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(Received 11 June 2017; published 4 December 2017)

This paper considers the non-Hermitian Zakharov-Shabat (ZS) scattering problem which forms the basis for
defining the SU(2) nonlinear Fourier transformation (NFT). The theoretical underpinnings of this generalization of
the conventional Fourier transformation are quite well established in the Ablowitz-Kaup-Newell-Segur formalism;
however, efficient numerical algorithms that could be employed in practical applications are still unavailable. In
this paper, we present a unified framework for the forward and inverse NFT using exponential one-step methods
which are amenable to FFT-based fast polynomial arithmetic. Within this discrete framework, we propose a fast
Darboux transformation (FDT) algorithm having an operational complexity of O (KN + N log2 N ) such that
the error in the computed N -samples of the K-soliton vanishes as O (N−p) where p is the order of convergence
of the underlying one-step method. For fixed N , this algorithm outperforms the classical DT (CDT) algorithm
which has a complexity of O (K2N ). We further present an extension of these algorithms to the general version
of DT which allows one to add solitons to arbitrary profiles that are admissible as scattering potentials in the ZS
problem. The general CDT and FDT algorithms have the same operational complexity as that of the K-soliton
case and the order of convergence matches that of the underlying one-step method. A comparative study of these
algorithms is presented through exhaustive numerical tests.

DOI: 10.1103/PhysRevE.96.063302

NOTATIONS

The set of real numbers (integers) is denoted by R (Z) and
the set of nonzero positive real numbers (integers) byR+ (Z+).
The set of complex numbers is denoted by C, and, for ζ ∈ C,
Re(ζ ) and Im(ζ ) refer to the real and the imaginary parts of
ζ , respectively. The complex conjugate of ζ ∈ C is denoted
by ζ ∗ and

√
ζ denotes its square root with a positive real

part. The upper half (lower half) of C is denoted by C+ (C−)
and its closure by C+ (C−). The set D = {z| z ∈ C, |z| < 1}
denotes an open unit disk in C and D denotes its closure. The
set T = {z| z ∈ C, |z| = 1} denotes the unit circle in C. The
Pauli’s spin matrices are denoted by σj , j = 1,2,3, which are
defined as

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
,

where i = √−1. For uniformity of notations, we denote σ0 =
diag(1,1). Matrix transposition is denoted by (·)ᵀ and I denotes
the identity matrix. For any two vectors u,v ∈ C2, W (u,v) ≡
(u1v2 − u2v1) denotes the Wronskian of the two vectors and
[A,B] stands for the commutator of two matrices A and B.
Partial derivatives with respect to x are denoted by ∂x or (·)x
while repeated derivatives by ∂2

x . The support of a function
f : � → R in � is defined as supp f = {x ∈ �| f (x) �= 0}.
The Lebesgue spaces of complex-valued functions defined in
R are denoted by Lp for 1 � p � ∞ with their corresponding
norm denoted by ‖ · ‖Lp or ‖ · ‖p.

The inverse Fourier-Laplace transform of a function F (ζ )
analytic in C+ is defined as

f (τ ) = 1

2π

∫
�

F (ζ )e−iζ τ dζ,

where � is any contour parallel to the real line.

*vishal.vaibhav@gmail.com

I. INTRODUCTION

This paper considers the two-component non-Hermitian
scattering problem first studied by Zakharov and Shabat
(ZS) [1], which forms the basis for defining the SU(2)
nonlinear Fourier transformation (NFT). For certain integrable
nonlinear equations whose general description is provided by
the Ablowitz-Kaup-Newell-Segur (AKNS) formalism [2,3],
the NFT offers a powerful means of solving the corresponding
initial-value problem (IVP). One such example is the nonlinear
Schrödinger equation (NSE) that is commonly used to model
channels for optical fiber communication. The propagation of
optical field in a lossless single mode fiber under Kerr-type
focusing nonlinearity is governed by the NSE [4,5] which can
be cast into the following standard form:

i∂Zq = ∂2
T q + 2|q|2q, (T ,Z) ∈ R × R+, (1)

where q(T ,Z) is a complex-valued function associated with
the slowly varying envelope of the electric field, Z ∈ R+ is
the position along the fiber, and T is the retarded time. This
equation also provides a satisfactory description of optical
pulse propagation in the guiding-center or path-averaged
formulation [6–8] when more general scenarios such as the
presence of fiber losses or lumped or distributed periodic
amplification are included in the mathematical model of the
physical channel. The IVP corresponding to (1) consists
of finding the evolved field q(T ,Z) for a given initial
condition q(T ,0) under vanishing boundary conditions. For a
given initial condition q(T ,0), the nonlinear Fourier spectrum
consists of (i) a continuous part ρ(ξ ), ξ ∈ R, and (ii) a
discrete part given by SK = {(ζk,bk) ∈ C2| Im ζk > 0, k =
1,2, . . . ,K} which is an ordered pair of eigenvalues ζk and
the respective norming constants bk (see [2] or Sec. II for a
complete introduction). The discrete spectrum is associated
with the solitonic components of the potential which will
be referred to as bound states in the rest of this paper. The
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FIG. 1. The figure shows evolution of the nonlinear Fourier spectrum along the length of the fiber. Here, the sequence (ζk,bk) denotes the
discrete spectrum and ρ(ξ ), ξ ∈ R is the continuous spectrum also known as the reflection coefficient.

energy in these states does not disperse away as in the case of
linear waves, a phenomenon which is adequately characterized
by the term “bound states.” The evolution of the nonlinear
Fourier (NF) spectrum depicted in Fig. 1 is reminiscent of
evolution in a linear channel—a property which is attributed
to the integrability of the nonlinear channel.

In passing, we also note that the ZS problem appears in
various other physical systems, for instance, grating-assisted
codirectional couplers (GACCs), a device used to couple light
between two different guided modes of an optical fiber (see
[9,10] and references therein), and NMR spectroscopy, where
design of frequency-selective pulses requires solution of a ZS
problem [11–13].

Among the key physical effects that affect the performance
of an optical fiber communication system, namely, chromatic
dispersion, Kerr-type nonlinearity, and optical noise, it is the
latter two that have become the principle factors limiting
the spectral efficiency of wavelength-division-multiplexed
(WDM) networks at high signal powers. The reason behind this
is largely the transmission methodologies that assume a linear
model of the channel. The NF spectrum, in contrast, offers a
novel way of encoding information in optical pulses where the
nonlinear effects are adequately taken into account as opposed
to being treated as a source of signal distortion. The idea to
use discrete eigenvalues of the NF spectrum was first proposed
by Hasegawa and Nyu [14] which they termed the eigenvalue
communication. Recently, Yousefi and Kschischang [15] have
proposed nonlinear signal multiplexing in multiuser channels
in order to mitigate the problem of nonlinear cross-talk that
occurs in WDM systems. We note that the most general
modulation technique uses both the discrete as well as the
continuous part of the NF spectrum which was recently
demonstrated in [16]. We refer the reader to a comprehensive
review article [17] and the references therein for an overview
of the progress in theoretical as well as experimental aspects
of various NFT-based optical communication methodologies.
It must be noted that practical implementation of NFT-based
transmission is still quite far from becoming a reality [17]
and there are other potential ways to combat nonlinear signal
distortions in optical fibers [18,19].1

1At this point, studies indicate that there is no clear winner as far
as mitigation of impairments due to nonlinearity in optical fibers is

In any NFT-based modulation technique, the importance of
low-complexity NFT algorithms cannot be overemphasized.
In this paper, we focus on the development of fast algorithms
for various modulation scenarios of a NFT-based transmission
system. As noted in [17], many of the existing numerical
approaches tend to become inaccurate as the signal power
increases. While this is perhaps attributed to lack of numerical
precision, it could also be due to numerical ill conditioning
or is a result of naive implementation. It is difficult to fully
address these problems in this work, but let us remark that
stability and convergence of the numerical algorithm plays a
key role in determining its performance in realistic scenarios.
We discuss these two aspects quite rigorously in this work.

Our primary goal here is to provide a theoretical foundation
for the algorithms reported in [20] where we also showcased
our preliminary results demonstrating a fast inverse NFT. The
specific problems for which we seek fast algorithms in this
work are as follows:

Problem 1 (Generation of multisolitons). Given an arbitrary
discrete spectrum SK (K being its cardinality or, in other
words, the number of bound states), compute the correspond-
ing multisoliton potential.

Problem 2 (Addition of bound states). Given an arbitrary
potential qseed(x) referred to as the “seed” potential (assumed
to be admissible as a scattering potential in the ZS problem)
and a given discrete spectrum SK , compute the “augmented”
potential such that its discrete spectrum is given by Saug. =
Sseed ∪ SK where SK is known to be disjoint with Sseed, the
discrete spectrum of the seed potential.

Problem 3 (Inversion of continuous spectrum). Given an
arbitrary continuous spectrum ρ(ξ ), ξ ∈ R, such that there
exists a positive constant C > 0 for which the estimate

|ρ(ξ )| � C

1 + |ξ |
holds, compute the potential such that its continuous spectrum
is ρ(ξ ) and the discrete spectrum is empty.

Problem 4 (Inverse NFT). Given an arbitrary continuous
spectrum ρ(ξ ), ξ ∈ R, satisfying the estimate in Problem 3

concerned; therefore, we continue our efforts to improve the NFT-
based approach. Also noteworthy is the fact that the ZS problem
appears in various other systems of physical significance where this
research can find application.
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and a given discrete spectrum SK , compute the potential such
that its continuous spectrum is ρ(ξ ) and its discrete spectrum
is SK .

The first two of these problems can be solved, at least in
principle, using the Darboux transformations (DTs) [21,22].
Problem 1 can be solved with machine precision using DTs
with the null potential as the seed. The resulting complexity is
O (K2N ) where K is the number of eigenvalues and N is the
number of samples of the potential. The scenario in Problem
1 corresponds to the modulation of the discrete NF spectrum
which has been explored by a number of groups [23–25] and
it has also been experimentally demonstrated [26–31].

Problem 2 cannot be solved without resorting to numerical
methods for the ZS problem because the so-called Jost
solutions (which are required in DTs) are not known in a
closed form for any arbitrary seed potential. Problems 3 and 4
will be treated in a sequel to this paper.

The numerical techniques for solving Problems 1–4 devel-
oped in this work are based on exponential (linear) one-step
methods [32,33] for the discretization of the ZS problem. The
method yields a discrete framework for solving the ZS problem
which resembles the transfer matrix approach for solving
wave-propagation problems in dielectric layered media (Chap.
1 of Ref. [34]). These transfer matrices have polynomial
entries—a form that is amenable to the FFT-based polynomial
arithmetic [35] and is also compatible with the layer-peeling
algorithm [36]. All the methods considered in this article
exhibit either a first order or a second order of convergence;
i.e., the numerical errors vanish as O (N−p) where p is the
order of the one-step method.2

Within this discrete framework, we develop two algorithms:
(a) the classical Darboux transform (CDT) which addresses
Problem 2, and (b) the fast Darboux transformation (FDT)
which addresses Problems 1 and 2 both.3 The CDT algorithm
is a direct numerical implementation of the DT in the
continuum case where the seed Jost solutions are computed
by numerically solving the scattering problem resulting in
an overall complexity of O (K2N ). The FDT algorithm is
based on the pioneering work of Lubich on convolution
quadrature [40–42]. In order to ensure compatibility with
Lubich’s construction, we restricted ourselves to the implicit
Euler method and the trapezoidal rule. This algorithm has an
operational complexity of O(N (K + log2 N )) and an order
of convergence that matches that of the underlying one-step
method, i.e., O (N−p) where p = 1 (implicit Euler), p = 2
(trapezoidal rule). With increasing number of eigenvalues,
FDT clearly outperforms CDT. The numerical tests and error

2The discrete system corresponding to the Ablowitz-Ladik (AL)
scattering problem (Chap. 3, Ref. [37]) is also amenable to FFT-based
fast polynomial arithmetic and satisfies the layer-peeling property
[38]; however, it does not illuminate how to obtain a general recipe
that could be applied to the ZS problem in order to obtain a similar
discrete system possessing a given order of convergence.

3It is worth noting that an alternative fast method of solving Problem
1 is reported in [39] and it can be readily adapted to the discrete
framework considered in this work. However, this method offers no
control over the norming constants; therefore, we do not address this
algorithm here.

analysis of the numerical scheme suggests that CDT is useful
only for a smaller number of eigenvalues. These tests further
reveal that FDT is not only more accurate for the general case;
it also has superior numerical conditioning with increasing
number of eigenvalues as opposed to the CDT algorithm which
becomes unstable.

Outline of the paper

This paper is organized as follows: In Sec. II, we summarize
the basic scattering theory and the Darboux transformation
in the continuous regime. The discrete scattering framework
for the ZS problem is developed in Sec. III where the
numerical discretization in the spectral domain is described
in Sec. III A and properties of the numerical Jost solutions
are discussed in Sec. III B. We formulate the layer-peeling
scheme in Sec. III C which is based on the discrete framework
developed in Sec. III A. Algorithmic aspects are addressed
in Secs. III D and III E where we describe the sequential
algorithm and its fast version obtained using a divide-and-
conquer strategy, respectively. Sections III F to III H contain
the main contribution of this paper: The method of inversion
of continuous scattering coefficients using Lubich’s method
is discussed in Sec. III F. In Sec. III G, we apply Lubich’s
method to obtain the FDT algorithm for K-soliton potentials.
Finally, the general version of the CDT algorithm and the FDT
algorithm is discussed in Sec. III H.

The benchmarking methods that are used for comparison
are discussed in Sec. IV. The necessary and sufficient condition
for discrete inverse scattering is discussed in Sec. V. The
stability and convergence analysis of the numerical schemes
developed in earlier sections is carried out in Sec. VI. The
numerical experiments and results are discussed in Sec. VII
which is followed by Sec. VIII, which concludes the paper.

II. THE AKNS SYSTEM

In order to describe the fundamental basis of the nonlinear
Fourier transform (NFT), we briefly review the scattering
theory for a 2 × 2 AKNS system corresponding to the NSE.
Because the NSE shows up in various disciplines, we choose to
present the theory in a form that is independent of the context
and conforms to the way it appears in the classical texts on
scattering theory. For a complex-valued field q(x,t), we will
work with the standard form of NSE which reads as

iqt = qxx + 2|q|2q, (x,t) ∈ R × R+, (2)

where t > 0 is the evolution parameter identified as a timelike
variable (this turns out to be the propagation distance Z for
the fiber model) and x ∈ R is the domain over which the field
is defined (which is the retarded time T for the fiber model).
Henceforth, we closely follow the formalism developed in
[2,3] for the exposition in this article. The NFT of the complex-
valued field q(x,t) is introduced via the associated Zakharov-
Shabat scattering problem [1] which can be stated as follows:
Let ζ ∈ R and v = (v1,v2)ᵀ ∈ C2; then

vx = −iζσ3v + Uv, (3)

vt = 2iζ 2σ3v + [−2ζU + iσ3(U 2 − Ux)]v, (4)
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where

U =
(

0 q(x,t)
r(x,t) 0

)
, r(x,t) = −q∗(x,t), (5)

is identified as the scattering potential. The second relation
above corresponds to the focusing-type of nonlinearity for the
NSE. The compatibility condition (vxt = vtx) between (3) and
(4), assuming ζ is independent of t , produces the NSE as stated
in (2).

The solution of the scattering problem (3), henceforth
referred to as the ZS problem, consists of finding the so-
called scattering coefficients which are defined through special
solutions of (3) known as the Jost solutions described in the
next subsection. These Jost solutions also play an important
role in defining the Darboux transformation (DT) which is a
powerful technique for constructing more complex potentials
(as well as their Jost solutions) from simpler ones; this will
be discussed in the final part of this section. There, we will be
primarily interested in studying the form of DT which allows
one to add bound states to a given potential.

A. Jost solutions

The Jost solutions are linearly independent solutions of
(3) such that they have a plane-wave-like behavior at +∞ or
−∞. In the following, we set t = 0 and suppress the time
dependence of the solutions for the sake of brevity.

(1) First kind. The Jost solutions of the first kind, denoted
by ψ(x; ζ ) and ψ(x; ζ ), are the linearly independent solutions
of (3) which have the following asymptotic behavior as x →
∞: ψ(x; ζ )e−iζx → (0,1)ᵀ and ψ(x; ζ )eiζx → (1,0)ᵀ.

(2) Second kind. The Jost solutions of the second kind,
denoted by φ(x,ζ ) and φ(x,ζ ), are the linearly independent
solutions of (3) which have the following asymptotic behav-
ior as x → −∞: φ(x; ζ )eiζx → (1,0)ᵀ and φ(x; ζ )e−iζx →
(0,−1)ᵀ.

The evolution of the Jost solutions in time is governed by
Eq. (4) for t ∈ R+ under the asymptotic boundary conditions
prescribed above. On account of the linear independence of ψ

and ψ , we have

φ(x; ζ ) = a(ζ )ψ(x; ζ ) + b(ζ )ψ(x; ζ ),

φ(x; ζ ) = −a(ζ )ψ(x; ζ ) + b(ζ )ψ(x; ζ ).

Similarly, using the pair φ and φ, we have

ψ(x; ζ ) = −a(ζ )φ(x; ζ ) + b(ζ )φ(x; ζ ),

ψ(x; ζ ) = a(ζ )φ(x; ζ ) + b(ζ )φ(x; ζ ).

The coefficients appearing in the equations above can be
written in terms of the Jost solutions by using the Wronskian

relations:4

a(ζ ) = W (φ,ψ), b(ζ ) = W (ψ,φ),

a(ζ ) = W (φ,ψ), b(ζ ) = W (φ,ψ).
(6)

These coefficients are known as the scattering coefficients
and the process of computing them is referred to as forward
scattering. As it turns out, we would also be interested in
studying the analytic continuation of the Jost solutions with
respect to ζ , which in turn also determines the analytic
continuation of the scattering coefficients. The motivation
behind this is threefold: First, the inversion of the scattering
coefficients cannot be done in general by knowing the value
of the scattering coefficients over the real line (i.e., ζ ∈ R).
Second, the knowledge of analyticity and decay properties of
these functions in the complex plane allows us to establish
certain theoretical estimates with greater ease. Lastly, in
many cases, the knowledge of the analytic form introduces
a certain redundancy in the system that can be exploited by the
numerical algorithms to improve its numerical conditioning
and stability.

In order to discuss the analytic continuation of the Jost
solution with respect to ζ , let us specify the following
two classes of functions for the scattering potential (at t =
0): Let q(·,0) ∈ L1 such that supp q(·,0) ⊂ � = [L1,L2] or
|q(x,0)| � C exp[−2d|x|] almost everywhere in R for some
constants C > 0 and d > 0. In the former case, the Jost
solutions have analytic continuation in the whole of the
complex plane with respect to ζ . Consequently, the scattering
coefficients a(ζ ), b(ζ ), a(ζ ), b(ζ ) are analytic functions of
ζ ∈ C. In the latter case, the analyticity property can be
summarized as follows (Sec. IV A of Ref. [2]): The functions
e−iζxψ and eiζxφ are analytic in the half space {ζ ∈ C| Im ζ >

−d}. The functions eiζxψ and e−iζxφ are analytic in the half
space {ζ ∈ C| Im ζ < d}. In this case, the coefficient a(ζ ) is
analytic for Im ζ > −d while the coefficient b(ζ ) is analytic
in the strip defined by −d < Im ζ < d. More will be said
about the analyticity and decay properties of the scattering
coefficients in Sec. VI A.

Furthermore, the symmetry properties

ψ(x; ζ ) = iσ2ψ
∗(x; ζ ∗) =

(
ψ∗

2 (x; ζ ∗)

−ψ∗
1 (x; ζ ∗)

)
,

φ(x; ζ ) = iσ2φ
∗(x; ζ ∗) =

(
φ∗

2 (x; ζ ∗)

−φ∗
1 (x; ζ ∗)

)
(7)

yield the relations a(ζ ) = a∗(ζ ∗) and b(ζ ) = b∗(ζ ∗).

B. Scattering data and the nonlinear Fourier spectrum

The scattering coefficients introduced in the last section
together with certain quantities defined below that facilitate

4For any pair of linearly independent vectors, v, u ∈ C2, their
Wronskian which is defined as

W (u,v) = (u,v) = u1v2 − v1u2

is nonzero. If u,v also qualify as Jost solutions, then their Wronskian
is independent of x [2].
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the recovery of the scattering potential are collectively referred
to as the scattering data. The nonlinear Fourier spectrum can
then be defined as any of the subsets which qualify as the
“primordial” scattering data (Appendix 5 of Ref. [2]), i.e., the
minimal set of quantities sufficient to determine the scattering
potential, uniquely.

In general, the nonlinear Fourier spectrum for the potential
q(x,0) comprises a discrete and a continuous spectrum. The
discrete spectrum consists of the so-called eigenvalues ζk ∈
C+, such that a(ζk) = 0, and the norming constants bk such
that φ(x; ζk) = bkψ(x; ζk). For convenience, let the discrete
spectrum be denoted by the set

SK = {(ζk,bk) ∈ C2| Im ζk > 0, k = 1,2, . . . ,K}. (8)

For compactly supported potentials, bk = b(ζk). Note that
some authors choose to define the discrete spectrum using
the pair (ζk,ρk) where ρk = bk/ȧ(ζk) is known as the spectral
amplitude corresponding to ζk (ȧ denotes the derivative of a).

The continuous spectrum, also referred to as the reflection
coefficient, is defined by ρ(ξ ) = b(ξ )/a(ξ ) for ξ ∈ R. The
coefficient a(ζ ) and consequently the discrete eigenvalues do
not evolve in time. The rest of the scattering data evolves
according to the relations bk(t) = bke

−4iζ 2
k t and ρ(ξ,t) =

ρ(ξ )e−4iξ 2t .

C. The Darboux transformation

The Darboux transformation provides a purely algebraic
means of adding bound states to a seed solution [21,22,43]. In
doing so the b coefficient of the potential remains invariant
[21] while the a coefficient gets modified to reflect the
addition of the bound states. In particular, starting from the
“vacuum” solution (i.e., the solution for the null potential),
one can compute reflectionless potentials also referred to as
the multisoliton or, more precisely, the K-soliton potential with
the desired discrete spectrum. The Darboux transformation is
carried out by means of Darboux matrices which are described
in the following paragraphs.

Let SK as defined by (8) be the discrete spectrum to be
added to the seed potential. Define the matrix form of the Jost
solutions as

v(x,t ; ζ ) = (φ,ψ) =
(

φ1 ψ1

φ2 ψ2

)
. (9)

The augmented matrix Jost solution vK (x,t ; ζ ) can be obtained
from the seed solution v0(x,t ; ζ ) using the Darboux matrix as

vK (x,t ; ζ ) = μK (ζ )DK (x,t ; ζ,SK )v0(x,t ; ζ ), ζ ∈ C+,

where μK (ζ ) is to be determined. In the following, we
summarize the approach proposed by Neugebauer and Meinel
[43] which requires the Darboux matrix to be written as

DK (x,t ; ζ,SK ) =
K∑

k=0

D
(K)
k (x,t ; SK )ζ k,

where the coefficient matrices are such that (for the special
case r = −q∗) D

(K)
K = σ0 and

D
(K)
k =

(
d

(k,K)
0 d

(k,K)
1

−d
(k,K)∗
1 d

(k,K)∗
0

)
, k = 0,1, . . . ,K − 1.

From the Wronskian relation, we know a0(ζ ) = det[v0]; hence,
it follows that

aK (ζ ) = det [vK (x,t ; ζ )]

= [μK (ζ )]2 det [DK (x,t ; ζ,SK )]a0(ζ ).

It is shown in [43] that det[DK (x,t ; ζ,SK )] is independent of
(x,t). Further, the symmetry imposed by the condition r =
−q∗ requires

det [DK (x,t ; ζ,SK )] =
K∏

k=1

(ζ − ζk)(ζ − ζ ∗
k ),

which combined with the fact that [21]

aK (ζ ) = a0(ζ )
K∏

k=1

(
ζ − ζk

ζ − ζ ∗
k

)
yields

μK (ζ ) =
K∏

k=1

1

(ζ − ζ ∗
k )

.

From φK (x,t ; ζk) = bk(t)ψK (x,t ; ζk), we have

DK (x,t ; ζk,SK )[φ0(x,t ; ζk) − bk(t)ψ0(x,t ; ζk)] = 0. (10)

Note that φ0(x,t ; ζk) − bk(t)ψ0(x,t ; ζk) �= 0 on account of
a0(ζk) �= 0; i.e., ζk is not an eigenvalue of the seed potential.
The 2K system of equations in (10) can be used to compute
the 2K unknown coefficients of the Darboux matrix. Let UK

and U0 correspond to the augmented potential qK and the seed
potential q0, respectively; then using the fact that vK (x,t ; ζ ) is
a Jost solution, we have

[DKv0]x − (−iζσ3 + UK )DKv0 = 0,

which expands to

[∂xDK − (−iζσ3 + UK )DK + DK (−iζσ3 + U0)]v0 = 0.

Given that v0 is invertible, we must have

[∂xDK − (−iζσ3 + UK )DK + DK (−iζσ3 + U0)] = 0.

Equating the coefficient of ζK to zero, we have

UK = U0 + i
[
σ3,D

(K)
K−1

]
= U0 +

(
0 2id

(K−1,K)
1

2id
(K−1,K)∗
1 0

)
.

(11)

1. Darboux matrix of degree 1

For the sake of simplicity, let the us consider the seed
solution with empty discrete spectra. Let us define the
successive discrete spectra ∅ = S0 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ SK

such that Sj = {(ζj ,bj )} ∪ Sj−1 for j = 1,2, . . . ,K where
(ζj ,bj ) are distinct elements of SK .

For single bound state, described by S1, putting

β0(x,t ; ζ1,b1) = φ
(0)
1 (x,t ; ζ1) − b1(t)ψ (0)

1 (x,t ; ζ1)

φ
(0)
2 (x,t ; ζ1) − b1(t)ψ (0)

2 (x,t ; ζ1)
,
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the solution of the corresponding linear system (10) yields the
Darboux matrix of degree 1 given by

D1(x,t ; ζ,S1|S0)

= ζσ0 −
(

β0 1
1 −β∗

0

)(
ζ1 0
0 ζ ∗

1

)(
β0 1
1 −β∗

0

)−1

= ζσ0 − 1

1 + |β0|2
(|β0|2ζ1 + ζ ∗

1 (ζ1 − ζ ∗
1 )β0

(ζ1 − ζ ∗
1 )β∗

0 ζ1 + ζ ∗
1 |β0|2

)
. (12)

The augmented potential then works out as

q1(x,t) = q0(x,t) − 2i
(ζ1 − ζ ∗

1 )β0

1 + |β0|2 . (13)

The Jost solutions for this new potential can be obtained via
the Darboux matrix and the entire procedure can be repeated
for adding another bound state to the augmented potential.
Suppressing the x and t dependence for the sake of brevity,
it follows that the Darboux matrix of degree K > 1 can be
factorized into Darboux matrices of degree 1 as

DK (ζ,SK |S0) = D1(ζ,SK |SK−1)D1(ζ,SK−1|SK−2)

× . . . ×D1(ζ,S1|S0),

where D1(ζ,Sj |Sj−1), j = 1, . . . ,K are the successive Dar-
boux matrices of degree 1 with the convention that (ζj ,bj ) =
Sj ∩ Sj−1 is the bound state being added to the seed solution
whose discrete spectra is Sj−1. Using the expression in (12),
we have

D1(ζ,Sj |Sj−1) = ζσ0−
1

1 + |βj−1|2
(|βj−1|2ζj + ζ ∗

j (ζj − ζ ∗
j )βj−1

(ζj − ζ ∗
j )β∗

j−1 ζj + ζ ∗
j |βj−1|2

)
,

where

βj−1(ζj ,bj ) = φ
(j−1)
1 (ζj ) − bjψ

(j−1)
1 (ζj )

φ
(j−1)
2 (ζj ) − bjψ

(j−1)
2 (ζj )

,

for (ζj ,bj ) ∈ SK and the successive Jost solutions, vj =
(φj ,ψ j ), needed in this ratio are computed as

vj = 1

(ζ − ζ ∗
j )

D1(ζ,Sj |Sj−1)vj−1.

The successive potentials are given by

qj = qj−1 − 2i
(ζj − ζ ∗

j )βj−1

1 + |βj−1|2 .

See Fig. 2 for a schematic representation of the DT.
If the seed Jost solution v0(x,t ; ζ ) corresponding to the seed

potential q0(x,t) is known, then the Darboux transformations
can be readily carried out over any set of grid points {xn} ⊂
R in order to compute the augmented potential at these
grid points. The resulting order of operational complexity,
excluding the cost of evaluating the seed potential and the seed
Jost solution, works out to be O (K2N ) where N is the number
of samples of the augmented potential. For the special case of
K-solitons, the seed potential as well as the seed Jost solutions
are trivially known; therefore, this method provides us with an
algorithm for computing the K-soliton potentials with machine
precision. In general, closed-form solutions are rarely known

for arbitrary potentials; nevertheless, this procedure can be
carried out with numerically computed Jost solutions in any
discrete framework. This scheme will be referred to as the
classical Darboux transformation (CDT) in the rest of the
article. The error analysis of this method is carried out in
Sec. VI E.

For multisolitons, the asymptotic form of the potential as
x → ∞ works out to be

qK (x,t) ∼ 2i

K∑
j=1

(ζj − ζ ∗
j )

a∗
j−1(ζj )

b∗
j (t)e−2iζ ∗

j x,

and as x → −∞

qK (x,t) ∼ 2i

K∑
j=1

(ζj − ζ ∗
j )

aj−1(ζj )

1

bj (t)
e−2iζj x,

where aj (ζ ) = a(ζ ; Sj ) are the successive a coefficients.
Therefore, qK (x,t) exhibits exponential decay with a decay
constant that is given by dK = min1�j�K Im ζj . This observa-
tion allows us to conclude that round-off errors in the CDT
scheme can be minimized if the eigenvalues are “added” in
decreasing order of the magnitude of their imaginary parts
[44]. Further, the knowledge of the decay constant can be
used to choose an optimal computational domain so that the
numerical errors due to domain truncation are minimized (see
Sec. VII A 1).

2. Effective support of multisoliton potentials

A multisoliton potential has unbounded support; therefore,
in any practical application it is mandatory to introduce
an effective support with desired energy content. Posed
conversely, one may also be interested in choosing the discrete
spectrum which leads to a prescribed effective support with
desired energy content initially or over a finite duration of
evolution.

In the case of multisolitons, the energy content of the side
lobe which we wish to truncate is trivially available in the
CDT scheme and it can be used as a truncation criteria. Let χ�

denote the characteristic function of � and let [−L,L] (L > 0)
be the domain that needs to be determined so that

‖qKχ(−∞,−L]‖2
L2 + ‖qKχ[L,∞)‖2

L2 = ε‖qK‖2
L2 . (14)

Suppressing the dependence on t for the sake of brevity, the
asymptotic expansion of φK (−L; ζ )e−iζL with respect to ζ

yields (Sec. IV A of Ref. [2])

‖qKχ(−∞,−L]‖2
L2 =

K∑
j=1

4 Im(ζj )

[1 + |βj−1(−L; ζj ,bj )|−2]
, (15)

and that corresponding to ψK (L; ζ )e−iζL yields

‖qKχ[L,∞)‖2
L2 =

K∑
j=1

4 Im(ζj )

[1 + |βj−1(L; ζj ,bj )|2]
. (16)

These relationships are also known as the nonlinear Parseval
relationships. Asymptotic estimates when L � 1 can be easily
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v0(xn, t; ζ) DT (ζ1, b1)

D1(xn, t; ζ, 1| 0) ∆q1(xn, t)

v1(xn, t; ζ) DT (ζ2, b2)

× +

D1(xn, t; ζ, 2| 1) ∆q2(xn, t)

...
...

...

× +

...
...

D1(xn, t; ζ, K | K−1) ∆qK(xn, t)× +

vK(xn, t; ζ) qK(xn, t) − q0(xn, t)

DT[S K]

FIG. 2. The figure shows the schematic of the classical Darboux transformation for a given discrete spectrum, SK , where the discrete
spectrum of the seed solution is empty, i.e., S0 = ∅, and the given grid point, xn. The part enclosed within broken lines is referred to as
the complete DT block (labeled as DT[SK ]). The sole input to this block is the seed Jost solution, v0(xn,t ; ζ ). The output of the DT block
consists of the augmented Jost solution, vK (xn,t ; ζ ), and the difference between the augmented and the seed potential, qK (xn,t) − q0(xn,t).
Here, �qj (xn,t) = qj (xn,t) − qj−1(xn,t) and Sj = Sj−1 ∪ {(ζj ,bj )} with S1 = {(ζ1,b1)} ∪ S0 where (ζj ,bj ), j = 1,2, . . . ,K , are the distinct
elements of SK (see Sec. II B).

obtained from the above relations:

‖qKχ(−∞,−L]‖2
L2 ∼

K∑
j=1

4 Im(ζj )

|aj−1(ζj )|2
1

|bj |2 e−4 Im(ζj )L,

‖qKχ[L,∞)‖2
L2 ∼

K∑
j=1

4 Im(ζj )

|aj−1(ζj )|2 |bj |2e−4 Im(ζj )L.

This allows us to obtain an asymptotic formula for the effective
support of a K-soliton potential. Define L = L(ε; SK ) > 0
such that

|qKχ[−L,L]‖2
L2 = (1 − ε)‖qK‖2

L2 = 4(1 − ε)
K∑

j=1

ηj ;

then

L ≈ W = 1

2ηmin
log

[∑K
j=1 ωjηj

ε
∑K

j=1 ηj

]
, (17)

under the assumption ε
∑K

j=1 ηj �∑K
j=1 ωjηj where

ωj = 1

|aj−1(ζj )|2
(

|bj |2 + 1

|bj |2
)

.

Finally, let us note that a binary search algorithm (bisection
method) can be devised to solve the nonlinear equation (14)
for L = L(ε,SK ) where [0,W ] can be taken as the bracketing
interval for the root.5 The complexity of such an algorithm (for
fixed t) works out to be O (mK2) where m is the number of
bisection steps needed.

3. Scattering coefficients of a truncated multisoliton

Let x = 0 be taken as the point of truncation. Then a
multisoliton potential can be seen as comprising a left-sided
profile (supported in R− ∪ {0}) and a right-sided profile
(supported in {0} ∪ R+). The respective scattering coefficients

5Numerical tests indicate that [−W,W ] tends to overestimate the
effective support.
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of each of the truncated potentials turn out to be a rational
function of ζ . These observations were already made by several
authors [12,13,45–47] and a number of different methods do
exist for inversion of the scattering data which exploit the
rational character of the truncated scattering coefficients. Our
numerical scheme also exploits this property; therefore, we
discuss this case in some detail below.

Let us consider the left-sided profile, denoted by q(−)(x,t).
The Jost solution φ(−)(x,t ; ζ ) at x = 0 can be computed
using the Darboux transformation as described above. The
Jost solution ψ (−)(x,t ; ζ ) at x = 0 corresponds to that of
a null potential, i.e., ψ (−)(0,t ; ζ ) = (0,1)ᵀ. The scattering
coefficients for the left-sided profile, therefore, works out to
be

a(−)(ζ,t) = φ
(−)
1 (0,t ; ζ ), b(−)(ζ,t) = φ

(−)
2 (0,t ; ζ ).

This corresponds to the first column of the Darboux matrix
DK (0,t ; ζ,SK ), therefore, a purely rational function of ζ

analytic in C+. Now, let us consider the right-sided profile,
denoted by q(+)(x,t). The Jost solution ψ (+)(x,t ; ζ ) at x =
0 can be computed using the Darboux transformation as
before while the Jost solution φ(+)(x,t ; ζ ) at x = 0 is given
by φ(+)(0,t ; ζ ) = (1,0)ᵀ. Therefore, the relevant scattering
coefficients for the right-sided profile work out to be

a(+)(ζ,t) = ψ
(+)
2 (0,t ; ζ ), b

(+)
(ζ,t) = ψ

(+)
1 (0,t ; ζ ).

This corresponds to the second column of the Darboux matrix
DK (0,t ; ζ,SK ) and, therefore, a purely rational function of ζ

analytic in C+.
Remark 1 (Conjugation and reflection). The inverse scat-

tering problem for the right-sided profile can be transformed
to that of a left-sided profile in the following way: putting
y = −x, we have

vy(−y; ζ ) = iζσ3v(−y; ζ ) − U (−y)v(−y; ζ ),

wy = −iζσ3w + U ∗(−y)w,

where w(y) = σ1v(−y; ζ ). Denote the Jost solutions of the
new system [i.e., with potential U ∗(−y)] by �(y; ζ ), �(y; ζ )
(first kind), and �(y; ζ ), �(y; ζ ) (second kind); then

�(y; ζ ) = σ1φ(−y; ζ ), �(y; ζ ) = −σ1φ(−y; ζ ),

�(y; ζ ) = σ1ψ(−y; ζ ), �(y; ζ ) = −σ1ψ(−y; ζ ).

Let A(ζ ), B(ζ ), A(ζ ), and B(ζ ) be the scattering coefficients
for the new system; then

A(ζ ) = W (�,�) = a(ζ ), A(ζ ) = W (�,�) = a(ζ ),

B(ζ ) = W (�,�) = b(ζ ), B(ζ ) = W (�,�) = b(ζ ).

The discrete eigenvalues do not change; however, the norming
constants change as Bk = 1/bk . Now, the scattering coeffi-
cients for the left-sided profile obtained as a result of truncating
the new potential from the right at x = 0 work out to be

A(−)(ζ,t) = �1(0,t ; ζ ) = ψ2(0,t ; ζ ),

B(−)(ζ,t) = �2(0,t ; ζ ) = ψ1(0,t ; ζ ).

Therefore, an implementation for the case of the left-sided
profile is sufficient to solve problems of a general nature
encountered in forward and inverse NFT.

Remark 2 (Translation). Let us note that there is no loss of
generality in choosing the point of truncation to be x = 0 on
account of the translational properties of the discrete spectrum.
If we wish to choose the point of truncation to be x = x0, we
can consider the transformation x = y + x0. Define the new
potential to be Ũ (y) = U (y + x0) so that

vy(y + x0; ζ ) = [−iζσ3 + U (y + x0)]v(y + x0; ζ ),

wy = −iζσ3w + Ũ (y)w,

where w(y; ζ ) = v(y + x0; ζ ). Denote the Jost solutions of
the new system by �(y; ζ ), �(y; ζ ) (first kind) and �(y; ζ ),
�(y; ζ ) (second kind); then

�(y; ζ ) = ψ(y + x0; ζ )e−iζx0 ,

�(y; ζ ) = ψ(y + x0; ζ )e+iζx0 ,

�(y; ζ ) = φ(y + x0; ζ )e+iζx0 ,

�(y; ζ ) = φ(y + x0; ζ )e−iζx0 .

Let A(ζ ), B(ζ ), A(ζ ), and B(ζ ) be the scattering coefficients
for the new system; then

A(ζ ) = W (�,�) = a(ζ ), B(ζ ) = W (�,�) = b(ζ )e2iζx0 ,

A(ζ ) = W (�,�) = a(ζ ), B(ζ ) = W (�,�) = b(ζ )

e2iζx0
.

The discrete eigenvalues do not change; however, the norming
constants change as Bk = bke

−2iζkx0 .

III. DISCRETE FORWARD AND INVERSE SCATTERING

In this section, we discuss certain discretization schemes
for the scattering problem in (3) such that they are amenable
to FFT-based fast polynomial arithmetic [35]. This method of
obtaining a discrete scattering problem is referred to as the
spectral-domain approach.6 We begin with the transformation
ṽ = eiσ3ζxv so that (3) becomes

∂x[eiσ3ζxv] = eiσ3ζxUe−iσ3ζx[eiσ3ζxv],

or

ṽx = Ũ ṽ,

Ũ = eiσ3ζxUe−iσ3ζx =
(

0 qe2iζx

re−2iζx 0

)
. (18)

The next step is to apply the linear one-step method [33] to
(18) in order to setup a recurrence relation initialized by the
given initial condition. Let us note that the method of numerical
integration just described above is identified as the exponential
integrator based on linear one-step methods, in particular, the
integrating factor (IF) method [32]. One of the advantages of
the transformation carried out above in arriving at (18) is that
the “vacuum” solution obtained from the discrete problem is
exact.

Remark 3. In the literature, the usage of the terms “forward
scattering” and “inverse scattering” is not made precise; for
instance, “forward scattering” could refer to computation of

6See [36] for alternative approaches.
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the scattering coefficients a and b or the nonlinear Fourier
spectrum. In order to avoid any confusion arising in the usage
of these terms, we follow the convention that the term “forward
scattering” refers to the computation of the Jost solutions
while the term “inverse scattering” refers to the process of
recovering the samples of the scattering potential from (the
polynomial form of) the Jost solutions. Note that in almost all
cases, knowledge of the Jost solutions trivially allows one to
compute the truncated discrete scattering coefficients and vice
versa; therefore, no confusion should arise in what constitutes
an input to the inverse scattering process.

A. Discretization in the spectral domain

In order to discuss various discretization schemes, we take
an equispaced grid defined by xn = L1 + nh, n = 0,1, . . . ,N,

with xN = L2 where h is the grid spacing. Define �−,�+ ∈ R
such that h�− = −L1, h�+ = L2. Further, let us define z =
eiζh and treat ζ as a fixed parameter. For the potential functions
sampled on the grid, we set qn = q(xn,t), rn = r(xn,t) where
the time dependence is suppressed. Using the same convention,
Un = U (xn,t) and Ũn = Ũ (xn,t).

1. Forward Euler method

The forward Euler (FE) method is the simplest of the finite-
difference schemes. It can be stated as

ṽn+1 = (σ0 + Ũn)ṽn,

vn+1 = e−iσ3ζh(σ0 + Un)vn.

Setting Qn = hqn, Rn = hrn, and �n = (1 − QnRn), we have

vn+1 = z−1

(
1 Qn

z2Rn z2

)
vn = z−1Mn+1(z2)vn, (19)

or, equivalently,

z−1

�n

(
z2 −Qn

−z2Rn 1

)
vn+1 = vn. (20)

Let us note that the transfer matrix can be transformed to a
form that resembles that of the implicit Euler method described
in the next section: Putting wn = eiσ3ζhvn, we have

wn+1 = z−1

(
1 z2Qn

Rn z2

)
wn. (21)

2. Implicit Euler method

The backward differentiation formula of order 1 (BDF1) is
also known as the implicit Euler method. The discretization of
(18) using this method reads as

ṽn+1 = (σ0 − hŨn+1)−1ṽn,

vn+1 = (σ0 − hUn+1)−1e−iσ3ζhvn.

Setting Qn = hqn, Rn = hrn, and �n = (1 − QnRn), this
scheme can be stated as follows:

vn+1 = z−1

�n+1

(
1 z2Qn+1

Rn+1 z2

)
vn = z−1Mn+1(z2)vn, (22)

or, equivalently,

z−1

(
z2 −z2Qn+1

−Rn+1 1

)
vn+1 = vn.

3. Trapezoidal rule

The trapezoidal rule (TR) happens to be one of the
most popular methods of integrating ODEs numerically. The
discretization of (18) using this method reads as

ṽn+1 =
(

σ0 − h

2
Ũn+1

)−1(
σ0 + h

2
Ũn

)
ṽn,

vn+1 =
(

σ0 − h

2
Un+1

)−1

e−iσ3ζh

(
σ0 + h

2
Un

)
vn.

Setting 2Qn = hqn, 2Rn = hrn, and �n = 1 − QnRn, this
scheme can be stated as follows:

vn+1 = z−1

�n+1

(
1 + z2Qn+1Rn z2Qn+1 + Qn

Rn+1 + z2Rn Rn+1Qn + z2

)
vn

= z−1Mn+1(z2)vn,

(23)

or, equivalently,

z−1

�n

(
Rn+1Qn + z2 −z2Qn+1 − Qn

−Rn+1 − z2Rn 1 + z2Qn+1Rn

)
vn+1 = vn.

B. Jost solutions and scattering coefficients

In order to express the discrete approximation to the Jost
solutions, let us define the vector-valued polynomial

Pn(z) =
(

P
(n)
1 (z)

P
(n)
2 (z)

)
=

n∑
k=0

P (n)
k zk =

n∑
k=0

(
P

(n)
1,k

P
(n)
2,k

)
zk. (24)

The Jost solutions ψ and φ, for the forward or implicit Euler
method and the trapezoidal rule, can be written in the form

ψn = z�+z−mSm(z2), φn = z�−z−n Pn(z2), (25)

where m + n = N . Note that the expressions above corre-
spond to the boundary conditions ψN = z�+(0,1)ᵀ and φ0 =
z�−(1,0)ᵀ which translate to S0 = (0,1)ᵀ and P0 = (1,0)ᵀ,
respectively. The other Jost solutions, ψn and φn, can be
written as

ψn = z−�+zm(iσ2)S∗
m(1/z∗2),

φn = z−�−zn(iσ2)P∗
n(1/z∗2).

The recurrence relation for the polynomial functions defined
in (25) take the form

Sm+1(z2) = M̃n(z2)Sm(z2),

Pn+1(z2) = Mn+1(z2)Pn(z2),
(26)

where Mn+1(z2) with its inverse z−2M̃n+1(z2) is determined by
the respective discretization scheme. The discrete approxima-
tion to the scattering coefficients is obtained from the scattered
field: φN = (aNz−�+ ,bNz�+)ᵀ yields

aN (z2) = P
(N)
1 (z2), bN (z2) = (z2)−�+P

(N)
2 (z2), (27)
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and ψ0 = (bNz�− ,aNz−�−)ᵀ yields

aN (z2) = S
(N)
2 (z2), bN (z2) = (z2)−�−S

(N)
1 (z2). (28)

The quantities aN , bN , and bN above are referred to as the
discrete scattering coefficients. Note that these coefficients
can only be defined for Re ζ ∈ [−π/2h, π/2h].

Remark 4. For the sake of brevity, we may occasionally
refer to the polynomials Sm(z2) and Pn(z2) (as opposed to ψn

and φn) as the (discrete) Jost solutions.

1. Discrete spectrum

The eigenvalues are computed by forming aN (z2) and
employing a suitable root-finding algorithm (see [48] and
the references therein for more details). It turns out that the
computation of the norming constants by evaluating bN is ill
conditioned on account of the vanishingly small contribution
from the solitonic components of the potential. Note that addi-
tion of bound states leaves b coefficients invariant; therefore,
recovery of the norming constant from b(ζ ) cannot be expected
to succeed in all cases. In order to remedy this problem, we use
the general definition of the norming constants.7 To this end,
we proceed by computing the truncated scattering coefficients.
Consider the case of potentials truncated from the right, i.e.,
q(−)(x) = θ (x1 − x)q(x) where x1 is the point of truncation
and θ (x) is the Heaviside step function. The new potential
now supported in (−∞,x1] is interpreted as left-sided with
respect to x1. The scattering coefficient can be stated in terms
of the Jost solutions of the original potential as [45]

a(−)(ζ ) = φ1(x1; ζ )eiζx1 ,

b(−)(ζ ) = φ2(x1; ζ )e−iζx1 .
(29)

Similarly, for potentials truncated from the left, we have

a(+)(ζ ) = ψ2(x1; ζ )e−iζx1 ,

b
(+)

(ζ ) = ψ1(x1; ζ )eiζx1 .
(30)

Denoting the corresponding discrete scattering coefficients by

a(−)
n , b(−)

n , a(+)
m , and b

(+)
m , where m + n = �− + �+, we have

φn =
(

z�−−na(−)
n

z−�−+nb(−)
n

)
= z�−z−n Pn(z2),

ψn =
(

z−�++mb
(+)
m

z�+−ma(+)
m

)
= z�+z−mSm(z2),

where m = N − n. Here n can be chosen to be N/2. Once an
admissible root, zk , of aN (z2) that corresponds to a soliton is
determined,8 the corresponding norming constant is obtained

7A similar approach is reported in [25]; however, it is not
emphasized in this paper that the norming constants are never defined
to be a value of b(ζ ) unless it is guaranteed to be analytic in C+. Note
that the study of the errors introduced by the numerical discretization
also provides significant insight into why the evaluation of bN (z2) at
complex values of ζ is ill conditioned (see Sec. VI C).

8Given that zk = exp(iζkh) and Im ζk > 0, we must have |zk| < 1.

via the proportionality of φn and ψn which translates to

bk = b(−)
n

(
z2
k

)
a

(+)
m

(
z2
k

) = (z2)�−−n
P

(n)
2

(
z2
k

)
S

(m)
2

(
z2
k

) ,
1

bk

= b
(+)
m

(
z2
k

)
a

(−)
n

(
z2
k

) = (z2)�+−m
S

(m)
1

(
z2
k

)
P

(n)
1

(
z2
k

) .
(31)

The truncated potential does not share discrete eigenval-
ues with the original potential; therefore, a(+)

m (z2
k) �= 0 and

a(−)
n (z2

k) �= 0. The computation of the truncated scattering
coefficients can be accomplished by direct evaluation of
transfer matrices and subsequently forming the cumulative
product leading to an operational complexity of O (N ) for
each eigenvalue (see Sec. III D 1).

It must be noted that our fast algorithm for forward
scattering as discussed Sec. III E 1 is entirely compatible with
the approach suggested here. The scattering coefficients are
easily obtainable from the truncated scattering coefficients
using the Wronskian relations given in Sec. II A as

aN (z2) = W (Pn(z2), Sm(z2)),

bN (z2) = (z4)(�−−n) Pn(z2) · S∗
m(1/z∗2),

bN (z2) = (z4)(�+−m) P∗
n(1/z∗2) · Sm(z2).

(32)

Every polynomial multiplication involved above can be carried
out efficiently using the FFT algorithm (see Sec. III E 1).

C. Inversion of discrete scattering coefficients

In this section, we consider the problem of recovering the
discrete samples of the scattering potential from the discrete
scattering coefficients known in the polynomial form. This step
is referred to as the discrete inverse scattering step. Starting
from the recurrence relation (26), we develop a layer-peeling
algorithm similar to that reported by Brenne and Skaar [10].
The common aspect of the layer-peeling step for all kinds of
discretization schemes is that using nothing but the knowledge
of Pn+1(z2), one should be able to retrieve the samples of
the potential needed to compute the transfer matrix M̃n+1(z2)
so that the entire step can be repeated with Pn(z2) until all
the samples of the potential are recovered [as illustrated in
Fig. 3(b)]. In the following, we summarize the main results
which facilitate the layer-peeling step corresponding to each
of the discretization schemes introduced so far. A detailed
study of the recurrence relation and the proof of the necessary
and sufficient conditions for discrete inverse scattering are
provided in Sec. V.

1. Forward Euler method

The recurrence relation for the forward Euler method yields

P
(n+1)
1,0 = 1. (33)

The layer-peeling algorithm based on the forward Euler
method uses the relation

Rn = P
(n+1)
2,1

P
(n+1)
1,0

, (34)
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FIG. 3. The figure depicts the sequential discrete forward and inverse scattering algorithm in (a) and (b), respectively. The forward scattering
algorithm is identical to the transfer matrix approach used to solve wave-propagation problems in dielectric layered media. The inverse scattering
algorithm shown here is also known as the layer-peeling algorithm. It consists of using Pn+1(z2) to determine the transfer matrix M̃n+1(z2) so
that the entire step can be repeated with Pn(z2) as depicted in (b).

where P
(n+1)
1,0 �= 0 on account of (33). As evident from (19), the

transfer matrix, Mn+1(z2), connecting Pn(z2) and Pn+1(z2) is
therefore completely determined by Rn (with Qn = −R∗

n).

2. Implicit Euler method

The recurrence relation for the implicit Euler method yields

P
(n+1)
1,0 =

n+1∏
k=1

�−1
k > 0, P (n+1)

n+1 = 0. (35)

The layer-peeling algorithm based on the implicit Euler
method uses the relation

Rn+1 = P
(n+1)
2,0

P
(n+1)
1,0

, (36)

where P
(n+1)
1,0 �= 0 on account of (35). As evident from (22),

the transfer matrix, M̃n+1(z2), connecting Pn(z2) and Pn+1(z2)
is therefore completely determined by Rn+1 (with Qn+1 =
−R∗

n+1).

3. Trapezoidal rule

Let us assume Q0 = 0. The recurrence relation for the
trapezoidal rule yields

P
(n+1)
1,0 = �−1

n+1

n∏
k=1

(
1 + QkRk

1 − QkRk

)

= �−1
n+1

n∏
k=1

(
2 − �k

�k

)
,

P (n+1)
n+1 = 0,

(37)

where the last relationship follows from the assumption Q0 =
0. For sufficiently small h, it is reasonable to assume that
1 + QnRn = 2 − �n > 0 so that P

(n)
1,0 > 0 (it also implies that

|Qn| = |Rn| < 1). The layer-peeling algorithm based on the
trapezoidal scheme uses the relations

Rn+1 = P
(n+1)
2,0

P
(n+1)
1,0

, Rn = χ

1 +
√

1 + |χ |2
, (38)

where

χ = P
(n+1)
2,1 − Rn+1P

(n+1)
1,1

P
(n+1)
1,0 − Qn+1P

(n+1)
2,0

.

Note that P
(n+1)
1,0 �= 0 and P

(n+1)
1,0 − Qn+1P

(n+1)
2,0 �= 0. As is

evident from (23), the transfer matrix, M̃n+1(z2), connecting
Pn(z2) and Pn+1(z2) is completely determined by the samples
Rn+1 and Rn (with Qn+1 = −R∗

n+1 and Qn = −R∗
n).

D. Sequential algorithm

1. Forward scattering

The computation of the Jost solution for a given value of the
spectral parameter, ζ ∈ C, is considered here as the forward
scattering step. The direct use of the recurrence relations
obtained in Sec. VI B gives us a sequential algorithm [see
the illustration in Fig. 3(a)]. If � (n), n ∈ Z+, denotes the
complexity of computing the Jost solution Pn(z2) for a given ζ ,
then � (n + 1) = 4 + � (n), counting only the multiplications
involved. This recurrence relation yields � (N ) = 4N . It must
be noted that the sequential algorithms can be useful for
computing norming constants as discussed in Sec. III B 1 if
the eigenvalues are known beforehand. If good initial guesses
are known for the eigenvalues, search-based methods such as
Newton’s method of finding the eigenvalues can also benefit
from sequential algorithms [48].

The sequential algorithm for computing the polynomial
coefficients of PN (z2) can also be obtained in the same
manner where transfer matrices are now treated as polynomial
matrices. If � (n) denotes the complexity of computing the
polynomial coefficients for the Jost solution Pn(z2), then
� (n + 1) = 4(n + 1) + � (n), counting only the multipli-
cations involved. This yields � (N ) = 2(N + 1)(N + 2) =
O (N2) which is extremely prohibitive for large numbers of
samples. This task can be accomplished much more efficiently
using a divide-and-conquer strategy together with FFT-based
fast polynomial arithmetic as described in Sec. III E 1.

2. Inverse scattering

The inverse scattering step here refers to the retrieval
of the samples of the scattering potential from the known
polynomial form of the discrete scattering coefficients. This
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can be accomplished by a sequential layer-peeling algorithm
as described in Sec. III C [see the illustration in Fig. 3(b)].
If � (n), n ∈ Z+, denotes the complexity of inversion of
Pn(z2), then � (n) = 4(n + 1) + � (n − 1) counting only the
multiplications. This again yields a complexity of O (N2) for
inverting PN (z2). This task can also be accomplished much
more efficiently using a divide-and-conquer strategy together
with FFT-based fast polynomial arithmetic as described in
Sec. III E 2.

E. Fast algorithm: A divide-and-conquer strategy

1. Forward scattering

The scattering algorithm consists of forming a cumulative
product of, say N , transfer matrices. Given that the transfer
matrices have polynomial entries (of maximum degree 1),
one can use FFT-based polynomial multiplication [35] to
obtain a fast forward scattering algorithm. In this article we
restrict ourselves to the case where N is a power of 2. Most
efficient use of the FFT-based multiplication can be made if we
use a divide-and-conquer strategy as in [38] where products
are formed pairwise culminating in the full transfer matrix.
The complexity of obtaining the cumulative transfer matrix
from n transfer matrices, denoted by � (n), then satisfies the
recurrence relation

� (n) = 8ν(n) + 2� (n/2), (39)

where ν(n) = n(3 log2 2n + 2) is the complexity of multiply-
ing two polynomials of degree n − 1 using the FFT algorithm.
The number of pairs is given by l = log2 N so that the
recurrence relation yields

� (N ) = 2l� (1) + 8
l−1∑
k=0

2kν(2l−k),

which simplifies to

� (N ) = N� (1) + 4N [3(log2 N )2 + 13 log2 N ]. (40)

Therefore, the complexity of the forward scattering algorithm
is O (N log2 N ). Note that � (1) denotes the cost of obtaining
each of the transfer matrices.

Evaluation of PN (z2) at an arbitrary complex point can be
done using Horner’s method (Chap. 3 of Ref. [49]) which has
the complexity of O (N ). However, multipoint evaluation at
M (� N ) Fourier nodes can be carried out with complexity
O (M log M) where M is a power of 2.

2. Inverse scattering

In this section, we describe how to obtain a fast layer-
peeling algorithm by adapting McClary’s approach [50] for
our discrete inverse scattering problem. Consider the grid
(xn)0�n�N and let us label the segment [xn,xn+1] by n + 1 for
n < N . Recall that the inverse of the transfer matrix Mn(z2)
is z−2M̃n(z2). The cumulative transfer matrix from the nth
segment to the (n − m + 1)th segment is given by

z−2M̃n−m+1(z2) × . . . × z−2M̃n−1(z2)z−2M̃n(z2)

= z−2mM̃n−m+1,...,n−1,n(z2). (41)

Note that in order to determine the transfer matrices for
the last l segments starting from the nth segment, it is
sufficient to have a partial knowledge of the Jost solution, more
specifically,9{Pn}l+1, where {·}l denotes truncation after the
first l coefficients. Let the complementary polynomial vector
be defined as

{Pn(z2)}cl = z−2l[Pn(z2) − {Pn(z2)}l], (42)

and consider the inverse propagation relation in terms of the
inverse of the transfer matrices:

Pn−m(z2) = z−2mM̃n−m+1,...,n−1,n(z2)

× [{Pn(z2)}l+1 + z2(l+1){Pn(z2)}cl+1]. (43)

For every m > 0, the first two coefficients of the polynomial
Pn−m(z2) are required in order to determine the transfer
matrix for the segment n − m; therefore, 2(l + 1 − m) > 0
ensures that no contribution comes from the complementary
polynomial in computing these first two coefficients. It then
follows that the transfer matrices

M̃n(z2), M̃n−1(z2), . . . , M̃n−l+1(z2)

can be determined without needing the complementary poly-
nomial {Pn(z2)}cl+1. Once the matrices are determined, the
Jost solution needed to determine the transfer matrices for
n − l segments works out to be

Pn−l(z
2) = z−2lM̃n−l+1,...,n−1,n(z2)Pn(z2). (44)

All polynomial multiplications can be carried out using the
FFT algorithm. The observations made above make it clear that
a divide-and-conquer strategy can be easily devised in order to
speed up the layer-peeling algorithm. For the inversion of the
discrete scattering coefficients, we start with the associated
Jost solution PN (z2) where N is a power of 2, and we
devise a divide-and-conquer strategy that reduces the original
problem into two equal size (in terms of number of segments)
subproblems.10 The algorithm can be described as follows:

(i) Define a binary tree with the number of levels given by
l = log2 N (see Fig. 4). Every parent node forks into two child
nodes eventually terminating the tree at the leaf nodes.

(ii) Associate N segments with the root node which is
assumed to be at the level zero. The number of segments
associated with every child node is half that of the parent node.
If S(k) denotes the number of segments associated with nodes
at the kth level, then S(k) = N2−k for k = 0,1, . . . ,l − 1.

(iii) Every node in the binary tree is labeled by the index
coordinates (j,k) where k is the level and j is the horizontal
position of the node from the left in any particular level, say k,
so that 0 � j � k. If the index of the last segment associated
with a given node (j,k) is denoted by Njk , then Njk = 2jS(k).

(iv) All polynomial products to be formed at any node at
the kth level require executing an FFT-algorithm for vectors
of length no more than 2S(k).

9We discuss the case where the underlying one-step method is the
trapezoidal rule on account of the fact that the corresponding transfer
matrix is the most general among the methods considered in this
article.

10Note that the analysis in Sec. III C reveals that the number of
coefficients associated with PN (z2) is exactly N .

063302-12



FAST INVERSE NONLINEAR FOURIER TRANSFORMATION . . . PHYSICAL REVIEW E 96, 063302 (2017)

FIG. 4. The figure shows the binary-tree structure obtained as a result of applying a divide-and-conquer strategy to the conventional
layer-peeling method. The node label depicts the range of indices of the segments or layers ordered from left to right in the computational
domain.

(v) The segments associated with a node dictate the
associated cumulative transfer matrix and the Jost solution
(with the required number of coefficients) needed in order to
determine the entries of constituting transfer matrices. For the
node (j,k), the associated cumulative transfer matrix is

z−2nM̃Njk−n+1,...,Njk−1,Njk
(z2), n = S(k),

and the associated Jost solution is {PNjk
(z2)}n+1.

(vi) Our algorithm requires exactly two types of operations
to be carried out at every node except for the leaf nodes.
The first is the computation of the cumulative transfer matrix
once the constituting matrices are known at the child nodes.
The second is computing the Jost solution needed by any of the
child nodes. Both of these operations boil down to polynomial
multiplications; therefore, they can be carried out efficiently
using the FFT algorithm. The samples of the potential are
determined at the leaf nodes.

Denoting the complexity of multiplying two polynomials of
degree n − 1 (via the FFT algorithm) by ν(n), the recurrence
relation for the complexity of the fast layer-peeling procedure,
denoted by � (n) [where n = S(k), the number of segments at
level k], can be stated as

� (n) = 4ν(n) + 8ν(n) + 2� (n/2). (45)

The first term on the right-hand side corresponds to the
determination of the Jost solution for the second child node
assuming that the Jost solution is known at the parent node
and the cumulative transfer matrix is known at the first child
node. The second term corresponds to the determination of the
cumulative transfer matrix at the corresponding parent node
using the transfer matrices of the child nodes. Observe that

� (N ) = 2l−1� (2) + 12
l−2∑
k=0

2kν(2l−k) − 8ν(N ),

where the last term on the right-hand side is a correction
for the root node since the determination of the cumula-
tive transfer matrix at the root level is unnecessary. Using

ν(n) = n(3 log2 2n + 2), we have

� (N ) = (N/2)� (2) + 6N [3(log2 N )2 + 13 log2 N − 68/3],

(46)

valid for N � 4 where � (2) refers to the cost of executing the
leaf node. Therefore, the fast layer-peeling algorithm has the
complexity of O (N log2 N ).

F. Inversion of scattering coefficients

Let us assume that the scattering coefficients a(ζ ) and b(ζ )
are analytic in C+ such that for ζ ∈ C+ and some C > 0, we
have

|a(ζ ) − 1| � C

1 + |ζ | , |b̆(ζ )| � C

1 + |ζ | , (47)

where b̆(ζ ) = b(ζ )e2iζL2 . The precise conditions under which
such a situation may arise are discussed in Theorems 2
and 3. We further assume that the potential is supported
in a domain of the form (−∞,L2] or [L1,L2]. In this
section, we would like to develop a method to compute
the discrete scattering coefficients from the analytic form of
the scattering coefficients so that the corresponding inverse
problem can be solved numerically using the layer-peeling
algorithm discussed in Sec. III C. It turns out that this task
can be efficiently accomplished using the method developed
by Lubich [40] which is used in computing the quadrature
weights for convolution-type integrals.11

Introduce the function δ(z) as in [40] which corresponds to
the A-stable one-step methods, namely, BDF1 and TR:

δ(z) =
{

(1 − z) (BDF1),

2 (1−z)
1+z

(TR).
(48)

11The method based on the trapezoidal rule also appears in control
literature where it is known as the Tustin method [51].
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Putting z = eiζh, let us define the coefficients ak and b̆k as

a

(
iδ(z2)

2h

)
= 1 +

∞∑
k=0

akz
2k,

b̆

(
iδ(z2)

2h

)
=

∞∑
k=0

b̆kz
2k.

(49)

The coefficients can be obtained using the Cauchy integrals

ak = 1

2πi

∮
|z|=�

[
a

(
iδ(z)

2h

)
− 1

]
z−k−1dz,

b̆k = 1

2πi

∮
|z|=�

[
b̆

(
iδ(z)

2h

)]
z−k−1dz,

(50)

which can be easily computed using FFT. Note that the zeroth
coefficient can be computed exactly as

a0 =
[
a

(
iδ(0)

2h

)
− 1

]
, b̆0 =

[
b̆

(
iδ(0)

2h

)]
. (51)

On account of the decay property of the scattering coefficients
with respect to ζ , a0 = O (h) and b̆0 = O (h).

Let fk(h) denote either ak or b̆k and let F (z2) represent the
corresponding integrand in (50). Following [41], we obtain the
approximation fk(h; M) for fk(h) as

fk(h; M) = 1

M�k

M−1∑
j=0

Fje
−i

2πjk

M ,

where Fj = F (�e−i
2πjk

M ). Choosing � � 1 ensures that Im ζ �
0. In order to achieve an accuracy of O (ε) for computing
fk(h; M) for k = 0,1, . . . ,N choose log � = (1/N ) log ε and
M = N log(1/ε). Lubich’s method, therefore, delivers discrete
scattering coefficients with O (M log M) complexity exclud-
ing the cost of function evaluations.

Remark 5. If it is known that the scattering coefficients are
also analytic inC−, say, in the stripS−(μ) = {ζ ∈ C−| Im ζ �
−μ}, then Cauchy’s estimate can be used to show that the
Lubich coefficients decay exponentially with k. Let � = {z ∈
C| |z| = �, � > 1} be such that [iδ(z)/2h] ∈ C+ ∪ S(μ) for
all z ∈ �. Then, Cauchy’s estimate gives

|fk(h)| � �−k max
z∈�

∣∣∣∣f( iδ(z)

2h

)∣∣∣∣,
where f (ζ ) stands for a(ζ ) or b̆(ζ ) and fk(h) denotes the kth
Lubich coefficients.

1. Relationship with inverse Fourier-Laplace transform

In the case of rational scattering coefficients, the Lubich
coefficients ak and b̆k can be computed using the inverse
Fourier-Laplace transform of the scattering coefficients. For
rational functions,12 resolution into partial fractions offers
a straightforward means of computing the inverse Fourier-
Laplace transform. This property can be exploited to lower

12It suffices for our purpose to consider rational functions with
simple poles (see Sec. III G).

the cost of computing the discrete scattering coefficients as
follows: Define the functions α(τ ) and β̆(τ ) as

α(τ ) = 1

2π

∫ ∞

−∞
[a(ζ ) − 1]e−iζ τ dζ,

β̆(τ ) = 1

2π

∫ ∞

−∞
b̆(ζ )e−iζ τ dζ. (52)

Note that for τ < 0, the contour can be closed in C+ and
the integrals would evaluate to zero; therefore α(τ ) and
β̆(τ ) are causal. According to Theorem 4.1 of Ref. [40], the
coefficients ak and b̆k approximate the quantities (2h)α(2hk)
and (2h)β̆(2hk) up to O (hp+1), respectively, for k > 0 [note
that the zeroth coefficient is given by (51) which merely
requires function evaluation]. For the trapezoidal rule, this
property is proven in Appendix. It is observed that agreement
between true Lubich coefficients and those computed as stated
above improves with increasing k. Therefore, one should
choose k > Nth where Nth > 0 is a suitably chosen threshold
in order to switch to the partial-fraction variant of computing
Lubich coefficients.

G. Inversion of rational scattering coefficients:
Truncated multisolitons

In order to obtain a fast version of the Darboux transfor-
mations (DT) for generating multisolitons (Problem 1), we
would like to employ the scattering coefficients obtained as
a result of truncation of a K-soliton potential at x = 0. As
shown in Sec. II C 3, the scattering coefficients are rational
functions of ζ with no poles inC+. Therefore, Lubich’s method
of obtaining discrete scattering coefficients as described in
Sec. III F is also applicable here. It must be noted that in order
to obtain the complete K-soliton potential at a given time t ,
the truncation must be done after computing the time-evolved
Darboux matrix.

Discrete inverse scattering proceeds by computing the poly-
nomial vector PN (z2) associated with the discrete scattering
coefficients. Without the loss of generality, we assume that the
truncation is done at x = 0 (see Remark 2). Let the discrete
spectrum of the K-soliton be SK as defined in Sec. II B. Using
the notations introduced in Sec. II C 1 (we drop the dependence
of the Darboux matrices on SK for the sake of brevity) and
setting N1 = N/2 ∈ Z+, for the left-sided profile, we have

P
(N1)
1 (z2) =

{
μK

(
iδ(z2)

2h

)[
DK

(
0,t ;

iδ(z2)

2h

)]
11

}
N1

,

P
(N1)
2 (z2) =

{
μK

(
iδ(z2)

2h

)[
DK

(
0,t ;

iδ(z2)

2h

)]
21

}
N1

,

where truncation after N1 terms is implied by the notation
{·}N1 . This determines U (x) for x < 0. The right-sided profile
can be generated using the transformation described in Remark
1 so that

P
(N1)
1 (z2) =

{
μK

(
iδ(z2)

2h

)[
DK

(
0,t ;

iδ(z2)

2h

)]
22

}
N1

,

P
(N1)
2 (z2) =

{
μK

(
iδ(z2)

2h

)[
DK

(
0,t ;

iδ(z2)

2h

)]
12

}
N1

.
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(a)

(b)

FIG. 5. The figure depicts the CDT and the FDT algorithm in (a) and (b), respectively, for computing the augmented potential, q (K)
n [which

is the discrete approximation to qK (xn)], by adding a given discrete spectrum, SK , to the seed potential, q (0)
n = q0(xn). The DT block, labeled

as DT[SK ], is described in Fig. 2. The quantities v(j )
n (z2) refer to the discrete approximation of vj (xn,0; ζ ) in Fig. 2.

This would determine U ∗(−x) for x < 0. Combining the two
parts determines the complete multisoliton potential. Note that
the foregoing description also applies to any set of rational
functions which qualify as scattering coefficients of a left-sided
or a right-sided profile, respectively.

The operational complexity of this algorithm can be com-
puted by taking into account the complexity of DT at x = 0,
which is O (K2), and the complexity of computation of Lubich
coefficients which is O (KM) + O (M log M) where M is
the number of nodes used in evaluating the Cauchy integral.
Given that K � M and M = O (N ), the overall complexity
of generating the multisoliton including the layer-peeling
step works out to be O(N (K + log2 N )). The algorithm
presented in this section is referred to as the fast Darboux
transformation (FDT) algorithm. As pointed out in Sec. II C 1,
the CDT algorithm offers machine precision for computing K-
soliton potentials with an operational complexity of O (K2N ).
The fundamental difference between the CDT and the FDT
algorithm is depicted in Fig. 5 where it is evident that by
avoiding DT-iterations at each of the grid points (except at

x = 0) and using the fast LP algorithm, a lower complexity
order algorithm can be obtained.

For any rational function, if the poles and residues are
known then resolution into partial fractions offers a straight-
forward means of computing the inverse Fourier-Laplace
transform. Let us apply this idea to the problem of generating
multisolitons as discussed in the last paragraph: Poles of the
Jost solutions are known to be ζ ∗

k (where ζk are the discrete
eigenvalues); therefore, the resolution of the Darboux matrix
into partial fractions reads as

μK (ζ )DK (0,t ; ζ ) = σ0 +
K∑

k=1

Res[μK,ζ ∗
k ]

ζ − ζ ∗
k

DK (0,t ; ζ ∗
k ). (53)

The inversion of (ζ − ζ ∗
k )−1 leads to terms of the form

−ie−iζ ∗
k τ ; therefore, the quantities e−2ihζ ∗

k must be computed
beforehand. Excluding the cost of computing the K exponen-
tials, the complexity of this algorithm is O (KN ) where N is
the number of samples in the τ domain. In practice, replacing
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Lubich coefficients with those obtained by resolution into
partial fractions leads to increase in error and even failure
to converge; however, for larger values of the index, the
agreement between the two improves allowing us to reduce
the overall complexity of computing the discrete coefficients
P (N1)

k by switching to the faster algorithm for k > Nth where
Nth > 0 is a suitably chosen threshold.13

Before we conclude this section, it is worth mentioning
that the case treated by Rourke et al. [12,13] of rational
reflection coefficient ρ(ζ ) proceeds by reducing the problem to
an equivalent problem of generating multisolitons on a given
half space. Therefore, such cases are amenable to the method
discussed in this article.

H. General Darboux transformation: Addition of bound states

In this section, we address Problem 2 introduced in the
beginning of this article. To this end, let us note that the
general Darboux transformation consists of adding a given
discrete spectrum SK (as defined in Sec. II B) to a given seed
potential, qseed = q0(x), which is assumed to be admissible as
a scattering potential in the ZS problem. The two algorithms
developed for this purpose, namely, the classical Darboux
transformation (CDT) and the fast Darboux transformation
(FDT) meant to carry out the general Darboux transformation,
are described in the following subsections. For the sake of
brevity of presentation, we restrict ourselves to the case t = 0.

1. The CDT algorithm

The basic idea behind the CDT algorithm is described
in Sec. II C 1 and also depicted in Fig. 5(a). In the discrete
framework developed in Sec. VI B, the seed Jost solutions
(which need to be evaluated at the eigenvalues ζj to be added)
can be computed via the sequential algorithm discussed in
Sec. III D 1. Using the notations introduced in Sec. II C 1
and Sec. III B 1, and introducing β

(j−1)
n (zj ) as the discrete

approximation to βj−1(xn,0; ζj ), we have

β(j−1)
n (zj ) = P

(n,j−1)
1

(
z2
j

)− (z2
j

)−�−+n
bjS

(m,j−1)
1

(
z2
j

)
P

(n,j−1)
2

(
z2
j

)− (z2
j

)−�−+n
bjS

(m,j−1)
2

(
z2
j

) , (54)

where (ζj ,bj ) ∈ SK , m + n = N , and zj = eiζj h. Noting that
v

(j )
n = (P (j )

n ,S(j )
m ), the rest of the steps involved are similar to

that discussed in Sec. II C 1.
The operational complexity of computing the seed Jost

solutions at K eigenvalues using the sequential algorithm is
O (KN ) so that the overall complexity of the CDT algorithm
is O (K2N ). A final remark that we would like to make with
regard to the CDT algorithm is that numerical computation of
the Jost solutions for complex values of the spectral parameter
ζ tends to become inaccurate on account of the ζ dependence
of the truncation error coefficient as discussed in Sec. VI B. It
is therefore recommended that Im ζk be kept below a certain
threshold.

13A recipe to choose Nth based on the number of samples N , the
size of the computational domain (L2 − L1), and the eigenvalue with
the smallest imaginary part is provided in the Appendix.

2. The FDT algorithm

The fundamental idea of the FDT algorithm is the same
as that described in Sec. III G which considers the problem
of adding bound states, described by SK , to a null seed
potential. The difference merely lies in how we compute the
seed Jost solutions required in the DT iterations at x = 0 for
a general seed potential. Following Secs. II C 1 and III B 1,
note that evaluation of the Jost solutions at ζ = ζj amounts to
evaluating the approximating polynomial at zj = eiζj h (setting
x = 0 and t = 0), so that the recursive step for computing the
β coefficients reads as

β
(j−1)
�− (zj ) = P

(�−,j−1)
1

(
z2
j

)− bjS
(�+,j−1)
1

(
z2
j

)
P

(�−,j−1)
2

(
z2
j

)− bjS
(�+,j−1)
2

(
z2
j

) , (55)

where we have assumed �−, �+ ∈ Z for simplicity and
(ζj ,bj ) ∈ SK . Noting that v

(j )
�− = (P (j )

�− ,S(j )
�+ ), other steps of

the iteration are identical to that described in Sec. II C 1.
Here, our objective is not to follow the conventional Darboux
transformation but merely obtain the truncated scattering
coefficients (for the left-sided and the right-sided potential)
at the origin so that a fast layer-peeling algorithm can be used
to compute the samples of the augmented potential.

The operational complexity of this algorithm can be worked
out as follows: The cost of computing the Jost solutions (as a
polynomial vector) is O (N log2 N ) and the cost of evaluation
of the Jost solutions using Horner’s scheme is O (N ) for
each of the eigenvalues so that the overall complexity of
computing the discrete truncated scattering coefficient at x = 0
is O (K2) + O (KM) + O (M log M) + O(N log2 N ) where
M is the number of nodes used in evaluating the Cauchy
integral, N is the number of samples of the potential, and
K is the number of eigenvalues to be added. Observing
that K � M , N and M = O (N ), the overall complexity
is effectively O(N (K + log2 N )) including the layer-peeling
step.

The convergence behavior of the FDT algorithm is studied
in Sec. VI E where it is shown that the Darboux matrices can
be computed with the same order of accuracy as that of the
underlying one-step method used in the computation of the
Jost solutions of the seed potential. Further, the global order of
convergence matches that of the underlying one-step method
for the computation of Lubich coefficients or the layer-peeling
algorithm depending on which of the two is lower.

Finally, let us conclude this section by pointing out that
if a fast and sufficiently accurate means of inversion of a
continuous spectrum (i.e., no bound states present) is available
then a fast inverse scattering algorithm can be easily obtained
for the general cases using the FDT algorithm outlined in
this section. Early results in this direction are reported in [20]
where the trapezoidal rule is used to develop two algorithms
of complexity O(N (K + log2 N )) that exhibit a convergence
behavior of O (N−2).

IV. BENCHMARKING METHODS

In this section, we discuss two of the conventional methods
which are widely used for solving scattering problems. We
would like to benchmark our method against these known
methods. Unlike the linear one-step methods, here we employ
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a staggered grid configuration given by (xn+1/2)0�n<N such
that xn+1/2 = xn + h/2.

A. Magnus integrator

By applying the Magnus method with one-point Gaussian
quadrature (see [52–54]) to the original ZS problem in (3), we
obtain

vn+1 = e−iζσ3h+Un+1/2hvn. (56)

The exponential operator can be computed exactly as

e−iζσ3h+Un+1/2h

=
(

cosh(�) − iζh

�
sinh(�) Qn+1/2

�
sinh(�)

Rn+1/2

�
sinh(�) cosh(�) + iζh

�
sinh(�)

)
,

(57)

where � = √Qn+1/2Rn+1/2 − ζ 2h2, where Qn+1/2 =
hq(xn + h/2,t) and Rn+1/2 = hr(xn + h/2,t). We refer to
this integrator as “MG1,” signifying Magnus integrator with
one-point Gauss quadrature. This method is also referred to
as the exponential midpoint rule in the literature and it can
be shown to be consistent and stable with an order p = 2.
Additionally, it also forms part of the Lie-group methods
[53,55] as it retains the SU(2) structure of the Jost solution
v = (φ,φ) for ζ ∈ R. It must be noted that this method is
especially suited for highly oscillatory problems and has
been employed by several authors to solve forward scattering
problems [56,57]. Finally, let us mention that the method of
computing the norming constants as described in Sec. III B 1
can also be adapted to MG1.

B. Split-Magnus method

A further simplification obtained by applying Strang-type
splitting [58] to the exponential operator provides the right
discrete framework for the layer-peeling algorithm. This
simplification is achieved as follows:

e(−iζσ3+Un+1/2)h = e−iζσ3h/2eUn+1/2he−iζσ3h/2 + O(h3). (58)

The order of approximation is determined by applying the
Baker-Campbell-Hausdorff (BCH) formula to the exponential
operators (Chap. 4 of Ref. [55]). Setting � = √Qn+1/2Rn+1/2,
we have

eUn+1/2h =
(

cosh � Qn+1/2
sinh �

�

Rn+1/2
sinh �

�
cosh �

)

= 1√
1 − tanh2 �

(
1 Qn+1/2

tanh �
�

Rn+1/2
tanh �

�
1

)
= 1√

1 − �2

(
1 Qn+1/2

Rn+1/2 1

)
+ O(h3).

Therefore, the discretization scheme works out to be

vn+1 = 1

�
1/2
n+1/2

(
z−1 Qn+1/2

Rn+1/2 z

)
vn, (59)

where �n+1/2 = (1 − Qn+1/2Rn+1/2) > 0. This form has
been used by a number of authors in connection with
the conventional layer-peeling algorithm [9,10,59] as well

as for the fast version of the layer-peeling algorithm
[38,39]. By employing the transformation wn = eiζσ3h/2vn,
we obtain

wn+1 = z−1

�
1/2
n+1/2

(
1 z2Qn+1/2

Rn+1/2 z2

)
wn

= z−1Mn+1(z2)wn, (60)

which may be viewed as a modification of the implicit Euler
scheme. The integration scheme thus obtained is referred to
as the split-Magnus (SM) method. The inverse relationship is
given by

z−1

�
1/2
n+1/2

(
z2 −z2Qn+1/2

−Rn+1/2 1

)
wn+1 = wn. (61)

The Jost solution can be put into the form

ψn = z�+z−m

(
z−1 0
0 1

)
Sm(z2),

φn = z�−z−n

(
1 0
0 z

)
Pn(z2), (62)

where Sm(z2) and Pn(z2) obey the same kind of transfer matrix
relation as in (26) with initial condition S0 = (0,1)ᵀ and P0 =
(1,0)ᵀ. The scattering coefficients work out to be

aN (z2) = P
(N)
1 (z2), bN (z) = z−2�++1P

(N)
2 (z2),

aN (z2) = S
(N)
2 (z2), bN (z) = z−2�−−1S

(N)
1 (z2). (63)

The layer-peeling property can be stated as

Rn+1/2 = P
(n+1)
2,0

P
(n+1)
1,0

, (64)

with the following additional constraints:

P
(n+1)
1,0 =

n+1∏
k=1

�
−1/2
k > 0, P (n+1)

n+1 = 0. (65)

The norming constants can be computed using any of the
following formulas:

bk = (z2
k

)�−−n zkP
(n)
2

(
z2
k

)
S

(m)
2

(
z2
k

) ,

1

bk

= (z2
k

)�+−m S
(m)
1

(
z2
k

)
zkP

(n)
1

(
z2
k

) . (66)

Lastly, we note that a staggered grid configuration may prove
superior for potentials with jump discontinuity at any grid
point because the sampling of the potential at the points of
discontinuity is avoided.

Remark 6. It must be noted that the CDT and the FDT algo-
rithms are incompatible with the staggered grid configuration;
therefore, the SM integrator is ruled out for all DT-related
algorithms.
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V. DISCRETE INVERSE SCATTERING: NECESSARY AND
SUFFICIENT CONDITION

In this section, we study the necessary and sufficient
condition for the inversion of the discrete scattering coeffi-
cients within the framework of the numerical discretization
introduced in Sec. III. Let {(·)k}Nk=1 denote a sequence of
quantities such as scalars, vectors, or matrices.

Definition 1. Let d be a non-negative integer. A poly-
nomial Pn(z) defined as in (24) (with coefficients P (n)

k ∈
C2, k = 0,1, . . . ,n) is said to belong to the class P(d;C2)
if deg[Pn(z)] � d and, for all z ∈ T, we have

Pn(z) · P∗
n(z) = 1, (67)

with P
(n)
1,0 ∈ R+.

For any Pn(z) ∈ P(d;C2), upon equating the coefficient of
the zeroth-degree term on the left-hand side and right-hand
side of (67), we obtain

n∑
k=0

P (n)
k · P (n)∗

k =
n∑

k=0

[∣∣P (n)
1,k

∣∣2 + ∣∣P (n)
2,k

∣∣2] = 1.

Therefore, |P (n)
1,k | � 1 and |P (n)

2,k | � 1 for k = 0,1, . . . ,n. Note

that the condition P
(n)
1,0 ∈ R+ ensures that there are no constant

phase factors in Pn(z) because the relation (67) is insensitive
to constant phase factors.

Definition 2 (Paraconjugate). For any scalar-valued com-
plex function, f (z), we define f (z) = f ∗(1/z∗). For any
vector-valued complex function, f (z) = (f1(z),f2(z))ᵀ, we
define

f (z) = iσ2 f ∗(1/z∗) =
(

f 2(z),

−f 1(z)

)
.

For a matrix-valued function, M(z), we define

M(z) = iσ2M
∗(1/z∗)(iσ2)† = σ2M

∗(1/z∗)σ2,

so that the operation (·) is distributive over matrix-vector and
matrix-matrix products.

Based on the discrete formulation of the ZS problem in
Sec. III, we identified a discrete representation of the Jost
solution which can also be stated in the form (leaving out the
factors independent of n)

wn = (z−n Pn(z2),zn Pn(z2)), (68)

such that the column vectors are linearly independent for all
z ∈ C. This implies det[wn] �= 0. In fact, the determinant must
turn out to be independent of z2 so that we may put det[wn] =
Wn which translates into the constraint14

det[Pn(z2), Pn(z2)] = −Pn(z2) · P∗
n(1/z∗2) = Wn.

For z ∈ T,

Pn(z2) · P∗
n(z2) = −Wn > 0. (69)

This condition is necessary for wn, defined by (68), to be a
Jost solution. Further, it is easy to verify that wn satisfies the

14Given that det[wn] is a polynomial, the only way det[wn] �= 0 is
when it is a polynomial of degree zero.

relation

wn = σ2(zn Pn(z),z−n Pn(z2))σ2 = −wn. (70)

Finally, let us note that w̃n = wn/
√−Wn forms an SU(2)-

valued sequence for z ∈ T.
The discrete scattering problem will be assumed to be stated

in the form of a recurrence relation which reads as

wn+1 = z−1Mn+1(z2)wn, (71)

where Mn(z2) is a polynomial matrix of degree 1. Note
that wn as defined by (68) satisfies the relation wn = −wn;
therefore, in order that wn+1 be a Jost solution, we must have
z−1Mn+1(z2) = zMn+1(z2). This relationship expands to(

m
(n)
11 (z2) m

(n)
12 (z2)

m
(n)
21 (z2) m

(n)
22 (z2)

)
= z2

(
m

(n)
22 (z2) −m

(n)
21 (z2)

−m
(n)
12 (z2) m

(n)
11 (z2)

)
,

(72)
and det[Mn(z2)] = z2Cn where Cn is independent of z.
Introducing the functions

m
(n)
j (z2) = m

(n)
j,0 + m

(n)
j,1z

2, j = 1,2, (73)

it follows that the general form of the transfer matrix (of degree
1 in z2) can be written as

Mn(z2) =
(

m
(n)
1 (z2) −z2m

(n)
2 (z2)

m
(n)
2 (z2) z2m

(n)
1 (z2)

)
, (74)

with

Cn = ∣∣m(n)
1,0

∣∣2 + ∣∣m(n)
2,0

∣∣2 + ∣∣m(n)
1,1

∣∣2 + ∣∣m(n)
2,1

∣∣2,
m

(n)
1,0m

(n)∗
1,1 + m

(n)
2,0m

(n)∗
2,1 = 0. (75)

Let the inverse of Mn(z2) be denoted by z−2M̃n(z2) which also
satisfies a similar symmetry relation as in (72) and

z−2M̃n(z2) = z−2

Cn

(
z2m

(n)
1 (z2) z2m

(n)
2 (z2)

−m
(n)
2 (z2) m

(n)
1 (z2)

)
,

so that M̃n = z2M̃n. Further, it is straightforward to verify
that, for z ∈ T, the matrices z−1Mn/

√
Cn and z−1M̃n/

√
Cn

are elements of SU(2). The discrete scattering problem in its
unitary form reads as

wn+1√−Wn+1
= z−1

√
Cn+1

Mn+1(z2)
wn√−Wn

. (76)

Introducing μn,An,Bn ∈ C, the independent elements of the
transfer matrix can be put into the form

m
(n)
1 (z2) = μn(1 − z2A∗

nBn),

m
(n)
2 (z2) = μn(An + Bnz

2), (77)

so that

Cn = |μn|2(1 + |An|2)(1 + |Bn|2). (78)

Setting μn = |μn|eiθn , the transfer matrix admits of the
following factorization:

Mn = |μn|
(

1 −A∗
n

An 1

)(
1 0
0 z2

)(
1 −B∗

n

Bn 1

)
eiσ3θn . (79)
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For the cases considered in this article, θn = 0; therefore, we
assume μn ∈ R+ so that it does not play a role in the unitary
form of the transfer matrix for z ∈ T. For a given initial con-
dition and fixed sequence of transfer matrices, the recurrence
relation (71) leads to a unique polynomial associated with
the Jost solution wn. In particular, the following result is
straightforward:

Lemma 1. Let N be a finite positive integer. Let the vectors
A = (A1,A2, . . . ,AN ), B = (B1,B2, . . . ,BN ) ∈ CN , and μ =
(μ1,μ2, . . . ,μN ) ∈ RN

+ define {Mn(z2)}Nn=1 through (79). Let
w0 = σ1, then the recurrence relation (71) determines a
sequence of Jost solutions {wn}Nn=1 such that for every n (1 �
n � N ) there exists a unique polynomial Pn(z2) associated
with wn.

Now let us consider an arbitrary polynomial Pn(z2)
satisfying (69) for n � 0. Assume Pn(z2)/

√−Wn ∈ P(n;C2)
and let Pn+1(z2) be associated with wn+1. To understand
the properties of the polynomial Pn+1(z2), we consider the
recurrence relation (71). Equating the coefficients of the
zeroth-degree term on the right-hand side and the left-hand
side of (71), we have

P
(n+1)
1,0 = μn+1

(
P

(n)
1,0 − B∗

n+1P
(n)
2,0

)
,

P
(n+1)
2,0 = μn+1An+1

(
P

(n)
1,0 − B∗

n+1P
(n)
2,0

)
. (80)

It is straightforward to see that

An+1 = P
(n+1)
2,0

P
(n+1)
1,0

(81)

and

P
(n+1)
1,0 = μn+1

(
1 − B∗

n+1

P
(n)
2,0

P
(n)
1,0

)
P

(n)
1,0 .

Therefore, in order that Pn+1(z2)/
√−Wn+1 ∈ P(n + 1;C2)

where Wn+1 = det[wn+1] = Cn+1Wn, we must have

1 − B∗
n+1

P
(n)
2,0

P
(n)
1,0

∈ R+.

Lemma 2. Under the assumption of the previous lemma,
setting Wn = det[wn], the polynomial Pn(z2)/

√−Wn ∈
P(n;C2) if and only if the sequence {(An,Bn)}Nn=1 satisfies
the constraint (1 − AnB

∗
n+1) ∈ R+ for 1 � n < N . If B1 = 0,

then Pn(z2)/
√−Wn ∈ P(n − 1;C2).

Proof. Using the recurrence relation (80) and the property
(81) for all n � 0, it is straightforward to see that

P
(n+1)
1,0 = μn+1(1 − AnB

∗
n+1)P (n)

1,0

= μ1

n∏
k=1

μk+1(1 − AkB
∗
k+1), (82)

for n > 0 while P
(1)
1,0 = μ1. The proof of the first part of the

lemma follows from this relation.
For the second part, equating the coefficients of (z2)n+1 on

the right-hand side and the left-hand side of (71), we have

P
(n+1)
1,n+1 = −μn+1A

∗
n+1

(
Bn+1P

(n)
1,n + P

(n)
2,n

)
,

P
(n+1)
2,n+1 = μn+1

(
Bn+1P

(n)
1,n + P

(n)
2,n

)
,

for n � 0. These relations yield

P
(n+1)
1,n+1 = −μn+1A

∗
n+1P

(n+1)
2,n+1,

P
(n+1)
2,n+1 = μ1B1

n∏
k=1

μk+1(1 − Bk+1A
∗
k), (83)

for n > 0 while P
(1)
1,1 = −μ1A

∗
1B1 and P

(1)
2,1 = μ1B1. There-

fore, if B1 = 0 then P (n)
n = 0 for 1 � n � N. �

Next we would like to analyze the inverse problem
described as follows: Given an arbitrary polynomial Pn+1(z2)
associated with wn+1 satisfying

Pn+1(z2) · P∗
n+1(z2) = −Wn+1 > 0, (84)

for n � 0 such that Pn+1(z2)/
√−Wn+1 ∈ P(n + 1;C2), find

a polynomial Pn(z2) associated with wn and a transfer matrix
Mn+1(z2) of the form (79) such that wn, defined by

wn = z−1M̃n+1(z2)wn+1, (85)

is a Jost solution. If such a polynomial Pn(z2) exists then it
must be consistent with the recurrence relation

Pn(z2) = z−2M̃n+1(z2)Pn+1(z2), (86)

or, equivalently,

Mn+1(z2)Pn(z2) = Pn+1(z2). (87)

Equating the coefficient of z−2 on the right-hand side of (86),
we have

μn+1

Cn+1

(− An+1P
(n+1)
1,0 + P

(n+1)
2,0

)
B∗

n+1 = 0,

μn+1

Cn+1

(− An+1P
(n+1)
1,0 + P

(n+1)
2,0

) = 0, (88)

which yields the recurrence relation (81). Equating the
coefficients of z0 on the right-hand side and the left-hand side
of (86), we obtain

Cn+1P
(n)
1,0 = μn+1

(
P

(n+1)
1,0 − An+1B

∗
n+1P

(n+1)
1,1

)
+ μn+1

(
A∗

n+1P
(n+1)
2,0 + B∗

n+1P
(n+1)
2,1

)
,

Cn+1P
(n)
2,0 = −μn+1

(
Bn+1P

(n+1)
1,0 + An+1P

(n+1)
1,1

)
+ μn+1

(− A∗
n+1Bn+1P

(n+1)
2,0 + P

(n+1)
2,1

)
.

This yields

P
(n)
2,0 + Bn+1P

(n)
1,0 = μn+1

Cn+1
(1 + |Bn+1|2)

(
P

(n+1)
2,1 − An+1P

(n+1)
1,1

)
(89)

and

P
(n)
1,0 − B∗

n+1P
(n)
2,0 = μn+1

Cn+1
(1 + |An+1|2)(1 + |Bn+1|2)P (n+1)

1,0 ,

(90)

which thanks to (78) (μn+1 ∈ R+) becomes identical to (80).
Note that the relationship (89) can also be verified by equating
the coefficients of z2 on the right-hand side and the left-hand
side of (87):

P
(n+1)
1,1 = μn+1

(
P

(n)
1,1 − A∗

n+1Bn+1P
(n)
1,0

)
− μn+1

(
B∗

n+1P
(n)
2,1 + A∗

n+1P
(n)
2,0

)
,
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P
(n+1)
2,1 = μn+1

(
An+1P

(n)
1,1 + Bn+1P

(n)
1,0

)
+ μn+1

(
P

(n)
2,0 − An+1B

∗
n+1P

(n)
2,1

)
.

This yields

P
(n+1)
2,1 − An+1P

(n+1)
1,1 = μn+1(1 + |An+1|2)

(
P

(n)
2,0 + Bn+1P

(n)
1,0

)
,

which is identical to (89) thanks to (78). Now, using (89) and
(90), we have

P
(n)
2,0 + Bn+1P

(n)
1,0

P
(n)
1,0 − B∗

n+1P
(n)
2,0

= χn+1, (91)

where

χn+1 = P
(n+1)
2,1 − An+1P

(n+1)
1,1

(1 + |An+1|2)P (n+1)
1,0

. (92)

So far we have found that the parameter An+1 of Mn+1(z2)
must be set according to (81) so that we may write

P (n)
0 = (1 + |An+1|2)

Cn+1/μn+1

(
1 + B∗

n+1χn+1

χn+1 − Bn+1

)
P

(n+1)
1,0 , (93)

where χn+1 is known but Bn+1 is still an unknown. In order to
compute Bn+1, we introduce a free parameter, λn = P

(n)
2,0/P

(n)
1,0 ,

so that from (91) we have

Bn+1 = (1 + |λn|2)χn+1

1 − |χn+1|2|λn|2 − (1 + |χn+1|2)λn

1 − |χn+1|2|λn|2 . (94)

Now, let us observe that

1 + B∗
n+1χn+1 = 1 + |χn+1|2

1 − |χn+1|2|λn|2 (1 − χn+1λ
∗
n),

χn+1 − Bn+1 = 1 + |χn+1|2
1 − |χn+1|2|λn|2 (1 − χn+1λ

∗
n)λn,

and

1 − B∗
n+1λn = 1 + |λn|2

1 − |χn+1|2|λn|2 (1 − χ∗
n+1λn),

so that

1 + |Bn+1|2 = (1 + |λn|2)(1 + |χn+1|2)

(1 − |χn+1|2|λn|2)2
|1 − χ∗

n+1λn|2.

Now, the zeroth-degree coefficient given by (93) simplifies to

P (n)
0 = (1 − |χn+1|2|λn|2)

μn+1(1 + |λn|2)

P
(n+1)
1,0

(1 − χ∗
n+1λn)

(
1
λn

)
. (95)

Therefore, in order that Pn(z2)/
√−Wn ∈ P(n;C2) where

Wn = Wn+1/Cn+1, we must have

1 − χ∗
n+1λn

1 − |χn+1||λn| ∈ R+. (96)

The above condition can be enforced by setting λn = χn+1ωn

where we restrict ourselves to the case ωn ∈ R, ωn � 0. Under
this condition, the expressions for Bn+1 and P (n)

0 simplify to

Bn+1 = (1 − ωn)χn+1

1 + |χn+1|2ωn

(97)

and

P (n)
0 = 1 + |χn+1|2ωn

1 + |χn+1|2ω2
n

(
1

ωnχn+1

)
μ−1

n+1P
(n+1)
1,0 , (98)

respectively. Clearly, the transfer matrix Mn+1(z2) as well as
the polynomial Pn(z2) are not unique as they depend on a
free parameter ωn � 0. Note that the parameter μn+1 turns out
to be merely a scale factor which does not play a role in the
unitary form of the discrete scattering problem. Finally, let us
observe that in order to predict the highest degree term that is
nonzero in Pn(z2), the recurrence relation for (z2)n Pn(z2) can
be considered where the zeroth-degree term is iσ2 P (n)∗

n so that

P (n)
n = 1 + |χn+1|2ωn

1 + |χn+1|2ω2
n

(−ωnχ
∗
n+1

1

)
μ−1

n+1P
(n+1)
2,n+1 . (99)

Remark 7. In the discrete inverse scattering case, the two
formulas (81) and (92) remain invariant under any scaling
of the polynomial Pn+1(z2). Therefore, knowledge of either
Pn+1(z2) or Pn+1(z2)/

√−Wn+1 is sufficient to determine the
transfer matrix Mn+1(z2).

The discussion above regarding the discrete inverse scatter-
ing step can be summarized in the following lemma:

Lemma 3. Given Pn+1(z2)/
√−Wn+1 ∈ P(d;C2) where

d ∈ {n + 1,n} and ωn ∈ R+, there exists a unique uni-
tary matrix Mn+1(z2)/

√
Cn+1 for z ∈ T and a polynomial

Pn(z2)/
√−Wn ∈ P(d − 1;C2) such that

Pn+1(z2)√−Wn+1
= Mn+1(z2)√

Cn+1

Pn(z2)√−Wn

.

Further, if ωn � 1, then

[(1 + |An+1|2)(1 + |Bn+1|2)]1/2 �
P

(n)
1,0/

√−Wn

P
(n+1)
1,0 /

√−Wn+1

.

(100)

Proof. The first part of the lemma is evident from the
discussion above. The second part follows from the inequality

1 + |χn+1|2ωn

1 + |χn+1|2ω2
n

� 1,

for ωn � 1. �
Next, we consider some of special cases where it is possible

to obtain a unique solution of the discrete inverse scattering
problem. It is worth noting that these special cases belong to
a certain choice of the values {ωn}n∈Z.

A. Case I: An = Bn+1

Let An = Bn+1 and assume An ∈ D. Then the forward
scattering problem described in Lemma 1 always yields a poly-
nomial Pn(z2)/

√−Wn ∈ P(n;C2) on account of Lemma 2.
For discrete inverse scattering, the condition An = Bn+1

amounts to Bn+1 = χn+1ωn. From (97), we have

|χn+1|2ω2
n + 2ωn − 1 = 0,

which yields

ωn = 1

1 +
√

1 + |χn+1|2
(101)
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as the admissible solution [the other root violates the positivity
constraint in (96)]. For this case, the expression (98) for the
zeroth-degree coefficient simplifies to

P (n)
0 = 1

2μn+1ωn

(
1

ωnχn+1

)
P

(n+1)
1,0 . (102)

In Lemma 3, we favor the case of d = n so that the number
of (vector) coefficients associated with Pn(z2) is n. If the
steps described in the aforementioned lemma are carried out
recursively to the point n = 0, we obtain

P (0)
0 = 1

2μ1ω0

(
1

ω0χ1

)
P

(1)
1,0 .

Note that χ1 = 0 on account of P (1)
1 = 0; therefore,

P0(z2)√−W0
=
(

1
0

)
P

(1)
1,0√−W1

√
1 + |A1|2 =

(
1
0

)
. (103)

Finally, we state the main result of this section which is a now
merely a consequence of the preceding lemmas applied to the
case at hand:

Proposition 1. Let A = (A1,A2, . . . ,AN ) ∈ DN be an
arbitrary vector. Let the transfer matrices {Mn(z2)}Nn=1 be
determined by (79) using A together with B ∈ DN given by
B1 = 0 and Bn = An−1 for 1 < n � N . Then, corresponding
to the initial condition P0(z2) = (1,0)ᵀ, the recurrence relation

Pn(z2) = Mn(z2)Pn−1(z2), 1 � n � N,

yields a unique polynomial PN (z2)/
√−WN ∈ P(N − 1;C2)

with (−WN ) =∏N
n=1 Cn > 0 such that∣∣P (N)

2,0 /P
(N)
1,0

∣∣ < 1.

Conversely, for any given polynomial P̆N (z2) ∈ P(N −
1;C2) such that ∣∣P̆ (N)

2,0 /P̆
(N)
1,0

∣∣ < 1,

there exists a unique vector A = (A1,A2, . . . ,AN ) ∈ DN

which determines the transfer matrices {M̃n(z2)/
√

Cn}Nn=1 as
stated above such that the recurrence relation

P̆n−1(z2) = z−2

√
Cn

M̃n(z2) P̆n(z2),

starting from n = N , yields P̆0(z2) = (1,0)ᵀ.
Putting P̆N (z2) = PN (z2)/

√−WN , note that the condition∣∣P (N)
2,0

/
P

(N)
1,0

∣∣ = ∣∣P̆ (N)
2,0

/
P̆

(N)
1,0

∣∣ < 1

corresponds to the fact that AN ∈ D in the direct part of the
last proposition. The condition above is imposed explicitly in
the converse part in order to ensure AN ∈ D.

Corollary 1. Let A = (A1,A2, . . . ,AN ) ∈ DN correspond
to P̆N (z2) ∈ P(N − 1;C2) as in the converse part of the last
proposition. Then the following estimate holds:

‖A‖2 =
(

N∑
n=1

|An|2
)1/2

�
(

1

P̆
(N)
1,0

− 1

)1/2

.

Proof. The proof follows from the relation (100) of
Lemma 3. �

We conclude this section with a discussion of the trape-
zoidal rule which corresponds to the case at hand. Let Q =
(Q1,Q2, . . . ,QN ) ∈ DN . In the case of the trapezoidal rule, it
follows from the description in Sec. III A 3 that the coefficients
An and Bn introduced in (77) satisfy

An = Bn+1 = Rn = −Q∗
n, 0 < n < N,

with AN = QN and we choose Q0 = B1 = 0. It also follows
that the quantities μn ∈ R+ introduced in (77) are given by

μn = �−1
n = (1 + |Qn|2)−1, 0 < n � N.

Further, we have

Cn = 1 + |Qn−1|2
1 + |Qn|2 = �n−1

�n

, 1 < n � N,

while C1 = �−1
1 .

B. Case II: An �= Bn+1

First, let us assume that Bn = 0. The discussion of the
forward scattering problem is identical to that of the previous
case. For discrete inverse scattering, this case corresponds to
ωn = 1. The expression for the zeroth-degree coefficient (98)
simplifies to

P (n)
0 = 1

μn+1

(
1

χn+1

)
P

(n+1)
1,0 . (104)

As in the last section, we favor the case of d = n in the
Lemma 3. Again, if the steps described in the aforementioned
lemma are carried out recursively to the point n = 0, it is easy
to conclude that

P0(z2)√−W0
=
(

1
0

)
. (105)

The necessary and sufficient condition for discrete inverse
scattering in this case can be stated as follows:

Proposition 2. Let A = (A1,A2, . . . ,AN ) ∈ CN be an
arbitrary vector. Let the transfer matrices {Mn(z2)}Nn=1 be
determined by (79) using A together with Bn = 0 for 1 �
n � N . Then, corresponding to the initial condition P0(z2) =
(1,0)ᵀ, the recurrence relation

Pn(z2) = Mn(z2)Pn−1(z2), 1 � n � N,

yields a unique polynomial PN (z2)/
√−WN ∈ P(N − 1;C2)

with (−WN ) =∏N
n=1 Cn > 0.

Conversely, for any given polynomial P̆N (z2) ∈ P(N −
1;C2) there exists a unique vector A = (A1,A2, . . . ,AN ) ∈
CN which determines the transfer matrices {M̃n(z2)/

√
Cn}Nn=1

as stated above such that the recurrence relation

P̆n−1(z2) = z−2

√
Cn

M̃n(z2) P̆n(z2),

starting from n = N , yields P̆0(z2) = (1,0)ᵀ.
Corollary 2. Let A = (A1,A2, . . . ,AN ) ∈ CN correspond

to P̆N (z2) ∈ P(N − 1;C2) as in the converse part of the last
proposition. Then the following estimate holds:

‖A‖2 =
(

N∑
n=1

|An|2
)1/2

�
(

1[
P̆

(N)
1,0

]2 − 1

)1/2

.
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Second, let us assume that An = 0. The discussion of the
forward scattering problem is identical to that of the previous
case. For discrete inverse scattering, this case corresponds to
ωn = 0. The expression for the zeroth-degree coefficient (98)
simplifies to

P (n)
0 = 1

μn+1

(
1
0

)
P

(n+1)
1,0 . (106)

Here, we favor the case of d = n + 1 in Lemma 3. Again, if
the steps described in the aforementioned lemma are carried
out recursively to the point n = 0, it is easy to conclude that

P0(z2)√−W0
=
(

1
0

)
. (107)

The expression for the highest degree coefficient (99) simpli-
fies to

P (n)
n = 1

μn+1

(
0
1

)
P

(n+1)
2,n+1 . (108)

The necessary and sufficient condition for discrete inverse
scattering in this case can be stated as follows:

Proposition 3. Let B = (B1,B2, . . . ,BN ) ∈ CN be an arbi-
trary vector. Let the transfer matrices {Mn(z2)}Nn=1 be deter-
mined by (79) using B together with An = 0 for 1 � n � N .
Then, corresponding to the initial condition P0(z2) = (1,0)ᵀ,
the recurrence relation

Pn(z2) = Mn(z2)Pn−1(z2), 1 � n � N,

yields a unique polynomial PN (z2)/
√−WN ∈ P(N ;C2) with

(−WN ) =∏N
n=1 Cn > 0.

Conversely, for any given polynomial P̆N (z2) ∈ P(N ;C2)
there exists a unique vector B = (B1,B2, . . . ,BN ) ∈ CN

which determines the transfer matrices {M̃n(z2)/
√

Cn}Nn=1 as
stated above such that the recurrence relation

P̆n−1(z2) = z−2

√
Cn

M̃n(z2) P̆n(z2),

starting from n = N , yields P̆0(z2) = (1,0)ᵀ.
Corollary 3. Let B = (B1,B2, . . . ,BN ) ∈ CN correspond

to P̆N (z2) ∈ P(N ;C2) as in the converse part of the last
proposition. Then the following estimate holds:

‖B‖2 =
(

N∑
n=1

|Bn|2
)1/2

�
(

1[
P̆

(N)
1,0

]2 − 1

)1/2

.

1. Implicit Euler method

Let Q = (Q1,Q2, . . . ,QN ) ∈ CN . For the implicit Euler
method, it is evident from the discussion in Sec. III A 2 that

An = Rn = −Q∗
n, Bn = 0, 1 � n � N,

and

μn = �−1
n = (1 + |Qn|2)−1.

Further,

Cn = (1 + |Qn|2)−1 = �−1
n .

2. Split-Magnus method

For the split-Magnus method, we consider the samples on
a staggered grid so that Q = (Q1/2,Q3/2, . . . ,QN−1/2) ∈ CN .
It is evident from the discussion in Sec. IV B that

An = Rn−1/2 = −Q∗
n−1/2, Bn = 0, 1 � n � N,

and

μn = �
−1/2
n−1/2 = (1 + |Qn−1/2|2)−1/2.

Further, Cn = 1.

3. Forward Euler method

Let Q = (Q0,Q1, . . . ,QN−1) ∈ CN . For the forward Euler
method, it is evident from the discussion in Sec. III A 1 that

An = 0, Bn = Rn−1 = −Q∗
n−1, 1 � n � N,

and μn = 1. Further,

Cn = (1 + |Qn−1|2) = �n−1.

VI. STABILITY AND CONVERGENCE ANALYSIS

The main objective of this section is to carry out an error
analysis for various steps involved in the algorithms proposed
in Sec. III. We first study the analyticity properties of the
scattering coefficients in order to understand the difficulties
involved in transitioning from the continuous to the discrete
regime. In Sec. VI B, we study the stability and convergence
of the numerical scheme for forward scattering. Note that the
convergence of the layer-peeling algorithm where the input
is synthesized using Lubich’s method is not discussed in this
work; instead, we study it empirically. The error propagation in
the layer-peeling procedure has been addressed in the work of
Bruckstien et al. [60]; however, on account of the underlying
assumption of the piecewise constant potential, the question
of convergence beyond the first order cannot be addressed in
their work. We leave these aspects for future research.

Notations

The class of m-times differentiable complex-valued func-
tions is denoted by Cm. A function of class Cm is said to belong
to Cm

0 (�), if the function and its derivatives up to order m have
a compact support in � and if they vanish on the boundary
(∂�). Complex-valued functions of bounded variation over R
are denoted by BV and the variation of any function f ∈ BV
over � ∈ R is denoted by V [f ; �]. If q ∈ BV, then ∂xq ∈ L1

exists almost everywhere such that ‖∂xq‖L1 � V [q; �] (Chap.
16 of Ref. [61]). Let q(1) to be equivalent to ∂xq so that
‖q(1)‖L1 = ‖∂xq‖L1 .

Let J = (−∞,L] and d > 0. A complex-valued function
f (x) is said to belong to the class Ed (J ) if supp f ⊂
J and there exists a constant κ∞ > 0 such that the es-
timate |f (x)|�κ∞e−2d|x| holds almost everywhere in J .
Clearly, Ed (J ) ⊂ Lp(J ) for 1 � p � ∞. Define S−(μ) =
{ζ ∈ C−| Im ζ � −μ}.

A. Compactly supported and one-sided potentials

The Jost solution for compactly supported and one-sided
potentials is known to have an analytic continuation into the
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upper half of the complex plane [2,3]. We detail some of these
analyticity and decay properties of the Jost solutions required
for our purpose. This discussion is motivated by the fact that
our fast Darboux transformation (FDT) algorithm discussed
in Sec. III H 2 proceeds by computing the Jost solutions of a
truncated potential which can be interpreted as one-sided (if
it does not have a compact support). Further, the analyticity
properties of the Jost solutions also determine the behavior of
the Lubich coefficients as discussed in Sec. III F.

We begin with a study of the modified Jost solutions defined
by

P̃(x; ζ ) = φ(x; ζ )eiζx −
(

1
0

)
. (109)

Let � = [L1,L2] in the following unless stated otherwise.
The system of equations (18) can be transformed into a set of
Volterra integral equations of the second kind for the modified
Jost solution P̃(x; ζ ):

P̃(x; ζ ) = �(x; ζ ) +
∫

�

K(x,y; ζ ) P̃(y; ζ )dy, (110)

where �(x; ζ ) = (�1,�2)ᵀ ∈ C2 with

�1(x; ζ ) =
∫ x

L1

dz

∫ z

L1

dy q(z)r(y)e2iζ (z−y)dy,

�2(x; ζ ) =
∫ x

L1

r(y)e2iζ (x−y)dy, (111)

and the Volterra kernel K(x,y; ζ ) = diag(K1,K2) ∈ C2×2 is
such that

K1(x,y; ζ ) = r(y)
∫ x

y

q(z)e2iζ (z−y)dz,

K2(x,y; ζ ) = q(y)
∫ x

y

r(z)e2iζ (x−z)dz, (112)

with K(x,y; ζ ) = 0 for y > x.
Theorem 1. Let q ∈ L1 be supported in � = [L1,L2] with

κ = ‖q‖L1 . Then the estimate

‖ P̃(x; ζ )‖L∞(�) �
{
C, ζ ∈ C+,

Ce−2 Im(ζ )(L2−L1), ζ ∈ C−,
(113)

holds with C = ‖D‖ cosh κ where D = (κ2/2,κ)ᵀ.
Proof. The proof can be obtained using the same method as

in [2,62]. For fixed ζ ∈ C+, let K denote the Volterra integral
operator in (110) corresponding to the kernel K(x,y; ζ ) such
that

K [ P̃](x; ζ ) =
∫

�

K(x,y; ζ ) P̃(y; ζ )dy

=
∫ x

L1

dz

∫ z

L1

dy

(
q(z)r(y)e2iζ (z−y)P̃1(y; ζ )
q(y)r(z)e2iζ (x−z)P̃2(y; ζ )

)
.

(114)

Consider the L∞(�) norm (Chap. 9 of Ref. [63]) of K given
by

‖K ‖L∞(�) = ess sup
x∈�

∫
�

‖K(x,y; ζ )‖dy, (115)

so that ‖K ‖L∞(�) � κ2/2. The resolvent R of this operator ex-
ists and is given by the Neumann series R =∑∞

n=1 Kn where
Kn = K ◦ Kn−1 with K1 = K . It can also be shown using

the methods in [2,62] that ‖Kn‖L∞(�) � κ2n/(2n)!, yield-
ing the estimate ‖R‖L∞(�) � [cosh(κ) − 1]. Therefore, for
any �(x; ζ ) ∈ L∞(�), the relationship P̃(x; ζ ) = �(x; ζ ) +
R[�](x; ζ ) implies, for ζ ∈ C+,

‖ P̃(x; ζ )‖L∞(�) � cosh(κ)‖�(x; ζ )‖L∞(�). (116)

The result for C+ in (113) follows from the observation that,
for ζ ∈ C+, ‖�(x; ζ )‖L∞(�) � ‖D‖, where D = (κ2/2,κ)ᵀ.
Therefore, C can be chosen to be ‖D‖ cosh κ . For the case C−
of (113), we consider P̃−(x; ζ ) = P̃(x; ζ )e−2iζx . The Volterra
integral equation then reads as P̃−(x; ζ ):

P̃−(x; ζ ) = �−(x; ζ ) +
∫

�

K−(x,y; ζ ) P̃−(y; ζ )dy, (117)

where �−(x; ζ ) = �(x; ζ )e−2iζx ∈ C2 and the Volterra kernel
K−(x,y; ζ ) = diag(K(−)

1 ,K(−)
2 ) ∈ C2×2 is such that

K(−)
1 (x,y; ζ ) = r(y)

∫ x

y

q(z)e−2iζ (x−z)dz,

K(−)
2 (x,y; ζ ) = q(y)

∫ x

y

r(z)e−2iζ (z−y)dz, (118)

with K−(x,y; ζ ) = 0 for y > x. Using the approach out-
lined above, it is possible to show that, for ζ ∈ C−,
‖ P̃−(x; ζ )‖L∞(�) � cosh(κ)‖�−(x; ζ )‖L∞(�). The result for
the case ζ ∈ C− in (113) then follows from the observation
that ‖�−(x; ζ )‖L∞(�) � ‖D‖e2 Im(ζ )L1 for ζ ∈ C−. �

Theorem 2. Let q ∈ BV with support in � = [L1,L2] such
that q(x) = 0 for x ∈ ∂�. Then, there exists a constant C > 0
independent of ζ ∈ C such that the estimate

‖ P̃(x; ζ )‖L∞(�) � C

1 + |ζ | ×
{

1, ζ ∈ C+,

e−2 Im(ζ )(L2−L1), ζ ∈ C−,

(119)
holds.

Proof. Consider the first term on the right-hand side of
(110): Integrating by parts, we obtain

�1(x; ζ ) =
∫ x

L1

q(z)e2iζ zdz

∫ z

L1

r(y)e−2iζydy

= −1

2iζ

∫ x

L1

r(z)q(z)dz

+ 1

2iζ

∫ x

L1

q(z)e2iζ zdz

∫ z

L1

[∂yr(y)]e−2iζydy,

so that

2(1 + |ζ |)|�1| �
∫ x

L1

|q(z)|2dz +
∫ x

L1

|q(z)|e−2 Im(ζ )zdz

×
∫ z

L1

[2|r(y)| + |∂yr(y)|]e2 Im(ζ )ydy.

Setting 2D1 = ‖q‖2
2 + ‖q‖2

1 + ‖q‖1‖q(1)‖1, we have

|�1(x; ζ )| � D1

1 + |ζ | ×
{

1, ζ ∈ C+,

e−2 Im(ζ )(L2−L1), ζ ∈ C−.

Again, integrating by parts, we have

�2(x; ζ ) =
∫ x

L1

r(y)e2iζ (x−y)dy
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= −1

2iζ
r(x) + 1

2iζ

∫ x

L1

[∂yr(y)]e2iζ (x−y)dy,

so that

2(1 + |ζ |)|�2| � |r(x)|

+
∫ x

L1

[2|r(y)| + |∂yr(y)|]e−2 Im(ζ )(x−y)dy.

Putting 2D2 = ‖q‖∞ + 2‖q‖1 + ‖q(1)‖1, then

|�2(x; ζ )| � D2

1 + |ζ | ×
{

1, ζ ∈ C+,

e−2 Im(ζ )(L2−L1), ζ ∈ C−.

Now, proceeding as in the proof of Theorem 1, we conclude
that the estimate (119) holds with C = ‖D‖ cosh(‖q‖1) where
D = (D1,D2)ᵀ. �

Finally, let us extend the preceding two results to the one-
sided potentials:

Theorem 3. Let q ∈ Ed (J ) for some d > 0 with J =
(−∞,L]. Let κ1 = ‖q‖L1(J ) and κ∞ > 0 be the constant
such that |q(x)| � κ∞e−2d|x|. Then, for every μ ∈ (0,d), the
estimate

‖ P̃(x; ζ )‖L∞(J ) �
{

C1, ζ ∈ C+,
C2e

−2 Im(ζ )L

[d2−(Im ζ )2] , ζ ∈ S−(μ),
(120)

holds with constants C1 and C2 given by

C1 = ‖D‖ cosh κ1, C2 = ‖E‖ cosh κ1,

where D = (κ2
1 /2,κ1)ᵀ and E = (κ2

∞,dκ∞)ᵀ.
In addition, if ∂xq ∈ Ed (J ), then there exists a constant

C > 0 independent of ζ ∈ C such that the estimate

‖ P̃(x; ζ )‖L∞(J ) � C

1 + |ζ | , ζ ∈ C+, (121)

holds.

Error due to domain truncation

For the purpose of numerical solution of the ZS problem
posed on an unbounded domain, it is mandatory to choose a
computational domain that is bounded. This requires trunca-
tion of the original unbounded domain to a bounded domain,
say, [−L−,L+] where L−,L+ > 0. Let us observe here that
the estimates obtained in Theorem 3 can be improved slightly
in order to give us better control of the domain truncation error.
Let Kj denote the Volterra integral operator corresponding to
the kernel Kj for j = 1,2 defined in (112). Set the domain to
be J = (−∞, − L−] and assume the conditions stated in the
first part of Theorem 3 to be true. Then it can be shown that,
for ζ ∈ C+, we have

‖P̃1‖L∞(J ) = ‖�1 + K1[�1]‖L∞(J ) � [cosh(κ1) − 1],

‖P̃2‖L∞(J ) = ‖�2 + K2[�2]‖L∞(J ) � sinh κ1.

Now in any numerical scheme, one would take (1,0)ᵀ as
the initial value for the Jost solution φ(x; ζ )eiζx at x =
−L−. This step introduces an error which is bounded by
max(‖P̃1‖L∞(J ), ‖P̃2‖L∞(J )). Let L− > 0 be a free parame-
ter and assume q ∈ Ed (R). Now, if we require the maxi-
mum error to be equal to ε > 0, then it suffices to have

sinh[‖qχ(−∞,−L−]‖L1 ] = ε which works out to be

‖qχ(−∞,−L−]‖L1 � log[ε +
√

1 + ε2]. (122)

A similar result can be obtained for truncation from the right
side by using the property in Remark 1.

B. Discretization in the spectral domain

Let the grid points be as defined in Sec. III A. In this section
we discuss the stability and convergence properties of the
numerical methods developed in Sec. III A. To this end, we
closely follow the terminology introduced in [33] adapted to
the problem at hand.

The general form of a one-step method for (18) can be
stated as

ṽn+1 = [σ0 + h�(xn; h)]ṽn, (123)

where dependence on the spectral parameter ζ is suppressed.
We keep the spectral parameter fixed in the following discus-
sion or allow it to vary over any compact domain of C. The
function �(xn; h) is referred to as the update function of the
one-step method. The truncation error of this method is defined
as

T (x, y; h) = 1

h
[ṽ(x + h) − ṽ(x)] − �(x; h)ṽ(x), (124)

with ṽ(x) = y. A method is called consistent if
limh→0 T (x, y; h) = 0. The necessary and sufficient condition
for consistency in this case is �(x; 0) = Ũ (x). A method
is said to have an order p if, for some vector norm ‖ · ‖,
‖T (x, y; h)‖ � Chp holds uniformly over � × � where � ⊂
C2 is a compact set and C is independent of x, y, and h.
Let xh = (xn)0�n�N represent the grid. Let us introduce a
vector-valued grid function as u = {un}Nn=0 where un ∈ C2

such that the value of u at xn is un. The class of such solutions
is denoted by G(xh). Define the infinity norm of any grid
function as

‖u‖∞ = max
0�n�N

‖un‖. (125)

In order to introduce the concept of stability of the one-step
method, let us define the residue operator as

(Rhu)n = 1

h
[un+1 − un] − �(xn; h)un, (126)

for any grid function u ∈ G(xh) and n < N [we set (Rhu)N =
(Rhu)N−1]. A method is said to be stable if there exists a
constant C0 for h0 > 0 such that for any two arbitrary grid
functions, u,w ∈ G(xh), we have

‖u − w‖∞ � C0(‖u0 − w0‖ + ‖Rhu − Rhw‖∞), (127)

for all h � h0.
Remark 8. The intuition behind this definition, as explained

in [33], is as follows: if u ∈ G(xh) denotes the grid function
obtained by the one-step method using infinite-precision
arithmetic (so that Rhu = 0) and if w ∈ G(xh) denotes the
grid function obtained using finite-precision arithmetic (initial
conditions being the same, i.e., u0 = w0), then any stable
method must yield ‖u − w‖∞ = O (ε) where ε is the machine
precision in the latter case.
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Let q ∈ BV(�); then there exist constants C and h0 > 0
independent of x and h such that ‖�(x; h)‖ < C for all h ∈
[0,h0] (where ‖ · ‖ is the induced matrix norm). This shows
that for any two arbitrary vectors u,w ∈ C2 and h ∈ [0,h0],
the Lipschitz condition,

‖�(x; h)u − �(x; h)w‖ � ‖�(x; h)‖ ‖u − w‖
� C‖u − w‖,

is satisfied. Therefore, the stability of the one-step method
(123) easily follows from Theorem 5.3.1 of Ref. [33]. Further,
for any grid function u ∈ G(xh), we have

‖un‖ � (1 + Ch) ‖un−1‖ � (1 + Ch)n‖u0‖.
Then using the inequality (1 + Ch)N < eChN , it follows that
‖u‖∞ � eC(L2−L1)‖u0‖ which also guarantees the bounded-
ness of the numerical solution when computed using infinite
precision.

Finally, consistency and stability for any given one-
step method imply global convergence. Moreover, if ṽ =
{ṽ(xn)}Nn=0 denotes the grid function determined by the exact
solution and u ∈ G(xh) is any grid function obtained using
the one-step method (123) with initial condition u0 = ṽ(x0),
then ‖u − ṽ‖∞ = O (hp) where p is the order of the one-step
method (Theorem 5.3.2 of Ref. [33]).

1. Implicit Euler method

Continuing from Sec. III A 2, we have

ṽn+1 = (σ0 − hŨn+1)−1ṽn,

which determines the update function to be

�(xn; h) = −h(det Ũn+1)σ0 + Ũn+1

[1 + (det Ũn+1)h2]
.

It is easy to verify that �(xn; 0) = Ũn; therefore, the method
is consistent. Using Taylor’s theorem,

T (x, y; h) = [σ0 − hŨ (x + h)]−1

[
−h

2
∂2
x ṽ(x ′)

]
,

where x � x ′ � x + h and ṽ(x) = y. Assuming that q(x) ∈
C1

0(�), we have ∂2
x ṽ = eiσ3ζx(∂xU + U 2 + 2iζ [σ3,U ])v;

therefore, the order of the method is p = 1. If the Jost solution
under consideration is v = φ, then ‖eiζxφ‖ is bounded for
ζ ∈ C+ (see Theorem 1); consequently, the truncation error
coefficient to the leading order in ζ is |ζ |he2 Im(ζ )x‖[σ3,U ]‖.
Evidently, the method is stable which together with its
consistency implies convergence (with order p = 1).

2. Trapezoidal rule

Continuing from Sec. III A 3, we have

ṽn+1 =
(

σ0 − h

2
Ũn+1

)−1(
σ0 + h

2
Ũn

)
ṽn, (128)

so that the update function is given by

�(xn; h) = h(Ũn+1Ũn − σ0 det Ũn+1) + 2(Ũn + Ũn+1)

[4 + (det Ũn+1)h2]
.

Again, it is easy to verify that �(xn; 0) = Ũn; therefore, the
method is consistent. Using Taylor’s theorem,

T (x, y; h) =
[
−h2

12
∂3
x ṽ(x)

]
+ O(h3),

with ṽ(x) = y. Assuming that q(x) ∈ C2
0(�), we have

∂3
x ṽ = −4ζ 2eiσ3ζx([σ3,[σ3,U ]] + O (1/ζ ))v;

therefore, the order of the method is p = 2. Again, if the
Jost solution under consideration is v = φ, then ‖eiζxφ‖
is bounded for ζ ∈ C+ (see Theorem 1); consequently,
the truncation coefficient to the leading order in ζ is
|ζ |2h2e2 Im(ζ )x‖[σ3,[σ3,U ]]‖/3. Evidently, the method is stable
which together with its consistency implies convergence (with
order p = 2).

3. Split-Magnus method

For the convergence analysis of the split-Magnus method
described in Sec. IV B, let us observe that an equivalent form
of the integrator is√

(σ0 − hŨn+1/2)ṽn+1 =
√

(σ0 + hŨn+1/2)ṽ.

Using Taylor’s theorem for matrix functions, we have

T (x, y; h) = h2

24

(
∂3
x ṽ − 3Ũ∂2

x ṽ − 3Ũ 3ṽ
)+ O(h3),

with ṽ(x) = y. Assuming U to be twice differentiable on
[x,x + h], we conclude that the order of the method is p = 2.
Further, this one-step method is consistent and stable, and
therefore also convergent for fixed ζ (or ζ varying in a compact
domain). The truncation error coefficient to the leading order
in ζ is |ζ |2h2e2 Im(ζ )x‖[σ3,[σ3,U ]]‖/6. This value can be seen
to be twice as small as that of the trapezoidal rule. Let us note
that it does not seem straightforward to determine which of
the two one-step methods has smaller total truncation error
coefficient (for fixed ζ ); however, the trapezoidal rule appears
to exhibit smaller total truncation error in the numerical tests.

C. Computation of norming constants

In Sec. III B 1, it was stated that the computation of
norming constants from the discrete b coefficients bN (z2) is
ill conditioned. This can be attributed to the nature of the
truncation error coefficients in the underlying one-step method
for complex values of ζ . It is evidenced by the presence of
a factor of the form exp[2 Im(ζ )x] in the truncation error
coefficient which tends to grow for x > 0 (see Sec. VI B).
Therefore, it is better to “truncate” the scattering potential
at the origin15 and solve the corresponding one-sided ZS
problems as discussed in Sec. III B 1. Finally, let us note that
there are other discretization schemes such as the exponential
time-differencing (ETD) scheme [32] which may alleviate
these problems; however, it may come at a cost of increased
operational complexity. These ideas will be explored in a future
publication.

15If the growth behavior of the potential is known beforehand, then
it possible to choose an optimal point of truncation.
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D. Lubich’s method

Starting from the functions a(ζ ) and b̆(ζ ) analytic in the
upper half of the complex plane, Lubich’s construction as
described in Sec. III F allows us to compute the polynomials
associated with the discrete scattering coefficients PN (z2) =
{P(z2)}N . Note that in the preceding section, we discussed
the necessary and sufficient condition for discrete inverse
scattering with polynomials (which can be seen as a finite-
support sequence of coefficients). However, Lubich’s method
yields an infinite series that needs to be truncated. Therefore,
the compatibility of Lubich’s construction with the layer-
peeling algorithm cannot be studied within the framework of
finite-support sequences. However, it is possible to determine
whether P(z2) can be associated with a Jost solution prior to
truncation of the series. If the coefficients of the series decay
sufficiently fast, the truncation introduces a negligible error so
that the layer-peeling criteria can be satisfied to a sufficient
degree of accuracy.

Let us first consider the case of a compactly supported
potential. Define the vector P(z2) = (P1,P2)ᵀ as

P1(z2) = a

(
iδ(z2)

2h

)
, P2(z2) = b̆

(
iδ(z2)

2h

)
,

which can be expanded into a convergent Taylor series as
in Sec. III F on account of the analyticity of the scattering
coefficients over the whole of the complex plane. Further note
that

P ∗
1 (1/z∗2) = a∗

(
iδ(1/z∗2)

2h

)
,

P ∗
2 (1/z∗2) = b̆∗

(
iδ(1/z∗2)

2h

)
.

Therefore, for z ∈ T, we have16

P(z2) · P∗(z2) = (aa∗ + b̆b̆∗) ◦
(

iδ(z2)

2h

)
= 1.

Note that here we have used the fact that a(ζ )a(ζ ) +
b(ζ )b(ζ ) = 1 for all ζ ∈ C; however, such a relationship would
not hold if we relax the requirement of compact support of the
potential.

Let f (ζ ) denote either a(ζ ) − 1 or b̆(ζ ). When f (ζ ) is
analytic in the upper half of the complex plane, then on any
compact domain � ⊂ C+ the functions can be regarded as
Lipschitz continuous. Observing that δ(e−h)/h = 1 + O (hp)
where p = 1 for BDF1 and p = 2 for TR, we have∣∣∣∣ζ − i

2h
δ(e2iζh)

∣∣∣∣� Chp, (129)

on any compact domain of � ⊂ C+ and h ∈ (0,h̄] (h̄ > 0)
where C > 0 depends only on � and h̄. Therefore, using the
estimate (129) and the Lipschitz continuity of f (ζ ) one can
assert that there exists a constant C ′ > 0 for a given � and h0

16For sufficiently small h, it can be verified that |P1,0| �= 0. Other
conditions pertaining to the specific discretization schemes can be
explicitly verified using the results in Sec. III F.

such that [42] ∣∣∣∣f (ζ ) − f

(
iδ(e2iζh)

2h

)∣∣∣∣� C ′hp.

Therefore, the Wronskian relationship, |a(ξ )|2 + |b(ξ )|2 = 1
for ξ ∈ R, can only be satisfied up to O (hp) on any bounded
interval in R.

Finally, as far as the truncation of the infinite series is
concerned, let us note that for the kind of problems considered
in this article, Lubich’s method is applied to rational functions
with known poles in C− which makes it easy to determine
the decay behavior of these coefficients using the method of
partial fractions (see Sec. III G).

E. Darboux transformation

In this section, we study the convergence behavior of the
Darboux transformation with numerically computed Jost solu-
tions. Continuing from Sec. II C, let (ζk,bk) ∈ SK denote the
discrete eigenvalue and the corresponding norming constant.
Define the Vandermonde matrix

F = {Fjk}K×K = {ζ k
j

∣∣ j = 1, . . . ,K, k = 0, . . . ,K − 1
}
,

the diagonal matrix � = diag(γ1,γ2, . . . ,γK ), and the vectors

f =

⎛⎜⎜⎜⎜⎜⎝
ζK

1
ζK

2
...

ζK
K

⎞⎟⎟⎟⎟⎟⎠, g = � f =

⎛⎜⎜⎜⎜⎜⎝
ζK

1 γ1

ζK
2 γ2

...
ζK
K γK

⎞⎟⎟⎟⎟⎟⎠, (130)

where

γk = φ
(0)
2 (0,0; ζk) − bkψ

(0)
2 (0,0; ζk)

φ
(0)
1 (0,0; ζk) − bkψ

(0)
1 (0,0; ζk)

. (131)

The unknown Darboux coefficients can be put into the vector
form

D0 =

⎛⎜⎜⎜⎝
d

(0,K)
0

d
(1,K)
0

...
d

(K−1,K)
0

⎞⎟⎟⎟⎠, D1 =

⎛⎜⎜⎜⎝
d

(0,K)
1

d
(1,K)
1

...
d

(K−1,K)
1

⎞⎟⎟⎟⎠; (132)

then the linear system of equations (10) which determines the
coefficients of the Darboux matrix can be written as

−
(

f
g∗

)
︸ ︷︷ ︸

w

=
(

F �F

�∗F ∗ −F ∗

)
︸ ︷︷ ︸

W

(
D0

D1

)
︸ ︷︷ ︸

D

. (133)

Note that the quantities f and F are known exactly while
� (and in turn g) is determined only up to O (hp), where p

is the order of convergence of the one-step method. Let ‖ · ‖
denote the Euclidean norm for vectors and the induced spectral
norm for matrices. Define κ(W) = ‖W−1‖ · ‖W‖ to be the
condition number of W; then, under the assumption ‖W−1‖ ·
‖�W‖ < 1 (which can be satisfied for sufficiently small h),
the standard perturbation theory (Chap. 11 of Sec. [64]) yields
the estimate

‖�D‖
‖D‖ � κ(W)

1 − κ(W) ‖�W‖
‖W‖

(‖�w‖
‖w‖ + ‖�W‖

‖W‖
)

. (134)
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Given that the perturbations are of O (hp), from the above
equation it follows that the coefficients of the Darboux matrix
can be determined up to O (hp).

In order to determine the convergence behavior of the
fast Darboux transformation (FDT) algorithm as described
in Sec. III H 1, we need to study the convergence of the
corresponding Lubich coefficients. To this end, let us denote
by D̃K (ζ ) the approximation to the Darboux matrix DK (ζ )
(for the sake of brevity, we suppress the dependence on x, t ,
and SK ). Now, using the partial fraction expansion as in (53),
we have

μK (ζ )[D̃K (ζ ) − DK (ζ )] =
K∑

k=1

Res[μK,ζ ∗
k ]

(ζ − ζ ∗
k )

× [D̃K (ζ ∗
k ) − DK (ζ ∗

k )]. (135)

In order to establish the relationship between the error in the
Darboux matrix as stated above and the error in the coefficients
of the Darboux matrix, we need the following lemma:

Lemma 4. For a given discrete spectrum SK where K is
finite, the inequality

‖D̃K (ζ ) − DK (ζ )‖ � 2‖�D‖GK (|ζ |2)

holds for any ζ ∈ C where

GK (ξ ) =
{√

ξK−1
ξ−1 , ξ �= 1,√

K, ξ = 1.

Proof. From the the definition of the Darboux matrix, we
have

‖D̃K (ζ ) − DK (ζ )‖ �
K−1∑
k=0

∥∥D̃(K)
k − D

(K)
k

∥∥ |ζ |k,

for ζ ∈ C. Now, using the Cauchy-Schwartz inequality, we
obtain

K−1∑
k=0

∥∥D̃(K)
k − D

(K)
k

∥∥|ζ |k

�

√√√√K−1∑
k=0

∥∥D̃(K)
k − D

(K)
k

∥∥2

√√√√K−1∑
k=0

|ζ |2k.

Note that this inequality does not change upon replacing the
spectral norm (‖ · ‖) with the Euclidean norm (‖ · ‖E) and it is
easy to see that√√√√K−1∑

k=0

∥∥D̃(K)
k − D

(K)
k

∥∥2
E

= 2‖�D‖,

which concludes the proof. �
Let DK (τ ) and D̃K (τ ) denote the inverse Fourier-Laplace

transform of μK (ζ )DK (ζ ) − σ0 and μK (ζ )D̃K (ζ ) − σ0, re-
spectively; then, we have the following proposition for the
rate of convergence:

Proposition 4. Consider the discrete spectrum SK with
finite K . If ‖�D‖ = O (hp) where p is order of the underlying
one-step method, then

‖D̃K (τ ) − DK (τ )‖ = O(hp).

Proof. Let the set of eigenvalues be EK corresponding to
SK and define

R = 2 max
ζ∈EK

| Res[μK,ζ ∗]|GK (|ζ |2),

where GK is as defined in the forgoing lemma. From (135)
and the forgoing lemma, we have

‖D̃K (τ ) − DK (τ )‖ � R‖�D‖
K∑

k=1

∣∣∣∣ 1

2π

∫ ∞+ic

−∞+ic

e−iζ τ dζ

ζ − ζ ∗
k

∣∣∣∣
� R‖�D‖

K∑
k=1

e−ηkτ � RK‖�D‖,

where ηk = Im ζk > 0. The result follows by setting ‖�D‖ =
O (hp). �

Let the matrix-valued Lubich coefficients for DK (ζ ) and
D̃K (ζ ) be defined as

μK

(
iδ(z2)

2h

)
DK

(
iδ(z2)

2h

)
=

∞∑
k=0

�k(h)z2k,

μK

(
iδ(z2)

2h

)
D̃K

(
iδ(z2)

2h

)
=

∞∑
k=0

�̃k(h)z2k, (136)

respectively. The zeroth Lubich coefficient is obtained by
evaluating the Darboux matrix at ζ = iδ(0)/2h. Therefore,

‖�0 − �̃0‖ � 2hR‖�D‖
K∑

k=1

1

|iδ(0) − 2hζ ∗
k | , (137)

leading to ‖�0 − �̃0‖ = O (hp+1). Using the properties of the
Lubich coefficients and the forgoing proposition, it follows that

‖�k − �̃k‖ = O(hp+1), k ∈ Z+. (138)

VII. NUMERICAL TESTS

In this section, we present several numerical tests to
demonstrate the performance of the numerical algorithms
developed in this paper. For better numerical conditioning,
we scale the scattering potential q(x) of the ZS problem by a
suitable scaling parameter such that ‖q‖L2 is unity or close to
unity. Let us briefly review the effect of this scaling to (3): For
some κ > 0, let V (y) = U (x)/κ , y = κx, and λ = ζ/κ; then

vy(y/κ; ζ ) = i(ζ/κ)σ3v(y/κ; ζ ) + U (y/κ)v(y/κ; ζ ),

wy = −iλσ3w + V (y)w,

where w(y; λ) = v(y/κ; λκ).
For the sake of clarity, let us specify the acronyms used

to denote the one-step methods considered in this article
for testing: the implicit Euler method (BDF1), trapezoidal
rule (TR), Magnus method with one-point Gauss quadrature
(MG1), and split-Magnus method (SM). The main focus of
this section is to study the dependence of the total numerical
error on the free parameters of a given algorithm together with
its total run time. In particular, we have considered the test
cases that test the performance of the methods introduced in
this article against the so-called benchmarking methods (MG1
and SM) wherever possible. In all of the test cases described
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FIG. 6. The figure shows the discrete spectrum, S16 [defined by
(141)], where the eigenvalues and the norming constants are shown
in (a) and (b), respectively.

below, N represents the number of samples which is taken
from the set N = {2j , j = 10,11, . . . ,20}.

A. Examples

Our test cases are derived from the following examples
for which the exact value of the quantities to be analyzed
are known in a closed form or can be evaluated to machine
precision by a known method.

1. Multisolitons

Define a sequence of angles for J ∈ Z+ by choosing �θ =
(π − 2θ0)/(J − 1), θ0 > 0, and

θj = θ0 + (j − 1)�θ, j = 1,2, . . . ,J

so that θj ∈ [θ0,π − θ0]. Then the eigenvalues for our numer-
ical experiment are chosen as

ζj+J (l−1) = leiθj , l = 1,2, . . . ,8, j = 1,2, . . . ,J. (139)

The norming constants are chosen as

bj = eiπ(j−1)/(8J−1), j = 1,2, . . . ,8J. (140)

Here we choose θ0 = π/3 and J = 4. Then we consider a
sequence of discrete spectra defined as

SK = {(ζk,bk), k = 1,2, . . . ,K}, (141)

where K = 4,8, . . . ,32 (Fig. 6). Let EK be the set of all the
eigenvalues. The potential can be computed with machine pre-
cision using the CDT algorithm which is taken as the reference
for error analysis in this case. For fixed K , the eigenvalues
are scaled by the scaling parameter κ = 2(

∑K
k=0 Im ζk)1/2. Let

ηmin = minζ∈EK
Im ζ ; then the computational domain for this

example is chosen as [−L,L] where L = 11κ/ηmin.

2. Secant-hyperbolic potential

The exact solution of the ZS problem for the secant-
hyperbolic potential was first reported in [65]. We summarize
the results required for our purpose as follows: Let the potential
be written as

q(x) = A sech x, (142)

where A is referred to as the amplitude. The scattering
coefficients are then given by

a(ζ ) = �
(

1
2 − iζ

)2
�
(
A + 1

2 − iζ
)
�
(− A + 1

2 − iζ
) , ζ ∈ C+,

b(ζ ) = − sin πA sech πζ, | Im ζ | < 1/2.

The eigenvalues are given by

ζk = i(Ã − k), k = 1,2, . . . ,K,

where K is the largest integer smaller than Ã = (A + 1/2).
Putting Ãf = Ã − K , the noninteger part of Ã, the a coef-
ficient can be written as a product of solitonic and radiative
parts as follows:

a(ζ ) =
( K∏

k=1

ζ − ζk

ζ − ζ ∗
k

)
︸ ︷︷ ︸

aS (ζ )

�
(

1
2 − iζ

)2
�(Ãf − iζ )�(1 − Ãf − iζ )︸ ︷︷ ︸

aR (ζ )

.

Note that aR(ζ ) belongs to a secant-hyperbolic potential with
amplitude AR = Ãf − 1/2 (> 0). The corresponding norming
constants are given by bk = (−1)k .

This example allows one to test the CDT and the FDT
algorithms where the seed potential can be taken as q0(x) =
AR sech(x) and the sequence of discrete spectra to be
added,

SK = {(ζk,bk), k = 1,2, . . . ,K}, K = 4, . . . ,32, (143)

where we set AR = 0.4. Corresponding to SK , the amplitude
of the augmented secant-hyperbolic potential is given by A =
0.4 + K and Ã = 0.9 + K . As in the last example, for fixed
K , the eigenvalues are scaled by the scaling parameter given
by κ = 2(

∑K
k=0 Im ζk)1/2.

In order to choose the computational domain [−L,L] for
the sech potential (142) with the aforementioned scaling, we
can use the relation (122). Choosing ηmin = minζ∈EK

Im ζ

where EK is the set of all the eigenvalues and observing
that

‖qχ(−∞,−L/κ]‖L1 = A tan−1

[
1

sinh(L/κ)

]
,

we have L ≈ [ηmin log(2A/ε)](κ/ηmin) which rounds to L ≈
30(κ/ηmin) for ε = 10−12.

B. Test cases

1. Discrete spectrum

For multisoliton potentials described in Sec. VII A 1, we test
the convergence behavior with regard to the discrete spectrum
for various discretization schemes, namely, BDF1, TR, SM,
and MG1. For the convergence behavior of the numerically
computed norming constants, we assume that the eigenvalues
are known exactly. The error in the norming constants is
quantified by

erel =
√√√√∑K

k=1

∣∣b(num.)
k − bk

∣∣2∑K
k=1 |bk|2

. (144)

For the convergence behavior with regard to the eigenvalues,
we compute a(num.)(ζk) where the a coefficient is computed
numerically. The error is then quantified by

erel = lim
η→∞

√√√√ 1

K

K∑
k=1

∣∣∣∣ a(num.)(ζk)

a(num.)(iη)

∣∣∣∣2. (145)
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FIG. 7. The figure depicts the convergence analysis for the norming constants (top row) and the discrete eigenvalues (bottom row). The
numerical test (as described in Sec. VII B 1) is carried out for a fixed number of eigenvalues (K ∈ {12,16,20}).
For MG1, the limit is evaluated by setting η = 100. For others,
limη→∞ a(iη) = P

(N)
1,0 . Except for MG1, all other schemes

are implemented using the fast forward scattering algorithm
(see Sec. III E 1). The computation of the norming constant is
discussed in Sec. III B 1 and Sec. IV.

2. Multisoliton potential

In this test case, we carry out the convergence analysis and a
comparison of run time (per sample) of different variants of the
FDT algorithm for multisolitons as described in Sec. VII A 1.
Note that the CDT algorithm in this case gives the exact
potential which allows us to compute the total numerical error
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FIG. 8. The figure depicts the convergence analysis (top row) and the run-time behavior (bottom row) for multisolitons. The numerical test
(as described in Sec. VII B 2) is carried out with a fixed number of eigenvalues (K ∈ {12,16,20}).
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FIG. 9. The figure depicts the relative numerical error (top row) and the run time (bottom row) for multisolitons as a function of number
of eigenvalues. The numerical test (as described in Sec. VII B 2) is carried out with a fixed number of samples (N ∈ {212,214,216}).

for the FDT algorithm for arbitrary discrete spectra. The error
is quantified by

erel = ‖q(num.) − q‖L2

‖q‖L2
, (146)

where the integrals are evaluated numerically using the
trapezoidal rule.

The different variants of the FDT algorithm are described
as follows: any one-step method for the ZS problem can be
combined with any one-step method for the Lubich coefficients
to obtain the FDT algorithm. In particular the relevant
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0

0 5

1

x

|q
(x

)|2
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FDT

FIG. 10. The figure compares the multisoliton potential corre-
sponding to the discrete spectrum, S16 [defined by (141)], generated
using the CDT and the FDT algorithm after scaling as discussed in
Sec. VII A 2.

combinations are BDF1-BDF1, BDF1-TR, and TR-TR. We
also consider the partial-fraction variant of the TR-TR
combination which is labeled as TR-TR-PF. Note that the
combination of a first-order method for the ZS problem with
a second-order method for the Lubich coefficients or vice
versa should lead to a first-order FDT algorithm. A second-
order method for the ZS problem must be combined with a
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FIG. 11. The figure shows the absolute value of the Lubich
coefficients for the Darboux matrix elements corresponding to the
discrete spectrum, S16 [defined by (141)]. The underlying one-step
method for the Lubich method here is the trapezoidal rule (TR).
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FIG. 12. The figure depicts convergence analysis (top row) and run-time behavior for the general Darboux transformation. The numerical
test is carried out with a soliton-free sech potential as seed and fixed number of eigenvalues (K ∈ {12,16,20}) to be added to the profile (see
Sec. VII B 3).

second-order method or higher for the Lubich coefficients in
order to obtain a second-order FDT algorithm.

Parameters for the Lubich method are as follows: M = 8N

and Nth = N/8 (for the PF variant). For the Cauchy integral,
the radius of the circular contour is � = exp[−8/(N/2 − 1)].

3. General Darboux transformation

In this test case, we carry out the convergence analysis and
a comparison of run time (per sample) of different variants
of the CDT and the FDT algorithm for the secant-hyperbolic
potential as described in Sec. VII A 2. Note that in the case of
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FIG. 13. The figure depicts the relative numerical error (top row) and the run time (bottom row) for the general Darboux transform
as a function of number of eigenvalues. The numerical test (as described in Sec. VII B 3) is carried out with a fixed number of samples
(N ∈ {212,214,216}).
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the secant-hyperbolic potential, the soliton-free seed potential
as well as the augmented potential can be stated in a closed
form.

The variants of the CDT or the FDT algorithm are
determined by the underlying one-step method. Unlike in the
last test case (Sec. VII B 2), the Lubich method uses the
same one-step method as that of the ZS problem. The total
numerical error is quantified by (146). The parameters for the
Lubich method are the same as in the last test case.

C. Results and discussion

1. Discrete spectrum

For a given multisoliton, this test case was designed to
assess the performance of the discretization schemes, namely,
BDF1, TR, SM, and MG1 in the determination of the discrete
spectrum. The results are plotted in Fig. 7 where it can be
easily seen that all the methods considered show convergence
at a rate that is determined by the underlying one-step method.
However, the rate of convergence of BDF1 with regard to
discrete eigenvalues seems to be better than expected as evident
from the plots in the bottom row of Fig. 7. The overall accuracy
of MG1 is evidently superior to that of others while TR turns
out to be a close second.

2. Multisoliton potential

This test case was designed to study the convergence and
run-time behavior of different variants of the FDT algorithm
for multisolitons. The results for a fixed number of eigenvalues
and varying number of samples are shown in Fig. 8. The second
order of convergence of the schemes BDF1-TR, TR-TR, and
TR-TR-PF can be identified from the plots in the top row
of Fig. 8. The scheme BDF1-TR shows a better rate of
convergence than expected.

The run-time behavior of CDT for a fixed number of
eigenvalues is clearly superior to all of the method as evident
from Fig. 8 (bottom row). The scheme TR-PF however
becomes very competitive with the CDT algorithm.

The relative error and the run time (per sample) as a function
of the number of eigenvalues keeping the number of samples
fixed is shown in Fig. 9. Here, the FDT algorithm outperforms
the CDT algorithm with the TR-TR-PF variant being the fastest
as evident from the plots in the bottom row of Fig. 9. It is
interesting to note that the relative error as a function of the
number of eigenvalues as shown in the plots in the top row of
Fig. 9 exhibits exponentially increasing behavior. This puts an
upper limit to the number of eigenvalues that can be handled
with the FDT algorithm within a given precision.17

Finally, a specific example of the multisoliton potential
which corresponds to the discrete spectrum shown in Fig. 6
is plotted in Fig. 10 where the potential computed using the
FDT algorithm can be seen to be coinciding with that of the
CDT algorithm. The Lubich coefficients of the corresponding

17Note that the CDT algorithm also suffers from this drawback.
However, in order to determine the upper limit for the CDT algorithm,
one requires an implementation which employs a variable precision
arithmetic. This program is not followed in this article.

Darboux matrix elements is shown in Fig. 11 which confirms
the exponential decay of these coefficients with respect to the
index (see Sec. III F).

3. General Darboux transformation

This test case was designed to study the convergence and
run-time behavior of different variants of the CDT and the
FDT algorithm for a soliton-free seed potential. The results
for a fixed number of eigenvalues (that are meant to be added)
and a varying number of samples are shown in Fig. 12. The
second order of convergence of the TR variant of the CDT
and the FDT algorithm can be identified from the plots in
the top row of Fig. 12. However, the TR variant of the CDT
algorithm performs not only worse as compared to that of the
FDT algorithm but it also becomes unstable with increasing
number of eigenvalues. Further, unlike the CDT algorithm,
the BDF1 and TR variant of FDT shows convergence (at an
expected rate) with increasing number of samples.

The run-time behavior of CDT for a fixed number of
eigenvalues is clearly superior to that of FDT as evident from
Fig. 13 (bottom row). The scheme TR-PF however becomes
very competitive to the CDT-TR variant. Note that CDT in this
case is reliable only for a small number of eigenvalues.

The relative error and the run time (per sample) as a function
of the number of eigenvalues keeping the number of samples
fixed is shown in Fig. 13. Here, the FDT algorithm outperforms
the CDT algorithm with the TR-TR-PF variant being the fastest
as evident from the plots in the bottom row of Fig. 13. As in
the last test case, the relative error as a function of the number
of eigenvalues as shown in plots in the top row of Fig. 13
exhibits exponentially increasing behavior. Note that FDT not
only outperforms CDT in terms of accuracy; it also exhibits
superior numerical conditioning with increasing number of
eigenvalues as evident from Fig. 13 (top row).

VIII. CONCLUSION

To conclude, we have presented a systematic approach to
discretizing the non-Hermitian Zakharov-Shabat (ZS) problem
which is based on exponential one-step methods. The discrete
framework thus obtained is amenable to FFT-based fast poly-
nomial arithmetic and also admits of a layer-peeling property.
In this setting we have presented different variants of a fast
forward and inverse SU(2) nonlinear Fourier transformation
(NFT) algorithm. As a first step towards developing a general
fast inverse NFT, we have presented several ways to obtain
a fast Darboux transformation (FDT) algorithm with an
operational complexity of O (KN + N log2 N ) where K is
the number of eigenvalues to be added to a seed potential and
N is the number of samples of the potential. This algorithm
exhibits an order of convergence that matches the underlying
exponential one-step method. In particular, if one uses the
trapezoidal rule of integration, the order of convergence is
O (N−2). The strength of this algorithm was demonstrated
by exhaustive numerical tests where we could successfully
add 32 eigenvalues to a soliton-free seed potential. It must be
noted that the FDT algorithm shows a promising route to a
fast inverse NFT which is confirmed empirically in [20]; this
forms the subject matter of a sequel to this paper.
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Furthermore, we have also presented a second approach that
naively tries to mimic the classical Darboux transformation
(CDT) scheme in the discrete framework developed for the
ZS problem with an arbitrary seed potential. This algorithm
affords a complexity of O (K2N ); however, it turns out to
be less accurate and numerically unstable beyond a certain
number of eigenvalues.

Finally, let us emphasize that, based on the ideas presented
in this paper and drawing on the pioneering work of Lubich
on convolution quadrature, it seems plausible to anticipate the
existence of higher-order convergent fast forward and inverse
NFT algorithms using (exponential) linear multistep methods;
we hope to return to this theme in the future.

APPENDIX: LUBICH COEFFICIENTS FOR RATIONAL
FUNCTIONS WITH SIMPLE POLES

Consider the simplest case of a rational function with a
simple pole E(ζ ) = (ζ − ζ0)−1 where Im ζ0 < 0. It satisfies
the kind of growth estimate stated in (47). The inverse Fourier-
Laplace transform is given by e(τ ) = −ie−iζ0τ . The Lubich
coefficients corresponding to the trapezoidal rule are defined
through

E

(
iδ(z2)

2h

)
= 1[

iδ(z2)
2h

− ζ0
]

= −ih
(1 + z2)

(1 + iζ0h)

∞∑
k=0

(
1 − iζ0h

1 + iζ0h

)k

z2k,

(A1)

where we note that |1 − iζ0h|/|1 + iζ0h| < 1 on account
of Im ζ0 < 0. The Lubich coefficient ek is defined as the
coefficient of z2k on the right-hand side of (A1) which can
be worked out explicitly: e0 = −ih/(1 + iζ0h) and, for k > 0,

ek = −2ih

[1 + (ζ0h)2]

(
1 − iζ0h

1 + iζ0h

)k

. (A2)

Note that when Re ζ0 = 0, then we may restrict h ∈ (0,h̄] so
that 1 + η0h �= 0 where η0 = Im ζ . In the following, we wish
to study the error involved in replacing ek with −2ihe−2iζ0hk .
For k > 0, this difference is given by

|ek + 2ihe−2iζ0hk|

= 2h

|1 + (ζ0h)2|

∣∣∣∣∣
(

1 − iζ0h

1 + iζ0h

)k

− e−2iζ0hk[1 + (ζ0h)2]

∣∣∣∣∣.
(A3)

Using the [1/1]-Padé approximant [66], we have

e−2iζ0h =
(

1 − iζ0h

1 + iζ0h

)
+ O(h3). (A4)

Next, let us show that for h ∈ (0,h̄], there exists a positive
integer n > 1 dependent only on h̄ such that∣∣∣∣1 − iζ0h

1 + iζ0h

∣∣∣∣ � e2η0h/n. (A5)

Recalling η0 = Im ζ0, let n be chosen such that

n > sup
h∈(0,h̄]

−2η0h/ log

∣∣∣∣1 + iζ0h

1 − iζ0h

∣∣∣∣. (A6)

From the inequality (Chap. 4 of Ref. [67])

−2η0h

log
∣∣∣ 1+iζ0h

1−iζ0h

∣∣∣ � −4η0h∣∣∣ 1+iζ0h

1−iζ0h

∣∣∣2 − 1
= |1 − iζ0h|2,

it follows that n > 1. Also, observing

−2η0h

log
∣∣∣ 1+iζ0h

1−iζ0h

∣∣∣ � −4η0h

1 −
∣∣∣ 1−iζ0h

1+iζ0h

∣∣∣2 � |1 + iζ0h|2,

it suffices to choose n to be the smallest integer greater
than (1 + |ζ0|h̄)2. Now, using standard inequalities for the
exponential function (Chap. 4 of Ref. [67]), we have∣∣∣∣∣
(

1 − iζ0h

1 + iζ0h

)k

− e−2ikζ0h

∣∣∣∣∣ �
∣∣∣∣(1 − iζ0h

1 + iζ0h

)
− e−2iζ0h

∣∣∣∣
×

∞∑
j=0

exp

[
2η0h

(
k − 1

n
+ j

n − 1

n

)]
� C ′h2e2η0kh/n,

where

C ′ = e−2η0h̄/n 1 − 2η0h̄

2η0(1 − 1/n)
× constant.

Finally, using the last estimate and from (A3), we conclude

|ek + 2ihe−2iζ0hk| � C ′h3

|1 − iζ0h|e
2η0kh/n,

where C ′ > 0 is independent of h and k. If in addition
(−η0h̄) < 1, then for h ∈ (0,h̄] and k > 0, we may write

|ek + 2ihe−2iζ0hk| � Ce2η0kh/nh3, (A7)

where C = C ′/(1 + η0h̄) is independent of h and k. Using
this estimate, let us now show that one can make an informed
choice of the parameter Nth ∈ Z+ introduced in Secs. III F 1
and III G in connection with the partial-fraction variant of FDT.
To this end, we start with

e2η0Nthh/n = ε,

where ε is a positive number less than unity. Putting Nth =
N/m and using h ∼ 2L/N where 2L = L2 − L1 and N ∈
Z+, we have

m ∼ 4η0L

n log ε
. (A8)

Setting ε = e−1 and for |ζ0|h̄ < 1 one can set n = 4 so that
m ∼ |η0|L. In the case of multisolitons, we would like to
tune the parameter Nth with respect to the eigenvalue with
the smallest imaginary part. Here ζ0 must be replaced by the
complex conjugate of the eigenvalue with smallest imaginary
part. For example, if the smallest of all the imaginary parts of
eigenvalues is unity and L = 10, we should choose m = 10
(or m = 8 so that Nth is a power of 2 when N is a power of 2).
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