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Abstract—Dynamic Random Access Memory (DRAM)-based
systems are widely used in mobile and portable applications
where low-cost and high-storage memory capability are required.
However, such systems are prone to attacks. A latent threat
to DRAM-based system security is the so-called Rowhammer
attacks. By repeatedly accessing memory, an attacker is able to
perform unauthorized data modifications into physically adja-
cent memory locations. As a consequence, powerful privilege-
escalation attacks can be achieved. Although most of the known
countermeasures are based on refresh strategies or intensive ad-
dress monitoring, their efficient and low-cost realization is still a
challenge. In this work, we present LightRoad, a lightweight and
flexible hardware detector for Rowhammer attacks. Additionally,
we propose two variants that further extend the LightRoad
security, namely LightRoAD+Sec and LightRoAD+PARA. Our
experiments show that LightRoad and its variants are very
efficient and effective to detect attacks while having an affordable
cost that varies according to the desired security level.

I. INTRODUCTION

Technology scaling has contributed to the development of

faster memories, but simultaneously made them more vulnera-

ble [1]. Consequently, Rowhammer attacks emerged as one of

the critical threats of today’s computer systems [2]. It affects

DRAM memories which are used as central storage unit for

a wide variety of Systems-on-Chip (SoCs), from servers to

Internet-of-Things (IoT) devices. DRAM memories manufac-

tured with technologies from 2014 and onwards suffer from

a specific vulnerability that causes bit flips in the cells when

rows are repeatedly accessed [3]. Such continuous accesses

are known as hammering. A successful Rowhammer attack

allows adversaries to perform privilege escalation (thus taking

control of the system) or to retrieve sensitive information [4,

5]. Besides, recent studies have also shown that Flash mem-

ories are vulnerable to Rowhammer attacks, which further

increases the attack scope of this threat [3]. Therefore, it is

imperative to protect computer systems by developing methods

and techniques to prevent and detect such attacks.

Different strategies have been proposed to mitigate the

Rowhammer threat. They consist of higher DRAMs refresh

rates [1] and isolation of memory regions to store sensitive in-

formation [6, 7]. Although they mitigate against Rowhammer

attacks, such approaches have some disadvantages. The refresh

technique is only successful for older DRAM technologies,

degrades performance, increases power and it is not scalable.

Isolating memory regions limits the available memory and

reduces the memory efficiency, as only some regions will

be effectively used at a time. Recent methods alleviate such

disadvantages by using (non-)deterministic approaches to only

refresh specific rows when needed. Deterministic approaches

use high-performance counters (HPC) [1, 8] or dedicated

monitors [9, 10]. For example, proactive throttling [11, 12]

is a deterministic approach that identifies rows that are con-

tinuously accessed and subsequently limits the access to them.

Although efficient, this strategy requires a detailed under-

standing of the memory architecture to reduce false-positives.

These events are critical as it strongly degrades the system

performance. Non-deterministic approaches use probabilities

in the protection mechanism, as is for example the case in

PARA (Probabilistic Adjacent Row Activation) [1]. Each time

a row is accessed in PARA, its neighbouring row is also

accessed with a certain probability. To protect older DRAM

memories, it is sufficient to use a low probability. However,

PARA degrades the performance drop and does not guarantee

complete security, especially for newer DRAM memories. An

efficient and effective monitoring scheme is key for detecting

and stopping Rowhammer attacks.

In this paper we propose an efficient and effective hardware

Lightweight Rowhammer Attack Detector called LightRoAD.

It detects malicious attempts accurately by monitoring prop-

erties extracted from Rowhammer attacks. Such properties

are derived from our attack model. Additionally, we propose

two variants to further improve the security level. Our main

contributions can be summarized as follows:

• A lightweight Rowhammer attack detector.

• A formal model to describe Rowhammer attacks.

• An evaluation of the proposed detector under different

attack patterns (false-positives).

• An evaluation of performance penalty and area overhead.

• An evaluation of two variants of lightRoad:

LightRoAD+Sec and LightRoAD+PARA

The paper is organized as follows. Section II describes the

target platform and threat model, and introduces Rowhammer

attacks. Section III presents the attack model and its proper-

ties. Section IV introduces the proposed detector. Section V

presents our experiments and results. Finally, Section VI

discusses our results and concludes the paper.

II. BACKGROUND ON ROWHAMMER ATTACKS

The continuous evolution of DRAM memories has led to

a critical vulnerability. As DRAM cells are getting smaller

due to technology scaling, they become more susceptible to
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be affected by internal or external disturbances. These distur-

bances may cause bit-flips [13]. In 2014, the authors in [14]

presented a methodology to corrupt the DRAM memory. By

accessing certain rows repeatedly within a short time, bit-

flips in the adjacent (i.e., target) row were performed. This

vulnerability was already known before to the test community

as row hammering [15].

The success of a Rowhammer attack is highly dependent

on the DRAM access frequency of the attacker. Consequently,

the attack requires efficient methods to bypass the cache

hierarchy between processor and DRAM. There are three

ways to accomplish such a bypass: i) cache eviction [16,

17], which relies on accessing different DRAM addresses

that map on the same cache line. By alternating accesses

between such addresses, cache eviction takes place and the

DRAM is frequently accessed; ii) cache flush [1], where flush

instructions allow the processor to invalidate used cache lines.

Hence, the next time the processor accesses such an address it

causes a new request to the DRAM memory; and iii) uncached

accesses [18], which bypasses the cache hierarchy completely

when accessing the DRAM by disabling the cache and/or using

Direct-Memory-Access (DMA). Functions like memcopy use

DMA to optimize the transfer of high volume data between

different DRAM sections.

The attacker can access the victim’s row in many different

ways. In general they are divided into two classes: single-sided

and double-sided attacks. In single-sided attacks, frequent

memory accesses (hammering) are applied to a single row

which is adjacent to the target row. In contrast, in double-

sided hammering two memory rows are frequently accessed,

one on each side of the target row. As the two hammered

rows must be on different sides of the target row, double-sided

hammering generally requires partial knowledge of virtual-

to-physical mappings. Since Rowhammer attacks have been

successfully demonstrated, they have been exploited to create

more complex attacks such as privilege escalation [19], sand-

box escapes [19], and cryptographic keys exploitation [20].

III. ROWHAMMER ATTACK MODEL

This paper presents a novel attack model that describes

the methodology behind Rowhammer attacks in a systematic

way. The model is inspired by the framework proposed in [3].

However, in contrast with this approach, our model describes

the attack actions in terms of the involved hardware operations.

Such an approach contributes to enhance design-for-security

of SoCs. For example, new security verification methods can

be built based on this attack model.

A. Attack Stages

The proposed attack model is divided into three stages:

i) setup: ii) manipulate; and iii) access. The setup stage, which

aims to define the target attack location in the DRAM memory.

This stage consists of the following setup operations:

• SF : The attacker fills random places of the memory until

an address near the target location is found.

• SP : The attacker adds content to the end of the target

location, which is called padding.

• SR: The attacker uses Operating System services to

reallocate the victim’s data.

• ST : The attacker uses a trial and error approach to select

the victim’s address. Once the attack is completed, the

attacker verifies if the target location has been altered. If

not successful, the attacker tries another address.

Next, the manipulate stage describes the action performed

to force accesses to the DRAM memory. This stage consists

of the following manipulation actions:

• MF : The attacker accesses the target DRAM row fre-

quently indirectly through the cache memory. Prior to

accessing the DRAM row, specific cache lines corre-

sponding to the target DRAM row are first flushed.

• ME : Similarly as in the previous case, the attacker ac-

cesses the target row through the cache memory. Instead

of using a flush operation to evict the data in the cache,

the attacker accesses another DRAM address that will

map on the same cache line.

• MU : The attacker uses special addresses that can bypass

the cache hierarchy in order to access the main memory.

This is typically achieved through DMA.

Finally, the access stage defines the access patterns. The

manipulate and access stages are frequently repeated in a short

time period. The access stage consists of the following access

patterns:

• AS : A single-side access pattern which aims to access

one or more random locations either above or below the

target row.

• AD: A double-side access pattern which aims to access

one or more random locations above and below target

row.

• AO: A one-location access pattern which aims to access

only one specific location near the target row.

In our model, the exploitation of a successful attack is not

considered as a separate stage since it is application and target

specific. Instead, our model defines a successful attack as any

action that results in one or more bit-flips in the DRAM,

This is independent from the attacker’s intention. As a result,

even non-malicious applications are considered threats when

they meet all the requirements that lead to bit-flips. Note that

a security-oblivious application may unintentionally cause a

serious security incident.

B. Attack Formula

Each Rowhammer attack in our model can be described by a

specific formula which consists of operations/actions selected

from the three main stages. In general, a Rowhammer attack

formula can be described by Equation 1.

SX −→MX −→ AX (1)

Where SX , MX , and AX refer to an operation/action in the

setup, manipulate and access stages, respectively. Table I maps

different Rowhammer attacks described in previous works to
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our attack model. They are expressed by the attack formula.

Understanding the stages of the attack and their associated

operations, give a systematic insight of how the attacks work.

For example, by using our model it becomes evident that

the attacks in [19, 21] are similar. Both can be described by

SF −→MF −→ AS . Their setup stage fills the main memory

randomly, a process also known as spraying. Thereafter, flush

instructions are used to force DRAM accesses. Two random

locations near the target row are alternately accessed in order

to cause a bit-flip. The difference between these attacks is

that [21] uses a non-temporal instruction to flush the cache,

while [19] uses the common clflush instruction.

IV. LIGHTROAD

In this section we describe the concept, design and archi-

tecture of LightRoAD, and preliminary security analyses.

A. Concept

Our model presented in Section III showed that Rowhammer

attacks can be represented by three stages. When analyz-

ing state-of-the-art countermeasures, we observe that most

hardware-driven solutions focus mostly on the third stage,

which is related to the location of the DRAM accesses. They

verify which addresses are accessed and count them to deter-

mine if an attack is taking place. Consequently, this requires

multiple counters and control mechanisms which come with

a high hardware cost. From our attack model, we observe

that the attacks could also be mitigated by focusing mostly

on the second stage, i.e., the manipulation stage. The second

stage defines which method is employed to ensure accesses

to the DRAM memory. It is possible to detect potential

attacks by identifying when the second stage of an attack

takes place through system monitors. An additional benefit

is that with this strategy the detector can evaluate the DRAM

access in the third stage with a coarse granularity i.e., multiple

rows can be evaluated simultaneously by only looking at the

most significant bits of the physical address passed to the

DRAM controller. Note that when the detector understands

that the system is continuously creating conditions that forces

accesses to the main memory, the detector only needs to

verify if the accesses target the same region (i.e., a region

here is defined by a group of contiguous physical addresses).

Analyzing the access based on regions is important, as the

work in [2] has shown that addresses in a range of 16 rows

can successfully cause bit-flips in the victim’s row. As a result

of monitoring the manipulative actions, it is possible to create

a detector residing fully on the processor chip and hence not

modifying the DRAM. As a result, we end up with a very

low resource requirement, face minimal integration issues and

have high detection efficiency. In addition, by monitoring the

manipulation actions, the detector can trigger different types

of alarm flags, e.g., alert the system which component and

process is responsible for exploiting the vulnerability. The

alarms can be triggered by cache misses, cache flushes, or

direct DRAM accesses through DMA. LightRoad is based on

all these concepts.

Fig. 1. LightRoAD Architecture

B. Design and Architecture

LightRoAD is designed as a standalone component inside

the MPSoC. It monitors internal signals to identify which oper-

ations are responsible for main memory accesses. LightRoAD

counts the number of memory accesses to the target region.

An alarm is triggered when a certain threshold is reached. This

threshold is defined based on the minimum amount of accesses

that are required to cause a bit-flip. This number is highly

dependent on the DRAM technology and architecture [32].

The counters are reset when the DRAM is refreshed; a time-

out counter is used for this purpose (usually set to 64 ms by

most DRAM manufactures [32]).

Figure 1 shows the architecture of LightRoAD. It contains

a timeout counter, a Last Level Cache (LLC) miss counter (in

our case L2), a flush counter and a DMA counter. When a

manipulation action takes place in the system, its respective

counter is incremented. When the sum of all counters reaches

the threshold value, the alarm signal is raised. Since there are

specific counters for each manipulation method, LightRoAD

can provide the root cause of the attack as well. As a

result, more efficient countermeasures can be put in place.

For example, when Rowhammering takes place via DMA, the

system could decide to disable the DMA for a certain time.

When it is via LLC, the system manager (e.g., OS) could

reallocate the victim’s data in the main memory.

LightRoAD monitors a single memory region per time. A

region is defined as a group of contiguous physical addresses.

These regions are identified by the MSB address bits. When

a manipulation action takes place, the corresponding counter

is only incremented if the address falls into the same region

of the previously accessed address. Adjacent regions are

considered part of the target region, and therefore, the counter

is also incremented. However, when there is an access to a

region far away from the previous accesses, all counters are

reset and the target region is updated.

C. Security Analysis and Optimizations

LightRoAD targets one region (i.e., group of contiguous

physical addresses) per time when evaluating potential threats.

It assumes that the attacker is unaware of the defense mech-

anism. However, in a scenario where the attacker is able to

understand how this detector works (i.e., white-box scenario),

the attacker can try to bypass the security by using two regions
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TABLE I
MAPPING STATE-OF-THE-ART ROWHAMMER ATTACKS ON PROPOSED ATTACK MODEL.

ID Formula Attacks ID Formula Attacks ID Formula Attacks ID Formula Attacks
1 SF −→MF −→ AS [19] [21] 10 SP −→MF −→ AS [22] 19 SR −→MF −→ AS 28 ST −→MF −→ AS [5]
2 SF −→MF −→ AD 11 SP −→MF −→ AD 20 SR −→MF −→ AD [23] [20] 29 ST −→MF −→ AD [24] [25]
3 SF −→MF −→ AO 12 SP −→MF −→ AO 21 SR −→MF −→ AO 30 ST −→MF −→ AO [4] [26]
4 SF −→ME −→ AS [27] [28] 13 SP −→ME −→ AS [29] 22 SR −→ME −→ AS 31 ST −→ME −→ AS [5]
5 SF −→ME −→ AD 14 SP −→ME −→ AD [30] 23 SR −→ME −→ AD 32 ST −→ME −→ AD

6 SF −→ME −→ AO 15 SP −→ME −→ AO 24 SR −→ME −→ AO 33 ST −→ME −→ AO [26]
7 SF −→MU −→ AS 16 SP −→MU −→ AS 25 SR −→MU −→ AS 34 ST −→MU −→ AS

8 SF −→MU −→ AD 17 SP −→MU −→ AD [18] [31] [7] 26 SR −→MU −→ AD 35 ST −→MU −→ AD

9 SF −→MU −→ AO 18 SP −→MU −→ AO 27 SR −→MU −→ AO 36 ST −→MU −→ AO [26]

(one real and one dummy distant region) in the DRAM.

Consequently, alternately accessing both regions would reset

the counters with each alternate access. Although in such

a scenario the attacker reduces the efficiency to access a

specific region of DRAM by half (due to real and dummy

interleaving accesses), the total amount of accesses might

still be sufficient to cause a bit-flip. Therefore, to overcome

this issue, we propose two alternatives: LightRoAD+Sec and

LightRoAD+PARA.

LightRoAD+Sec monitors the DRAM addresses of multiple

regions simultaneously. This means that the current detector

is duplicated multiple times, and an arbiter is added to define

the region each detector monitors. For example, a memory

of 4 GB with regions of 64 row addresses (each address

containing 128 bits) would in the worst case require 4096

dedicated detectors to monitor all possible regions. However,

each new dedicated detector added to LightRoAD+Sec reduces

the attack’s efficiency. This means only a limited number of

detectors are needed. For example, monitoring the last four

target regions simultaneously forces the attacker to insert 4

dummy DRAM operations all the time to reset all detector’s

counters, i.e., only 1 out of 5 accesses for the attacker are

desired. Let’s consider for example a CPU running at 1 GHz

with a penalty of 100 cycles to access the DRAM, a DRAM

refresh rate of 64 ms and a minimum need of 85000 accesses

to perform the Rowhammer attack [32]. In such a scenario,

only � 64·10−3

100·10−9·85000� =8 detectors would be required. Note

that the minimum of 85k accesses is design and technology

depended. In summary, LightRoAD+Sec can trade-off area to

match the desired security.

LightRoAD+PARA uses a different approach and takes

advantage of the DRAM refresh unit. PARA (probabilistic

adjacent row activation), introduced by Kim et al [1], refreshes

neighbor rows of accessed addresses with a very low random

probability. This means that after a high number of accesses,

there is a high chance that a victim address gets refreshed

in time. PARA by itself is not sufficient to protect newer

memories as it will require a very high probability adjacent

row activation. For example, a DRAM memory that can be

vulnerable to only 4.8k accesses (as presented in [32] for

LPDDR4) and having the PARA configured for a proba-

bility p = 0.001 would have a probability of bit-flip of

(1 − 0.001
2 )4800 = 9.06% (this equation is provided in [1]).

According to the authors of PARA, the flip probability can

be considered negligible at a value around 1.9−22; hence, a

probability of 9.06% (or 0.0906) is far from the desired sce-

nario. However, by combining LightRoAD and PARA much

better results are achieved. LightRoAD by default increases

the required accesses to accomplish an attack, and as seen

in LightRoAD+Sec, as more detectors are included more

accesses are needed. Taking this into consideration, the PARA

equation can be rewritten to Equation 2, where N refers to

the minimum amount of accesses to cause a bit-flip.

Flip Probability = (1− 0.001

2
)(N∗(num detectors+1)) (2)

Solving this equation for N=4800 and a flip probabil-

ity of 1.9 ∗ 10−22, it follows that only 20 detectors are

needed. The same scenario would require 134 detectors for

LightRoAD+Sec. Therefore, LightRoAD+PARA shows that it

can leverage the protection of LightRoAD without increasing

significantly the area overhead like LightRoAD+Sec.

V. EXPERIMENTAL RESULTS

This section presents the experimental results. We evaluate

LightRoAD’s security, performance penalty and area overhead.

A. Setup

LightRoAD detector was implemented using the Verilog

hardware description language. To simulate, synthesize and

verify the functionality, Xilinx Vivado 2019.2 was used. The

detector was integrated into the CVA6 SoC platform [33]

(formerly Ariane SoC). CVA6 SoC is a public platform able to

run Linux OS on a 64-bits RISC-V processor. All experiments

were conducted through hardware simulations, while the area

results have been taken from FPGA synthesis.

Security Evaluation: The effectiveness of LightRoad is eval-

uated by applying all nine access patterns derived from the

attack model.

Performance Evaluation: The false-positive detection rate of

non-malicious applications is evaluated using seven applica-

tions. Five of them are benchmarks taken from the riscv-

tests repository [34]. The other two applications are based

on the STREAM benchmark [35]. STREAM is the de facto

industry standard benchmark for measuring sustained memory

bandwidth. We modify it to use DMA to move the blocks of

data. We name them as DMA V1 and DMA V2. A short

description of each application is provided next. The Median
benchmark performs a basic three-element 1D median filter

over a 400 element input array. The Multiply benchmark

multiplies two 100-input sized arrays element wise through

a shift-and-add algorithm. The Qsort benchmark implements

the quicksort algorithm on a 2048-input array. The Towers
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TABLE II
DETECTION EFFICIENCY OF LIGHTROAD

Attack Pattern
Unprotected Detector 1x Detector 10x
# of Access
per 64 ms

# of Access
per 64 ms

# of Access
per 64 ms

SX −→MF −→ AS 156500

8400 84000

SX −→MF −→ AD 156500
SX −→MF −→ AO 333400
SX −→MP −→ AS 132500
SX −→MP −→ AD 132500
SX −→MP −→ AO 267000
SX −→MU −→ AS 201000
SX −→MU −→ AD 201000
SX −→MU −→ AO 465000

benchmark is a purely arithmetic intensive algorithm with a

marginally sized dataset. It simulates a round of the Towers

of Hanoi puzzle. The Vvadd benchmark adds two 300-input

sized arrays element wise. The DMA V1 application copies

a range of data with the same size of the region protected by

LightRoAD. The DMA V2 application copies a range of data

with 5 times the size of the region protected by LightRoAD.

Hardware Overhead Evaluation: LightRoAD was synthe-

sized for the the Genesys 2 board [36] along with the CVA6

SoC platform to determine the area overhead and evaluate

timing constraints.

B. Security Evaluation

Table II provides the results of the security evaluation. The

table shows the maximum amount of DRAM accesses that

could be applied for each of the nine attack patterns within

a period of 64 ms for the unprotected and protected cases.

In this experiment, 85000 accesses are consider the minimum

amount of accesses required to successfully attack the DRAM

(a new DDR3 according to [32]). Hence, all nine patterns can

successfully perform Rowhammer in our platform. Note that

pattern SX −→ MU −→ AO can access the DRAM much

more frequently in the same time period. However, AO is

known as a very effective hammering pattern [3], which brings

the pattern SX −→MU −→ AD as the most dangerous one in

our results. When the system employs LightRoAD (see column

detector 1x), it can detect and mitigate any attack with much

less accesses (as the threshold equals 8400), meaning that the

detector can identify threats at an early stages. A different

configuration was also tested, which set the threshold to 84000,

which is close to the attack limit of 85000. A higher threshold
decreases the possibility of false-positives when running non-

malicious applications, reducing performance penalties. Note

that also with this ten times higher threshold the number

of DRAM accesses was not sufficient to perform an attack.

Depending on the target memory, a different threshold should

be applied.

C. Performance Evaluation

Table III shows LightRoad’s false-positive rate, caused when

non-malicious applications are executed on the target platform

while performing legitimate DRAM accesses. The results

show that only two applications (Media and Multiply) had

some false-positive results. These false-positive cases only

TABLE III
FALSE-POSITIVE RATE OF LIGHTROAD

Benchmarks
Unprotected Detector 1x Detector 10x

# of Access

per 64 ms

False

Positives

False

Positives

Median 15650 3%

0%

Multiply 15650 0.5%

QSort 9334 0%

Towers 13250 0%

Vvadd 10250 0%

DMA V1 26700 0%

DMA V2 102100 0%

TABLE IV
IMPACT OF LIGHTROAD AREA IN THE CVA6 SOC

Design LUTs REGs Overhead (LUTs + REGs)
CVA6 SoC 99000 75000 N/A (baseline)
Light-RoAD 340 167 0.29%
LightRoAD+Sec 2640 1336 2.28%
Light-RoAD+PARA 340 167 0.28%

happened at cold start, where a high amount of cache misses

occur in the beginning of the execution. However, after the

cache contains most of the used data, the number of accesses to

the main memory is reduced and no false alarms are triggered

anymore. Although the applications have a low complexity,

they are very suitable for this evaluation since they contain few

computations and many cache/memory accesses. In contrast,

the DMA-based applications raised no false alarms. The main

reason is that DMA functions run over contiguous blocks

of memory, and such special operations are not frequently

repeated. As a result, even when multiple accesses are applied

to the same region, the total number of accesses is not

sufficient to generate false positives. In the case where the

threshold is set ten times higher, no false positive alarms have

been observed. The performance experiment has shown that

any non-malicious application would not trigger false positives

as specific access patterns would be required to do so. Even

when a non-malicious applications triggers the detector, there

is a real possibility that a DRAM fault might happen. Hence,

even false-positives are important as they prevents bit flips.

D. Hardware Overhead

Table IV shows the synthesis results of the SoC

and LightRoAD. We included the LightRoAD+Sec and

LightRoAD+PARA configured with 8 and 1 dedicated detec-

tors, respectively. These configurations guarantee full protec-

tion when 85k accesses are needed to create a bit flip. Results

show that LightRoAD requires very few hardware resources.

Even LightRoAD+Sec can be considered a lightweight solu-

tion as our target platform uses a very low-profile processor.

However, LightRoAD+Sec cannot be considered lightweight

anymore for large vulnerable memories.

VI. DISCUSSION AND CONCLUSION

In this paper we demonstrated a low cost detector for

Rowhammer attacks. From the results, we conclude:

LightRoAD and variants: The proposed countermeasure

reaches a high efficiency while requiring only limited hard-

366

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 06:47:43 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
IMPACT IN CVA6 SOC AREA FOR DIFFERENT SCENARIOS.

Accesses LightRoAD+Sec LightRoAD+PARA
DDR3-old 69.2k 3.0% (10 detectors) 0.29% (1 detector)
DDR3-new 85k 2.28% (8 detectors) 0.29% (1 detector)
DDR4-old 17.5k 10.8% (37 detectors) 1.4% (5 detectors)
DDR4-new 10k 18.6% (64 detectors) 2.62% (9 detectors)
LPDDR4-1x 43.2k 4.37% (15 detectors) 0.58% (2 detectors)
LPDDR4-1y 4.8k 38.2% (134 detectors) 5.8% (20 detector)

TABLE VI
COMPARISON WITH RELATED WORKS.

Full Protection Performance Drop Deterministic Costs
Refresh Rate [1] No High Yes +
CATT [6] No Medium Yes +
GuardION [7] No Medium Yes +
ANVIL [8] No Small Yes ++
Twice [10] Yes Small Yes ++++
PARA [1] No Small No +
Blockhammer [12] Yes Medium Yes +++++
LightRoAD No Small Yes +
LightRoAD+Sec Yes Small Yes +++
LightRoAD+PARA Yes Small No ++

ware resources. An important aspect is the fact the detector

was tailored based on a reliable attack model. The variants

LightRoAD+Sec and LightRoAD+PARA have shown that the

level of protection can be improved.

Area Overhead: All LightRoAD solutions may have a dif-

ferent cost depending on the target memory. Older memories

require high number of accesses to cause a bit flip while new

ones only few accesses are enough. For that reason, we present

in Table V a comparison based on the required resources

for different type of memories. The number of accesses to

create vulnerabilities (see column Accesses) were obtained

from [32]. The table shows that for more vulnerable memories

a limited number of detector units is required especially when

LightRoAD is combined with PARA.

Flexible: In this paper we target the protection of DRAMs.

However, LightRoAD is implemented on the processor chip

interfacing with the memory controller, which means that

it can be used for other memories as well. For instance,

Rowhammer attacks have been successfully applied to Flash

as well [3], and new memory technologies like STT-RAM or

RRAM are expected to be vulnerable as well [37].

Related Work: Table VI provides a comparison with existing

solutions using four metrics. For solutions with a small per-

formance drop, results show that most of techniques require

medium or high area overhead, with exception of PARA.

However, PARA has the drawback of not being feasible for

new memory technologies. As a complete protection with low

performance drop and small are overhead, LightRoAD+PARA

is an interesting choice. Note that LightRoAD+Sec is one of

the most powerful solution. However, the area overhead can

only be afforded for high-end processors.
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