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Meta-learning the Best Caching Expert
Maik de Vries

✦

Abstract—In recent years, the novel framing of the caching problem as
an Online Convex Optimisation (OCO) problem has led to the introduc-
tion of several online caching policies. These policies are proven optimal
with regard to regret for any arbitrary request pattern, including that of
adversarial origin. Nevertheless, their performance is primarily affected
by the tuning of their so-called hyperparameters (e.g. learning rate),
which is often done under the presumption of adversarial conditions.
Consequently, as not all request patterns encountered in practice are
adversarial, this suggests potential for further improvements. Unfortu-
nately, the tuning of these hyperparameters to achieve optimal perfor-
mance across non-adversarial request sequences remains dubious and
poses a new challenge. This paper proposes an online meta-learner that
combines several instances of the OGA caching policy, each distinct
in their learning rate, framing the problem as an expert advice deci-
sion problem. The proposed meta-learner dynamically shifts between
caching experts and achieves a regret upper bound similar to that of
the best-performing caching expert. The penalty introduced for learning
the best expert is limited to a logarithmic dependence on the number
of experts, which improves upon previous works. Numerical evaluations
composed of synthetic request traces demonstrate consistent improve-
ments when the caching experts’ relative performance varies over time.

1 INTRODUCTION

1.1 Motivation and Background
The field of computer science spans a range of disciplines, many
of which face a common caching problem. A cache has as its
main goal to provide fast access to a size-limited subset of some
complete library; with applications thereof varying from virtual
memory [1] to the world-wide-web [2], file systems [3], and
operating systems [4] to name a few. The problem arises when it
comes to deciding what is to be kept and what is to be evicted
from such a cache.

Over the years, various cache replacement algorithms have
been proposed [5], each with its strengths and weaknesses. Their
performance is commonly quantified in terms of their cache
hit ratio: the fraction of requests which can be served directly
by the cache, resulting in a cache hit; whereas a request for
content not present in the cache leads to a cache miss. These
cache replacement algorithms, more commonly known as caching
policies, aim to maximise their cache hit ratio.

The main limitation of most of these caching policies lies
in the need to know certain properties of the request pattern
upfront, such as whether it can be assumed to be stationary or
non-stationary (i.e. time-varying). The most suitable policy for a
given situation is then determined based on these assumptions.
For instance, the Least Frequently Used (LFU) and Least Recently
Used (LRU) caching policies are characterised by caching the
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FIGURE 1 A caching policy determines what files to store in the cache to
maximise the cache hit ratio: (1) a request is made for α, which results in a
cache miss and α is fetched from the origin server; (2) a request is made for
β, which results in a cache hit; (3) a second request is made for α, which now
results in a cache hit.

requested content, with LFU evicting the least frequently used file,
while LRU frees the file least recently accessed. Although both
policies enjoy widespread usage, prior research demonstrates their
sub-optimal performance when challenged with unpredictable
request sequences [6]–[10]. Additionally, consider the case of
content delivery networks (CDNs), which often span the entire
globe, facing different and evolving request patterns as a result.
This further illustrates the need for dynamic caching policies that
base their decisions on prior observations rather than statistical
expectations.

In recent years, the age-old problem has been approached
anew from the context of online learning [11]–[13], bringing
forth several online caching policies [14]–[16]. This class of
algorithms continuously adapt and learns the optimal decision
policy based on the success of their previous decisions; and
in doing so, avoids the aforementioned necessity for upfront
knowledge. Hence, they are proven to guarantee an optimal
caching policy for any arbitrary request pattern, including that
of adversarial origin [15], [17]. Furthermore, their scalability
and lacking requirement to be trained, in contrast to offline
learning, come as additional advantages. Nevertheless, their
performance is primarily affected by the tuning of their so-called
hyperparameters (e.g. learning rate), which is often done under
the presumption of adversarial conditions. Consequently, as not
all request patterns encountered in practice are adversarial, this
suggests potential for further improvements. Unfortunately, the
tuning of these hyperparameters to achieve optimal performance
across non-adversarial request sequences remains dubious and
poses a new challenge.

This work aims to address the identified challenge of learning
rate tuning and provide a solution to the question: is there an
effective way to learn the optimal tuning of such hyperparameters
to derive the best caching policy?
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1.2 Methodology and Contributions

Consistent with the above-mentioned online caching policies, the
approach proposed in the remainder of this paper follows the
mathematical framework of Online Convex Optimisation (OCO)
[18]–[20]. This subjects some learner algorithm to the process of
selecting a decision vector yt from a convex set Y at each time slot
t; all without knowledge of its performance determined by some
time-varying utility function ft (y), which is revealed only after
yt has been selected. The learner algorithm has as its objective to
minimise the growth of regret over some horizon T :

RT =
T∑

t=1

ft (y
∗)−

T∑
t=1

ft (yt)

Here, y∗ is the benchmark algorithm with hindsight (i.e. complete
knowledge of future functions ft,∀t), defined as:

y∗ = argmax
y∈Y

T∑
t=1

ft (y)

In its application of the OCO framework to the caching
problem, the role of “learner algorithm” is fulfilled by some
caching policy; and its associated cache configuration takes on
the role of “decision vector”, which is decided upon before the
reveal of the request dependent value of ft (y)1. Furthermore, an
online caching policy desires sublinear regret RT = o (T ), so
as to ensure negligible average regret RT

T ≈ 0 as T → ∞. In
contrast to the lower bound of Ω (T ) for both the LFU and LRU
caching policies [15], previous research has established sublinear
regret to be the absolute lower bound for OCO-based policies
[15], [17]; coining such policies no-regret caching policies.

One such no-regret caching policy is the Online Gradient
Ascent (OGA) algorithm, originally proposed in [15]. Although
OGA enjoys the guarantee of sublinear regret, its strict upper
bound is derived under the assumption of adversarial conditions
(i.e. worst-case scenario); and subsequently, the optimal tuning
of its learning rate is obtained in a similar fashion [15, Theorem
2]. This implies that there is potential room for improvement
when the OGA caching policy encounters request patterns of
non-adversarial origin.

This paper therefore suggests framing the optimisation
problem as an expert advice decision problem [21]–[23],
proposing the application of a meta-learner [24] over several
OGA caching experts with varying learning rates; and in doing so,
reduce the problem from careful tuning based on the underlying
(unknown) system parameters, to learning the best performing
caching expert.

The notion of tracking the best expert in this regard is well-
established, as a sample from the plethora of previous research
indicates [25]–[30]. Within the domain of caching, the novelty of
caching policy experts has been the subject of studies in the field
of (deep) reinforcement learning [31], [32]. Nevertheless, this
approach is limited by the core assumption that the learnt request
distribution remains stationary over time (i.e. suffers under
time-varying conditions). Although expert-based meta-learners

1 Take note of the absent definition for utility function ft (y), illustrating the
versatility of the OCO framework in modelling the online caching problem;
thus permitting the optimisation of any arbitrary performance function.

are widely studied in online learning, their application within
the context of no-regret caching policies remains relatively
unexplored.

As far as current understanding goes, the only works
that study the combination of the expert and online caching
problem are [33]–[37]. Notably, [33, Section 5] presents an
optimistic online caching policy that utilises advice from multiple
predictors through the use of an OGA meta-learner; which is
extended into the realm of discrete caching in [34, Section 8];
whereas [35, Section 5] proposes leveraging recommendation
systems as optimistic predictors under an OFTRL meta-learner.
Unfortunately, as a result of using either the OGA or OFTRL
algorithm in learning the optimal predictor, the regret upper
bound of these meta-learners suffers an additional polynomial
dependence on the number of predictors [33]–[35]. Furthermore,
the application of a meta-learner across a variety of caching
policies was studied in [36], and [37] proposed an IAWM meta-
learner over several FTPL instances. Nonetheless, the regret upper
bound of these meta-learners suffers an additional dependence on
library size N [36, Section 4.4] [37, Section 3.2]. Hence, a more
efficient meta-learner across no-regret caching experts remains
hitherto unexplored.

As such, the main focus of this work is an online meta-learner
[38] based on the Exponentiated Gradient (EG) [39] algorithm.
To this end, the aforementioned OCO framework is extended
with an additional layer on which the meta-learner operates (i.e.
the meta-learner follows the OCO framework); at each time
slot, the meta-learner is tasked with selecting a caching expert,
incurring its cost and learning to minimise regret by updating
caching experts’ weights accordingly. Moreover, the use of the
EG algorithm in this regard does not expand the regret upper
bound as substantially as the above-mentioned meta-learners
have; and instead introduces a logarithmic dependence relative to
the number of caching experts [40, Algorithm 6.3].

In summary, the contributions made in this paper consist of:

• The introduction of an online meta-learner across distinct
OGA caching experts as an application of the OCO
framework to the expert advice decision problem. This
approach achieves regret similar to the best caching expert,
serving only a logarithmic dependence on the number
of experts for learning the best-performing expert, and
improves upon prior works [33]–[37].

• An empirical evaluation through representative synthetic
request models; comparing its performance to the best in
hindsight benchmark, as well as the individual caching
experts.

Paper organisation

The remainder of this paper is organised as follows. Section 2
defines the system model and formally introduces the problem
statement. Section 3 presents the online meta-learner algorithm,
including an upper bound for its regret, and Section 4 provides
a numerical evaluation composed of synthetic traces. Section 5
states the conclusions, and Section 6 reflects on any involved
ethical aspects, as well as reproducibility.
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2 SYSTEM MODEL AND PROBLEM STATEMENT

2.1 System model
The model used to describe the system of interest follows that of
[15]. For completeness, its definitions of terms will be provided
first, as well as expanded upon next. In the remainder of this
paper, let vji denote the element at index j of some vector vi.

The system consists of a library of unit-sized files
N = {1, 2, . . . , N} and a cache of size C < N . Furthermore,
the system functions in a time-slotted fashion, with at each time
slot t = {1, 2, . . . , T} a single request for a file n ∈ N , denoted
by the event xn

t = 1.

The N -dimensional request vector xt at time slot t is de-
scribed by the feasible set of requests X :

X =

{
x ∈ {0, 1}N

∣∣∣∣∣
N∑

n=1

xn = 1

}
Thus, for each slot t an N -dimensional request vector xt

contains a single element set to 1, describing a request for the
corresponding file. Furthermore, no assumptions are made as to
the properties of the distribution of xt. The assumption for it
to be unknown and arbitrary ensures caching policies deemed
performant under this model, to perform similarly or better under
different models.

The N -dimensional vector yt contains the cache configuration
at time slot t and is described by the feasible set of caching
configurations Y :

Y =

{
y ∈ [0, 1]

N

∣∣∣∣∣
N∑

n=1

yn ≤ C

}
Hence, for each slot t an N -dimensional cache configuration
vector yt contains elements in the continuous range from 0 up to
1, and its sum equals at most the cache size C . These constraints
allow for partial caching (also known as coded caching), which
is desirable in certain applications (e.g. video files made up of
independent chunks) [41]. Note that the aforementioned restriction
on file size can be readily alleviated by substitution of the capacity
constraint in Y with:

N∑
n=1

snyn ≤ C

where s is an N -dimensional vector in RN
+ , such that sn describes

the size of file n ∈ N .

At time slot t, the N -dimensional vector wt ∈ RN describes
the weight of each file n ∈ N in the computation of the
utility function f (wt, xt, yt). In other words, if file n were to
be requested and resulted in a full cache hit, the achieved utility
would be equivalent to wn

t . The definition of the utility function
f (wt, xt, yt) is given next:

f (wt, xt, yt) ≡ ft (yt) =
N∑

n=1

wn
t x

n
t y

n
t (1)

Therefore, the system accumulates utility at time slot t when the
requested file xn

t has been (partially) cached in cache configura-
tion yt.

Cache
yt ∈ Y

Weights
wt ∈ RN

Request
xt ∈ X

Utility
ft (yt)

Time slot t+ 1

FIGURE 2 A cache configuration yt is chosen; an adversary reveals weights
wt; an adversary reveals request xt; the achieved utility ft (yt) is computed;
and the next time slot t+ 1 is processed.

2.2 Problem statement
In framing the caching problem as an Online Convex Optimisation
(OCO) problem, it is important to highlight the following assumed
system conditions. Given the arbitrary nature of the underlying
distribution of xt, it may additionally be understood as each xt

being chosen by an adversary to degrade the caching policy’s
performance; as well as having complete control over the
selection of weights vector wt. Furthermore, note that the cache
configuration yt is decided upon before the adversary introduces
both wt and xt, and consequently, without any upfront knowledge
of ft (yt). Refer to Figure 2 for a visual outline of the OCO-based
adaptation of the caching problem.

Recall that a caching policy seeks to maximise the number of
cache hits and thus, minimise the number of cache misses. This is
reflected in the definition of the utility function ft in (1). Caching
policies which therefore cache files that accumulate the most
utility given an arbitrary request sequence, outperform policies
which fail to cache these particular files. Within the context of
online learning, caching policies are dynamic and continuously
adapt. They learn the optimal decision policy based on previous
requests, its past cache configurations, and the success of its
decisions based on them. As a result, they similarly learn to cache
the files that have been accumulating the most utility.

Similar to [15], evaluating the performance of some caching
policy σ is done by comparing it to the best static cache configu-
ration in hindsight benchmark y∗. This benchmark has complete
knowledge of the request sequence x1, . . . , xT , and is thus able
to determine the highest utility-earning static cache configuration
y∗:

y∗ ∈ argmax
y∈Y

T∑
t=1

ft (y)

The performance of caching policy σ can then be quantified as a
comparison, and is termed the static regret of policy σ:

RT (σ) = max
P (x1,...,xT )

E

[
T∑

t=1

ft (y
∗)−

T∑
t=1

ft (yt (σ))

]
An important consequence of defining the performance of caching
policy σ as such is that the detrimental effect an adversary can
have on the performance of σ will also translate to similar losses
in that of y∗.

The objective is then to minimise the growth of regret over
the infinite horizon T → ∞, which requires a caching policy σ
to achieve sublinear regret: RT (σ) = o (T ). This ensures the
average performance gap RT (σ)

T diminishes as T scales. In other
words, caching policy σ adapts and learns the optimal cache
configuration without any upfront knowledge of the distribution
of xt. Theoretically, depending on the encountered request pattern
and chosen caching policy, the total regret could even be subzero.
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This is due to the static nature of benchmark y∗; which, compared
to the dynamic cache configuration yt, might suffer reduced
performance ft (y

∗) ≤ ft (yt) for some time slots, yet achieve
similar performance ft (y

∗) ≈ ft (yt) during the remaining slots.

Recall that the Online Gradient Ascent (OGA) algorithm
guarantees an optimal cache configuration under adversarial
conditions, as well as a static regret upper bound of O

(√
CT

)
[15, Theorem 2]. Nonetheless, the assumed adversarial setting
does not reflect all plausible request patterns; and tuning its
optimality in this regard remains ambiguous, as will become clear
shortly.

The update rule is central in the determination of cache
configuration yt+1, and its definition for the OGA algorithm is
given in (2). Similar to other online caching policies, the selection
of yt+1 is solely based on the current cache configuration yt, the
request xt, and their associated utility ft (yt). There is therefore
no necessity to track and store the full history of all cache
configurations nor all requests up to the current time slot t. Hence,
after recording the obtained utility at time slot t, OGA’s next cache
configuration yt+1 is computed as:

yt+1 = ΠY (yt + η∇ft) (2)

where ΠY is the Euclidean projection onto Y , defined as a
constrained quadratic program, minimising the Euclidean squared
distance:

ΠY (z) ≜ argmin
y≥0

N∑
n=1

(zn − yn)
2

s.t.
N∑

n=1

yn ≤ C and yn ≤ 1, ∀n ∈ N

and η is the learning rate, with the gradient ∇ft at yt defined as
the N -dimensional vector with elements:

∂ft
∂ynt

= wn
t x

n
t , n = 1, . . . , N

So at each time slot t, the cache configuration yt+1 moves a
factor η into the direction of current request xt, using Euclidean
projection to project onto the set of feasible cache configurations
Y if necessary.

The suggested optimal tuning of learning rate η in [15,
Theorem 2] is derived under the aforementioned assumption of
adversarial influence. Consequently, the guarantee of sublinear
regret is established as its upper bound, expressed in the following
inequality:

RT (OGA) ≤ diam (Y)
2

2η
+

ηTL2

2
(3)

where diam (Y) describes the maximum Euclidean distance be-
tween any two elements in set Y , and L denotes the upper bound
of the gradient ∇ft:

∥∇ft∥∞ ≤ ∥wt∥∞ ≤ L

The optimal learning rate then follows from solving (3) for η:

η =
diam (Y)

L
√
T

Hence, the proposed tuning of η is derived under the premise of
an adversary. Although this additionally ensures sublinear static
regret given any arbitrary request pattern, it cannot be deemed
the most optimal (i.e. no one-size-fits-all solution). Unfortunately,
tuning the learning rate to this end remains dubious, as no
assumptions can be made for the distribution of xt, other than it
being of an adversarial nature.

These observations then drive for further exploration as to
whether the careful tuning itself can be cast as an OCO problem.

3 META-LEARNER

It has been established that the Online Gradient Ascent (OGA)
algorithm guarantees an optimal cache configuration under
adversarial conditions [15]. Furthermore, tuning its learning rate
for optimal performance given non-adversarial request sequences
remains tedious. Therefore, this work aims to introduce an online
meta-learner; framing the optimal tuning of said learning rate
as an additional Online Convex Optimisation (OCO) problem
in the form of an expert advice decision problem. As such, the
Exponentiated Gradient (EG) [39] algorithm is utilised as a
meta-learner across a multitude of OGA caching experts, distinct
in their learning rates. Unlike the previous works of [33]–[37],
the novel proposal of the EG meta-learner contains a logarithmic
dependence on the number of experts in its regret upper bound (8).

An important requirement of an expert-based meta-learner is
its ability to learn from each underlying expert’s performance.
Experts who are more performant should be regarded as more
significant than experts who are less performant. This distinction
enables the meta-leaner to learn which expert is best in a given
scenario. Additionally, it must not be the case that once such
an expert has been identified, it is assumed to remain the best-
performing expert. Therefore, a change in an expert’s performance
should cause the meta-learner to change its associated weight.
Furthermore, no single expert should ever become the sole dictator
(i.e. total bias towards a single expert); and were this requirement
to be omitted, no meta-learner would be able to guarantee the
previous requirement, as a change in expert performance would
not lead to a change in the expert’s weight. The proposed EG meta-
learner abides by these requirements, which will become clear
through the description of its implementation provided shortly.

3.1 Caching Experts
Let the following terms and definitions expand upon the system
model described in Section 2. The set of distinct caching experts
K = {1, . . . ,K} is introduced, with none of the experts limited
to any particular caching policy σ. Let yk,t denote the cache
configuration y ∈ Y of expert k ∈ K at corresponding time
slot t. The utility achieved by cache configuration yk,t is then
equivalent to ft (yk,t), and let the regret of expert k be defined
as RT

(
σk

)
. Furthermore, each entry uk

t in the K-dimensional
vector ut describes the utility achieved by the corresponding
cache configuration yk,t.

The K-dimensional vector mt denotes the expert probability
weights at time slot t and is described by the feasible set of expert
probability weights M:

M =

{
m ∈ [0, 1]

K

∣∣∣∣∣
K∑

k=1

mk = 1

}
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Expert weights
mt ∈ M

Caching expert
β ∈ K

Caching expert
γ ∈ K

Utilities
uk
t , ∀k ∈ K

Calculate
mt+1

Record uβ
t

ft (yβ,t)

ft (yγ,t)

Time slot t+ 1

FIGURE 3 A caching expert β is randomly selected based on expert probability vector mt; all caching experts process request xt and output their obtained
utilities ft

(
yk,t

)
; the meta-learner records the utility of the selected expert uβ

t ; the expert probability vector mt+1 is computed; and the next time slot t+ 1 is
processed.

Thus, each entry mk
t denotes some probability weight p (k)

associated with expert k ∈ K in the probability vector mt.

The aim is then to meta-learn a caching policy σ∗ with a
regret upper bound close to the achieved regret of the best caching
expert:

RT (σ∗) ≤ α+min
k∈K

{
RT

(
σk

)}
(4)

where α denotes the penalty of having to learn the best caching
expert and is ultimately determined based on the chosen meta-
learner algorithm.

3.2 Exponentiated Gradient

The EG algorithm is tasked with updating the expert probability
vector mt relative to the achieved utility ft (yk,t) of each expert
k, and its update rule is given in (5). Recall that online learning
problems base their updates solely on data available at the current
time slot t, in contrast to keeping track of the full history of all
prior time slots up to t. Therefore, the expert probability weights
mt+1 are computed as:

mk
t+1 =

mk
t exp

(
δ∇uk

t

)∑K
i=1 m

i
t exp

(
δ∇ui

t

) , k = 1, . . . ,K (5)

where the learning rate δ is defined as:

δ =

√
2 lnK

∥wt∥2∞ T
(6)

and the utility gradient ∇uk
t of each expert k ∈ K is described

by the K-dimensional utility vector ut: ∇ut ≡ ut. The result
is the normalised vector mt+1, and as such analogous to expert
probabilities.

In contrast to OGA’s additive update rule, EG instead
makes use of a multiplicative definition. This allows for faster
convergence of the best expert in comparison to additive
updates. However, a major pitfall of multiplicative updates is
total convergence (i.e. all but one weight to zero) [42]. This
would leave a single expert as the sole dictator and prevent the
meta-learner from adapting once its performance starts to vary,
a problem alluded to at the start of this section. The solution in
circumventing this problem is twofold: the interpretation of expert
weights as probabilities, and characteristics of the gradient ∇ut

detailed next.

Algorithm 1: Caching expert meta-learner (σ∗)

Input: T ; K; ∥wt∥∞
Output: ft (σ∗) ,∀t

1 Initialise mt according to (7)
2 Calculate δ according to (6)

3 for t = 1 to T do
4 Select kt ∈ K at random based on probabilities mt

5 Observe the utilities uk
t ,∀k ∈ K

6 Record utility of selected expert ukt
t

7 Calculate expert probability vector mt+1 using (5)

The definition of gradient ∇ut ≡ ut ensures experts who
achieve nonzero utility are rewarded by increasing their respective
probability weights. This follows from the fact that utility cannot
be negative, which guarantees that the exponent eδ∇ut ≥ 1.
Hence, an expert’s weight is solely determined by its relative
performance: outperforming all other experts will result in a
substantial increase, whereas similar performance will result
in minimal changes. Furthermore, a nonperforming expert will
quickly see its weight tumble due to other agents’ increasing
weights, suppressing it in normalisation. These properties ensure
the meta-learner’s ability to shift towards the best-performing
caching expert, even when a single expert dominates probability
vector mt.

The main components of the online meta-learner algorithm
σ∗ have now been defined and discussed. The complete algorithm
is detailed in Algorithm 1 and a step-by-step description is given
next; see Figure 3 for a visual overview.

Before processing time slot t = 1, 2, . . . , T , the K-
dimensional vector mt is initialised and describes the probability
weight of each caching expert k ∈ K at time slot t = 1:

mt=1 =

[
1

K

]K
(7)

Therefore assigning each caching expert with uniform probability,
and as a result, no particular caching expert is considered to
be the best before the first time slot commences. Additionally,
the static learning rate δ is computed based on the number of
experts K , the upper bound on the file weights in vector wt and
the system horizon T . Then for each time slot t, an expert kt
is selected at random according to the expert probability vector
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mt. Next, the vector ut is determined as request xt is revealed
and the meta-learner accumulates utility equal to its randomly
picked expert: ukt

t . Finally, the expert probability weights mt+1

are calculated.

The meta-learner penalty α in the regret upper bound inequal-
ity of σ∗ (4), inherits the upper bound proven in [40, Algorithm
6.3]; which similarly utilises the EG algorithm as meta-learner
across experts. Considering σ∗ does not include modifications to
the EG algorithm, its proven regret upper bound comes for free.
The regret upper bound of caching expert meta-learner σ∗ over
horizon T is thus:

RT (σ∗) ≤ α+min
k∈K

{
RT

(
σk

)}
with α ≤

√
2

2
∥wt∥∞

√
T lnK (8)

Therefore, the penalty of having to learn the best caching expert
is logarithmic relative to the number of caching experts. This is an
improvement over the previously established meta-learner upper
bounds in [33]–[37].

It is important to highlight the inclusion of the regret achieved
by the best caching expert in the upper bound of σ∗; therefore,
ensuring the meta-learner will perform no worse than a logarith-
mic term comparatively. However, this does not encapsulate the
scenario in which the best caching expert varies with time. In such
cases, one can imagine meta-learner σ∗ enjoys regret strictly lower
than any of its underlying caching experts.

4 EVALUATION

The proposed online meta-learner caching policy σ∗ is evaluated
as a single cache across three i.i.d. Zipfian distributed request
models; with different values for parameter ζ ∈ {0.6, 0.8, 1.0},
each representative of real-world applications [43]–[45].
Since OCO-based caching policies already enjoy proven
optimality under adversarial conditions, none of the simulations
considers such a case. Comparisons are made to the Best Static
Configuration in Hindsight (BSCH) benchmark y∗, as well as the
individual caching experts k ∈ K available to σ∗.

In particular, the case where K consists of various Online
Gradient Ascent (OGA) [15] experts with distinct learning rates
η ∈ {0.05, 0.1, 0.3, 1.0} is studied. Furthermore, the library is
set to contain N = 2500 files, with a cache size restricted to
C = 250 files, and file weights set uniformly wt = [1]

N
, ∀t to

study the cache hit rate scenario. Finally, let the average utility be
defined as 1

t

∑t
i=1 fi (yi).

Figure 4 depicts the average utility progression of each
caching expert k ∈ K across the three above-mentioned Zipfian
distributed request models; and Figure 5 plots the evolution of
each corresponding expert probability weights vector mt. These
figures illustrate the success of meta learner σ∗ in learning the
best caching expert for any time slot t. On top of that, they further
demonstrate their ability to adapt once expert performance varies,
causing a shift in which expert is regarded as the best performing.
However, the rate at which this happens heavily depends on the
difference in achieved performance between any two experts;
when the relative performance gap is minimal, the switchover in

TABLE 1
Performance relative to best-performing caching expert (%)

Time slot

ζ 0.25× 105 0.5× 105 1.0× 105 2.0× 105

0.6 3.49 0.09 −0.98 −0.55

0.8 3.06 0.46 −0.54 −0.36

1.0 3.31 0.94 −0.05 −0.25

Performance comparison between meta-learner σ∗ and the best-performing
caching expert at various time slots, expressed as a percentage (%) for each
Zipfian distributed request model with parameter ζ.

which expert is regarded best takes substantially longer; Figure
5c shows an example thereof, and Figure 4c confirms that the two
caching experts closely match in their obtained utility during this
time.

Figure 6 illustrates the average utility obtained by caching
expert meta-learner σ∗ in comparison to the BSCH benchmark,
and the OGA caching experts k ∈ K (unlabelled grey entries, see
Figure 4). Unsurprisingly, the BSCH benchmark outperforms σ∗

across the three Zipfian distributed request models, which is due
to their stationary nature. This permits the BSCH policy to simply
cache the files most frequently requested. Table 1 summarises
the performance of σ∗ at various time slots, relative to the best
caching expert. Although σ∗ slightly underperforms once a
single caching expert dominates (recall its learning penalty (8)),
a consistent improvement is achieved when individual caching
experts’ performance fluctuates.

Figure 7 depicts the average regret 1
t

∑t
i=1 Ri of σ∗, as well

as that of the theoretical regret upper bound
√
2CT [15]. Based on

these figures, it can be concluded that the regret of σ∗ diminishes
as T scales. Hence, caching expert meta-learner σ∗ is a no-regret
caching policy.

5 CONCLUSIONS

In current state-of-the-art caching research, the optimal tuning
of online caching policies is often derived under adversarial
assumptions; with rarely any efforts made in tuning given
different conditions. This paper proposes a novel method of
learning the optimal tuning of an online caching policy’s learning
rate, to derive the best caching policy. This is achieved by framing
the optimisation problem as an expert advice decision problem
and leveraging the use of an online meta-learner across several
distinct caching policy experts. The obtained online meta-learner
caching policy improves upon the previously known static regret
bounds of related works [33]–[37], yet remains scalable and
robust. Furthermore, it is worth noting any arbitrary online
caching policy can be exploited in this regard; including those
that utilise optimistic predictors.

Finally, it must be noted that further research should addition-
ally confirm whether these results hold for time-variant request
patterns; and future studies could explore potential improvements
through the combination of the proposed meta-learner algorithm
with adaptive online learning methods.
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FIGURE 4 Average utility of each OGA caching expert k ∈ K across three Zipfian distributed request sequences with different values of ζ; (a) ζ = 0.6, (b)
ζ = 0.8, (c) ζ = 1.0; Parameters: T = 2× 105, N = 2500, C = 250.
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FIGURE 5 Expert probability weights of each OGA caching expert k ∈ K across three Zipfian distributed request sequences with different values of ζ; (a)
ζ = 0.6, (b) ζ = 0.8, (c) ζ = 1.0; Parameters: T = 2× 105, N = 2500, C = 250.
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FIGURE 6 Average utility of meta learner σ∗ compared to the BSCH benchmark and individual caching experts k ∈ K (unlabelled grey entries), across three
Zipfian distributed request sequences with different values of ζ; (a) ζ = 0.6, (b) ζ = 0.8, (c) ζ = 1.0; Parameters: T = 2× 105, N = 2500, C = 250.
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FIGURE 7 Average regret of meta learner σ∗ compared to the theoretical upper bound and individual caching experts k ∈ K (unlabelled grey entries), across
three Zipfian distributed request sequences with different values of ζ; (a) ζ = 0.6, (b) ζ = 0.8, (c) ζ = 1.0; Parameters: T = 2× 105, N = 2500, C = 250.
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6 RESPONSIBLE RESEARCH

A violation of any of the ethical aspects involved in research
is deemed unacceptable. Hence, the establishment of this paper
and any of the involved research has been conducted with
the inclusion of these aspects in mind. Given the nature of
this particular research, most ethical aspects are not at risk of
being violated. However, research misconduct (falsification,
manipulation or misinterpretation of data) nor plagiarism are at
the basis of this work, and care has been taken for it to be avoided
at all costs.

Reproducibility has been regarded as an important aspect
throughout the entire research process. Therefore, uttermost care
has been taken to include all required concepts, terms, definitions,
algorithms, parameters, and other variables as part of this paper
to allow the obtained results to be reproducible. Furthermore, all
code as part of this research has been made publicly available
through a GitHub repository2 to ease this process of replication.
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