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ABSTRACT

Seismic airguns are widely used in offshore environments to investigate
sub-seafloor layers, generating intense, impulsive sound waves that prop-
agate through seawater, penetrate the seabed, and travel tens to hun-
dreds of kilometers from the source. The characteristics of these acoustic
waves evolve as they interact with sediment layers and the sea surface,
which can alter the temporal features of the sound pressure reaching ma-
rine life at various distances. Assessing sound pressure wave properties
across different environments is essential for selecting metrics that effec-
tively gauge the impact of seismic noise on aquatic ecosystems. One
such metric, sound pressure kurtosis, reflects the impulsive nature of
sound waves and provides a measure of their impulsiveness, which is
particularly relevant for assessing potential effects on marine animals.
In this study, Green’s functions for the acousto-elastodynamic problem
are employed to model sound propagation from seismic airguns, captur-
ing the influence of the seafloor’s elastic properties on sound dispersion.
We investigate variations in sound pressure kurtosis across various sed-
iment types, including sandy, silty, and clay-like substrates, examining
how each affects the impulsive characteristics of airgun-generated pulses.
Additionally, the temporal dispersion of pressure signals from individual
airgun shots is analyzed as they interact with differing marine sediments,
providing insights into the impact of the seafloor’s elastic properties on
sound emissions affecting marine life.

KEY WORDS: Seismic airgun, Green’s function, Sound Pressure Kur-
tosis, elastic properties, marine life.

INTRODUCTION

Anthropogenic underwater noise poses a significant threat to aquatic
life, raising growing concerns about its adverse effects. Among various
human-made activities, marine airgun operations, widely employed for
seismic surveys, generate extremely high levels of impulsive underwater
sound and are considered one of the most impactful noise sources
endangering marine ecosystems (Slabbekoorn et al., 2019; Sidorovskaia
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and Li, 2022; Lucke et al., 2024).

During these operations, explosive sounds are produced by an array of
airguns towed behind a survey vessel. When the airguns are fired in
synchronization, intense echoes are generated from deep penetrations
into marine sediments and multiple reflections from the sea surface
and ocean bottom. The recorded acoustic signals are then analyzed to
map the substructure of the seafloor, aiding oil and gas exploration.
These airgun pulses are typically repeated over periods lasting up to
several months, with intervals ranging from 4 to 20 seconds between
each shot. There is considerable interest in understanding the impact of
airgun noise on marine species. Numerous studies have been conducted
to investigate the characteristics of seismic airgun pulses and their
propagation in the marine environment (Sertlek et al., 2024). To evaluate
the effects of anthropogenic noise on different marine species, various
noise thresholds have been proposed.

Exposures exceeding these thresholds can potentially cause auditory
injuries, such as temporary threshold shifts (TTS) and permanent thresh-
old shifts (PTS), in marine mammals (Southall et al., 2019). However,
assessing the effects of anthropogenic noise on fish, invertebrates,
crustaceans, and marine mammals can be challenging. Beyond exposure
and peak pressure levels, other factors—such as exposure frequency,
duration, and the spatial and temporal patterns of sound pressure—are
critical to impact assessments. Research indicates that the hearing
organs of marine animals are particularly vulnerable to injury from
impulsive sounds. Metrics like the sound pressure kurtosis index, which
are sensitive to the impulsive nature of sound, should be considered for
more accurate assessments.

Recent work by Sertlek et al. (2024) analyzed the effects of sediment
type and range on the time dispersion of sound signals from a single
airgun shot using an equivalent fluid model. However, this approach
does not fully capture the elastic properties of marine sediments, which
can significantly influence sound propagation. Addressing this gap, the
present study extends the investigation by examining sound pressure
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kurtosis across various sediment types, incorporating their elastic
characteristics.

To achieve this, Green’s functions for the acousto-elastodynamic
problem are employed, allowing for a more comprehensive modeling
of sound propagation from seismic airguns. This approach accounts
for the influence of seafloor elasticity on sound dispersion, which has
been largely overlooked in previous studies. By evaluating variations
in marine sediment properties, this study assesses their impact on the
impulsive characteristics of airgun-generated pulses. Additionally, the
temporal dispersion of pressure signals from individual airgun shots is
analyzed, providing new insights into how environmental factors shape
airgun pulses during propagation.

This article is organized as follows: The section on sound propagation
modeling describes the propagation model in detail, including the math-
ematical methodology, the source characterization and kurtosis calcula-
tions. The next section focuses on simulations based on a shallow-water
test case from the JIP Acoustic Modelling (JAM) Workshop, held in
Cambridge, UK, in 2022 (Ainslie et al., 2024). Various sediment types,
including those with elastic properties, are examined. The final section
presents the discussion and conclusions.

SILENCE PROPAGATION MODEL

To calculate the sound pressure kurtosis, it is necessary to determine the
sound pressure in the time domain at various horizontal distances from
the airgun source. For this study, the SILENCE model, which accounts
for the effects of a layered elastic sediment, is utilized (Peng et al., 2021).
The SILENCE model is based on the complex wave number integration
method and was originally developed to model sound propagation from
offshore pile driving over a wide frequency spectrum. This model can
generate responses in both fluid and sediment domains, including pres-
sure, velocity, displacement, and stress fields. This section describes the
detailed derivations of SILENCE propagation model including the elastic
description of the marine sediment as depicted in Fig. 1. The derivation
is generalised for marine sediment consists of horizontal stratified layers.

— Soil conditions Airgun signal
E I
Zz Source
Bathymetry Location
Eigenvalue problem of ~ Frequency Spectrum
% acousto-elastic medium Airgun source
= | |
< !
Om R i
é § Green’s function
(ol }
Fe)
==
% Response of fluid
8 and marine
1) sediment

Fig.1 Activity flow of the SILENCE propagation model.

The model is used to calculate propagation loss for a point source in
an acousto-elastic waveguide, incorporating elastic sediment properties
to address the test cases presented in Fig. 2 from the JAM Workshop
(Ainslie et al., 2024). The pressure field in the ocean environment is rep-
resented as a finite sum of modes and a complex wavenumber integral,
utilizing the Ewing—Jardetzky—Press (EJP) cut. This solution is extended
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from the case of two fluid layers to a scenario involving a fluid layer
overlying a solid half-space, as outlined in Peng et al. (2021). The accu-
racy of the SILENCE model has been verified in Peng et al. (2021) and
Sertlek et al. (2024) by comparing the propagation loss (PL) results with
those from other well-established propagation models for a bench mark
case.

T Source Sea surface

' z;=5m

Water

pr= 1000 kg/m?
cg= 1900 m/s
ay=0dB/A

H=50m

Sediment

ps = 2000 kg/m?
cp= 1700 m/s
a,= 0.5 dB/A
cs= 200 m/s

Half-space as= 1.5 dB/A

Fig.2 Geometry of the model. Adapted from Fig. 1 of Ainslie et
al. (2024).

Governing equations

The following partial differential equations govern the dynamic response
of the acousto-elastic media in time domain:

1
Vips(nat) = < py(rnzn =0, €))
7

In Eq. (1), ps(r,z,1) is the pressure field of the fluid. In Eq. (2), u; =
[wi(r,z,t) uj(r, z, )] is the vertical and radial displacements of soil layer
j.

The Helmholtz decomposition can be applied to the fluid-soil domain as:

_ _ oy,
llf = V¢f, llj = V¢, +V X (0, —E,O) (3)
Substitution of Eq. (3) into Egs. (1) and (2) yields:
1 8¢,
VZ I J 4
@p(r,z,1) 2o 4)
1 6%¢;
V26 =— -7
4020 = 5 ®)
1 &%y,
VA = 5 (6)

5 or
In the equations above, Cp; and cs; denote the speeds of the compres-
sional and shear waves in soil layer j, respectively. The pressure release
boundary condition is applied at the sea surface. At the fluid-soil inter-
face z = z;, the vertical stress equilibrium and the vertical displacement
continuity are imposed, while the shear stress vanishes since no tangen-
tial stresses present in a perfect fluid. The bottom soil is extended to
infinity to mimic realistic ocean environments. Given the full-contact at
the soil-soil interface, both stress equilibrium and displacement continu-
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ity are applied. This set of boundary and interface conditions reads:

pr(r,z0,t) =0, r>R, @)

Oy (r 21, ) + pr(r,z1,0) =0, wy p(r,21,0) = wy, (1,21, 0), 8
0 (121,) =0, r2R, )

wi(r,zj, ) = wisi(r,zj, D), uj(r,zj,t) = uj_(r,z;, 1), (10)
2<j<N, r=R, 11

0y (1,2),0) = 0oz (1,25,0), 0o (1,2),1) = 0y (1,251), (12)
2<j<N, r=R (13)

In Eq. (13), 0,; and o7, designate the normal and tangential stresses in
the soil layer j.

After applying the forward Fourier transform, the governing equations in
frequency domain are obtained. The Fourier transform pair used in this
paper is expressed as:

1 +00
g() = Zf_‘m

in which g(#) and G(w) denote the physical quantities in the time and
frequency domains, respectively.

+00

Gw)ed“dw and G(w) = f g(He " dt (14)

—o0

Green’s function

In this section, the Green’s function solution for a point source located
in a fluid within an acousto-elastic half-space is derived. The Hankel
transform and complex contour integration approach are used to obtain
a closed-form response in the frequency domain. The Hankel transform
pair is given as:

flke) = f wf(r)Jo(krr)rdr and  f(r) = f wf(kr)fo(krr)krdkr s)
0 0

in which f(r) and f(k,) denote the functions in the frequency domain and
Hankel domain, respectively. Jy(k,r) is the Bessel function of the first
kind of order zero and k, is the horizontal wavenumber of the medium.
To derive the Green’s functions for an acoustic source, a pressure-type
point source is placed at [0, z,] in the fluid domain, which generates pres-
sure waves and produces a unit pressure amplitude at the location of the
source. The equation of motion for the displacement potential reads:

1 6(r-0,z-
pw?

Zs)

[V? + kﬁ»]tﬁ?f(r, 20,2, w) = — , w<z, <z (16)

2nr
in which the first subscript of the Green’s potential function denotes the
location of the receiver, and the second subscript denotes the location of
the source with ” f”” being the fluid domain. The homogeneous equations
of motion for the displacement potentials ¢, and i ¢ in the soil are
given by Eqgs. (5) and (6). Applying the forward Hankel transform to
Eqgs. (), (6) and (16), the wave equations are reduced to depth-separated
wave equations in the Hankel domain.

i 3 1 6z
7 R |8 k02w = — 5 T an
d> .
d_Z2 + kzz,pj] ¢§f(kr,z;0, Tss CU) =0 , (18)
d* R
[d_zz + kf.y,-] ¢ ke 230,25, ) = 0. (19)

in which k., = Ik§ — k? is the vertical wavenumber in the domain &

(=f,pj or s;). The boundary conditions of the acousto-elastic medium
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Fig. 3 Schematic representation of an acousto-elastic layered
half-space with a point source positioned in the water (top)
and visualization of the complex wavenumber integration
approach (bottom).

along the z-coordinate have been specified in Eqgs. (7)-(13).

The solutions for the displacement potentials are the sum of a particular
solution and the general solution to the homogeneous equation:

R 1 e tksk-zl ) i

§ (ky 231y 20y ) = [ o + ASeher 1 A8 ""“Z)J k,r;)(20

3 (ko212 ) (_pwz i A AL )20
B (k22 0) = (A5 €0 4 AL o), Q1)
O (ke 257,200 ) = (Ai €+ Aime’ik“fz)]g(k,.rx). 22)

in which the coefficients A (i 1,2,...,4N + 2) are undetermined
complex amplitudes. Two unknown amplitude coefficients in the
potential function ¢, indicating upward- and downward- propagating
waves in the fluid, four unknown amplitude coefficients in the functions
¢, and i indicating upward- and downward-propagating waves in each
soil layer. When j = N, the amplitudes in front of the first term in both
Egs. (21) and (22) vanish to ensure the radiation condition at infinity in
z direction.

Applying the inverse Hankel transform with the use of the relationships
of the Bessel functions, the Green’s tensor of the acousto-elastic medium
in the frequency domain is obtained as:

- 1 SV IN
O ranzew) =5 [ (0L G are P Gkt @3

: . B 128 28
in which ®; , = [¢5 ., ¢’ ., h
potential functions in Hankel domain, ®% ; are the corresponding
potential functions in frequency domain. The pressure, displacements
and stresses of the acousto-elastic medium are expressed by the Green’s

functions of displacement potentials, which are omitted here for the

z/A/‘j. f]T denotes the solutions of displacement
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sake of brevity. By substituting the expressions into the boundary and
interface conditions, the final set of linear algebraic equations with
unknowns Af for i = 1,2,...,4N + 2 is obtained. Once the amplitude
coeflicients are solved for every k,, the Green’s tensor for a pressure-type
point source placed in the fluid domain is obtained.

The evaluation of the integrals given by Eq. (23) can be achieved by
using the contour integration technique, which is basically the normal
mode method enriched with the branch line integration as depicted in
Fig. 3 (bottom). The integral along the real axis can be expressed as:

0o M
f fk)dk, = —2ni Z Res(k™) + f
—c0 m=1 @

B

(24)

in which Res(f(k,), ki’”)) is the residue of a general function f(k,) to a
simple pole at k, = k™.

By applying the complex contour integration technique, the expressions
of displacement potential functions in frequency domain are given as a
summation over a finite number of poles supplemented by the Ewing-
Jardetsky-Press (EJP) branch line integrations, i.e. :

M
B (1,573, 250) = i ) [Res(@L (K, 2 1y, 2 ) HE (K™

m=1

1 o
+5 f DL (ky, 73 1y, 2)HY (koK
2 a+f .

(25)

As shown in Fig. 3, the EJP branch cuts are given in two hyperbolic
lines starting from the branch points, which are the medium wavenum-
bers corresponding to compressional and shear waves. The full solutions
consist of three terms: a) a finite sum of discrete modes on the principle
Riemann surface (can be infinite in the case of the fluid layer overlying
multi-layered elastic half-space), in which all modes are convergent; b)
a hyperbolic branch line integration associated with the branch point of
compressional wavenumber k,; c) a hyperbolic branch line integration
associated with the branch point of shear wavenumber k;. The above
solutions provide the basis of the sound propagation model.

Airgun source signature

Airgun source signatures can be estimated using various multi-physics
models to describe the sound generated by the release of highly com-
pressed bubbles from an airgun or airgun arrays. Marine airgun mod-
eling workshops were held in Dublin, Ireland, in 2016 (Ainslie et al.,
2019) and in Cambridge, UK, in 2022 (Ainslie et al., 2024). At both
workshops, the source signature of a single airgun was examined as a
reference case. The time-domain source waveform and frequency spec-
trum for this source signature are shown in Fig. 4. For the present study,
the same reference case is considered, utilizing the airgun source wave-
form.

Calculation of kurtosis

The general statistical definition of kurtosis relates to the degree of heav-
iness in the tails of a statistical random variable or the distribution of
sample values. In the context of a sound pressure time series, kurtosis
follows the same definition, describing the distribution of pressure val-
ues. It is independent of the temporal structure of the signal and the
scaling of its amplitude. To resolve the ambiguity surrounding the term
“impulsive signal” and to provide clearer characterizations, Muller et al.
(2020) analyzed sound pressure field in time using kurtosis. The sound
pressure kurtosis, denoted as 3, is calculated as follows:

p="5 (26)

14
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Fig.4 Airgun source signature (top) and spectrum (bottom).

where p14 and p;, is the sound pressure variance defined as below,

1 g .
T —to fto [p() - pl

1 g .
y —toffo [p() - pl

where p(f) is sound pressure, p is mean sound pressure, and fy and #,
are the time points where the signal starts and ends, as described in ISO
18405:2017 (ISO, 2017).

Ha @7

= (28)

NUMERICAL RESULTS

In this section, sound pressure kurtosis is calculated for several sediment
types, including sandy, silt and clay-like substrates, as well as the work-
shop reference case. The influence of sediment type on the impulsive
characteristics of airgun-generated pulses is analyzed. The geometry of
the case study is depicted in Fig.2, where the marine airgun source is po-
sitioned 5 m below the sea surface, and the receiver is located at a depth
of 15 m. The airgun signature at the source is shown in Fig. 4. The sound
pressure is analyzed up to a distance of 3 km. The material properties of
the marine sediments are provided in Table 1. These properties include
representative grain size, density, compressional and shear wave sound
speeds, and absorption coefficients for both wave types, as detailed in
Ainslie (2010).
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Table 1 Properties of the sediment types. The sound speed in water
is 1500 m/s, and density is 1000 kg/m?>.

Sediment type ~ Representative p c, Cs a, ;s
grainsize ¢ [kg/m’Inys] [mys] [dB/A] [dB/A]

Coarse sand 0.5 2231 1875 353 0.87 7.88
Medium sand 1.5 2086 1797 319 0.88 7.88
Fine sand 2.5 1945 1730 295 0.89 7.88
Workshop case - 2000 1700 334 0.5 4.00
Very fine sand 3.5 1817 1670 280 049 4.00
Coarse silt 4.5 1702 1615 269 122 529
Medium silt 55 1601 1570 340 038 5.29
Fine silt 6.5 1513 1535 205 0.17 5.29
Very fine silt 7.5 1439 1510 108 0.11 529
Coarse Clay 8.5 1378 1490 50 0.08 18.95
Medium Clay 9.5 1331 1470 30 0.09 18.95

Comparison to equivalent fluid model

Based on the workshop case, the time dispersion calculated using the two
SILENCE propagation models—one with an equivalent fluid sediment
and the other modeling the seabed as an elastic medium—is presented in
Fig. 5. The SILENCE-fluid model employs the same complex wavenum-
ber integration method for simulating sound propagation from an airgun
array. Its mathematical formulation has been discussed by Sertlek et al.
(2024). The waveform for the workshop case, incorporating sediment
elasticity, is computed using SILENCE-elastic.

& 5000 —— SILENCE (fluid sediment)
; —— SILENCE (elastic sediment)
5
a
[
a
0.0 0.1 0.2 0.3 0.4 0.5
5 200 —— SILENCE (fluid sediment)
£ —— SILENCE (elastic sediment)
g 0
=)
& -500
020 025 030 035 040 045 050 055  0.60
< 50 —— SILENCE (fluid sediment)
% —— SILENCE (elastic sediment)
5 0
a
g
& —50
2.0 21 272 23 2.4 2.5
Time (s)

Fig.5 Comparison of Time-Domain Waveforms Calculated Us-
ing SILENCE-elastic and SILENCE-fluid Propagation
Models with Elastic Sediment Properties. Sound Pressure
vs. Time at Ranges of 30 m (Top), 300 m (Middle), and
3000 m (Bottom).

The pressure fields at 30 m and 300 m from the single airgun source
show good agreement between both models. However, at a range of
3000 m, the waveforms exhibit significant differences in shape and am-
plitude, despite both having a similar total pulse duration of 0.2 s. Since
the source is located in the water column, most energy is carried by the
primary water-borne transmission path. As a result, the near-field pres-
sure waveforms remain relatively consistent between the two SILENCE
models. At greater propagation distances, energy is increasingly radiated
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into compressional and shear waves due to multiple reflections and re-
fractions at the fluid-sediment interface. In the ocean environment, shear
waves are commonly higher attenuation than the compressional waves,
leading to a lower pressure amplitude when the seabed is modeled as an
elastic medium with attenuation.

Kurtosis

The sound kurtosis is calculated for different sediment types, as
indicated in Table 1. The pressure waveforms are first computed over
a total duration of 10 s. Ambient noise is incorporated by adding
Gaussian noise with an RMS value of 1 Pa as shown in Fig. 6, assuming
a background noise level of 120 dB SPL, resulting in a more realistic
kurtosis estimation.

Gaussian Noise with Kurtosis = 3, p;ms = 1 Pa

Sound Pressure [Pa]

[ 2 a 6 8 10
Time [s]

Fig. 6 Gaussian noise with rms sound pressure of 1 Pa

r=30m r=30m
104 30 104 30
£ xu]
- lIIIIIIIll.[ -y lIIIIIIIl.Il
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3 3
pv4 aL
10° 10°
10° r=300m 10¢ r=300m
L] xu]
S 102 S 102
£ £
3 3
& hv4
10° 100
r= m r= m
10% 3000 10% 3000
0 K]
g 107 €102
£ £
2 2
10° 100
RNEICASENE PSRN ASASENE PN
PP P PP e e O PR PR 022 5OC
2 & & R AASEL LS 2 & & R AOAFEELE
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&SP X CE SO S Py FEL
NN < & o N

Sediment Type Sediment Type

Fig. 7 Kurtosis with (right) and without (left) additional Gaussian
noise at 30 m, 300 m, and 3000 m for different sediment
types. T=10s.

Similar to observations from SILENCE (equivalent fluid model), kurto-
sis follows a similar trend at shorter ranges (30 m and 300 m) as shown
in Fig. 7. However, as the observation point moves farther away, kurtosis
levels are significantly higher for silt- and clay-like sediments compared
to those computed using the equivalent fluid model. In the equivalent
fluid model, kurtosis values for silt and clay are much lower, approach-
ing the Gaussian noise level (8 = 3). For these sediments, compressional
wave speeds are considerably lower than in sandy substrates. When mod-
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eling the seabed as an acoustic domain, a larger portion of energy radi-
ates into the acoustic half-space, resulting in weaker reflections at the
water-sediment interface. In contrast, when the sediment is modeled as
an elastic medium, wave reflections and refractions at the water-sediment
interface are better captured, leading to more realistic kurtosis levels in
the presence of Gaussian noise. Consequently, differences in kurtosis be-
tween sand, silt-, and clay-like sediments are less pronounced compared
to the equivalent fluid model.

CONCLUSIONS AND DISCUSSION

In this study, marine sediment is characterized by its elastic properties,
including density, compressional and shear wave sound speeds, and at-
tenuation. Variations in sediment properties lead to differences in sound
pressure kurtosis. When shear rigidity is ignored, the equivalent fluid
model can predict a similar trend for both time dispersion and kurtosis
levels at 30 m and 300 m. However, at greater distances, incorporating
a more realistic sediment description reveals notable variations in both
time dispersion and kurtosis levels. For the pressure waveform, ampli-
tude decreases at 3000 m. In terms of kurtosis, the current model predicts
higher kurtosis levels at 3000 m for silt- and clay-like substrates. These
results emphasize the importance of modeling sediment as an elastic
medium when analyzing sound propagation over larger distances (above
3000 m), particularly for sediments containing silt and clay.
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