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We present a Dicke state preparation scheme which uses global control of N spin qubits: our scheme is
based on the standard phase estimation algorithm, which estimates the eigenvalue of a unitary operator. The
scheme prepares a Dicke state nondeterministically by collectively coupling the spins to an ancilla qubit via
a ZZ interaction, using �log2 N� + 1 ancilla qubit measurements. The preparation of such Dicke states can be
useful if the spins in the ensemble are used for magnetic sensing: we discuss a possible realization using an
ensemble of electronic spins located at diamond nitrogen-vacancy centers coupled to a single superconducting
flux qubit. We also analyze the effect of noise and limitations in our scheme.

DOI: 10.1103/PhysRevA.104.032407

I. INTRODUCTION

A promising application of the emerging quantum tech-
nology is quantum-enhanced sensing, sometimes referred
to as quantum metrology [1,2]. Using entangled states,
one can, in principle, improve the measurement sensi-
tivity from the standard quantum limit (1/

√
N) to the

Heisenberg limit (1/N) [1,3,4], where N is the number
of probes or repetitions. However, preserving this quantum
advantage is difficult in the presence of decoherence [5].
For instance, a single-qubit Pauli Z error can totally de-
phase a N-qubit Greenberger-Horne-Zeilinger state, which
would obtain Heisenberg-limited sensitivity in the noiseless
case [6].

N-qubit Dicke states form a class of entangled states which
are interesting for metrology [6–10]. Compared to other states
used in quantum sensing, Dicke states have been argued to be
more robust to various noise sources such as spin dephasing,
spin damping, and spin number fluctuations [9]. Recent work
has demonstrated a scheme to use Dicke states for detecting
the magnetic field induced by a single spin [7]. Another dis-
tinctive feature of the use of Dicke states is that the optimal
sensitivity can be obtained through only global control on the
set of spins [9,10]. This is relevant for realizing practical quan-
tum sensing using entangled states, as precise individual spin
qubit control can be difficult. Furthermore, superpositions of
Dicke states can be used for quantum error correction [11,12].

Dicke state preparation has been experimentally real-
ized using photons [13,14] and trapped-ion qubits [15,16],
and there also exist many theoretical preparation proposals
suitable for a few qubits (see Refs. [17–20] for example).
However, it remains a challenge for large spin ensembles like
N > O(100) diamond nitrogen-vacancy (NV) centers (neg-
atively charged NV [21]), each hosting an electronic spin

S = 1. Since these NV-center spins are rather isolated from
each other, it is costly to perform entangling gates between the
electronic spins [22–24]. This limitation excludes quantum
algorithms for preparing Dicke states which are based on the
full addressability of the qubits [25,26]. To address this issue,
some work has been dedicated to schemes which require only
a global control of the spin ensemble, such as using steady-
state evolution [27], repeated energy transfer [7], continuous
weak measurements [28], and the use of geometric phase
gates [29]. Unfortunately, these methods are still demanding
currently when N is large, as they often need complicated
measurement-based feedback, high fidelity control, and long
preparation times. For example, the optimized scheme in
Ref. [7] uses O(N ) rounds of initialization and evolution of
an ancilla qubit. Our goal is to improve the scaling with N so
that one could possibly handle a larger error rate on the ancilla
qubit.

In this paper, we present a Dicke state preparation scheme
that uses standard phase estimation [30], which prepares an
eigenstate of a unitary operator by estimating its eigenvalue.
This algorithm is based on executing projective measurements
on the spin ensemble using an ancilla qubit, and it will prepare
a random Dicke state. The scheme requires a ZZ coupling
between each spin in the ensemble to a single ancilla qubit. In
Sec. III we detail how this coupling could be realized between
an ensemble of NV electronic spins and a superconducting
flux qubit as ancilla.

Our scheme is efficient with respect to the number of oper-
ations. It uses only �log2 N� + 1 rounds of phase estimation
for preparing a random N-spin Dicke state. Each round of
phase estimation measures a global operator of the spins, i.e.,
it applies an ancilla qubit controlled global Jz = 1

2

∑N
i=1 Zi

rotation followed by ancilla qubit readout. The total time for
performing the controlled rotations is upper bounded by a
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constant and the preparation time thus scales as O(log2 N ).
With a probability ≈ O(1/

√
N ), the prepared Dicke state

would obtain Heisenberg-limited sensitivity using only global
control.

Besides the efficiency, our scheme also has some noise
resilience: phase estimation can be realized with integrated
dynamical decoupling, which provides robustness to the de-
phasing of the ancilla qubit as well as the dephasing of the
spins in the ensemble. Furthermore, by repeating the projec-
tive measurements and performing a simple majority vote, the
effects of ancilla qubit decay and flipped measurements (due
to ancilla qubit dephasing or imperfect measurement) can be
mitigated.

This paper is organized as follows. In Sec. I, we briefly
review Dicke states and Heisenberg-limited sensing. In Sec. II
we present the idea of using phase estimation to prepare Dicke
states. In Sec. III we discuss the Hamiltonian and a possible
experimental setup with multiple NV centers coupled to a flux
qubit. In Sec. IV we numerically consider the performance
of the scheme given the dominant noise sources. Finally, we
discuss the results in Sec. V.

Dicke states

For simplicity, we assume even spin number N throughout
this paper (odd spin number N can be treated simi-
larly). The N-spin (or qubit) Dicke state |N, mz〉 with mz ∈
{−N

2 , . . . , N
2 } is a uniform, permutation-symmetric, super-

position of N-bit strings |x〉 where all bit strings have
N/2 + mz spins in |0〉, i.e., their Hamming weight is N/2 −
mz. For example, |N = 4, mz = 0〉 = 1√

6
(|0011〉 + |0101〉 +

|0110〉 + |1001〉 + |1010〉 + |1100〉). A Dicke state |N, mz〉 is
an eigenstate of the collective spin operator

Jz = 1

2

N∑
i=1

Zi, (1)

with eigenvalue mz. Here Zi is the Pauli Z operator on the
spin labeled i. In addition, we have Jx = 1

2

∑N
i=1 Xi and Jy =

1
2

∑N
i=1 Yi.

To use such states for metrology, one imagines that the
prepared quantum state is transformed by e−iθJy and the goal
is to estimate the rotation angle θ which is assumed to be
small. A standard metrological method (for NV centers, lim-
ited by T2 and optical measurement accuracy) is Ramsey
spectroscopy [31] using a single-qubit state repeatedly (or,
equivalently, using a product state of multiple qubits). In this
context, the Ramsey method corresponds to preparing a sim-
ple product state ei π

2 Jy |00 . . . 0〉 and letting it thus evolve to
e−i(θ− π

2 )Jy |00 . . . 0〉 = ( 1√
2
(|+〉Y + ei(θ− π

2 ) |−〉Y )⊗N . The rota-
tion angle θ can then be estimated by measuring each spin in
Z basis. The measurements give the expectation value
〈Jz(θ )〉 = N

2 sin(θ ), which is most sensitive to small perturba-
tions of θ around θ = 0 [1]. The sensitivity of a product state
is limited by the standard quantum limit, i.e., the variance in
θ scales as (�θ )2 ∼ 1/N . It has been argued that Dicke states
for mz = O(1) can reach the Heisenberg-limited sensitivity,
i.e., (�θ )2 ∼ 1/N2, as follows.

In general, one will measure some operator M on the final
state exp(−iθJy) |N, mz〉 to estimate the value of θ . The vari-

ance of θ can be calculated by the error propagation formula

(�θ )2 = [�M(θ )]2

|∂θ 〈M(θ )〉 |2 , (2)

where the expectation value is with respect to the initial state
|N, mz〉 and M(θ ) is the Heisenberg-evolved operator. If we
were to measure M = αJx + βJz, then

〈M(θ )〉 = 〈Jz〉 [β cos(θ ) + α sin(θ )]

≈ mz(β + θα),
(3)

for small θ (note that 〈N, mz| Jx |N, mz〉 = 0). We measure
Jx by choosing β = 0, α = 1; its expectation value 〈Jx(θ )〉
has an optimal dependence on θ when mz is large. However,
the variance [�Jx(θ )]2 will be large in a rotated Dicke state,
precluding any Heisenberg gains.

The proposal is instead to measure M = J2
z , so that the

variance is given by (see details in Ref. [10])

(�θ )2 = [(
�J2

x

)2
f (θ ) + 4

〈
J2

x

〉 − 3
〈
J2

y

〉
− 2

〈
J2

z

〉 × (
1 + 〈

J2
x

〉)
+ 6

〈
JzJ

2
x Jz

〉]
/
[
4
(〈

J2
x

〉 − 〈
J2

z

〉)2]
(4)

with f (θ ) = (�J2
z )2

(�J2
x )2 tan2(θ ) + tan2(θ ). The minimal variance is

obtained when tan2(θ ) = √
(�J2

z )2/(�J2
x )2. For Dicke state

|N, mz〉 the minimal variance (obtained at θ ≈ 0) is

(�θmin)2 = 2m2
z + 2

N2 + 2N − 12m2
z

+ 64m4
z − 16m2

z(
N2 + 2N − 12m2

z

)2 . (5)

Note that the sensitivity can surpass the standard quantum
limit when mz ∼ O(

√
N ) and is Heisenberg limited when

mz ∼ O(1). In addition, when mz = 0, (�θmin)2 = 2
N (N+2) sat-

urates the quantum Cramér-Rao bound [6]. The expectation
value 〈J2

z 〉 can in principle be obtained by measuring Jz, squar-
ing its outcome, and gathering sufficient statistics by repeating
the measurements. We are thus especially interested in Dicke
states close to |N, 0〉, i.e., |N, mz〉 with mz ∼ O(1). Other than
this motivation, we do not focus on aspects of using a (noisy)
Dicke state for metrology in this paper.

II. PHASE ESTIMATION PREPARATION FOR
DICKE STATES

In this section, we will show how to prepare a Dicke state
using a phase estimation algorithm.

Phase estimation of a unitary operator is the process of
measuring its eigenvalue and simultaneously projecting the
input state to the corresponding eigenstate. This idea has for
example been proposed to prepare Gottesman-Kitaev-Preskill
states in a bosonic system, realized by determining the eigen-
values of two unitary operators approximately [32,33].

For preparing Dicke states, we will start from a product
state, e.g., Eq. (8), where all spins in the ensemble are in
the same state. Such a product state is clearly already per-
mutation symmetric but not yet an eigenstate of Jz. Since
the Dicke state |N, mz〉 is the unique N-qubit permutation-
symmetric eigenstate of the operator Jz with eigenvalue mz,
we can then prepare a Dicke state via phase estimation. This
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is realized by measuring the eigenvalues of a unitary operator
U the eigenvalues of which are in 1-1 correspondence to the
eigenvalues mz. Note that it is important to start the phase
estimation scheme in the permutation-symmetric subspace,
as Jz has eigenstates outside of this permutation-symmetric
subspace on which we do not want to project.

Since the eigenvalue mz ∈ [−N/2, N/2], the integer mz +
2K with K = �∗�log2 N + 1 is positive. To find the unitary
operator for phase estimation, we write down the binary rep-
resentation

mz + 2K =
K+1∑
l=1

bl2
l−1. (6)

Note that the value of mz can be unambiguously determined
using the first K of K + 1 bits (i.e., bl = 0, 1 with l =
1, 2, . . . K). Then the unitary operator for phase estimation is

U = ei2π (Jz+2K )/2K = ei2πJz/2K
. (7)

This gives U |N, mz〉 = eiφ(mz ) |N, mz〉, where φ(mz ) =
π

∑K
l=1 bl2l−K is indeed a 1-1 function of the first K bits

in Eq. (6). Therefore, the preparation of a Dicke state is
transformed to the task of performing phase estimation for
this unitary operator U .

Using phase estimation, one cannot prepare a specific
Dicke state |N, mz〉 deterministically, as there is in general no
easy operation that could transform |N, mz〉 to |N, m′

z = mz〉
[34]. However, we can easily maximize the probability of
obtaining a Dicke state the sensitivity of which is Heisenberg
limited. This requires starting from the product state

|ψ0〉 =
( |0〉 + |1〉√

2

)⊗N

=
N/2∑

mz=−N/2

√
p(mz ) |N, mz〉 , (8)

where p(mz ) is a binomial distribution with average 〈mz〉 =
0 and standard deviation

√
N/2, i.e., p(mz ) = ( N

mz+N/2

)
/2N .

This distribution reaches its maximum at mz = 0 and p(mz =
0) ≈ √

2/(πN ) (using Stirling’s approximation). Dicke states
|N, mz〉 with mz ∼ O(1) can thus be obtained with a probabil-
ity O(1/

√
N ). To prepare these states, one would thus need to

repeat the preparation O(
√

N ) times on average.
Among many other variants [33,35], we choose standard or

“textbook” phase estimation: standard phase estimation uses
only K measurements to determine the eigenvalue of Jz by
determining the first K bits in Eq. (6). Furthermore, these mea-
surements can be executed in a sequential manner, where only
one ancilla qubit is required. The ancilla qubit is used as the
control to apply controlled-U 2K− j

gates with j = 1, 2 . . . , K
starting at j = 1, for which U 2K−1 = exp(iπJz ).

The circuit of the jth round phase estimation is shown
in Fig. 1, where the ancilla qubit is measured in a basis de-
termined by previous measurement outcomes mi = 0, 1 with
i = 1, 2, . . . j − 1. Before readout, the ancilla qubit is rotated
around the Z axis by the angle ϑ = πAj−121− j , where Aj =∑ j

l=1 2l−1bl (and A0 = 0). The jth round phase estimation is
described by the projector

P(b j ) = 1 + (−1)b jUj

2
,

Uj = eiπ21− j (Jz−Aj−1 ). (9)

spins: |ψj−1 / U2K−j

ancilla qubit: |0 H • Rz(ϑ) H

FIG. 1. The jth round phase estimation for the unitary opera-
tor U = ei2πJz/2K

in Eq. (7). This circuit projectively measures the
eigenvalues of the unitary operator Uj = eiπ21− j (Jz−A j−1 ) on the input
state |ψ j−1〉 in Eq. (10). Before the measurement, the ancilla qubit
is rotated around the Z axis by the angle ϑ = πAj−121− j , with
Aj = ∑ j

l=1 2l−1bl . Here bl = 0, 1 is the measurement outcome of the
previous measurement of Ul .

We note that P(b j = 0)P(b j = 1) = 0 as Uj has eigenvalues
±1 on the space of states with given value for Aj−1. After
j rounds of phase estimation, the spins in the ensemble are
projected into a superposition of Dicke states, i.e.,

|ψ j〉 = 1√
N j

P(b j ) · · · P(b2)P(b1) |ψ0〉

= 1√
N j

∑
n∈Z

√
p(2 jn + Aj ) |N, 2 jn + Aj〉 ,

(10)

where N j is the normalization factor. Since |2 jn + Aj | �
N/2, either n = 0 or −1 when j = K . The eigenvalue of Jz

is therefore unambiguously determined; i.e., for j = K ,

|ψ j〉 =
{ |N, Aj〉 Aj < 2 j−1,

|N, Aj − 2 j〉 Aj > 2 j−1.
(11)

As the standard deviation of p(mz ) is
√

N/2, the equality in
Eq. (11) approximately holds when 2 j ∼ O(

√
N ). This means

that in fact determining only the first �K/2� bits in Eq. (6) can
produce the target state with high fidelity, that is, the number
of required ancilla qubit measurements can be further reduced
in practice.

The controlled-U 2K− j
gate is realized through the

Hamiltonian in Eq. (13) below. The coupling strength γ be-
tween the spins and the ancilla qubit determines how fast
the gate is performed. Due to the exponentially decreasing
rotation angles, the total evolution time T of these controlled
rotations is bounded, i.e.,

T =
K∑

j=1

t j = π

γ

(
2 − 1

2K

)
<

2π

γ
,

t j = π

2 j−1γ
. (12)

Note that the preparation scheme requires initializing all
qubits in the |+〉 state, which can consume a considerable
amount of time by itself (see Sec. III for the experimental
setup with NV electronic spins).

An important comment on the use of standard phase
estimation in Fig. 1 is the following. Any gate will be imple-
mented with some constant (small) error in practice, hence it
is impossible to realize the rotation U in Eq. (7) when K (and
thus N) is too large. This error limits the maximum spin num-
ber N that we can handle, as the rotation angle 2π/2K scales
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as O(1/N ). For example, for N = 500, we have K = 9 and
2π/2K ≈ 0.012 (see also a further discussion in Sec. IV B).

One can also prepare a specific Dicke state by perform-
ing postselection on the measurement outcomes; preparing
|N, mz = 0〉 in this way would require less operations than
|N, mz = 0〉 (see the details in Appendix A). In addition, the
idea of phase estimation can be used to prepare specific su-
perpositions of Dicke states, which are potentially useful for
metrology under noise [12] (see the details in Appendix B).

III. SYSTEM HAMILTONIAN AND EXPERIMENTAL
REALIZATION

In this section, we will sketch an experimental realization
using a superconducting flux qubit coupled to an ensemble of
NV centers.

We consider a hybrid system where a set of N two-level
spins is collectively coupled to an ancilla qubit. To implement
our scheme, we need the system Hamiltonian to be of the
following form:

H = H0 + Hcoupl,

H0 = ω0Jz − 1

2
ωZ, Hcoupl = γ

2
Z ⊗ Jz (13)

with Jz in Eq. (1). Here, h̄ = 1, γ is the coupling strength
between the ancilla qubit and the spins, and ω is the angular
frequency of the ancilla qubit. The spins in the ensemble are
assumed to have the same energy splitting, denoted by angular
frequency ω0.

In this system, we assume the ability to (i) implement
single-qubit rotations and projective measurements on the
ancilla qubit, (ii) implement global rotations of the spins (gen-
erated by Jx, Jy, and Jz), and (iii) initialize the ancilla qubit and
the spins in |0〉.

The phase estimation scheme involves qubit-controlled ro-
tations around Jz, which are realized through the interaction
HI . The evolution operator of HI is

e−iHI t = e−i γ

2 tJz (|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ eiγ tJz ), (14)

where the unconditional rotation e−i γ

2 tJz can be neglected.
Since the free Hamiltonian H0 commutes with HI , we can also
neglect the effect of H0.

Sketch of experimental implementation

One possible experimental setup of the proposed protocol
is an ensemble of NV centers coupled to a superconducting
flux qubit. Each NV center hosts a single (electronic) S = 1
spin. Sensing a magnetic field or spin by means of this elec-
tronic spin has been of high interest in the last decade (see,
e.g., Refs. [31,36] and references therein). Sensing using an
ensemble of NV centers, without preparing them in a particu-
lar entangled state, has been used at ambient temperatures in,
e.g., Refs. [37,38].

In addition, proposals exist to use the 13C nuclear spins
which surround a NV center to enhance the sensing perfor-
mance [39,40]. Direct magnetic sensing using nuclear spins
however would be inefficient, as their gyromagnetic ratio is
about a factor 1000 less than that of the electronic spin.

The proposal in Ref. [41] envisions coupling a flux qubit
to NV-center electronic spins for the transfer and storage
of quantum information. This has been experimentally real-
ized in Ref. [42], where a flux qubit was coupled to O(107)
NV centers to resonantly transfer a flux-qubit excitation to
a collective spin excitation and back [43]. In Ref. [7] the
preparation of Dicke states using a coupled flux qubit was
considered for sensing, using this energy-transferring flip-flop
interaction (of the form σ+J− + σ−J+ where σ± acts on the
flux qubit and J± = 1

2 (Jx + iJy) acts on the ensemble). The
basic idea for the Dicke state preparation in Ref. [7] is then to
repeat an excitation transfer from the flux qubit to the spins:
(i) the flux qubit is first flipped to |1〉, and (ii) the hybrid
system evolves for some chosen time during which the ancilla
qubit goes back to |0〉 and the spins in |N, mz = j〉 evolve
to |N, mz = j − 1〉. Repeating this process O(N ) times, one
obtains the state |N, mz = 0〉 from an arbitrary Dicke state,
say the product state |N, mz = N/2〉 = |00 . . . 0〉.

In earlier work [44], the preparation of other sensing states,
such as spin-cat and spin-squeezed states, was considered us-
ing a flux qubit coupled to a collection of NV-center electronic
spins.

ZZ coupling between the flux qubit and NV-center electronic spins

The coupling between the flux qubit and the NV cen-
ter is magnetic, i.e., the two persistent current states of the
flux qubit generate opposite magnetic fields which enter the
Zeeman term in the NV-center electronic spin Hamiltonian.
As in Refs. [41,42] one can imagine that the flux qubit is
sitting on a diamond substrate with implanted NV centers, and
say the loop of the flux qubit is about 1 × 1 μm. If the NV
centers are in a cubic volume 1 × 10−18 m3 below the loop,
a NV-center density of 1021 m−3 [45] would lead to already
having about 1000 NV centers in this cube.

The Hamiltonian of a general flux qubit itself is given by

Hflux = λ

2
Xf − ε

2
Z f , (15)

where the Z basis is given by two persistent current states
(|0〉 , |1〉)—eigenbasis states of flux—inducing opposite mag-
netic fields [46–48]. Here we include a label f to denote
that these are Pauli operators on the flux qubit. The Pauli Xf

term is due to the kinetic charging energy. The case ε = 0
corresponds to a symmetric double-well potential in flux.
Since the required interaction in Eq. (13) is Z f ⊗ Jz, we could
envision that the current states are flux-qubit eigenstates. This
implies an asymmetric double-well flux potential with ε > 0
and ε � |λ| (requiring a large shunting capacitance). This is
unlike some of the previous work mentioned above in which
one works at ε = 0.

Recent experiments demonstrate a long coherence time
of the flux qubit at the flux sweet spot ε = 0. The energy
relaxation time T1 is about 40 μs and the dephasing time T2

is about 10 μs with dynamical decoupling [49]. Single-qubit
gates with duration about 2 ns and fidelity about 99.92% are
also realized [49]. However, tuning a flux qubit away from
ε = 0 decreases the dephasing time substantially. This is due
to flux noise, i.e., the flux qubit becomes much more sensitive
to fluctuations of ε, which can be somewhat improved by
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dynamical decoupling [47]. For this reason we discuss an al-
ternative way of using the flux qubit at ε = 0 and the flip-flop
interaction to realize a Dicke state preparation in Appendix C.

There are four types of NV centers, each aligned with a
different NV axis of the carbon lattice (i.e., the direction from
the vacancy to the nitrogen) [38], and one does not control
the orientation of these NV axes. We choose one type of NV
center and call its NV axis the z axis so that its associated
electronic spin (S = 1) has Hamiltonian [50]

HNV = �S2
z + W ext

z Sz, (16)

where W ext
z represents the effect of an externally applied mag-

netic field and � is the zero-field splitting (� ≈ 2.88 GHz).
Here we neglect components of the magnetic field which are
not aligned with the NV axis.

With W ext
z = 0, the states |Sz = m = ±1〉 are made nonde-

generate and we imagine, as is fairly standard, using the low-
est two energy eigenstates |Sz = m = 0〉 and |Sz = m = −1〉
as the qubit. The externally applied magnetic field [O(100) G]
[21] which splits off the m = ±1 level should lie in the plane
of the flux-qubit loop, avoiding any stray effects on the flux
qubit itself.

For a collection of N NV centers, we thus restrict ourselves
to the electronic {|m = 0〉 , |m = −1〉} qubit subspace per NV
center, and use the collective spin operators Jx, Jy, Jz acting on
these qubits.

An additional magnetic field in the y direction or x direc-
tion, assuming it is uniformly experienced by all NV centers
oriented along the z axis, would induce additional Zeeman
terms in the NV-center Hamiltonian. This leads to global
rotations, e.g., exp(−iθJy), which we want to sense.

By applying microwave [O(1) GHz] pulses with a fre-
quency which is resonant with the NV-center electronic spins,
rotations generated by the collective spin operators Jx, Jy

can be performed [50,51]. To obtain the initial state |ψ0〉
in Eq. (8), we first initialize all NV-center electronic spins
in |0〉 through resonant optical excitations [the initialization
duration is of the order of O(100) μs [52] and is exe-
cuted simultaneously for all NV-center electronic spins], then
one performs the global rotation ei π

2 Jy [50]. In addition, the
NV-center electronic spins can be collectively measured
optically to measure Jz, but the limited photon collection
efficiency limits the readout contrast [31,53,54].

The Hamiltonian of a single NV center and a flux qubit is

H = Hflux + HNV + Hcoupl. (17)

The coupling term Hcoupl models the NV electronic spin expe-
riencing a magnetic field due to the different persistent current
flux-qubit states: it can be written in the form

Hcoupl = −γe �Bflux · �S (18)

with spin S = 1 operators �S = (Sx, Sy, Sz ) and gyromagnetic
ratio γe (≈2.8 MHz/G). Let us call the axis perpendicular
to the flux-qubit loop r̂, so that �Bflux ≈ Br̂Z f , where Z f is
the flux-qubit Pauli Z operator and B is the magnetic-field
strength at the NV center. Here we assume that the NV centers
are centrally placed below the flux qubit, so that magnetic-
field components in directions other than r̂ are negligible.

electronic spins / ei γt
2 Jz eiπJy ei γt

2 Jz eiπJy

flux qubit • X • X

FIG. 2. The controlled-eiγ tJz gate with integrated dynamical de-
coupling, up to the unconditional rotation e−i γ t

2 Jz . Echo pulses are
simultaneously applied to the NV-center electronic spins and the flux
qubit. The pulses are at a frequency resonant with those NV-center
electronic spins which should remain coupled to the flux qubit, while
the coupling to the other NV centers is echoed away.

Since the coupling is much weaker than the electronic spin
qubit frequency, we neglect the change of the precession axis
induced by this coupling term. The coupling is thus approxi-
mated as

Hcoupl ≈ γ

2
Z f ⊗ Sz. (19)

Reference [41] estimates that the coupling strength can be
about 12 kHz, depending on the strength of the magnetic field
B and the proximity to the NV center. We assume that we can
use an orientation r̂, so that the (projected) coupling strength
γ /2 = −γeBrz is also of the order of O(10) kHz.

The four types of NV centers are simultaneously coupled
to the flux qubit, each having a different coupling strength as
their NV axes are different and having a different resonance
frequency [38]. In principle all types of NV centers could be
used for sensing different components of the magnetic field
[37]. However, since we have only a single controlling flux
qubit to create an entangled state, it is preferred to dynami-
cally decouple the interaction with the other NV centers away.

For example, to cancel the coupling to three of the four
NV-center types, one could perform phase estimation with
integrated dynamical decoupling. The circuit in Fig. 2 real-
izes the controlled-eiγ tJz gate up to the unconditional rotation
e−i γ t

2 Jz . The echo pulse eiπJy is implemented using reso-
nant microwaves with NV centers whose NV axis is the
z axis. These other NV centers are thus decoupled from the
flux qubit.

The integrated echo pulses also provide resilience to the de-
phasing of the flux qubit and NV-center electronic spins. Note
that we can split the controlled rotations to controlled eiγ tJz/n

with n = 4, 6, 8, . . ., so that we obtain a further suppression
of the dephasing. For simplicity, we will consider n = 2 in
numerics in Sec. IV.

The coherence time of NV-center electronic spins is not
a limiting factor for realizing our preparation scheme. The
energy relaxation time T1 of NV-center electronic spins ex-
ceeds 8 h at 25 mK [55]. For a NV ensemble with a NV
density about 1021 m−3, the dephasing time T2 (with dynam-
ical decoupling) can be about 50 ms at 77 K [45]. Because
the dephasing of a NV electronic spin mainly comes from
its surrounding spin bath environment [56], we may expect
a longer dephasing time at the operating temperature of the
flux qubit (tens of mK).

The weak point of this sketched proposal is the strength
of the coupling γ versus the (short) dephasing time of the
flux qubit T2 < O(1) μs if it is operated away from its flux
sweet spot. Even though the flux qubit only needs to stay
coherent during each round of phase estimation individually,
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TABLE I. Parameters that are relevant for realizing the prepa-
ration scheme using the sketched experimental setup, where an
ensemble of NV electronic spins is collectively coupled to a single
superconducting flux qubit. The main challenge is the weak magnetic
coupling γ vs the short dephasing time T2 of the flux qubit.

Typical value

NV electronic spin T1 > 1 h
NV electronic spin T2 > O(50) ms
NV electronic spin initialization time O(100) μs
Flux qubit T1 O(50) μs
Flux qubit T2 < O(1) μs
Flux qubit single-qubit gate time O(1) ns
Magnetic coupling γ O(10) kHz

i.e., during a circuit as in Fig. 1, a O(10)-kHz coupling
γ requires an interaction time much longer than the flux-qubit
coherence time in particular for small j.

As an alternative, it may be possible to use the three levels
(S = 1) of the NV-center electronic spins to apply controlled
rotations adiabatically while operating the flux qubit in a more
phase-coherent regime with T2 = O(10) μs. In this scenario
we work at ε = 0 for the flux qubit in Eq. (15) and adia-
batically change the flux-qubit frequency through flux control
while staying at ε = 0. Remember that the states |m = 0〉NV
and |m = −1〉NV form the NV-center qubit subspace and
|m = +1〉NV is a third level.

If we apply a Hadamard transformation to make the flux-
qubit Hamiltonian diagonal in Z f , the coupling term will read
Hcoupl = −γeBXf ⊗ �S · r̂. Neglecting nonsecular terms, one is
left with an interaction which removes a flux-qubit excita-
tion while exciting the NV-center electronic state m = 0 to
±1 and vice versa. We imagine adiabatically flux tuning the
flux-qubit frequency to the avoided crossing between |1〉flux ⊗
|m = 0〉NV and |0〉flux ⊗ |m = +1〉NV and back so as to get
an effective ZZ interaction in the |m = 0〉NV and |m = −1〉NV
and flux-qubit subspace. This way of obtaining a ZZ interac-
tion using a third level is commonly done for superconducting
transmon qubits [57,58]. Here we would need to generate this
interaction between a single ancilla qubit and N NV electronic
qubits, each with a third level. Note that this idea is different
from flux tuning the frequency of the flux qubit to be resonant
with the NV-center electronic spin qubit frequency to activate
the flip-flop interaction [7,42]. We discuss the details about
adiabatically applying controlled rotations in Appendix C.

In this alternative scenario, one is also limited by the
strength of the magnetic coupling. The coupling can only be
enhanced by increasing the proximity of the NV centers to the
flux-qubit loop and having a higher current associated with
the flux-qubit states (leading to a stronger magnetic field), but
the Josephson critical current density puts limits on this.

For realizing the preparation scheme using the sketched ex-
perimental setup, relevant parameters with their typical values
are listed in Table I.

IV. PREPARATION WITH NOISE

In this section, we look at the performance of the phase
estimation scheme for stronger coupling strength γ than what

has been stated in the previous section, and some limited
decoherence of the flux qubit. The spins in the ensemble are
assumed to be perfect, as their coherence time is not a limiting
factor for our scheme.

A. Limited coherence time of the flux qubit

The flux qubit has energy relaxation time T1 and limited
pure dephasing time Tφ with 1

T2
= 1

2T1
+ 1

Tφ
. A simple model

for the effect of Tφ is that of a phase flip channel. That is,
during the controlled-eiγ tJz gate, the flux qubit obtains a Pauli
Z error with an error rate [30]

PTφ
(t ) = 1 − e−t/Tφ

2
. (20)

Such Pauli Z error can flip the ancilla qubit readout in the
phase estimation circuit. Fortunately, we can suppress this
error to some extent by repeating each circuit in Fig. 1 and
taking a majority vote of the answers.

Flux-qubit decay to zero temperature with rate κ = 1/T1

can be described by a Lindblad master equation:

dρ

dt
= −i[H, ρ] + κD[σ− ⊗ I]ρ. (21)

Here σ− = |0〉 〈1| is the annihilation operator on the ancilla
qubit, ρ is the density matrix of the total system, and D[c]
is defined as D[c]ρ = cρc† − 1

2 {c†c, ρ}. The Kraus operators
for a short time dt are

δM0 = |0〉 〈0| ⊗ I + e− 1
2 κdt |1〉 〈1| ⊗ eiγ dtJz ,

δM1 =
√

κdt |0〉 〈1| ⊗ I. (22)

Here the free evolution e−iH0dt and the unconditional rotation
e−i γ

2 tJz in Eq. (14) are omitted. Note that the Kraus operator
δM1 does not commute with HI .

For a finite evolution time t , the action of the controlled-
eiγ tJz gate is given by a continuous set of Kraus operators:

M0(t ) = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ e− 1
2 κt eiγ tJz ,

M1(t ′) =
√

κe−κt ′ |0〉 〈1| ⊗ eiγ t ′Jz for t ′ < t . (23)

The controlled rotation in the presence of ancilla qubit decay
is then described by the quantum channel:

ρout = M0(t )ρinM†
0 (t ) +

∫ t

0
dt ′M1(t ′)ρinM†

1 (t ′), (24)

where ρin and ρout are the input and output states of the
controlled gate.

Now we consider implementing the controlled-eiγ tJz gate
with integrated echo pulses as in Fig. 2. If the ancilla qubit
does not decay, the circuit applies the Kraus operator:

(X ⊗ eiπJy ) M0(t/2) (X ⊗ eiπJy ) M0(t/2)

=
√

e− 1
2 κt e−i γ t

2 Jz (|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ eiγ tJz ). (25)

This is the desired gate up to the unconditional rotation e−i γ t
2 Jz ,

which happens with the probability e− 1
2 κt . Otherwise, the

ancilla qubit decays and an unconditional rotation around Jz

is applied to the spins. In phase estimation, no projector is
implemented and the ancilla qubit readout gives the outcome
0, 1 with equal probability.
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The flux-qubit decay probability during the controlled-
eiγ tJz gate (with integrated echo pulses) is given by

PT1 (t ) = 1 − e− t
2T1 . (26)

B. Inaccurate control of the flux qubit

Each time we perform the controlled-eiγ tJz gate, there may
be a random small deviation δt of the evolution time t which
becomes important when t is small. This means we actu-
ally perform the controlled-βeiγ tJz gate with β = eiδθJz and
δθ = γ δt .

Preparing an N-spin Dicke state means determining the
eigenvalue of the unitary rotation U in Eq. (7), whose rotation
angle scale as 2π/2K of which scales as O(1/N ). As we
have discussed, determining the first �K/2� bits in Eq. (6)
produces the target state with high fidelity. That is, we only
need to determine the eigenvalue of a unitary rotation whose
rotation angle scales as O(1/

√
N ). This scaling characterizes

how much timing inaccuracy our scheme can tolerate and thus
how large N can be.

C. Numerical simulations

In the presence of inaccurate control, ancilla qubit de-
phasing, or ancilla qubit decay, the spins in the ensemble
stay in the subspace which is symmetric under spin permu-
tations. They can be treated as a large pseudospin of size J =
N/2. We therefore limit ourselves to a state vector in a N +
1-dimensional space rather than the full size 2N . The simula-
tion is based on the QUTIP PYTHON package [59,60], and the
code can be found in Ref. [61].

The preparation starts from the product state |ψ0〉 in
Eq. (8), and determines the eigenvalue mz of Jz using standard
phase estimation. Each round of phase estimation is repeated
multiple times, and a simple majority vote is performed. The
fidelity of the prepared state, with respect to the predicted state
|N, mz〉, is used as a measure of how good the preparation
is. We compute F = 〈N, mz| ρ |N, mz〉 where ρ is the density
matrix prepared by the noisy, imperfect protocol.

Here we assume that T1 = 50 μs and Tφ = 2 μs for a
flux qubit far away from the flux sweet spot. To ensure PTφ

is reasonably small in the first few rounds of phase estima-
tion, we need the coupling strength to be a few MHz, say
γ = 5 MHz, as shown in Fig. 3. The corresponding flux-qubit
decay probability PT1 (t ) would then only be about 0.6% in the
first (longest) round of phase estimation. Hence the effect of
pure dephasing Tφ dominates.

Suppose each round of phase estimation is repeated
M times with majority voting. We say that the jth round phase
estimation succeeds when the following are true.

(i) There is at least one measurement, during which the
flux qubit does not decay, i.e., the projector P(mj ) in Eq. (9)
is implemented at least once.

(ii) Majority voting of the M measurement outcomes yields
the correct answer mj .

Instead of a full simulation, we numerically calculate the
probability that all rounds of phase estimation succeed, i.e.,
the prepared state has fidelity 100%. This probability is calcu-
lated as P = ∏K

j=1 Pj , with Pj the success rate of the jth round
phase estimation. Clearly, the probability P sets a lower bound

FIG. 3. The flux-qubit readout error rate induced by flux-qubit
dephasing. Here we fix the pure dephasing time of the flux qubit
as Tφ = 2 μs. In the jth round phase estimation, the evolution
time is t j = π21− j/γ , which leads to the readout error rate PTφ

(t j )
in Eq. (20).

of the output fidelity F . The lower bound P is plotted in Fig. 4,
where we set K = 20 and use a coupling strength γ much
beyond current estimates. Note that 20 rounds of phase esti-
mation correspond to about 106 spins. We find that P quickly
approaches unity as the repeat number M grows, basically
because PTφ

(t j ) and PT1 (t j ) both decrease exponentially as j
grows.

To model inaccurate timing control of the flux qubit, we
run a pure state simulation. Each time we apply a controlled
rotation in the preparation, there is a randomly sampled time
deviation δt . We assume that δt is distributed according to the
normal distribution N (0, σ 2). Considering that single-qubit
rotation on a flux qubit has a duration about 2 ns [49], we set
σ = 0.5, 1, 3, 6, 10 ns. Additionally, we fix γ = 5 MHz and

FIG. 4. Lower bound on the output fidelity for the preparation
scheme with limited flux-qubit coherence time but strong coupling.
There are K = 20 rounds of phase estimation; each is repeated
M times with majority voting. The fidelity lower bound P is the
probability that all rounds of phase estimation succeed, so that the
prepared state has fidelity 100%. Here we set T1 = 50 μs and Tφ =
2 μs.
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FIG. 5. The output fidelity of the preparation scheme with in-
accurate control of the flux qubit. Here we fix the spin number
N = 500, and the coupling strength γ = 5 MHz. There are only six
rounds of phase estimation; each is repeated M times with majority
voting. When a controlled rotation is applied, there is a time deviation
δt , which is sampled according to normal distribution N (0, σ 2). The
error bar is the 95% confidence interval.

N = 500 spins. In the simulation, we perform six rounds of
phase estimation, and each round is repeated M times with
majority voting (here Tφ, T1 = ∞). Note that in the noiseless
case, six rounds of phase estimation gives an output fidelity
F ≈ 99.65% for N = 500.

As shown in Fig. 5, our scheme is resilient to inaccurate
flux-qubit control. Even with σ = 10 ns and γ = 5 MHz, the
output fidelity still surpasses 90% when we repeat each pro-
jective measurement only M = 5 times. Considering that γ =
5 MHz is much larger than an estimated 12 kHz, the expected
effect of inaccurate timing in flux-qubit control would thus be
much smaller in practice. Hence, we would not expect this
timing inaccuracy to be a main experimental challenge in the
near future.

V. CONCLUSION

To summarize, we have presented the idea of using phase
estimation to prepare highly entangled Dicke states. Phase
estimation can be realized through a global control, and only
requires O(log2 N ) ancilla qubit measurements. Dicke states
|N, mz〉 with mz ∼ O(1) are especially interesting for metrol-
ogy as they can give Heisenberg-limited sensitivity via global
control. Phase estimation can prepare such Dicke states with a
probability O(1/

√
N ), implying the need for O(

√
N ) attempts

on average.
With numerical simulations, we show that our scheme has

some robustness to noise on the ancilla qubit. However, our
scheme is still demanding for a spin ensemble coupled to a
flux qubit as it requires a larger coupling strength or a longer
flux-qubit coherence time than what seems currently feasible.

One aspect of our analysis is that we assume a uniform
coupling strength γ of the ancilla qubit to the spin ensem-
ble, while in practice not all NV centers will be equidistant.
Thus each spin in the ensemble will have a slightly different
coupling strength γi = γ + δγi. The deviation δγi results in
local over-rotations leading to U = exp(i2πHz/2K ) instead of

Eq. (7), where Hz = Jz + 1
2

∑
i

δγi

γ
Zi. Phase estimation will

estimate the eigenvalues of Hz to a precision set by K and
approximately project the state onto an eigenstate of Hz. Prod-
uct states |x〉 with the same Hamming weight are no longer
degenerate with respect to Hz, which implies that a perfect
eigenstate projection would lead to preparing a product state.
For small enough N , when this eigenvalue-breaking contri-
bution is small, i.e.,

∑N
i=1 | δγi

2γ
| � 1, one may expect that the

projected eigenstates of Hz, starting from the state |ψ0〉 in
Eq. (8), are still (weighted) superpositions of bitstrings and
thus entangled. In addition, imperfect state initialization can
break permutation symmetry. It may be of interest to numeri-
cally simulate the sensing ability of the states that one projects
onto using Hz. However, such numerical simulations are much
more challenging as we have to consider matrices of size
2N × 2N .

To prepare |N, mz = 0〉 more efficiently, we can combine
our scheme with the proposal in Ref. [7] (see Sec. III), as
both can be realized using the same experimental setup, i.e.,
a spin ensemble (e.g., diamond NV centers) coupled to a
superconducting flux qubit. The difference is that the proposal
in Ref. [7] requires the flux qubit to operate at ε = 0, leading
to the flip-flop interaction [41,42]. Note that our phase estima-
tion scheme (starting from the product state) prepares a Dicke
state |N, mz < O(

√
N )〉 with a probability approaching unity.

If we could tune the flux qubit to the ε = 0 point after phase
estimation (or use the scheme in Appendix C), then we can
perform the scheme in Ref. [7] to obtain |N, mz = 0〉, which
uses another O(

√
N ) flux-qubit flips.
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APPENDIX A: OPTIMIZING THE PREPARATION OF A
SPECIFIC DICKE STATE

Standard phase estimation can also prepare a specific Dicke
state |N, mz = m〉 when postselection is used. To maximize
the success rate, we rotate each spin initialized in |+〉 around
the Y axis by an angle 2χ . The value of χ is chosen so
that p = 1

2 [cos(χ ) − sin(χ )]2 = m+N/2
N = m

N + 1
2 . The prepa-

ration of |N, mz = m〉 then starts from

e−i2χJy |+〉⊗N = (
√

p |0〉 +
√

1 − p |1〉)⊗N

=
N/2∑

mz=−N/2

√
P̃(mz ) |N, mz〉 ,

P̃(mz ) =
(

N

mz + N/2

)
pmz+N/2(1 − p)N/2−mz . (A1)

Here, the distribution P̃(mz ) reaches its maximum at mz = m,
as it is most likely that we draw pN = m + N

2 1s in this
Bernoulli process, corresponding to mz = m. Standard devi-
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ation of the distribution is
√

N2−4m2

4N . Note that P̃(m) upper
bounds the probability of obtaining |N, m〉.

The target state is obtained by measuring the operator
eiπ21−l (Jz−m) with l integer via phase estimation as before, i.e.,

|N, m〉 = 1√
P̃(m)

K∏
l=1

1 + eiπ21−l (Jz−m)

2
e−i2χJy |+〉⊗N . (A2)

The K = �log2 N� + 1 measurements are realized through the
circuit in Fig. 1. The equality in Eq. (A2) approximately
holds when the number of measurements K satisfies that
2K ∼ O(

√
N2−4m2

4N ).

APPENDIX B: QUANTUM CODE—SUPERPOSITION OF
DICKE STATES

In Refs. [11,62], a so-called permutation-invariant code
is proposed for quantum error correction. The logical code
words of this code are specific superpositions of Dicke states,
namely,

|0L〉 = 1√
2n−1

∑
0 � j � n

j even

√(
n

j

)
|N = gnu, mz = gj − N

2
〉 ,

|1L〉 = 1√
2n−1

∑
0 � j � n

j odd

√(
n

j

)
|N = gnu, mz = gj − N

2
〉 .

(B1)

The code can correct arbitrary t-qubit Pauli errors with g, n >

2t + 1, where g, n are both integers. The rational number
u � 1 is a scaling parameter which controls the total qubit
number N = gnu [11,62]. Note that the construction of such
permutation-invariant codes has been generalized in Ref. [63],
where the logical states are encoded into multiple qudits.

In Ref. [12], it was suggested to use the logical state
|+L〉 = |0L〉+|1L〉√

2
as a probe state in metrology. It is claimed

that the suggested probe state can give Heisenberg-limited
sensitivity, even in the presence of a nontrivial number of
errors [12]. For simplicity, we write |+L〉 with parameters
g, n, u as

|ϕg,n,u〉 = 1√
2n

∑
0� j�n

√(
n

j

)
|N = gnu, mz = gj − N

2
〉 .

(B2)

Here we show how this probe state |ϕg,n,u〉 can be prepared
using phase estimation. Note that the preparation of this code
has been studied in Refs. [29,64,65].

We first look at the simplest nine-qubit code with g = n =
3 and u = 1, which corrects an arbitrary single-qubit Pauli
error. The corresponding probe state is

|ϕ3,3,1〉 = |9,− 9
2 〉 + √

3 |9,− 3
2 〉 + √

3 |9, 3
2 〉 + |9, 9

2 〉√
8

.

(B3)

One can find that |ϕ3,3,1〉 is an eigenstate of the operator
ei 2π

3 Jz with eigenvalue −1. The basic idea is to project a
permutation-invariant state into a −1 eigenstate of ei 2π

3 Jz , i.e.,
a superposition of |N = 9, mz〉 with mz = ± 3

2 ,± 9
2 . That is

to say, we can prepare the target state by determining the
eigenvalue of the unitary operator ei 2π

3 Jz . This can be realized
by measuring the operator multiple times with postselection,
which can effectively project out Dicke states |N, mz〉 with
mz = ± 3

2 ,± 9
2 .

However, the obtained superposition is not necessarily the
target state |ϕ3,3,1〉, as the amplitudes are carefully chosen. To
fix this problem, we will start from the initial state |ϕ3,3,1〉
which satisfies

〈9,
9

2
|ϕ3,3,1〉 = 〈9,−9

2
|ϕ3,3,1〉 ,

〈9,
3

2
|ϕ3,3,1〉 = 〈9,−3

2
|ϕ3,3,1〉 ,

〈9,
3

2
|ϕ3,3,1〉 =

√
3 〈9,

9

2
|ϕ3,3,1〉 . (B4)

For a superposition of Dicke states, we observe that a rotation
eiθJy changes the distribution of mz, which can be seen from
Eq. (A1). The desired initial state |ϕ3,3,1〉 can be approxi-
mately constructed as

|ϕ3,3,1〉 = 1√
N

e−iθJy + eiθJy

2
|+〉⊗9 , θ = 0.570 56 (B5)

with N the normalization factor. Here the value of θ is ob-
tained numerically. The application of the operator (e−iθJy +
eiθJy )/2 can be realized by measuring ei2θJy with postselection,
followed by the unitary rotation e−iθJy . The target state |ϕ3,3,1〉
is then approximately obtained:

|ϕ3,3,1〉 ≈ 1√
Psucc

[
1 − ei 2π

3 Jz

2

]M
e−iθJy + eiθJy

2
|+〉⊗9 . (B6)

In the noiseless case, setting the number of times you ap-
ply the measurement to M = 5 gives a fidelity about 99.9%.
The probability for obtaining the targeted state |ϕ3,3,1〉 is
Psucc ≈ 19.2%.

The preparation described here can be easily generalized
for preparing |ϕg,n,u〉 with arbitrary g, n, u. The corresponding
initial state |ϕg,n,u〉 now satisfies ( j = 0, 1, . . . , n)

〈N = gnu, mz = gj − N
2 |ϕg,n,u〉

〈N = gnu, mz = −N
2 |ϕg,n,u〉

=
√(

n

j

)
. (B7)

Note that |ϕg,n,u〉 can be constructed in the same way as the
nine-qubit case in Eq. (B5), but now we need multiple projec-
tors in the form

∏
l (e

−iθl Jy + eiθl Jy )/2 with different angles θl .
These angles can also be obtained numerically.

Similarly, we find that |ϕg,n,u〉 is a simultaneous +1 eigen-
state of the operators

Sg,n,u(a) = ei 2aπ
g (Jz+ gnu

2 ) (B8)

with a integer. Measuring these operators multiple times with
postselection, qubits in the initial state |ϕg,n,u〉 can be effec-
tively projected into the target state |ϕg,n,u〉.
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APPENDIX C: ADIABATIC CONTROLLED ROTATION

Here we explain how to apply controlled global rotations
to a NV ensemble by adiabatically tuning the flux-qubit fre-
quency and using the third level of the electronic spin at
each NV center. Starting from an appropriate product state,
such controlled rotation can also be used to prepare a highly
entangled Dicke state via phase estimation.

For a collection of N identical NV electronic spins which
are coupled to a flux qubit, the Hamiltonian can be written in
the form

Hsys = H0 + Hcoupl,

H0 = −ω(t )

2
Z f + �

N∑
i=1

S2
zi

+ W ext
N∑

i=1

Szi ,

Hcoupl = −γeBXf ⊗
N∑
i

�Si · r̂, (C1)

where �Si = (Sxi , Syi , Szi ) is the spin S = 1 operator for the NV
electronic spin labeled i, and Z f and Xf are the Pauli operators
of the flux qubit. As we will adiabatically tune the flux-qubit
frequency ω(t ), it is a function of time t . Here the flux qubit is
operating at ε = 0 in Eq. (15) and the Xf basis is given by two
different persistent current states, inducing opposite magnetic
fields [46–48].

For simplicity, we relabel the three qubit states of the NV
electronic spin as

|S = 1, mz = +1〉 = |2〉 ,

|S = 1, mz = 0〉 = |0〉 ,

|S = 1, mz = −1〉 = |1〉 ,

(C2)

so that state |2〉 is outside the computational subspace. Here
we assume that r̂, the direction orthogonal to the flux loop,
is along the x̂ direction of the NV centers. This means that
the NV axis lies in the plane of the flux-qubit loop, so that
the coupling term equals Hcoupl = −γeBXf ⊗ ∑N

i Sxi . Using
the definition Ŝx = (|2〉 〈0| + |0〉 〈2| + |1〉 〈0| + |0〉 〈1|)/√2,
the coupling Hamiltonian can be written as (here we only keep
the flip-flop terms)

Hcoupl ≈g |0〉 〈1| f ⊗
N∑

i=1

(|2〉 〈0|i + |1〉 〈0|i ) + H.c., (C3)

where g = −γeB/
√

2. The free Hamiltonian H0 can be
written as

H0 = −ω(t )

2
|0〉 〈0| f + ω(t )

2
|1〉 〈1| f

+ω1

N∑
i=1

|1〉 〈1|i + ω2

N∑
i=1

|2〉 〈2|i ,

ω1 = � − W ext, ω2 = � + W ext. (C4)

With an external magnetic field of O(100) G along the NV
axis (W ext > 0), the frequency difference ω2 − ω1 can be as
large as O(1) GHz [66]. To implement the controlled rotation,
we will start from ω1 < ω(t ) < ω2, adiabatically tuning ω(t )
up to ω2 and then tuning it back. Such adiabatic control can be

done by applying a flux through the loop which sets the tunnel
barrier of the flux qubit (see, e.g., Ref. [67]). If one moves
away from the sweet-spot point of this controlling loop, some
additional flux noise can be incurred.

We can set ω(t ) to stay far away from ω1 during the
adiabatic path so that we are not activating any flip-flop
interactions inside the computational space. Hence, we fur-
ther neglect the off-resonant flip-flop terms between |1〉 f ⊗
|0〉i and |0〉 f ⊗ |1〉i and obtain an approximate interaction
Hamiltonian:

H̃coupl =g
N∑

i=1

[|0〉 〈1| f ⊗ |2〉 〈0|i + |1〉 〈0| f ⊗ |0〉 〈2|i]. (C5)

For each Dicke state |N, mz〉 (except when mz = −N/2 and
all spins are in state |1〉), we can define a two-dimensional
subspace spanned by orthogonal states to which the dynamics
is confined:

|φ0(mz )〉 = |1〉 f ⊗ |N, mz〉 ,

|φ1(mz )〉 = H̃coupl |φ0(mz )〉√
〈φ0(mz )| H̃†

couplH̃coupl |φ0(mz )〉
.

(C6)

Note that the states |φ1(mz )〉 differ from |φ0(mz )〉 in that one
of the NV-center qubits in |0〉 has been flipped to |2〉, while
the flux qubit has been flipped from |1〉 to |0〉. We assume that
we start from a product state where the probability of |mz| <

O(
√

N ) approaches unity for large N ; we can neglect the zero
effect of the interaction on the state |N, mz = −N

2 〉.
In the subspace spanned by {|φ0(mz )〉 , |φ1(mz )〉}, we write

the system Hamiltonian as

H̃sys = H0 + H̃coupl

=
(

( N
2 − mz )ω1 + ω(t )

2 G(mz )
G(mz ) ( N

2 − mz )ω1 + ω2 − ω(t )
2

)
(C7)

with effective coupling strength

G(mz ) =
√

〈φ0(mz )| H̃†
couplH̃coupl |φ0(mz )〉

= g

√
N

2

(N

2
+ 1

)
− mz(mz − 1). (C8)

Note that for the product state |0 . . . 0〉 with mz = N/2,
G(N/2) = g

√
N . The eigenvalues of H̃sys in this subspace are

E (t ) = ω2

2
±

√
G(mz )2 +

(
ω2 − ω(t )

2

)2

+
(N

2
− mz

)
ω1.

(C9)

On the adiabatic trajectory lasting for time T , the follow-
ing phases can be neglected (or trivially compensated): (i)
NV-center qubits in the state |1〉 which together pick up a
total phase exp[−i

∫ T
t=0 dt ( N

2 − mz )ω1], (ii) the phase 1
2ω2T

obtained by the flux qubit being in |1〉 f , and (iii) the phase

exp(i
∫ T

t=0
ω(t )

2 dt ) obtained by the flux qubit being in |0〉 f .
The coupling strength G(mz ) is minimum when mz = N/2,

and scales as O(N ) for mz = O(1). Thus, initially when
we do not want any interaction, we need to choose |ω2 −
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ω| � G(mz ) for all |mz| � O(
√

N ), that is, ω2 and ω should
be sufficiently detuned. With this weak coupling the states
|φ0(mz )〉 , |φ1(mz )〉 are approximate eigenstates [besides states
such as |0〉 f |N, mz〉 which do not couple].

The gap on the adiabatic trajectory in the mz-labeled sub-

space is �(mz ) = 2
√

G(mz )2 + ( ω2−ω(t )
2 )2 which is minimized

at the avoided crossing ω(t ) = ω2. As we seek to apply this
interaction on a state for which |mz| ∼ O(

√
N ) and N is large,

�(mz ) ≈ gN/2 at the avoided crossing. We thus assume the
path is fully adiabatic. One could possibly choose a trajectory
such as in Ref. [57].

If we assume that a negligible phase is picked up during a
relatively fast trajectory, followed by a waiting time δt at the
avoided crossing and a fast switch back, we can see that the
state |φ0(mz )〉 → eiϕ(δt ) |φ0(mz )〉 where

ϕ(δt ) = −G(mz )δt

≈ gδt

(
m2

z − mz√
N (N + 2)

−
√

N (N + 2)

2

)
. (C10)

Here we have assumed that |mz| � N to Taylor expand G(mz )
and neglected higher-order terms. The mz-independent phase
−gδt

√
N (N+2)

2 can be further compensated by a single-qubit
rotation of the flux qubit after the adiabatic trajectory.

Thus in the limit of large spin number N , the adiabatic
procedure approximately applies the unitary

V (δt ) = |0〉 〈0| f ⊗ I + |1〉 〈1| f ⊗ exp

(
igδt

N
(J2

z − Jz )

)
.

(C11)

Now we will start the preparation from a product state
e−i2χJy |+〉⊗N with an appropriate value of χ as in Eq. (A1).
Here we consider a specific example: we choose the value of
χ so that the product state e−i2χJy |+〉⊗N is a superposition
of Dicke states, which are localized around |N, mz = 2

√
N〉.

When N is large, the probability for 0 � mz � 4
√

N ap-
proaches unity. For this product state, we can make an
approximation that the eigenvalues of Jz and J2

z − Jz are in 1-1
correspondence. We can use this form of controlled rotation
in Eq. (C11) to perform phase estimation and then prepare
|N, mz ∼ O(

√
N )〉.

However, this adiabatic form of applying a controlled rota-
tion makes it hard to get a strong interaction, as the rotation
angle scales as O(1/N ).
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