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Abstract

The assessment of particle and cell size in electrical microfluidic flow cytometers has

become common practice. Nevertheless, in flow cytometers with coplanar electrodes

accurate determination of particle size is difficult, owing to the inhomogeneous elec-

tric field. Pre-defined signal templates and compensation methods have been intro-

duced to correct for this positional dependence, but are cumbersome when dealing

with irregular signal shapes. We introduce a simple and accurate post-processing

method without the use of pre-defined signal templates and compensation functions

using supervised machine learning. We implemented a multiple linear regression

model and show an average reduction of the particle diameter variation by 37% with

respect to an earlier processing method based on a feature extraction algorithm and

compensation function. Furthermore, we demonstrate its application in flow cytome-

try by determining the size distribution of a population of small (4.6 ± 0.9 μm) and

large (5.9 ± 0.8 μm) yeast cells. The improved performance of this coplanar, two elec-

trode chip enables precise cell size determination in easy to fabricate impedance flow

cytometers.

K E YWORD S

impedance flow cytometry, machine learning, multiple linear regression, neural network,
particle size

1 | INTRODUCTION

Electrical microfluidic flow cytometers facilitate non-invasive, label-

free and high-throughput single-cell analysis, enabling a large variety

of biological cell studies based on e.g. their size and dielectric cell

properties.1–3 Especially in simple and easy to fabricate devices with

coplanar electrodes (side by side), one of the main challenges is the

positional dependence of the impedance signal in the sensing region.

Here, the electric field is highly inhomogeneous in the sensing region

(Figure 1). An oppositely placed electrode configuration (facing each

other) can increase the sensitivity and reduce the particle position

dependency to a certain extent, but strongly increases the complexity

of fabrication.2 Another possible work around, particle focusing,4 but

adds operational complexity to the system.

Meanwhile signal processing solutions have been studied to

assess particle sizes accurately in all sorts of flow cytometers without

particle focusing.5–10 Most studies focus on pre-defined template and

compensation functions to extract and process features from imped-

ance signals: for example, particle size and position,9, 10 particle size

and velocity5–8 and particle size, velocity and cross-sectionalThis paper is an extended version of a conference contribution.
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position.11 An elaborate discussion of feature extraction and feature

processing techniques can be found in the recent review of Refer-

ence [1].

In this work, we focus on a new, accurate and simple method to

extract the particle size from an irregular signal response (Figure 1C).

The irregular signal response is the result of the particle position: an

M-shaped signal for particles passing close the electrodes,12 owing to

the high field density near the electrodes and a single peak for parti-

cles further away from the electrodes (for more details see SI Refer-

ence [9]). We demonstrate a reduction in particle size variation and

the ease of data processing, with respect to this earlier work,9 using a

multiple linear regression model in combination with a machine learn-

ing algorithm.13

Recent advances in machine learning and (impedance) flow cyto-

metry have already shown promising results regarding: quantification

of algal lipid accumulation using feature selection and regression

analysis,14 real-time intrinsic characterization of cancer cells and lym-

phocyte cells using a neural network,15 classification of pollen using a

combination of impedance cytometry and optical image processing,16

a recurrent neural network to find the size, velocity and cross-

sectional position of beads, red blood cells and yeast17 and intrinsic

characterization of red blood cells and detecting coinciding particles

with a neural network.18 Most of these papers rely on template fitting

of the impedance signal to obtain the training labels and electrical

features.

In short, we demonstrate a simple post-processing method based

on supervised machine learning, which improves our particle size

determination without the use of pre-defined signal templates and

compensation functions.

2 | METHOD

The microfluidic device and experimental parameters that were used

to acquire the multi-frequency impedance signals have been discussed

elaborately in previous work.9 In short, impedance data was recorded

at 0.5, 1, and 12 MHz simultaneously using a lock-in amplifier and

preamplifier (HF2LI and HF2TA, Zurich Instruments). The sample rate

was 28.8 kSa/s and the signal was set at 1 Vpeak-to-peak. Samples were

pulled through the chip with a constant flow rate of 0.05 μl/min using

a syringe pump (neMESYS, Cetoni). Before each experiments the

microfluidic chip was coated with a monolayer surface coating

(0.1 mg/ml PLL-g-PEG, SuSoS). 5, 6, and 7 μm polystyrene beads

(Sigma-Aldrich and PolySciences) were diluted in seawater

(conductivity = 4 S/m) to �5 � 106 beads/ml. A surfactant (Tween

20) was added and the samples were sonificated to prevent clumping.

Additionally, a cell experiment was performed with fresh baker's yeast

(Saccharomyces cerevisiae). Yeast was diluted in phosphate buffered

saline (PBS, conductivity = 1.2 S/m) to �1 � 107 cells/ml and sucrose

was added to make the yeast cells buoyant (�1.1 g/cm319). The same

procedure was used to create training samples with 5 and 7 μm poly-

styrene beads. The yeast sample was spiked with 5 μm beads. The

experiment with yeast and its training data was recorded at 0.12,

0.75, and 12 MHz, as will be explained later.

Our new data processing method is the following. Firstly, the

baseline of the acquired signals was removed by subtracting a polyno-

mial fit or a moving mean (also required for the previous methods),

where after the passage of a bead was registered by a simple peak

find algorithm (‘findpeaks’) in MATLAB (R2020a, MathWorks). Each

event was saved at two frequencies (f1 and f2) with a window size

N centered around the peak of signal f1 (Figure 2A). Two frequencies

were fed to the model to exploit the correlation between the particle

height and the electrical opacity,9 where the electrical opacity is

defined as the impedance ratio at high and low frequency.20 The indi-

vidual events were later introduced to a single-layer neural network

with linear activation function, which acts as a multiple linear regres-

sion model to predict the particle volume V, which scales linearly with

the impedance magnitude jZj (Figure 2B). Subsequently, the particle

diameter D can be calculated (Figure 2B). Investigations of models

with hidden layers (deep learning) did not show any improvements,

therefore we focus on the simpler and faster multiple linear regression

model.

The multiple linear regression model with gradient descent algo-

rithm was implemented in Python 3.7 using TensorFlow 2.4.1. The

model was optimized using the adaptive moment estimation algorithm

(Adam21) using the mean absolute error as a cost function. Two data-

sets, each acquired by a different chip (i.e., different alignment of the

electrodes and fluidic channel) but with the same experimental

F IGURE 1 (A) Microfluidic chip with coplanar electrodes, (B) resulting in an inhomogeneous electric field. (C) The measured irregular signal
shape and apparent particle size is position dependent as a result of the inhomogeneous field. The M-shaped peak (peak 2) is the result of a
particle passing close to the electrodes, owing to a high field density near the electrodes12 [Color figure can be viewed at wileyonlinelibrary.com]
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parameters, were used to train and test the model (Table 1). Each

dataset contains training data of separate runs of 5, 6, and 7 μm

monodisperse polystyrene beads (85% training and 15% validation)

and test data with a mixture of these beads. The model was separately

trained for dataset 1 and dataset 2 using a 0.5 and 12 MHz signal

unless stated differently. The window size N for each event was set

arbitrarily at 200 (for reference: Figure 2A displays 864 samples). A

smaller window size (e.g., 100) reduced the performance of the model

and a larger window sizes (e.g., 600) gave similar results.

The performance of the model was assessed by fitting a Gauss-

ian distribution in Origin (2019b, OriginLab Corporation) on the

unseen test data (mixture of 5, 6, and 7 μm beads). The standard

deviation of each particle size distribution was compared to the pre-

vious method and the manufacturer's specifications (5.05 ± 0.16 μm

(Sigma-Aldrich), 6.017 ± 0.168 μm (PolySciences) and 7.00 ± 0.11 μm

(Sigma-Aldrich)). The mean diameter given by the manufacturer was

converted to the particle volume and used as label for the

training data.

F IGURE 2 (A) The impedance response (jZj) of a passing bead measured at two frequencies (f1 and f2) simultaneously. (B) The signals are fed
to a multiple linear regression model, here visualized with N input nodes and a single output node. The weights (w) and bias (b) of the model are
optimized using a gradient descent algorithm to predict the correct particle volume (V), where after the electrical diameter D is calculated [Color
figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Sample size of the datasets used for training (labeled) and testing (unlabeled) the model

Dataset

Training Testing

5 μm beads (# of samples) 6 μm beads (# of samples) 7 μm beads (# of samples) Mixture of beads (# of samples)

1 880 463 292 775

2 906 473 536 1117

Note: The column “Training” represented all training data and is split into 85% training and 15% validation data.

F IGURE 3 Histograms of the two testing datasets for both processing methods. The insets indicate the mean diameter (μ) and standard
deviation (σ) of each peak [Color figure can be viewed at wileyonlinelibrary.com]
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To conclude, our new approach does not require any pre-defined

fitting template and compensation function, but allows for feature

extraction and processing in one step.

3 | RESULTS AND DISCUSSION

Two datasets have been processed using two different methods: the

previous signal processing method and the machine learning approach

(Figure 3). The machine learning method shows a significant improve-

ment on the unseen particle mixtures for both datasets. We observe

an average reduction of 37% in the particle size variation (Table 2).

The coefficient of variation (CV) of the 6 μm beads meet the manufac-

turer's specifications, whereas the CV of the 5 and 7 μm beads is still

larger than specified by the manufacturer.

We demonstrate a wider application of the machine learning

approach by inter- and extrapolation of particle sizes at which the

model has not been trained (Figure 4). The results are based on train-

ing of the model using only two particle sizes. One outstanding differ-

ence is the deviation in mean diameter (μ = 4.89) for the 5 μm beads

(Figure 4A) and the deviation in mean diameter (μ = 6.81) for the

7 μm beads (Figure 4c). A two-point calibration with the calibration

points close together is more prone to deviations. The interpolation of

6 μm beads (Figure 4B) performs comparable to the initial results with

all training data. Summarizing, the model can be trained using just two

particle sizes (preferably 5 and 7 μm beads), enabling the application

in biological samples with a wider size distributions.

So far, all results were based on processing a 0.5 and 12 MHz sig-

nal for which the previous method worked best.9 These frequencies

were chosen rather far apart to enhance the opacity effect. For size

determination in flow cytometry it is required to operate below the

β-dispersion of cells (<several MHz9, 22). Therefore, we also have

tested the model with a 0.5 and 1 MHz signal response (Figure 5) and

we have observed a significant improvement for all particles com-

pared to the previous method. The accuracy (machine learning with

0.5 and 1 MHz signal) is also close the machine learning approach with

the 0.5 and 12 MHz signal. Altogether this machine learning approach

makes a promising method to measure cell diameter accurately. This

is further investigated by studying the size distribution of yeast cells.

As mentioned before, impedance data should be acquired below

the β-dispersion of yeast cells to guarantee the same insulating prop-

erties of the cells as the calibration beads. Earlier research shows small

differences between beads and yeast cells at �1.1 MHz23 and we

observe no differences in opacity between beads and cells at

750/120 kHz (Figure S1). Thus, we have used a training set of 5 and

7 μm beads at 120 and 750 kHz to train our model, where after the

model was used to predict the size of yeast cells spiked with 5 μm

beads (Figure 6). The high frequency signal at 12 MHz was used to

differentiate the beads and cells (Figure S1). The yeast cells show a

distribution of small (4.6 ± 0.9 μm) and large (5.9 ± 0.8 μm) cells as

reported earlier.6, 7, 9, 23, 24 Optical inspection also shows small and

large yeast cells and no budding events (Figure S2).

Both processing methods need calibration of specific chips and

parameters, so training the model with dataset 1 yields poor results

with the test data of dataset 2 and vice versa, because of small devia-

tions in the alignment of electrodes and microfluidic channel, hence

small deviations in the signal response. In general, parameters that

influence the frequency response, like the buffer (different conductivity

TABLE 2 Performance of the processing methods expressed in the coefficient of variation (CV)

Particle
size (μm)

Manufacturer Dataset 1 Dataset 2

Specification
CV (%)

Previous method, Reference
[9] CV (%)

Machine learning
CV (%)

Previous method, Reference
[9] CV (%)

Machine learning
CV (%)

5 3.1 5.8 4.0 (�31%) 6.6 4.8 (�27%)

6 2.8 4.0 2.3 (�42%) 4.0 2.3 (�42%)

7 1.5 2.9 2.0 (�31%) 4.3 2.3 (�47%)

F IGURE 4 Histograms of inter- and extrapolation (dataset 2). (A,C) The extrapolation of 5 and 7 μm beads, respectively. (B) The interpolation
of 6 μm beads. The insets indicate the mean diameter (μ) and standard deviation (σ) of each peak [Color figure can be viewed at
wileyonlinelibrary.com]
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and/or pH) or the chip alignment will influence the signal response.

Switching the flow rate after calibration can most likely be accounted

for using intra- and extrapolation of the recorded impedance signal. In

cell experiments we can calibrate each measurement by mixing the

sample with both 5 and 7 μm beads, classifying the beads and cells

(using the high frequency response), then calibrating the model with

the beads. Larger datasets in combination with deep learning might

also yield better results in accounting for these before mentioned devi-

ations, however that needs further investigation.

The machine learning method requires two sets of monodisperse

beads for calibration in comparison to the previous method, which

required one set. On the other hand, the machine learning method

simplified the data processing, which was cumbersome in the previous

method. I.e. it is no longer needed to differentiate between a single

and M-shaped impedance response (Figure 1c) and it is no longer

needed to express and evaluate a compensation function. The afore-

mentioned steps needed proper interpretation and processing of the

data. For example, in the previous method the M-shaped peak had to

be differentiated from the single peak by correctly detecting the

double peaks of the ‘M-shape’, where after the local minima had to

be found (see SI and Reference [9]). This is much easier with the

machine learning algorithm, which only needs to register the highest

peak of the passing particle (Figure 2A) and then processes the data in

one go. Please note, the algorithm does not account for coinciding

particles, which might also give an M-shaped response, but it will give

the apparent size of the coinciding particles.

Other studies may also benefit from this machine learning

approach by replacing pre-defined templates and compensation func-

tions. This requires the availability of labels for the training set, such

as the mean particle diameter given by the manufacturer, or e.g. the

particle position or velocity via optical inspection.

4 | CONCLUSION

We have demonstrated a simplified and more accurate processing

method of irregular impedance signals based on supervised machine

learning. Irregular signal shapes are easily processed using a multiple

linear regression model, which does not require any pre-defined tem-

plate fitting or correction function. This new method shows an aver-

age improvement of 37% in the particle size variation compared to

the previous processing method (based on a feature extraction algo-

rithm and compensation function9). Additionally, the performance

with biological cells at low frequency has been demonstrated by

determining the size distribution of yeast cells.

The improved performance of the system using input signals at

low frequencies (0.5 and 1 MHz) is a promising development for the

characterization of cell size in a very simple impedance flow cyt-

ometer with only two electrodes. Furthermore, requirements for the

chip alignment are low, each chip (or different channel/electrode

geometry) needs simple calibration with two sets of monodisperse

beads.
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