
ory) lines: lines in an owned state will not leave that state until the other device takes
action. This enables us to minimize coherence state changes, making it as transparent
as possible. If we had introduced a home state (the line is only valid in the main memo-
ry) both the CPU as well as the NDP would be claiming and returning ownership all the
time.

In Figure 4.6, we show two possible coherence interactions between the CPU and
the NDP. Although not exhaustive, this figure shows the interaction between the various
components in the architecture, and illustrates that the proposed mechanism can seam-
lessly integrate coherent NDP usage with existing CPU coherence. Figure 4.6a shows
how the NDP can claim a cache line to modify it. The requests from the NDP enters
the NDP-M, which checks the state of the memory and finds it as CPU owned, leading
to a GetM message towards the NDP-AP. In Figure 4.6b we show how the CPU can get
shared access to a cache line currently owned by the NDP. In both figures it is clearly vis-
ible how the NDP-M and NDP-AP together orchestrate coherence interactions between
the system bus (the CPU) and the NDP. In these figures, the NDP-AP communicates with
the system bus. This is the bus to which every component and device in the system is
connected, e.g., all the CPU cores, the (semi-)shared last-level caches, the memory con-
trollers, other CPUs, or even FPGAs using a coherent external link such as CAPI [51].
Therefore, the NDP-AP is a completely generic interface into the entire system, and the
system bus guarantees that an, e.g., Invalidate message will invalidate the requested line
in the entire system, and will be acknowledged back to the NDP-AP eventually.

4.5.3. IMPLEMENTATION OF THE NDP-M COHERENCE MANAGER

At the NDP-M, a combined fine- and coarse-grained distributed directory method is
used to keep track of the coherence state of the memory. The Coherence Manager stores
the state of the complete memory attached to the respective memory channel in an Ex-
tended Coherence Directory (ECD). When a coherence request is received, the directory
is accessed to check and/or change the state of a line. To avoid having to access the
memory for every state lookup, which would basically double the amount of memory
accesses, an Extended Coherence Directory Cache (ECD-$ in Figure 4.4) is introduced,
holding the most recently accessed directory items. Directory items are loaded by means
of the dedicated Rd/Wr queue shown in Figure 4.4, which has priority over the other
queues.

Given that our architecture targets large memories, the size of the directory, even if
the three discussed states are stored in two bits, becomes quite large, while relatively
occupying only 0.2% of the main memory. If workloads access memory with very little
locality, the introduced cache will suffer from misses, which is especially not accept-
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able for CPU traffic. Therefore, we introduce a technique similar to the one used to
minimize snooping traffic between different processors in a SMP environment [34]. A
tiny Extended Coherence Directory Summary (ECD-S in Figure 4.4) is introduced to store
the coherence state for every (e.g.) 16 megabytes of memory, given that the entire 16
megabyte has the same coherence state. This requires a storage capacity in the kilo-
byte range. The NDPs are ‘transparent’ to the CPU and there is no penalty in memory
bandwidth or latency. Only in cases where the state of a single cache-lines in the mem-
ory block varies and the ECD-S item is Undefined, the full directory is required through
the ECD-$. The management of the ECD-S is based on existing technology as found in
the POWER8 CPU for managing coherence snoop ranges between CPUs [34]. Summary
items can either be changed in a transparent, hardware managed way, or by claims is-
sued by an NDP-runtime or the code generated by a compiler. The software methods
enable optimized coherence interactions in the system for well understood workloads,
without losing correctness.

4.5.4. EXTENDED Invalidate AND Exclusiveness
As discussed in Section 4.2, we can not let every Invalidate message from the CPU travel
to the NDP-M Coherence Manager, as it would hurt CPU performance. To solve this, the
ECD-S shadow is introduced at the NDP-AP, as shown in Figure 4.5. When an ECD-S item
is either Shared or Undefined, a CPU Invalidate will be forwarded by the NDP-AP to the
NDP-M. In case an ECD-S item is CPU owned, no extra action is required, and a CPU
Invalidate can be mirrored directly by the NDP-AP.

Care is necessary to handle the Exclusive coherence state at the CPU [187]. When
a cache requests a cache line to read, and the memory controller is the only compo-
nent acknowledging the snoop, the cache gets the line in Exclusive state, meaning it can
upgrade the line for write access without having to issue an Invalidate. To avoid CPU
caches upgrading cache lines without the NDP-M knowing, the NDP-AP, by means of the
ECD-S shadow, has to acknowledge a snoop for a line currently in the Shared or Unde-
fined state, letting the CPU know the NDP also has access to the line, and thus avoiding
Exclusive access.

Both the Invalidate as well as the Exclusiveness handling do not introduce a penalty
for CPU accesses to NDP-unrelated memory regions.

4.5.5. COHERENCE SCALABILITY

For the CPU it has been established that only the coherence actions strictly necessary are
forwarded to the NDP-M. From the NDPs’ perspective we consider two scalability con-
cerns. First consideration is the amount of actions that need to travel from the NDP-M
towards the NDP-AP. When the coherence state returned by the ECD lookup at the NDP-
M corresponds with the state required by the NDP, the scope of the coherence request
can stay local at the NDP-M, and no interaction between the NDP-M and the NDP-AP
is required. This holds, when the application shows basic compute-data affinity, for the
far majority of memory accesses, just as would be the case in a multi-core or multi-CPU
environment. This is reflected in Section 4.9.2, where it is shown that coherence mes-
sages only take up 2% of the NDP-M - NDP-AP traffic, when considering a graph traver-
sal workload. When the NDP wants to write to a cache line not already NDP owned, or
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read a line currently CPU owned, an Invalidate message or GetS message has to be sent
to the NDP-AP, respectively. These scenario’s will occur when the NDP starts working,
and when there is read-write interaction with the CPU for a data set. In Section 4.8 we
will show that this start-up performance penalty is small, or can be completely hidden if
there is enough memory access parallelism. Second consideration is whether the NDP-
AP is a bottleneck in handling all NDP coherence messages. As is shown above, this ques-
tion is only relevant when looking at the extreme cases. As discussed in Section 4.4.4, the
system bus we consider in this work supports two coherence requests per clock cycle,
and implementing a single NDP-AP component able to fully utilize this is trivial. These
bus specifications means that, when the NDPs need to invalidate data at a rate higher
than 512 GB/s, the system bus is a bottleneck. Note that this holds for any method of
invalidating the data and is unrelated to the NDP-AP based mechanism: also letting the
maximum amount of software threads invalidate data at their full capacity results in a
512 GB/s peak invalidation rate. This is confirmed by experiments on a 10-core POWER8
CPU, showing a peak software-driven invalidate throughput of around 420 GB/s. The in-
validate throughput is therefore a bottleneck unrelated to our architectural proposal, as
it would occur in any NDP or coprocessor proposal that takes coherence in to account.
In case the number of snoop buses at the CPU increases, multiple NDP-APs could be
used to make full use of them.The scalability of the coherence mechanisms to multiple
CPU sockets is not a concern.

The scalability of the coherence mechanisms to multiple CPU sockets is not a con-
cern. None of the described mechanisms are affected by, or require a notion of, being
deployed in a multi-CPU environment.

4.5.6. NDPS WITHOUT HARDWARE MANAGED CACHES
In this work we focus on supporting arbitrary near-data processing, and not all NDPs
need to have hardware managed caches. In fact, when considering for example workload-
optimized NDPs implemented on reconfigurable fabric, it is far more likely the NDP uses
an application specific local memory, and handles coherence manually. In this case, the
NDP-M receives loads and stores from the NDP, instead of GetS etc. When receiving a
load from the NDP, the NDP-M coherence manager still has to check whether the corre-
sponding cache line has to come from the CPU or the main memory. When receiving
a store from the NDP, the NDP-M coherence manager still has to invalidate the line at
the CPU. As explained in Section 4.5.1, the NDP accesses now enter the global coherent
space at the point of the NDP-M coherence manager.

4.6. VIRTUAL MEMORY MANAGEMENT AND ACCESSING REMOTE

DATA

4.6.1. ADDRESS TRANSLATION IMPLEMENTATION AT THE NDP-M
In the proposed architecture, the NDPs work with virtual addresses, and all address
translation mechanisms are implemented at the NDP-M. The NDP-M holds an ERAT
content addressable memory (CAM), and a translation lookaside buffer (TLB) (see Fig-
ure 4.4). TLB hit rates have been identified as a problem for big-data workloads [188].
However, when considering a 2013 big-data optimized CPU core [180], using huge pages
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in a transparent way [177], TLB reaches of 32 GB directly translatable memory are possi-
ble. We consider 32 GB or 64 GB a realistic size for NDP local memory. The NDPs are able
to access remote memories as well, but this will be limited to, when the system is used
correctly, few data sets, such as for instance boundary values when running a distributed
grid-based solver, thus not increasing the physical address range significantly. Therefore,
realizing a modern, big-data optimized, NDP-M based address translation mechanism
is not a particular challenge, and is not further discussed in this work.

4.6.2. EXTENDED VIRTUAL MEMORY MANAGEMENT AND TLB SYNCHRONIZA-
TION

In order to populate the TLB, and to keep the TLB synchronized with the rest of the sys-
tem (supporting TLB shootdowns etc.), the NDP-M must be connected to the relevant
fabric at the system bus. As described in Section 4.2, this cannot be done in a naive
way, as it would impact the CPU performance in a very negative way. Therefore, as with
coherence, the NDP-M works in close collaboration with the NDP-AP to enable TLB syn-
chronization without overhead. In case of a (demand) miss in the NDP-M TLB, the miss
is forwarded to the NDP-AP, which has its own page-walker (see Figure 4.5), to be able
to serve the request without having to ask the OS for help. As described in Section 4.3, a
page being accessed for the first time, will automatically be allocated in the local mem-
ory of the requesting NDP(-M). To limit the amount of TLB synchronization traffic that
needs to be forwarded to the NDP-M, we use the ECD-S Shadow at the NDP-AP to filter
the TLB synchronization commands. Only commands relevant for data ranges marked
either NDP owned, Shared, or Undefined, are forwarded from the NDP-AP towards the
NDP-M. These are the data ranges for which the CPU knows that, or cannot be sure
whether, the NDP is working with them. TLB commands related to data ranges marked
CPU owned, thus all non-NDP related memory (or NDP-related data owned by the CPU
at that moment), are reflected directly by the NDP-AP, incurring no penalty.

4.6.3. ACCESSING REMOTE DATA
Accesses to remote data are issued to the NDP-M in the same way as local accesses. The
NDP-M will, after the address translation, recognize the resulting real address as being
non-local. The request is forwarded to the NDP-AP, which issues the request into the
global coherent address space. Once the data has arrived from e.g. a remote memory
channel, it is placed in the data cache of the NDP-AP, and returned to the NDP-M. This
mechanism does not limit remote accesses to being between NDPs. Since the NDP-AP
does the request in the global coherent space, NDPs can also access data in another CPU
socket, or perhaps even data on a GPU being connected in a virtualized and coherent
way.

The NDP-AP can only access data with the full 128-byte cache line size granularity of
the system, meaning that every access from the NDP will result in a 128-byte line stored
in the NDP-AP’s cache. Therefore, in case the NDPs have a smaller access granularity
than the CPU (e.g. 32 B), consecutive accesses to the same line can directly be served
by the NDP-AP, and do not have to go to a distant memory. The cacheability of remote
data at the CPU also implies that NDPs can exploit mutual locality for various access
patterns, like one-to-all. This is shown in Figure 4.7a, where the remote read from the
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second NDP has a hit in the NDP-AP cache. This property will be a key feature when
exploring the Graph500 benchmark in Section 4.9.

CACHEABILITY OF REMOTE DATA

As highlighted in Section 4.2.2, the snooping range of the CPU cannot be extended to the
NDPs. Therefore, NDPs with hardware-managed caches holding lines of remote data are
a problem, as the lines would be invisible for the system. The snooping traffic could be
extended in an optimized way as done with the Invalidation messages described in Sec-
tion 4.5.4, but that would still mean that a snoop has to travel to every NDP, potentially
wasting bandwidth and energy. Another option can be to allow a little bit of cached re-
mote data by introducing a shadow data cache directory at the CPU side [51]. This has as
downsides that 1) it does not resolve the issue when considering large data sets, and 2)
it implies that the NDP has to access remote data at the granularity of a CPU cache line,
which is typically larger than the NDP access granularity, wasting valuable interconnect
bandwidth.

Therefore, the proposed architecture does not allow NDPs to cache remote data,
which is enforced by the NDP-M, marking a line inhibited when provided to the NDP.
This is not as strict as the inhibited flag found in the POWER ISA [189], where it implies,
for instance when writing to memory mapped device registers, that an access has to be
performed by a special cache inhibited data path. In the proposed architecture, marking
a line inhibited means that the line is evicted when the access is completed, or that a
write through and eviction is performed. Note that, in case a remote access hits in the
NDP-AP data cache, the latency is not much longer than accessing local memory. Thus,
as long as high hit rates in the NDP-AP data cache are realized, remote accesses are not
heavily penalized. To further alleviate the inconvenience of cache inhibited remote data,
we introduce the concept of user/compiler enhanced coherence. By manually setting a
data set as ‘remote cache uninhibited’, the NDP-M will allow the caching of this data in
a remote cache. This comes at the expense of having to keep the system coherent man-
ually, typically by flushing the NDP caches at certain points in the application.

In Figure 4.7 we shown the interactions involved with doing a coherent global load
and a coherent global store. In case of a remote GetS, the NDP-M forwards it to the
NDP-AP, which asks for the line on the system bus, puts it in its cache, and sends the
correct sub-cacheline to the appropriate NDP-M. In case of a remote GetM, extra care is
necessary. Because of the cache inhibited nature of remote data, an NDP cache cannot
hold ownership of a remote cache line. Therefore, the NDP-AP locks the line on behalf
of the NDP, and unlocks it as soon as the NDP returns it, also shown in Figure 4.7b.

As discussed in Section 4.5.6, NDPs do not have to have hardware managed caches,
and for many designs this will likely not be the case. When an NDP does not have hard-
ware managed caches, remote data accesses are treated exactly the same as local ac-
cesses, and the discussion above does not apply.

SCALING REMOTE ACCESSES AND INTER-NDP TRAFFIC

All inter-NDP traffic is sent over the CPU’s memory channels, the system bus, and through
the NDP-AP. In Section 4.4.4 it is established that the system bus is not a bottleneck.
As discussed in Section 4.4.3, the number of system bus connections of the NDP-AP
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(a) (b)

Figure 4.7: Two activity diagrams showing the process of a remote read (a) and a remote write (b).

can scale, as well as the number of NDP-APs. However, when considering the next-
generation POWER CPU, a single system bus connection offers already more bandwidth
than all memory channels combined [40]. This shows that a single NDP-AP implemen-
tation can already serve all inter-NDP traffic.

4.7. SYSTEM SIMULATOR AND IMPLEMENTATION
To validate the architecture, we implemented the new components in software and inte-
grated them in a custom system simulator. The simulator was then used to obtain perfor-
mance numbers for both synthetic benchmarks and a representative graph-processing
application. Applications can make use of a user-level software library, providing all the
functionalities to allocate data structures, communicate with the NDPs, support syn-
chronization between the CPU and the NDPs, etc. Below we highlight several aspects of
the system simulator:

• The NDP-M and NDP-AP and their subsystems are implemented in software as
shown in Figure 4.4 and Figure 4.5 and as described in this work.

• A variety of other components (memories, memory channels, system bus, caches,
etc.) implemented in software.

• The system simulator tracks individual loads, stores, atomics, barriers, etc. through
the entire system following the coherence and remote data access characteristics
described in this work.

• The system simulator can track the data associated with every load and store,
thereby ‘mirroring’ the memory of the host system and being able to check the
correctness of the simulator and thus actually ‘executing’ the workload in the sim-
ulator.

• The system simulator supports general-purpose CPU and NDP cores running ar-
bitrary applications, which get their loads, stores and operations from a frontend
based on Intel PIN [190].
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• The system simulator supports workload-optimized NDPs developed in a hard-
ware description language (VHDL/Verilog), based on the Verilog Procedural Inter-
face (VPI). This functionality is not used in this work.

The developed system simulator focuses on the discussed aspects of the proposed
architecture, and is able to provide detailed performance information. The tracking of
coherence states and even the data field for every load and store is different from existing
performance estimators [191], which typically work at a coarser level.

Table 4.1 summarizes some of the most important system parameters. The charac-
teristics are based the POWER8 CPU [185] [34]. We consider four DDR4-2600 memory
controllers per memory channel, running at a realistic 60% utilization. Memory (con-
troller) latency is also based on POWER8 characteristics. The best case round trip latency
for an NDP memory access, based on the numbers provided in Table 4.1 and others like
core-to-NDP-M interconnect, is around 60 ns, a 25% improvement over the CPUs access
latency. In case of a coherence-directory cache miss or a remote access, this latency is
obviously much larger, about double for the former, and about three to four times as high
for the latter. The sizes of the coherency-directory cache at the NDP-M and size of the
data-cache at the NDP-AP are set to an appropriate size for the two types of experiments
performed. The NDP-AP bandwidth from and to the system-bus is almost high enough
to saturate all the memory channels.

As NDP design point we use 64 slow, 1 GHz, in-order cores, with instruction latencies
similar as those found in the processor described in [191]. The cache size of the general-
purpose NDPs is only 256 bytes. This allows the exploitation of some data locality but
makes sure that the observed performance characteristics come from the DRAM and
inter-NDP bandwidths, and not from the cacheability of the data sets.

4.8. SYNTHETIC BENCHMARKS
In this section we discuss several synthetic benchmarks related to the bandwidths achiev-
able in the proposed architecture and the parameters from Table 4.1. We explore both
streaming and random access patterns for accessing local memory, as well as various
communication patterns using multiple NDPs. When using random access patterns,
16 GB data sets per memory channel / NDP are used (128 GB total). Since these data
set sizes are in the order of what one can expect in a real system, the ECD-$ and NDP-
AP data cache sizes are set to values one would find in a modern CPU [34]: 64 KB and
512 KB, respectively.

4.8.1. LOCAL ACCESSES
First we explore the achievable bandwidths on a single NDP, while varying the coher-
ence properties. Figure 4.8a shows the achieved bandwidth when doing a streaming
read, while varying the initial coherence state of the data. The ECD-S is not used in this
experiment. When the data is already in the Shared state, an 29 GB/s DRAM bandwidth
is achieved. When the data is in the CPU state, coherence rights have to claimed from
the NDP-AP, resulting in a slightly lower DRAM bandwidth of 24 GB/s, and a 2.25 GB/s
up- and downstream bandwidth. For both cases, the bandwidth required to load ECD
items from DRAM is negligible, as the accesses have a high degree of spatial locality.



4.8. SYNTHETIC BENCHMARKS

4

83

Table 4.1: System specifications.

Simulated CPU
Main-memory round-trip latency 80 ns

Access granularity 128 byte
Memory channels 8x, 20:10 GB/s Upstream:Downstream

Main memory (per channel)
Technology and bandwidth 4 x DDR4-2400 @ 60% : 48 GB/s

Memory controller + DRAM latency 40 ns
Access granularity 32 byte

Target size 16+ GB

General-purpose NDP
Cores 64 cores, 1 GHz, in-order

Data caches 256 byte private per core
Main-memory round-trip latency 60 ns (best case)

NDP-M
ECD-$ size variable, 32 B lines

ECD-$ / ECD-S / ERAT latency 4 / 2 / 2 ns
NDP-M - NDP-AP latency (single trip) 24 ns

Coherence message size 12 B

NDP-AP
Data cache size variable

System-bus data interface 128:64 GB/s In:Out
System bus
Frequency 2 GHz

Snoop buses 2
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Table 4.2: Common communication patterns and how they are implemented on the proposed architecture.

MPI Operation Description Software implementa-
tion on the proposed
architecture

Send Send data one to one Write one to one
Receive Receive data one from one Read one from one

Broadcast Root to all, same data All NDPs read from root
Scatter Root to all, different data All NDPS read from root
Gather / Reduce All to root, data ordered /

reduced
Root reads from all NDPs

All-gather / All-reduce All to all, data ordered / re-
duced

All NDPs read from all
NDPs

Also included in Figure 4.8a are the bandwidths when including software prefetching.
This shows that the penalty of a coherence round trip to the NDP-AP is moderate, or can
even be completely hidden.

Figure 4.8b shows the achieved bandwidth when doing random reads, while varying
the portion of the data set with a valid ECD-S item, and the coherence state all data is
Shared. When the portion with a valid summary item shrinks, more directory items have
to be fetched from DRAM, and given the completely random nature of the accesses, this
doubles the amount of memory accesses in the worst case, and halves performance.

4.8.2. REMOTE ACCESSES USING VARIOUS COMMUNICATION PATTERNS

Table 4.2 shows the most common MPI communication patterns and how they are im-
plemented in software on the proposed architecture. First we explore one to one com-
munication, followed by many-NDP communication. In Figure 4.9a the performance
for various one to one communication patterns is shown, using again streaming and
random access patterns. A streaming read is bounded by the downstream bandwidth
of the receiving NDP at 10 GB/s, with an NDP-AP data cache hit rate of 75%. Similarly,
streaming writes are bounded by the downstream of the receiving NDP at 10 GB/s, with
an NDP-AP data cache hit rate of 87%. This is higher than with streaming reads, be-
cause both the read retrieving the data from the NDP-AP as well as the write delivering
again it are counted as hits. Random reads are bounded by the upstream bandwidth of
the providing NDP at 20 GB/s, thus realizing a 5 GB/s bandwidth towards the receiving
NDP (32 B out of 128 B). The NDP-AP data cache hit rate is almost zero as expected for
such a large data set. Random writes are bounded by the downstream bandwidth of the
receiving NDP at 10 GB/s, thus realizing a 2.5 GB/s bandwidth for the issuing NDP. The
NDP-AP data cache hit rate is 50%, as every read misses but every write hits, as discussed
in Section 4.6.3.

In Figure 4.9b the performance for various many-node communication patterns is
shown, for which we use eight NDPs (root + seven). Broadcast results in an aggregate
bandwidth of 70 GB/s, bounded by the downstream bandwidth of the receiving nodes.
Since every node needs the same data, the NDP-AP data cache hit rate is very high,
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Figure 4.8: (a) Shows achieved DRAM bandwidth and memory channel bandwidth (coherence messages) for
local streaming reads, while varying the initial coherence state, with and without software prefetching. (b)
Shows achieved DRAM bandwidth for local random reads, while varying the percentage of data valid in the
ECD-S.
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Figure 4.9: Synthetic benchmark results, showing bandwidths and NDP-AP data cache hit rates for various
inter-NDP communication patterns.
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Figure 4.10: Using an NDP to copy a data set, of which 8 MB is stored in the caches of the CPU. The initial
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and the upstream bandwidth of the root is not a bottleneck. Scatter shows an aggre-
gate bandwidth of 20 GB/s, bounded by the upstream bandwidth of the root, since now
every receiving node needs different data. Gather is bounded by the downstream band-
width of the root, and shows an aggregate bandwidth of 10 GB/s. All-gather, where every
NDP reads from another NDP, shows a 64 GB/s aggregate bandwidth, bounded by the
upstream bandwidth of the NDP-AP.

4.8.3. COPYING A DATA SET

In Figure 4.10 we show the performance for the essential operation of copying data, using
a single NDP and a single memory channel. The source and destination addresses are
both in the local memory of the NDP. When starting all data has the coherence state
CPU owned, and 8 MB of the data set is stored in a (last level) cache of the CPU. In can
be observed that for small data sets, the realized copy performance is very low. This can
be explained by the fact that the 8 MB stored at the CPU needs to be written back to
the NDP-M over the ‘slow’ 10 GB/s downstream link. For larger data sets this becomes a
negligible portion, and the memory channel is foremost used for coherence interactions
between the NDP-M and the NDP-AP. In the case of using a single NDP and the largest
data set, the NDP-AP has to process one coherence messages roughly every four clock
ticks. The copy performance of the CPU would be 10 GB/s, bounded by its downstream
bandwidth. This shows that, although copying data seems a natural fit for NDPs, it only
pays of for large data sets when one includes the, for natural applications inevitable,
writeback and coherence overheads.

4.8.4. COHERENCE BOTTLENECKS

In Figure 4.11a we show the streaming read performance, while varying the number of
snoop buses available at the CPU. The initial coherence state of the data is CPU owned.
It can be observed that, when considering a limited number of snoop buses and many
NDPs, the read performance of the NDPs is bounded by the invalidate capacity of the
system bus. A single snoop bus can invalidate 256 GB/s, and thus the NDPs can not read
data faster, irregardless of their local memory bandwidth. Figure 4.11b shows the same
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Figure 4.11: (a) Accumulated streaming read performance using multiple NDPs, while varying the amount of
snoop buses at the CPUs’ system bus. (b) Accumulated copy performance using multiple NDPs, while varying
the amount of snoop buses at the CPUs’ system bus.

experiment when considering the copying of a data set. Since copying data requires two
reads and one write to local memory, but only two coherence claims, the system bus
limitations are less profound. Both experiments show that for the default design point
of having two snoop buses in the system bus [185] [34], no scalability problems become
apparent, since the system bus can invalidate data at 512 GB/s while the NDPs have a
peak accumulated local memory bandwidth of 384 GB/s. Note that, as mentioned in
Section 4.5.5, this potential bottleneck is relevant for any NDP proposal, not just the one
presented in this work.

4.8.5. SYNTHETIC BENCHMARKS INSIGHTS

The synthetic benchmarks offer two insights. First, the architectural proposal, imple-
mented with the design point of Table 7.1, shows excellent performance for local mem-
ory accesses and various communication patterns. Second, the simple experiments rep-
resent an important range of operations discussed to be suitable for near-data process-
ing [80]: copy, search, indexed lookups, very wide vector operations, etc. Our results
show that a single of such an operation incurs a significant penalty in terms of coher-
ence traffic and data writeback, and possibly performance. Meaning that, e.g. searching
for a key in a data set, should be followed by many more key searches to offset the initial
cost. For other workloads, like copying, this is much harder, as the data is likely made
dirty by the CPU and possibly still (partly) in its caches.

This argues in favor of using NDPs to run workloads for a prolonged period of time,
touching the data many times, using large data sets. One example of such a workload is
doing many operations on a large graph data structure, as is discussed in the case study
below.
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Figure 4.12: Graph500 mapped on our architecture. The frontier expansion is done at the NDPs, with non-local
accesses being forwarded to the NDP-AP.

4.9. CASE STUDY: GRAPH500
Graph500 [58] is a well-known data-intensive benchmark and a typical near-data pro-
cessing problem [192], doing several breadth-first searches (BFS) in a graph, represent-
ing workloads like big-data analytics. In several steps, called levels, it explores the en-
tire graph, from a given starting node to all its neighbors, and in the next level from
all its neighbors to their neighbors and so on. The set of nodes visited in the previ-
ous level, is called the frontier of the current level. The size of the problem is denoted
as scale n, meaning the graph contains 2n nodes. Key characteristics are unbalanced
parallelism, short prefetch depths and random memory access patterns. It has been
shown that running Graph500 on a cluster does not scale perfectly, and thus, to further
increase performance for analyzing large graphs, increasing the node performance is
important [193] [194]. An explanation of distributed Graph500 can be found in [193].

As we are, in contrast to the synthetic benchmarks, unable to run this complex work-
load with data sets in the 100+ GB range due to unfeasibly long runtimes, the ECD-$ and
NDP-AP data cache sizes are set to smaller values: 8 KB and 64 KB, respectively. This way,
we assume that our results for giga-scale simulations are relevant and can be scaled to
tera- and exa-scale problems. A sensitivity study regarding the NDP-AP data case size
is presented in Section 4.9.2. The used graphs are up to scale 26, or 64 million nodes
(one billion edges), which consume 22 GB of memory when using the maximum of eight
distributed processes, and are about an order of magnitude larger than the graphs used
in [98] and [88].

4.9.1. IMPLEMENTATION

To evaluate Graph500, we use the system organization shown in Figure 4.12: every mem-
ory channel has an NDP each consisting of 64 general-purpose NDP-cores (see Table
4.1). We use the MPI-parallel bfs_replicated Graph500 reference code [58] to generate
the distributed graph data sets. The MPI + OpenMP parallelization is replaced by a
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Figure 4.13: Performance for Graph500 running at our NDP architecture, with an IBM POWER8 and Intel Xeon
CPU serving as reference.

nested OpenMP parallelization, where we first spawn a thread per NDP, followed by
many threads for every NDP-core. All BFS related code is executed in the simulation
environment. The BFS code is extended to use the ‘direction optimization’ to switch
between bottom-up and top-down frontier expansions [195]. In the levels explored top-
down (the first levels and the last levels), every node in the frontier visits all its neigh-
bors, and sets their parent. The levels explored bottom-up (the middle levels), loop over
all remaining nodes and try to find a valid parent in the current frontier. Various data
accesses, for example a frontier check in the bottom-up phase, can be remote, meaning
the access has to be forwarded to the NDP-AP to be issued there as described in Sec-
tion 4.6.3. The specifications of the NDP-cores are shown in Table 4.1 and discussed in
Section 4.7.

4.9.2. RESULTS AND DISCUSSION

The performance results of our Graph500 implementation are shown in Figure 4.13. As
a reference we use the performance of the Graph500 reference code running on a real
POWER8 CPU with 10 cores at 3.5 GHz, 230 GB/s memory bandwidth and 85 MB cache.
For completeness, also results obtained on an Intel E5 2683v3 (14 cores, 28 threads, 2
GHz) server CPU are shown. When looking at a single NDP, we see around two tera TEPS
(traversed edges per second) of realized performance. Running eight problems in paral-
lel using eight NDPs would result in a very good node performance, but we are foremost
interested in running large problems on multiple NDPs. The performance of multiple-
NDP configurations steadily increases towards larger problems, and shows no sign of
dropping for the sizes of the problems we explored. Clearly, a lot of work is needed to uti-
lize all the available parallelism (512 threads in total), and to offset the low-thread-count
regions at the start and the end of the execution, inherent to the application. Scaling to
multiple NDPs is not perfect, since we now have to perform remote accesses which have
a (in case of a NDP-AP cache miss) much higher latency than a local access. When us-
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Figure 4.15: Performance of the coherence architecture as described in Section 4.5.3, with and without the use
of the proposed ECD-S described in Section 4.5.3.
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ing two NDPs, the percentage of remote accesses is 10%, growing to 20% for eight NDPs.
Due to this penalty, we see a strong performance scaling of a factor 1.5x and 1.7x when
doubling the NDPs. Weak performance scaling is better, showing factors between 1.6x
and 1.9x.

We expect the performance to increase further for larger problems, and not to drop
due to caching effects, based on the trend lines shown in Figure 4.13 and the following
analysis. For a scale 26 problem, the visited and out_queue bitmaps, essential data sets
keeping track of the state of every vertex with a single bit and both accessed in a ‘random’
way, are eight MB in size, or 512 times larger than the combined cache size of 64 NDP-
cores (64 times larger than all caches in eight NDPs). The predecessor list, also a critical
data structure keeping track of every vertex’ predecessor and accessed in a ‘random’ way,
is a factor 64 larger than the bitmaps. This implies that our results do not depend on the
cacheability of essential data sets but on the access characteristics of our architecture,
foremost the low latency and 32 B access granularity.

In Figure 4.14a we show the measured bandwidth for various aspects of the archi-
tecture. The bandwidth into the NDP-AP (the responses to reads issued by the NDP-
AP) grows with the amount of NDPs, but does not reach its limit yet. The bandwidth
going out of the NDP-AP (the responses towards the various NDP-M’s) is a factor four
lower, because the reads done by the NDP-AP are at the CPU’s 128 B granularity, while
the responses towards the NDP-M are at a 32 B granularity. The main memory band-
width slowly decreases when using more NDPs, driven by the fact that the performance
achieved per NDP is lower due to a smaller problem size per NDP and a larger portion
of remote accesses. The memory channel bandwidths are stable between system con-
figurations, balancing out the relative longer runtime and the larger amount of remote
accesses. The memory channels show the same 4:1 bandwidth ratio for upstream and
downstream as the NDP-AP.

NDP-AP DATA CACHE PERFORMANCE

Accesses to remote data are resolved by means of the NDP-AP, as described in Section
4.6.3. The NDP-AP holds a small cache to exploit some locality. When a remote access
hits in this cache, the latency is dramatically reduced. Therefore, a large cache is likely
to improve performance. Furthermore, a cache hit eliminates the need for data to be
accessed in a DRAM and transported to the NDP-AP. In Figure 4.14b we show the reduc-
tion in runtime, as well as the reduction in data transports achieved when we increase
the NDP-AP data cache size, when running a scale 24 problem with four NDPs. For the
default cache size of 32 KB, we have a hit percentage of less than 2%, due to the lim-
ited capacity as well as the fact that for Graph500 the remote accesses have little spatial
locality. When increasing the cache capacity to 512 KB, the hit rate is 26%, increasing
the application performance by 12% and reducing the amount of data traveling from
the various DRAMs to the NDP-AP by 23%. As example, in case the NDP-AP data cache
would be the size of the entire L3 cache of the CPU (80 MB), the hit rate increases to 97%,
and the application performance by 33%, clearly indicating that the latency for remote
accesses is key for the performance in the architecture.
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IMPACT OF THE COHERENCE METHODS

An important aspect of the proposed architecture is the handling of coherence between
the NDPs and the CPU, as discussed in Section 4.5. The NDP-M checks the coherence
state of every access from the NDP or the CPU in the ECD via the ECD-$. To limit the
ECD-$ accesses, the ECD-S is used as discussed in Section 4.5.3. When starting the
benchmark, we set the entire graph structure, which is read-only after initialization, to
Shared in the ECD-S, meaning accesses to this data set do not have to access the ECD-$.

In Figure 4.15a we show the performance of the ECD-$ for growing problem sizes.
For larger problems, the amount of ECD-$ accesses obviously increases. When using the
ECD-S as described above, the amount of ECD-$ misses is very limited, with a maximum
of 17% for the largest problem. This means almost all accesses are made coherent in
either the ECD-S latency, or the ECD-$ latency as described in Table 4.1. When not using
the ECD-S, also shown in Figure 4.15a, the amount of ECD-$ accesses increases by 35%,
and the ECD-$ misses accordingly.

In case of an ECD-$ miss, the item has to be loaded from DRAM. In Figure 4.15b we
show a breakdown of the DRAM bandwidth with respect to the component doing the
access. When using the ECD-S, a very small portion of the bandwidth is used for loading
and storing directory items. Without the ECD-S, this percentage increases to over 20%
of the bandwidth, introducing a significant overhead in time and energy.

In Figure 4.14a we show the bandwidths for the memory channels. Roughly 2% of
this bandwidth is spent on coherence traffic between the NDP-M and the NDP-AP. When
using only one NDP, we observe around 0.01 GB/s of coherence traffic between the NDP-
M and NDP-AP in order to claim all data previously owned by the CPU.

These results show that, with a good usage of the proposed coherence mechanisms
the overhead is very small, even with a very small ECD-$. The ECD-S increases appli-
cation performance by roughly 10% for large problems, and reduces the amount of ac-
cesses to the ECD-$ and DRAM significantly.

4.9.3. POWER ANALYSIS

We used McPat 1.0 [139] to evaluate the power consumption of the general-purpose NDP.
When using low standby power (LSTP) 22-nm technology, the power of the entire 64 core
NDP is 5.9 W. The power usage for the NDP-AP is estimated at 4 W, based on compara-
ble bus-attached components discussed in [196]. The NDP-M works at a much lower
frequency and we estimate a power of 2 W, giving the entire memory side (memory-side
chip + DRAMs) a 20% increase in power [197]. This results in a power budget of the en-
tire proposal of 67 W. Given that the CPU is practically idle when running workloads on
the NDPs, the CPU cores go to sleep mode, for a power saving of 100 W [197] [198]. This
delivers a net power saving of 33 W for our proposal. Given the much shorter runtime,
a significant energy-to-solution saving will be realized, using about half of the energy
compared to the reference, depending on the exact system configuration and problem.

4.10. CONCLUSION
In this work, we introduced an architecture for a seamless integration of arbitrary near-
data processing capabilities in an existing server environment. By introducing a com-
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ponent in the memory system as well as a single component attached to the system bus
of the CPU, we enable a deep integration of NDPs, supporting coherence, virtual mem-
ory, and accessing the global address space. The proposed architecture limits the nega-
tive impact on the normal CPU performance making sure other workloads can continue
working as expected. The use of standard OS methods for data allocation and data lo-
cality management are important, as they make the architecture easy to use. By means
of synthetic benchmarks and an industry-standard graph traversal workload we show
that the proposed mixed fine- and coarse-grained coherence mechanisms as well as the
remote data access mechanisms provide excellent performance. By quantifying the co-
herence and data writeback overhead we argue that NDP workloads should work for a
prolonged period of time on large data sets. Furthermore, we showed that four and eight
NDPs with an almost completely flat memory hierarchy, running a large graph problem
can easily outperform a modern CPU. This work can serve as a base for further research
in how NDPs can be integrated tightly with CPUs and other processing devices.





5
SIMULATION ENVIRONMENT

Focusing on workload-optimized systems, implies optimizing workloads, running on sys-
tems. Benefits, for any metric of choice, should be searched for and cared for on a workload
level, and not just for specific kernels or operations. Furthermore, these benefits should
become apparent when looking at entire systems, and not only at the level of individual
devices or components.

The proposed near-data processing architecture does not focus on a particular type of
near-data processor, but assumes the deployment of arbitrary near-data processing ca-
pabilities. This includes the use of workload-optimized NDPs, targeting a reconfigurable
fabric. To evaluate workloads making use of such NDPs, a system-level simulation envi-
ronment, able to include NDPs developed in a hardware-description language, is neces-
sary. No such a simulation environment is (publicly) available, hence, effort was needed
to develop one. Since developing the entire system in hardware is infeasible, unnecessary,
and would result in unrealistically long simulation times, only a strict subset of the system
must be simulated in hardware, connected to the rest of the system simulated in software.
Besides workload-optimized NDPs, general-purpose NDPs, running software threads, are
of key importance as well. Many applications are very complex or have code constantly
under development, making the use of software based solutions the only realistic option.

The simulator, including both types of NDPs, simulates all aspects of the proposed NDP
architecture, including the CPU. This way we can run and evaluate complete applications
on the entire system. In this chapter we discuss the development efforts for the realization
of the simulator, and discuss the lessons learned.
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5.1. INTRODUCTION
In this chapter we discuss the development of a system simulator. This effort started
with the development of several hardware and software components needed for a future
near-data processing prototype system. To aid development and to complement the
research opportunities viable on the prototype platform, a system simulator was deemed
necessary. Other novel hardware platforms, such as the IBM CAPI interface [51] and the
systems from Convey Computer [119], also offer a system simulator to make testing and
debugging much easier. As the realization of the prototype platform was delayed over
and over, focus shifted towards the creation of a capable simulator environment, to be
able to create valuable results without having the special hardware in place.

Two branches of the simulator were develop. The first one uses the hardware and
software developed for the prototype platform, and is capable of simulating NDPs de-
veloped in a hardware description language such as VHDL or Verilog. It simulates the
CPU and memory system around these components. With this, we are able to simulate
workload-optimized NDPs, and use them as they would be used on a real system. Sev-
eral applications and NDPs have been tested with the simulator, and valuable lessons are
learned. As the hardware core of this simulator limits both the simulation speed as well
as the complexity of the features we can implement in reasonable time, another branch
of the simulator was developed. This branch supports only general-purpose NDPs run-
ning software, but implements the complex architectural features described in Chapter
4. To make an explicit distinction between the two different simulation environments
in this chapter, the simulator able to run hardware NDPs is called the system-simulator,
since it truly mimics the memory system of a CPU. The software-only simulator focus-
ing on evaluating the architectural features at high speed, is called the performance-
simulator. Both simulators share a large code base, and are implemented in the same
library.

The development of the simulation environment has been key to most of the results
described in this work. Although it started as an efforts to support the prototype plat-
form, it grew into a very complex and interesting environment able to test a wide variety
of aspects. It is a completely homegrown project, as the goals and features needing sup-
port differed too much from existing simulators. This has taken a significant amount of
time, but many of the obtained insights would not have been possible otherwise.

5.2. COMPONENT DEVELOPMENT
The development of the system-simulator environment started as an effort to support
the development of a prototype platform, and many of the features in the system-simulator
find their origin there. Therefore, we start with a description of the prototype platform
and the hardware and software developed for it.

5.2.1. PROTOTYPE DESCRIPTION

To research the use of novel memory technologies, IBM developed the ConTutto card
[199]. ConTutto makes use of the flexibility offered by the POWER8 memory system [34],
by replacing one of the Centaur ASICs with an FPGA. This is illustrated in Figure 5.1,
replacing the top-right Centaur by ConTutto. By having the Centaur logic implemented
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Figure 5.1: An illustration of the ‘ConTutto’ prototype platform. One of the Centaur ASICs in a POWER8 is
replaced by an FPGA.

on an FPGA, the use of different types of technology specific memory controllers became
possible. A working system using non-volatile MRAM memory based on the ConTutto
platform was recently presented [200].

By having an FPGA in the memory system of a CPU, ConTutto also allows for the
deployment of near-data processing capabilities. Conceptually, this follows the archi-
tecture presented in Chapter 4. There are however important differences as well. As
we are not able to change the CPU, the NDP-AP (Access Point) cannot be implemented.
Furthermore, the protocol over the memory channel cannot be generalized to also carry
messages next to the standard loads and stores. This implies that there is no ‘clean’ way
of communicating with ConTutto, that we cannot have hardware managed coherence
and virtual memory support, and that we cannot have inter-NDP communication.

We did not get our hands on a ConTutto card within reasonable time, and thus are
not able to show results based on it. ConTutto, with its features as well as shortcomings,
is however still the line through Section 5.2 and Section 5.3.

5.2.2. HARDWARE DEVELOPMENT EFFORTS
Given the reconfigurable nature of ConTutto, it is possible to implement the NDP-M
(Manager) in hardware. Due to the limitations of the prototype platform and the lim-
itations in time, only a subset of the architectural features described in Chapter 4 are
implemented. In Figure 5.2 the basic blocks are shown, and how they connect to the
provided ConTutto hardware design. The interfaces towards the provided ConTutto de-
sign are based upon the Altera Avalon interface [201], offering an easy to use and flexible
data transportation mechanism. Implemented in hardware are:

• NDP-M command snooper. This component scans all downstream traffic for com-
mands targeting the NDP-M.

• Control unit. The control unit interprets the messages it receives from the CPU,
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manages the ERAT, the state (idle, running, etc.) of the NDP-M, and the commu-
nication with the NDP.

• Effective to Real Address Translation (ERAT). This enables the use of virtual point-
ers by the NDP.

• NDP-interfaces. These interfaces allow the attachment of an NDP to the NDP-M.

• Arbiter. The arbiter inserts the NDP memory traffic into the traffic stream of the
CPU. The CPU always has priority.

The command-snooper implements a simple method of communicating with the
NDP from software. The 128 B write requests from the CPU are scanned for starting
with a special 32 B ‘magic’ key, indicating the cache line is intended for the NDP-M.
This mechanism allows us to send messages to the NDP-M from user space. A memory-
mapped method, although arguably cleaner by design, would require a device driver to
accomplish the same. By using this ‘key method’, we mimic the proposed method from
Chapter 4, where we describe the use of a special (e.g. icswx [189]) instruction to com-
municate with the NDP-AP.

The control component foremost takes care of populating the ERAT data structures
and the communication between software (NDP-library and applications), and the NDP.

The ERAT is implemented using a parameterizable Content Addressable Memory
(CAM) data structure. It translates 48 bit virtual addresses to 40 bit physical addresses,
using a 20 bit (1 MB) offset. The creation of these 1 MB large translation blocks will be
explained in Section 5.2.3. To populate the CAM, the NDP-library (discussed later) sends
a command message containing the physical address of the translation tables, and their
size. The control unit starts loading the tables from memory. By doing this, it bypasses
the ERAT, as the addresses are already physical. The received data is used to populate
the CAM.

The NDP-interface provides the following:

• The communication interface realizes communication between applications and
the NDP.

• The memory interface offers two 32 B wide channels, both able to do a read or a
write every clock cycle.

Two methods for communicating are implemented. First, applications can use spe-
cial purpose registers to share values (pointers, constants, etc.) with the NDP, inspired
on the Delft Workbench [202]. The second method of communicating is message based,
where both the application and the NDP can push 64 B messages to each other. With
the design of the NDP-M and its interfaces, we support arbitrary NDP designs to be de-
ployed in the memory system. A clear distinction is made between the part intended as
framework provided to the user (NDP-M), and which part should be added by the user
(NDP).
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Figure 5.2: The main components of the NDP-M, implemented in VHDL. IO is defined by the provided Con-
Tutto interfaces based on Altera Avalon.

5.2.3. NDP-LIBRARY SOFTWARE DEVELOPMENT
To be able to manage the NDP-M and the NDPs, an NDP software-library was developed.
Parts of the features provided are generic, and would also be needed on a future ‘real’
NDP platform, while others are specific for the prototype platform. The NDP-library
contains the following three main classes:

• The ConTuttoManager class represents a single ConTutto in a single memory chan-
nel. It offers functionality to communicate with the NDP(-M), allocate data struc-
tures, setup the address translation tables, and synchronize the CPU and NDP.

• The ConTuttoAllocation class represents a data set allocated to be used by an NDP.
It can only be created by means of a call to the ConTuttoManager. It offers func-
tionality to manually manage coherence, and keeps track of its virtual and physical
address ranges. All basic array operators like [ ] are overloaded such that a ConTut-
toAllocation can be used like any other data set.

• The POWERConTuttoInterface class implements the architecture specific layer for
the coherence (data-cache block flush) and synchronization (data-cache synchro-
nize) operations. Furthermore it allows to connect to the system-simulator, de-
scribed later.

ALLOCATING DATA SETS AND VIRTUAL MEMORY MANAGEMENT

Allocation a ConTutto data set can be done by means of a single call to the ConTuttoMan-
ager:

template <class T>
ConTuttoManager::ConTuttoAllocation<T> allocateData(size_t items)

This templated method returns a ConTuttoAllocation of type T. To aid the virtual
memory support of the NDP-M, special care is taken when allocating. To limit the size
of the address translation tables, we make use of how the Linux buddy allocator allo-
cates memory [178]. When allocating a large data set, the number of returned physical
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contiguous pages typically looks something like this: 1-1-2-2-1-1024-1024-1024-2-1-1.
The majority of the data is placed in large physically contiguous blocks of up to 1024
pages (the MAX_ORDER compile parameter for the Linux kernel). These large contigu-
ous blocks of pages can be translated with a single virtual-to-real pair. Therefore we want
our ConTutto data sets to only consist of these blocks, limiting the storage requirements
of the ERAT CAM in the NDP-M. When calling allocateData, we recursively over-allocate,
until the requested amount of storage can be served by only the returned MAX_ORDER
sized blocks. An important aspect in this workflow is that every allocated page must
be touched, since only then is the virtual space getting backed by physical space, and
the physical pages really allocated. These large contiguous blocks are added to a Con-
TuttoAllocation object, to be returned to the application. The ConTuttoAllocation also
keeps track of the original allocation pointer, in case we want to release the object and its
storage.

Obtaining the real addresses of a virtual page is not trivial. To realize this, we scan
the information available in /proc/self/pagemap/ to get the physical page frame number
(PFN) of a virtual address [203]. The pagemap is a user space accessible (although de-
pending on the kernel version) map of the page tables, storing 64 bits of information per
page, and can be indexed by the virtual page number. The bits 0 until 54 represent the
PFN. The complete physical address is then constructed as:

Real = (GetPF N (vi r tual ) ∗ pag e_si ze) | (vi r tual & (pag e_si ze − 1))

With the ability of retrieving the physical addresses of a data set, we can construct
the address translation tables. Adding a data set to the address translation tables can be
done by calling

template <class T>
void ConTuttoManager::addToAddrTranslation(ConTuttoAllocation<T>& dataset)

This method stores all the virtual-real pairs contained in the ConTuttoAllocation in
a special, physically contiguous, memory region representing the translation tables. A
ConTuttoAllocation can be removed from the translation tables in a similar fashion. A
call to the method

void ConTuttoManager::sendAddrTranslationTables()

flushes the address translation tables from the caches, and sends a command to the
NDP-M. The NDP-M in turn starts reading the tables from memory to populate the ERAT
CAM.

MANUAL COHERENCE AND SYNCHRONIZATION

To enforce coherence between CPU and NDP, a manual form of coherence is imple-
mented. First, ConTuttoAllocation objects offer functionality to flush certain items, or
entire data ranges, from the caches. The most generic method is:

void ConTuttoAllocation::flushRangeToRAM(size_t start, size_t items)
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This method breaks up the intended data range in cache line sized blocks, and calls a
POWERConTuttoInterface object to writeback and invalidate the cache line with an dcbf
instruction. This instruction takes a virtual address as a parameter, and can thus be used
in an easy and straightforward way. Second, a ConTuttoAllocation offers the method

void ConTuttoAllocation::readFromRAM(size_t index)

which forces a following read to the indicated item to come from main memory. This
is implemented exactly the same as the flushRangeToRAM method (calling dcbf ), but for
this method the assumption is that the data is clean (or not existing) in the cache. In
case the line is available but clean, the instruction only invalidates the line, and does not
write it back to memory. A consecutive read to the address, will result in a read from
memory. The two methods to manage coherence manually thus only differ in syntax,
easing the programming effort. The first one would typically be used to flush a data set
to the memory, while the second would be used to read results of poll for a status.

The ConTuttoManager object offers functionality to synchronize the memory system
by calling

void ConTuttoManager:syncMemSystem()

This method calls an POWERConTuttoInterface object which implements this func-
tionality with a dcs instruction. This instruction flushes all load/store queues and en-
sures all pending operations are committed. The method however solves only a very
small part of the problems involved with synchronization between CPU and NDP. The
described dcs instruction makes sure all writes are committed to the caches, and all
cache flushes are committed to the memory controllers on the CPU. However, once
cache lines are committed to the memory controllers, they are beyond our control. This
means that cache lines can possibly overtake each other. Cache lines containing an NDP-
message to start working on a piece of data, can overtake the data the work should be
applied on. In general, there is no way in telling when a cache line is actually committed
to main memory, and the NDP can thus start working. A hardware-managed coherence
mechanism between CPU and NDP, as discussed for the proposed architecture in Chap-
ter 4, will solve this issue, since the coherence mechanisms will make sure an NDP load
to a cache line still ‘traveling’ to main memory, will be halted, as the NDP does not have
the coherence rights to do the load.

COMMUNICATING WITH THE NDP
As indicated in Section 5.2.2, the NDP-M contains a unit which snoops all passing store
commands and scans them for a specific key in the first 32 B of the 128 B cache line.
When a message is detected, it is forwarded to the control unit, where it is interpreted.
In Figure 5.3 we show the layout of a received message. The Command field indicates the
type, and possibly up to three parameters are provided. An example command is ‘load
address translation tables from address X’. Other typical commands are starting, stop-
ping, and halting the NDP by the NDP-M. A special type of message is an NDP message:
a message from the user-level part of the application targeting the NDP. In this case the
control unit forwards the 64 B payload to the NDP.
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Figure 5.3: Layout of a message intended for the NDP-M, carried on a 128 B cache line.

5.3. SYSTEM SIMULATOR
The system-simulator builds a CPU and memory system around the proposed hardware
and software components. This allows us to test the proposed components, but foremost
to test complete applications running on the simulated CPU, making use of the simu-
lated NDPs, to be able to test their performance and behavior. Furthermore, it allows for
a flexible evaluation of various system parameters, like bandwidths and frequencies.

5.3.1. FOCUS AND CONCEPT

Since near-data processing is all about data, we decided to focus the system-simulator
on the role of data in a future computer system. Key elements are, e.g., the flushing of
caches, the synchronization, and of course the performance attributes like bandwidths
and latencies. The system-simulator can therefore best be described as ‘memory-system
simulator with NDP capabilities’, as visualized in Figure 5.4. The caches of the CPU are
therefore included in the system-simulator, but the CPU cores are not, since we are not
particularly interested in their exact behavior. As the system-simulator targets the proto-
type platform, we stay true to the features offered by this platform, and do not add ‘tricks’
to the system-simulator to ease development. For example, communication between
software running on the CPU cores and the NDPs goes through the simulated memory
system, and not through a ‘special wire’ only existing in the simulation environment but
not in real life.

Most interesting, and most differentiating feature compared to other work, is the fact
that the system-simulator actually executes the workload. This means that the caches in
the simulated CPU, the simulated main memory, and all the buffers etc., hold the actual
values the host application is using, and is a ‘mirror’ of the memory of the host system.
This implies that a correct implementation is essential for obtaining the correct applica-
tion results as well as the right performance measurements. In fact, the host application
could crash if the system-simulator would return invalid data when considering for ex-
ample array indices or pointers. With this we ensure that the system-simulator can be
used to test various components targeting the prototype platform.

In Figure 5.5 we show the high-level picture from an application binary perspective.
On the right we see the application under test, compiled as a stand-alone binary, linking
with the discussed NDP library. On the left we see the system-simulator binary, which is
compiled with a certain NDP hardware design included. The two applications interact
with each other by means of a communication channel.

5.3.2. FEEDING THE SIMULATED MEMORY-SYSTEM

The CPU cores themselves do not exist in the system-simulator. The system-simulator
can be considered to start at the load/store units in a CPU core, feeding the simulated
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Figure 5.4: The concept of the system-simulator is to simulate an NDP enabled memory system.

Figure 5.5: High level view of the system-simulator, showing both the application under test, the simulator,
and the communication channel.

memory system with data and retrieving data from it. In Figure 5.6 we see how feeding
the caches on a real platform relates to the simulation environment.

On the left side we show the prototype system, where multi-threaded CPU code is-
sues load and stores to the memory system of the real CPU. NDP commands are issued
to the NDP library, which in turn translates this into a series of loads and stores, also
entering the memory system. Platform specific operations targeting the memory sys-
tem are issued to the POWERConTuttoInterface which translates them into the correct
flush and synchronization commands. On the right side of Figure 5.6, we show the ver-
sion of this process when using the system-simulator. NDP commands behave in the
same way, and for these actions applications are not aware of whether they are using
the system-simulator or not. Accessing data sets can however not be done in a com-
pletely transparent way. An effort was undertaken to realize this with the overloaded [
] operator of a ConTuttoAllocation object, and make the distinction between using the
system-simulator or not within the ConTuttoAllocation object. This is unfortunately not
possible, as the overloaded [ ] operator does not allow us to make a distinction between a
load or a store. Therefore, accesses to a data set targeting the system-simulator are done
by explicit calls to an ConTuttoAllocation object:

T ConTuttoAllocation::readSim(size_t index, size_t threadId = 0)
void ConTuttoAllocation::writeSim(size_t index, T value, size_t threadId = 0)

An example of using these calls in a typical OpenMP parallelized loop looks like this:

#pragma omp parallel for
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Figure 5.6: Two figures showing how loads, stores, and special commands enter either a real memory system
(on the left), or a simulated memory system (on the right).

for (size_t i=0; i<maxIter; i++)
{

data.writeSim(i, 0, omp_get_thread_num()); \\ set data set to zero
assert(data.readSim(i, omp_get_thread_num()) == 0);

}

These methods generate a load or store request for the system-simulator, containing
all important information like address, size, originating thread etc. The addresses are
translated to real addresses based on the information stored in the associated ConTut-
toAllocation object. This is necessary as the memory system of a CPU works with real
addresses. When ready, the load or store requests are, by means of the POWERConTut-
toInterface, issued to the system-simulator.

The loads and stores issued to the CPU caches are processed at a specified speed,
e.g. one operation per clock tick. To be able to mimic the performance of real applica-
tions running in the system-simulator, without simulating the actual CPU cores, extra
actions are required. To stall the simulated CPU caches for a period of time, thereby sim-
ulating computation time, the concept of issuing a ‘bubble’ to the system-simulator is
introduced. A simulated CPU cache receiving a bubble simply waits for a cycle before
continuing with the next operation. With this mechanism we can easily tweak the per-
formance of the simulated CPU to the performance we measure on a real CPU, as is done
for e.g. the sorting work described in Chapter 7.

COHERENCE, CACHE MISSES AND EVICTS

The simulated CPU caches implement a basic MSI protocol to be able to coherently
share data between each other. An access hitting in a remote cache is solved by means
of this protocol, and incurs a fixed time-penalty.

Cache misses and evicts are issued to the correct memory channel, based on the
ConTuttoId of the underlying ConTuttoAllocation associated with the memory access.
This ConTuttoId is defined by the ConTuttoManager object that did the allocation. Since
a ConTuttoManager represent an ConTutto in a specific memory channel, this is an easy
way to distribute data sets in the system. This is the system-simulator version of the
NUMA based mechanisms for the proposed architecture in Chapter 4. Data sets can
also be scattered over the various memory channel on a cache line granularity, as is the
case in a real CPU. This is done when we do not use the NDPs, or have datasets that are
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not NDP related. Data returning from the memory channels is injected into the right
cache(s) which did the request. Capacity based cache evicts are done with a true least-
recently-used policy.

PREFETCHING, LOCKS, BARRIERS AND SYNCHRONIZATION

To be able to get representative performance and correct results, several complex fea-
tures are implemented as well. Prefetch loads are supported by the CPU to boost its
performance and make the performance more realistic. These prefetch loads differ from
default loads only in that they are non-blocking from the application point of view, and
thus, from the system-simulator point of view, do not return a response to the applica-
tion. In case of a cache miss, the data is loaded from memory and stored in the cache,
and nothing more happens. Depending on whether the simulated CPU is intended to
have hardware prefetchers or not, prefetch loads can be ‘free’, or take one or more cycles
to complete.

To support the correct execution of multi-threaded workloads, locks and barriers
need to be handled correctly. Code can lock and unlock data with the following calls

void ConTuttoAllocation::lock(size_t index, size_t threadId = 0)
void ConTuttoAllocation::unlock(size_t index, size_t threadId = 0)

Within the simulated CPU caches the requested address, once available in the local
cache, gets locked, and other threads are not allowed to touch it. After the necessary
operations are performed, the address is unlocked again.

Barriers are issued to the system-simulator by the main thread on the host system, to
be distributed to all the simulated cores within the system-simulator. When a simulated
core encounters a barrier, is has to wait until all other cores also reached the barrier. The
synchronization of the memory system, which is implemented with a dcs instruction
on the prototype platform, is implemented in the system-simulator by ‘simply’ waiting
until all work queues for the simulated CPU cores are empty. Below we show an example
workload including barriers and synchronization.

// some parallel code

// make sure all host threads are here
#pragma omp barrier
#pragma omp master
{

// make sure simulated cores wait for each other
void ConTuttoManager::SimBarrier() // non-blocking call

}
#pragma omp barrier

// other parallel code, input depends on results from previous code,
// thus requiring the preceding barrier

#pragma omp barrier
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#pragma omp master
{

// make sure all queues in the system-simulator are empty
void ConTuttoManager::SyncMemSystem() // blocking call
// now we can get timing information
T ConTuttoManager::GetSimTimingInfo() // blocking call

}
#pragma omp barrier

5.3.3. INTERACTING WITH THE SYSTEM-SIMULATOR AND SYSTEM-SIMULATOR

SETUP
Figure 5.7 shows a detailed picture of the application and the system-simulator. The
communication between the two is done by means of Unix named FIFOs, which has
the advantage of realizing a very high throughput at a low latency of messages, but im-
plies that the application and the system-simulator run at the same machine. A version
communicating over TCP-IP was also implemented, thereby being able to run both ap-
plications on different machines, but this turned out to be too slow.

A large majority of the messages sent over this link will be loads, stores, and bub-
bles, as described earlier. There are however also system-simulator specific messages.
At startup time, the system-simulator is initialized with parameters like the number of
CPU cores, the cache sizes, number of memory channels, memory bandwidth, frequen-
cies, etc. During runtime, the system-simulator can be asked for timing information
and other statistics like bandwidth utilization. The synchronization and flush commands
have their own messages as well.

The system-simulator itself consist out of two main components: 1) the hardware
components, and 2) a software library. The hardware components are the NDP-M and
NDP, both developed in a hardware description language. These components are com-
piled by means of Cadence NCSim. The software library contains the rest of the simu-
lated memory system and all communications mechanisms etc., and is discussed in the
next section. During compilation, we link our system-simulator software library, devel-
oped in C++, as Verilog Procedural Interface (VPI) library with the hardware design. The
VPI allows us to observe values of registers and wires in the hardware design from soft-
ware, force values from software to hardware. Furthermore it allows us to call software
methods from hardware. At compile time, we indicate a method in the software library
(’-loadvpi library.so:register_VPIMethods’) which registers all methods and their signa-
ture which should be callable from hardware. Similarly, we include an accesslist file dur-
ing compilation containing signals in the hardware design which should be observable
from software. At startup time, we start NCSim loading the correct workspace, which
initializes and starts both the hardware components as well as the software library.

5.3.4. SYSTEM-SIMULATOR SOFTWARE LIBRARY
The system-simulator software library is, together with the hardware modules, one of
the two big components in the simulation environment. The library is linked with the
NCSim hardware-simulator as a VPI library, but in fact behaves as the leading compo-
nent in the entire system-simulator. In Figure 5.8 we show the main components and
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Figure 5.7: Overview figure of how the various applications, libraries and hardware components interact with
each other.

how they are connected to the hardware modules. The library offers a multi-threaded
communication interface which receives the loads and stores from the application, and
forwards those to the simulated CPU caches, based on the threadId provided, and dis-
cussed in Section 5.3.2. In case the cache had to service a load from the application,
the response, when available, is returned to the communication interface. The memory
channels connect, by means of the VPI interface, to the hardware components described
earlier. We take a closer look at these VPI mechanisms when considering the (software)
memory channel <-> (hardware) NDP-M interface. The hardware checks every clock
cycle whether the software has set a load or store register to ‘1’ , and processes the ac-
cess if that is the case. Responses from the NDP-M towards the CPU work the other
way around: in this case the hardware calls a method notifying the software that cer-
tain values are ready to be read from hardware to software. By notifying the software
that certain values can be read, instead of continuous polling, we limit the number of
VPI actions, as those are expensive and limit the system-simulator performance. To be
able to store large amounts of data and retrieve it efficiently, the main memory is again
implemented in the software library by means of a standard hash map. The hardware -
software connection between NDP-M and the main memory is implemented in a similar
way as described for the memory channels.

Shown in Figure 5.8 is a hardware clock feeding into the software library. Based on
the used ratio between CPU and memory-system frequency, the caches and memory
system can do a certain amount of operations per received hardware tick. The memory
channels are furthermore limited by their bandwidth and latency parameters. The com-
munication methods are implemented in a multi-threaded and asynchronous way, and
share data with the synchronous part by means of double-ended queue objects.

5.3.5. SIMULATING GENERAL-PURPOSE NDPS WITH A HARDWARE NDP-M
Until this point, we discussed the ability to test NDP designs developed in a hardware
description language. The sorting work presented in Chapter 7 is a good example of this.
Running more complicated algorithms on one or more general-purpose NDPs is how-
ever also a valid proposal. This could be either softcores on an FPGA as well as cores on
a future ASIC design. To evaluate the challenges involved here, as well to evaluate the
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Figure 5.8: Overview of the system-simulator. Clearly identifiable are the parts implemented in hardware, and
how they are connected to the parts implemented in software.

kind of optimizations that can / must go into the NDP-M, we developed a method to
‘run’ arbitrary code on general-purpose NDPs, without having to implement actual soft-
cores, which would be an unrealistic amount of work and furthermore result in very slow
simulation times. We reused the software used to simulated the CPU caches and mem-
ory channels as NDP cores, and inserted the resulting loads and stores into a hardware
crossbar, functioning as interconnect. This is illustrated in Figure 5.9, complementing
Figure 5.8.

Software kernels of arbitrary algorithms intended to be executed on the general-
purpose NDPs can now make use of similar mechanisms as kernels intended to be exe-
cuted on the simulated CPU. The methods shown in Section 5.3.2 are extended like this:

T ConTuttoAllocation::readSimAtNDP(i, omp_get_thread_num()) == 0)
void ConTuttoAllocation::writeSimAtNDP(i, omp_get_thread_num()) == 0)

which now forward the load and store request to the intended NDP core. In this case,
the ConTuttoId maintained in the ConTuttoAllocation dictates to which NDP a memory
access is send, while the threadId supplied as argument dictates the NDP-core. In con-
trast to the loads and stores issued to the simulated CPU caches, the address is now not
translated in the NDP library, but is kept virtual. The translation happens at the NDP-M,
similar to when using hardwired NDPs.

Similarly, mechanisms for flushing and synchronization are extended to the general-
purpose NDP cores. Extra care is necessary for barriers however. To make sure correct
ordering is ensured towards commitment in memory, the barrier must travel through
the in hardware implemented crossbar as well, complicating its design.

5.3.6. LESSONS LEARNED

We describe some of the key lessons we learned by developing and using the system-
simulator that drove the architecture described in Chapter 4.
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Figure 5.9: Complementary to Figure 5.8, showing the ability to run arbitrary software on general-purpose
NDP cores, while still using the hardware NDP-M.

VIRTUAL MEMORY MANAGEMENT

With all the discussed virtual memory management features implemented as discussed,
we ran into issues every now and then. For no apparent reason, in the middle of a run,
the software mechanism for translating a virtual address to a real address (to be supplied
to the system-simulator), would assert. In this mechanism, we used the stored lookup
tables in the ConTuttoAllocation object, but, as a check, also did a clean translation of the
address based on the pagemap mechanism as described in Section 5.2.3. Every now and
then the two resulting real addresses would not be the same. This let into the realization
of the complexities involved with virtual memory support, of which some are highlighted
in Section 4.3, and hardware support for this in the proposed architecture in Chapter 4.

PREFETCHING AND MANUAL CPU-NDP COHERENCE

The simulated CPU cores support prefetching of data. In our case, this is done in a man-
ual way, but the principle is the same when having a hardware module doing it transpar-
ently. Also described is the need for manual coherence between the CPU and the NDP,
as the prototype platform would not allow us to do this in a hardware managed way. This
implies that the programmer has to keep track of which data sets he or she believes are
in the caches, and which are in the main memory. Prefetching data based on a guess (i.e.
stride detection and extrapolation), breaks this principle, which was discovered while re-
searching sorting data sets (Chapter 7). A kernel execution working on only a sub set of
the data set, would also prefetch data not used in that specific kernel execution, thereby
frustrating the understanding of which data is in the caches and which data is not. This
gets even more complicated as hardware prefetchers do not even know about the start
and end of a data set, and would even start prefetching data of another data set if it is
physically adjacent to the one working with. These problems, and many other factors as
described in Section 4.5, let to the understanding that a hardware managed coherence
protocol between CPU and NDP is essential for successful deployment.
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5.4. PERFORMANCE SIMULATOR FOR COMPLEX SYSTEM-LEVEL

INTERACTIONS
The system-simulator presented so far is a powerful tool to test and evaluate NDP hard-
ware designs and their system integration, as well as aid the development of a proto-
type system. By means of the general-purpose NDPs, we can even run arbitrary software
kernels connected to the hardware NDP-M. However, the implementation of complex
features, such as coherence and remote data accesses, in hardware was infeasible within
the scope of this work. Besides, given the hardware core of the system-simulator, simula-
tion times are slow. This led to the development of the performance-simulator, in which
every component is modeled in software, allowing the testing of more complex features
and higher simulation speeds. In Figure 5.10 we shows the performance-simulator, with
clear similarities as well as differences with Figure 5.8. Foremost difference is the addi-
tion of the NDP-AP component, and the software-only NDPs and NDP-M. The NDP-M,
the NDP-AP, and the rest of the system, now capture all complex features described in
Chapter 4, and drive the performance results in Chapter 4 and Chapter 6. To further
increase simulation speed, reduce implementation complexity, and increase the ease of
use, we also removed the feature of actually running the application in the simulator.
Instead, the performance-simulator traces the loads, stores, and other instructions to
the best extent, but does not keep track of the associated data, thereby ‘only’ producing
performance information.

The simulated NDP-M implements, as described in Section 4.4 and shown in Figure
4.4:

• Load / store queues.

• Coherence manager maintaining NDP-M <-> CPU coherence.

• Extended coherence directory cache.

• Extended coherence directory cache summary.

• Issuing / managing of remote data accesses.

• Issuing / managing of coherence messages from / towards CPU.

• Interfacing with the NDP.

• ERAT (only as latency penalty).

The simulated NDP-AP implements, as described in Section 4.4 and shown in Figure
4.5:

• Data cache

• Accessing remote data on request of the NDP-M(s).

• Handling coherence messages to maintain CPU <-> NDP-M coherence.

• Issue atomics, remote data locks, etc.
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Figure 5.10: Overview of the performance-simulator. The NDP-M and NDP-AP are implemented in software
supporting complex system-level interactions. The NDPs are general-purpose cores.

The other components, e.g. the memory channels, are implemented in a relatively
simple way, able to capture their bandwidth and latency characteristics.

The physical distribution of data among the various memory channels is managed
by a central AddressMapManager component, which keeps track of the virtual address
ranges of relevant data sets and their physical home location. This avoids the need of ex-
plicit data set allocation management as is done with the ConTuttoAllocation class. The
mapping maintained by the AddressMapManager is sent to the performance-simulator
by means of a new set of messages. The coherence state of all data is kept in a central Co-
herenceStore component, and is not maintained in separate directories. Meaning that,
the ECD-$, and other data structures like the NDP-AP data cache, do keep track of which
data they hold on to, but the state of that data is kept in the CoherenceStore. Coherence
messages still have to be send, and rights have still to be claimed and exchanged between
components, but deadlocks and the need of various transient-states are avoided. This
way, all interesting behavior of the proposed architecture can be captured and studied,
without having to implement all the tedious details associated with an actual coherence
implementation in such a complex system. In some boundary cases this could lead to
different behavior than experienced on an actual implementation, but it does not lead
to different application level results.

5.4.1. INTEL PIN FRONT-END

Given we do not need the data associated with every load or store anymore, we can use
a more generic front-end to feed the performance-simulator, in contrast to the usage
of the ConTuttoAllocation class mechanism described before. As illustrated in Figure
5.11, a PIN tool [190] is used to instrument the application under test and capture all the
load and stores. These are issued to the performance-simulator using the same inter-
face as the NDP library uses. Initializing the performance-simulator, and, e.g., retrieving
timing information, still uses the NDP library communication path. Special calls in the
application can start the instrumentation process, map OS thread-ids to performance-
simulator thread-ids, and send barriers. This thread-mapping mechanism takes two lev-
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els of parallelism into account: first level is the NDP, followed by the thread on that NDP.
The call to map an OS thread to an NDP thread looks like and is executed by every thread:

setNDPThreadMap(NDPIndex, ThreadIndex);

Which is captured in the PIN tool where the mapping is stored and used to issue the
loads and stores from the real thread into the performance-simulator using the correct
simulated NDP and NDP-core. A typical use case of this call is shown below:

setNDPThreadMap(0, 0);
#pragma omp parallel num_threads(NDPs)
{

size_t NDPIndex = omp_get_thread_num();
setNDPThreadMap(NDPIndex, 0);

#pragma omp parallel num_threads(NDPcores)
{

setNDPThreadMap(NDPIndex, omp_get_thread_num());

#pragma omp for
for (size_t i=0; i<count; i++) {}

unsetNDPThreadMap(NDPIndex, omp_get_thread_num());
}

}

The initial thread-mapping at the very first line is to also include the code executed
to spawn all the threads in the benchmark, as this turned out to significantly affect per-
formance as we are typically simulating many, very slow, NDP cores.

As the application under test does not wait anymore for the response of loads is-
sued to the performance-simulator, the application and the performance-simulator will
run asynchronously. If the host hardware platform supports enough threads, all the
NDP threads will quickly overflow the performance-simulator with memory accesses,
and therefore back-pressure mechanisms are implemented. When the application does
a blocking ConTuttoManager::SyncMemSystem() call, the queues in the performance-
simulator are emptied before continuing.

5.5. RESULTS
With the developed system-simulator, we tested several applications and coprocessors,
which are not all reflected in the other chapters of this work, and are therefore described
below.

5.5.1. CLEAN - SKA IMAGING
The imaging pipeline is one of the most compute intensive aspects of the SKA radio-
telescope. CLEAN is an essential step in the imaging process, and due to its limited com-
plexity, made for an interesting test- and use-case. CLEAN takes as an input a so called
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Figure 5.11: High level overview of the performance-simulator, with an Intel PIN front-end.

dirty sky image, and iteratively deconvolves a point spread function (PSF), representing
the telescope response-function, from it, until it arrives at a clean image. The three im-
ages involved here are shown in Figure 5.12, showing on the left a dirty image, in the
center the PSF, and on the right the clean image. The clean image shows many more sky
sources (dots), representing stars or other objects, and less ‘garbage’ around the sources.

Two methods are of foremost interest for CLEAN, as they dominate the ‘inner loop’
of the application. The first method searches for the brightest pixel in the image. The
second method centers the PSF around that pixel, and subtracts it from the image. As the
image changes with every iteration, the next brightest pixel can be anywhere, resulting
in little data locality. For very large images, the caches of a CPU become useless, and for
every iteration we have to load the image from main memory to search for the largest
pixel, and then load all surrounding pixels to subtract the PSF. We optimized these two
methods, focusing on avoiding data transport and bandwidth bottlenecks.

On the software side we used the CLEAN implementation found in the standard
radio-astronomy CASA package [204]. To obtain a large amount of test images of various
sizes, we developed a Matlab script able to generate dirty images using various parame-
ters. We developed two hardware NDPs in VHDL able to execute the discussed methods,
and they are, together with a small manager component, connected to the NDP-M. This
is illustrated in Figure 5.13a. The FindMax core is a simple streaming function, while the
SubtractPSF core is more complicated, especially due to the format the image is stored
in a typical CLEAN implementation, of which the explanation is beyond the scope of
this section. We adjusted the software to run in the system-simulator, and extended the
discussed methods with the option of using the NDP.

In Figure 5.13b, we show the performance results for running many iterations of
CLEAN on a system containing two CPU cores with a 64 KB cache each and a single
memory channel. We show the results for executing one of the two, or both, methods
on the NDP. When offloading only one of the methods, coherency traffic is introduced,
which is a significant penalty when considering small images. For larger images, all types
of offloading speed up the processing with respect to the CPU solution. An interesting
observation is that the biggest speedup when offloading only FindMax is achieved for
an image 384x384 pixels in size. For this size, the FindMax related data structure just fits
in the two caches, and the SubtractPSF data structure is foremost accessed by the NDP.
In case of executing both methods on the CPU, both datasets would be fighting over
the cache every single iteration. By using the NDP for only FindMax, we speed up both
FindMax, as well as SubtractPSF, since the latter now has exclusive usage of the cache,
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(a) (b) (c)

Figure 5.12: Three CLEAN related images. Left an input dirty image, in the middle a point-spread function
representing the telescope response function, and on the right the dirty image deconvolved with the point-
spread function.
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Figure 5.13: NDP hardware design for CLEAN implemented in VHDL, showing the two type of coprocessors
for the two offloaded methods. (b) Results for clean, showing speedups when running one of the two, or both,
methods on the NDP. Horizontal axis shows the image-size along a single side.

resulting in a higher speedup than we see for larger images, where the SubtractPSF data
set does not fit in the cache anymore. For this application several NDP advantages show
off, the higher bandwidth, the higher IOPS, and the possibility of workload-optimized
logic for the NDP.

5.5.2. GRAPH500
Graph500 is a complex graph traversal workload already discussed in Chapter 4. As we
deemed it too complex to develop a workload-optimized hardware NDP for it, we used
the general-purpose NDP cores as discussed in Section 5.3.5, still using the hardware
NDP-M. Note that this is different from the Graph500 implementations discussed in
Chapter 4 and Chapter 6, which both use the performance-simulator version. We used
the MPI parallel bfs_replicated version of the Graph500 reference code for our imple-
mentation.
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ALL-TO-ALL COMMUNICATION

As the bfs_replicated name suggests, this implementation replicates the frontier bitmap
across all nodes, in contrast to implementations where every node has a piece of the
bitmap. By doing so, there is no inter-node communication in the kernels. Only after
each level is finished is there an all-to-all binary or operation to update the bitmaps with
the results from the other nodes. This implementation is somewhat simpler than hav-
ing a distributed bitmap, but does not scale to more nodes and larger problems. As the
prototype platform, and thus the system-simulator, does not support direct inter-NDP
communication, the all-to-all runs on the CPU cores. This can be implemented rather
efficiently and achieves a high bandwidth, and given we are (for now) only interested in
up to eight NDPs, the scaling issues are not a problem.

IMPLEMENTATION OF BARRIERS AND SYNCHRONIZATION

The system-simulator actually executes the workload, and holds the values the applica-
tion is working with. To obtain the correct Graph500 results and the correct performance
measurements, all used aspects of the system-simulator must therefore be implemented
flawlessly. Given the multi-threaded and multi-node nature of the workload, this was not
a trivial task.

At the NDP level, foremost the correct implementations of barriers proved challeng-
ing. Coherence between the cores is difficult as well, but was already solved as the
general-purpose NDPs make use of the same code as the simulated CPU caches. A
barrier implies that every core has committed all its memory accesses to the memory
system, and wait for each other, to make sure everyone observes the same and correct
values afterwards. The barriers therefore also have to travel through the crossbar shown
in Figure 5.9, to make sure a read does not overtake a write of a different thread. An extra
difficulty is that a barrier not necessarily involves all the NDP cores and thus not all ports
of the crossbar.

Similar problems arise between the CPU and the NDP. Before entering the all-to-all
communication phase, all NDP accesses must have been committed to the main mem-
ory. Likewise, before starting the NDP kernels again, all CPU accesses must have been
committed to the main memory. As described for the system-simulator, these mech-
anisms cannot be implemented completely correct. In the system-simulator, the Con-
TuttoManager:syncMemSystem() therefore, after waiting for all queues to be empty as
defined, waits a couple of dozen cycles, for the NDP accesses to propagate through the
crossbar and the NDP-M, and for the CPU accesses to propagate through the memory
channels and the NDP-M.

RESULTS

We succeeded in a correct implementation of the system-simulator as well as a correct
implementation of Graph500 running on that system-simulator, together able to gener-
ate valid breadth-first graphs, using up to eight NDPs and the CPU for the all-to-all com-
munication. The performance results achieved with this implementation are to some
extend rendered obsolete by all Graph500 results produced in Chapter 4 and Chapter 6,
and we will therefore focus on the lessons learned described in the next section.
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5.5.3. LESSONS LEARNED

COMPLEX INTERACTIONS OF DATA SETS

The execution of CLEAN in the simulation environment gave us an interesting insight
in how more than one method and their related data sets interact with each other when
running at the NDP or not. This is a key insight that could only have been obtained
by running the entire application and all its methods in the system-simulator. It is a
clear example that it is not always trivial what to run on an NDP and what not, since the
current location of the data as well as the location of other data, the current coherence
state of that data, and the access profile over time, need to be known to make a complete
and informed decision.

CORRECT SYNCHRONIZATION AND CONSISTENCY

With Graph500 we stumbled onto issues regarding consistency, coherence, and synchro-
nization. This led to the extensive study of this subject, resulting in the proposed archi-
tecture in Chapter 4. A key aspect of the design is to decide when an access has entered
the global coherent space. For an NDP with hardware managed caches this is the case
when the access is out of the load/stores queues and committed to the cache. For NDPs
without hardware managed caches, like the ones as described above, commitment hap-
pens only at the level of the NDP-M, meaning that barrier / synchronization also has to
travel to that level before returning. When the CPU and the NDP are both part of the
same global coherent space, as in the proposed architecture in Chapter 4, no explicit
CPU-NDP synchronization is necessary. If both devices do a synchronize, both devices
will observe the correct values.
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BOOSTING THE EFFICIENCY OF

HPCG AND GRAPH500 WITH

NEAR-DATA PROCESSING

To evaluate the architectural proposal, as well as the validity of the near-data processing
concept, thorough evaluation is needed. We promote the use of industry-standard bench-
marks, and the use of existing real-life computers as comparison, to avoid comparing the
performance of arbitrary applications against arbitrary simulated system design points.
By doing so, the performance of the studied architecture has a meaning in the absolute
sense. It makes it possible to put our results next to already published results studying the
benchmarks on high performance computer systems.

The content of this chapter is based on the following paper:

Boosting the efficiency of HPCG and Graph500 with near-data processing
E. Vermij, L. Fiorin, C. Hagleitner and K. Bertels
International Conference on Parallel Processing, 2017
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ABSTRACT
HPCG and Graph500 can be regarded as the two most relevant benchmarks for high-
performance computing systems. Existing supercomputer designs, however, tend to
focus on floating-point peak performance, a metric less relevant for these two bench-
marks, leaving resources underutilized, and resulting in little performance improvements,
for these benchmarks, over time. In this work, we analyze the implementation of both
benchmarks on a novel shared-memory near-data processing architecture. We study a
number of aspects: 1. a system parameter design exploration, 2. software optimizations,
and 3. the exploitation of unique architectural features like user-enhanced coherence as
well as the exploitation of data-locality for inter near-data processor traffic.

For the HPCG benchmark, we show a factor 2.5x application level speedup with re-
spect to a CPU, and a factor 2.5x power-efficiency improvement with respect to a GPU.
For the Graph500 benchmark, we show up to a factor 3.5x speedup with respect to a
CPU. Furthermore, we show that, with many of the existing data-locality optimizations
for this specific graph workload applied, local memory bandwidth is not the crucial pa-
rameter, and a high-bandwidth as well as low-latency interconnect are arguably more
important, shining a new light on the near-data processing characteristics most relevant
for this type of heavily optimized graph processing.

6.1. INTRODUCTION
The LINPACK benchmark [55] has been the golden standard for benchmarking super-
computers for many years, and it represents the metric used for drawing up the highly
regarded TOP500 list of fastest supercomputers in the world [3]. However, the LIN-
PACK benchmark does not represent anymore modern day’s workloads, as it foremost
stresses the compute capabilities of a system. In fact, novel workloads in the field of
high-performance computing show a low compute-to-bandwidth ratio, as well as irreg-
ular memory accesses.

The HPCG [205] and Graph500 [58] benchmarks are gaining momentum as indus-
try standard benchmarks next to LINPACK. HPCG is a preconditioned conjugate gradi-
ent algorithm, consisting of a variety of kernels together capturing a significant amount
of representative compute and communication patterns. Graph500 is a data-intensive
benchmark, doing several breadth-first searches (BFS) in a large graph, stressing features
like random memory accesses and global communication in a cluster. Graph500 mod-
els big-data analytics problems of companies and governments dealing with massive
amounts of unstructured data.

Although HPCG and Graph500 solve very different problems, both prefer a balanced
system, in which the compute capabilities, the memory bandwidths, and the network
specifications match. However, at the node level, the last decade has presented us with
systems offering less bandwidth per compute with every product generation. This is
true for CPUs, but even more for GPU coprocessors, which typically offer a high band-
width, but also an even higher floating-point performance. To battle the mismatch be-
tween what the benchmarks (and thus many real-world applications) demand and what
computer systems can offer, the near-data processing paradigm has recently been re-
discovered [73]. This paradigm refocuses system-design at the memory, aiming at high
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bandwidths and low latencies, benefiting modern applications.
In this work, we analyze the usage of near-data processors (NDPs) to boost the per-

formance and foremost efficiency of these two key HPC benchmarks. We will study both
a variety of parameters for a given hardware architecture, as well as several software op-
timizations to optimize the applications for the architecture. The main contributions of
this paper are as follows:

• We present for the first time a design exploration for a near-data processing archi-
tecture, and complimenting software optimizations, targeting two relevant HPC
industry benchmarks.

• We show the relevance of the novel architectural features like the exploitation of
data locality for inter-NDP traffic and user-enhanced coherence.

• We show, for the HPCG benchmark, a factor 2x to 2.5x performance and power-
efficiency improvements with respect to CPU and GPU based solutions, as well as
a much higher utilization.

• We show, for the Graph500 benchmark, that extensive software optimizations make
inter-NDP bandwidth equally important compared to local memory bandwidth.

The remainder of this paper is organized as follows: In Section 6.2.2 we discuss re-
lated work regarding the two benchmarks and near-data processing, followed by the ar-
chitecture in Section 6.3. In Section 6.4 and Section 6.5 we discuss the optimizations and
results of HPCG and Graph500, respectively, followed by conclusions in Section 6.6.

6.2. MOTIVATION AND RELATED WORK

6.2.1. MOTIVATION
Figure 6.1 shows the floating-point utilization (fraction of compute capabilities used) for
the top 10 supercomputers running LINPACK as well as HPCG, taken from their respec-
tive websites [3] [57]. It can be observed that LINPACK reaches a very high utilization,
between 75% and 95%. HPCG on the other hand, shows a very low utilization, with the
K system scoring the highest value with a 5.3% utilization, and the Sunway TaihuLight
scoring the lowest value with a 0.3% utilization. Showing compute utilization for the
Graph500 benchmark is not possible as it does not use floating point compute instruc-
tions.

Figure 6.2 shows the performance of the top 10 supercomputers running LINPACK,
HPCG, and Graph500, normalized against the current number one system (Sunway Tai-
huLight). For LINPACK, the results obviously decrease towards the number 10 in the list,
as it is the benchmark used to draw up the list. For HPCG, we see very different results.
Several systems score better than the number one, and until we reach number eight go-
ing down the list, there is no decreasing performance trend at all, while for LINPACK,
these systems already run 10-20x slower than the number one. For Graph500, unfortu-
nately not all systems have an entry, but the analysis is very similar to the one obtained
with HPCG. Figure 6.2 also shows the introduction date of the system: it is notable that
the K system and the Sequoia system, both performing equal or better than the Sunway
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TaihuLight system, are five and four years older than the current number one supercom-
puter, respectively.

Figure 6.1 and Figure 6.2 clearly sketch that the behavior of modern supercomputers
running LINPACK is very different compared to the two modern and relevant bench-
marks. When considering progress over time, it is clear that little progress has been made
in the last years to improve their performance. Apparently, the metric we focus on when
developing new supercomputers, is not the most relevant one when considering mod-
ern workloads. To improve the performance and the efficiency for HPCG and Graph500,
a focus on a novel class of hardware architectures is needed, which is the main topic of
interest in this work.

6.2.2. RELATED WORK
The amount of available research done on HPCG is still rather limited. Early work per-
formed in [206] distills a performance model for the benchmark running in a cluster,
concluding that the main-memory bandwidth is a key parameter. In [207], an evaluation
of parallelization strategies for one of the compute kernels is presented, as well as per-
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formance numbers for various Intel platforms. This research is updated in [208], show-
ing extra performance numbers when using optimized sparse matrix methods. Research
presented in [44] shows the benchmark running on GPUs using single-source code using
OpenMP 4.5 pragma’s. Although not about HPCG, interesting work is presented in [209],
presenting a deeply optimized sparse matrix-matrix multiplication engine in the logic
layer of 3D stacked memory. We complement this work by showing results on a novel
bandwidth oriented architecture, for which we study key parameters like the data cache
size, the memory access granularity, and bandwidth. Furthermore, the impact of fea-
tures like software prefetch and user-enhanced coherence is analyzed.

The performance of Graph500 has been actively researched on supercomputers [194],
and optimized solutions can traverse trillions of edges per second on big supercompu-
ters. An optimized shared-memory implementation of Graph500 is presented in [210],
where the key optimizations are the sorting and rearrangement of the data structures to
enhance data locality, letting the performance scale well to tens of sockets in a NUMA
system. Another thorough NUMA system analysis is performed in [211], focusing on the
tradeoffs in either copying or sharing data sets across sockets, and the optimized use of
several critical data structures. We complement this work by optimizing Graph500 for an
architecture with very limited local memories, but with the ability to exploit data local-
ity for remote data accesses. Other explored features are user-enhanced coherence, and
software prefetching.

Near-data processing architectures have been presented in a variety of ways in the
last years. In [98], a special-purpose graph processing architecture is presented, utilizing
the logic layer of stacked memories to achieve very high performance. The proposal uses
custom hardware prefetchers and messaging techniques to utilize all available band-
width. A more general approach is presented in [88], proposing general-purpose cores
in the logic layer of stacked memories, accelerating highly parallel analytics workloads.
Work in [212] and [91] explores the use of wide vector units inside stacked memory tar-
geting HPC workloads. Executing standard benchmarks on near-data processing sys-
tems, enabling fair comparisons between approaches, is not explored so far.

6.3. SYSTEM DESCRIPTION
A high-level view of the studied system is shown in Figure 6.3, based on the work pre-
sented in [213]. We use as a basis the memory system of the POWER8 CPU [34], which
has two levels of memory controllers (MCs): at the CPU level, we have eight memory-
technology agnostic MCs, while the technology-specific (DDR3/4) MCs are located on
separate ‘memory hub chips’, tightly coupled to the main memory. These chips are con-
nected to the CPU by means of CPU- and memory-agnostic high-speed serial links. The
architecture in Figure 6.3 introduces processing capabilities at the level of this chip. The
concept is not tied to the POWER8 and its memory system, but also applies to, e.g., a CPU
with the Hybrid Memory Cube [35] attached, where the ‘memory hub’ is in the logic layer,
and the technology specific memory controllers are the so called ‘vault controllers’ [35].

From Figure 6.3 we can distill three key components of the studied architecture, high-
lighted as dashed blocks in the figure: 1. NDP cores, 2. NDP Manager, 3. NDP Access
Point. The key parameters of the studied architecture are described in Table 6.1. This
work uses the architecture proposed and discussed in [213], and does not discuss the
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detailed workings of e.g. the coherence interactions, data placement, or virtual memory
support beyond what is described below.

1. NDP cores—Every memory channel contains one NDP, consisting of several general-
purpose NDP-cores. Every NDP-core can coherently access data in the global vir-
tual address space, spanning multiple memory channels or even sockets. For this
work we consider very small and slow cores, with their specification shown in Ta-
ble 6.1.

2. NDP Manager—The NDP is connected to the NDP-Manager (NDP-M), which of-
fers an interface into the system, including virtual-memory support and coher-
ence. The NDP-M keeps track of the coherence state (CPU owned, NDP owned,
Shared) of every cache line sized block of main memory in a directory, which it
can access by means of a small cache, as shown in Figure 6.3. In case a line is
needed by the NDP but owned by the CPU, the NDP-M sends the appropriate co-
herence message to the NDP-AP, which issues it to the global coherent space. The
other way around, where the CPU wants a line owned by the NDP, works likewise.
Data from a remote memory channel can not be cached in the hardware managed
caches of an NDP-core, as we would not be able to find it anymore without extend-
ing the CPUs coherence snooping towards the NDPs, which would have a dramatic
impact on the system performance.

3. NDP Access Point—At the CPU the the NDP Access Point (NDP-AP) is introduced.
This is the point where NDP accesses to non-local data enter the global coherent
address space. Communication between the NDP-M and the NDP-AP is done with
special transactions over the memory channels and the system bus. An NDP ac-
cess to remote data (not stored in the local memory channel) results in an transac-
tion towards the NDP-AP, which performs a read in the global coherent space, and
returns the requested values to the NDP. The NDP-AP has a small data cache (see
Figure 6.3) to hold frequently accessed remote data, avoiding the need for data to
be fetched from a memory channel in case of a hit.

6.3.1. HIGHLIGHTED FEATURES OF THE ARCHITECTURE
In this section we will discuss three specific features of the studied architecture that can
be used to improve performance.

First, as can be observed in Table 6.1, the data cache sizes of the NDP cores explored
in this work are very small, limiting the amount of locality that can be exploited for lo-
cal accesses. The NDP-AP has a much larger data cache, to be able to store remote data
accessed by the NDPs. In modern multi-node CPU architectures, the latency towards
a remote memory is only about 25% higher than to local memory [214]. On the stud-
ied architecture however, this latency is, based on the system specifications provided in
Table 6.1, about three times larger than the latency for accessing local memory, thus pe-
nalizing remote memory accesses hard. The exploitation of locality for remote accesses
by means of the NDP-AP data cache, and thus reducing access latency, is a key feature
when the NDPs access the same data set, as will be shown for foremost the Graph500
benchmark.
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Figure 6.3: The studied system, with processing capabilities included close to the main-memory of a CPU.

Second, the architecture introduces the concept of user-enhanced coherence. The
implemented method for coherence introduces unavoidable overheads, e.g. the coher-
ence directory lookup at the NDP-M and the cache-inhibited nature of remote data for
the NDPs. The programmer can try to avoid these overheads in two ways: first, by in-
structing the NDP-M to give an entire address range a certain coherence state and keep
that in a small separate data structure. This way, e.g., the entire graph data structure
used in Graph500 can be set to Shared, because after initialization it will be read-only,
thereby elimination all coherence directory lookups. The process of monitoring address
ranges for coherence optimizations can be realized in a hardware-managed fashion as
well [34], but a user-level control lets us optimized this problem efficiently by utilizing
knowledge about the application. Furthermore, by marking data sets remote cache unin-
hibited (meaning the data can be cached in non-local NDP caches), the NDP-cores can
exploit locality on remote data, at the expense of the extra programming effort needed
to flush the NDP caches at the correct moments when coherence is required.

Last, we highlight the execution of atomics by the NDP-AP. Since the NDP-core caches
can not hold data belonging to another memory channel in a coherent way, atomic op-
erations on remote data have to be performed in collaboration with the NDP-AP. By de-
fault, the cache line lock is done at the NDP-AP, after which the NDP can check/update
the data, and return it to the NDP-AP which can then release the lock, resulting in a long
lock time. By executing atomics on remote data directly at the NDP-AP, we eliminate this
issue.

6.3.2. SIMULATION ENVIRONMENT AND PARAMETERS
To evaluate the architecture, a custom system simulator is used. The simulator can cap-
ture instruction traces of arbitrary applications, and insert them into the correct simu-
lated NDP cores, which are in turn connected to various NDP-Ms, the memory channels,
the NDP-AP, and the rest of the system. The simulator captures, in a cycle accurate way,
all relevant aspects like the coherence interactions between NDPs and the CPU, remote
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Table 6.1: Baseline system specifications.

Main memory (x8 channels)
Technology and bandwidth 4 x DDR4-2400 - DDR4-3200 @ 60% : 46 - 61

GB/s
Mem. Ctrl. + DRAM latency 40 ns

NDP (x8 channels)
Cores 64 cores, 1 GHz, in-order, scalar, non-pipelined,

instr. latencies as in [191]
Data caches 512-8192 B per core

Access granularity 32-128 Byte
Main-memory round-trip latency 60 ns (best case)

NDP-M
Coherence dir. cache size 16 KB

Coherence dir. cache latency 4 ns
NDP-M - NDP-AP latency 24 ns (single trip)

NDP-AP
Data cache size 8-128 KB

Access granularity 128 Byte
System-bus data interface 128 GB/s in, 64 GB/s out

data accesses (and their coherence requirements), and atomics. The specifications of
the system used throughout this work is shown in Table 6.1, with aspects like latencies
and interconnect bandwidths based on the POWER8 memory system [34], and the cache
latencies validated by [139].

For the power analysis of the NDPs, we rely on McPat [139], providing as input the
switching activity derived from the execution of the two benchmarks under study. A
detailed power analysis of the NDP-M and NDP-AP is beyond the scope of this paper,
but to be able make first order comparisons, we set the additional power of the NDP-M
and the NDP-AP, based on [196] and [197], to 2 W and 4 W, respectively, for a combined
power addition of 20 W when considering eight memory channels.

6.4. HPCG BENCHMARK
The HPCG benchmark implements a preconditioned conjugate gradient method with
a local symmetric Gauss-Seidel preconditioner and a three-level multigrid. The imple-
mentation uses a regular 27-point stencil discretization in three dimensions of an el-
liptic partial differential equation, as found, for example, in heat diffusion models [57].
The benchmark is intended to run in a multi-node environment. As an input, the local
problem dimension per node is defined. Depending on the amount of nodes, the code
generates either a square or rectangular global problem in three dimensions. Every lo-
cal problem is a cube, and holds the three-level multigrid described above. Through-
out this section, problem sizes, both local or global, will be denoted as, e.g., 643 or
64x128x128, indicating the dimensions of the cube or rectangle. There are four impor-
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tant kernels: sparse matrix-vector multiply (SpMV ), preconditioner (SymGS), global dot-
product (Dot), and a scaled-vector summation (WAXPBY ). Before the SpMV and SymGS
kernels, the boundary values of every local problem are communicated with the neigh-
boring local problems. All these kernels combined realize the conjugate gradient solver,
and with that the HPCG benchmark. Various properties such as the irregular memory
accesses, a low operational intensity, and a neighbor communication pattern make this
a relevant benchmark. The performance is reported as GFlops/s.

6.4.1. IMPLEMENTATION AND BASELINE OPTIMIZATIONS

The reference code provides reasonable performance for three of the four mentioned
kernels, except for SymGS, which can not be parallelized at the thread level as it has
loop dependencies. Therefore, a block multi-coloring method was used to restructure
the data in order to eliminate the dependencies and allow parallel processing [215]. The
other kernels are adjusted as well to use the new data layout. This version of the code
is used as a baseline implementation. Instead of the MPI + OpenMP parallelization typ-
ically used in a distributed memory environment, we use a nested OpenMP approach
for our shared-memory architecture, where we first spawn a thread per NDP, followed
by a thread for every NDP-core. In this section we will explore the use of the (highlight-
ed) features of the studied architecture described in Section 6.3.1, as well as software
optimizations.

6.4.2. OPTIMIZATIONS

TOP LEVEL PARALLELIZATION

In the baseline code, every loop has its own omp parallel for pragma, implying that for
every loop there is a single-threaded overhead to create the 64-thread large thread-team.
Since our architecture’s performance relies on many very slow cores, this turned out to be
a huge overhead. Therefore, the code was rewritten to create a parallel region on top of
all the kernels, requiring only a omp for pragma per loop. By doing so, the performance,
when running a 643 problem using a single NDP, increases by 42%, stressing the need for
highly parallel code on the studied architecture.

USER ENHANCED COHERENCE

As discussed in Section 6.3, the NDPs and CPU are kept coherent by means of a directory
structure stored in main memory, accessed through a small cache. To ease the pressure
on the coherence mechanisms, address ranges can be explicitly claimed as a certain co-
herence state, as indicated in Section 6.3.1. The data sets storing the matrix data will,
after initialization, only be accessed by the NDPs. Therefore, it is possible to claim the
corresponding address ranges to the NDP owned state, and thereby eliminating the need
for a full coherence directory cache lookup. When considering a 643 local problem size,
10.6% of the memory bandwidth is needed to load coherence directory items, increasing
up to 14.6% when considering a 1043 local problem. These percentages are reduced to
0% and 2%, respectively, when the matrix data sets address ranges are claimed as NDP
owned. The performance impact of this optimization depends on the available band-
width, which depends on various aspects discussed in the remainder of this section. For
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Figure 6.4: Impact of the NDP core cache size. HPCG is able to achieve peak floating-point performance with
a 4 KB cache per core.

the design point of 4 KB caches and DDR2400 memory technology, the performance im-
provement is 8% for the largest problem size.

NDP CACHE SIZE IMPACT

We study the impact of the data cache size on performance and bandwidth usage, by
considering eight NDPs and the baseline specifications depicted in Table 6.1, running a
1283 global problem. In Figure 6.4 we show the performance, the measured bandwidth,
and the reported bandwidth for a variety of data cache sizes. The reported bandwidth
is the bandwidth listed in the HPCG benchmark result file provided by the benchmark
itself, listed next to, e.g., the achieved compute performance, and is based on a fixed cal-
culation within the code using runtime, problem size etc. The measured bandwidth, on
the other hand, is the bandwidth reported by our simulation environment, which can be
considered a ‘measurement’. The difference between measured and reported bandwidth
when using small caches, is clearly visible. Apparently, the calculation for the reported
bandwidth assumes a certain amount of data reuse, which the tiny caches can not real-
ize. When increasing the cache size to (a still very modest) 4 KB per core, the reported
bandwidth is now much closer to reality. Performance also increases dramatically to-
wards larger cache sizes, and stabilizes around 28 GFlops/s. From existing research it
can be learned that, in a CPU-like environment, HPCG scores in the order of 10 GFlops/s
per 100 GB/s of main memory bandwidth, and our results are now roughly in line with
this observation. The cache size impact can be explained by the fact that the items of
the diagonal matrix fetched in both the SpMV and SymGS kernels, by definition of the
benchmark, are reused around 27 times [57], which can only be accommodated by a
cache from 4 KB in size upwards, while also showing that larger local memories are not
useful.

MEMORY BANDWIDTH AND ACCESS GRANULARITY IMPACT

Memory bandwidth has shown to be the most relevant metric for the performance of
HPCG. We study the performance of the used architecture for four different DDR-SDRAM
design points, ranging from the default DDR2400 as shows in Table 6.1 to DDR3200,
which is the fastest traditional DRAM standard currently realizable [216], while running
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Figure 6.5: Impact of the access granularity and peak bandwidth for the HPCG benchmark.

a 643 problem. Utilizing more bandwidth requires more outstanding accesses, and as
we do not change the NDP core design point, bandwidth might be left unused. There-
fore, we also study the access granularity, ranging from 32 bytes up to 128 bytes. For this
experiment we use a 4 KB cache per core, with cache lines as wide as the access granu-
larity. In Figure 6.5, the performance is shown for the various design points. Using 32 B
accesses, the available bandwidth can not be utilized and the performance saturates al-
ready using DDR2600 memory. The results when using 64 B and 128 B accesses are alike
for the slower memories; only for the fastest DDR3200 standard the 128 B accesses show
a clear improvement of around 10%.

As we are working with a shared memory architecture, the inter-NDP communica-
tion is also affected by the access granularity. The data access pattern for the remote
reads shows a high spatial locality, and larger access granularities are therefore benefi-
cial. When increasing the access width from 32 B to 64 B, we see an expected drop of
a factor two in the number of remote data accesses done by the NDP. At the NDP-AP,
the data cache hit rate changes from 75% to 50%, explained by the fact that the NDP-AP
always issues 128 B wide accesses in the global coherent space. The overall communica-
tion time drops however only with 10%. This minor improvement can be explained by
the fact that the amount of data transmitted is very limited in size: over the entire run of
the application, every NDP reads only 2 MB of remote data, which is not enough to fully
exploit the interconnect characteristics.

SOFTWARE PREFETCHING

As the NDP cores or the memory system do not employ any form of hardware prefetch-
ing or out-of-order processing, software prefetching can improve performance by hiding
the memory latency. For the Dot and WAXPBY kernels software prefetching is a trivial
task, since they both loop over data in a linear way. For both the SpMV and SymGS ker-
nels, prefetching is more complicated since we have to deal with an indirect data lookup,
where the needed data directly depends on the previous load. Let us denote this situ-
ation as A[b[i]], where the data items needed from matrix A, depend on the data items
loaded from vector b. In this case b can be prefetched perfectly and efficiently, but the in-
dices found in b follow the diagonal structure of the matrix A, which shows spatial locality
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Figure 6.6: Impact of software prefetching for the HPCG benchmark, while also varying the access granularity.

for some accesses, but not for others. As the benchmark description forbids the exploita-
tion of knowledge about the exact data layout, only generic implementations are possi-
ble. We investigate the impact of prefetching on the achieved performance for the three
access granularities, using DDR3200 as memory standard. In Figure 6.6 the results are
shown. When using either a 32 B or 64 B access granularity, the performance improves
35% and 15%, respectively. For the largest access granularity, software prefetching does
not improve performance, as the bandwidth is already utilized by the non-speculative
traffic. When using a 64 B access granularity with prefetching we can reach the same
performance as in the case of the 128 B access granularity with prefetching. Also shown
in Figure 6.6 is the relative amount of bytes loaded from, and stored in, memory. As can
be observed, using larger access granularities results in more bytes accessed from mem-
ory, indicating that not all bytes loaded from memory are actually used. Since accessing
memory, and transporting the data accordingly, costs energy, using a 64 B access granu-
larity with software prefetching is preferred over using a 128 B access granularity, as the
performance they achieve is the same. This holds when considering 128 B granularities
including prefetching, as well as without prefetching.

6.4.3. CONCLUDING RESULTS AND COMPARISON

In Figure 6.7 we show the absolute performance achieved for the HPCG benchmark on
the studied architecture, when varying both the problem size as well as the amount of
NDPs used. We use all the software optimizations described, and the fastest architec-
tural design point: a 4 KB cache per core, DDR3200 memory technology and a 64 B access
granularity including software prefetching. When keeping the amount of NDPs constant,
while increasing the problem size, the performance stays constant. The scaling from two,
to four, and up to eight NDPs can be considered linear. In Figure 6.8 we show both the ab-
solute and the relative amount of time spend in the inter-NDP communication phase. In
can be observed that, when using eight NDPs, the communication time increases from
one millisecond to 1.4 millisecond when increasing the global problem space from 1283

to 2083. The relative amount of time however drops from 3.3% to 0.9%, making the inter-
NDP communication a negligible phase in the entire application. The high-bandwidth
and low-latency hardware mechanism enabling communication between the NDPs, or-
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chestrated by the NDP-AP, clearly makes the system appear as a single strong node for
this application. This scaling behavior suggests that a dual-socket system will double the
performance of the studied single-socket solution.

We use McPat to make a first order estimation about the power consumption of the
proposed NDP. By filling in the architectural parameters, as well as the switching activity
of the cores, the caches, and the memory controllers, when using a 22nm technology
node, we obtain 8.6 W. If we exclude from the calculation the power evaluated by McPAT
for the memory controllers (as the host CPU would have its own memory controllers),
we obtain a power consumption equal to 6.1 W. When considering the upper bound of
8.6 W per NDP, combined with the NDP-M and NDP-AP power numbers discussed in
Section 6.3.2, when considering eight memory channels, we obtain a total power budget
of 88.8 W.

In Table 6.2, we compare the performance of our architecture to the same code run-
ning on commercial quality servers, as well as to results taken from literature. The POWER8
used in [44] uses four memory channels, so a comparison with four NDPs is in place,
resulting in a performance improvement of a factor 2.5. Adding four NDPs to a single
socket increases the system power with roughly 15% [197], thus realizing an energy-to-
solution saving of a factor of two over a CPU-only system. The dual-socket, dual GPU
system studied in [44] reaches a performance of 95.8 GFlops/s, or around 48 GFlops/s
per socket, similar to the studied architecture when considering eight NDPs. Power
numbers are not included in [44], but the TDP of the K80 is 300 W [217]. If we consider
that the realized power usage of the K80 is 75% of the TDP, the proposed NDP solution is
a factor 2.5 better regarding power efficiency at the device level.

The achieved performance per NDP is 6.25 GFlops/s, thus 100 MFlops/s per core.
Within the compute kernels, the multiply-accumulate pattern shows a 1:1 ratio between
multiplications and additions, for an average instruction latency of three cycles. Given
the non-pipelined nature of the modeled cores, the theoretical peak would be 333 MFlops/s
for the compute kernels, assuming that no other instructions are executed. The realized
floating-point performance utilization is therefore 33%, which corresponds to the mea-
sured core activities. Including all instructions, the cores are waiting for data roughly
half of the time. The K80 solution, with a peak double-precision floating point perfor-
mance of 2.91 GFlops/s (5.82 GFlops/s for the entire system), runs at 6% utilization. The
utilization of the K80 system roughly corresponds with the supercomputer utilization
mentioned in Section 6.2.2, while the utilization of the studied NDP architecture is sig-
nificantly higher.

6.5. GRAPH500 BENCHMARK
The Graph500 benchmark does 64 breadth-first searches (BFSs) starting from a random
selected root in an undirected Kronecker graph. The output, for every root, is a predeces-
sor list storing the predecessor of every vertex. The size of the problem is denoted as scale
n, meaning that the graph contains 2n vertices and 16 times as many edges. The graph is
traversed in several steps, called levels. The first action performed is storing the root ver-
tex in a data structure called the frontier, representing the edge of the current exploration
level. In a traditional top-down exploration, as provided by the reference code, for every
level, every vertex in the frontier has all its neighbors traversed and when a neighbor is
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Figure 6.7: Performance scaling for the HPCG benchmark, using various problems sizes and number of NDPs.
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Table 6.2: Comparison of HPCG performance, in GFlops/s

System Problem size Perf.
1-Socket 4 NDPs 104x208x208 25
1-Socket 8 NDPs 208x208x208 49

1-Socket POWER8 10c, 4.2 Ghz, 4
memory channels (our code)

208x208x208 9.66

2-Socket Xeon E5-2697v3 [208] 384x192x192 18.4
2-Socket POWER8 [44] Unknown 21.14
2-Socket POWER8 + 2x K80 [44] Unknown 95.85

not visited yet, it is claimed as child and put in the out queue. At the end of a level the
out set becomes the next frontier, and this is repeated until no new vertices are claimed
anymore. Because the benchmark implements a distributed BFS, some neighbor can be
stored at other computing nodes, requiring, e.g. messages to be sent, depending on the
exact implementation and platform used. Since there are no floating-point operations
in this workload, the performance is measured in Giga Traversed Edges Per Second, or
GTEPS. A detailed explanation of distributed Graph500 can be found in [193].

6.5.1. IMPLEMENTATION AND BASELINE OPTIMIZATIONS

In our implementation, we use a compressed sparse-row format to distribute the graph
data set among the NDPs. As with HPCG, the MPI + OpenMP parallelization is replaced
by a nested OpenMP parallelization. All BFS related code is executed in the simulation
environment. The benchmark has little strict requirements regarding processing and
data storage, which opens up possibilities for significant optimizations in data layout
and graph traversal approaches [194] [218] [210] [219]. A key BFS optimization, called
‘direction optimization’, implements the switch between bottom-up and top-down fron-
tier expansions [195]. Depending on two parameters α and β and on the current state of
the exploration, the optimization picks for every level the use of the top-down approach
described earlier, or a bottom-up approach, where all not-visited vertices search for a
parent in the current frontier. Since results without this optimization can be considered
irrelevant today, we added this optimization to the baseline implementation of our code.

Another optimization added to our baseline implementation is described in [210],
proposing to sort the adjacency list of every vertex by out-degree (number of neighbors).
In this way, in the bottom-up expansions, for every unvisited vertex, first the most rele-
vant vertices in the graph are checked, which have a higher probability of being visited
before and thus being a valid parent. Discussed in the same work, and also added to our
baseline implementation, is a method to sort the vertices by out-degree. Since about half
of the vertices have no neighbors at all, this allows us to skip large portions of vertices in
the bottom-up explorations. Both optimizations improve the performance significantly,
foremost thanks to an improved data locality. A last optimization added to the baseline,
which also increases the data locality, stores the index of every vertex’ heaviest neighbor
in a separate data set, to be accessed without accessing the entire adjacency matrix.

In the remainder of this section we discuss several explorations of the architectural
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parameters, as well as software optimizations. As an architectural baseline, unless stated
otherwise, we consider 4096 KB NDP caches, a 64 B access granularity, and DDR3200
memory technology. Unless stated otherwise, we use a scale 25 problem and eight NDPs.

6.5.2. OPTIMIZATIONS

TWEAKING THE DIRECTION OPTIMIZATION

As stated, the baseline version implements the ‘direction optimization’, switching be-
tween bottom up and top down frontier expansion [195]. In [195], optimal α and β for
a CPU architecture are determined as 14 and 24, but on the studied architecture an α

value of 50 was found to perform 6.5% better. In practice, this means that the third level
is done almost always with a bottom up exploration, while the original α results in a
somewhat even distribution between top down and bottom up explorations.

In a top-down exploration, all neighboring vertices are visited, and many of these
vertices will be stored in different memory channels. This is a process hard to optimize
and with little data locality, while the bottom-up exploration can be optimized much
more easily, as will be shown in the remainder of this section. When using a top-down
exploration, 50% of the accesses is remote, with an NDP-AP cache hit rate of 53%. When
using the bottom-up approach, these percentages are 74% and 73%, respectively, clearly
indicating that this type of exploration runs more efficiently on the architecture.

UTILIZING LOCALITY FOR REMOTE ACCESSES AND SELECTIVE BITMAP-SUMMARY USAGE

As described in Section 6.3.1 accessing remote data is done by means of the NDP-AP.
The NDP-AP has a data cache, which allows it to cache data requested by NDPs, and
serve them quicker in case of a data cache hit. For HPCG this was relevant for the com-
munication phase, where every one out of two 64 B remote accesses resulted in a hit,
since the NDP-AP works with a 128 B access granularity.

For the Graph500 benchmark, the most relevant remote accesses are in the bottom-
up explorations, where the vertex under study checks whether a neighbor is in the fron-
tier, which is stored distributed over all the nodes. This data set is typically stored as a
bitmap, where every bit represents a single vertex, to improve cacheability. To improve
cacheability even further, a summary of the frontier can be used, where every bit rep-
resents the logical OR of 64 bits in the frontier. As this summary bitmap has a 64 times
smaller memory footprint, it can be cached more easily. However, using it only increases
performance if the summary bit is 0. In case of a 1, the full bitmap still has to be checked,
eliminating the data locality advantage. On a typical CPU architecture with large caches
and out of order processing this is an easy optimization, but on the studied architecture
the performance only increased significantly by using the summary for a selection of
graph explorations, based on the following rule:

use_summar y =
ng

n f
>φ

In which ng is the amount of vertices in the graph, and n f is the amount of vertices
in the frontier. We only want to use the summary bitmap if we have a small amount of
vertices in the frontier, meaning the summary bitmap is likely to contain a 0. In case
of a scale 25 problem, a φ of 650 was found to provide good performance, while for a
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Figure 6.9: Impact of the NDP-AP data cache size on Graph500 performance, including the (selective) use of
bitmap summaries.

scale 23 problem, 1400 is optimal, using the summary more often. This can be explained
by the fact that a larger problem with semi-random accesses will benefit more from an
optimization improving locality.

In Figure 6.9a and Figure 6.9b we shown the impact of the NDP-AP data cache size
when considering eight NDPs, and a scale 23 and scale 25 problem, respectively. In both
figures the performance with, without, and with selective frontier bitmap summary us-
age, is shown. It can be observed that the size of the data cache at the NDP-AP has a
significant impact on performance. Increasing the size from 8 KB to 128 KB improves the
performance of 39% and 57%, for the scale 23 and scale 25 problem, respectively. The
selective use of the summary improves the performance in all cases, showing a highest
speedup of 7% when considering a scale 25 problem and a NDP-AP data cache of 32 KB
The average increase in NDP-AP data cache hit rate is in the order of 5%.

In Figure 6.10a and Figure 6.10b we show the NDP-AP data cache hit rate for the
same problems as discussed above, with selective summary usage. It can be observed
that the hit rate considering a scale 25 problem is much lower compared to a scale 23
problem. Also visible is the significant increase in hit rate of 55% when considering a
scale 25 problem, when going from the smallest to the largest data cache size. Figure
6.10a and Figure 6.10b also show the measured input and output bandwidth of the NDP-
AP. It can be observed that these measured bandwidths show an opposite trend. With the
data cache hit rate increasing, less data needs to be transported from the system into the
NDP-AP, thus we see the bandwidth reducing. Due to the higher hit rate, the runtime
reduces, but the amount of outgoing data stays the same, resulting in a higher outgoing
bandwidth.

NDP DATA CACHE SIZE IMPACT

Similarly to the HPCG benchmark, we evaluate the impact of the NDP data cache size,
when considering a scale 25 problem and eight NDPs. When increasing the data cache
size from 512 B to 4 KB per NDP core, the performance increases by 25%. In both cases,
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Figure 6.10: Impact of the NDP-AP data cache size on the NDP-AP data cache hit rate and NDP-AP incoming
and outgoing bandwidths.

the realized bandwidth to main memory is around 8 GB/s per NDP, where the require-
ment for more data is apparently offset by the extra runtime.

GLOBAL ATOMICS

As discussed in Section 6.3.1, the NDP-AP supports the execution of atomic operations.
This is relevant in the top-down levels because checking whether a node has been vis-
ited, and then setting it as visited, needs to happen atomically, and it is often performed
on remote data. About every 40 cycles an atomic operation is issued to the NDP-AP. In
the baseline, 2.5% of these operations encounter a lock and the average waiting time is
over 500 ns, most likely so high because the adjacency lists are sorted. When the NDP-AP
supports atomics, this waiting time is removed. The amount of writes issued to the NDP-
AP drops by 16%, saving some DMI bandwidth. However, it has no significant impact on
performance (< 1%), as the amount of atomic operations hitting a lock is too low, and
the exploration switches to the atomic-free bottom-up type relatively fast.

USER ENHANCED COHERENCE

The studied architecture implements the possibility to enable the cacheability of non-
local data in the NDP caches, at the expense of manual handling coherence. This op-
timization eliminates a part of the remote accesses, and can thereby improve perfor-
mance. When studying a scale 25 problem with eight NDPs, we see a reduction of a
factor three in the amount of remote reads processed by the NDP-AP. The remaining re-
mote accesses achieve a 10% lower hitrate at the NDP-AP data cache, since the remote
accesses able to exploit locality are already served by the NDP caches. The performance
increases by 13%, and the flushing of the NDP caches at the right moments does not
influence the performance in any measurable way.

SOFTWARE PREFETCHING

We studied the use of software prefetching to improve performance. As the bottom-up
explorations take up most of the time, we focus our effort on that kernel. It turned out
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that prefetching the data set items accessed in a semi-random way, offered no perfor-
mance improvements. The baseline data-locality and graph restructuring optimizations
discussed earlier make sure most of these accesses hit in the cache. The best perfor-
mance was achieved when only prefetching the data set used to determine which ver-
tices are still not visited, which is accessed in a linear fashion in the upper most loop.
Measured performance improvements are between 15% and 22%, when evaluating a set
of three problem sizes (24, 25, 26) and three system configurations (2, 4, 8 NDPs). It is an
insightful result that the performance improves significantly by reducing the pressure of
streaming loads, while the semi-random loads are performing well on their own.

6.5.3. CONCLUDING RESULTS AND COMPARISON

In Figure 6.11 the performance of various systems and problem sizes is shown. For this
experiment we use all optimizations described above, and a system with 4 KB NDP data
caches, a 128 KB NDP-AP data cache, and DDR3200 memory. We observe a declining
performance trend going towards larger problems, due to less data locality at both the
local and global level. Doubling the amount of NDPs from two to four, while keeping
the problem size constant, results in a strong scaling factor between 1.69 and 1.71, while
doubling from four NDPs to eight NDPs results in a strong scaling factor between 1.38
and 1.52. This less-than-perfect scaling is due to the increasing amount of non-local
accesses, as well as the decreasing amount of work per NDP. Doubling the amount of
NDPs, while keeping the work per NDP constant, results in a weak scaling factor between
1.13 and 1.53.

Graph processing has been described as the killer application for near-data pro-
cessing [192]. With Graph500 being the graph processing benchmark, valuable insights
should become apparent. As described, many optimizations for Graph500 exist, focus-
ing both on the algorithmic level (direction optimization), as well as the data locality
level (sorting the vertices and edges, optimized data structures). As it turns out, with all
optimizations added to the baseline of our code, the most typical near-data processing
advantage of having a high bandwidth to local memory is not a crucial system parameter
anymore. When considering eight NDPs and a scale 25 problem, we reach an accumu-
lated local memory bandwidth of 100 GB/s, with an accumulated inter-NDP bandwidth
is 80 GB/s. When considering two NDPs and a scale 25 problem, we reach an accumu-
lated local memory bandwidth of 34 GB/s, with an accumulated inter-NDP bandwidth
is 21 GB/s. This highlights that a high-bandwidth interconnect between the NDPs is
equally important compared to local memory bandwidth, when considering optimized
graph explorations. When exploring a scale 26 problem, the local memory bandwidth
increases with 10%. It is stated in [210] that the optimizations presented in that work
are foremost effective in the small-world Kronecker graphs as used in Graph500. This
highlights that there is an interesting tradeoff between tedious software optimizations
regarding data locality for specific graph applications, and running generic code on ar-
chitectures offering high bandwidths.

Table 6.3 compares the performance of the studied architecture with the performance
of high-end servers running our code and several results from related approaches. The
provided references to existing research achieve around 10 GTEPS per socket, which is
significantly higher than our code running on a POWER8 CPU, most likely due to addi-
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Figure 6.11: Performance for the Graph500 benchmark, varying the problem size as well as the amount of
NDPs.

Table 6.3: Comparison of Graph500 performance, in GTEPS

System Problem size Perf.
1-Socket 4 NDPs 25 17.4
1-Socket 4 NDPs 26 15.8

1-Socket 8 NDPs 25 24
1-Socket 8 NDPs 26 27

1-Socket POWER8 10c, 4.2 Ghz, 4
memory channels (our code)

25 4.04

4-Socket Xeon E5-4640 [210] 27 42
1-Socket Xeon E5-4640 [219] 25 11.16

tional optimizations in the data layout, as the kernels themselves are too simple to offer
optimizations able to achieve such a speedup. It can be observed that, both four and
eight NDPs are able to outperform a CPU for equally large and even larger problems.

To evaluate power and energy efficiency, we use the same methodology as with the
HPCG benchmark. First we evaluate the NDP solution against our code running on a
POWER8 CPU, having four memory channels. For this experiment, we modified the
code to better fit the single CPU, by for example removing the notion of having multi-
ple compute nodes. Adding four NDPs to a single socket increases the system power
with roughly 15% [197], and increases the performance with a factor 3.5x. This results
in a factor 3x energy-to-solution saving. Comparing with the work in [210] and [219] is
non-trivial, as their baseline performance is much higher than the performance achiev-
able with our code. When comparing device to device, and setting the power usage of
the Xeon E5-4640 at 71 W (75% of its TDP), four NDPs are 85% more power efficient com-
pared to the Xeon and its optimized software implementation. Comparisons with GPUs
are unfortunately not possible, since the problem sizes explored in this work are much
larger than what would fit in GPU memory.
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6.6. CONCLUSIONS
In this work we have presented a near-data processing architecture, were the NDP-cores
all reside in a coherent shared-memory space, and showed the performance of two im-
portant industry-standard benchmarks running on this platform. For the HPCG bench-
mark we identified the optimal data caches sizes, access granularity, and software prefetch-
ing strategy. By having a bandwidth oriented architecture, with high-bandwidth low-
latency inter-NDP communication mechanisms, this benchmarks runs 3.5 times faster
compared to a CPU, and with a factor 5x higher utilization compared to a GPU. For the
Graph500 benchmark, the exploitation of locality for inter-NDP traffic is a key character-
istic for application performance, as well as the cacheability of remote data by means of
user-enhanced coherence. After various complex optimizations, the performance of this
optimized graph-traversal benchmark depends equally well on a fast interconnect as lo-
cal memory bandwidth, resulting in a 3.5x speedup with respect to a CPU. While current
supercomputers are being optimized for LINPACK, we have shown how novel node de-
signs could optimize them for HPCG and Graph500, resulting in higher a utilization and
higher performance for those benchmarks and the applications they represent.
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SORTING BIG DATA ON

HETEROGENEOUS NEAR-DATA

PROCESSING SYSTEMS

Heterogeneous systems are about having multiple different types of processing devices within
the same computer system. There are various ways of making use of this property. Appli-
cations can be executed as a whole on one of the type of devices, picking the type which fits
its overall characteristics best. Another options is to have parts of an application on one
device, and other parts of the applications on the other device. This is the way the popu-
lar GPU coprocessors are used: the CPU runs the complete application, and makes use of
the compute power of the GPU for certain kernels. Last, we can make use of heterogeneity
within a single kernel, using a fine-grained collaboration between the devices.

The last method is explored in this chapter. With a system based on a CPU and various
workload-optimized NDPs, we explore the sorting of large data sets. Sorting has, by na-
ture, phases with much data locality, as well as phases with little data locality. CPUs,
with their large caches, excel at the phases with data locality, while the NDPs, with their
high-bandwidth access to main memory, excel in the phases with little data locality.

By making use of both the CPU and the NDPs in a heterogeneous fashion, we do not only
improve performance for the application under study, but also reduce data movement
dramatically. With data movement being one of the big energy drains in a computer sys-
tem, this is a key benefit. By making use of workload-optimized NDPs, we push the per-
formance and power-efficiency of the NDP itself as well.

The content of this chapter is based on the following paper:

Sorting big data on heterogeneous near-data processing systems
E. Vermij, L. Fiorin, C. Hagleitner, and K. Bertels
BigDAW17, big data analytics workshop, co-located with Computing Frontiers 2017
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ABSTRACT
Big data workloads assumed recently a relevant importance in many business and scien-
tific applications. Sorting elements efficiently in big data workloads is a key operation. In
this work, we analyze the implementation of the mergesort algorithm on heterogeneous
systems composed of CPUs and near-data processors located on the system memory
channels. For configurations with equal number of active CPU cores and near-data pro-
cessors, our experiments show a performance speedup of up to 2.5, as well as up to 2.5×
energy-per-solution reduction.

7.1. INTRODUCTION
The efficient analysis of big data workloads represents a key element in many businesses
and scientific and engineering applications [167]. A significant amount of data, often
stored in unprocessed form, need to be extensively searched and analyzed, creating sub-
stantial challenges to all the components of the computing system [220].

Sorting elements is often one of the key operation to be performed on big data work-
loads: For example, TeraSort is a sorting application, included in the Apache Hadoop
distribution, which is widely used by many big data vendors to benchmark and stress
test computing clusters [167].

This work analyzes the sorting of big data workloads on near-data processing archi-
tectures [171]. This computing paradigm, recently rediscovered, allows to alleviate the
classical “memory wall problem” by moving the computation closer to the memory. For
certain types of workload which typically do not benefit from the availability of a com-
plex hierarchy of caches, it represents a clear advantage in terms of latency reduction,
available bandwidth to memory, and energy efficiency [221].

In particular, our work focuses on sorting big data on a heterogeneous system com-
posed of a CPU and near-data processors (NDPs), in which NDPs are implemented as
workload-optimized processors on FPGA. Moreover, we present a dynamic workload
balancing mechanism that allows to optimize the utilization of CPU and NDPs and in-
crease the overall sorting performance when working on large data sets, by using near-
data processors in a heterogeneous way to execute the phases of the application with
little data locality.

The remainder of this paper is organized as follows: Section 7.2 presents background
information and related work. Section 7.3 discusses the reference architecture and its
system simulator used in our experiments. Section 7.4 discusses the optimized imple-
mentation of the sort algorithm on the heterogeneous architecture. Section 7.5 presents
an analysis of the experimental results, while Section 7.6 concludes the paper.

7.2. MOTIVATION AND RELATED WORK
In order to evaluate the performance of modern processors while sorting big data work-
loads, we run an implementation of mergesort on a 2-socket IBM POWER8 machine.
Each sockets has 10 cores running at 4.2 GHz, with each core provided with a 64 KB L1
cache, a 512 KB L2 cache, and a 8 MB semi-shared L3 cache. Without loss of generality,
we focus on single-core performance. Mergesort is a well known O(nlog (n)) sorting al-
gorithm which conceptually first divides a list of n elements in n sublists on 1 element,
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Figure 7.1: (a) Mergesort single-core performance, while varying the size of the data set. (b) Reuse distance
when when sorting three different lengths of sequences with mergesort.

and then repeatedly merge two sublists at the time to produce new sorted sublists, until
only one sorted list remains.

Figure 7.1 shows the results of our preliminary evaluation for the case of 4 threads
per core, in which we operate on 16 B items, consisting of an 8 B index (to be sorted),
and an 8 B pointer. As Figure 7.1a shows, the performance decreases with the size of the
data set. This behavior can be explained by analyzing Figure 7.1b, which shows the reuse
distance when sorting three different lengths of sequences with mergesort. The reuse
distance is calculated as the number of memory accesses to unique addresses performed
in between two memory accesses to the same address, and it is a measure of temporal
data locality. In case of a large reuse distance, the availability of local memories does not
provide any advantage, and memory accesses are performed on a higher-level storage,
e.g., DRAM for a typical CPU, resulting in lower bandwidths, higher latencies, and lower
performance. Figure 7.1b highlights that bigger data set will cause more phases with a
high reuse distance. These phases will run slower compared to the regions with a small
reuse distance, causing the performance reduction observed in Figure 7.1a.

In this work, we therefore propose a heterogeneous approach in which the mergesort
phases with good data locality are executed at the CPU, while the phases little data local-
ity are executed by the near-data processor. This follows the fundamental properties of a
memory hierarchy and near-data processing. A cache at the CPU offers high bandwidths
and low energy costs per access, while main memory offers mediocre bandwidths and
high energy costs per access. When an access pattern can be satisfied from the caches,
that is the preferred method. When an access pattern can only be satisfied from main
memory, it is best to execute it on a near-data processor, to limit data movement.
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7.2.1. OVERVIEW OF RELATED WORK
Sorting unstructured items represents an important task for big data applications [167].
In general, several platform designs and optimizations have been proposed to deal with
big data applications. As big data workloads fundamentally differ from workloads usu-
ally run on more traditional data-warehousing systems, a tailored system-level opti-
mization is needed [167]. A custom system and board design is proposed in [76]. The
system, designed around Flash and DRAM memories, targets the energy-efficient exe-
cution of big data workloads. Hardware acceleration of big data frameworks such as
Hadoop MapReduce has been proposed, delegating the Map() and Reduce() procedures
to a many-core processor [220], or a cluster of FPGAs [222]. An overall performance im-
provement of up to 6.6× and 4.3× has been reported for the many-core processor and
the FPGA implementation, respectively. Acceleration of MapReduce with GPUs is dis-
cussed in [223], which reports speedups over single CPU core execution ranging from
3.25 to 28.68.

In this paper, we focus on near-data processing architectures, which has been re-
cently re-discovered thanks to technology advances on 3D stacking, and due to the avail-
ability of big data workloads with high degrees of parallelism and programming models
for distributed big data applications [73]. Most of the proposed near-data architectures
extend the logic layer found in 3D-stacked DRAM devices, such as the Micron’s Hybrid
Memory Cube (HMC) [35], by adding small general purpose cores or dedicated accelera-
tors to it [88, 91, 98, 144, 169], and exploit the finer data access granularity and the higher
memory bandwidth available.

A near-data architectures for big data graph processing has been proposed in [98],
while the work in [88] discusses an architecture which targets the execution of big data
analytic frameworks near the memory. In [174], a sorting accelerator is implemented
as part of a 3D-stacked memory system. Depending on the application and architec-
ture implementation, typical reported performance speedups are from 3× to 16×, with
significant energy reduction over CPU-based implementations.

Our experiments relies on the work presented in [213], where an NDP extension to
a POWER8-based server environment is described. Differently to related work, the co-
processor is tightly integrated with the memory controllers and supports coherence be-
tween CPU and NDPs. Moreover, while the presented approaches to integrate the NDPs
into the POWER8 system are generic enough, the work in [213] focuses on a workload-
optimized NDPs implemented on FPGA, able to run specific workloads very efficiently.
This paper also shows, for the first time, how exploiting the characteristics of a hetero-
geneity system composed of a CPU and NDPs can improve significantly the performance
of sorting big data sets, while reducing the overall power consumption.

7.3. NEAR-DATA ARCHITECTURE
A high-level view of the reference system architecture is shown in Figure 7.2 [213]. The
architecture relies on two-level memory controllers: Memory-technology agnostic mem-
ory controllers are implemented at the CPU, while controllers specific for the adopted
memory technology are tightly coupled to the main memory. An example of such a
setup is the memory system that can be found on the IBM POWER8 CPU [34], which
has eight memory-technology agnostic memory channels each connecting to a ‘memory
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Figure 7.2: High-level view of the system organization. Near-data processors are tightly integrated with the
memory controllers.

Figure 7.3: The simulator environment used in our experiments.

buffer’ chip, holding four DDR3/4 memory controllers. Another example can be found
on CPUs connected to 3D-stacked stacked memory devices such as the Hybrid Memory
Cube [35], in which technology-specific memory controllers (called vault controllers) are
implemented in the logic layer of the device.

As shown in Figure 7.2, near-data processing capabilities are added in the technology-
specific memory controllers. Each NDP relies on a hardware component, called NDP-
Manager (NDP-M) [213], which provides the NDP with support for interfacing the sys-
tem, including virtual memory, coherence, and communication, in way conceptually
similar to what implemented by the CAPI interface in POWER8 CPUs for interfacing ex-
ternal coprocessors [51]. The NDP-M allows to interface any type of NDP, such as for
instance general purpose processors or workload-optimized cores. In this work, we fo-
cus in particular on using workload-optimized NDPs implemented on a reconfigurable
fabric, such as an FPGA.

Table 7.1 shows specification for the reference system considered in this work. The
system template we use in the remainder of this work has one to four memory channels
and one or two CPU cores per memory channel. For practical simulation reasons, the
used cache size shown in Table 7.1 is smaller than the one of a real CPU. However, we
scaled appropriately simulation results to take into account for this limitation, by evalu-
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Table 7.1: System specifications.

Simulated CPU
Cores 4.2 Ghz

Access granularity 128 byte
Data caches 128 KB / core

Memory channels 20:10 GB/s Up:Down

Main memory x4
Technology and bandwidth 4 x DDR4-2400 @ 60% : 48 GB/s

Access granularity 32 byte

NDP
Frequency 500 MHz

ating data set sizes and system propriety with respect to the ratio between the size of the
actual cache and the size of the one simulated.

To evaluate the performance of applications running on the NDP architecture, a sim-
ulator was implemented. The tool simulates the interaction between the CPU (and in
particular its memory hierarchy) and the NDPs. Figure 7.3 shows a high-level view of the
simulator. It is implemented as a mix of C++ and hardware-description language (HDL)
components, communicating through the Verilog Procedural Interface (VPI), which al-
lows behavioral Verilog code to call C functions, and C functions to invoke standard Ver-
ilog system tasks.

Applications run native on the host, and all load and store instructions, including
their data fields, as well as special instructions such as synchronization, are provided as
input to the simulator. The caches and main memory modeled by the simulator hold
therefore the actual application values, and in this way it is possible to verify the correct
implementation of all aspects of the NDP hardware and the architecture, like synchro-
nization and barriers. In fact, as the application running on the host works with the data
values it retrieves from the simulator, an exact implementation of the simulator is essen-
tial to produce meaningful results. Memory allocations done on the host are mirrored in
the simulator by using the same virtual and physical addresses and page layout, mean-
ing that the translations supplied by the NDP software-library to the NDP-M are based
on page table scans on the host.

The NDP-M is implemented in hardware and provides communication mechanisms
between the NDP and software, and implements a TLB such that the NDP can work
with virtual pointers. The NDP-software and the OS changes are implemented in a user-
level software library. This library provides all the functionalities to allocate data struc-
tures, handle the address translation requirements for the NDP-M, communicate with
the NDPs, provide synchronization between the CPU and the NDPs, etc. Since the mem-
ory in the simulator mirrors the memory on the host, NDP workloads can be imple-
mented by using the host’s virtual pointers. All actions done by the software side of the
simulator are triggered or synchronized by the hardware clock, which makes the simu-
lator cycle-accurate.

The simulator supports the availability on the host CPU of several cores, each with a
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Figure 7.4: Implementation of the heterogeneous (CPU + NDP) mergesort.

private cache, a system bus, and a different number of memory channels and NDPs.
While the framework is general enough to simulate NDPs implemented either as

general-purpose cores or workload-optimized cores, in this paper we focus on NDPs
implemented in FPGA, interfaced to the host with the functionalities provided by the
NDP-M.

7.4. SORT IMPLEMENTATION
We implemented a multi-threaded version of the mergesort algorithm, which operates
on 16 B items, consisting of an 8 B index (to be sorted), and an 8 B pointer. The imple-
mented mergesort is optimized for making use of all the computing resources of our
platform, i.e., the multiple threads available on the CPU and the multiple NDPs.

Mergesort sorts a data set by recursively merging sorted subsets into a larger sorted
subset, as shown in Figure 7.4. The algorithm starts merging two single items of an un-
sorted list into a sublist (single item list can be considered as already sorted). Then, it
repeatedly merge the produced sublists to create a new sorted sublist. This continues
until only one list of sorted elements exists.

As shown in Figure 7.4, the first iterations of the algorithm offer plenty of small merges
that can be easily parallelized over multiple processing elements. However, in the lat-
est iterations, the amount of straightforward parallelism is reduced. Therefore, for the
lastest levels we implemented a parallel version of the merge step which is based on a
divide and conquer method [224]. This method finds two items in the data sets as close
as possible in value to each other, and as close as possible to the center of the data set.
From these items the data sets can be split in two, and then merged in parallel. This
obviously comes at a cost, and therefore the method is only used for the latest levels.

We developed a workload-optimized merge core in VHDL, able to do a single par-
tial merge. Figure 7.5 shows the block diagram of the merge core implemented in the
NDP. Since we are targeting future reconfigurable fabric, we assume the core to operate
at a frequency of 500 MHz. The merge core does a single comparison every clock cycle,
and therefore needs 32 B (16 B load and 16 B store) every cycle, utilizing 16 GB/s of main
memory bandwidth. To be able to use all the available bandwidth, we used four merge
cores, and connected them together by using a crossbar. The VHDL design also includes
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Figure 7.5: Block diagram of the workload-optimized merge core implemented in the NDP.

a controller which is in charge of receiving the workload messages from the CPU, dis-
tributing the workload to the four merge cores, and sending the results back to the CPU.

As explained in Section 7.3, we modeled the interaction between the CPU and the
NDPs by using the load/store operations generated by the part of the merge program
running on the CPU. Besides the load/store operations, applications can issue stall op-
erations to the simulator, to be able to adjust the overall performance. In fact, by using
this approach, we can achieve performance error of less than 5% with respect to mea-
surements taken on a real POWER8 system running at 4.2 GHz. In particular, without
loss of generality, we considered the single-core performance obtained when running
the application with four threads, out of the available eight, as during our simulation
campaign it allowed to achieve the highest performance on the POWER8. Table 7.1 sum-
marizes the system specifications.

Our mergesort implementation adopts a heterogeneous approach: the small partial
merges, having lots of data locality, are done on the CPU, while large partial merges are
done by the NDP. The approach is represented in Figure 7.4, showing how the CPU and
the NDPs can be work in parallel for solving the problem. We call switch value the min-
imum size of the sublists processed on the NDPs. This value is dynamically adjusted to
balance the load between the CPU cores and the NDPs. The switch value is initialized at
128 items, and it increases or decreases after a certain time that the NDP work queues
are full or almost empty, respectively.

The maximum value for the switch value is set to 2048, which corresponds to the
sublist size for which the two sublists to be merged fully occupy the available cache.
This maximum switch value corresponds to the size of the caches used in our simulator.
A larger switch value would mean that a CPU core is working with data that can, by defi-
nition, not be in its cache, and thus has to come from main memory. Since the NDPs are
already designed to make full use of the available memory bandwidth, the CPU will not
improve performance, but only reduce the performance of the NDPs, which are much
more efficient at sorting directly from main memory.

The workloads arrive at the NDP by means of the message interface discussed in
Section 7.3, where every message contains the virtual pointers and item counts needed
for a partial merge. A separate thread on the software side manages the sending and
receiving of messages to and from the NDPs.
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In case we use multiple NDPs to sort a single data set, every NDP gets an equal por-
tion of the data to be sorted independently. Once the NDPs have completed their tasks,
the CPU performs the last merges to create the final result.

7.5. ANALYSIS AND RESULTS

7.5.1. SPEEDUP ANALYSIS
In this subsection, we analyze the theoretical speedup achievable by using a heteroge-
neous system including CPUs and NDPs. As example, we focus in particular on a system
using a single CPU core and a single NDP. In the analysis, it is possible to distinguish
between two cases. In the first case, the CPU is the bottleneck in the calculation, and
the NDP is partially underutilized as waiting for the CPU results to complete. In this sit-
uation, the smallest and highest speedups are achieved when using the largest and the
smallest switch value, respectively. As the switch value is adjusted dynamically, the re-
sulting speedup will be in between these two limit values and it can be described by the
following formula:

log2(n)

log2(M ax_swi tch)
≤ Speedup ≤ log2(n)

log2(Mi n_swi tch)
(7.1)

in which n is the data set size. For a data set size of one mega items and the parame-
ters in Table 7.1, the estimated speedup is therefore between 1.8 and 2.5, while for a data
set of four mega items, the speedup is between 2 and 2.75. The potential speedup in-
creases because with larger workloads more merge levels are implemented on the NDP,
which is therefore more utilized.

As the switch value has a maximum defined by the cache size, the work distribution
becomes again unbalanced for very large data sets. In these cases, the NDP becomes
the bottleneck in the implementation, and the overall performance will be bounded by
the NDP performance, and in particular by its memory bandwidth. Without NDP, and
for very large data sets, the performance would be limited by the CPUs memory channel
bandwidth. In this situation, the speedup when using NDP can be described as:

lim
n→∞Speedup = BWN DP /BWMemor y_channel (7.2)

When using the values shown in Table 7.1, the speedup is approximately equal to 1.5.

7.5.2. RESULTS
In our experiments, we evaluate the performance of heterogeneous systems with dif-
ferent combinations of CPU cores and NDPs. Figure 7.6a compares the absolute per-
formance of four different systems configurations: one CPU core with no NDP, two CPU
cores with no NDP, one CPU core with one NDP, and two CPU cores with one NDP. Figure
7.6b shows the relative performance with respect to the configurations with no NDPs.

When adding an NDP to the configuration with one CPU core, the performance in-
creases and stays steady towards larger data sets, where the saw-tooth pattern is due to
the discrete nature of the workload balancing mechanism. This reflects in an increas-
ingly higher speedup, as shown in Figure 7.6b, up to a factor 2.5 for the largest data set,
as estimated in Section 7.5.1. The measured speedup is, in fact, within 5% difference
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Figure 7.6: (a) Absolute mergesort performance for four different systems configurations. (b) Relative perfor-
mance with respect to configuration with no NDPs.

from the average speedup calculated considering the smallest and highest speedup val-
ues estimated in equation 7.1. For the configuration having two CPU cores and a single
NDP, the trends are different. As in this configuration the NDP becomes the computation
bottleneck, the performance drops for larger data sets, while the speedup flattens. For
the largest data set, the switch value is at its maximum value for 42% of the time, clearly
indicating an imbalanced workload distribution, resulting in a declining performance,
and the speedup reaching its upper bound.

In Figure 7.7a, we show the performance results when using more NDPs, by keep-
ing one NDP per core. As discussed, the partial results created by the NDPs, each one
working on its own memory channel, are merged together by the CPU to create the final
result. As a result of the parallelization process, the scaling is not perfect. We can ob-
serve a scaling factor of 1.75 when moving from one to two NDPs, and a scaling factor of
3.1 when moving from one to four NDPs. Since the performance is stable for the various
data set sizes, it makes no differences whether we look at strong or weak scaling.

In Figure 7.7b, we show the portion of time in which both components (CPU + NDP)
are working, and the time in which only one of them is active. It is clear that, when using
more NDPs, a larger portion of time is spend in the final merge steps done by the CPU,
which directly results in the above mentioned not perfect scaling.

In Figure 7.8a, we show the components’ bandwidth utilization when using various
numbers of NDPs. As it is possible to notice, when using NDPs, we can observe a lower
memory channel utilization and a higher memory utilization. Figure 7.8b shows the rel-
ative number of read/write DRAM requests and the relative number of memory channel
transactions generated by the single CPU core and single NDP configuration, with re-
spect to a single CPU configuration. An important observation that can be made is that,
by using the heterogeneous approach, the amount of data going through the memory
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Figure 7.7: (a) Performance for systems containing more memory channels and NDPs. (b) Time distribution of
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Figure 7.9: NDP work queue size and switch value over time, when sorting four mega items using two CPU
cores and a single NDP.

channels is 10× lower, clearly indicating that the proposed approach reduces signifi-
cantly the amount of data moved within the overall system, and, potentially, the amount
of energy associated with it. The 30% increase in the number of memory stores, with
respect to the single CPU system, is due to the extra write-back pass that it is introduced
when switching from the CPU to NDP processing. The reduction in the number of loads
is instead due to the fact that the NDP does not have a hardware managed cache, and
can issue a 32 B store directly to the memory system, without first having to load the
data from memory, as it is the case for a cacheline-based architecture as the CPU.

Figure 7.9 shows the size of the workload queue at the NDPs as well as the switch
value, over time, using two CPU cores and a single memory NDP, sorting a data set of
four mega items. Every time the queue size reaches its maximum (set for this experi-
ments to 32), the switch value is doubled, until the maximum of 2048 is reached. If the
queue is almost empty, the switch value is divided in half. The occupation of the queue
is evaluated every 32 workload submissions to the NDP, to let the previous switch take
effect and avoid increasing or decreasing the switch value too fast.

7.5.3. POWER ANALYSIS

We synthesized our NDP hardware for a (medium sized) Xilinx UltraScale XCKU060 de-
vice, resulting in a design utilizing 3500 LUTs, 3250 registers, and 30 BRAMs. To estimate
power consumption, we used the Xilinx Power Estimator [225] and set the switching ac-
tivity to 100%, resulting in 0.9 W of dynamic power and 0.6 W of static power. The NDP-
M, handling the integration of the NDP with the system, is estimated to use 4 W, giving
the entire memory side (memory-side chip + DRAMs) a 20% increase in power [197].
This results in a power budget of our entire proposal, using four memory channels, of
22 W. A bare, eight core, four memory channels, POWER8 system uses 400 W, where the
CPU contributes for about 200 W [197] [198]. In such a system, our proposal would add
6% power at system level. Depending on the data set size and configuration, the per-
formance increase of up to 1.8 or 2.6 times over a similar system without NDPs would
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therefore results in a factor of up to 1.7 and 2.5 of energy-to-solution saving, respectively.

7.6. CONCLUSION
Sorting big data represents an important problem in many application fields. New archi-
tectures and solutions have been recently investigated, to support efficiently this opera-
tion on large data set. In this work, we explored a heterogeneous approach to implement
mergesort on a architecture composed on CPUs and near-data processors. We showed
how with a careful scheduling of the tasks on our architecture it is possible to achieve
up to 2.5 of performance speedup, and up to 2.5× energy reduction with respect to an
only-CPU based system.





8
FROM NEAR-DATA PROCESSING TO

DATA-CENTRIC SYSTEMS

Near-data processing is a term used to fuel a wide variety of research topics. All these re-
search approaches have a goal in common: they focus architectural (hardware / software)
improvements to improve data-related aspects of computer systems. In this chapter we
take a look at where the preceding chapters have taken us, and how future steps at the
hardware level as well as the software level can look.
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8.1. INTRODUCTION
In the preceding chapters we presented an architecture to enable near-data process-
ing in a modern CPU architecture, including methods to manage data locality between
memory channels. In this case, and in nearly all related near-data processing research,
the NDP is still a slave of the CPU. Looking towards the long-term future, a more dra-
matic reorganization of computer systems might be necessary. Key questions are the at-
tachment of components to the CPU and/or their placement in a system, and the data-
locality management in complex heterogeneous systems composed of many devices.
Specific aspects of existing POWER processors and systems, as well as some announced
technologies, give us hints as to what is feasible, but this chapter should be primarily
read as a discussion of a different and more generic NDP design point, with the objec-
tive to motivate further study.

8.2. SERIAL ATTACHED MEMORY AS KEY NDP-ENABLER
In [98] it is stated that the key enabler for near-data processing is 3D stacking technology,
and in [103] it is stated to be the reason for the recent ‘reinvention’ of the topic. Given the
large amount of research targeting stacked technologies like the Hybrid Memory Cube
(HMC), the same is implied in many other works. In this work we do not make assump-
tions on the type of memory technology used, or the exact physical realization. What
is assumed in this work, is a serial, memory-technology agnostic, connection between
the CPU and a ‘hub component’, containing the NDP-M, the NDP, and the technology-
specific memory controllers. As shown in the taxonomy in Figure 1.14, the memory in-
tegration can be 3D stacked, 2.5D stacked, or ‘traditionally’ attached memory. From an
architectural perspective, the memory attachment is irrelevant: the key enabler of the
near-data processing concept is the memory-technology agnostic serial link towards a
hub component. Stacking can improve energy efficiency, but in case of the HMC does
not necessarily improve the memory bandwidth [35]. In fact, as discussed in Section
1.6.3, stacking has disadvantages as well, for example the fixed device-storage ratio.

The HMC combines both a novel high-speed serial link with 3D stacking, but the
concept of serial attached memory is much older. Both the POWER7 (2010) [185] and
POWER8 (2013) [34] CPUs use serial attached memory with a hub component (‘memory
buffer chip’), and this concept has been used as a baseline throughout this work. Figure
8.1a shows this concept next to direct attached memory. The missing piece to enable
near-data processing has been the system-integration, addressed in this work.

8.2.1. UPGRADING THE LINK PROTOCOL

In this work a near-data processing enabling framework on top of an existing load/store
serial interface is proposed by means of the NDP-M and NDP-AP component, as shown
in Figure 8.1b. This allows the integration features necessary, without impacting the
original functionality of the link. In the announced POWER9 CPU [40], the pure load/store
serial interface is augmented by the more capable OpenCAPI protocol [45]. Planned fea-
tures, for future versions of OpenCAPI, are the enabling of sharing of near-data proces-
sor (‘attached device’) memory with the CPU, conceptually similar to what is proposed is
this work (Figure 4.3b). This is arguably a cleaner solution than the one proposed in this
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(a) (b) (c) (d)

Figure 8.1: Evolution of memory attachment technologies. (a) Shows both traditional direct-attached DDR
memory, as well as serial attached DDR as found in the POWER7 and POWER8 CPUs. (b) Shows the NDP-
integration strategy proposed in this work, using the existing load/store serial interface. (c) Shows future serial-
link protocols enabling the attachment of devices without the need of extra components [45]. (d) Shows the
far end of the spectrum, attaching devices / NDPs over an SMP link, and making them equal to the CPU.

work, but will introduce extra latency for normal load/store traffic, impacting the CPU
performance. This concept is shown in Figure 8.1c.

A next step in the evolution of the serial link between the CPU and the hub compo-
nent containing the NDP, is making it a Symmetric Multi-Processor (SMP) link, and thus
making the NDP a node in an SMP domain, able to run the operating system. This is
shown in Figure 8.1d, and discussed in the next section.

8.3. NDPS AS FULL CPU PEERS
By upgrading the link between the CPU and the NDP to an SMP link, the NDP can be-
come a full CPU peer, optimized for specific data-intensive tasks, as shown in Figure
8.2. Here NDPs occupy a place in the system similar to the CPU, or even replace the
CPU, and are considered first-class citizens. The GPU will, at least for this generation of
products, still operate as a discrete device, and thus a slave of the CPU. The concept of
having NDPs as CPU peer is already introduced in the NDP taxonomy described in Sec-
tion 1.6.3 and shown in Figure 1.14. It can be understood as the far end of a spectrum,
or the ‘most generic architecture to achieve the near-data processing goals’. Specialized
hardware components such as the NDP-Manager and NDP Access Point, as discussed in
Chapter 4, are no longer needed. Neither do we need an NDP software-library for man-
aging the NDPs etc. Also important features such as coherence are resolved in a generic
way. When a CPU and an NDP are each others equals, every node manages coherence in
its own (optimized) way, and inter-node coherence is solved by means of the SMP fabric.
Existing optimizations in the SMP fabric will limit the coherence interactions [34]. Novel
rules for coherence, e.g. the user-enhance rules as discussed in Chapter 4 and Chap-
ter 7, still apply as interesting research topics, to optimize both the local as well as the
inter-node coherence interactions.

A variety of system designs are possible. The NDP can be used as a stand-alone so-
lution, or can complement a CPU in a multi-node system. For the CPU it is possible to
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have its own direct attached memory, but having memory via an NDP, as shown for the
CPU in Figure 8.2, is possible as well. This is also the option that served as the base-
line throughout this work, with the difference that the architecture in Chapter 4 enables
near-data processing as an extension to, while in this chapter, near-data processing en-
abled memory is attached to a CPU. In case the CPU has its memory (or a part of its
memory) attached by means of an NDP several performance aspects need discussing.
An SMP link can offer very high bandwidth, since the connections can be realized with
high-frequency serial links, suffering from less physical complexities compared to e.g.
the parallel DRAM interfaces. Furthermore, DRAM technology is in general not opti-
mized for peak performance, but for cost per bit. Specifically, it is more difficult to create
a high-bandwidth interface on a (memory process based) memory chip than on a (logic
process-based) CPU. The POWER8 CPU offers an aggregate SMP link data bandwidth of
312 GB/s, 50% higher than the peak memory bandwidth [34]. This total bandwidth is
divided over six links, three for communication with the CPUs in the same node, and
three for communicating with CPUs in different nodes, resulting in a system with a max-
imum size of 16 CPUs in four nodes. Besides bandwidth the other important perfor-
mance metric is latency. In [214] the performance characteristics of a POWER8 SMP
system is analyzed. It is shown that the latency to local memory reaches almost a 100 ns,
and the latency to non-local memory (but within a node), is around 125 ns, both without
prefetching. The penalty of crossing an SMP link is therefore in the order of 25 ns. With
prefetching enabled, the average latency penalty in both cases drops to 10-20 nanosec-
onds, depending on the exact prefetching strategy. By studying the Graph500 bench-
mark on a dual socket POWER8 machine, using a single core in four-thread mode (to fo-
cus on latency and not bandwidth), we see a performance degradation of 15-20% when
having all the data in the remote memory over having all the data in local memory. This
paragraph shows that the attachment of memory to a CPU by means of an SMP link,
instead of being directly attached, is certainly possible, especially when taking into ac-
count that memory latency sensitive applications should now run on the NDPs, and not
on the CPU.

8.4. THREAD AND DATA-LOCALITY MANAGEMENT AS KEY NDP-
TECHNOLOGY

In case the NDP behaves as a CPU, processes and threads can be scheduled at either a
CPU or an NDP at the OS‘ liking. In case the system consists of both CPUs and NDPs,
possible ISA differences have to be solved by means of e.g. multi-ISA binaries [226]. Data
allocations, with or without explicit NUMA affinities, work as on existing multi-CPU sys-
tems. In NUMA systems, especially heterogeneous ones, managing data locality is key
for good performance. Manual methods, based on pthread or numactl functionality
exist, but also automated data-locality management is an active research topic. Work
in [227] presents an overview of several frameworks helping the programmer with data-
compute affinity. An example is [228], proposing both compiler and runtime methods
to manage data locality, providing up to 4x improvements with respect to static heuris-
tics. A runtime system based on OpenMP managing data locality is OmpSS [229]. Their
methods focus on asynchronous task executing based on data-dependency graphs and
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Figure 8.2: Placing NDPs as full CPU-peers in a system.
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optimal data-compute affinity in heterogeneous systems.
The IBM AIX operating system [230], targeting large (up to) 16 socket SMP systems,

has several interesting features that can be exploited and developed further to aid suc-
cessful NDP exploitation in this setting. On top of the base kernel, the Dynamic System
Optimizer [231] (DSO) offers autonomous performance improvements in complex sys-
tems. For example, threads working on the same data are migrated to (virtual) cores
close together to optimize for cache affinity. Furthermore, DSO supports page migra-
tion between SMP domains. If a private page is accessed from a remote domain for a
prolonged period of time, the page is migrated to that domain, to optimize access band-
width and latency. This allows for data locality optimizations in a completely transparent
way, without needing knowledge of the workload(s) running on the system.

Technologies like this will be key in the successful exploitation of near-data pro-
cessing, especially when used in complex heterogeneous systems. It is unrealistic to
assume to OS will develop in such a way that it becomes completely aware of all char-
acteristics and features of various memories and devices. As described in Section 4.3,
when discussing NDP specific memory allocations, the OS has at this moment not even
a basic understanding of memory controllers, thus OS-level optimizations to match a
data-intensive application to the right high-bandwidth memory controller will not be
deployed any time soon. The use of an intermediate software layer that is aware of all
the system details, such as the AIX DSO, can fill the void. Page migration can help mov-
ing data to the NDP, aiding the user with the data locality challenge described in 4.3, and
provide (semi) optimal solutions in complex cases. The clearest example of this is when
data is initialized by the CPU without specific data locality optimization, but is used by
the NDPs afterwards. Besides optimizing the location of data, also threads can be mi-
grated around. Threads running on the CPU can be monitored for data stalls, and after
evaluation be migrated to an NDP, sitting closer to the data. Even more elaborate op-
timizations can be envisioned. In case the various memory controllers offer different
access characteristics, e.g. a different access granularity, spatial locality characteristics
can be collected from the cores, and pages accessed with little locality can be migrated
to the most appropriate memory.

8.5. TOWARDS DATA-CENTRIC SYSTEMS
In this chapter an NDP is generalized towards a ‘device optimized for data intensive ap-
plications’, and we can position it relative to a CPU and a GPU. Following this terminol-
ogy, a GPU would be a ‘device optimized for compute throughput’, and a CPU would
be a ‘device optimized for low-latency processing’. In Figure 8.3 a radar chart is shown
containing a variety of metrics for two existing devices: an IBM POWER8 CPU and an
NVidia Tesla P100, both state-of-the-art products. The CPU and the GPU are clearly
worlds apart in specifications, most striking the processing capabilities, the memory ca-
pacity, and the control flow handling (instruction dispatch / ALU). This difference is of
course the reason they are used together in heterogeneous systems, where both devices
take care of the part of the application that best matches their characteristics. Shown
as well is a band of interest for the NDP, picking a different design point. In this section
we will highlight the differences characteristics of CPUs and NDPs, where they originate,
and how they can help us creating data-centric systems.
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8.5.1. WEAK PARALLEL PROCESSING

Similar to GPUs, NDPs should offer relative weak parallel processing, but for different
reasons. GPUs use weak parallel processing to 1) have an energy-efficiency sweetspot for
the floating-point units, and 2) utilize the assumed regularity in the compute-intensive
kernels. NDPs, on the other hand, use weak parallel processing because 1) typical NDP
workloads do not require a lot of processing, and 2) to hide the memory latency for ir-
regular memory accesses. This follows the rationale that, given the situation that threads
have to wait 60-80ns for most of the memory accesses, optimizing the processing related
to that access from, e.g. 5 cycles to 3 cycles, is not worthwhile. Although this concept is
shown in several related works, it is taken to the extreme in Chapter 6, using 64 very
weak in-order cores. This allows for, when assuming one level of software prefetching,
128 outstanding memory accesses (two per core). When considering eight NDPs, this re-
sults in 1024 outstanding memory accesses, while a 10-core POWER8 CPU can support
‘only’ 400 [180]. In Chapter 4 and Chapter 6 cache sizes in the 0.5-2 KB range are used,
realizing a storage capacity similar to the accumulated register file size in a modern CPU
core or coprocessors core [180] [232], again illustrating the ‘weakness’ of the used solu-
tion, while realizing high performance for both HPCG and Graph500. In Section 1.6.3
already some techniques are discussed to make weak cores appear stronger for typical
NDP workloads, foremost focusing on memory accesses. Using reconfigurable logic to
create optimized processing capabilities for the workload at hand can be considered the
ultimate case, allowing for a perfect balance between processing and memory access
parallelism, as explored in Chapter 7. The weak parallel processing aspect is reflected
in Figure 8.3 by ‘processing / thread’, ‘instruction dispatch / ALU’, and to some extent
by ‘bandwidth / processing’, giving NDPs more weak parallel processing compared to
CPUs.

8.5.2. LARGE MEMORIES, HIGH BANDWIDTH, AND LOW LATENCY

Focusing on large memories is instrumental for near-data processing. This directly aligns
with the ‘big-data’ trend, as well as the usage of increasingly large data sets for HPC and
analytics workloads. It is also a key differentiator with GPUs: e.g. the graph problems ex-
plored in Chapter 6 are much bigger than a typical memory directly attached to a GPU.
By performing near-data processing directly on the main-memory of a CPU, the capacity
is already available, and the memory capacity shown in Figure 8.3 is therefore similar to
a CPU. As discussed throughput this work, the fact that the memory is distributed over
several memory channels is a challenge, but not fundamentally different from working
with multi-socket CPU systems.

High memory bandwidths can be realized by using novel memory technologies, like
the Hybrid Memory Cube. However, in more general terms, a possible higher bandwidth
follows from the fact of having several smaller devices instead of one large device. As
discussed in Section 1.3.1, bandwidth is an IO problem, and several small devices have
a larger accumulated perimeter, allowing more wires to escape the chip. Throughout
this work we assumed having several NDPs, each having four DDR DRAM memory con-
trollers at an aggressive design point, realizing a higher bandwidth than a CPU. Realiz-
ing a much higher bandwidth however, comparable to what GPUs offer, for the targeted
storage capacity, is however not realistic or not likely to be cost-effective.
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By sitting physically closer to the memory, with less of a memory hierarchy compared
to a CPU, some of the memory access latency can be cut. However, there are several fac-
tors limiting the lower bound of the latency. First, the memory controller latency will
have to be paid in any case, also when considering a near-data processor stacked on
top of DRAM. Second, when considering a generic processing architecture consisting of
many processing elements, and a non-perfect (i.e. realistic) data-compute affinity, the
practical memory access latency can still reach hundreds of cycles, even when consider-
ing an optimized 3D stacked near-data processor [102].

8.5.3. HIGH IOPS
The most differentiating aspect, following Figure 8.3, is the number of memory accesses
that can be performed per unit of time (IOPS). This directly relates to the already dis-
cussed focus points for a near-data processor. We have more memory access parallelism
and a lower latency, together allowing a smaller access granularity, resulting in, espe-
cially with a higher bandwidth, more realizable IOPS. Throughout this work we assumed
an access granularity of 32 B or 64 B, resulting in over 2x or 4x more IOPS compared to a
CPU. This is especially valuable for graph workloads performing many random memory
accesses, as is shown in [213], but has also shown to be valuable for sparse matrix meth-
ods in Chapter 6. Using such small (or even smaller) access granularities is however not
cheap, and requires significant parallelism from both the application as well as the hard-
ware. Furthermore, a hardware mechanism like coherence will become more costly, as
it has to keep track of the state of the data at a smaller granularity. Tradeoffs will have
to be made between the load / store efficiency of the architecture (small access granu-
larity), and its simplicity (large access granularity). The integration of NDPs by means
of SMP fabric does however not pose a problem. As stated in Section 8.3, and proposed
in Chapter 4, every device can manage coherence in its own optimized way, as long as it
complies with the interconnect fabric, making it a challenge as well as an opportunity.

8.6. CONCLUSIONS
In this chapter we took the step from near-data processing towards data-centric systems,
where IOPS-focused devices, optimized for data intensive applications, co-exists next to
CPUs and GPUs. By making NDPs full-class citizens in a computer system, various NDP
related problems are solved automatically, while also opening up interesting opportuni-
ties for hardware and software managed system-level data-centric optimizations.
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Figure 8.3: Positioning NDPs between a CPU and a GPU, creating a device optimized for data intensive appli-
cations. The chart uses a logarithmic scale.
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CONCLUSIONS AND FUTURE WORK

In Chapter 1, an extensive overview of the challenges and fruitful research directions
in the field of computer architecture and high-performance computing is given. There
are no free rides anymore in the realization of ever faster computer systems. Technol-
ogy scaling is coming to an end, and maintaining historical performance growth rates is
turning out to be harder and harder. Data movement is a major limitation in both per-
formance and power-efficiency, and with applications becoming more data-intensive,
the problem is becoming more apparent. The use of workload-optimized systems, opti-
mized for data-intensive applications, can increase the performance of relevant applica-
tions beyond what is possible with more traditional systems. The near-data processing
paradigm fits this goal very well, by bringing processing capabilities closer to the mem-
ory.

9.1. CONCLUSIONS
We have shown in Chapter 1 that, in general, the computer system industry has to resort
to workload-optimized systems to further boost performance beyond traditional scaling
laws. It has furthermore been shown that data-intensive workloads are becoming more
important. From this we conclude that a new focus on workload-optimized systems for
data-intensive applications is necessary.

We described in Chapter 2 the extraordinary requirements in terms of compute capa-
bilities, bandwidths, and storage for the Square Kilometre Array (SKA) radio-telescope.
The characteristics of typical SKA workloads are analyzed, and the SKA design points are
compared to historical trends, showing the mismatch between what industry will most
likely be able to deliver, and what the SKA requires. From this we conclude that real-
izing the SKA at its full potential will not be possible without significant efforts in the
development of optimized computer systems.

A custom ASIC, able to run all algorithms necessary for the Central Signal Proces-
sor (CSP) subsystem of the SKA, is presented in Chapter 3. The ASIC is connected to
novel memory technologies and can handle the bandwidth, local storage, and compute
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requirements of the CSP, at an impressive 208 GFLOPS/W power-efficiency. From this
we conclude that novel workload-optimized design can truly aid in the realization of the
SKA.

To realize an easy to use computer system following the near-data processing para-
digm, optimized for data-intensive applications, we performed an extensive study on
the subject matter in Chapter 4. To integrate near-data processing capabilities in a com-
puter system, various hurdles have to be taken. We conclude that a selective extension
of the system bus is essential to enable a deep integration, required for ease of use and
efficiency. By keeping track of the coherence state of the memory in fine- and coarse-
grained way, we are able to realize an effective coherence mechanism between CPU and
NDP. The coarse-grained coherence state tracking is mirrored at the CPU side, and used
to limit the amount of coherence and virtual memory management traffic from the CPU
towards the NDPs, thereby limiting the negative effect the NDPs have on the CPU per-
formance. Various synthetic benchmarks show the working as well as the good perfor-
mance of the envisioned coherence and inter-NDP communication mechanisms. This is
again shown for a complex multi-NDP graph-traversal benchmark, easily outperforming
a CPU.

HPCG and Graph500 are recognized as key data-intensive benchmarks, and studied
while running on the proposed architecture in Chapter 6. We deem the use of standard
benchmarks essential, as it is the only way to make absolute performance comparisons
between the proposed architecture and existing work. For the benchmarks, an archi-
tectural sweet-spot is established, and a variety of software optimizations are presented.
When studying the HPCG benchmark, we conclude that a local memory size of 2 KB per
core is optimal, and that a 64 B access granularity with software prefetching is more ef-
ficient than a 128 B access granularity. For the Graph500 benchmark, we conclude that
the high-bandwidth inter-NDP communication fabric and the exploitation of locality of
remote data accesses is essential. The user-defined ability to cache data belonging to
another memory channel in the hardware managed caches of an NDP improves perfor-
mance as well.

We evaluated the sorting of large data sets when making use of both the CPU and
the NDP in a heterogeneous configuration in Chapter 7. By distributing the workload
between the two devices based on the data access pattern, we make use of the NDP for
its most fundamental property. From the analysis we conclude that, when the data for a
kernel execution has to come from main-memory anyway (and the kernel is sufficiently
large etc.), it is better to do the operations at the NDP. Another conclusion is that the
heterogeneous usage of both the CPU and the NDP enables the utilization of all available
bandwidth in the memory hierarchy.

9.2. FUTURE WORK
• Throughout this work we used traditional DRAM as memory technology, with the

intent of keeping the proposal as realistic and cost-effective as possible. Faster
memory technologies are already available, and are of clear interest for near-data
processing. Interesting future research is to see how the proposed integration
mechanisms scale to much higher local memory bandwidths, or whether funda-
mental different approaches are needed or become the better choice.
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• The coherence between CPU and NDPs has been a key point in this work. A partic-
ular solution has been presented, but other options are named as well. The ability
to cache remote data raises many questions and concerns, and no clear ‘best’ so-
lution is available. This fuels the need for further study, describing the various
options in detail and studying their performance for a variety of workloads.

• This work focuses foremost on system-level integration aspects, and application-
level effects. Less attention has gone in to specific NDP related optimizations. An
example optimization is the use of various access granularities. The access gran-
ularity has shown to be a topic of interest for HPCG, and is accepted as important
parameter for graph workloads. The transparent use of several access granular-
ities in a coherent CPU + NDP system is however full of challenges, e.g., how to
decide which granularity to use for which access. Shown for the HPCG bench-
mark is that a large access granularity realizes high performance, but also results
in unnecessary data transport. User-steered access granularities, similar to the
user-enhanced coherence proposed in this work, is a future research topic.

• The use of workload-optimized coprocessors, implemented on a reconfigurable
fabric, is a fruitful direction to boost power-efficiency and performance. This is
also true for NDP coprocessors, as is for example shown for sorting large data
sets. Workload-optimized NDPs have the advantage of being able to optimize their
memory accesses to a great extent, by for example having very deep queues. The
manual development of such NDPs is however a time consuming process, and au-
tomated methods should become available. Although steps are made in the field
of automated hardware generation, pragma-based generation of optimized NDPs
which can automatically connect to system interfaces as offered by the NDP-M, is
still open research.

• The discussed simulation environment is developed completely from scratch. This
was necessary as existing simulators were not able to capture the initial specifica-
tions of being able to simulate NDPs developed in a hardware description lan-
guage. The software-only branch of the simulator however, looks much more like
existing simulators. Isolating the architecture specific parts of our simulator and
integrating those as an extension to existing simulators, could enable more types
of experiments and easier usage, and should be considered for future work.

• We briefly touched upon the subject of making NDPs full CPUs, foremost intended
to fuel future research. Many challenges are identified, foremost in the field of au-
tomated data-locality management, but also regarding the integration of various
types of coherence management in a single system.
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SAMENVATTING

De snelheid van supercomputers groeit niet meer zo snel als het vroeger deed. Enkele ja-
ren geleden werd een breuk met historische trends zichtbaar. Eerst bij de ‘langzaamste’
van de wereldwijd geïnstalleerde systemen, maar tegenwoordig ook voor de gemiddelde
snelheid van een grote groep supercomputers. Energie verbruik is het grootste probleem
aan het worden voor het ontwerpen van computersystemen. De traditionele trends
waarmee energie verbruik afnam gelden niet meer voor de huidige generatie halfgeleider
technologie, en de snelheid van algemeen bruikbare componenten is gelimiteerd door
hun energie verbruik. Server en systeem ontwerp is vervolgens gelimiteerd door hun
absolute energie verbruik, wat gelimiteerd is door kost aspecten en praktische koel me-
thoden. Om computers sneller te maken is het steeds populairder om gespecialiseerde
componenten en gespecialiseerde server ontwerpen te gebruiken. Het verplaatsen van
data is herkend als grote energie verbruiker en is daarnaast ook een prestatie flessenhals
wanneer het door een smalle verbinding wordt verplaatst. Nu data een steeds belang-
rijker eigendom wordt voor overheden, bedrijven en individuen, is het realiseren van
computers geoptimaliseerd voor data-intensieve taken noodzaak. In dit werk onderzoe-
ken we de fundamentele aspecten voor zo’n systeem en kijken naar enkele belangrijke
taken.

Om de relevantie van het werk duidelijk te maken, analyseren we de realiseerbaar-
heid van een volgende-generatie radio-telescoop, de Square Kilometre Array (SKA). We
analyseerde de vereisten met betrekking tot berekeningen, opslag en bandbreedtes, en
onderzoeken het gedrag van verschillende belangrijke algoritmen op bestaande produc-
ten. De SKA kan beschouwd worden als ultieme big-data uitdaging, en zijn vereisten en
karakteristieken passen niet op de bestaande producten. Door de SKA vereisten naast
historische trends te zetten, zien we dat de SKA niet op zijn volledige capaciteit kan wor-
den gerealiseerd zonder extra moeite in het ontwikkelen van geoptimaliseerde systemen.

Om een stap te maken naar een succesvolle realisatie van de SKA hebben we een spe-
cifieke hardware architectuur ontworpen voor het Central Signal Processor (CSP) sub-
onderdeel van de SKA. De CSP vereist hoge bandbreedtes, grote lokale geheugens, en
significante hoeveelheden rekenkracht. Door middel van een speciale chip, verbonden
met snel en nieuw geheugen, kan de voorgestelde oplossing een hoge energie efficiëntie
halen van 208 GFLOPS/W, terwijl alle CSP taken worden ondersteund. Dit is een duide-
lijk voorbeeld van hoe geoptimaliseerde systemen het energieverbruik kunnen verlagen,
en daarbij de realisatie van niet-conventionele projecten kan helpen.

Om de efficiëntie van een verscheidenheid aan taken te vergroten, hebben we een
hardware architectuur ontwikkeld welke arbitraire verwerk capaciteiten heeft vlakbij het
geheugen van een CPU. Dit volgt het thema ‘vlakbij-data verwerken’, welke hoge band-
breedtes en gereduceerde data verplaatsingen aanbied. De inspanning beslaat de twee
hoofd observaties dat 1) verwerk capaciteiten moeten taak-geoptimaliseerd zijn, en 2)
een focus op data en geheugen is belangrijk voor moderne taken. De architecturale be-
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schrijving beslaat data allocatie en plaatsing, coherentie tussen CPU en de vlakbij-data
verwerker (VDV), virtueel geheugen management, en het gebruiken van afgelegen data.
Alle data management aspecten zijn gerealiseerd door middel van standaard functiona-
liteiten in het besturingssysteem, en vereist alleen aanpassingen in de firmware van het
systeem. De andere drie aspecten zijn gerealiseerd door middel van een nieuw com-
ponent vlakbij het geheugen (VDV-Manager, VDV-M), en een nieuw component vast-
gemaakt an de systeem bus van de CPU (VDV Toegangs Punt, VDV-TP). De VDV-M re-
aliseert coherentie tussen de CPU en de VDV door middel van een fijn- en grof-mazig
grootboek mechanisme, terwijl het vermijdt dat onbelangrijke VDV-TP berichten naar
de VDV worden verstuurd. Adres vertaling is geïmplementeerd in de VDV-M, waar de
vertaal buffer wordt gevuld en gesynchroniseerd door middel van een verbindingen met
de VDV-TP. De VDV-TP is verder het punt waar aanvragen voor afgelegen data de glo-
bale coherente adres ruimte inkomen. Synthetische benchmarks laten samen met een
graafverwerkings taak zien dat de voorgestelde methodes werken.

De evaluatie van de architectuur alsmede de evaluatie van verschillende types VDVs
vereiste de ontwikkeling van een nieuwe systeem simulator. De ontwikkelde simula-
tor kan hardware VDVs evalueren in een gesimuleerd geheugen systeem. Willekeurige
applicaties welke gebruik maken van de simulator voeden het gesimuleerde geheugen
systeem met laad en opsla instructies, en kunnen de VDVs besturen. Het is ook mogelijk
algemeen bruikbare VDVs welke software draaien te simuleren. Complexe systeem in-
teracties zoals coherentie en het gebruik van afgelegen data zijn in detail gemodelleerd
en geven waardevolle inzichten.

Twee relevante benchmarks voor data intensieve computersystemen zijn de Graph500,
en de High-Performance Conjugate Gradient (HPCG) benchmark. Ze implementeren
respectievelijk een gedistribueerde graaf breedte-eerst zoektocht en een gedistribueerde
multi-raster conjugaat gradiënt oplosser. Beide benchmarks zijn geïmplementeerd op
de architectuur welke tot acht VDVs bevat. Door het onderzoeken van verschillende
hardware parameters alsmede verscheidene software optimalisaties kunnen we de snel-
heid van beide benchmarks met een factor 3 verhogen ten opzichte van CPUs. Een be-
langrijk aspect is de hoge bandbreedte en late vertraging in het netwerk tussen de VDVs,
gerealiseerd door het VDV-TP. De cacheerbaarheid van afgelegen data in de VDV-TP
maakt snelle toegang to gedeelde afgelegen data mogelijk en is belangrijk voor Graph500.
Het gebruik van gebruiker-gespecificeerde coherentie is handig om twee redenen. Ten
eerste verlaagt het sturen van de grofmazige coherentie methode het aantal fijnmazige
coherentie grootboek verzoeken. Ten tweede versnelt de cacheerbaarheid van afgelegen
data in VDV caches de applicaties, maar vereist meer programmeer moeite om manueel
coherentie te verzekeren.

Een typische big-data taak is het sorteren van data. Data sorteren heeft fases met veel
data lokaliteit en fases met weinig data lokaliteit. Dit opent de interessante mogelijkheid
om heterogeen gebruik te maken van de CPU en de VDV, waar de twee componenten
respectievelijk de fases met veel, en met weinig, data lokaliteit verwerken. De CPU maakt
optimaal gebruik van zijn caches, terwijl de VDV optimaal gebruikt maakt van zijn hoge
bandbreedte naar het geheugen. Dit is geëvalueerd voor een hardware VDV, en we zien
snelheidsverbeteringen van 2.6x ten opzichten van enkel een CPU. Door het lage energie
verbruik van een hardware VDV is de complete energie verbetering 2.5x.
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