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abstract
Non-Newtonian foam flow in a reservoir can be modeled numerically by discretiza-
tion of the corresponding analytical formulas. The injection of foam is compared
to the injection of water by comparing the injection pressures, which is represented
as a dimensionless pressure rise at the injection well. The model first applies the
forward-difference method to compute the changes in water saturation over space
and time as foam is injected. These changes in water saturation are related, via
Darcy’s Law, to changes in dimensionless pressure. The non-Newtonian foam be-
havior is implemented in the model by making the gas relative permeability a func-
tion of position in radial flow, based on the exponent defined for a power law fluid.

The validity of the model is assessed by a comparison with an analytical model
using the method of characteristics to simulate Newtonian foam flow. This model
was created by A.H. Al Ayesh. From this comparison it follows that the numerical
model converges to a correct solution for sufficient fine discretizations. Finer dis-
cretizations do however introduce drawbacks, such as long computation times and
high computer-memory requirements. Another drawback of the numerical model
is the inevitable error that is introduced by a numerical artifact in the computation
of the total relative mobility in each grid block at the front as foam advances. This
error can only be reduced by even-finer discretizations.

The validity of the model for non-Newtonian foam flow simulations is not as-
sessed directly in this thesis. But the model is expected to have similar or coarser
grid-refinement criteria for shear-thinning foam flow, and finer or similar grid re-
finement criteria for shear-thickening foam flow.
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1 introduction
Currently, about 9% of the world’s oil production, and virtually all ’enhanced oil
recovery’, comes from injecting gases, primarily steam and carbon dioxide, into
oil reservoirs.1,2 In enhanced oil recovery, one can use steam or CO2 injection to
sweep a reservoir of virtually all its oil. However in practice this process often has
a low efficiency due to the low viscosity of the injected gases and the geological
differences in the subsurface. Since this so-called low ’sweep efficiency’ not only
causes oil to be left behind, but also creates operational problems, it is worthwhile
investigating the usage of foam injection in order to increase this efficiency.3

Foam stability is defined by the capillary pressure; pc. If the capillary pressure is
too high, lamellae break and the foam collapses.4 The value of capillary pressure
at which this occurs is referred to as the ’limiting capillary pressure’; pc

*.5,6,7 As
a result the state of foam in the reservoir is dependent on the value of pc in the
reservoir. In a reservoir the value of pc is dependent on the water saturation, Sw.
Because of this dependency, the flow rate can be represented as a function of water
saturation instead of capillary pressure.

The value of water saturation at which foam abruptly weakens is referred to as
’fmdry’ in this paper. This value is a constant for a Newtonian foam. But for non-
Newtonian foams the value of ’fmdry’ changes with superficial velocity due to the
shear-thickening or -thinning behavior of the foam. This means that in steady, radial
flow, as is discussed in this paper, ’fmdry’ is a function of distance from the well.

2 scope
This research aims to further investigate the propagation or flow of non-Newtonian
foams in a reservoir. This includes the case of shear-thickening and that of shear-
thinning foams. These cases are currently analytically analyzed by ongoing re-
search.8 In this paper it will be attempted to evaluate these cases numerically, and
compare the findings with analytical results. Hence, it will be attempted to verify
the approach, by achieving the same results, analytically and numerically.

3 methods
In order to evaluate the cases numerically, time and space are discretized. This
is represented by using matrices with a certain number of rows and columns to
represent a certain number of time- and space-steps. After setting this up the water
saturation, Sw, is calculated at each position in time and space. When the values
for Sw are known, the flow rates within the reservoir will be known. Then by
using Darcy’s Law a comparison will be made in pressure, showing how much the
pressure at the well will increase as compared to a scenario without the use of foam.
These steps will be elaborated in more detail in the next paragraphs.

discretization In setting up the model there has to be a balance between letting
the amount of space- and time-steps approach infinity, and accounting for compu-
tational time. Besides this fact the model is created such that the discretization for

1 G. Moritis, Oil & Gas Journal, Issue 51 (1992).
2 P. Jacquard, Proc 6th European Symposium on Impr. Oil Recovery, Stavanger, Norway, May 21-23, 1991.
3 W.R. Rossen, Foams in Enhanced Oil Recovery, 1996.
4 A.J. Jimenez and C.J. Radke, in Oil-Fiel Chemistry: Enhanced Recovery and Production Stimulation (J.K.

Borchardt and T.F. Yen, eds.) ACS Symposium Ser. 396. Am. Chem. Soc., Washington D.C., 1989.
5 Z.I. Khatib, G.I. Hirasaki, and A.H. Falls, SPE Reserv. Eng. 3: 919 (1988).
6 R.A. Ettinger and C.J. Radke, SPE Reserv. Eng. 7: 83 (1992).
7 P. Persoff, C.J. Radke, K. Pruess, S.M. Benson, and P.A. Witherspoon, SPE Reserv. Eng. 6:365 (1991).
8 Research done by S. ter Haar & C.G. Ponners, supervised by Prof.dr. W.R. Rossen.
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time should be much smaller than the discretization for space. Hence, the model
accounts for this dependence by generating the discretization for time automati-
cally based on the discretization in space, based on a so called dependence factor.
This dependence factor determines how much smaller the discretization in time
should be. In doing so the model automatically remains numerically stable for each
space discretization. The model works such that it starts with a linear point spacing
between the well, rw, and the outer radius of the reservoir, rmax. This spacing is
converted to dimensionless distance, xD, using Equation 1. This is done because
analytical models also use dimensionless distance. Next the discretization in time
is based on the grid for xD.

It was decided that the grid for r should not have a logarithmic point scaling; this
would decrease the smallest value of dx significantly. This means that a much finer
discretization in time is required for numerical stability, resulting in much longer
computation times and computer-memory requirements.

xD ≡ r2 − r2w
r2max − r

2
w

(1)

foam propagation Having boundary conditions along with matrices that allow
for numerical computations, the changes in Sw will be tracked through time and
space. In order to do so, Equation 2, which is an analytical equation, needs to
be evaluated in a numerical manner. Via discretization and rearrangement this
equation then becomes Equation 3, which is used to solve the matrices.

∂Sw

∂t
+
∂fw

∂x
= 0 (2)

Swi(t+∆t) = Swi(t) +∆t(
fw(Swi−1(t)) − fw(Swi(t))

∆x
) (3)

As can be seen in Equation 3, the value of Sw in a specific grid block at a specific
time step is calculated based on the value of Sw at the previous time step in that
same grid block and an additional value which is calculated based on the flow in
and out of that grid block at the previous time step. These values for flow are sub-
sequently dependent on the relative permeability of water, the relative permeability
of gas, the viscosity of water, and the viscosity of gas. The equation for fw is shown
in Equation 4. It should be noted here that the representation of a shear-thickening
or shear-thinning foam is done, not by letting the viscosity change, but by letting
the relative permeability change. This is most clearly understood when looking at
the equation for the relative permeability, which is shown in Equation 5. In this
equation, x represents dimensionless distance from the injection well, and, as can
be seen, the value of ’fmdry’ changes with x. Each case of a shear-thickening or
-thinning foam is assigned a different range of ’fmdry’ values as a function of x,
which, as explained earlier, represent the different limiting capillary pressures. The
fmdry(x) functions are provided in tabular form by R.O. Salazar; the derivation of
these functions is outside the scope of this study. It should however be noted that
’fmdry’ changes with velocity, which means it changes according to 1

r , which sub-
sequently means it changes approximately according to 1√

x
. Thus the behavior of

’fmdry’ is extremely nonlinear in terms of x. Note that in Equation 5 the last term
is the same at the previous term, but evaluated at Swr, which is the residual water
saturation. This term is added, as suggested by Namdar Zanganeh et al. (2011), to
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compensate for foam not collapsing completely at residual water saturation in the
model.9

fw =

Krw(Sw)
µw

Krg(Sw,x)
µg

+
Krw(Sw)
µw

(4)

Krg = Krgo(Sw)(1+ fmmob(
arctan(epdry(Sw − fmdry(x)))

π
− (5)

arctan(epdry(Swr − fmdry(x)))

π
))

pressure changes In addition to the propagation of foam, we want to simulate
how the pressure changes in the reservoir as the foam progrades. The goal here is
to find the pressure at the well based on a reference pressure at the outer location
of the radius of interest. This value for pressure at the outer radius is known and
fixed. The pressure at the well is then computed numerically by applying Darcy’s
Law, working from the outer radius inward, using the computed values for Sw as
a function of position. Darcy’s Law, along with it’s numerical approximation after
discretization and rearrangement, are given in Equation 6 and 7 respectively. The
total relative mobility, λrt, which is used in these equations, is given in Equation 8.

Q

2πrh
= −Kλrt(

dP

dr
) (6)

Pn−1 = Pn + (
Q

4πhK
)(

1

λrt(rn,Swn)
+

1

λrt(rn−1,Swn−1)
)ln(

rn

rn−1
) (7)

λrt =
Krw(Sw)

µw
+
Krg(Sw, r)

µg
(8)

Once the changes in pressure over time and space are calculated, these changes
can be translated to dimensionless pressure changes over time. This dimension-
less value represents the value of pressure at the well as compared to the value of
pressure at the well when injecting water at the same rate into a water-saturated
reservoir. This latter scenario without foam is referred to as the ’waterflood’ sce-
nario. The dimensionless pressure can be calculated as shown in Equation 9; the
pressure at the well minus the pressure at the outer radius, divided by the same
values, but for the waterflood scenario.

PD =
(Pw − Pe)

(Pw − Pe)Waterflood
(9)

boundary conditions As we are trying to simulate gas injection in a SAG foam
process, in which gas and surfactant solution meet in the reservoir itself, there are
certain boundary conditions that can be applied. First of all, in order to account
for this injection process, it is assumed that fw is 0 at the well at all times. The
second assumption that was made governs the initial conditions of the reservoir. It
is assumed that initially Sw is 1 everywhere in the reservoir. These two boundary
conditions are shown in Equation 10.

fw = 0 for : [x = 0, all t] (10)

Sw = 1 for : [t = 0, all x]

9 A.H. Al Ayesh, Optimal SAG Design in Heterogeneous Reservoirs - Effect of Permeability on Foam
Diversion, pg. 30, 2016.
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4 results
validity of the numerical model First of all the validity of the model should
be assessed. In order to do so the numerical model will be compared to the Mat-
lab code that was written by Ahmed H. Al Ayesh10. This is an analytical script
that, amongst other things, allows for calculating PD for Newtonian foam flow in
a system up to four layers, using the method of characteristics to solve Equation 2.
For this comparison all these layers are set to have the same properties, such that
it resembles a uniform subsurface, as is the case in the numerical model. Besides
that the value of n in the numerical script is set to 1, such that these models both
simulate Newtonian foam flow. These and other parameters were set to be the same
for both models. An overview of these parameters can be found in Table 1. The
results of the simulations done with Ahmed H. Al Ayesh’s code can be found in
Figures 1 and 3. The results of the simulations done with the numerical code can
be found in Figures 2 and 4.

Table 1: Input Parameters

Parameter Value Units Parameter Value Units

n 1.00 - µw 0.001 mPa.s
Krw00 0.39 - µg 0.00002 mPa.s
nw 2.86 - rw 0.1 m
Krg00 0.59 - rmax 100 m
ng 0.70 - fmmob 47700 -
Swr 0.25 - epdry 400 -
Sgr 0.20 - fmdryrmax 0.271 -

Figure 1: A.H. Al Ayesh’s Model [tD(max)=2.00]

10 A.H. Al Ayesh, Optimal SAG Design in Heterogeneous Reservoirs - Effect of Permeability on Foam
Diversion, Appendix C: Matlab Code, 2016.
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Figure 2: Numerical Model [tD(max)=2.00, No. of grid points=200]

Figure 3: A.H. Al Ayesh’s Model [tD(max)=0.01]

Figure 4: Numerical Model [tD(max)=0.01, No. of grid points=2500]

In verifying the model it becomes clear Figure 2 strongly resembles Figure 1. The
moment of foam breakthrough at rmax is exactly the same; tD=0.72. However the
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absolute values are a factor of a third higher. When going to larger discretizations
such as in Figure 4, the solution clearly yields the same plateau level as in the
solution of Ahmed H. Al Ayesh. Unfortunately the value of tD(max) has to be
decreased in order to compensate for the computation time and computer-memory
requirements when using a finer grid. The impact of using a finer discretization
on the memory requirements is shown in Figure 5. This figure shows that memory
requirements increase exponentially with grid refinement.

When comparing Figures 3 and 4, it is clear that the two solutions approach the
same value. The reason that the solutions do not agree very well at early times
might have two reasons. At early times in the numerical model, the foam front
occupies relatively few grid blocks. Thus the refined model still posses a relatively
coarse grid at early times. Besides that the analytical model has a larger dt in these
simulations, which also explains why it has no solution for tD<0.0001. As time
increases the solutions agree well. For discretizations coarser than 2500 grid points
the model appears to overshoot the initial increase in PD. When comparing these
findings with a simulation that has a discretization of 3000 points, which is shown
in Figure 6, it becomes clear that there is relatively little difference in the plateau
level between the case for 2500 grid points or that of 3000 grid points. Hence it can
be concluded that finer discretizations are indeed converging to the same solution,
at least for grids finer than 2500 points, which is the same solution as the analytical
solution provided in Figure 1. It can also be concluded that the model appears to
overshoot the initial increase in PD for discretizations coarser than 2500 grid points.

Figure 5: Memory Usage of the Model on a Computer with 16GB RAM Memory
[tD(max)=2.00, ’dep’=7]
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Figure 6: Numerical Model [tD(max)=0.01, No. of grid points=3000]

In concluding that this specific case is stable and converges to the correct solution
for discretizations finer than 2500 points it is relevant to ask ourselves, keeping the
scope that was set in mind, how this criteria translates to non-Newtonian problems.
The first thing that can be said about this, is the fact that the vector that is used to
represent the changes in ’fmdry’ stays mostly the same for non-Newtonian cases.
That is, the vectors and the matrices remain of the same format and size; only the
values change. Given this fact, it is expected that the criteria would not change
too much when the exponent changes in the formula for power-law foams. That
being said, another thing that changes with a changing ’fmdry’ is the actual value
of PD. In the case of a shear-thinning foam this results in higher velocities near
the well and thus smoother behavior there. In the case of a shear-thickening foam
however, the viscosities near the well increase, resulting in lower mobilities, which
then subsequently result in higher pressures. This means that the values for PD
will increase, and that the initial increase in PD at very small tD will be greater.
Hence it is more likely that the model will ’overshoot’ this initial increase for shear-
thickening foams. This behavior was also observed in Figure 2. However in the case
of shear-thickening foam simulations, it might even do so with finer discretizations.

non-newtonian foam simulations A variety of simulations for non-Newtonian
foam flow were done, though we have no analytical results yet to compare these
with. These simulations can be found in Appendix A. The different values for n
that are used for these simulations, were acquired by R.O. Salazar, and were used
in the work of S. ter Haar and C.G. Ponners as well. All other parameters required
for the simulations were kept the same as in Table 1.

5 discussion
numerical artifacts One of the largest drawbacks of using this model, next to
the large computation time and computer-memory usage as were discussed earlier,
are artifacts that are introduced by solving the problem numerically. These artifacts
are discussed in a paper by W.R. Rossen11. In this paper it is explained how these
artifacts are introduced in the simulations, by looking at the term for λrt, which
was shown in Equation 8 of this paper. The relation between this term, the total
relative mobility, λrt, and the water saturation, is shown in Figure 7. This Figure
was originally presented in the paper by W.R. Rossen and illustrates what changes
in mobility take place at the foam front. In an injection process there is a ’shock’

11 W.R. Rossen, Numerical Challenges in Foam Simulation: A Review, SPE, pg. 3-5, 2013.



discussion 9

going from the state ahead of the foam, with higher water saturations, to the foam
bank, which has lower water saturations. In a finite-difference simulation however,
each grid block at the foam front passes through all these saturations when foam
progrades through the grid blocks. This results in an overestimation of mobility
reduction at the foam front, because grid blocks go all the way down the curve that
is shown in Figure 7.

Figure 7: The total relative mobility λrt as a function of water saturation for the model in
Fig.1. In a SAG Process, there is a shock from the initial state ahead of the shock
past the water saturations with lowest mobility. In a finite-difference simulation,
each grid block passes through all of the intermediate water saturations as the
foam front enters the grid block. (Rossen, 2013)

When the decrease in mobility is overestimated, the pressure will be overesti-
mated as well. The effect of grid blocks passing through all water saturations will
cause different magnitudes of overestimation. Each time a grid block slides down
the curve in Figure 7 there is a certain moment of maximum overestimation for that
specific grid block. This can be observed in Figures 2, 4, and 6. In these figures
there is a scatter of data points above the actual solution. These data points all have
different magnitudes of overestimations; if‘ the dots would be connected a fluctuat-
ing function would become visible. When looking at these figures it becomes clear
that the solution that is presented in this paper is simply the minima of these val-
ues. This was done in an attempt to minimize the error that is introduced by this
numerical artifact. However it should be noted that, as becomes clear from Figure 7,
a finite-difference solution can never be completely without these errors. The effect
is especially great when the foam front is near the injection well, because the model
still posses a coarse grid for these early times as was explained earlier. However, a
finer grid spacing does indeed reduce the magnitude of this artifact. W.R. Rossen
concluded in his paper: ’Refining the grid does not eliminate the artifact; each grid
block must still pass through the minimum in mobility in Fig. 2 (Figure 7 here), but
refining the grid does reduce its impact on overall injectivity.’. This conclusion is
also in line with the differences between the simulations in Figures 2, 4, and 6.

validity for non-newtonian foam As was discussed in the results section of
this paper under the paragraph ’Validity of the Numerical Model’, the numerical
model is able to match the results that were acquired using the method of charac-
teristics as implemented by A.H. Al Ayesh, at least after a brief period of injection.
This validates the numerical model in simulating Newtonian foam flow, if used
along with certain discretization criteria. There is reason to believe that this implies
that the numerical model produces valid results for non-Newtonian foam flow as
well, with more or less the same discretization criteria. It is however possible that
shear-thickening foam requires a finer grid to achieve valid solutions. But such re-
marks are all speculation at this point, and no such comparisons have been done to
validate these expectations. This means that the phrase "more or less the same dis-
cretization criteria" becomes quite a broad statement, and thus actual applicability
of the model for non-Newtonian foam flow is unknown.
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6 conclusion
Numerical analysis, and more specifically forward-difference, does prove to be a
valid method to simulate foam flow in a heterogeneous reservoir. The applicability
of these methods is questionable however. Using numerical methods to analyze
foam flow seems to yield a number of practical problems such as long computation
times, and high computer memory requirements. In addition there is a certain error
introduced in total mobility of the foam by discretizing the problem, that cannot be
removed; it can only minimized by using a finer grid. It should be said that time
at hand was short, and that the model could perhaps be optimized further, which
might result in shorter computation times. It should also be noted that even though
the model does allow for non-Newtonian foam flow, this has not been compared
with trusted, analytical, results yet. Keeping these things in mind the real potential
of the numerical analysis is perhaps still somewhat unknown, however there seems
to be little advantage thus far in using a numerical approach instead of a analytical
approach in simulating foam flow in a reservoir.



appendices 11

7 appendices

Appendix A: Simulation Overview

newtonian foam [n=1.00] Simulations for Newtonian foam. Using all the
parameters shown in Table 1 other than ’n’.

Figure 8: Newtonian Foam [ n=1.00, tD(max)=2.00, No. of grid points=200]

Figure 9: Newtonian Foam [ n=1.00, tD(max)=0.01, No. of grid points=3000]
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shear-thinning foam [n=0.77] Simulations for shear-thinning foam. Using
all the parameters shown in Table 1 other than ’n’.

Figure 10: Shear-Thinning Foam [ n=0.77, tD(max)=2.00, No. of grid points=200]

Figure 11: Shear-Thinning Foam [ n=0.77, tD(max)=0.01, No. of grid points=3000]
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shear-thickening foam [n=1.28; 1.30 ; 1.69; 1.70; 2.11] Simulations for
shear-thickening foam. Using all the parameters shown in Table 1 other than ’n’.

Figure 12: Shear-Thickening Foam [ n=1.28, tD(max)=2.00, No. of grid points=200]

Figure 13: Shear-Thickening Foam [ n=1.28, tD(max)=0.01, No. of grid points=3000]
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Figure 14: Shear-Thickening Foam [ n=1.30, tD(max)=2.00, No. of grid points=200]

Figure 15: Shear-Thickening Foam [ n=1.30, tD(max)=0.01, No. of grid points=3000]



appendices 15

Figure 16: Shear-Thickening Foam [ n=1.69, tD(max)=2.00, No. of grid points=200]

Figure 17: Shear-Thickening Foam [ n=1.69, tD(max)=0.01, No. of grid points=3000]
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Figure 18: Shear-Thickening Foam [ n=1.70, tD(max)=2.00, No. of grid points=200]

Figure 19: Shear-Thickening Foam [ n=1.70, tD(max)=0.01, No. of grid points=3000]
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Figure 20: Shear-Thickening Foam [ n=2.11, tD(max)=2.00, No. of grid points=200]

Figure 21: Shear-Thickening Foam [ n=2.11, tD(max)=0.01, No. of grid points=3000]
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foam comparison [n=0.77; n=1.00; n=1.69] Comparing Newtonian, shear-
thinning, and shear-thickening foam for the parameters given in Table 1.

Figure 22: Foam Comparison [tD(max)=2.00, No. of grid points=300]

Figure 23: Foam Comparison [tD(max)=0.01, No. of grid points=3000]
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Appendix B: Matlab Code

The code for the numerical model, written in Matlab. Note that only the sections
3 and 4 govern the actual model. Sections 1 and 2 process input parameters, and
sections 5, 6, and 7 visualize the resulting data.

1 %-----------------------------------------------------------------------------%

2 % Numerical Simulation of Radial Non-Newtonian Foam Flow in a Reservoir %

3 % Student: M. Bos %

4 % Supervisors: Prof.dr. W.R. Rossen & MSc. R.O. Salazar %

5 % June 2017 %

6 %-----------------------------------------------------------------------------%

7

8 clear all

9 close all

10 clc

11

12 %% [1] INPUT

13 muw=0.001; % Fluid property

14 mug=0.00002; % Fluid property

15 Krw00=0.39; % Corey parameter

16 nw=2.86; % Corey parameter

17 Krg00=0.59; % Corey parameter

18 ng=0.70; % Corey parameter

19 Swr=0.25; % Residual saturation

20 Sgr=0.20; % Residual saturation

21 fmmob=47700; % Foam model parameter

22 epdry=400; % Foam model parameter

23 fmdryrmax=0.271; % Foam model parameter

24 rw=0.1; % Welbore radius

25 rmax=100; % Reservoir radius

26

27 C=1000; % Constant: Q/2pihK

28 Pi=0; % Reference pressure at rmax

29

30 n=1.00; % Power law fluid exponent.

31

32 rn=200; % No. of grid points

33 tmax=2.00; % Maximum dimensionless time

34

35 dep=10; % [~7+] Factor of dependance: dt=(min(dx))/dep

36 Pstep=50; % [25-75] Ratio between integrated rows for P and total rows

37 visstep=2000; % [2000] Ratio between visualized rows and total rows

38

39 %% [2] PREALLOCATION AND SETTING UP DEPENDENT PARAMETERS

40 fprintf('Preallocation, please wait...\n')

41 r=linspace(rw,rmax,rn);

42 xn=rn;

43 x=(r.^2-rw^2)/(rmax^2-rw^2);

44 dx=zeros(1,xn-1);

45 for i=1:xn-1;

46 dx(i)=abs(x(i+1)-x(i));

47 end

48 dt=min(dx)/dep;

49 tn=str2double(num2str(round((tmax/dt),0)+1));

50 t=linspace(0,tmax,tn);

51 tP=zeros(1,round(tn/Pstep,0));

52 for j=1:tn/Pstep;

53 tP(j)=t(j*Pstep);

54 end
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55 P=zeros(round(tn/Pstep,0),xn);

56 P(:,xn) = Pi;

57 Pf=zeros(1,xn);

58 Pf(1,xn) = Pi;

59 dlP=zeros(1,round(tn/Pstep,0));

60 Sw = zeros(tn,xn);

61 Sw(1,:) = 1;

62 Sw(2,:) = 1;

63 fw = zeros(tn,xn);

64 Krw=zeros(tn,xn);

65 Krg0=zeros(tn,xn);

66 Krg=zeros(tn,xn);

67 C4=(fmdryrmax-Swr)/(rmax)^((n-1)/nw);

68 fmdry=zeros(1,numel(r));

69 for i=1:numel(r)

70 fmdry(i)=Swr+C4*r(i)^((n-1)/nw);

71 end

72 clearvars i

73 timestr=sprintf('n = %.2f, 0 < t < %.2f',n,tmax);

74 timestr2=sprintf('%.2f',tmax);

75 titlestr=sprintf('n = %.2f',n);

76

77 %% [3] SOLVING NUMERICALLY FOR S_w & INTEGRATING THE RESULT FOR P

78 for j=1:tn; %S_w, for-loop over time.

79 for i=2:xn; %S_w, for-loop over space.

80 Krw(j,i)=real(Krw00*((Sw(j,i)-Swr)/(1-Swr-Sgr)).^nw);

81 Krw(j,1)=Krw(j,2);

82

83 Krg0(j,i)=real(Krg00*((1-Sw(j,i)-Sgr)/(1-Swr-Sgr)).^ng);

84 Krg(j,i)=Krg0(j,i)*(1+fmmob*((0.5+(atan(epdry*(Sw(j,i)-fmdry(i)))/pi

))-(0.5+(atan(epdry*(Swr-fmdry(i)))/pi)))).^-1;

85 Krg(j,1)=Krg(j,2);

86

87 fw(j,i)=(Krw(j,i)/muw)/((Krg(j,i)/mug)+(Krw(j,i)/muw));

88

89 Sw(j+1,i)=dt*((fw(j,i-1)-fw(j,i))/dx(1,i-1)) + Sw(j,i);

90 Sw(j+1,1)=Sw(j+1,2);

91 end

92 fprintf('%.1f%% - Solving numerically for Sw - rn=%.f, t=%.2f \n',(j/tn)

*100,xn,tmax)

93 end

94

95 for i=2:xn; % P_waterflood, for-loop over space.

96 Pf(1,xn-i+1)=Pf(1,xn-i+2)+transpose(C*0.001*log(x(xn-i+2)/x(xn-i+1)));

97 Pf(1,1)=Pf(1,2);

98 fprintf('%.1f%% - Integrating for Pw - rn=%.f, t=%.2f \n',(i/xn)*100,xn,tmax

)

99 end

100

101 for j=1:tn/Pstep; % P, for-loop over time.

102 for i=2:xn; % P, for-loop over space.

103 P(j,xn-i+1)=P(j,xn-i+2)+transpose(C*(1/(Krw(j*Pstep,xn-i+2)/muw+Krg(j*
Pstep,xn-i+2)/mug)+1/(Krw(j*Pstep,xn-i+1)/muw+Krg(j*Pstep,xn-i+1)/

mug))*0.5*log(x(xn-i+2)/x(xn-i+1)));

104 P(j,1)=P(j,2);

105 dlP(j)=(P(j,1)-P(j,xn))/(Pf(1,1)-Pf(1,xn)); % P_D

106 end

107 fprintf('%.1f%% - Integrating for P - rn=%.f, t=%.2f \n',(j*Pstep/tn)*100,xn

,tmax)

108 end

109 clearvars i j
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110

111 %% [4] CORRECTING FOR NUMERICAL ARTIFACTS AT FOAM FRONT BY LOCAL MINIMA

112 fprintf('Correcting numerical artifacts at foam front by local minima, please

wait...\n')

113 idlP=dlP*-1;

114 [mindlP,mindlPlocs]=findpeaks(idlP);

115 peaktP=tP(mindlPlocs);

116 mindlP=mindlP*-1;

117 fpeaktP(1)=tP(1);

118 fpeaktP(2:numel(peaktP)+1)=peaktP;

119 fmindlP(1)=peaktP(1);

120 fmindlP(2:numel(mindlP)+1)=mindlP;

121

122 %% [5] VISUALISATION OF CHANGES IN S_w OVER TIME AND SPACE

123 fprintf('Visualizing resulting data, please wait...\n')

124 f=figure(1);

125 axes('Parent',f,'position',[0.13 0.39 0.77 0.54]);

126 h=plot(x,Sw(1,:),'k','Marker','.','MarkerEdgeColor','k','MarkerSize',5);

127 axis([0 1 0 1])

128 ylabel('S_w')

129 xlabel('x_D')

130 title(timestr)

131 c=uicontrol('Parent',f,'Style','slider','Position',[81,54,419,23],'Min',1,'Max',

tn,'Value',1);

132 cgcolor = f.Color;

133 cl1 = uicontrol('Parent',f,'Style','text','Position',[50,54,23,23],'String','0',

'BackgroundColor',cgcolor);

134 cl2 = uicontrol('Parent',f,'Style','text','Position',[500,54,23,23],'String',

timestr2,'BackgroundColor',cgcolor);

135 cl3 = uicontrol('Parent',f,'Style','text','Position',[240,25,100,23],'String','t

= 0.00','BackgroundColor',cgcolor);

136 c.Callback = @(es,ed) {set(cl3,'String',sprintf('t = %.2f',t(round(es.Value))));

137 set(h,'Ydata',Sw(round(es.Value),:))};

138

139 %% [6] VISUALISATION OF CHANGES IN P OVER TIME AND SPACE

140 e=figure(2);

141 axes('Parent',e,'position',[0.13 0.39 0.77 0.54]);

142 n=plot(x,P(1,:),'k','Marker','.','MarkerEdgeColor','k','MarkerSize',5);

143 hold on

144 plot(x,Pf,'k','Marker','x','MarkerEdgeColor','k','MarkerSize',5)

145 axis([0 1 Pi max(max(P(mindlPlocs(:))))])

146 ylabel('P')

147 xlabel('x_D')

148 title(timestr)

149 legend('P','P_W_a_t_e_r_f_l_o_o_d')

150 s=uicontrol('Parent',e,'Style','slider','Position',[81,54,419,23],'Min',1,'Max',

round(tn/Pstep),'Value',1);

151 egcolor = e.Color;

152 el1 = uicontrol('Parent',e,'Style','text','Position',[50,54,23,23],'String','0',

'BackgroundColor',egcolor);

153 el2 = uicontrol('Parent',e,'Style','text','Position',[500,54,23,23],'String',

timestr2,'BackgroundColor',egcolor);

154 el3 = uicontrol('Parent',e,'Style','text','Position',[240,25,100,23],'String','t

= 0.00','BackgroundColor',egcolor);

155 s.Callback = @(es,ed) {set(el3,'String',sprintf('t = %.2f',t(round(es.Value)*
Pstep)));

156 set(n,'Ydata',P(round(es.Value),:))};

157

158 %% [7] VISUALISATION OF CHANGES IN P_D OVER TIME

159 figure(3)

160 plot(tP(max(mindlPlocs):end),dlP(max(mindlPlocs):end),'k','LineWidth',0.75)



appendices 22

161 hold on

162 plot(tP(1:max(mindlPlocs)-1),dlP(1:max(mindlPlocs)-1),'LineStyle','none','Marker

','o','MarkerSize',0.8,'MarkerEdgeColor','none','MarkerFaceColor','k')

163 hold on

164 plot(fpeaktP,fmindlP,'k','LineWidth',0.75)

165 axis([0 max(t) 0 max(max(fmindlP))+0.1*max(max(fmindlP))])

166 set(gca,'FontSize',24)

167 xlabel('t_D','FontSize',28);

168 ylabel('P_D','FontSize',28);
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Soli Deo Gloria


	1 Introduction
	2 Scope
	3 Methods
	4 Results
	5 Discussion
	6 Conclusion
	7 Appendices

