
D
el
ft
U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

Smooth-Trajectron++
Augmenting the Trajectron++ behaviour
prediction model with smooth attention

MSc Thesis Robotics
Frederik Westerhout

Smooth-Trajectron++
Augmenting the Trajectron++ behaviour
prediction model with smooth attention

by

Frederik Westerhout
Student Name Student Number
F.S.B. Westerhout 4293940

Primary supervisor: Arkady Zgonnikov
Daily supervisor: Julian Schumann
Institution: Delft University of Technology
Place: Faculty of Cognitive Robotics, Delft
Project Duration: August, 2022 - May, 2023

Cover Image: This image was created with the assistance of DALL∙E 2 from https://labs.openai.com/

Contents

1 Introduction 1

2 Methods 2
2.1 Trajectron++ . 2

2.1.1 Encoder Architecture . 3
2.2 Smooth Attention . 3
2.3 nuScenes . 4
2.4 Benchmarking Framework . 4
2.5 Metrics . 4

3 Smooth-Trajectron++ 4

4 Results 5
4.1 nuScenes . 5

4.1.1 Reproduced vs. reported results . 5
4.1.2 Pedestrian-only predictions . 5
4.1.3 Vehicle-only predictions . 6

4.2 Benchmark for Gap Acceptance . 6
4.2.1 highD . 7
4.2.2 highD(rest) . 7
4.2.3 rounD and L-GAP . 8
4.2.4 Modification of loss function . 8

5 Discussion 8

6 Conclusion 10

Appendix A: Tables from Benchmarking Framework Figures 14

List of Figures

1 Example of graph-like representation of traffic scene containing two pedestrians (ped1,ped2) with two cars
(car1,car2) influencing the pedestrian being predicted (pedtar) . 3

2 Encoder part of CVAE at xt with representation vector ex . 3
3 Edge Influence Encoder including Smooth-Attention (in green) . 4
4 The performance of Smooth-Trajectron++ and T++ on the highD and highD(rest) dataset: β1−5 refer to the

β-values of 0.01, 0.1, 0.5, 1.0 and 10 respectively . 7
5 The performance of Smooth-Trajectron++ and T++ on the rounD and L-GAP dataset: β1−5 refer to the β-values

of 0.01, 0.1, 0.5, 1.0 and 10 respectively . 8
6 The performance of Smooth-Trajectron++ and Trajectron++ (T+) on the highD and highD(rest) dataset with

original loss function from Equation 1 (Ts) and modified loss function from Equation 3 (Tm) for β = 1.0 . . 9

List of Tables

1 Results nuScenes T++ pedestrian-only/vehicle-only: FDE (m) . 6
2 Results nuScenes T++ pedestrian-only/vehicle-only: ADE (m) . 6
3 Results nuScenes T++ pedestrian-only/vehicle-only: KDE NLL . 6
4 AUC initial gap 1/2 . 14
5 AUC initial gap 2/2 . 14
6 AUC fixed-sized gap (AUC) 1/2 . 14
7 AUC fixed-sized gap 2/2 . 15
8 ADE fixed-sized gap 1/2 . 15
9 ADE fixed-sized gap 2/2 . 15
10 FDE fixed-sized gap 1/2 . 16
11 FDE fixed-sized gap 2/2 . 16
12 TNR-PR critical gap 1/2 . 16
13 TNR-PR critical gap 2/2 . 16

Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction model
with smooth attention

F.S.B. Westerhout
Department of Cognitive Robotics

Delft University of Technology
Delft, Netherlands

Abstract—Understanding traffic participants’ behaviour is cru-
cial for predicting their future trajectories, enabling au-
tonomous vehicles to better assess the environment and con-
sequently anticipate possible dangerous situations at an early
stage. While the integration of cognitive processes and ma-
chine learning models has demonstrated promise in various
domains, its application in trajectory forecasting of multi-
ple traffic agents in large-scale autonomous driving datasets
remains lacking. This work investigates the state-of-the-art
trajectory forecasting model Trajectron++ which we enhance
by incorporating a smoothing term in its attention module.
This attention mechanism mimics human attention inspired by
cognitive science research indicating limits to attention switch-
ing. We evaluate the performance of the resulting Smooth-
Trajectron++ model and compare it to the original model on
various benchmarks. Our results show improved performance
on the large-scale nuScenes dataset, revealing the potential of
incorporating insights from human cognition into trajectory
prediction models.

1. Introduction

In a world where the demand for intelligent vehicles
is increasing rapidly [1], there is a growing concern about
the safety of passengers and other road users. According to
the World Health Organization, approximately 1.3 million
people die each year due to road traffic accidents, and
this number is expected to increase if proper measures are
not taken [2]. Therefore, ensuring a safe environment for
human-robot interaction in traffic is of paramount impor-
tance.

One of the most important factors for ensuring a safe
environment around intelligent vehicles is accurately pre-
dicting the future movements of surrounding traffic par-
ticipants [3]. These predictions help to better assess the
environment and anticipate a dangerous situation at an early
stage, which could prevent accidents. For those predictions,
understanding how traffic agents interact with each other is
essential for predicting their trajectories.

There are numerous methods that have been used to
tackle the challenge of trajectory prediction [4, 3, 5]. They
contain examples ranging from reason-based methods to

data-driven techniques. Over the last few years, data-driven
methods have shown great potential [6, 8, 9, 10, 11, 12, 13,
14, 15, 7]. These methods use machine learning algorithms
to learn from large amounts of data to predict the trajectories
of surrounding traffic participants. One of these data-driven
models is Trajectron++ (T++) [10], which stands out due
to its public code availability, the general applicability and
the results it achieved on multiple challenges [10, 16] con-
taining datasets ETH [17], UCY [18], nuScenes [19] and
highD [20].

Other methods to predict future trajectories are based on
research from cognitive science. Instead of learning merely
from data, the functioning of small parts of the human brain
is taken as a starting point for constructing components of
the model. An example of such a brain-based component is
evidence accumulation, which is a cognitive process wherein
information from multiple sources is gathered and integrated
over time to form a decision or judgment. It is believed
to be the primary mechanism that guides human decision-
making [21]. The theory of evidence accumulation is already
used to predict whether car drivers [22, 23] or pedestri-
ans [24] are merging on a road with traffic. Another exam-
ple of using insights from cognitive science for behaviour
prediction in traffic is the use of a quantum-like Bayesian
model. This is a mathematical framework that combines
elements of quantum theory and Bayesian probability theory
to describe decision-making and information processing in
complex and uncertain environments [25]. It is used in [26]
to more accurately predict human street crossing behaviour,
compared to the more data-driven model Social-LSTM [6].
Yet another insight from cognitive science suggests that the
brain has a limited capacity for shifting attention rapidly
between different tasks [27]. This is used in [28], where the
application of the smoothing term to the attention module
of a machine-learning prediction model – referred to as
Smooth-Attention – which mimics human cognition, allows
for better predictive performance.

As seen in these examples, recent research has shown
promising results in enhancing the performance of trajectory
prediction models by incorporating principles from cognitive
science. However, there is a need to further investigate and
explore the potential of these cognitively inspired models
in a more extensive manner. In particular, Cao et al. [28]

1

highlight the importance of integrating smooth attention
mechanisms with advanced network architectures for mod-
elling interactions to improve trajectory prediction.

In this study, our objective is to tackle this challenge
by incorporating smooth attention into a state-of-the-art
behaviour prediction model. Specifically, we seek to enhance
the performance of the Trajectron++ (T++) [10] by leverag-
ing the technique of smooth attention proposed in [28]. By
imposing a smoothness constraint on the attention module,
we significantly reduce abrupt changes in attention, thus
enabling the module’s output to closely resemble natural
human cognitive processing. To denote the combined model
resulting from this integration, we refer to it as Smooth-
Trajectron++. To evaluate the efficacy of this novel model,
we conduct experiments on multiple datasets, including
nuScenes [19], highD [20], rounD [29] and L-GAP [22].

2. Methods

This chapter provides an overview that explains the
various elements of the Trajectron++ (T++) model (2.1)
and the functioning of the smooth attention module (2.2).
Additionally, the used dataset, nuScenes, is discussed (2.3)
and a benchmarking framework, including three gap accep-
tance datasets, is introduced to validate the model’s results
(2.4). Finally, we list the used metrics for the evaluation of
the data (2.5).

2.1. Trajectron++

We use Trajectron++ (T++) [10] as the baseline model,
for several reasons. Firstly, the model showed state-of-
the-art performance on various public datasets [10] while
including an attention module. Secondly, the authors have
made the source code publicly available, including proper
documentation regarding its application. This offers the
opportunity to potentially reproduce the originally reported
results while minimizing deviations from the original setup
used by the authors. Lastly, the model has been tested on
a large-scale public autonomous driving dataset, nuScenes
[19], described in Section 2.3. This provides evidence
of the applicability of the model to real-world scenarios
concerning interactions between multiple traffic participants.

T++ is based on the Trajectron model [30] and
consists of a combination of different elements, including
conditional variational auto-encoders (CVAEs) [31], long
short-term memory networks (LSTMs) [32] and graph
neural networks (GNNs) [33]. For these components we
provide an explanation in the coming paragraphs.

CVAE The backbone of the model is a CVAE, proposed
by Sohn et al. in [31]. This model uses the concept of a
Variational Autoencoder (VAE) [34], which is a generative
model that consists of an encoder and a decoder. The
main goal of a VAE is to learn a compressed, continuous
representation of input data in an unsupervised manner to
generate new data samples that resemble the training data.

Specifically, VAEs aim to encode input data into a low-
dimensional latent space using the autoencoder (encoder),
where each dimension of the latent space corresponds
to a different feature of the input data. This compressed
representation can then be decoded back into the original
input data (decoder). The main difference between a CVAE
and a VAE is that a CVAE can learn to generate data
samples conditioned on a given set of attributes or labels
(like cars and pedestrians), whereas a VAE can only generate
samples from the learned latent space distribution, i.e.,
without any control over the data generated by the model
Regarding the case of trajectory forecasting, control over
the generated output is necessary to match the prediction
with a specific class. This means that by using a CVAE it
is possible to differentiate clearly between future behaviour
of a pedestrian on the one hand, and a car on the other hand.

LSTM LSTM networks are a type of recurrent neural
network (RNN) [35] architecture capable of learning long-
term dependencies in sequential data. In abstract words:
the key feature of LSTMs is the incorporation of memory
cells, which enable the network to selectively store, modify,
and retrieve information over extended periods of time.
This is achieved through a series of gates, including the
input gate, output gate, and forget gate, that regulate the
flow of information into and out of the memory cells. The
LSTM architecture has demonstrated significant success
in a variety of applications, such as natural language
processing, speech recognition, and time series prediction.

GNN GNNs are a class of deep learning models that
can operate on graph-structured data to learn node and
edge representations that capture structural properties of
the graph [36]. GNNs have gained increasing popularity
in recent years due to their ability to effectively model
complex relationships in a variety of domains, including
social networks, bioinformatics, and computer vision. In
T++ a specific type of GNNs is used, called directed spa-
tiotemporal graphs. Spatiotemporal refers to the combination
of both spatial (related to space or location) and temporal
(related to time) dimensions. It refers to how things change
and move over time and in different places or locations.
Directed spatiotemporal graphs are a type of graph data
structure that capture the temporal and spatial relationships
between entities over time. By incorporating a directed spa-
tiotemporal graph as input to a GNN, the model can learn to
effectively capture the spatiotemporal dependencies between
entities, and exploit the temporal evolution of the graph to
predict future states of the system. Specifically, the GNN can
be used to learn node and edge representations that capture
the temporal and spatial dependencies between nodes and
make predictions based on these learned representations. An
example of a graph-like situation can be seen in Figure 1,
wherein the nodes are shown as the outer pedestrians and
cars (ped1, ped2, car1, car2) and the edges as the arrows
pointing towards the target pedestrian (pedtar). The target
pedestrian is the agent in the scene whose future locations
are being predicted.

2

Figure 1. Example of graph-like representation of traffic scene containing
two pedestrians (ped1,ped2) with two cars (car1,car2) influencing the
pedestrian being predicted (pedtar)

LSTMped,ped

Attention

Edge Influence Encoder

ex

Node History Encoder

Map Encoder

CNN

LSTM

LSTMped,car

Figure 2. Encoder part of CVAE at xt with representation vector ex

2.1.1. Encoder Architecture. The graph-structured model
consists of various modules that each represent a different
influence on the trajectory forecast, see Figure 2.

First, the past location and speed of the chosen traffic
agent with multiple input time steps (x0

1, x
1
1, ...) are fed into

the Node History Encoder ϕH , whose main component is a
long-short-term memory cell (LSTM). This ensures that the
past positional data is used for future predictions. The output
of the LSTM is the hidden state ht

H . Secondly, the T++
model makes use of road map data to make its predictions
more feasible and realistic. The Map Encoder module ϕM

takes relevant environmental information, which is fed to a
convolutional neural network (CNN), which has the hidden
state ht

M as output. Thirdly, the Edge Influence Encoder
ϕE is used for taking into account to what extent other
traffic agents in the scene are influencing the prediction. This
module contributes to the ”social awareness”, which means
that the behaviour of the agent gets influenced by other
traffic participants. For example, when a car is planning to
cross an intersection, but the driver sees a pedestrian that is
about to cross the road, the car needs to change its future
plan to avoid a potential collision.

More specifically, the Edge Influence Encoder follows
a graph-based approach to model the influence of neigh-
bouring agents on a target agent (in this case pedtar) from
xt−T to xt, with T being the maximum of past input time
steps. To encode graph edges, the method follows a two-step
process. Firstly, edge information is collected from neigh-
bouring agents belonging to the same semantic class. This
can be seen in Figure 2, where the pedestrian-pedestrian and
pedestrian-car semantic classes are collected independently.
A summation operation is used for feature aggregation, as
opposed to concatenation or averaging, to handle varying
numbers of neighbouring nodes while preserving count in-
formation, following the method performed by Jain et al.
in [37]. Subsequently, the aggregated edge information is
input to an LSTM for all edge instances of the same type.
The encodings of all the connections between the modelled
node and its neighbouring nodes are combined to create
an ”influence” representation vector, which represents the
overall impact of the neighbouring nodes. In Figure 2, this is
visible as hEpp

t for the pedestrian-pedestrian and hEpc
t for

the pedestrian-car interactions. An additive attention module
is then used for obtaining a single vector representation
of the different edge influence encodings ht

E [38]. The
final step involves concatenating the node’s history, the map
encoder and the edge influences to produce a unified node
representation vector ex.

2.2. Smooth Attention

The smooth attention approach [28] presents a novel
perspective on attention modules. Unlike traditional meth-
ods, it applies attention at each time step, following [12].
By emulating human attention during deliberate tasks, it
incorporates a smoothness constraint based on the hypoth-
esis that attention does not frequently change over time.
Previous research [27] shows that deliberate attention move-
ments are slower due to internal limitations. This implies
that attention does not frequently fluctuate during driving,
as it falls under intentional movement. By incorporating
the smoothness constraint, the smooth attention approach
enhances the attention mechanism, improving the selection
of important information while disregarding less relevant
input variables and aligning better with the characteristics
of human attention.

3

2.3. nuScenes

The nuScenes dataset is developed for accelerating re-
search in the area of autonomous driving [19]. This dataset
consists of 1000 driving scenes in two major cities, Boston
and Singapore, characterized by their high traffic volumes
and challenging driving situations. The data is captured
from a driving car, equipped with multiple sensors. Its
multi-sensor capabilities make it remarkable; in addition to
cameras, it is equipped with LIDAR, RADAR, GPS, and
IMU sensors. The driving scenes are each 20 seconds in
length and are annotated at 2Hz. Next to 23 annotated
object classes with 3D bounding boxes, mostly pedestrians
and cars, it also includes semantic map information like
crosswalks and sidewalks.

2.4. Benchmarking Framework

To prevent evaluating the trajectory prediction model
only on the nuScenes dataset, we make use of a novel
benchmarking framework proposed by Schumann et al. in
[16]. Initially, this framework is meant for benchmarking
behaviour models in gap acceptance scenarios on three
publicly available datasets: highD [20], rounD [29] and L-
GAP [22], but it can also be used for trajectory prediction
models. This makes it possible to make a fair comparison be-
tween different models, wherein multiple metrics are taken
into consideration. Also, there is a special focus on safety-
critical scenarios in the benchmarking framework, which
are especially important when developing safe and reliable
prediction models.

2.5. Metrics

In order to ensure equitable comparisons between
datasets, the use of multiple metrics is imperative. In the
present study, we employ a diverse set of evaluation criteria
to assess the datasets under investigation. Specifically,
for the nuScenes dataset [19], we employ the metrics of
Final Displacement Error (FDE), Average Displacement
Error (ADE), and Kernel Density Estimation Negative
Log-Likelihood (KDE-NLL). Furthermore, for the datasets
associated with the benchmarking framework [16], next to
FDE and ADE, we use Area Under the Curve (AUC), and
True Negative Rate Precision-Recall (TNR-PR). Whereas
the FDE and ADE are used as trajectory metrics, the AUC
and TNR-PR are used as classification metrics. For these
metrics, a short explanation is given below.

FDE: The Final Displacement Error (FDE) is a metric
used to evaluate the performance of trajectory prediction
models. It measures the Euclidean distance between the
predicted final location of an object and its true final
location. In other words, FDE indicates how far off the
model’s predicted location is from the actual location at
the end of a predicted trajectory.

ADE: The Average Displacement Error (ADE) is
another metric used to evaluate the performance of
trajectory prediction models. Unlike FDE, which measures
the error of the final predicted location, ADE measures the
average Euclidean distance between the predicted location
of an object at each time step and its true location. ADE is
particularly useful for evaluating the overall accuracy of a
model’s trajectory predictions, as it takes into account the
entire predicted trajectory rather than just the final location.

KDE-NLL: Kernel Density Estimation of Negative
Log Likelihood (KDE-NLL) is a measure of the model’s
ability to accurately estimate the probability distribution
of the true trajectory given the observed data. A lower
negative log-likelihood score indicates a better fit between
the predicted and true trajectories. In other words; lower
is better, which is considered to be the most optimal and
representative of the underlying distribution. KDE-NLL
is a useful metric for evaluating the uncertainty of a
model’s predictions, as it provides a measure of how well
the model is able to capture the true distribution of the data.

AUC: Area under Curve (AUC) is a metric used to
evaluate the performance of binary classification models.
AUC measures the overall performance of a model in
distinguishing between positive and negative classes
by calculating the area under the receiver operating
characteristic (ROC) curve.

TNR-PR: True Negative Rate - Positive Rate (TNR-PR)
is a useful metric for evaluating the performance of binary
classification models when the dataset is imbalanced
and the cost of false positives and false negatives is
not equal. A high TNR-PR indicates that the model is
performing well in correctly identifying negative instances
while also identifying positive instances with high accuracy.

3. Smooth-Trajectron++

Attention

LSTMLSTMped,car LSTMped,car

LSTM

Attention

LSTMped,ped LSTMped,ped

Figure 3. Edge Influence Encoder including Smooth-Attention (in green)

In this chapter, we propose a way to apply the smooth
attention module [28] specifically to the Trajectron++
model. To do this, we alter the Edge Influence Encoder
module of Trajectron++, see Figure 2, as this is the part

4

where the social interactions are modelled, and the attention
is applied.

Our approach1, which we call Smooth-Trajectron++, is
illustrated in Figure 3. At a high level, the original Edge
Influence Encoder is expanded by applying the attention
module at each time step in a similar fashion as in the
smooth attention model (the green highlighted box in Fig-
ure 3). Here, the outputs ατ

i,jab
are the attention weights that

are used to rank the importance the human agent i assigns
to the semantic class jab for neighbouring agents of types
a and b (a and b can stand for agent types such as cars
or pedestrians) at the time τ . To represent the number of
timesteps and agents for which we predict the trajectory,
we use T and N respectively. All these attention weights
from every time step are then used as an input for the
added smoothing term in the loss function to incorporate
the regularising of the attention by imposing a vectorial total
variation penalty Lsmooth :

Lsmooth(α) =

t∑
τ=t−T+1

N∑
i=1

√∑
j

(
αt
ij − αt−1

ij

)2
. (1)

To ensure that the attention weights are utilised during the
model training process, we incorporate Lsmooth into the
original loss function L0 [10]:

Lnew = L0 + βLsmooth. (2)

The scaling factor β is introduced to fine-tune the influence
of Lsmooth. By adjusting β, the model can be trained to
effectively balance the contribution of the attention weights
with the original loss function.

The extra loss term Lsmooth and associated additional
calls to the attention module increase the number of com-
putations and therefore have an effect on the training time,
which is approximately 1.5 times slower compared to the
original version of Trajectron++.

4. Results

We evaluate our method on four publicly available
datasets, as introduced in subsection 2.3-2.4: nuScenes [19],
highD [20], rounD [29] and L-GAP [22]. Firstly, the orig-
inal Trajectron++ model is trained and evaluated on the
nuScenes dataset. Secondly, we trained the expanded model
and evaluated it on the nuScenes data, with β-values ranging
from 0.01 to 10. The steps between these scaling factors (β)
are logarithmic to study a wide range for a possible optimal
solution. Lastly, Smooth-Trajectron++ is implemented in the
benchmarking framework proposed by Schumann et al. [16]
on the remaining datasets highD, rounD and L-GAP. As this
benchmarking framework focuses on gap acceptance, only
subsets of the data including gap acceptance scenarios are
used. The experiments were performed on DelftBlue, the

1. The source code is available at GitHub/Smooth-Trajectron++

high-performance computer from the Technical University
of Delft [39].

4.1. nuScenes

Both the original Trajectron++ (subsection 2.1) and the
Smooth-Trajectron++ model (section 3) were trained and
evaluated on three metrics: Final Displacement Error (FDE),
Average Displacement Error (ADE) and Kernel Density
Estimation of Negative Log Likelihood (KDE-NLL), as
explained in subsection 2.5. These metrics are chosen as
they were used in the original paper [10], therefore needed
for a fair comparison. Using these metrics, the results of
the reported values mentioned in the Trajectron++ paper
are compared to the reproduced and the various Smooth-
Trajectron++ versions. For the training of the model, we
used the same parameters as mentioned in [10], e.g. 12
training epochs on the nuScenes dataset.

4.1.1. Reproduced vs. reported results. Looking at Ta-
ble 1-Table 3 and comparing the ”T++” rows with the
reproduced rows (T++(rep.)), the FDE at the prediction
horizon of 1 second (@1s) is at most more than ten times
smaller in the reported values than in the reproduced results.
At later prediction horizons, the relative difference of the
errors becomes smaller, but the difference is still significant.
For the pedestrian-only predictions, the difference is bigger
than for the vehicle-only predictions. The ADE follows
a similar pattern; at the smallest prediction horizon and
in the pedestrian-only case, the difference is the greatest.
Also when comparing the KDE-NLL values, the reproduced
values do not come close to the ones reported in the pa-
per [10]. The discrepancy between these results and our
achieved results is significant but does not entail the focus
of our study. Therefore, we proceed with comparing the
performance of the modified models to our own achieved
results, which serves as the new benchmark.

4.1.2. Pedestrian-only predictions. There are two main
prediction classes in the nuScenes dataset, pedestrians and
vehicles. As their behaviour is significantly different, the
model predicts these classes separately. In this subsection,
the pedestrian-only results are shown of the Trajectron++
and the Smooth-Trajectron++.

In Table 1-Table 3, the results are shown for the pre-
dicted pedestrian trajectories. The pedestrian-only results are
visible on the left side of the slash in the columns. The
numbers in bold represent the lowest score per prediction
horizon, compared to the ”T++(rep.)” row, which serves as
a reference for comparative analysis and is equivalent to a
β-value of 0. The FDE and the ADE outputs consist of the
most likely single trajectory prediction within the distribu-
tion of trajectory predictions, using the ”Most Likely” output
configuration as in [10]. The Smooth-Trajectron++ versions,
depicted as ”Smooth” in the table, consistently outperform
the reproduced version of Trajectron++. Tuning the scaling
factor β does have an effect on the error. Regarding the FDE,

5

the parameter β = 0.1 has the lowest error in all cases,
except for the shared lowest error at the first prediction
horizon (@1s) of β = 1.0. Looking at the ADE, either
β = 0.1 or β = 1.0 both have the lowest or equally
lowest error. It seems that the higher the β-value, the more
it resembles the ”Reproduced” reference values. In Table 3
the opposite seems to be happening; the ”Reproduced” row
shows the lowest values for almost all cases. An exception is
the smooth version with β = 0.01 at the prediction horizon
of 4 seconds (@4s), where only a marginal performance
increase is seen. However, it can be said that in general
in this pedestrian-only case, the Smooth Attention does not
improve this metric, although the decline for the smooth
versions is minimal.

TABLE 1. RESULTS nuScenes T++ PEDESTRIAN-ONLY/VEHICLE-ONLY:
FDE (M)

Model @1s @2s @3s @4s

T++ [10] 0.014/0.07 0.17/0.45 0.37/1.14 0.62/2.20

T++ (rep.) 0.168/0.430 0.369/1.168 0.608/2.323 0.886/3.868
β = 0.01 0.157/0.413 0.353/1.102 0.586/2.141 0.855/3.546
β = 0.1 0.155/0.419 0.350/1.081 0.580/2.122 0.842/3.496
β = 0.5 0.159/0.421 0.354/1.123 0.588/2.181 0.857/3.560
β = 1.0 0.155/0.448 0.351/1.128 0.582/2.165 0.845/3.507
β = 10 0.160/0.425 0.366/1.149 0.607/2.190 0.876/3.539

TABLE 2. RESULTS nuScenes T++ PEDESTRIAN-ONLY/VEHICLE-ONLY:
ADE (M)

Model @1s @2s @3s @4s

T++ [10] 0.021/- 0.073/- 0.15/- 0.25/-

T++ (rep) 0.126/0.307 0.221/0.632 0.329/1.092 0.450/1.689
β = 0.01 0.116/0.296 0.208/0.602 0.314/1.021 0.432/1.559
β = 0.1 0.114/0.302 0.206/0.597 0.311/1.012 0.427/0.543
β = 0.5 0.118/0.301 0.210/0.613 0.316/1.041 0.434/1.580
β = 1.0 0.114/0.319 0.207/0.630 0.312/1.048 0.428/1.575
β = 10 0.118/0.303 0.215/0.628 0.325/1.055 0.445/1.586

TABLE 3. RESULTS nuScenes T++ PEDESTRIAN-ONLY/VEHICLE-ONLY:
KDE NLL

Model @1s @2s @3s @4s

T++ [10] -5.58/-4.17 -3.96/-2.74 -2.77/-1.62 -1.89/-0.71

T++ (rep) -2.575/-1.760 -1.530/-0.604 -0.797/0.235 -0.230/0.927
β = 0.01 -2.560/-1.861 -1.519/-0.726 -0.795/0.108 -0.240/0.801
β = 0.1 -2.541/-1.856 -1.502/-0.679 -0.776/0.176 -0.216/0.875
β = 0.5 -2.542/-1.885 -1.505/-0.690 -0.779/0.150 -0.211/0.818
β = 1.0 -2.549/-1.880 -1.507/-0.679 -0.785/0.173 -0.226/0.868
β = 10 -2.480/-1.861 -1.471/-0.661 -0.759/0.173 -0.205/0.845

4.1.3. Vehicle-only predictions. In this subsection, the
evaluations on the vehicle-only predictions between the
various models are shown.

Rightmost numbers in the columns of Table 1 - Table 3
show the outcomes of the vehicle-only predicted trajecto-
ries. Similarly to the previous pedestrian-only case, again
a general FDE and ADE decline is seen along the β-
versions of the Smooth-Trajectron++. The ADE values of
the Trajectron++ paper are missing in Table 2, as they are
not reported by the authors in the original paper. The version
with β = 0.01 holds the lowest value for the prediction
horizon of 1 second (@1s), while β = 0.1 has the smallest
error for the remaining prediction horizons. In contrary
to the pedestrian-only predictions in Table 3, the Smooth-
Trajectron++ on the vehicle-only forecasts has better KDE-
NLL numbers than the reproduced model, which indicates
that the model is better able to match the original distribution
of predicted trajectories with the inclusion of the Smooth-
term in the loss function. Furthermore, this can be said for
all β-factors, while in this case the β = 0.01 has the most
optimal values.

4.2. Benchmark for Gap Acceptance

For the implementation of this second section of the
results, we follow the training and evaluation procedure
of [16]. Instead of studying the full range of scenarios
as we did in the previous section, now we focus on
gap-acceptance scenarios. Gap-acceptance scenarios are
situations where drivers decide whether to enter or wait
for a gap in traffic, such as when a car approaches an
intersection and decides whether to turn left immediately
or wait for a break in oncoming traffic. The datasets that
are included in the benchmark contain information about
lane changes (highD), roundabouts (rounD) and left turns
(L-GAP). In each of these datasets, the gap-acceptance
scenarios are divided into two splitting methods; the random
split and the critical split. The first method randomly splits
the data for testing, while the second method deliberately
selects the most unusual behaviour of the target vehicle
for testing, such as accepting a very small gap or rejecting
a very large gap. Extrapolation is required for testing
the model’s performance on situations that lie outside the
training distribution, making it more challenging to consider
these less intuitive samples [40]. Furthermore, a varying
amount of input time steps is used in the benchmark. In
the coming results, we use two input time steps to study
the input-dependability of the model: nI = 2 and nI = 10.

The benchmarking framework includes several metrics
next to the FDE and ADE that we have seen in Section
2.3. In addition to those, the results are evaluated on Area
Under Curve (AUC) and True Negative Rate under Perfect
Recall (TNR-PR).

In Figure 4 and Figure 5 an overview can be seen of
the results of the various models on the benchmark. In

6

the coming subsections, this figure is analysed per column
(dataset) and row (metric).

highD highD (rest)

In
iti

al
ga

ps
Fi

xe
d-

si
ze

d
ga

ps

0
.0

1
.0

AU
C

0
.0

1
.0

AU
C

2
.0

1
2
.0

A
D

E

T
β
1

T
β
2

T
β
3

T
β
4

T
β
5

T
+

6
.0

3
5
.0

F
D

E

T
β
1

T
β
2

T
β
3

T
β
4

T
β
5

T
+

nI = 2, Random split

nI = 2, Critical split

nI = 10, Random split

nI = 10, Critical split

Figure 4. The performance of Smooth-Trajectron++ and T++ on the highD
and highD(rest) dataset: β1−5 refer to the β-values of 0.01, 0.1, 0.5, 1.0
and 10 respectively

4.2.1. highD. First, we analyse the performance of the
various models at initial gaps. In the context of gap
acceptance, an initial gap refers to the space or distance
between two vehicles that a driver must perceive and judge
in order to determine whether they can safely enter or cross
a traffic stream. It represents the initial opportunity for a
driver to make a decision about whether there is sufficient
time and space to merge into or cross the traffic flow. This
situation requires a binary decision, so this is evaluated
using the metric Area under Curve (AUC). Looking at
the random splits first, the values seem very similar
between both the β-versions and the base model T++
(T+). However, when studying the data of Table 4-Table 5
in section A, one can see that the non-smooth version
(T+) has slightly higher AUC values. Contrary to the
random split, the critical split deviates a lot more between
the β-versions compared to the T+-version. Again, the
original T+-model has the highest value for nI = 2, but for
nI = 10 the β = 10 version outperforms the original model.

Secondly, predictions at fixed-sized gaps are examined.
A fixed-sized gap refers to predictions regarding gap
acceptance scenarios when the provided gap has a
consistent duration, it ensures that each prediction poses an
equal level of difficulty by offering a comparable prediction
horizon [16]. In a similar fashion as in the initial gap
scenario, the AUC values for the random split are again
close together. By a small margin, T++ (T+) has the
highest value for nI = 2 and β = 0.1 has the highest value
for nI = 10. However, when taking the standard deviation
into account these differences cannot be called sufficiently
significant. At the critical splits, we see more variation
between the model versions. In this case, almost every
β-version is outperforming the T+ for both the nI = 2
and nI = 10, except for β = 0.1 at the nI = 2. This could
indicate that an added smoothing term has a positive effect
on these critical-split cases. Nevertheless, these results show
a wide-varying nature and also entail non-logical results.
For example, the values for nI = 10 are incidentally lower
than for nI = 2, which is not expected as more input time
steps should give the model more information to fine-tune
its predictions. This issue is addressed in Section 4.2.4.
Furthermore, for both the ADE and the FDE metric, on the
random split, β-values of 0.1, 0.5 and 1.0 outperform the
T+-version by a small amount on both input time-steps.
Regarding the critical split, the nI = 10 is generally lower
at the different β-values than the T+-version. Yet, there
is not a clear trend visible that would imply that some
β-value is consistently outperforming the base model.

Lastly, the critical gaps are assessed, which involves
making predictions in scenarios where it is still meaningful
to accept a gap at the last available moment in time, as
defined in [16]. However, for this dataset, there is no data
regarding critical gaps. This will be shown for rounD and
L-GAP in section 4.2.3.

4.2.2. highD(rest). In the highD(rest) column of Figure 4,
the restricted (rest) version of the full highD dataset is used
for evaluation, which only includes samples for which it
is known that a vehicle considered a lane-change. This is
done to decrease the existing bias in the full dataset towards
trajectories without an intended lane change, which makes
the dataset more balanced [16].

Initial gaps: only in the case of β = 0.5 there is a
notable increase in AUC for the random split compared to
T+ in both nI -instances. For the critical split, almost all
AUC-values are lower than T+, except for β = 0.1 and
β = 0.5 at nI = 10 where it is slightly higher. Generally,
the β-term does not seem to increase the performance of
the base model.

Fixed-sized gaps: looking at the random splits, again for
β = 0.5 there is an increase in AUC for both nI -situations.
The changes for the other β-versions are not consistently
significant when compared to T+, having minor fluctuations
to perform slightly better or slightly worse. Concerning the

7

critical split, all β-versions but β = 10 perform better than
the base model, where β = 10 performs very similarly to
T+. Also, the difference between the nI = 2 and nI = 10 is
more logical this time, as the latter consistently has a higher
AUC than the first. For both the FDE and ADE, all the β-
versions are outperforming the T+-model at nI = 10 on the
random split. However, this seems due to one extremely high
value of one of the random splits of T+ (each random split
consists of three sub-splits, which are averaged to minimize
the effect of randomness). This could be an outlier, caused
by some error in the training process. At nI = 2, the
β-values under-perform compared to T+ for the random
split, indicating no significant improvement. At the critical
split, only at β = 0.1 and β = 10 both ADE and FDE
values are lower at nI = 10. In general, there is no clear
improvement regarding these metrics across the various β-
values. Furthermore, when looking at the random splits
in general, again some non-logical behaviour is happening
concerning the lack of improvement regarding input time
steps. For example at β = 1.0, an increase in both ADE and
FDE occurs, where the expectation would be that the value
lowers as more input time steps are offered. A potential
solution to this issue is proposed in Section 4.2.4.

4.2.3. rounD and L-GAP. At both the rounD and L-GAP
dataset columns in Figure 5, we notice that in general, the
values do not change with regard to every metric. Only
at the critical splits at nI = 10, there are some minor
differences at FDE and ADE, but this cannot be classified
as a significant improvement, as the difference is marginal
and not consistent between the different splits and input
time steps. This means that the addition of a β-term to the
loss function does not have any measurable effect on the
performance of the model when compared to the original
Trajectron++ model.

4.2.4. Modification of loss function. To address the issue
regarding the decrease in performance after more input time
steps at several instances, as we observed in Figure 4, we
propose a modification in the loss function of Equation 1:

Lsmooth,m(α) = 8 · 1
T

t∑
τ=t−T+1

N∑
i=1

√∑
j

(
αt
ij − αt−1

ij

)2
. (3)

Our hypothesis is that adding a mean (1/T) to the loss
function decreases a potential accumulation of errors,
which seems to be happening sometimes while increasing
the number of input time steps. This added mean is
multiplied by 8, as this corresponds to the length of the
original sum so that the β values keep the same impact
between different loss versions (Equation 1 and Equation 3).

The performance of this modified loss function for β =
1.0 on the highD and highD(rest) dataset is visualised in
Figure 6. We chose this β value as unintuitive behaviour was
observed both on the critical split on highD as on the random
split on highD(rest. Looking at initial gaps in Figure 6, the

rounD L-GAP

In
iti

al
ga

ps
Fi

xe
d-

si
ze

d
ga

ps
C

ri
tic

al
ga

ps

0
.0

1
.0

AU
C

0
.0

1
.0

AU
C

0
.0

3
.0

A
D

E
1
.0

7
.0

F
D

E

T
β
1

T
β
2

T
β
3

T
β
4

T
β
5

T
+

0
.0

1
.0

TN
R

-P
R

T
β
1

T
β
2

T
β
3

T
β
4

T
β
5

T
+

nI = 2, Random split

nI = 2, Critical split

nI = 10, Random split

nI = 10, Critical split

Figure 5. The performance of Smooth-Trajectron++ and T++ on the rounD
and L-GAP dataset: β1−5 refer to the β-values of 0.01, 0.1, 0.5, 1.0 and
10 respectively

random split is similar and the critical split has become less
logical for highD, as the AUC value decreases going from
n2 to n10. However, when studying both the random split
and critical split at highD and highD(rest) for fixed-sized
gaps, all results are as expected when transitioning from
n2 to n10: AUC becomes higher and FDE and ADE lower.
Furthermore, most values are similar when comparing the
original loss function (Ts) with the modified loss function
(Tm), but the critical split differs quite significantly on
several occasions. Especially at the FDE and ADE at fixed-
sized gaps, but also regarding the AUC at initial gaps.

5. Discussion

The first thing that stands out from the results, is the
significant difference between the reported performance
values in the original Trajectron++ paper and the

8

highD highD (rest)

In
iti

al
ga

ps
Fi

xe
d-

si
ze

d
ga

ps

0
.0

1
.0

AU
C

0
.0

1
.0

AU
C

2
.0

1
4
.0

A
D

E

T
s

T
m

T
+

6
.0

3
7
.0

F
D

E

T
s

T
m

T
+

nI = 2, Random split

nI = 2, Critical split

nI = 10, Random split

nI = 10, Critical split

Figure 6. The performance of Smooth-Trajectron++ and Trajectron++ (T+)
on the highD and highD(rest) dataset with original loss function from
Equation 1 (Ts) and modified loss function from Equation 3 (Tm) for
β = 1.0

reproduced results of this paper. There could be many
reasons for this huge offset in the evaluation metrics.
First, the nuScenes dataset could have been updated or
changed in the meantime, which would mean other input
data and therefore cause a different output. Secondly,
the authors might have used hyperparameters and model
settings for the results of their paper that are not updated
on their GitHub page or in the text of the online version
of the paper. In this case, it is impossible for an external
researcher to replicate the results from the paper. Another
possibility is that something in the paper reproduction
process has gone wrong, either in downloading the data,
installing required packages or a different random seed
from our computer when training the model. Although the
process was handled conscientiously, following the steps
provided by the authors, an error could have occurred
somewhere in this process. Due to the multitude of potential
causes, and this not being the main focus of our study,
we decided not to investigate this any further. However, it
could be interesting for future research to reproduce the
Trajectron++ paper on the nuScenes dataset and compare
their results both to those reported by the original paper

and to the ones in this work.

Another interesting finding from the evaluation of
the nuScenes dataset is that the Smooth-Trajectron++
consistently outperforms the original Trajectron++
regarding the FDE and ADE. The scores on these two
metrics are lower, regardless of the β-values that are
applied to the loss function. The scaling factor β = 0.1
has for almost every case the lowest value, or shared
lowest value. The only deviating case is the FDE at the
vehicle-only prediction, there the β = 0.01 has a slightly
better score. This implies that the addition of a smoothing
term to the loss function actually decreases the Final
Displacement and Average Displacement errors both for
the pedestrian-only and the vehicle-only predictions. When
looking at the remaining metric, KDE-NLL, the same
holds for the vehicle-only prediction case. In Table 3,
it is evident that for all of the β-values the KDE-NLL
is lower than the reproduced version. This indicates that
the smooth model produces more accurate and reliable
predictions with respect to the ground truth trajectories.
However, when looking at Table 3 there is not much
difference between the Smooth-versions (β) and the
”Reproduced” row (T++(rep.)). In fact, the KDE-NLL
scores for the Smooth-Trajectron++ model are slightly
worse than those of the original model, indicating a slight
decrease in performance. This means that the distribution
of the predicted trajectories for pedestrians is slightly less
similar than the ground truth distribution. One explanation
for this could be that the future behaviour of pedestrians
is more difficult to predict than future vehicle trajectories.
The smoothing term might decrease the variety of the
distribution predictions in such a way, that the average
of the predicted trajectories is eventually affected and
therefore less similar to the ground truth trajectories. It
would be interesting to perform more research to determine
the generalizability of this hypothesis to other scenarios
that involve pedestrian-only predictions.

In contrast to the perceived results from the nuScenes
dataset, the performed experiments on the benchmark offer
a less straightforward answer to the question of whether the
general model’s performance increases when adding a β
term to the loss function. When referring back to Figure 4
and focusing on β = 0.1 for example (β2 in the figure), as
this was mostly the optimal value in the nuScenes dataset
for FDE and ADE, sometimes there is a performance
increase and at other instances a performance decrease.
One of the causes of this varying behaviour could originate
from the used datasets in the benchmark. While the
nuScenes dataset consists of a large-scale comprehensive
sensor data collection with mostly cars and pedestrians,
the datasets in the benchmark have a focus on only cars
(highD), mostly cars with only 0.2% pedestrians (rounD)
and again only cars in a driving simulator (L-GAP). As
the smoothing term β in Smooth-Trajectron++ is applied
to the attention module comparing different classes of
traffic participants, it might not work as intended as there

9

is predominantly one major class in the dataset. Especially,
when there is only 1 other traffic participant in the scene, it
has nothing to be compared with, which results in the same
output as the base model. This is exactly what happens
in the L-GAP dataset column of Figure 5, for L-GAP
is a dataset consisting of only two agents. Moreover,
the exact same results on the L-GAP dataset between
all and the base model show that the implementation of
the Smooth-Attention is valid, as we would expect these
results. Considering these results, one could imply that
the Smooth-Trajectron++ does not consistently outperform
the base model (T+). However, we argue that the overall
performance is mostly similar, sometimes better, and
therefore not detrimental to the general functioning of such
a model. Also, further research using Smooth-Trajectron++
on other datasets that consist of a more balanced variety of
traffic classes could indicate improvements in performance
similar to nuScenes and is advised.

Furthermore, the unintuitive behaviour regarding
performance loss with more input data we observed in
Figure 4 might have been caused by an accumulation
of errors by the summation operation as pointed out in
Section 4.2.1. For testing this hypothesis, we applied an
alternative loss function, Equation 3, including a mean
over the time steps. Looking back at Figure 6, we notice a
more logical increase in performance with more input data
at all but one of the illogical cases comparing summation
(Ts) versus mean (Tm). Logical would be higher AUC
and lower FDE and ADE after more input time steps.
Whereas the unintuitive behaviour happened 4 times when
we applied Ts, it happened only 1 time when we used the
averaged Tm (for the critical split regarding initial gaps at
highD). Generally, we could say that the results became
more intuitive, but to verify the hypothesis of using Tm

over Ts we advise more testing, starting with validating the
hypothesis on more β values.

Considering the wider implications of examining
whether it is beneficial to incorporate insights from cognitive
science into an existing machine-learning framework regard-
ing trajectory prediction, we could say several things. First,
we showed that it is possible to reproduce a state-of-the-art
trajectory prediction model on a large-scale dataset with a
practical approach in a time span of several months. Sec-
ondly, we successfully implemented a cognitive-based novel
idea, Smooth-Attention, without public-code availability and
integrated it as a modification to Trajectron++, which had
its public code available. Thirdly, we tested the model on
various datasets to validate its performance and examine
its generalisability. Broadly speaking, we show that it is
possible to integrate an idea from cognitive science into a
machine-learning framework and achieve increased perfor-
mance on a large-scale autonomous driving dataset. Smooth-
Attention seems to work better on such large-scale multi-
agent datasets than on unbalanced datasets with few traffic
agents. Also, the implementation of Smooth-Trajectron++
does not give convincingly consistent improvements in re-

sults on gap-acceptance scenarios. However, the authors
of the Smooth-Attention paper [28] show an increase in
FDE and ADE performance regarding the INTERACTION
dataset [41], which entails merging and roundabout sce-
narios. We advise to research the validity of these claims,
no public code available, and to perform experiments with
Smooth-Trajectron on the INTERACTION dataset to com-
pare these results. Moreover, one could apply the attention
over individual agents instead of to agent classes, which
is the case in Trajectron++. This could address the issue
of datasets containing only one or two classes having poor
results, which happened in Section 4.2.3. In this way, the
applicability of the model becomes even more general, in-
cluding more potential datasets to test Smooth-Trajectron++
on. However, a potential downfall of this method could be
that the processing time gets larger when the number of
agents increases, so this would probably only be feasible
when the number of traffic participants is limited.

6. Conclusion

In this study, we propose Smooth-Trajectron++, a tra-
jectory prediction model that builds upon the existing state-
of-the-art model, Trajectron++ [10]. Our approach involves
the incorporation of a cognitively-inspired smooth attention
module [28]. We demonstrate that our smooth attention
version of Trajectron++ achieves improved performance on
the large-scale nuScenes dataset. However, we observe that
this smooth attention approach does not yield significant
improvements on the datasets included in the benchmarking
framework for gap acceptance [16]. These findings suggest
that the smooth attention technique appears to be more
suitable for large-scale multi-agent datasets that involve
multiple agent types, as opposed to datasets comprising a
small number of traffic agents of mostly the same type.
Consequently, the concept of smooth attention may be better
applied in models where the attention module operates over
individual agents rather than semantic classes. Nonetheless,
our results provide further support to previous research [23,
26, 28], highlighting the potential of incorporating cogni-
tive insights to enhance predictions of human behaviour in
traffic.

Acknowledgments

I would like to express my sincere gratitude to Julian
Schumann for his invaluable role as my daily supervisor
throughout this project. Julian has consistently been avail-
able and willing to assist me, demonstrating a deep under-
standing of the subject matter. I am particularly grateful
for his guidance in using the benchmarking framework
and his ability to make complex concepts more compre-
hensible. I would also like to extend my appreciation to
Arkady Zgonnikov for his role as a supervisor. Arkady’s
critical and clear insights into the technical aspects of the
project have been invaluable. Furthermore, I am grateful for
his compassionate mentorship during challenging moments.

10

Additionally, I acknowledge the contribution of DelftBlue,
which provided me with the necessary resources to conduct
all the experiments within the given time frame. Without
their support, this research endeavor would not have been
possible.

References

[1] Abhay Singh and Sonia Mutreja. Autonomous vehicle
market size, share, value, report, growth. URL: https://
www.alliedmarketresearch.com/autonomous-vehicle-
market.

[2] World Health Organization. Road Traffic Injuries. htt
ps://www.who.int/news-room/fact-sheets/detail/road-
traffic-injuries. Accessed on May 12, 2023. 2021.

[3] Ariyan Bighashdel and Gijs Dubbelman. “A Sur-
vey on Path Prediction Techniques for Vulnerable
Road Users: From Traditional to Deep-Learning Ap-
proaches”. In: 2019 IEEE Intelligent Transporta-
tion Systems Conference (ITSC). 2019 IEEE Intelli-
gent Transportation Systems Conference (ITSC). Oct.
2019, pp. 1039–1046. DOI: 10 . 1109 / ITSC . 2019 .
8917053.

[4] Fanta Camara et al. “Pedestrian Models for Au-
tonomous Driving Part II: High-Level Models of Hu-
man Behavior”. In: IEEE Transactions on Intelligent
Transportation Systems 22.9 (Sept. 2021). Conference
Name: IEEE Transactions on Intelligent Transporta-
tion Systems, pp. 5453–5472. ISSN: 1558-0016. DOI:
10.1109/TITS.2020.3006767.

[5] Andrey Rudenko et al. “Human Motion Trajectory
Prediction: A Survey”. In: (May 15, 2019). DOI: 10.
1177/0278364920917446. URL: https://arxiv.org/abs/
1905.06113v3 (visited on 02/22/2022).

[6] Alexandre Alahi et al. “Social lstm: Human trajectory
prediction in crowded spaces”. In: Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2016, pp. 961–971.

[7] Amir Rasouli, Iuliia Kotseruba, and John K. Tsotsos.
“Are They Going to Cross? A Benchmark Dataset
and Baseline for Pedestrian Crosswalk Behavior”.
In: 2017 IEEE International Conference on Com-
puter Vision Workshops (ICCVW). 2017 IEEE Inter-
national Conference on Computer Vision Workshops
(ICCVW). ISSN: 2473-9944. Oct. 2017, pp. 206–213.
DOI: 10.1109/ICCVW.2017.33.

[8] Abduallah Mohamed et al. Social-stgcnn: A social
spatio-temporal graph convolutional neural network
for human trajectory prediction. Tech. rep. 2020,
pp. 14424–14432.

[9] Francesco Giuliari et al. “Transformer Networks for
Trajectory Forecasting”. In: 2020 25th International
Conference on Pattern Recognition (ICPR). 2020
25th International Conference on Pattern Recognition
(ICPR). ISSN: 1051-4651. Jan. 2021, pp. 10335–
10342. DOI: 10.1109/ICPR48806.2021.9412190.

[10] Tim Salzmann et al. “Trajectron++: Dynamically-
Feasible Trajectory Forecasting with Heterogeneous
Data”. en. In: Computer Vision – ECCV 2020. Ed. by
Andrea Vedaldi et al. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2020,
pp. 683–700. ISBN: 978-3-030-58523-5. DOI: 10 .
1007/978-3-030-58523-5 40.

[11] Agrim Gupta et al. “Social gan: Socially acceptable
trajectories with generative adversarial networks”. In:
Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 2255–2264.

[12] Anirudh Vemula, Katharina Muelling, and Jean
Oh. “Social attention: Modeling attention in human
crowds”. In: 2018 IEEE international Conference
on Robotics and Automation (ICRA). IEEE. 2018,
pp. 4601–4607.

[13] Ye Yuan et al. “Agentformer: Agent-aware transform-
ers for socio-temporal multi-agent forecasting”. In:
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2021, pp. 9813–9823.

[14] Suresh Kumaar Jayaraman et al. “Analysis and Pre-
diction of Pedestrian Crosswalk Behavior during Au-
tomated Vehicle Interactions”. In: 2020 IEEE In-
ternational Conference on Robotics and Automa-
tion (ICRA). 2020 IEEE International Conference
on Robotics and Automation (ICRA). ISSN: 2577-
087X. May 2020, pp. 6426–6432. DOI: 10 . 1109 /
ICRA40945.2020.9197347.

[15] Arash Kalatian and Bilal Farooq. “A context-aware
pedestrian trajectory prediction framework for auto-
mated vehicles”. In: Transportation Research Part C:
Emerging Technologies 134 (Jan. 1, 2022), p. 103453.
ISSN: 0968-090X. DOI: 10.1016/j.trc.2021.103453.
URL: https://www.sciencedirect.com/science/article/
pii/S0968090X21004423 (visited on 04/15/2022).

[16] Julian F. Schumann, Jens Kober, and Arkady
Zgonnikov. “Benchmarking Behavior Prediction
Models in Gap Acceptance Scenarios”. In: IEEE
Transactions on Intelligent Vehicles (2023), pp. 1–12.
DOI: 10.1109/TIV.2023.3244280.

[17] S. Pellegrini et al. “You’ll never walk alone: Modeling
social behavior for multi-target tracking”. In: 2009
IEEE 12th International Conference on Computer
Vision. ISSN: 2380-7504. Sept. 2009, pp. 261–268.
DOI: 10.1109/ICCV.2009.5459260.

[18] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischin-
ski. “Crowds by example”. In: 26.3 (2007), pp. 655–
664.

[19] Holger Caesar et al. “nuScenes: A Multimodal
Dataset for Autonomous Driving”. In: 2020
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). ISSN: 2575-7075. June
2020, pp. 11618–11628. DOI: 10.1109/CVPR42600.
2020.01164.

[20] Robert Krajewski et al. “The highd dataset: A drone
dataset of naturalistic vehicle trajectories on german
highways for validation of highly automated driv-
ing systems”. In: 2018 21st International Conference

11

https://www.alliedmarketresearch.com/autonomous-vehicle-market
https://www.alliedmarketresearch.com/autonomous-vehicle-market
https://www.alliedmarketresearch.com/autonomous-vehicle-market
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://doi.org/10.1109/ITSC.2019.8917053
https://doi.org/10.1109/ITSC.2019.8917053
https://doi.org/10.1109/TITS.2020.3006767
https://doi.org/10.1177/0278364920917446
https://doi.org/10.1177/0278364920917446
https://arxiv.org/abs/1905.06113v3
https://arxiv.org/abs/1905.06113v3
https://doi.org/10.1109/ICCVW.2017.33
https://doi.org/10.1109/ICPR48806.2021.9412190
https://doi.org/10.1007/978-3-030-58523-5_40
https://doi.org/10.1007/978-3-030-58523-5_40
https://doi.org/10.1109/ICRA40945.2020.9197347
https://doi.org/10.1109/ICRA40945.2020.9197347
https://doi.org/10.1016/j.trc.2021.103453
https://www.sciencedirect.com/science/article/pii/S0968090X21004423
https://www.sciencedirect.com/science/article/pii/S0968090X21004423
https://doi.org/10.1109/TIV.2023.3244280
https://doi.org/10.1109/ICCV.2009.5459260
https://doi.org/10.1109/CVPR42600.2020.01164
https://doi.org/10.1109/CVPR42600.2020.01164

on Intelligent Transportation Systems (ITSC). IEEE.
2018, pp. 2118–2125.

[21] Joshua I Gold and Michael N Shadlen. “The neural
basis of decision making”. In: Annu. Rev. Neurosci.
30 (2007), pp. 535–574.

[22] Arkady Zgonnikov, David Abbink, and Gustav
Markkula. “Should I stay or should I go? Cog-
nitive modeling of left-turn gap acceptance deci-
sions in human drivers”. In: Human factors (2022),
p. 00187208221144561.

[23] Julian F. Schumann et al. Using Models Based on
Cognitive Theory to Predict Human Behavior in Traf-
fic: A Case Study. arXiv:2305.15187 [cs]. May 2023.
DOI: 10.48550/arXiv.2305.15187. URL: http://arxiv.
org/abs/2305.15187 (visited on 05/26/2023).

[24] Jami Pekkanen et al. “Variable-drift diffusion models
of pedestrian road-crossing decisions”. In: Computa-
tional Brain & Behavior (2021), pp. 1–21.

[25] Catarina Alexandra Pinto Moreira. “Quantum Prob-
abilistic Graphical Models for Cognition and Deci-
sion”. In: D. Universidade de Lisboa (2017).

[26] Qingyuan Song et al. “Research on quantum cogni-
tion in autonomous driving”. In: Scientific Reports
12.1 (Jan. 7, 2022). Number: 1 Publisher: Nature
Publishing Group, p. 300. ISSN: 2045-2322. DOI:
10 .1038/s41598- 021- 04239- y. URL: http : / /www.
nature.com/articles/s41598-021-04239-y (visited on
04/05/2022).

[27] Jeremy M Wolfe, George A Alvarez, and Todd S
Horowitz. “Attention is fast but volition is slow”. In:
Nature 406.6797 (2000), pp. 691–691.

[28] Zhangjie Cao et al. Leveraging Smooth Attention
Prior for Multi-Agent Trajectory Prediction. IEEE,
2022.

[29] Robert Krajewski et al. “The round dataset: A drone
dataset of road user trajectories at roundabouts in ger-
many”. In: 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC). IEEE.
2020, pp. 1–6.

[30] Boris Ivanovic and Marco Pavone. “The Trajec-
tron: Probabilistic Multi-Agent Trajectory Modeling
With Dynamic Spatiotemporal Graphs”. In: 2019
IEEE/CVF International Conference on Computer Vi-
sion (ICCV). 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV). ISSN: 2380-7504.
Oct. 2019, pp. 2375–2384. DOI: 10.1109/ICCV.2019.
00246.

[31] Kihyuk Sohn, Honglak Lee, and Xinchen Yan.
“Learning structured output representation using deep
conditional generative models”. In: Advances in neu-
ral information processing systems 28 (2015).

[32] Sepp Hochreiter and Jürgen Schmidhuber. “Long
short-term memory”. In: Neural computation 9.8
(1997), pp. 1735–1780.

[33] Peter W Battaglia et al. “Relational inductive bi-
ases, deep learning, and graph networks”. In: arXiv
preprint arXiv:1806.01261 (2018).

[34] Diederik P Kingma and Max Welling. “Auto-
encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[35] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. “A simple way to initialize recurrent net-
works of rectified linear units”. In: arXiv preprint
arXiv:1504.00941 (2015).

[36] Thomas N Kipf and Max Welling. “Semi-supervised
classification with graph convolutional networks”. In:
arXiv preprint arXiv:1609.02907 (2016).

[37] Ashesh Jain et al. “Structural-rnn: Deep learning on
spatio-temporal graphs”. In: Proceedings of the ieee
conference on computer vision and pattern recogni-
tion. 2016, pp. 5308–5317.

[38] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. “Neural machine translation by jointly learn-
ing to align and translate”. In: arXiv preprint
arXiv:1409.0473 (2014).

[39] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 1). https : / / www .
tudelft.nl/dhpc/ark:/44463/DelftBluePhase1. 2022.

[40] Etienne Barnard and LFA Wessels. “Extrapolation
and interpolation in neural network classifiers”. In:
IEEE Control Systems Magazine 12.5 (1992), pp. 50–
53.

[41] Wei Zhan et al. “Interaction dataset: An international,
adversarial and cooperative motion dataset in interac-
tive driving scenarios with semantic maps”. In: arXiv
preprint arXiv:1910.03088 (2019).

12

https://doi.org/10.48550/arXiv.2305.15187
http://arxiv.org/abs/2305.15187
http://arxiv.org/abs/2305.15187
https://doi.org/10.1038/s41598-021-04239-y
http://www.nature.com/articles/s41598-021-04239-y
http://www.nature.com/articles/s41598-021-04239-y
https://doi.org/10.1109/ICCV.2019.00246
https://doi.org/10.1109/ICCV.2019.00246
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

13

Appendix A.
Tables from Benchmarking Framework Figures

TABLE 4. AUC INITIAL GAP 1/2

Dataset Models
Tβ1

Tβ2
Tβ3

T+

highD 0.890±0.026 0.916±0.009 0.896±0.012 0.917±0.006 0.904±0.011 0.912±0.012 0.906±0.010 0.928±0.005

0.384 0.554 0.507 0.487 0.624 0.457 0.715 0.566

highD (rest) 0.889±0.036 0.915±0.018 0.893±0.039 0.925±0.040 0.933±0.014 0.949±0.007 0.884±0.055 0.930±0.011

0.472 0.619 0.506 0.735 0.473 0.753 0.659 0.700

rounD 0.993±0.002 0.996±0.005 0.992±0.002 0.995±0.005 0.990±0.003 0.998±0.002 0.992±0.002 0.996±0.003

0.933 0.972 0.934 0.974 0.921 0.960 0.923 0.966

L-GAP 0.585±0.045 0.992±0.006 0.585±0.045 0.991±0.003 0.585±0.045 0.987±0.008 0.585±0.045 0.993±0.005

0.193 0.922 0.193 0.926 0.193 0.928 0.193 0.929

TABLE 5. AUC INITIAL GAP 2/2

Dataset Models
Tβ4

Tβ5
T+

highD 0.896±0.008 0.918±0.006 0.901±0.012 0.911±0.011 0.906±0.010 0.928±0.005

0.417 0.501 0.537 0.648 0.715 0.566

highD (rest) 0.922±0.025 0.925±0.023 0.890±0.027 0.936±0.018 0.884±0.055 0.930±0.011

0.427 0.689 0.424 0.612 0.659 0.700

rounD 0.991±0.001 0.994±0.003 0.992±0.003 0.997±0.003 0.992±0.002 0.996±0.003

0.914 0.962 0.928 0.971 0.923 0.966

L-GAP 0.585±0.045 0.992±0.005 0.585±0.045 0.987±0.011 0.585±0.045 0.993±0.005

0.193 0.916 0.193 0.912 0.193 0.929

TABLE 6. AUC FIXED-SIZED GAP (AUC) 1/2

Dataset Models
Tβ1

Tβ2
Tβ3

T+

highD 0.859±0.011 0.888±0.007 0.851±0.027 0.894±0.017 0.862±0.011 0.881±0.006 0.863±0.013 0.891±0.012

0.485 0.589 0.431 0.666 0.492 0.521 0.435 0.537

highD (rest) 0.899±0.028 0.916±0.015 0.885±0.050 0.924±0.016 0.919±0.014 0.917±0.020 0.914±0.010 0.898±0.038

0.653 0.757 0.653 0.710 0.725 0.817 0.633 0.715

rounD 0.980±0.006 0.990±0.005 0.980±0.006 0.996±0.005 0.980±0.006 0.993±0.006 0.980±0.006 0.993±0.005

0.942 0.982 0.942 0.991 0.942 0.994 0.942 0.974

L-GAP 0.923±0.019 0.997±0.003 0.923±0.019 0.991±0.006 0.923±0.019 0.991±0.006 0.923±0.019 0.992±0.007

0.581 0.917 0.581 0.926 0.581 0.923 0.581 0.930

14

TABLE 7. AUC FIXED-SIZED GAP 2/2

Dataset Models
Tβ4

Tβ5
T+

highD 0.853±0.027 0.884±0.019 0.852±0.012 0.893±0.008 0.863±0.013 0.891±0.012

0.672 0.620 0.703 0.508 0.435 0.537

highD (rest) 0.910±0.013 0.874±0.031 0.901±0.028 0.918±0.012 0.914±0.010 0.898±0.038

0.763 0.779 0.624 0.708 0.633 0.715

rounD 0.980±0.006 0.993±0.006 0.980±0.006 0.993±0.006 0.980±0.006 0.993±0.005

0.942 0.984 0.942 0.984 0.942 0.974

L-GAP 0.923±0.019 0.993±0.004 0.923±0.019 0.996±0.004 0.923±0.019 0.992±0.007

0.581 0.930 0.581 0.920 0.581 0.930

TABLE 8. ADE FIXED-SIZED GAP 1/2

Dataset Models
Tβ1

Tβ2
Tβ3

T+

highD 3.905±0.098 2.957±0.212 3.919±0.104 2.855±0.154 3.920±0.029 2.669±0.228 3.958±0.135 2.858±0.273

9.893 8.130 8.499 7.624 9.080 6.088 9.032 8.352

highD (rest) 4.861±0.477 4.198±0.479 5.895±0.742 5.121±0.480 4.590±1.034 4.120±0.159 4.321±0.367 6.214±3.288

6.381 7.473 7.295 5.431 6.434 6.844 6.598 5.743

rounD 1.143±0.049 0.773±0.050 1.143±0.049 0.780±0.048 1.143±0.049 0.807±0.047 1.143±0.049 0.799±0.030

1.915 1.243 1.915 1.242 1.915 1.337 1.915 1.311

L-GAP 1.539±0.078 0.668±0.028 1.539±0.078 0.701±0.054 1.539±0.078 0.703±0.053 1.539±0.078 0.691±0.033

2.636 1.126 2.636 1.188 2.636 1.145 2.636 1.240

TABLE 9. ADE FIXED-SIZED GAP 2/2

Dataset Models
Tβ4

Tβ5
T+

highD 3.861±0.117 2.853±0.215 3.983±0.213 2.681±0.227 3.958±0.135 2.858±0.273

8.817 8.296 9.466 8.841 9.032 8.352

highD (rest) 4.635±0.409 5.194±1.244 4.593±0.387 5.176±0.624 4.321±0.367 6.214±3.288

7.319 6.396 6.825 5.371 6.598 5.743

rounD 1.143±0.049 0.802±0.039 1.143±0.049 0.806±0.032 1.143±0.049 0.799±0.030

1.915 1.172 1.915 1.151 1.915 1.311

L-GAP 1.539±0.078 0.678±0.034 1.539±0.078 0.709±0.032 1.539±0.078 0.691±0.033

2.636 1.200 2.636 1.244 2.636 1.240

15

TABLE 10. FDE FIXED-SIZED GAP 1/2

Dataset Models
Tβ1

Tβ2
Tβ3

T+

highD 10.276±0.254 7.888±0.490 10.237±0.420 7.518±0.363 10.127±0.144 7.123±0.729 10.293±0.373 7.566±0.789

26.416 23.914 22.473 22.010 24.259 17.203 25.068 25.481

highD (rest) 13.192±1.884 11.402±1.697 16.337±2.082 13.954±1.107 12.346±3.286 11.107±0.464 11.325±1.023 17.431±10.003

16.562 20.230 19.131 14.943 17.325 18.929 17.230 16.427

rounD 2.617±0.105 1.921±0.150 2.617±0.105 1.926±0.110 2.617±0.105 2.017±0.125 2.617±0.105 1.994±0.083

4.768 3.251 4.768 3.137 4.768 3.538 4.768 3.278

L-GAP 3.665±0.178 1.598±0.089 3.665±0.178 1.686±0.142 3.665±0.178 1.680±0.142 3.665±0.178 1.652±0.106

6.697 2.766 6.697 2.944 6.697 2.829 6.697 3.092

TABLE 11. FDE FIXED-SIZED GAP 2/2

Dataset Models
Tβ4

Tβ5
T+

highD 10.019±0.374 7.636±0.640 10.314±0.557 7.197±0.563 10.293±0.373 7.566±0.789

22.964 22.622 25.566 27.518 25.068 25.481

highD (rest) 12.285±1.593 14.370±3.614 12.109±1.024 14.110±1.482 11.325±1.023 17.431±10.003

19.694 17.417 18.364 14.455 17.230 16.427

rounD 2.617±0.105 1.996±0.129 2.617±0.105 2.045±0.079 2.617±0.105 1.994±0.083

4.768 3.040 4.768 2.989 4.768 3.278

L-GAP 3.665±0.178 1.629±0.109 3.665±0.178 1.688±0.099 3.665±0.178 1.652±0.106

6.697 3.001 6.697 3.174 6.697 3.092

TABLE 12. TNR-PR CRITICAL GAP 1/2

Dataset Models
Tβ1

Tβ2
Tβ3

T+

rounD 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

L-GAP 0.599±0.350 0.497±0.497 0.599±0.350 0.497±0.497 0.599±0.350 0.497±0.497 0.599±0.350 0.497±0.497

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE 13. TNR-PR CRITICAL GAP 2/2

Dataset Models
Tβ4

Tβ5
T+

rounD 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000

L-GAP 0.599±0.350 0.494±0.494 0.599±0.350 0.494±0.494 0.599±0.350 0.497±0.497

0.000 0.000 0.000 0.000 0.000 0.000

16

	Introduction
	Methods
	Trajectron++
	Encoder Architecture

	Smooth Attention
	nuScenes
	Benchmarking Framework
	Metrics

	Smooth-Trajectron++
	Results
	nuScenes
	Reproduced vs. reported results
	Pedestrian-only predictions
	Vehicle-only predictions

	Benchmark for Gap Acceptance
	highD
	highD(rest)
	rounD and L-GAP
	Modification of loss function

	Discussion
	Conclusion
	Appendix A: Tables from Benchmarking Framework Figures

